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Abstract

Liquid Natural Gas (LNG) processing facilities contain large complex networks of pipes of varying di-

ameter and orientation intermixed with control valves, processes and sensors. Regular inspection of these

pipes for corrosion, caused by impurities in the gas processing chain, is critical for safety. Popular exist-

ing non-destructive technologies that used for corrosion inspection in LNG pipes include Magnetic Flux

Leakage (MFL), radiography (X-rays), and ultrasound among others. These methods can be used to obtain

measurements of pipe wall thickness, and by monitoring for changes in pipe wall thickness over time the rate

of corrosion can be estimated. For LNG pipes, unlike large mainstream gas pipelines, the complex infras-

tructure means that these sensors are currently employed external to the pipe itself making comprehensive,

regular coverage of the pipe network difficult to impossible. As a result, a sampling-based approach is taken

where parts of the pipe network are sampled regularly, and the corrosion estimate is extrapolated to the re-

mainder of the pipe using predictive corrosion models derived from metallurgical properties. We argue that

a robot crawler that can move a suite of sensors inside the pipe network, can provide a mechanism to achieve

more comprehensive and effective coverage. In this technical report, we explore a vision-based system for

building 2D registered appearance maps of the pipe surface whilst simultaneously localizing the robot in

the pipe. Such a system is essential to provide a localization estimate for overlaying other non-destructive

sensors, registering changes over time, and the resulting 2D metric appearance maps may also be useful for

corrosion detection. For this work, we restrict ourselves to linear pipe formations.

We explore two distinct classes of algorithms that can be used to estimate this pose are investigated, both

visual odometry systems which estimate motion by observing how the appearance of images change between

frames. The first is a class of dense algorithms that use the greyscale intensity values and their derivatives

of all pixels in adjacent images. The second class is a sparse algorithm that use the change in position

(sparse optical flow) of salient point feature correspondences between adjacent images. Pose estimate results

obtained using the dense and sparse algorithms are presented for a number of images sequences captured

by different cameras as they moved through two pipes having diameters of 152.40mm (6”) and 406.40mm

(16”), and lengths 6 and 4 meters respectively. These results show that accurate pose estimates can be

obtained which consistently have errors of less than 1 percent for distance traveled down the pipe. Examples

of the stitched images are also presented, which highlight the accuracy of these pose estimates.
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1 Introduction

Corrosion of the pipes used in the sour gas processing stages of Liquid Natural Gas (LNG) facilities can

lead to failures that result in significant damage to the infrastructure, loss of product, and most importantly

fatalities and serious injuries to human operators. Detailed inspection of these pipes to monitor corrosion

rates is therefore a high priority. In current industry practice, such inspection is performed using Non-

Destructive sensors located external to the pipe, and/or by inserting sacrificial metal samples that corrode

over time, but can be easily measured. Example sensors include Magnetic Flux Leakage (MFL), ultrasound,

and radiography (e.g. [29]). Typically, these sensors can only be deployed in reachable locations. As a

result, predictive models of corrosion rates derived from sampled portions and metallurgical models are

used to estimate the status of the pipe wall.

An alternative approach is to use a pipe crawling robot to measure all parts of the pipe surface thereby

avoiding the need for extensive, and potentially unreliable, predictive models. This approach has proven

highly successful for inspecting gas pipelines, as with a Smart inspection PIG1, and in downstream distri-

bution networks [35]. Typically, such systems either rely on high quality, expensive Inertial Motion Units

(IMUs) for pose estimation or wheel odometry, which is known to be inaccurate. In this paper, we explore

visual odometry approaches to achieving high accuracy position estimates with a low cost camera system.

Our goal is to develop a low-cost system that can support building high resolution models of the pipe wall

which can later be used for corrosion detection and/or augmenting existing sensors. Concretely, our system

operates with a monocular camera mounted on a vehicle moving through the pipe network. The output of

the system is an estimate of the vehicle pose at each time step. A second output of the system is a 2D metric

appearance map of the inner pipe surface. Figure 1 shows an example of a stitched image generated from

several hundred individual images taken by a camera as it moved through a 152.4mm (6”) diameter carbon

steel pipe.

Figure 1: A stitched image of a region inside a 152.4mm (6”) diameter carbon steel pipe. The stitched image was

generated from several hundred individual images using a visual odometry developed in this work.

We explore two distinct classes of algorithms for estimating camera pose from monocular image se-

quences, both visual odometry systems which integrate incremental changes in camera pose to find the

position of the camera, relative to some reference point, at the time each image was taken [32, 33, 24,

39, 20, 34, 18, 1]. The first of these is a dense class of algorithms which uses the greyscale values of all

overlapping pixels in adjacent images to estimate the transform between the images, a process known as

registration [42, 38, 2, 40, 5], which is then use to estimate the change in pose between the cameras. The

dense algorithms estimate the transform between images using different techniques. The full-search2 algo-

rithm uses the difference of greyscale intensity values of overlapping regions to formulate a cost function.

The model-based algorithm uses the difference of greyscale intensity gradients and a hierarchical (coarse to

fine) approach. We also explore a hybrid approach that combines full-search with model-based based tech-

niques for sub-pixel resolution. The second class a sparse algorithm that finds corresponding scene points in

adjacent images. The measured change in image coordinates of these correspondences (sparse optical flow)

is used to estimate a change in camera pose. The sparse algorithm enforces strictly that all scene points are

assumed to lie on the surface of a cylindrical pipe, and it uses this assumption when estimating the change

1
http://www.geoilandgas.com/businesses/ge_oilandgas/en/prod_serv/serv/pipeline/en/

inspection_services/index.htm
2Also referred to commonly as a exhaustive search.
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Figure 2: Image coordinates

in pose between camera views. To resolve the monocular visual odometry scale ambiguity [32], the dense

algorithms use a reference scale measurement to convert pixel displacement to a metric Euclidean change

in pose, while the sparse algorithm uses the precisely measured radius of the pipe.

We conducted experiments to assess the accuracy of our dense and sparse visual odometry algorithms.

Our datasets include four image sequences captured by two different cameras as they traversed through

different carbon steel pipes. The first pipe was 6 meters long with a diameter of 152.40 millimeters (6”),

and the second pipe was 4 meters long with a diameter of 406.40 millimeters (16”). The results indicate that

both the dense and sparse visual odometry algorithms were able to estimate the change in camera pose in

the direction down the length of pipe with an error consistently less than 1 percent. Examples of the stitched

images for each pipe are also presented which illustrates the accuracy of the visual odometry estimates, and

form one part of the appearance maps that we wish to build as part of a visual perception system for LNG

pipe inspection.

The remainder of this report is structured as follows. In section 2, we outline and describe the coordinate

conventions as well notation used throughout this report. In section 3, we describe in detail the dataset

collection process, including the methods used to obtaining a ground truth measurement, and the process

we use to model and account for the non-uniform lighting distribution from our generated light source in

the pipe. The dense methods are described in section 4, including both the full-search and model-based

algorithms, which is followed by the description of the sparse algorithm in section 5. In section 6, we

present the experimental results and a detailed discussion of the results and various factors which influence

the accuracy of the visual odometry estimates obtained using the dense and sparse algorithms. In section 7,

we present our conclusions and our outlook for future work.

2 Preliminaries and Notations

The notations and coordinate conventions used throughout this report are described in this section, which

includes the parameterization of a cameras pose within a cylindrical pipe.

The coordinate system in image space is defined according to the standard convention, where the x axis

is along the width of the image (columns), the y axis is along the height of the image (rows), and the origin

of the coordinate system is located at the top left corner of the image, as illustrated in Fig. 2. Each pixel has

a coordinate xi = (xi, yi)
T whose homogeneous representation is xxx i = (xi, 1)

T .

As will be discussed in section 3, a small robotic platform equipped with a camera moves through the
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Figure 3: The coordinate system for a straight cylindrical pipe with constant radius r. The position of a point Xi

on the interior surface of the pipe can be parameterized using Cartesian coordinates as Xi = (Xi, Yi, hi)
T , where

X2

i + Y 2

i = r2, or using cylindrical coordinates as Xi = (r cos φi, r sinφi, hi)
T .

interior of a straight cylindrical pipe. Referring to Fig. 3, we define X = (X,Y, h)T ∈ R
3 as the position

of a world point in the pipe’s coordinate frame of reference, and denote its homogeneous representation as

XXX = (X, 1)T . If r is the radius of the cylindrical pipe, then the coordinate of a scene point, constrained to

lie on the interior surface of the pipe, can be parameterized as:

X =





r cosφ
r sinφ

h



 , (1)

where φ = tan−1(Y/X) is an angle about the central axis of the pipe.

