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Abstract
The study of genetic variation in populations is of great interest for the study of

the evolutionary history of humans and other species. Improvement in sequencing
technology has resulted in the availability of many large datasets of genetic data.
Computational methods have therefore become quite important in analyzing these
data. Two important problems that have been studied using genetic data are popu-
lation stratification (modeling individual ancestry with respect to ancestral popula-
tions) and genetic association (finding genetic polymorphisms that affect a trait). In
this thesis, we develop methods to improve our understanding of these two problems.

For the population stratification problem, we develop hierarchical Bayesian mod-
els that incorporate the evolutionary processes that are known to affect genetic vari-
ation. By developing mStruct, we show that modeling more evolutionary processes
improves the accuracy of the recovered population structure. We demonstrate how
nonparametric Bayesian processes can be used to address the question of choosing
the optimal number of ancestral populations that describe the genetic diversity of
a given sample of individuals. We also examine how sampling bias in genotyping
study design can affect results of population structure analysis and propose a proba-
bilistic framework for modeling and correcting sample selection bias.

Genome-wide association studies (GWAS) have vastly improved our understand-
ing of many diseases. However, such studies have failed to uncover much of the
variation responsible for a number of common multi-factorial diseases and complex
traits. We show how artificial selection experiments on model organisms can be
used to better understand the nature of genetic associations. We demonstrate us-
ing simulations that using data from artificial selection experiments improves the
performance of conventional methods of performing association. We also validate
our approach using semi-simulated data from an artificial selection experiment on
Drosophila Melanogaster.
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Chapter 1

Introduction

Improvements in sequencing technologies, coupled with their decreasing costs, have made avail-

able a number of datasets for the study of genetic variation in populations, such as the Human

Genome Diversity Project (HGDP) [Cann et al., 2002, Cavalli-Sforza, 2005], HapMap [Gibbs,

2003] and the 1000 Genomes project [Altshuler et al., 2010]. These data have been used to

improve our understanding of the evolutionary history of populations by studying population

structure [Bowcock et al., 1994, Novembre et al., 2008, Rosenberg et al., 2002, Tang et al.,

2005], population expansions, contractions and migrations [Cavalli-Sforza et al., 1994, Hammer

et al., 1998, Reich et al., 2009, Templeton, 2002], mutation rates [Kelly et al., 1991, Valdes et al.,

1993, Zhivotovsky et al., 2004], linkage and recombination rates [Conrad et al., 2006]. Studies

of genetic variation have also been used to find loci associated with diseases [Consortium, 2007,

Cordell and Clayton, 2005, Manolio et al., 2009]. Associated loci have been discovered for dia-

betes [Saxena et al., 2007, Sladek et al., 2007], prostate cancer [Eeles et al., 2008, Thomas et al.,

2008], breast cancer [Antoniou et al., 2008, Easton et al., 1993], Crohn’s disease [Libioulle et al.,

2007]. Hindorff et al. [2009] catalog the results of a number of disease association studies.

This thesis proposes statistical methods to address two important problems in studying ge-

netic variation in populations - (i) detecting population structure and (ii) understanding the na-

ture of genetic associations. For the former problem, previous attempts have been forced to
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make simplifying assumptions or limit model complexity in order to develop tractable methods.

We develop hierarchical paramatric and non-parametric Bayesian models of population evolu-

tion that more accurately reflect reality while allowing efficient inference. For the latter, current

approaches have had significant success in some attempts (as listed above) but have made only

limited progress in explaining how genotypic variation accounts for phenotypic variation. We

propose the use of artificial selection experiments in model organisms combined with spare re-

gression techniques to explore the effect and frequency spectra in which causal variants may

lie.

Chapter 2 introduces the preliminaries that provide context for the work presented in this the-

sis. In chapter 3, we develop a model for population structure that can take into account the evolu-

tionary processes of admixture and mutation that shape genomes in real populations [Shringarpure

and Xing, 2009]. Using a hierarchical Bayesian modeling framework, we show how incorporat-

ing these processes in our mStruct model improves the accuracy of population structure detection

and ancestry inference. By analyzing data from the HGDP, we demonstrate how mStruct enables

us to not only examine not only population structure, but also qualitatively compare the age of

populations. Such comparisons can be used to validate hypotheses about human migration across

the world.

A frequent question in population structure analysis is to decide the number of ancestral

populations that should be used to best capture the genetic variation observed in a given dataset.

We propose StructHDP in chapter 4 to address this question using a nonparametric Bayesian

method [Shringarpure et al., 2011]. StructHDP can be used to detect population structure and

choose the optimal number of ancestral populations simultaneously, without requiring user input.

We show using previously-studied datasets that the number of populations chosen by StructHDP

agrees with previous analyses. StructHDP thus enables users to impose a Bayesian prior on the

number of ancestral populations and make model selection a part of the inference process rather

than a post-processing step.
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Chapter 5 examines sampling bias in genotyping individuals for population genetic studies.

We study the problem of sample selection bias and its effect on ancestry inference in population

structure analyses. We propose a probabilistic framework in which this problem can be studied

and demonstrate that it can have significant effects on population structure analysis using simu-

lated and real data. We also suggest a simple correction that can eliminate the effects of sample

selection bias.

Finally, in chapter 6, we propose that artificial selection experiments on Drosophila Melanogaster

can be used to generate data well-suited for association studies. The resulting data eliminates a

number of the issues that commonly occur in association studies and make the association prob-

lem hard to examine. We demonstrate how sparse regression methods can be used to effectively

solve the resulting association problems for a large range of causal allele frequencies and ef-

fect sizes. This presents a way of examining the allele frequency and effect spectrum of causal

variants for complex traits, where existing approaches have had limited success.
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Chapter 2

Background

The genetic diversity observed within populations is a result of various evolutionary processes

that act on populations. A vast number of evolutionary processes act on populations. They

include mutation, recombination, admixture, selection, migration and population expansions or

contractions. This thesis aims at studying the genetic variation in populations. It is therefore

essential to understand the nature of these evolutionary processes which affect genetic variation.

In this chapter, we describe the nature of genetic variation we wish to study and the effects

various evolutionary processes have on observed genetic variation. We describe specific ways of

studying genetic variation at the population level that are of interest for this thesis and introduce

some related work on these aspects.

2.1 Describing genomic diversity and evolutionary processes

Diploids organisms like humans have two copies of each chromosome, one inherited from the

mother and one inherited from the father. Each chromosomal copy is called the haplotype, and

the two are jointly called the genotype. The DNA copying process that directs this inheritance

is not perfect and there can be errors during copying DNA from parent to offspring. This pro-

cess of imperfect copying of DNA is called mutation. A simple example of mutation involves

5



copying errors at a single nucleotide/location in the genome, suppose a parental chromosome

has nucelotide ‘T’ at a specific location, the imperfect copying could lead to a child having nu-

cleotide ‘C’ at that location. The polymorphisms that arise from single/point mutations are called

‘single-nucleotide polymorphisms” or SNPs. Each variant observed at a SNP is called an allele.

These polymorphisms affect the expression levels of various genes and thus affect various traits

of the individual. Different alleles can thus have different effects on phenotypes. If the phenotype

caused by a particular SNP allele improves an individual’s chances of survival and reproduction

(in comparison to other individuals within a population), then DNA inheritance mechanisms im-

ply that the responsible allele, and therefore the phenotype, will be preferentially passed on to the

next generation. This process, by which inheritable traits that confer a differential reproductive

advantage become more common in populations over generations, is known as natural selection.

Even though natural selection directly acts on traits or phenotypes, it indirectly affects allele

frequencies.

Recombination is the process by which genomic segments from the two haplotypes of an

individuals chromosomes can be rearranged to form gametes with new genetic sequences. When

recombination occurs between two loci, it often decouples the alleles present at these loci to

create new patterns of allelic coupling. This leads to varying degrees of coupling between the

alleles at loci that are physically close to each other on the chromosome. This pattern is called

linkage disequilibrium and is a common way of studying genetic variation [Durbin et al., 2010].

Various demographic processes such as population growth and contractions affect genetic

diversity at the population. Migration is another important process that affects genetic variation

in populations. When genetically different populations encounter each other through migration

and produce offspring, the chromosomes in the resulting population contain genetic contributions

from both of the ancestral populations. This process of genetic mixing is called admixture and

the resulting population is referred to as an admixed population.
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2.2 Population structure

Population structure is the presence of genetic similiarities and differences within and between

groups of individuals. This is a problem of long-standing interest for reconstructing the ancestral

history of modern populations using DNA polymorphisms [Cavalli-Sforza et al., 1994]. Ge-

netic population structure can shed light on the evolutionary history and migrations of modern

populations [Bowcock et al., 1994, Conrad et al., 2006, Rosenberg et al., 2002]. It also provides

guidelines for more accurate association studies [Roeder et al., 1998] and is useful for many other

population genetics problems [Hammer et al., 1998, Queller et al., 1993, Templeton, 2002].