The pose Pt of the camera relative to the pipe at time t is written as:

Pt =

[

R −RC

0T 1

]

, (2)

where R is a 3× 3 rotation matrix, andC is a 3× 1 Euclidean position vector of the camera with respect to

the origin of the pipe. The pose Pt defines the transform of the homogeneous coordinate XXX i of a world point

Xi in the pipe coordinate frame of reference to the homogeneous coordinate X̃̃X̃X i of the same scene point in

the cameras coordinate frame of reference:

X̃̃X̃X i = PtXXX i, (3)

and has the inverse relationship:

XXX i = P−1
t X̃̃X̃X i, (4)

=

[

R−1 C

0T 1

]

X̃̃X̃X i. (5)

Our visual odometry algorithms estimate incremental changes in camera pose to find the pose Pt of a camera

as it moves through a pipe.

Many visual odometry algorithms estimate the change in pose between camera views. If X̃ and X̃′

are the coordinates of world points respectively in camera frames 1 and 2, and X̃ ↔ X̃′ is a known set of

correspondences, the change in pose Q̃1,2 between the two cameras is the projective transform between the

homogeneous coordinates

X̃̃X̃X
′ = Q̃1,2 X̃̃X̃X , (6)

where we use the notation˜ to signify that this change in pose is measure in the camera coordinate frame of

reference. If P̃1 is known, then the pose of the second camera is P̃2 = Q̃1,2 P̃1. As mentioned, this change

in pose Q̃1,2 is often measured. For our application is is necessary to be able to convert this change in pose
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Table 1: Summary of datasets. The ground truth measurement is the distance between two marks on the interior

surface of each pipe (see section 3.1)

Pipe 1 Pipe 2

Location Pittsburgh Qatar

Pipe Material Carbon Steel Carbon Steel

Pipe Dimensions

6 meters long 4 meters long

152.40mm (6”) outer diameter 406.40mm (16”) outer diameter

153.32mm inner diameter 387.56mm inner diameter

Camera

Point Grey Research dragonfly Point Grey Research firefly

1024 × 768 pixels 640 × 480 pixels

RGB, 7.5 frames per second RGB (bayer), 30 frames per second

Lens 70◦ horizontal angle of view 25◦ horizontal angle of view

LEDs 4× 3.5W (280 lumen) high intensity 4× 3.5W (280 lumen) high intensity

ImageSequences

1: forward, 4256 images

1: forward & reverse, 2392 images2: forward, 4176 images

3: forward & reverse, 3369 images

Ground Truth (δ h) 5844.4mm 3391.0mm

into a change Q1,2 in the pipe coordinate frame of reference, which is possible if P1 is known (i.e. P1 is the

current estimate of the camera pose obtained using a visual odometry algorithm). Letting X̃̃X̃X ′ = P2XXX , then

substituting this and Eq. 3 into Eq. 6 gives

P2XXX = Q̃1,2 P1XXX , (7)

from which the pose P2 is

P2 = Q̃1,2 P1. (8)

Since P2 = P1 Q1,2, it follows that

P1 Q1,2 = Q̃1,2 P1, (9)

Q1,2 = P−1
1 Q̃1,2 P1, (10)

which enables the change in pose Q1,2 in the pipe coordinate frame of reference to be found.

3 Dataset Collection

We have obtained datasets for two different pipes, which we refer to simply as pipe 1 (located in Pittsburgh)

and pipe 2 (located in Qatar). For each pipe, we have a small robotic platform retrofitted with a camera

and lens assembly, and four high intensity (3.5 Watt, 280 lumen) Light Emitting Diodes (LEDs), as shown

in Figure 4. These LEDs provide all the lighting for the cameras. As the robots traverse through their

respective pipes (this motion being primarily in the h direction — see Figure 3) the images from the cameras

are logged, and are later processed off-line. The details for each pipe, the camera and lenses used, and the

images sequences is summarized in table 1.

It should be noted here that the the 406.4mm (16”) diameter of pipe 2 is much larger than the 152.4mm

(6”) diameter of pipe 1, and the camera used with the pipe 2 dataset has a much narrower angle of view than

the camera used for pipe 1. As a result, the degree of foreshortening (i.e. the curvature of the pipe seen) in

the images is far greater for the pipe 1 datasets than the pipe 2 datasets. An example image for each pipe

dataset can be seen in the middle column in Figure 6.
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(a) Pipe 1 (Pittsburgh): 6 meter, 152.4mm (6”) diameter pipe (left), robot platform (middle), and the robot

moving through the pipe (right).

(b) Pipe 2 (Qatar): 4 meter, 406.4mm (16”) diameter pipe (left), robot platform (middle), and the robot moving

through the pipe (right).

Figure 4: The two pipes and robotic platforms used to obtained datasets. Note that the 406.4mm (16”) diameter of pipe

2 is much larger than the 152.4mm (6”) diameter of pipe 1.

3.1 Ground Truth Measurement

In order to evaluate the performance of our visual odometry estimates, we manually augment the pipe

with a very fine permanent maker. One of the markers for pipe 1 is shown in Figure 5. These reference

markers are located at either end of the pipe on the uppermost point of the interior surface. The ground truth

measurement for each pipe (see table 1) is the measured distance δ h between the two markers in each pipe.

3.2 Gain-mask Correction

The high intensity LEDs provide the only source of light in the pipe. Unfortunately, this lighting is not

uniformly distributed within the field of view of the camera. As a result, there are distinctive lighting

patterns visible in the images, especially in the images in the pipe 1 datasets. These patterns are evident

in the middle column of Figure 6a in which it can be clearly seen that there is significant light intensity

drop-off towards the periphery of the image3. For the dense visual odometry algorithm in particular, which

is detailed in Section 4, these non-uniform lighting artifacts have a significant impact on the accuracy of the

visual odometry estimates. Furthermore, these lighting artifacts need to be minimized to ensure that they do

not appear in the stitched images generated. We use a gain-mask image to minimize these lighting artifacts;

a process we refer to as gain-mask correction, which produces gain-corrected images.

The gain correction images were obtained as follows. A white piece of card was affixed to the surface of

3This intensity drop-off towards the periphery is the result of both vignetting and the non-uniform light distribution provided by

the LEDs. We attempt to account for both these effects when we apply gain-mask correction.
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Figure 5: One of the markers (inside blue circle) in pipe 1 which is used to measure ground truth.

(a) Pipe 1.

(b) Pipe 2.

Figure 6: The gray-scale gain mask images (left column), original images from the cameras (middle column), and the

gain corrected images (right column) obtained using gain mask correction. Notice that the light is more uniformly

distributed in the pipe 2, which has a larger diameter than pipe 1.
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each pipe. Each robot was then placed in its respective pipe, with the LEDs turned on, and several gray-scale

image of the card obtained. The final gain-mask images were obtained by averaging these images and then

smoothing with a Gaussian to reduce high frequency noise. The gain-mask images for each pipe are shown

in the leftmost column in Fig. 6. Figure 6 also shows an example of the images for each pipe before (middle

column) and after (right column) gain-mask correction. The gain-mask correction is simply the division of

the original images with the gain-mask image. If color images are being used, each color channel is divided

by the same gray-scale gain-mask image.

It is important to mention here that the gain corrected images in Fig. 6 have been manually rescaled for

display purposes. This rescaling was applied as the gain correction process does not preserve the original

dynamic range of the images. However, this is not an issue since the gain-corrected images are stored as

double precision images, and both the dense and sparse algorithms have been designed to process double

precision images with arbitrary dynamic range.

3.3 Reference Measurements: Monocular Scale Ambiguity

The dense and sparse visual odometry algorithms both estimate camera motion from a monocular image

sequence. As a result they both need a form of reference measurement to resolve the well known scale-

ambiguity which exists when estimating motion from a monocular image sequence. This scale-ambiguity is

the inability to recover the Euclidean camera position C with metric units.

The dense algorithms measures, in units of pixels, the change in pose between adjacent images in a

sequence. The reference measurement ζ used by the dense algorithms has units of pixels per meter, and is

used to convert an x, y pixel shift between adjacent images to a change in Euclidean position with units of

meters — this procedure will be outlined in more detail in Section 4. Figure 7 illustrates, for pipe 2, the

process used to obtain the reference scale measurement ζ . A target image is fixed to the inner surface of

the pipe, and an image of this target is captured. The centroids of the circles are manually measured and

converted to coordinates in an undistorted (rectified)4 perspective image. This un-distorting process is the

same as that used by the dense algorithm discussed in Section 4. The metric distance between the centroids

of the circles is measured using calipers, which enables the mean pixel per meter reference measurement

ζ to b estimated. The reference scale measurements that were obtained for the two pipes are: pipe 1 -

ζ = 10.4698 × 10−3 pixels/meter; pipe 2 - ζ = 7.1636 × 10−3 pixels/meter.

The sparse monocular algorithm enforces that all world points observed in the dataset images lie on the

interior surface of the pipe. To enforce this constraint, and to resolve the monocular scale-ambiguity, the

precise internal diameters of the pipes were measured5. The measured internal diameter was 153.32mm for

pipe 1 (outer diameter of 152.4mm, or 6”), and 387.56mm for pipe 2 (outer diameter of 406.4mm, or 16”).

4 Dense Monocular Algorithm

Image registration, or alignment, is the problem of aligning two or more images taken of a scene with some

degree of overlap. Applications for image registration include: image mosaicing, video compression [15,

19], image stabilization [26], medical imaging [42], remote sensing [42] and motion estimation [13]. This

vast array of applications make image registration one of the most widely studied problems in Computer

Vision [38, 2].

4The Matlab Calibration Toolbox http://www.vision.caltech.edu/bouguetj/calib_doc/ is used to calibrate

the perspective cameras with both the pipe 1 and pipe 2 datasets.
5The diameters of the pipes quoted in table 1 are the values listed by the pipe manufacturers. They are not necessarily the

internal diameters of the pipes.
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(a) Original reference scale image with the centroids of

the circles shown.
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(b) Undistorted (rectified) reference scale image with

the centroids of the circles shown.

Figure 7: The process used to obtain the reference scale measurement (example shown for pipe 2). The circle centroids

are manually selected in the original image, and their positions mapped to the undistorted perspective image. The

metric distance between the centroids of the circles is manually measured, which enables the mean pixel per meter

reference measurement ζ to be found.

Image registration algorithms can be classified in two categories based on the amount of information

they use as: dense, or sparse. Dense methods, also known as direct, or pixel-based, use all the pixel

information in the image to find an optimal alignment under an assumption on the underlaying motion

model relating image pairs. Sparse methods, also known as feature-based, rely on a small number of point

feature correspondences to find the optimal registration parameters. These features are often referred to as

corners, or keypoints, and are typically salient scene points detected in the image.

In order to estimate the ego motion of the camera between two images using dense registration, we need

to define a motion model as well as an appropriate error function. Correct choices of the motion model and

error function are crucial for accurate estimates. A motion model is characterized by its number of degrees of

freedom (DOF). The more the DOF, the more difficult it is to fit the model. Generally, it is preferred to select

a motion model with the minimum DOF. Ultimately, however, the choice of motion model is application

dependent. Similarly, there are different error functions to assess the accuracy of the motion model fit,

ranging from simple and computationally efficient measures, such as Sum of Absolute Differences (SAD)

and Sum of Squared Differences (SSD), to more complex and more robust cost functions, such as the Root

Mean Squared (RMS) or the Huber [14] cost function from robust statistics.

In this section, we discuss the use of dense 2D image registration to estimate the translational motion of

perspective camera inside a straight and cylindrical pipe. First, we formalize the problem of dense registra-

tion, and then discuss two methods that are used to estimate camera motion, namely a full search approach

and a model-based iterative refinement approach. Finally, we show how to use the two approaches to es-

timate the ego-motion of a perspective camera translating through a pipe, with the largest magnitude of

translation being the the axial (h) direction of the pipe.

4.1 Dense Image Registration

Given two images It and In with non-zero overlap, where It is called a template image sampled at pixel

locations xi = (xi, yi)
T and image In called the target image, we seek a transformation M : xi → x′

i such

8



that the following criteria is minimized:

∑

i

E
(

In[x
′
i], It [xi]

)

, (11)

where E(·) is an error function used to asses the quality of registration. Next, we present some of the

common motion models in image space as well as some common error functions.

4.1.1 Motion models

As mentioned earlier, an accurate estimate of camera ego motion depends on the selected 2D motion model

in image space. Motion models in image space can be considered as belonging to one of three classes [5]:

• Fully parametric: The local motion between pixels is modeled in a fully parametric form. Some

common examples include translational, similarity, and affine motion models. Most relevant to our

application is the two degree of freedom translational motion model in image space, described by:

MT (xxx ) =
(

I2×2 t
)

xxx = xxx
′, (12)

where, t =
(

tx ty
)T

is a 2 × 1 vector of translation amount in the x and y directions respectively,

xxx =
(

x 1
)T

is a homogeneous pixel coordinates, and I2×2 is the 2× 2 identity matrix.

• Quasi-parametric: The motion of local groups (neighborhoods) of pixels are described in a paramet-

ric form, although the motion of each pixel in the image can be defined independently. For example,

the motion of rigid body in 3D space under perspective projection constrain the flow to be along a

line, however, amount of pixel motion for groups of pixels may vary.

• Non-parametric: These motion models are used in optical flow computations and make use of uni-

formity of smoothness constraints.

In this work, we focus on parametric models where typically we assume translational only motion corre-

sponding to translation while viewing a flat surface parallel to the image plane. While in practice this is not

a correct model, we find that the resulting odometry estimates are more reliable than more complex models

and still retain significant accuracy.

4.1.2 Error function

It is necessary to define an error function, or cost metric, to evaluate how accurately a given motion motion

and its parameters describe, in image space, the change in camera pose between views. Some common error

9



functions include:

ESAD =
∑

i

|It[xi]− In[x
′
i]| =

∑

i

|ǫi| (13)

ESSD =
∑

i

(

It[xi]− In[x
′
i]
)2

=
∑

i

ǫ2 (14)

EZNCC = −

∑

i (It[xi]− µt) (In[x
′
i]− µn)

√

∑

i (It[xi]− µt)
2 (In[x′

i]− µn)
2

(15)

µt =
1

N

∑

i

It[xi] (16)

µn =
1

N

∑

i

In[x
′
i], (17)

where, N is the number of pixels in the region of image overlap. Sum of Absolute Difference (SAD) and

Sum of Squared Difference (SSD) are the most efficient metrics to compute, with SAD being slightly more

efficient. From a statistical point of view, SAD and SSD are fundamentally different. However, in the

context of dense image registration, results obtained using SAD and SSD are practically identical. On the

other hand, Zero-Normalized Cross Correlation (ZNCC) is more computationally expensive than SAD and

SSD, but it is less influenced by illumination or color variations as it searches for shape similarity. The

ZNCC correlation function in equation 15 is negated so that notation is consistent and we seek a minima in

the cost space of all of the functions above.

In their current form, the error functions in equations. 13 through 15 do not take into account variations

in illumination or gain, due to images taken at different exposures. The exception of course is ZNCC which

accounts for a global bias and global gain, but does not account for any local changes. More details about

accounting for bias and gain in the cost function can be found in [3, 38]. For this application, we opt to

correct lighting artifacts and image gain beforehand and keep the registration step efficient.

4.2 Motion Estimation in a Pipe

Referring to figure 3, the robot translates in the h direction with minimal change inX,Y position or rotation.

Therefore, we assume that there is no rotational or scale change between adjacent images taken by the

camera on the robot, and estimate image motion using a fully-parametric dense translational model. Strictly

speaking, the portion of the pipe surface observed by the camera is not planar. However, due to the relatively

narrow field of view of the camera, depth variations are minimal and the majority of overlapping regions

can be related by a translation model. Hence, we assume that the surface being imaged is planar. Further,

we assume that the camera is calibrated and any optical distortion artifacts have been corrected.

Once the dense translational model parameters are determined in the image space, we can obtain 2D

camera motion estimates inside the pipe in metric units using the reference scale measurement ζ (see sec-

tion 3.3). We assume that the camera starts at the origin of the pipe coordinate frame of reference, and is

looking directly upward whereby that the principal axis of the camera is aligned with the Y axis of the pipe

(see figure 3). The initial pose P0 is set to

P0 =

[

R−1 C

0T 1

]−1

=









0 1 0 CX

0 0 1 CY

1 0 0 0
0 0 0 1









−1

, (18)
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and the change in pose Q between adjacent images, measured in the pipe coordinate frame of reference, is

Q =

[

I3×3 δC
0T 1

]−1

, δC =
1

ζ
(δy, 0, δx)T , (19)

where δx, δy is the pixel shift (translation) between the images, and I3×3 is the 3 × 3 identity matrix. It is

clear from equations.18 and 19 that the initial values for CX and CY are unknown. If desired these offsets

could be manually measured. However, they have no influence on the estimate of the distance the robot

travels in the h direction down the pipe. Equation 19 also illustrates that a pure translational motion model

is used, where an x and y translation in image space corresponds, respectively, to a translation in the Y and

h direction in the pipe (see figure 3).