Early attempts at recovering population structure used distance-based phylogenetic methods

on genotype data [Bowcock et al., 1994]. While these methods easy to apply and interpret visu-

ally, they have important disadvantages: the clustering obtained can be heavily dependent on the

distance measure used; and it is difficult to estimate the confidence of the resulting clustering.

These methods were therefore replaced by model-based clustering approaches which modeled

genomes as a mixture of contributions from ancestral populations. The earliest method in this

class of approaches is the Structure model by Pritchard et al. [2000b]. A number of other model-

based methods have been proposed to address the population structure problem in various con-

texts, such as the NewHybrids program [Anderson and Thompson, 2002] for classifying species

hybrids into categories and the BAPS program [Corander et al., 2003] to find the best partition

of a set of individuals into sub-populations on the bases of genotypes. Another class of methods

to detect population structure has been developed using the eigenanalysis framework [Patterson

et al., 2006]. Eigensoft uses eigen-decomposition methods to project individual genotypes into

low-dimensional subspaces that can be used to visualize and examine genetic population struc-

ture. These methods provide formal tests for statistical significance of the population structure

and are very efficient and scalable.

In this thesis, we develop model-based methods that take into account the evolutionary pro-

cesses that shape genetic variation in populations. We therefore examine in more detail the
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Structure method which forms the basis of these extensions.

2.3 The Structure model

The Structure model by Pritchard et al. [2000b] provides a way of probabilistically clustering

individuals into groups called ancestral populations. It is a model-based approach which uses

a statistical methodology known as the allele-frequency admixture model to stratify population

structures. This model, and admixture models in general arising in genetic and other contexts (for

instance, in document modeling [Blei et al., 2003]), belong to a more general class of hierarchical

Bayesian models known as the mixed membership models [Erosheva et al., 2004]. Such a model

postulates that the ensemble of genetic markers of an individual, is made up of independently

and identically distributed (iid) instantiations [Pritchard et al., 2000b] from multiple population-

specific fixed-dimensional multinomial distributions (known as allele frequency profiles [Falush

et al., 2003], or AP) of marker alleles. Under this assumption, the admixture model identifies

each ancestral population by a specific AP (that defines a unique vector of allele frequencies of

each marker in each ancestral population), and displays the fraction of contributions from each

AP in a modern individual genome as an admixing vector (also known as an ancestral proportion

vector or structure vector) in a structural map over the population sample in question. Figure 2.1

shows an example of a structural map of four modern populations inferred from a portion of the

HapMap multi-population dataset by Structure. In this population structural map, the admixing

vector underlying each individual is represented as a thin vertical line of unit length and multiple

colors, with the height of each color reflecting the fraction of the individual’s genome originated

from a certain ancestral population denoted by that color and formally represented by a unique

AP. This method has been applied to the HGDP-CEPH Human Genome Diversity Cell Line Panel

in Rosenberg et al. [2002] and to many other studies, and has unraveled interesting patterns in

the genetic structures of world population.

In this section, we examine the generative process underlying the Structure model and how
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it represents ancestral populations for ancestry inference.

Figure 2.1: Population structural map inferred by Structure on HapMap data consisting of 4 populations.

2.3.1 Representation: Population-Specific Allele Frequency Profiles

Since all markers that are used for population strucure stratification are polymorphic in na-

ture, it is not surprising that the most intuitive representation of an ancestral population is a

set of frequency vectors for all alleles observed at all the loci. Specifically, we can repre-

sent an ancestral population k by a unique set of population-specific multinomial distributions

βk ≡ {~βki ; i = 1 : I}, where ~βki = [βki,1, . . . , β
k
i,L′

i
] is the vector of multinomial parameters, also

known as an allele frequency profile [Falush et al., 2003], or AP, of the allele distribution at locus

i in ancestral population k; L′i denotes the total number of observed marker alleles at locus i, and

I denotes the total number of marker loci. This representation, known as population-specific

allele frequency profiles, is used by the program Structure.

2.3.2 Generative process

For example, for every individual, the alleles at all loci may be inherited from founders in differ-

ent ancestral populations, each represented by a unique distribution of founding alleles and the

way they can be inherited. Formally, this scenario can be captured in the following generative

process:

1. For each individual n, draw the admixing vector: ~θn ∼ P (·|α), where P (·|α) is a pre-

chosen structure prior.
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Figure 2.2: Graphical model for Structure: the circles represent random variables and diamonds represent hyperpa-

rameters.

2. For each marker allele xi,ne ∈ xn

• 2.1: draw the latent ancestral-population-origin indicator zi,ne ∼ Multinomial(·|~θn)

• 2.2: draw the allele xi,ne|zi,ne = k ∼ Pk(·|Θk
i ).

In Structure, the ancestral populations are represented by a set of population-specific allele

frequency profiles (APs). Thus the distribution Pk(·|Θk) from which an observed allele can be

sampled is a multinomial distribution defined by the frequencies of all observed alleles in the an-

cestral population, i.e., xi,ne|zi,ne = k ∼ Multinomial(·|~βki ). Using this probability distribution

in the general admixture scheme outlined above, we can see that Structure essentially imple-

ments an admixture of population-specific allele frequency profiles model. Figure 2.2 shows the

graphical model representing the Structure generative process. This model has been successfully

applied to human genetic data in Rosenberg et al. [2002], and it has been generalized to allow

linked loci and correlated allele frequencies in Falush et al. [2003].
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2.4 Disease association

Disease association is the task of inferring genetic variants that contribute to disease risk or

explain phenotypic diversity in inheritable traits. Traditional methods for genetic analysis of dis-

eases used techniques such as linkage analysis of candidate markers or genes and quantitative

trait locus (QTL) mapping using one marker and one phenotype at a time [Easton et al., 1993].

Recent methods allow analysis of multiple markers simultaneously [Balding, 2006]. Methods

such as eigenanalysis [Price et al., 2006] and regression [Cordell and Clayton, 2002] can perform

simultaneous analysis of multiple markers for association. Mixed models such as EMMA [Kang

et al., 2008] extend the regression framework to model the association problem (with confound-

ing variables) as a linear mixed model.

Genetic association studies are usually set up in one of three different ways:

Familial studies In familial studies, pedigrees with a known history of a particular disease are

genotyped. This avoids the problem of population stratification (an important problem

occuring in association studies that will be explained in more detail in Section 2.4.1).

However, the restriction on the individuals that can be included in the study limits the

power of the method in finding associations.

Case-control design Case-control studies involve a comparison between the genotypes of two

sets of individuals characterized by presence or absence of the phenotype of interest. Cases

are a group of individuals who exhibit the phenotype of interest (a diease or a complex

trait). Controls are individuals who do not show prevalence of the phenotype. The under-

lying assumption is that genotypic differences (in terms of the frequency of certain allelic

variants) between cases and controls are likely to be at markers which are causally related

to the phenotype being studied. In most recent studies, association studies are set up using

a case-control design.

Population cohorts Rather than designate two different sets of individuals as cases and con-

trols, population cohorts follow a single set of individuals over a longer period of time,
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collecting phenotypic information for multiple traits. This limits the number of “cases” for

a particular disease that might be present in the cohort, but the resulting data includes a lot

of longitudinal information about multiple phenotypes that can be useful for other studies

of diseases. It can be used to study the effect of epigenetic factors [Wong et al., 2004] and

pleiotropy [Cordell and Clayton, 2005].

For diseases such as age-related macular degeneration, it has been found that only a few

common variants having large effects account for most of the heritability of the trait. Scenarios

such as these are conducive to analysis by genome-wide association studies. In many other

diseases, most common variants only add small increments to the disease risk and explain only

a small percentage of heritability. An example of such a trait is human height, with an estimated

heritability of 80%. Genome-wide association studies have indicated ∼40 loci that might be

associated with human height, but they explain only 5% of the phenotypic variance of human

height. Similar problems have been encountered when trying to explain the heritability of other

complex traits using association studies. Below we discuss some more of the challenges that are

faced when performing association studies.