A simple and complete approach to find a translation motion between two images is to conduct a full

search in the 2D x, y ∈ Z parameter space. Given sufficient overlap6 between the two images of the same

illumination, full search yields the correct solution. However, the solution lacks sub-pixel precision. Sub-

pixel precision refinement can be obtained via model-based, or iterative methods. In order to speed up the

registration process and reduce effects of noise, we resize images to quarter of their original resolution7 .

In the following sections, we describe the methods that we have used to estimate the parameters of the

translational model, in particular full search, iterative model-based, and a hybrid approach that combines the

two.

4.2.1 Full search

The translational motion is parameterized by two values, an x axis y axis image shift (see figure 2). In the

image space, the search range of these shifts are bounded by image width (number of columns) and image

height (number of rows). Referring to equation 18, we can use the reference measurement ζ to convert an

x, y image shift to a change in camera position δC = (δX, δY, δh)T = (δy, 0, δx)T . Therefore, the search
range of the image shifts could be further reduced based on knowledge about the camera’s velocity and

frame rate. If we know that the camera is traveling slowly down the pipe and mostly in the h direction, then

we can search over a small subset of the x space, and even a smaller subset in the y space. The algorithm in

pseudo code is shown in Algorithm 1.

Performance of the different error functions shown in equations. 13 through 15 was similar for almost

all datasets. For the majority of the work reported here, we use SAD as it is most computationally efficient.

However, we have found that ZNCC is superior to SAD in cases that include image blur combined with

large image displacements. A more detailed discussion regarding the relative performance of the different

cost functions is reserved for section 6.2.1.

4.2.2 Iterative Model-based Methods

Full search is usually conducted using integer increments. This may not be accurate enough and it is desir-

able to gain more accuracy via iterative refinement to obtain sub-pixel motion estimates. Several approaches

exist, Lucas-Kanade [23] being the most cited. Other algorithms can be found in [40] as well as a model-

based registration framework [5].

Iterative methods are better suited for estimating small image motions, which may not be the case for

a majority of applications. To remedy this, iterative methods are usually implemented in coarse-to-fine

hierarchical fashion. Image pyramids are used to subsample the image at different resolutions starting at the

6The amount of sufficient overlap depends on the amount of texture in the images, and the choice of the error function.
7For the 6” pipe (pipe 1), we use a resolution of 256× 192, while for pipe 2 we use 160 × 120.
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Algorithm 1 Full search for 2D dense translation motion between two images

FULL SEARCH(It, In, xMAX , yMAX )

1 for i = 1 to xMAX

2 do for j = 1 to yMAX

3 do E [i , j ] = abs
(

It[i,j]−In[W (x;p)]
overlap area

)

�W is a warping function that warps image at location x = (x, y)

� according to parameters p =
(

tx ty
)T

4

5

6 return (xBEST , yBEST ) = min
i,j

(E)

finest level and proceeding to the coarsest level, where each level reduces the resolution of the previous level

by half, typically using Gaussian smoothing. The use of a hierarchical approach is not only important to

handle large image motions, but also to reduce aliasing artifacts caused by large displacements [5]. Aliasing

is a source of local minima in the error function that could be eliminated by searching for a solution across

multiple scales.

In this work, we use the hierarchical model-based registration framework proposed by [5]. The basic

idea is that motion between two frames can be approximated iteratively using a motion model, where the

refinement process (typically Gauss-Newton) aims at minimizing the sum of squared differences between

the template image It and the warped target image In based on the current estimation of motion.

The algorithm employs the intensity constancy assumption, common to the majority of optical flow and

motion estimation methods:

I(x, t) = I(x− u(x), t− 1), (20)

where I is the image, x is the position in the image, t denotes time, and u(x) = (u(x, y), v(x, y)) is the
image velocity. Motion is then obtained by minimizing the SSD error:

E({u}) =
∑

x

[I(x, t) − I(x− u(x), t − 1)]2 , (21)

where {u} denotes the entire flow field in the region. The complex patterns of intensity variations between

images requires solving a nonlinear least squares problem. Gauss-Newton method can be used to solve for

the minima of E . Using Gauss-Newton the incremental motion error is:

E({δu}) =
∑

x

[∆I +∇I · δu(x)]2 , (22)

where ∇I = (∂I/∂x, ∂I/∂y)T is the image spatial gradient evaluated at x, and ∆I(x) = I(x, t)− I(x−
ui(x), t − 1), and ui is the current motion estimate.

For a translational motion u(x, t) = (x+ tx, y + ty)
T , which can be written as

u(x) = U(x)t, (23)

where

U(x) =

(

1 x 0 0
0 0 1 y

)

(24)

t =
(

tx ty
)T

. (25)
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The incremental motion δt is then:

E(δt) =
∑

x

[

∆I + (∇I)TUδt
]2

(26)

Minimizing with respect to δt results in the expression
(

∑

x

UT (∇I)(∇I)TU

)

δt = −
∑

x

UT (∇I)(∆I) (27)

Estimating the incremental motion δt is repeated iteratively until convergence, or for an empirically chosen

constant number of iterations. More details can be found in [5].

Iterative refinement is still prone to local minima even when using image pyramids. This is especially

true in the case of large image motions and scenes with a low number of distinctive features. For example,

figure 8 shows two consecutive image pairs with a very small area overlap of approximately 30% combined

with image distortion artifacts as well as indistinct texture. In such a case, iterative refinement approaches

fail to converge to the global optima, even when using a multi-scale approach.

(a) Image 1 (b) Image 2

Figure 8: Difficult image pair; large displacement, blur and optical distortion correction artifacts. Overlap region is

highlighted in boxes. The image colors have been modified for display purposes.

4.2.3 Full search followed by iterative refinement

In order to address cases when iterative methods fail to find the global minima of the cost function, we use a

two step registration process. First, a full search is conducted to compute a set of initial motion parameters

in integer increments between each pair of images. Given a careful selection of the error function, this

step yields a solution that is within a pixel of the desired global minima. These initial estimates are fed

into a model-based iterative refinement algorithm operating on the finest resolution pair of images without

resorting to image pyramids.

This approach has the advantage of guaranteed convergence to the global minima in the search space,

as well sub-pixel accuracy motion estimates. However, solutions obtained via iterative refinement are not

necessarily better in all cases. Due to limited numerical precision, iterative methods will almost always

estimate non-zero motion, even if the camera does not move in many frames. These non-zero motion

estimates can occur as a result of image noise, and the addition of incorrect non-zero motion estimates has a

negative impact on the accuracy of visual odometry estimates. This is the well known Markov random walk

effect. This is reflected in our results in section 6.1.
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5 Sparse Monocular Algorithm

The sparse monocular algorithm estimates camera ego-motion by observing the change in positions of sparse

keypoint correspondences in adjacent images. This change in position is typically referred to as the sparse

optical flow, and is used as the basis for many visual odometry algorithms [32, 33, 24, 39, 20, 34, 18, 1].

However, most visual odometry algorithms are designed to operate in unstructured environments where

the relative Euclidean coordinates of scene points cannot be derived from a single image; they must be

triangulated from pairs or sequences of images [12]. For our application the camera mounted on the robot is

constrained to lie within a straight cylindrical pipe. If the pose Pa of the camera is known, then the Euclidean

coordinates X of all the keypoints x points which appear in the image can be derived — this procedure is

described in section 5.2. These scene points X are constrained to lie on the interior surface of the pipe,

and the sparse algorithm uses this constraint to obtain accurate visual odometry estimates. Furthermore,

the ability to recover the Euclidean coordinates of the scene points enables visual odometry estimates to be

obtained with metric units of translation. The overall scale ambiguity inherent with traditional monocular

visual odometry algorithms is therefore avoided.

The algorithm consists of a number of steps and procedures which are summarized here and discussed

in greater detail in this section:

• Obtaining scene point correspondences (section 5.1): given a sequence of images I , find candi-

date keypoint correspondences x ↔ x′ between automatically selected key frames, and use epipolar

constraints to remove incorrect correspondences.

• Scene point constraint (section 5.2): given the pose Pa of the camera for key-frame a, and the

positions of the keypoints x in the image, find the coordinates x 7→ X of the world points on the

interior surface of the pipe.

• Visual Odometry Estimation (section 5.3): estimate the change in pose (ego-motion) between adja-

cent key frames, and integrate the estimates to find the position of the camera at each key-frame time

a.

5.1 Obtaining Scene Point Correspondences

The process used to find scene point correspondences between views consists of three primary steps: key-

point detection, matching and tracking. Here, the term keypoint is used to denote a salient scene point in the

image.

A region-based Harris corner detector [11] is used to identify keypoints in the original (not undistorted)

gain-corrected gray-scale images. Each image is divided into an equally spaced 6 × 8 grid, and the 20

most salient keypoints in each cell retained after non-maxima suppression of the saliency values using a

7 × 7 pixel wide window. A region-based scheme is used to ensure that there is a uniform distribution of

keypoints throughout the image, as illustrated in figure 9. The saliency of a keypoint is defined by its Harris

‘cornerness’ score C, which is a function of the eigenvalues λ1, λ2 of the gray-scale autocorrelation (second

moment) matrix A evaluated at a given pixel8:

C = λ1λ2 + k (λ1 + λ2) (28)

= det(A)− k trace(A), (29)

8The autocorrelation function for an image is a measure of the cross-correlation of the image with itself. The autocorrelation

matrix A is an approximation of the autocorrelation function. It is derived based on the assumption that the image function

I(x + ∆x, y + ∆y) at some small shift ∆x,∆y in the x, y directions respectively from I(x, y) can be approximated by a first

order Taylor expansion of the image about the point x = (x, y)T .
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where k = 0.04 is an empirical constant, and

A(x, y) =

[ ∑

W Ix(x, y)
2

∑

W Ix(x, y) Iy(x, y)
∑

W Ix(x, y) Iy(x, y)
∑

W Iy(x, y)
2

]

(30)

is the auto-correlation matrix evaluated at a pixel position x(x, y). Here, W is a square window element

(integrating kernel). We use a Gaussian G(σW ) as our window element W with scale σW = 3.0 pixels.

The first order derivatives Ix and Iy in the x and y directions respectively are computed using a derivative

of Gaussian kernel G(σD) with standard deviation σD = 1.5 pixels:

Ix =
∂I

∂x
= I ∗

∂G(σD)

∂x
, Iy =

∂I

∂y
= I ∗

∂G(σD)

∂y
, (31)

where the notation ∗ indicates a discrete convolution in image space.

Sub-pixel accuracy is obtained using a two-dimensional version of the sub-pixel quadratic interpolation

scheme developed by Brown and Lowe in [6] as part of the Scale-Invariant Feature Transform (SIFT) [22].

The cornerness score C(x + ∆x, y + ∆y) at a sub-pixel shift ∆x = (∆x,∆y)T from x = (x, y)T is

approximated by the quadratic Taylor expansion

C(x+∆x) = C(x) +
∂C

∂x

T

∆x+
1

2
∆xT ∂2C

∂x2
∆x. (32)

The variables ∂C
∂x

and ∂2C

∂x2 are, respectively, the 2 × 1 and 2 × 2 matrices of first and second order partial

derivatives of C evaluated at the pixel x = (x, y)T . Setting the derivative of equation 32 to zero,

0 =
∂C

∂∆x
=

∂C

∂x
+

∂2C

∂x2
∆x, (33)

the sub-pixel shift ∆x is computed, using Gaussian elimination, as

∆x = −
∂2C

∂x2

−1
∂C

∂x
. (34)

A 128-dimensional SIFT descriptor [22] is then evaluated for each keypoint from the gray-scale intensity

values within a fixed sized region surrounding it. Each keypoint is defined by its sub-pixel position x =
(x, y)T and SIFT descriptor. Since the cameras used have been calibrated, each pixel position xi can be

mapped to a spherical coordinate η, xi 7→ ηi, which defines a ray in space originating from the camera

center. It is worth noting the the Harris corner detector is not suited for detecting the same scene points

in different images separated by a large scale change. Although there are many scale-invariant algorithms

which are capable of doing so [22, 8, 27, 4, 25, 16, 17], there is very minimal scale-change between adjacent

images in our datasets, and the Harris corner detector is more efficient to implement than most of these

algorithms. Although we do not present any results, we observed the Harris detector (coupled with the

SIFT descriptor) to perform on par with the SIFT with respect to the number and reliability of keypoint

correspondences obtained between images. The Harris corner detector has also been shown to perform

consistently well when compared to other similar (i.e. fixed scale) keypoint detectors [36, 41, 37].

Given any two images, corresponding keypoints are found using the ambiguity metric [22] for the SIFT

descriptors with a mutual consistency check. However, the correspondence between every adjacent pair

of images are not used to estimate motion since many are separated by only a few pixels difference. We

use a method similar to that of Mouragnon et al [28] and Tardif et al [39] to automatically select only key

frames (images) that are used to obtain the visual odometry estimates. Starting with the first image I0 in
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Figure 9: A region based Harris detector is used to extract salient scene points in the gray-scale images. The red dots

are the keypoints, and the yellow lines indicate the equally sized 6× 8 regions.

the sequence, we keep finding the correspondences between image I0 and In, where n is the nth image

in the sequence. When the number of correspondences between image I0 and In falls below a threshold,

or the median magnitude of the sparse optical flow is above some threshold, the set of correspondences

between images I0 and In−1 are kept, and images I0 and In−1 are assigned a camera pose Pa=0 and Pa=1

respectively. This process is then repeated starting at image In−1, and continued for the remainder of the

sequence. The output of this process is a set of correspondences between adjacent camera poses Pa. Any

outliers which may remain in these sets of correspondences are removed using RANSAC [9] and Nistér’s

five-point algorithm [32], although the simplified implementation of the five-point algorithm proposed by

Li and Hartley could also be used [21].

5.2 Scene Point Constraint

The sparse monocular algorithm enforces that all world points visible in an image must lie on the interior

surface of a straight cylindrical pipe with a constant radius r. If both the measured radius r and the pose Pa

of the camera for key frame a are known, the world coordinate Xi defined in equation 1 of a keypoint can

be derived from its coordinate xi in the image. This is possible as the camera calibration parameters can be

used to map an image coordinate xi to a spherical coordinate ηi ∈ S
2 on the unit sphere — the ray from the

center of projection of the camera to the scene point position Xi intersects the unit sphere at ηi.

Recall from equations. 2 and 3 that a homogeneous scene point position XXX i in the pipe coordinate

frame is related to the homogeneous scene point coordinate X̃̃X̃X i in the camera coordinate frame by XXX i =
P−1X̃̃X̃X i, where P is a matrix consisting of the 3 × 3 rotation R = (R1,R2,R3) and 3 × 1 position C =
(CX , CY , Ch)

T of the camera. If ηi is the spherical coordinate of a world point at position X̃i, then we

can write X̃i = κi ηi, where κi is a scalar and X̃i is the homogeneous coordinate, in the camera’s frame

of reference, of the world point on the surface of the pipe. Referring to figure 3, and to equation 1, a world
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point with coordinate Xi = (X,Y, h)T lies on the interior surface of a cylinder with radius r if

r2 = X2 + Y 2 (35)

= (κiR1 ηi + CX)2 + (κi R2 ηi + CY )
2 . (36)

Expanding (35) produces a quadratic in κ:

κ2i
(

(R1 ηi)
2 + (R2 ηi)

2
)

+ κi (2CX R1 ηi + 2CY R2 ηi) + (C2
X + C2

Y − r2) = 0. (37)

If the camera is inside the pipe, two real solutions for κi are obtained from equation 37, one negative

and the other positive. The positive solution is correct since X̃i = κi ηi must be a coordinate in front of

the perspective camera. Once the solution for κi has been obtained, the homogeneous coordinate X̃̃X̃X i in the

camera frame of the world point is

X̃̃X̃X i =

[

κi ηi

1

]

, (38)

whose position in pipe’s coordinate frame is

XXX i = P−1
X̃̃X̃X i. (39)

To summarize, given the position xi of a keypoint in an image with camera pose P , the position Xi of the

point in the surface of a straight cylindrical pipe with constant radius r can be found.

5.3 Visual Odometry Estimation

Six degree of freedom motion estimates are obtained using a number of steps:

• One degree of freedom motion estimation: Given all camera poses P0, P1, . . . , Pa−1 up to key-frame

a, and the associated world point coordinates X for all the keypoints in these frames, an estimate for

Pa is obtained using a one degree of freedom motion model (camera translates down axis of the pipe).

• Optimization of initial camera position: If a < NX,Y < N , where NX,Y = 10 is a constant, optimize

the initial position C = (CX , CY , Ch)
T of the first camera pose P0. The camera rotation is fixed, and

only the values CX and CY are optimized.

• Six degree of freedom refinement: If a = τN , where τ is any integer andN = 50 is a constant, refine
the previous 2N camera poses using a six degree of freedom motion model.

Each of these steps, and the objective functions minimized during the optimization steps, are described in

this section.