2.4.1 Challenges in genetic association studies

Population stratification Case-control studies are based on the assumption that genotype dif-

ferences between cases and controls are likely to be causually related to the phenotype. However,

if there is unidentified population stratification between the cases and controls, this assumption

does not hold true. If the cases disproportionately represent a genetic population in comparison

to the controls, then any SNP with allele frequencies differing between the cases and controls

will (incorrectly) be found to be associated with the phenotype, when it is only truly associated

with distinguishing case or control status. A variety of methods have been proposed to identify

and correct for population stratification in association studies [Price et al., 2006, Pritchard et al.,

2000b, Puniyani et al., 2010, Roeder et al., 1998].
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Insufficient sample size It has been suggested that the partial success of genetic association

studies could be a result of not sampling enough individuals. Small sample sizes could result in

rigorous tests of statistical significance failing to identify variants of small or moderate effects as

causal. Recent work by Yang et al. [2010] suggests that increasing sample sizes identifies new

SNPs that allow us to explain up to 40% of the heritability of human height. While this is a

significant improvement, it still accounts for only half of the estimated heritability of the trait.

Single locus association statistics Many traditional tests for association are single-locus tests

for statistical significance. Due to the large number of statistical tests that have to be performed

for all genotyped SNPs, a correction factor must be applied to the test statistic to avoid false

positives. A commonly used correction is the Bonferroni correction, by which the test statistic

is reduced by a factor of the number of SNPs. This assumes that all the tests performed are

independent. However, due to linkage disequilibrium, SNPs are correlated and therefore the

tests are not independent of each other. The Bonferroni correction, therefore, is too conservative

and ignores weak associations.

Effect size distribution The early genome-wide association studies have been able to identify

candidate SNPs that have large effects. The undiscovered causual variants are likely to have

smaller effects. Therefore finding newer candidate loci in association studies is likely to be a

harder problem [Park et al., 2010].

Comon disease, rare variants Current SNP chips capture variation only at loci where the

minor allele frequency (MAF) is between 1-5%. However, low frequency (MAF ≤ 1%) variants

and rare variants (MAF ≤ 0.01 %) are not captured. Since many traits are multifactorial, a

relatively small number of rare variants with moderate effect could account for a large percentage

of the trait heritability.
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Chapter 3

Population structure in the presence of

admixture and allele mutations

Traditional methods for analyzing population structure, such as the Structure program [Pritchard

et al., 2000b], ignore the influence of the effect of allele mutations between the ancestral and cur-

rent alleles of genetic markers, which can dramatically influence the accuracy of the structural

estimation of current populations. A study of these effects can also reveal additional information

about population evolution such as the the divergence time and migration history of admixed

populations. We propose mStruct [Shringarpure and Xing, 2009], an admixture of population-

specific mixtures of inheritance models , to address the task of structure inference and mutation

estimation jointly through a hierarchical Bayesian framework. We develop a variational algo-

rithm for performing inference for the model. We validate our method on simulated data, and use

it to analyze the HGDP-CEPH cell line panel of microsatellites used in Rosenberg et al. [Rosen-

berg et al., 2002] and the HGDP SNP data used in Conrad et al. [Conrad et al., 2006]. We present

a comparison of the structural maps of world populations estimated by mStruct and Structure and

report potentially interesting mutation patterns in world populations estimated by mStruct.
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3.1 Introduction

The recent deluge of genomic polymorphism data has fueled the long-standing interest in the

analysis of patterns of genetic variations to reconstruct the ancestral structures of modern human

populations. Various methods have been proposed for detecting population structures based on

multi-locus genotype information from a set of indviduals, starting with the Structure model

by Pritchard et al. [2000b]. However, even though Structure was originally built on a genetic

admixture model, in reality the structural patterns derived by Structure in various studies often

turn out to be distinct clusters amongst the study populations (e.g., Figure 2.1), which has led

many to think of it as a clustering program rather than a tool for uncovering genetic admixing as

was originally intended. This issue motivated us to develop a new approach to analyze admixed

genetic samples.

An extension of Structure, known as Structurama [Huelsenbeck and Andolfatto, 2007, Pella

and Masuda, 2006], relaxes the finite dimensional assumption on ancestral populations in the

admixture model by employing a Dirichlet process prior over the ancestral allele frequency pro-

files. This allows automatic estimation of the maximum a posteriori probable number of ances-

tral populations. This extension is a useful improvement since it eliminates the need for manual

selection of the number of ancestral populations. Anderson and Thompson [2002] address the

problem of classifying species hybrids into categories using a model-based Bayesian clustering

approach implemented in the NewHybrids program. While this problem is not exactly identical

to the problem of stratifying the structure of highly admixed populations, it is useful for structural

analysis of populations that were recently admixed. The BAPS program developed by Coran-

der et al. [2003] also uses a Bayesian approach to find the best partition of a set of individuals

into sub-populations on the basis of genotypes. Parallel to the aforementioned model-based

approaches for genomic structural analysis, direct algebraic eigen-decomposition and dimen-

sionality reduction methods, such as the Eigensoft program developed by Patterson et al. [2006]

based on Principal Components Analysis (PCA), offer an alternative approach to explore and
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visualize the ancestral composition of modern populations, and facilitate formal statistical tests

for significance of population differentiation. However, unlike the model-based methods such

as the Structure, where each inferred ancestral population bears a concrete genetic meaning as

a population-specific allele-frequency profile, the eigen-vectors computed by Eigensoft repre-

sent the mutually-orthogonal directions in an abstract low-dimensional ancestral space, in which

population samples can be embedded and visualized. These eigen-vectors can be understood

as mathematical surrogates of independent genetic sources underlying a population sample, but

lack a concrete interpretation under a generative genetic inheritance model (from here on, we

will use the term “inheritance model” to describe the process by which a descendant allele is de-

rived from an ancestral allele). Analyses based on Eigensoft are usually limited to 2-dimensional

ancestral spaces, offering limited power in stratifying highly admixed populations.

This progress notwithstanding, an important aspect of population admixing that is largely

missing in the existing methods is the effect of allele mutations between the ancestral and cur-

rent alleles of genetic markers, which can dramatically influence the accuracy of the structural

estimation of current populations. It can also reveal additional information about population

evolution, such as the relative divergence time and migration history of admixed populations.

Consider for example the Structure model. Since an AP merely represents the frequency of

alleles in an ancestral population rather than the actual allelic content or haplotypes of the alleles

themselves, the admixture models developed so far based on AP do not model genetic changes

due to mutations from the ancestral alleles. Indeed, a serious pitfall of the model underlying

Structure, as pointed out in Excoffier and Hamilton [2003], is that there is no mutation model for

modern individual alleles with respect to hypothetical common prototypes in the ancestral pop-

ulations. That means, every unique allele in the modern population is assumed to have a distinct

ancestral proportion, rather than allowing the possibility of it just being a descendant of some

common ancestral allele that can also give rise to other closely related alleles at the same locus

of other individuals in the modern population. Thus, while Structure aims to provide ancestry
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information for each individual and each locus, there is no explicit representation of the “ances-

tors” as a physical set of “founding alleles”. Therefore, the inferred population structural map

emphasizes revealing the contributions of abstract population-specific ancestral proportion pro-

files, which does not necessarily reflect individual diversity or the extent of genetic changes with

respect to the founders. Due to this limitation, Structure does not enable inference of the found-

ing genetic patterns, the age of the founding alleles, or the population divergence time [Excoffier

and Hamilton, 2003].

The lack of an appropriate allele mutation model in a structural inference program can also

compromise our ability to reliably assess the amount or level of genetic admixing in different

populations. The Structure model, like several other related models [Blei et al., 2003], is based

on the fundamental assumption of the presence of genetic admixing among multiple founding

populations. However, as we shall see later, on real population data such as the HGDP-CEPH

panel, it produces results that favor clustering individuals into predominantly one allele frequency

profile or another, thus leading us to conclude that there was little or no admixing between the

ancestral human populations. We believe that this occurs due to the absence of a mutation model

in Structure. While a partitioning of individuals would be desirable for clustering them into

groups, it does not offer enough biological insight into the intermixing of the populations.

We develop mStruct (which stands for Structure under mutations), based on a new model: an

admixture of population-specific mixtures of inheritance models (AdMim). Statistically, AdMim

is an admixture of mixture models, which represents each ancestral population as a mixture of an-

cestral alleles each with its own inheritance process, and each modern individual as an “ancestry

vector” (or structure vector) that reflects membership proportions of the ancestral populations.

As we explain shortly, mStruct facilitates estimation of both the structural map of populations

(incorporating mutations) and the mutation parameters of either SNP or microsatellite alleles

under various contexts. We develop a new variational inference algorithm for estimating the

structure vectors and other model parameters of interest. We compare our method with Structure
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on simulated genotype data, and on the microsatellite and SNP genotype data of world popula-

tions [Conrad et al., 2006, Rosenberg et al., 2002]. Our results using microsatellite data reveal the

presence of significant levels of genetic admixing among the founding populations underlying

the HGDP-CEPH cell line panel, as well as consequences of expansion of humans out of Africa.