Before proceeding it is necessary to define a global index g for each world point. Assume that the same

world point is detected in multiple images, and the keypoint correspondences found between key frames

enables us to identify that these keypoints do in fact belong to the same world point. If the pose P is know

for each of the images, then the coordinateX of this point could be derived from any of the images using the

procedure described in the previous section. However, there are always some inaccuracies in camera pose

estimates, calibration parameters, and the coordinates x of keypoint positions in the image. This means that

the world point coordinate derived in one image will very likely be different to the coordinates derived from

the other images. Therefore, we say that the world point has some global index g, and there are n estimates

of its coordinate (one for each image); X(g)j=1,X(g)j=2, . . . ,X(g)j=n.
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5.3.1 One degree of freedom motion estimation

Since the camera motion in a straight cylindrical pipes was constrained primarily to a change in translation

δh down the pipe, the initial estimate of the camera pose Pa+1 was set to

Pa+1 =

[

R̂a Ra (Ca + δC)
0T 1

]−1

, δC = (0, 0, δh)T , (40)

which has only a single degree of freedom δ h. The estimate for δh is obtained using all relevant prior

information in the sequence, here the coordinates X of all the world points up to and including key-frame a.

Define S as a matrix which stores information relating to all n estimates of the world point coordinate

X(g) up to and including key-frame a. As discussed, the different estimates X(g)j=1, . . . ,X(g)j=n arise

from the fact that the same point may have been detected in many images. Referring to equation1 (pg. 3),

the coordinates of a world point can be parameterized as X(g)j = (h(g)j , ρ(g)j)
T , where ρ(g)j = rφ(g)j

and φ ∈ [0, 2π)9. For each global index g, the matrix S(g) contains the following information:

S(g) =
[

n
∑

h(g)j
∑

h(g)2j
∑

ρ(g)j
∑

ρ(g)2j
]

, (41)

where the summation is taken over all points j ∈ {1, . . . , n}.

For an estimate of the camera matrix Pa+1, the procedure outlined in section 5.2 is used to find the

coordinate X̂(g) = (ĥ(g), ρ̂(g)) of the world points on the interior surface of the pipe. The notation X̂(g)
is used simply to denote that these estimates were obtained in the key-frame a + 1, and each point has a

global index g. Note also that no two points detected in the same image can have the same global index g.
A non-linear optimization (Levenberg-Marquardt) is used to find the estimate of δ h in equation 40 which

minimizes the error

ǫ =
∑

g

ǫg, (42)

where

ǫg =
∑

j

(

ĥ(g)− h(g)j

)2
+ (ρ̂(g)− ρ(g)j)

2
(43)

is the cumulative error for each n estimates of the world point with global index g. By expanding equa-

tion 43,

ǫg = n ĥ(g)2 − 2 ĥ(g)
∑

j

h(g)j +
∑

j

h(g)2j + n ρ̂(g)2 − 2 ρ̂(g)
∑

j

ρ(g)j +
∑

j

ρ(g)2j , (44)

the error term ǫg can be computed extremely efficiently since the values n,
∑

j h(g)j ,
∑

j h(g)
2
j ,
∑

j ρ(g)j
and

∑

j ρ(g)
2
j can be retrieved directly from the matrix S(g) in equation 41. The summations in equa-

tions. 42 and 44 are again taken over all points j ∈ {1, . . . , n}. Once the optimized estimate for Pa+1 is

obtained, for each global index g the values of S(g) can be updated to include all information up to and

including key-frame a+ 1.

5.3.2 Optimization of initial camera position

A limitation of the sparse algorithm is that an accurate initial pose of the camera needs to be found, and

more specifically the initial position C = (CX , CY , Ch)
T defined in equation2 (the rotation R remains

9For the camera configuration used, no scene points have an angle φ near 0, 2π. If this did occur, an constant global offset

φglobal could be applied to all scene points to prevent complications during the optimization procedure described in this section.
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fixed). The magnitude of CX and CY have a significant influence on the accuracy of the visual odometry

estimates as they act like an overall scale factors. Therefore, a batch optimization using the first 10 frames

is implemented in an attempt to find the most accurate estimate of the initial position C possible.

The optimization used does not minimize the errors between the scene point coordinates Xg on the

pipe. The reason is that the coordinates of all of these points change during optimization, and it is not clear

how a suitable normalization factor can be selected — moving the camera closer to the surface of the pipe

minimizes the dispersion of the scene points and the magnitude of the errors. For this reason, the error

minimized is defined in image space with respect to the coordinates of the keypoints detected in the original

(not undistorted) images.

The estimate for the initial camera pose P0 is set to the same initial pose used by the dense algorithms,

which was given previously in equation 18 as

P0 =

[

R−1
0 C0

0T 1

]−1

=









0 1 0 CX

0 0 1 CY

1 0 0 0
0 0 0 1









−1

, (45)

where CX , CY are the X,Y offsets of the camera from the pipe’s central, and Ch = 0. These offsets are
measured manually before optimization. This initial orientation has the camera’s principal axis aligned with

the Y axis of the pipe and the x pixel direction pointing down the axis of the pipe in the h direction. The

coordinates X(g) of the scene points in this frame are then found and each matrix S(g) populated. For

the next 9 frames, a one degree of freedom estimate of the camera poses is then found using the procedure

described in section 5.3.1. Once complete, the batch optimization of the first ten frames is implemented,

where each pose P−1
a is

P−1
a =

[

R−1
0 C0 + δCa

0T 1

]

, δCa = (0, 0, δ ha)
T . (46)

As evident in equation 46, the initial offset CX , CY remains the same for each frame. The offsets CX , CY

and each δ ha are optimized using Levenberg-Marquardt.

For each image (key-frame) a, there are a set of keypoints in the image. Each keypoint has a global

index g and a position vector u(g) = (u(g), v(g))T . If we can findm keypoints in the remaining ten images

with the same global index g, the coordinate u′(g) = (u′(g), v′(g))T in this image for each is found using a

two-step mapping via the pipe wall. The error for this global index g, in this key-frame a, is evaluated as

ǫ(g)a =
∑

m

[

(u(g) − u′(g))2 + (v(g) − v′(g))2
]

. (47)

The combined error for all the keypoints in this key-frame is then

ǫa =
∑

g

ǫ(g)a. (48)

The optimized estimates for CX , CY and each δ ha are obtained by minimizing the error

ǫ =
10
∑

a=1

ǫa. (49)
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5.3.3 Six degree of freedom refinement

The initial estimates of the camera poses P obtained using the one degree of freedom model are reasonably

accurate. However, we improve their accuracy by extending them to have six degrees of freedom. We

choose to introduce these additional degrees of freedom now, since attempting to do this directly results in

poor overall motion estimates (i.e. significant drift).

The six degree of freedom refinement is implemented using a sliding window. After each a = τN
frames, where τ is any integer and N = 50 is a constant, the six degree of freedom refinement for the

previous 2N frames is implemented. This implementation is performed separately for each frame in the

window, and no ‘batch’ optimization of all the frames is used. For camera pose Pk, where 1 ≤ k ≤ a,
the coordinate X(g) for each scene point in the image is found. Since these scene points have already

contributed values to the matrices S(g), their contributions are now subtracted. Then, for each six degree

of freedom estimate of Pk found during optimization, where R is parameterized using quaternions, the new

entries for X(g) in the image are found, and the error ǫg in equation 44 evaluated to find the total error ǫ in
equation 42. The optimal estimate of Pk is defined as the one which minimizes the error ǫ. The optimization

is implemented using Levenberg-Marquardt. Once the new optimized estimate for Pk has been found, the

coordinates X(g) for the keypoints in the image are found, and the entries of S are updated to include these

values. This process is implemented sequentially from the first to last image in the window. Since this

method limits the degree by which the pose can change, it is run for an empirically selected number of

times, which in the following experiments is two.

One advantage of this approach is that it is efficient to implement as no batch optimization of multiple

camera pose estimates is performed. It is also suitable as the covariance matrices for all the world points in

Euclidean space are similar.

5.3.4 Selection of incremental addition of degrees of freedom

During keypoint detection and matching an estimate of the Essential matrix is obtained. Referring to equa-

tion 7 in section 2, the change in pose Q̃ between two camera views (in the camera frame of reference) can

be extracted from the essential matrix [12]. Then, making use of equation 10, the change in pose Q between

frames in the pipe coordinate frame of reference can be found. This change in pose Q could be used as an

initial estimate of the six degree of freedom change in pose between frames, and could be optimized using

the objective function in equations. 43 and 44. However, as discussed, attempting to estimate the six degree

of freedom motion directly (i.e. not within the sliding window scheme described) without first obtaining a

one degree of freedom estimate gives unreliable results. One explanation for this is the difficulty in reliably

decoupling rotational and translational motion when using narrow field of view cameras [10], particularly

when:

• There are minimal depth discontinuities in the scene [7].