Our results suggest that the inability of Structure to model mutations during genetic admixing

could have caused it to detect correct clustering but very low levels of genetic admixing in each

modern population in the HGDP-CEPH data. We also report interesting visualizations of genetic

divergence in world populations revealed by the mutation patterns estimated by mStruct.

3.2 The statistical model

Although both mStruct and Structure are mixed-membership models, the mStruct model differs

from the Structure model in two main aspects: the representation of ancestral populations, and

the generative process for sampling a modern individual from the ancestral populations. In this

section we describe in detail the statistical underpinning of these two aspects.

3.2.1 Representation: Population-Specific Mixtures of Ancestral Alleles

An AP does not enable us to model the possibility of mutations, i.e., there is no way of repre-

senting a situation where two observed alleles might have been derived from a single ancestral

allele by two different mutations. This possibility can be represented by a genetically more re-

alistic statistical model known as the population-specific mixture of ancestral alleles (MAA).

For each locus i, an MAA for ancestral population k is a set Θk
i ≡ {µki , δki , ~βki } consisting of

three components: 1) a set of ancestral (or founder) alleles µki ≡ {µki,1, . . . , µki,Li
}, which can

differ from their descendent alleles in the modern population; 2) a mutation parameter δki asso-

ciated with the locus, which can be further generalized to be allele-specific if necessary; and 3)

an AP ~βki which now represents the frequencies of the ancestral alleles. Here Li denotes the
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total number of ancestral alleles at loci i, which is different from L′i in the previous subsection,

which denotes the total number of observed alleles at loci i. By explictly associating a mutation

model with an ancestral population, we can now capture mutation events as described above. It

is important to note that the mutation parameter δ is not the mutation rate commonly referred

to in literature. As we shall see later, it is a measure of the variability of a locus which can be

described approximately as the combined effect of the per-generation mutation rate and the age

of the population.

An MAA is strictly more expressive than an AP, because the incorporation of a mutation

model helps to capture details about the population structure which an AP cannot; and the MAA

reduces to the AP when the mutation rates (and hence the mutation parameters) become zero and

the founders are identical to their descendents. MAA is also arguably more realistic because it

allows mutation rates (and mutation parameters) to be different for different founder alleles even

within the same ancestral population, as is commonly the case with many genetic markers. For

example, the mutation rates for microsatellite alleles are believed to be dependent on their length

(number of repeats). As we shall show shortly, with an MAA, one can examine the mutation

parameters corresponding to each ancestral population via Bayesian inference from genotype

data; this might enable us to infer the age of alleles, and also estimate population divergence

times subject to a calibration constant.

Let i ∈ {1, . . . , I} index the position of a locus in the study genome, n ∈ {1, . . . , N} index

an individual in the study population, and e ∈ {0, 1} index the two possible parental origins of

an allele (in this study we do not require strict phase information of the two alleles, so the index e

is merely used to indicate ploidy of the data). Under an MAA specific to an ancestral population

k, the correspondence between a marker allele Xi,ne and a founder µki,l ∈ µki is not directly

observable. For each allele founder µki,l, we associate with it an inheritance model p(·|µki,l, δki,l)

from which descendants can be sampled. Then, given specifications of the ancestral population

from which Xi,ne is derived, which is denoted by hidden indicator variable Zi,ne , the conditional
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distribution of Xi,ne under MAA follows a mixture of population-specific inheritance models:

P (xi,ne = l′ | zi,ne = k) =
L∑
l=1

βki,lP (xi,ne|µki,l, δki,l). (3.1)

Comparing to the counterpart of this function under AP: P (xi,ne = l′ | zi,ne = k) = βki,l′ , we can

see that the latter cannot explicitly model allele diversities in terms of molecular evolution from

the founders.

3.2.2 Generative process

We propose to represent each ancestral population by a set of population-specific MAAs. Recall

that in an MAA for each locus we define a finite set of founders with prototypical alleles µki ≡

{µki,1, . . . , µki,Li
} that can be different from the alleles observed in a modern population; each

founder is associated with a unique frequency βki,l, and a unique (if desired) mutation model from

the prototype allele parameterized by rate δki,l. Under this representation, now the distribution

Pk(·|Θk
i ) from which an observed allele can be sampled becomes a mixture of inheritance models

each defined on a specific founder; and the ensuing sampling module that can be plugged into

the general admixture scheme outlined in Section 2.3.2 becomes a two-step generative process.

The entire generative process can be written as:

1. For each individual n, draw the admixing vector: ~θn ∼ P (·|α), where P (·|α) is a pre-

chosen structure prior.

2. For each marker allele xi,ne ∈ xn

• 2.1: draw the latent ancestral-population-origin indicator zi,ne ∼ Multinomial(·|~θn)

• 2.2a: draw the latent founder indicator ci,ne|zi,ne = k ∼ Multinomial(·|~βki );

• 2.2b: draw the allele xi,ne |ci,ne = l, zi,ne = k ∼ Pm(·|µki,l, δki,l),

where Pm() is a mutation model that can be flexibly defined based on whether the genetic mark-

ers are microsatellites or single nucleotide polymorphisms. We call this model an admixture of
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population-specific inheritance models (AdMim), whereas the Structure model is only an ad-

mixture of population-specific allele frequency profiles. Figure 3.1(a) shows a graphical model

representation of the overall generative scheme for AdMim, in comparison with the admixture of

population-specific allele rates discussed earlier. From the figure, we can clearly see that mStruct

is an extended Structure model which allows copying errors.

(a) mStruct (b) Structure 2.1

Figure 3.1: Graphical Models: the circles represent random variables and diamonds represent hyperparameters.

For simplicity of presentation, in the model described above, we assume that for a partic-

ular individual, the genetic markers at each locus are conditionally iid samples from a set of

population-specific fixed-dimensional mixture of inheritance models, and that the set of founder

alleles (but not their frequencies) at a particular locus is the same for all ancestral populations

(i.e., µki ≡ µi). We shall also assume that the mutation parameters for each population at any

locus are independent of the alleles at that locus (i.e., δki,l ≡ δki ). Also, our model assumes Hardy-

Weinberg equilibrium within populations. The simplifying assumptions of unlinked loci and no

linkage disequilibrium between loci within populations can be easily removed by incorporating

Markovian dependencies over ancestral indicators Zi,ne and Zi+1,ne of adjacent loci, and over

other parameters such as the allele frequencies ~βki in exactly the same way as in Structure. We

can also introduce Markovian dependencies over mutation parameters at adjacent loci, which
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might be desirable to better reflect the dynamics of molecular evolution in the genome. We defer

such extensions to future work.

3.2.3 Mutation model

As described above, our model is applicable to data for almost all kinds of genetic markers by

plugging in an appropriate allele mutation model (i.e., inheritance model) Pm(). We now discuss

mutation models for microsatellites and SNPs.

Microsatellite mutation model

Microsatellites are a class of tandem-repeat loci that involve a DNA unit that is 1 − 4 basepair

in length. Microsatellite DNA has significantly high mutation rates as compared to other DNA,

with mutation rates as high as 10−3 or 10−4 [Henderson and Petes, 1992, Kelly et al., 1991].

The large amount of variations present in microsatellite DNA make it ideal for differentiating

founder patterns between closely related populations. Microsatellite loci have been used before

DNA fingerprinting [Queller et al., 1993], linkage analysis [Dietrich et al., 1992], and in the

reconstruction of human phylogeny [Bowcock et al., 1994]. By applying theoretical models of

microsatellite evolution to data, questions such as time of divergence of two populations can be

attempted to be addressed [Pisani et al., 2004, Zhivotovsky et al., 2004].

The choice of a suitable microsatellite mutation model is important, for both computation

and interpretation purposes. Below we discuss the mutation model that we use and the biological

interpretation of the parameters of the mutation model. We begin with a stepwise mutation model

for microsatellites widely used in forensic analysis [Lin et al., 2006, Valdes et al., 1993].

This model defines a conditional distribution of a progeny allele b given its progenitor allele

a, both of which take continuous values:

p(b|a) =
1

2
ξ(1− δ)δ|b−a|−1, (3.2)
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where ξ is the mutation rate (probability of any mutation), and δ is the factor by which mutation

decreases as distance between the two alleles increases. Although this mutation distribution is

not stationary (i.e., it does not ensure allele frequencies to be constant over the generations), it

is commonly used in forensic inference due to its simplicity. To some degree δ can be regarded

as a parameter that controls the probability of unit-distance mutation, as can be seen from the

following identity: p(b+ 1|a)/p(b|a) = δ.