• There are small changes in camera rotation and/or translation [31, 30].

• The focus of expansion or contraction is outside the camera’s field of view [10].

The difficulty in decoupling rotational and translational motion is illustrated in figure 10. Assume that

there is a camera in the pipe, as shown in figure 10a, which is surrounded by the yellow view sphere. If

the camera translates in the direction −h down the pipe, the spherical flow field appears as shown in the

left column of figure 10b, and the corresponding sparse optical flow field in a perspective image in the right

column of the same figure — the red boundary indicates the angle of view for a typical perspective camera.

If the camera were to rotate about the pipes X axis by some rotation RX , then the resulting spherical
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flow field and corresponding sparse optical flow field in a perspective image would appear as shown in

figure 10c. Since the sparse optical flow fields for translational and rotational motion appear very similar

in the perspective images, it is difficult to obtain an accurate initial estimate of motion from the Essential

matrix, particularly when considering that the sparse optical flow values obtained in practice contain some

degree of noise as a result of inaccuracies during keypoint localization.

6 Results and Discussion

6.1 Results

Visual odometry results were obtained for the dense (full search – section 4.2.1, and model-based – sec-

tion 4.2.3) and the sparse algorithm for the datasets described in Section 3. The estimates of the distance

traveled down the axis of the pipe versus the ground truth measurements are summarized in tables 2a through

2d. The absolute percentage errors are also recorded in these tables, where

ǫ% = 100 × abs

(

ground truth - estimate

ground truth

)

. (50)

For the datasets where the camera moves forward down the pipe (tables 2c and 2d), and then back in the

opposite direction, the absoluter error is

ǫ% (forward & reverse) = 100 × abs

(

forward estimate - reverse estimate

2 × ground truth

)

, (51)

which is, in some respects, a type of loop closure error, although no loop closure detection is used. Figure 11

shows the estimates of the C = (CX , CY , Ch)
T position estimates using the sparse estimate for pipe 1,

dataset 1.

An example of the stitches images for the dense (model-based) and the sparse algorithm are illustrated,

respectively, in figures 14 and 15 in appendix A for pipe 1 dataset 3 (forward run), and in figures 16 and 17 in

appendix B for the pipe 2 dataset (forward run). The tiled versions of the stitched images are shown in these

figures for display purposes only. For the dense algorithm, not every image is used to create the stitched

images. The adjacent images used are separated by an x translation magnitude of at least 50 pixels. For

the sparse results the images are stitched on the surface of the pipe, where a u, v coordinate in the stitched

image corresponds to an h, ρ = rφ coordinate on the surface of the pipe. In both cases a simple stitching

algorithm is used, where the value in the stitched image is the mean of all the values of the contributing

gain-corrected images. We do not claim that this is an optimal stitching algorithm. It has been used as it

makes irregularities in the stitched images, which correspond to inaccurate visual odometry estimates, easily

identified.

6.2 Discussion

The results in tables 2a through 2d show that the dense and sparse algorithms are capable of finding accurate

visual odometry estimates with respect to distance traveled down the pipe, with errors consistently less than

1 percent. The exception is the results obtained using the dense algorithms for the reverse sequence in pipe

2. Overall, the dense model-based approach outperforms the full-search approach, which is expected when

considering that the full-search algorithm is limited to integer resolution. The results also indicate that,

overall, the sparse algorithm performs marginally better than the dense algorithms. A number of factors

which influence the accuracy of the visual odometry estimates are discussed in the following sections.
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(a) A camera in a cylindrical pipe surrounded by a spherical view

sphere (yellow). The coordinates shown are those of the pipe.

hY

X

(b) Spherical flow field (left) and sparse optical flow field in a perspective image (right) for a camera

translation down the h axis of the pipe.

hY

X

(c) Spherical flow field (left) and sparse optical flow field in a perspective image (right) for a camera

rotation −RX about theX axis of the pipe.

Figure 10: There is an ambiguity when attempting to decoupling rotational and translation motion using the sparse

optical flow in a typical perspective camera. The red outline indicates the camera’s field of view on a spherical view

sphere. This ambiguity makes it difficult to obtain an accurate six degree of freedom motion (change in pose) estimate

between camera views.
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Table 2: Visual odometry results for distance traveled down the pipe - (a) pipe 1 dataset 1, (b) pipe 1 dataset 2, (c) pipe

1 dataset 3, and (d) pipe 2.

(a) Pipe 1 (6 meters, 6” diameter): dataset 1.

Metric
Dense

Sparse
Full Search Model

Ground Truth (mm) 5844.4 5844.4 5844.4

Estimate (mm) 5797.7 5853.4 5826.5

Error ǫ (mm) 46.7 -9.0 17.9

Abs Error ǫ (%) 0.799 0.154 0.306

(b) Pipe 1 (6 meters, 6” diameter): dataset 2.

Metric
Dense

Sparse
Full Search Model

Ground Truth (mm) 5844.4 5844.4 5844.4

Estimate (mm) 5792.4 5802.0 5827.5

Error ǫ (mm) 52.0 42.4 16.9

Abs Error ǫ (%) 0.890 0.725 0.289

(c) Pipe 1 (6 meters, 6” diameter): dataset 3.

Metric
Dense

Sparse
Full Search Model

Ground Truth (mm) 5844.4 5844.4 5844.4

Forward Estimate (mm) 5858.8 5835.7 5836.9

Forward Error ǫ (mm) -14.4 8.7 7.5

Forward Abs Error ǫ (%) 0.246 0.149 0.128

Reverse Estimate (mm) 5893.3 5865.5 -5840.9

Reverse Error ǫ (mm) -48.9 -21.1 3.5

Reverse Abs Error ǫ (%) 0.837 0.361 0.060

Total Estimate (mm) -34.5 -29.8 3.98

Total Error ǫ (mm) 34.5 29.8 -3.98

Total Abs Error ǫ (%) 0.295 0.255 0.034

(d) Pipe 2 (4 meters, 16” diameter): dataset 1.

Metric
Dense

Sparse
Full Search Model

Ground Truth (mm) 3391.0 3391.0 3391.0

Forward Estimate (mm) 3382.0 3362.6 3383.9

Forward Error ǫ (mm) 9.0 28.4 7.1

Forward Abs Error ǫ (%) 0.27 0.84 0.21

Reverse Estimate (mm) 3516.2 3490.0 3370.3

Reverse Error ǫ (mm) -125.2 -99 20.7

Reverse Abs Error ǫ (%) 3.69 2.92 0.61

Total Estimate (mm) -134.3 -127.4 13.6

Total Error ǫ (mm) 134.3 127.4 -13.6

Total Abs Error ǫ (%) 1.980 1.879 0.201
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(a) X,h camera position.
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(b) Y, h camera position.

Figure 11: TheX,Y, h position estimate for the camera (pipe 1, dataset 1) using the sparse algorithm. The dashed line

is the central axis of the pipe. The radius of the pipe is 76.66 millimeters.

6.2.1 Gain-correction and illumination artifacts

Several considerations need to be addressed for a dense motion estimation to produce accurate estimates.

Since dense motion estimation uses pixel intensities to compute the best alignment parameters, it is of

critical importance that images have a similar illumination.

Figure 12 shows two images taken inside the pipe without correcting the lighting artifacts due to both

the non diffuse LED lighting and specular reflections. As can be seen in the figure the global minima in the

cost space corresponds the zero motion (0, 0)T . However, this is an incorrect estimate of the true motion

parameters between the frame pair. This is due to the strength of lighting artifacts that dominate the error

surface. The true motion parameters in this case correspond to a local minima in the cost space.

Another important consideration for the dense algorithms is the choice of the error function. SAD

is efficient and quick to compute, however, it fails in some cases. Figure 13 shows an example of the cost

surfaces generated by each of SAD, SSD and ZNCC error functions. The illustrated cost surfaces correspond

to a full search for the best translation parameters between the image pair shown in figure 8. As can be seen,

SAD and SSD share the same shape of cost surface, with the exception of scale. ZNCC however, is distinctly

different. In this case, ZNCC finds the correct motion parameters, while the global minima in SAD and SSD

fails to capture the correct motion parameters.

In contrast, the motion estimates obtained using the sparse algorithm are less affected by lighting vari-

ations and artifacts between frames. These lighting variations and artifacts have a negative impact during

keypoint detection by limiting the number of the same scene points that can be detected and correctly

matched in adjacent images. However, the sparse motion estimates are based only on the locations of the

matched keypoints and not on the image intensity values. In any case, strong lighting variations may have
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(a) Image 1 (b) Image 2

(c) Cost surface

Figure 12: Failure case for dense motion estimation due to strong lighting artifacts causing large differences in illumi-

nation between the images. The global minima at (0, 0)T corresponds to the alignment of the specular reflections in

the images. However, a local minima at approx. (35, 1)T corresponds to the correct value of the translational motion

between the images.

some influence on the localization accuracy of the keypoints, which is dependent on the image intensity

values, so it is still beneficial to minimize lighting variations when possible using the sparse algorithm.