In practice, the alleles for almost all microsatellites are represented by discrete counts. The

two-parameter stepwise mutation model described above complicates the inference procedure.

We propose a discrete microsatellite mutation model that is a simplification of Eq. 3.2, but cap-

tures its main idea. We posit that: P (b|a) ∝ δ|b−a|. Since b ∈ [1,∞), the normalization constant

of this distribution is:
∞∑
b=1

P (b|a) =
a∑
b=1

δa−b +
∞∑

b=a+1

δb−a

=
1− δa

1− δ
+

δ

1− δ

=
1 + δ − δa

1− δ
,

which gives the mutation model as

P (b|a) =
1− δ

1− δa + δ
δ|b−a|. (3.3)

We can interpret δ as a variance parameter, the factor by which probability drops as a fuction

of the distance between the mutated version b of the allele a. Figure 3.2 shows the discrete pdf

for various values of δ.

SNP mutation model

SNPs, or single nucleotide polymorphisms, represent the largest class of individual differences

in DNA. In general, there is a well-defined correlation between the age of the mutation produc-

ing a SNP allele and the frequency of the allele. For SNPs, we use a simple pointwise mutation

model, rather than more complex block models. Thus, the observations in SNP data are only
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Figure 3.2: Discrete pdf for two values of mutation parameter.

binary (0/1) in nature. Thus, given the observed allele b, we say that the probability of it being

derived from the founder allele a is given by:

P (b|a) = δI[b=a] × (1− δ)I[b 6=a]; a, b ∈ {0, 1}. (3.4)

In this case, the mutation parameter δ is the probability that the observed allele is not identical to

the founder allele, but derived from it due to a mutation.

Other modeling issues

In our model description, we defined an ancestral population using a set of founder alleles. To

use the model to analyze data, we need to decide how these founder alleles can be obtained.

Below, we describe how this can be accomplished. We also explain how to define a prior on the

mutation parameter to enforce model identifiability.

Determination of founder set at each locus: According to our model assumptions, there can

be a different number of founder alleles at each locus. This number is typically smaller than

the number of alleles observed at each marker since the founder alleles are “ancestral”. To

estimate the appropriate number and allele states of founders, we fit finite mixtures (of fixed size,

corresponding to the desired number of ancestral alleles) of microsatellite mutation models over
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all the measurements at a particular marker for all individuals. We use the Bayesian Information

Criterion (BIC) [Schwarz, 1978] to determine the best number and states of founder alleles to use

at each locus, since information criteria tend to favor smaller number of founder alleles which fit

the observed data well.

For each locus, we fit many different finite-sized mixtures of mutation distributions, with the

size varying from 1 to the number of observed alleles at the locus. For each mixture size, the

likelihood is optimized and a BIC value is computed. The number of founder alleles is chosen

to be the size of the mixture that has the best (minimum) BIC value. We can do this as a pre-

processing step before the actual inference or estimation procedures. This is possible since we

assumed that the set of founder alleles at each locus was the same for all populations.

Choice of mutation prior: In our model, the δ parameter, as explained above, is a population-

specific parameter that controls the probability of stepwise mutations. Being a parameter that

controls the variance of the mutation distribution, there is a possibility that inference on the

model will encourage higher values of δ to improve the log-likelihood, in the absence of any

prior distribution on δ. To avoid this situation, and to allow more meaningful and realistic results

to emerge from the inference process, we impose on δ a beta prior that will be biased towards

smaller values of δ. The beta prior will be a fixed one and will not be among the parameters we

estimate.

3.3 Inference

For notational convenience, we will ignore the diploid nature of observations in the analysis that

follows. With the understanding that the analysis is carried out for an arbitrary nth individual,

we will drop the subscript n. Also, we overload the indicator variables zi and ci to be both,

arrays with only one element equal to 1 and the rest equal to 0, as well as scalars with a value

equal to the index at which the array forms have 1s. In other words: zi ∈ {1, . . . , K} or zi =
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[zi,1, . . . , zi,K ], where zi,k = I[zi = k], and I[·] denotes an indicator function that equals to 1

when the predicate argument is true and 0 otherwise. A similar overloading is also assumed for

the ci variables. For generalization across different types of markers, we shall use f(xi|µi,ci , δi,zi)

to denote P (xi|ci, zi, µi, δi). Different mutation models can be used in AdMim by varying the

form of the function f().

The joint probability distribution of the the data and the relevant variables under the AdMim

model can then be written as:

P
(
x, z, c, ~θ|α,β, µ, δ

)
= p

(
~θ|α
) I∏
i=1

P
(
zi|~θ
)
P
(
ci|zi, ~βk=1:K

i

)
P
(
xi|ci, zi, µi, δk=1:K

i

)
.

The marginal likelihood of the data can be computed by summing/integrating out the latent

variables:

P (x|α,β, µ, δ) =
Γ
(∑K

k=1 αk

)
∏K

k=1 Γ (αk)

∫ ( K∏
k=1

θαk−1
k

)
. . .

×
I∏
i=1

K∑
k=1

(
K∏
k=1

θ
zi,k
k

)
I∑
i=1

K∏
k=1

Li∏
l=1

(
βki,l
)ci,lzi,k . . .

× P
(
xi|µi,l, δki

)ci,lzi,k d~θ.
However, a closed-form solution to this summation/integration is not possible, and indeed exact

inference on hidden variables such as the map vector ~θ, and estimation of model parameters such

as the mutation rates δ under AdMim is intractable. Pritchard et al. [2000a] developed an MCMC

algorithm for inference for their admixture model underlying Structure. While it is straightfor-

ward to implement a similar MCMC scheme for AdMim, we choose to apply an approximate

inference method known as variational inference [Jordan et al., 1999] for computational effi-

ciency.
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3.3.1 Variational Inference

We use a mean-field approximation for performing inference on the model. This approximation

method approximates an intractable joint posterior p() of all the hidden variables in the model

by a product of marginal distributions q() =
∏
qi(), each over only a single hidden variable.

The optimal parameterization of qi() for each variable is obtained by minimizing the Kullback-

Leibler divergence between the variational approximation q and the true joint posterior p. Using

results from the Generalised Mean Field theory [Xing et al., 2003], we can write the variational

distributions of the latent variables in AdMim as follows:

q(~θ) ∝
K∏
k=1

θ
αk−1+

∑I
i=1 〈zi,k〉

k

q(ci) ∝
L∏
l=1

(
K∏
k=1

(
βki,lf(xi|µi,l, δki )

)〈zi,k〉)ci,l

q(zi) ∝
K∏
k=1

(
e〈log(θk)〉

(
L∏
l=1

βki,lf(xi|µi,l, δki )
〈ci,l〉
))zi,k

.

In the distributions above, the ‘〈·〉’ are used to indicate the expected values of the enclosed

random variables. A close inspection of the above formulas reveals that these variational distri-

butions have the form q(~θ) ∼ Dirichlet(γ1, . . . , γK), q(zi) ∼ Multinomial(ρi,1, . . . , ρi,K), and

q(ci) ∼ Multinomial(ξi,1, . . . , ξi,L), respectively, of which the parameters γk, ρi,k and ξi,l are

given by the following equations:

γk = αk +
I∑
i=1

〈zi,k〉

ρi,k =
e〈log(θk)〉

(∏L
l=1 β

k
i,lf(xi|µi,l, δki )

〈ci,l〉
)

∑K
k=1

(
e〈log(θk)〉

(∏L
l=1 β

k
i,lf(xi|µi,l, δki )

〈ci,l〉
))

ξi,l =

∏K
k=1

(
βki,lf(xi|µi,l, δki )

)〈zi,k〉∑K
k=1

(∏K
k=1

(
βki,lf(xi|µi,l, δki )

)〈zi,k〉)

and they have the properties: 〈log(θk)〉 = ψ(γk) − ψ(
∑

k γk), 〈zi,k〉 = ρi,k and 〈ci,l〉 = ξi,l,
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which suggest that they can be computed via fixed point iterations. (The digamma function

ψ() used above is the first derivative of the logarithm of the gamma function Γ().) It can be

shown that this iteration will converge to a local optimum, similar to what happens in an EM

algorithm. Empirically, a near global optimal can be obtained by multiple random restarts of the

fixed point iteration. Typically, such a mean-field variational inference converges much faster

than sampling [Xing et al., 2003] (though we note that the sampling yields the full posterior while

variational inference produces a unimodal approximation to the posterior). Upon convergence,

we can easily compute an estimate of the map vector ~θ for each individual from q(~θ).

3.4 Parameter Estimation

The parameters of our model are the centroids µ, the mutation parameters δ, the ancestral al-

lele frequency distributions β, and the Dirichlet hyperparameter that is the prior on ancestral

populations, α. For the hyperparameter estimation, we perform empirical Bayes estimation us-

ing the variational Expectation Maximization algorithm described in [Blei et al., 2003]. The

variational inference described in Section 3.3.1 provides us with a tractable lower bound on the

log-likelihood as a function of the current values of the hyperparameters. We can thus maximize

it with respect to the hyperparameters. If we alternately carry out variational inference with fixed

hyperparameters, followed by a maximization of the lower bound with respect to the hyperpa-

rameters for fixed values of the variational parameters, we can get an empirical Bayes estimate

of the hyperparameters. The derivation leads to the following iterative algorithm:

1. (E-step) For each individual, find the optimizing values of the variational parameters (γn, ρn, ξn;n ∈

1, . . . , N ) using the variational updates described above.

2. (M-step) Maximize the resulting variational lower bound on the likelihood with respect to

the model parameters, namely α, β, µ, δ.
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The two steps are repeated until the lower bound on the log-likelihood converges. The details of

estimation of each hyperparameter are explained below.

3.4.1 Variational lower bound on log-likelihood

Denote the original set of hyperparameters by

H = {α,β, µ, δ} (3.5)

and the variational parameters for the nth individual by

Vn = {γn, ρn, ξn} (3.6)

The variational lower bound to the log-likelihood for the nth individual is given by:

Ln(H,Vn) = Eq[log p(xn, ~θn, z.,n, c.,n;H)]

− Eq[log q(~θn, z.,n, c.,n;H,Vn)]

(3.7)

The subscripts indicate the nth individual. In the analysis below, we use z.,n to denote {z1,n, . . . , zI,n}

and c.,n to represent {c1,n, . . . , cI,n}. As described earlier, we partition the variational approxi-

mation as:

q(~θn, z.,n, c.,n;H,V) = q(~θn)
I∏
i=1

q(zi,n)q(ci,n) (3.8)

So we can expand Equation 3.7 as

Ln(H,Vi) = Eq[log p(~θn;α)] + Eq[log p(z.,n|~θn)] + Eq[log p(c.,n|z.,n)]

+ Eq[log p(xn|c.,n, z.,n,β)]− Eq[log q(~θn)]− Eq[log q(z., n)]− Eq[log q(c., n)] (3.9)

The lower bound to the total data log-likelihood is

L(H,V) =
N∑
n=1

Ln(H,Vn)
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which, on substituting from Equation 3.9 becomes

L(H,V) =
N∑
n=1

Eq[log p(~θn;α)] +
N∑
n=1

Eq[log p(z.,n|~θn)]

+
N∑
n=1

Eq[log p(c.,n|z.,n)] +
N∑
n=1

Eq[log p(xn|c.,n, z.,n,β)]

−
N∑
n=1

Eq[log q(~θn)]−
N∑
n=1

Eq[log q(z.,n)]

−
N∑
n=1

Eq[log q(c.,n)]

(3.10)

To compute Eq[log p(~θn;α)] and Eq[log q(~θn)], we will use the properties of a Dirichlet distri-

bution, which is an exponential family distribution. If θ ∼ Dir(α), then the exponential family

representation of p(θ;α) is given by:

p(θ;α) = exp

[(
K∑
k=1

(αk − 1) log θk

)
+ log Γ

(
K∑
k=1

αk

)
−

K∑
k=1

log Γ (αk)

]
(3.11)

So the natural parameter of the Dirichlet is ηk = αk − 1 and the sufficient statistic is T (θk) =

log θk. The log normalization factor is
∑K

k=1 log Γ (αk)− log Γ
(∑K

k=1 αk

)
. For an exponential

distribution, the derivative of the log normalization factor with respect to the natural parameter

is equal to the expected value of the sufficient statistic. Using this fact, we get:

E[log θk;α] = ψ (αk)− ψ

(∑
k

αk

)
(3.12)

where ψ is the digamma function, the first derivative of the log Gamma function. The remaining

expectation terms in Equation 3.10 are expectations of multinomial parameters, and hence are

easy to calculate.
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Simplifying each term in Equation 3.10, we get

L(H,V) = N log Γ

(
K∑
k=1

αk

)
−N

K∑
k=1

log Γ (αk) +
N∑
n=1

K∑
k=1

(αk − 1)

[
ψ (γn,k)− ψ

(
K∑
k=1

γn,k

)]

+
N∑
n=1

I∑
i=1

K∑
k=1

ρn,i,k

[
ψ (γn,k)− ψ

(
K∑
k=1

γn,k

)]

+
N∑
n=1

I∑
i=1

K∑
k=1

Li∑
l=1

ξn,i,lρn,i,k log βkil

+
N∑
n=1

I∑
i=1

K∑
k=1

Li∑
l=1

ξn,i,lρn,i,k
[
log (1− δki ) + |xi,n − µi,l| log δki − log

(
1 + δki −

(
δki
)µi,l)]

−
N∑
n=1

[
log Γ

(
K∑
k=1

γn,k

)
−

K∑
k=1

log Γ (γn,k) +
K∑
k=1

(γn,k − 1)

[
ψ (γn,k)− ψ

(
K∑
k=1

γn,k

)]]

−
N∑
n=1

I∑
i=1

Li∑
l=1

ξn,i,l log ξn,i,l

−
N∑
n=1

I∑
i=1

K∑
k=1

ρn,i,k log ρn,i,k

(3.13)

Each line in Equation 3.13 corresponds to an expectation term in Equation 3.10. In the following

subsections, we will briefly describe how the maximum-likelihood estimates of the hyperparam-

eters were obtained from the variational lower bound.

3.4.2 Estimating ancestral allele frequency profiles β

Since β is a table of probability distributions, the values of its elements are constrained by the

equality
∑Li

l=1 β
k
i,l = 1 for all combinations of {i, k}. So to find the optimal values of β satisfying

this constraint while maximizing the variational lower bound, we introduce Lagrange multipliers

νi,k. The new objective function to maximize is then given by:

Lnew(H,V) = L(H,V) +
I∑
i=1

K∑
k=1

νi,k

(
Li∑
l=1

βki,l − 1

)
(3.14)
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Maximizing this objective function gives:

βki,l =

∑N
n=1 ξn,i,lρn,i,k∑Li

l=1

∑N
n=1 ξ

n
n,i,lρn,i,k

(3.15)

We use a uniform Dirichlet prior with hyperparameter λ (which is fixed) on each multinomial

~βki . Under this prior, it is not difficult to show that the estimate of βki,l changes to

βki,l =
λ+

∑N
n=1 ξ

n
i,lρ

n
i,k

λ ∗ Li +
∑Li

l=1

∑N
n=1 ξ

n
i,lρ

n
i,k

(3.16)

3.4.3 Estimating the Dirichlet prior on populations α

For estimating α we use the method described by Minka in [Minka, 2000]. This gives a Newton-

Raphson iteration for α that does not involve inversion of the Hessian, and hence is reasonably

fast. The log-likelihood terms involving α are:

L(H,V) = N log Γ

(
K∑
k=1

αk

)
−N

K∑
k=1

log Γ (αk)+
N∑
n=1

K∑
k=1

(αk − 1)

[
ψ (γn,k)− ψ

(
K∑
k=1

γn,k

)]
(3.17)

The gradient of the log-likelihood with respect to αk is given by

gk =
dL(H,V)

dαk
= Nψ

(
K∑
k=1

αk

)
−Nψ(αk) +

N∑
n=1

[
ψ (γn,k)− ψ

(
K∑
k=1

γn,k

)]
(3.18)

The second derivatives, which form the Hessian, can be computed as:

dL(H,V)

d2αk
= Nψ′

(
K∑
k=1

αk

)
−Nψ′(αk) (3.19)

dL(H,V)

dαkαj
= Nψ′

(
K∑
k=1

αk

)
(k 6= j) (3.20)

where ψ′, the trigamma function, is the derivative of the digamma function. The Hessian can

then be written as:

H = Q + 11Tz (3.21)

qj,k = −Nψ′
(αk) δ (j − k) (3.22)

z = Nψ
′

(
K∑
k=1

αk

)
(3.23)
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where Q is a K×K matrix with elements qj,k. As we can see from the definition, Q is a diagonal

matrix. The Newton update equation we have is:

αnew = αold −
(
H−1g

)
(3.24)

The inverse of the Hessian can be computed using the Sherman-Morrison formula to be

H−1 = Q−1 − Q−111TQ−1

1/z + 1TQ−11
(3.25)

Therefore, we have that the update term is:

(H−1g)k =
gk − b
qk,k

(3.26)

where

b =

∑K
k=1 gk/qk,k

1/z +
∑K

k=1 1/qk,k

So the update equation for αk is

αnew
k = αold

k −
gk − b
qk,k

(3.27)

3.4.4 Estimating the ancestral alleles µ and the mutation parameters δ

It is straightforward to derive gradient updates for the ancestral alleles µ and the mutation pa-

rameter δ and the details can be obtained in [Shringarpure and Xing, 2009]. While the gradient

methods developed are useful for small datasets, they are inefficient on larger datasets and in-

crease the time required for estimation. Hence we develop a couple of approximations that help

speed up the hyperparameter estimation. A careful look at the results that have been produced

indicates that once the founder alleles have been picked initially by fitting a mixture of mutation

distributions individually at each locus, the later gradient descent on µ only makes very minor

changes in their values, if any at all. Thus, to improve the speed of the algorithm, we do not per-

form gradient descent on the founder alleles µ but fix them after initialization. We show below

an approximation for estimating the mutation parameter δ.
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For the estimation of the mutation parameter δ, the only relevant term in the likelihood lower

bound is the term:

L(δki ) =
N∑
n=1

Li∑
l=1

ξn,i,lρn,i,k × log f(xn,i;µi,l, δ
k
i )

+
(δki )

ζ1−1(1− δki )ζ2−1
B (ζ1, ζ2)

+ (Terms not involving δki )

(3.28)

where we use β(ζ1, ζ2) as a beta prior on the mutation parameter δ. This constrains the mutation

parameter to allow meaningful interpretation by using a β prior with a small expected value

(around 0.1). For the mutation distribution, we use the discrete distribution whose pdf is

f(x|µ, δ) =
(1− δ)δ|x−µ|

1 + δ − δµ
(3.29)

Approximation

We will assume δ to be small in Equation 3.29. So we can ignore the term exponential in µ in

the denominator, reducing it to only (1 + δ). The expansion of (1 + δ)−1 is given by

1

1 + δ
= 1− δ + δ2 − δ3 + . . . (3.30)

≥ 1− δ (3.31)

This gives us a lower bound to the mutation distribution to be

flb(x|µ, δ) = (1− δ)2δ|x−µ| (3.32)

It is not hard to show that using this form for the mutation distribution allows a closed-form

MLE for δ. This approximation gives us a lower bound to the likelihood that is not as tight as the

variational lower bound. However, it offers a significant improvement in time complexity due to

the existence of a closed form solution, thus avoiding the need for slow gradient-based methods.

Under this approximation, the maximum-likelihood estimate of δki for the microsatellite mutation

model is given by

δki =
ζ1 +

∑N
n=1

∑Li

l=1 ξn,i,lρn,i,k|xn,i − µi,l|
ζ2 +

∑N
n=1

∑Li

l=1 ξn,i,lρn,i,k(2 + |xn,i − µi,l|)
(3.33)
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3.5 Experiments and Results

We validated our model on synthetic microsatellite datasets simulated using a coalescent model

to assess the performance of mStruct in terms of the accuracy and consistency of the estimated

structure vectors, and to test the correctness of the inference and estimation algorithms we devel-

oped. We also conduct empirical analysis using mStruct of two real datasets: the HGDP-CEPH

cell line panel of microsatellite loci and the HGDP SNP data, in comparison with the Structure

program (version 2.2).

3.5.1 Validations on Coalescent Simulations

To verify the correctness of the empirical admixture estimations based on mStruct when the

truth is known, we first simulated a multitude of admixture population data sets, using coales-

cent techniques described in [Hudson, 1990], under various user-specified admixing scenarios.

Specifically, following Hudson (personal communications), without loss of generality we sim-

ulated genealogy trees for two discrete populations of effective size 2N, which were assumed

to have split from a single ancestral population, also of size 2N, at a time N generations in the

past. We assumed that there was no migration between the populations after the split. These

two discrete populations were joined together to form a single random mating population. (A

simulation of multiple-population admixing is possible, but tedious, and thus omitted here for

simplicity.) After a single generation of random mating, samples were collected from the result-

ing population. Individuals, therefore, have i parents from population 1, and 2 − i parents from

population 2 with probability
(
2
i

)
/4. Every locus was simulated independently. Microsatellite

mutation was modeled by a simple stepwise mutation process. The mutation parameter 4Nµwas

varied over data points, with 3 discrete values , {8, 16, 32}, being used. Since the expected num-

ber of mutations within the populations is given by 2Nµ, the values chosen are representative of

the diversity observed in real data [Pritchard et al., 2000a].

For each individual, we stored the fractional contribution of population 1 to its genome. For
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each data set, we also stored the fractional contribution of population 1 to the entire population.

To ensure that each population was well-represented in the admixed population, only datasets

which had roughly equal contribution from both populations were accepted (The contribution of

population 1 to the resulting population was required to be in [50−0.01, 50 + 0.01] percent). For

each data point in the graph, 10 data sets were simulated using the same parameter settings for

the mutation parameter. Each data set had 60 individuals from the admixed population measured

at 100 loci. For each data set, 10 runs of each software (i.e., mStruct and Structure) were used to

determine the run with best likelihood. The statistics used in the result were computed only on

the run with the best likelihood.

We use the simulated data sets to carry out three analyses. Firstly, we study the ability of

both softwares to recover the contribution of population 1 (denoted as η) to the resulting admixed

population. Next, we study how well each software is able to recover the proportion of ancestry

in population 1 for each individual. Finally, we consider the problem of model selection- i.e.,

choosing the number of ancestral populations to provide an appropriate representation of the

data.

Recovering the contribution of population 1 to the resulting population: We evaluated

the accuracy of the estimated η under three different conditions, one for each value of the mag-

nitude of the mutation parameter described above. The greater the magnitude, the more difficult

the estimation of admixing coefficient η, because more discrepancy would exist between the an-

cestral alleles and the simulated population alleles. As a measure of error, we used the absolute

difference between the true value ηtrue and the inferred value ηinfer. The results shown in Fig-

ure 3.3(a) denote the means and quartiles of the result statistics. From the figure, we can see that

as the magnitude of the mutation parameter increases, the error for Structure increases. However,

for mStruct, there is no significant effect of the mutation parameter on the error. mStruct also

performs better than Structure over all the data points.

Recovering the contribution of population 1 to the ancestry of an individual: We used
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(a) Recovery of population 1 ancestry in the resul-

tant population.

(b) Recovery of population 1 ancestry in each ad-

mixed indvidual

Figure 3.3: Recovery of individual and population level admixture parameters.

the same data from the earlier experiment for this analysis. In this case, we used the mean

of the absolute difference between the true and inferred values of the proportion of ancestry of

individuals in population 1 as the measure of error. Figure 3.3(b) show the results of this analysis.

The results follow a similar trend as in the earlier experiment. For Structure, an increase in

the mutation parameter causes as increase in the error, but there is no significant effect of the

mutation parameter on the error for mStruct. We show the results for a particular data set with

mutation parameter 4Nµ = 32 in Figure 3.4. Figure 3.4(a) shows the true ancestry proportion

map for the sample. It shows that around half the individuals are admixed. Figure 3.4(b) and

3.4(c) show the ancestry proportion maps inferred by Structure and mStruct respectively. We can

see that the ancestry structure recovered by mStruct is very close to the true ancestry proportions.

The recovery of ancestry proportions by Structure is not very close to the truth in this case.

Model selection - choice of K: As in Structure, our model is defined for a particular value

of K, the number of ancestral populations. In general, it is not clear what value of K must be

chosen to interpret the data appropriately. We performed an experiment on the simulated data to

determine the most appropriate number of ancestral populations for the data. In this case, only a

single data set was used with the mutation parameter 4Nµ set to 16. For each value of K from
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1 to 5, we performed 10 runs of mStruct on the data and choose the run with the best likelihood

for model selection. To choose the best value of K, we used the BIC criterion [Schwarz, 1978]

(that we previously used to decide the optimal number of ancestral alleles at each locus). The

preferred model is the one which has the minimum value of BIC. Table 3.5.1 shows the BIC

values for the values of K. From the table, we can see that the model with K = 2 ancestral

populations is correctly chosen as the optimal model.