For both the dense and sparse algorithms, it is also necessary to correct for lighting variations using the

gain-correction image to ensure that consistent stitched images are produced.

6.2.2 Inherent motion model assumptions

The accuracy of the dense visual odometry estimates have the potential to be limited by the inherent motion

model assumptions made by the dense algorithms. As discussed in section 4, the dense algorithms assume

that each image pair is separated by a u, v pixel shift, which corresponds to a two degree of freedom trans-
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Figure 13: Comparison between different error functions. The cost surface corresponds to motion between the two

images shown in figure 8. We show the negative of ZNCC to keep the problem as a minimization problem

lation model in Euclidean space (X,h motion of the camera in the pipe). However, the motion of the two

robot platforms is well described by a one dimensional translation model (along the h axis), which is one

of the reason that accurate visual odometry estimates were found using the dense algorithms. If the robot

were to rotate about the central axis (i.e. travel up the side of the pipe), the accuracy of the visual odometry

estimates would be expected to deteriorate.

Although the sparse algorithm models six degree of freedom motion, it is still limited in some respects

by the fact that it first finds a one degree of freedom estimate of motion for a sequence of 100 frames before

applying six degree of freedom refinement. If the camera were to rotate significantly about the central axis

of the pipe for example, then the optimized six degree of freedom refinement estimates may in fact converge

on local minima. As mentioned, no large rotations about the central axis occurred, so it was suitable to

assume that for short distances traveled (100 frames, which corresponds to approximately 1 meter traveled

down the pipe) the camera motion was well approximated by a one degree of freedom translation model.
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6.2.3 Pipe diameter and camera angle of view

Both the diameter of the pipe and the angle of view of the camera can impact the accuracy of the dense and

sparse algorithm differently.

For the pipe 1 datasets, the diameter of the pipe is 152.4mm (6”), and the 70◦ horizontal angle of view

of the camera is moderately large. This means that the images obtained for the pipe 1 datasets exhibit a

significant degree of foreshortening in the images since the distance of the camera to different regions on the

surface of the pipe changes. This is most apparent when viewing the image sequences, where it is easy to

identify that regions near the top and bottom of the images appear to move slower than those near the central

band of the image. This foreshortening is also the reason why the upper and lower regions in the stitched

images for the pipe 1 dataset in figure 14, obtained using the dense model-based algorithm, appear blurred.

As discussed in Section 4, the dense algorithms assume that adjacent images are separated by an x, y pixel

shift. This foreshortening can therefore have a negative impact on the accuracy of the visual odometry

algorithms obtained using the dense algorithms. However, it is encouraging to observe that accurate visual

odometry estimates can be obtained using the dense algorithm for the pipe 1 datasets, even when the images

contain significant foreshortening.

The diameter of the pipe for used in the pipe 2 dataset is significantly larger at 406.4mm (16”), and the

25◦ horizontal angle of view of the camera is narrow. As a result, the degree of foreshortening in the pipe 2

dataset images is far less than that in the pipe 1 dataset images. One would therefore expect that the accuracy

of the visual odometry estimates found using the dense algorithms would potentially be more accurate than

those for the pipe 1 datasets. However, there is no clear evidence in the results that this is the case. One

possible explanation for this is the fact that the robot moved slightly up the side of the pipe while capturing

the images in the pipe 2 dataset. As mention in the previous section, the dense algorithms do not model this

type of motion.

The sparse algorithm uses the known radius of the pipe to obtain camera pose estimates, which means

that the curvature of the pipe, and any foreshortening in the images, is accounted for when estimating camera

pose. However, a number of factors influence the accuracy of monocular visual odometry estimates such as

the distance of scene points to camera, and the angle of view of the camera. As mentioned, for the smaller

diameter pipe used in the pipe 1 datasets, the scene points are closed to the camera than those in the pipe 2

dataset. The horizontal angle of view of the camera is also greater. Both these factors can have a positive

effect on the accuracy of monocular visual odometry estimates [10, 7, 30]. The resolution of the camera

used in the pipe 2 dataset was also greater than that used in the pipe 2 dataset (1024 × 768 pixels versus

640 × 480 pixels), which means that the accuracy of keypoint localization for the pipe 1 dataset is likely to

be more accurate than that for the pipe 2 dataset. This improved accuracy of keypoint localization can have

a positive effect on the accuracy of the visual odometry estimates. The sparse results support these claims.

Overall, the percentage accuracy of the sparse visual odometry estimates are better for the pipe 1 datasets

than those for the pipe 2 dataset.

7 Conclusions and Future Work

We have investigated two classes of algorithms that can be used to estimate monocular visual odometry in a

straight cylindrical pipe as the first step towards a visual perception system for LNG pipes inspection. The

first class included a number of dense algorithms that use all image information to compute an optimal trans-

lational alignment between images in the image space. This alignment is then converted to an estimate of

camera ego-motion using a suitable reference scale measurement. The second class was a sparse algorithm

which extracts a small set of salient keypoints in the images, and uses keypoint correspondences between

views to solve the for the 6 degree of freedom ego-motion of the camera.
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Advantages of the dense algorithms include the ability to obtain an accurate estimate of motion in the

presence of blur or large image displacements. It is also possible to refine motion estimates in the image

space to a sub-pixel precision. However, the approach assumes that the camera observes a planar surface,

and the motion model is only able to model camera translation. Dense registration using the simple cost

metrics discussed in this work require constant illumination between image pairs. We attempt to remove

lighting variations using a suitable gain-mask. The dense algorithms estimate the motion between every

frame pair independently from the rest of the data. This has the strong advantage of not accumulating error

over time. However, it could be argued that making use of motion estimates from adjacent frame pairs could

enhance accuracy.

On the other hand, the sparse algorithm is more general and incorporates more degrees of freedom which

enables it to model the pipe surface more accurately. Further, the algorithm could handle small rotations

robustly. However, it requires more overlap between image pairs than the dense algorithms. This should

not be of any concern as we can control the frame-rate of the camera as well as the velocity of vehicle

traveling inside the pipe. Also, the algorithm could be more affected by noise as the number of degrees of

freedom it estimates is larger than the dense algorithms. Since the sparse approach is incremental and error

accumulation overtime is inevitable, an optimization scheme is very important to reduce error growth.

The dense and sparse algorithms were evaluated on different datasets taken from different pipes and

we have found them to be comparable, repeatable and robust. In the experiments presented, the dense and

sparse algorithms were able to estimate camera motion within 1% accuracy of the ground truth, which is a

very encouraging result for using visual odometry in constrained environment, such as a pipe.

In the future, we plan to integrate the algorithms developed in this work into a more complete visual

perception system for LNG pipe inspection. This will included the generation of appearance maps associated

with dense Euclidean structure, and algorithms to register appearance maps of the same pipe produced at

different times. By monitoring changes in these appearance maps over time, we anticipate that a system

can be designed that is capable of detecting corrosion and measuring its rate of change. Further, we intend

to make use of different camera systems, such as stereo cameras to recover 3D information as well as

catadioptric and fisheye camera systems to obtain a full 360◦ view of the interior of the pipe surface using a

single camera. Catadioptric and fisheye systems are of particular interest as they allow the creation of very

rich appearance maps.
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A Tiled Stitched Images for Pipe 1

Figure 14: The tiled stitched image for pipe 1 (6 meters long 152.4mm (6”) diameter) dataset 3 (forward) obtained

using the dense model-based algorithm. The images are stitched in image space.
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Figure 15: The tiled stitched image for pipe 1 (6 meters long 152.4mm (6”) diameter) dataset 3 (forward) obtained

using the sparse algorithm. The images are stitched on the surface of the pipe, where a u, v coordinate in the stitched

image corresponds to an h, ρ = rφ coordinate on the surface of the pipe.
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B Tiled Stitched Images for Pipe 2

Figure 16: The tiled stitched image for the pipe 2 (4 meters long 406.4mm (16”) diameter) dataset (forward) obtained

using the dense model-based algorithm. The images are stitched in image space.
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Figure 17: The tiled stitched image for the pipe 2 (4 meters long 406.4mm (16”) diameter) dataset (forward) obtained

using the sparse algorithm. The images are stitched on the surface of the pipe, where a u, v coordinate in the stitched

image corresponds to an h, ρ = rφ coordinate on the surface of the pipe.
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