K BIC

1 6.91 ×104

2 6.87× 104

3 6.99 ×104

4 7.12 ×104

5 7.26 ×104

Table 3.1: Model selection for simulated data: BIC values for K from 1 to 5. The model having the smallest BIC

value (K = 2 in this case) is preferred.

3.5.2 Empirical Analysis of HGDP Datasets

The HGDP-CEPH cell line panel [Cann et al., 2002, Cavalli-Sforza, 2005] used in [Rosenberg

et al., 2002] contains genotype information from 1056 indviduals from 52 populations at 377

autosomal microsatellite loci, along with geographical and population labels. The HGDP SNP

data [Conrad et al., 2006] contains the SNPs genotypes at 2834 loci of 927 unrelated individuals

that overlap with the HGDP-CEPH data. To make results for both types of data comparable, we

chose the set of only those individuals present in both datasets. As in [Rosenberg et al., 2002],

the choice of the total number of ancestral populations can be left to the user; we tried K ranging

from 2 to 5, and we applied BIC to decide the Bayes optimal number of ancestral populations

within this range to be K = 4. Below, we present the structural analysis under four ancestral
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populations.

Structural map from the HGDP-CEPH data

We compare the structural maps inferred from the microsatellite data using mStruct and Struc-

ture in Figure 3.5. The most obvious difference between the maps produced by both programs

is the degree of admixing that the individuals in the program are assigned. Structure assigns

each geographical population to a distinct ancestral allele frequency profile. This assignment is

very useful for partitioning individuals into separate clusters. However, in doing so, it is unable

to capture the genetic structural relationships between individuals. It offers no insights into the

admixture history of populations, as mStruct does. In contrast, the structure map produced by

mStruct from microsatellite data suggests that all populations share a common ancestral popula-

tion as a unique extra component (represented by the magenta color in Figure 3.5) that charac-

terizes their particular regional genotypes. A structure map, characterized thus by an underlying

commonality in a part of the genetic ancestry, together with regional differences, clearly reveals

the expansion of humans out of Africa [Hammer et al., 1998, Templeton, 2002]. It is in this

regard that Structure and mStruct are significantly different.

Both structure maps show that individuals having a similar population label (at regional,

national or continental levels) have similar admixture proportions. The similarity is least if two

individuals come from different continents, and most if two individuals are from the same region.

We can therefore represent each regional population by the average of the admixture proportions

of all individuals from the region. We computed the Euclidean distance between all pairs of

the 52 regional populations and constructed a neighbour-joining tree from the distance matrices.

Figures 3.6(a), 3.6(b) show the neighbour-joining trees constructed for Structure and mStruct.

It is important to note that the distance measure used is not known to be a true measure of

evolutionary distance. These trees have been constructed from a single instance of the distance

matrix and have not been bootstrapped. Despite this, we can see that the mStruct tree agrees

40



quite well with previously constructed phylogenetic trees for human populations [Bowcock et al.,

1994]. The phylogeny from mStruct appear to be more interpretable than that from Structure.

In Figure 3.6(b), we can see a tighter cluster for the African populations and that American

populations diverged after Asian and European diverged, rather than before.

Analysis of the mutation spectrums

Now we report a preliminary analysis of the evolutionary dynamics reflected by the estimated

mutation spectrums of different ancestral populations (denoted “am-spectrum”), and of different

modern geographical populations (denoted “gm-spectrum”), which is not possible by Structure.

For the am-spectrum (Figure 3.7(a)), we compute the mean mutation rates over all loci and

founding alleles for each ancestral population as estimated by mStruct. We estimate the gm-

spectrum (Figure 3.7(b)) as follows: for every individual, a mutation parameter is computed

as the per-locus number of observed alleles that are attributed to mutations, weighted by the

mutation parameters corresponding to the ancestral allele chosen for that locus. This can be

computed by observing the population-indicator (Z) and the allele-indicator (C) for each locus

of the individual. We then compute the population mutation parameters by averaging mutation

parameters of all individuals having the same geographical label.

As shown in the gm-spectrum in Figure 3.7(b), the mutation parameters for African popula-

tions are indeed higher than those of other modern populations. Since the mutation parameter

reflects effects of mutation rate and population age, this indicates that they diverged earlier, a

common hypothesis of human migration. Other trends in the gm-spectrums also reveal interest-

ing insights. We computed the empirical mutation parameters for each of the 52 subpopulations

present in the data as we did for each continent. Since each population has an associated latitude

and longitude, this allows us to set up a function that maps a geographical latitude/longitude co-

ordinate to an empirical mutation parameter. Figure 3.8 shows the contour plot of this function.

The mutation parameter δ in our model is a measure of variability (a combination of per genera-
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tion mutation rate and age of the population). Thus, the contour plots shows us how the amount

of variability changes across the world. We can see that the maximum variation is in Africa.

There is a decrease in variation as we move away from central Africa. We can also see that the

South American tribes have the least amount of accumulated variation. This is in qualitative

agreement with the ages of different populations as predicted by the “Out of Africa” hypothesis

of human migration.

Structural map from the HGDP SNP data

Figure 3.9 shows the structural maps produced by mStruct and Structure for the HGDP SNP data.

We can see that the two population maps are nearly identical, which signals an inconsistency

between the microsatellite and SNP mStruct results for the human data. However, there are some

important caveats that must be taken into consideration. In our analysis, we consider a simplistic

bernoulli-like model of SNP mutation. While richer mutation models could potentially reduce

this difficulty, there is a more significant difficulty with the analysis of SNP data. The bi-allelic

nature of SNP markers makes it difficult to draw any inferences about the correct number of

ancestral alleles at a locus. For microsatellites, this problem is considerably easier due to their

multi-allelic nature. As a result, mStruct is unable to obtain more information about evolutionary

history from SNP markers than Structure does. As we have explained earlier, mStruct is an

extension of Structure that finds signals about mutations present in the data. So in the event that

mStruct is unable to find any extra mutation information from the data, it is quite reasonable to

expect its output to be nearly the same as that of Structure.

Model selection

As with all probabilistic models, we face a tradeoff between model complexity and the log-

likelihood value that the model achieves. In our case, complexity is controlled by the number

of ancestral populations we pick, K. Unlike non-parametric or infinite dimensional models
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(Dirichlet processes etc.), for models of fixed dimension, it is not clear in general as to what

value of K gives us the best balance between model complexity and log-likelihood. In such

cases, different information criteria are often used to determine the optimal model complexity.

To determine what number of ancestral populations fit the HGDP SNP and microsatellite data

best, we computed BIC scores for K=2 to K=5 for both kinds of data separately. The results are

shown in Figure 3.10. From the BIC curves for both SNP and microsatellite data, we can see that

the curves suggest K=4 as the best fit for the data.

3.6 Discussion

The task of estimating the genetic contributions of ancestral populations, i.e., structural map es-

timation, in each modern individual, is an important problem in population genetics. Due to the

relatively high rates of mutation in markers such as microsatellites and SNPs, multilocus geno-

type data usually harbor a large amount of variation, which allows differentiation even between

populations that have close evolutionary relationships. However, to our knowledge, none of the

existing methods is able to take advantage of this property to compare how marker mutation rates

vary with population and locus, while at the same time exploiting such information for popula-

tion structural estimation. Traditionally, population structure estimation and mutation spectrum

estimation have been performed as separate tasks.

We have developed mStruct, which allows estimation of genetic contributions of ancestral

populations in each modern individual in light of both population admixture and allele mutation.

The variational inference algorithm that we developed allows tractable approximate inference on

the model. The ancestral proportions of each individual enable representing population structure

in a way that is both visually easy to interpret, as well as amenable to further computational

analysis.

The statistical modeling differences between mStruct and Structure provide an interesting

insight into the possible reasons which lead to mStruct inferring higher levels of admixture than
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Structure. In Structure’s representation of population, every microsatellite allele is considered

to be a separate element of the population, even though they might be very similar. In the

inheritance model representation, such alleles are considered to be possibly derived from a single

ancestral allele. This can lead to detection of extra similarity among individuals possessing these

alleles. This is probably the main reason that the inferred levels of admixture are higher in

mStruct than Structure.

Another parameter that would also affect inferred levels of admixture is the δ parameter

which determines the variance of the mutation distributions. Higher values of δ (tending to 1)

lead to significantly higher levels of inferred admixture. If a strong prior is not used, the δ values

tend towards 1 in the initial few steps of the variational EM algorithm. This seems to happen due

to the initial imprecise assignments for the z and c indicator variables. However, the region of

high δ values is a region of low log-likelihood in the parameter space and the EM quickly finds a

local optimum which is undesirable due to the low log-likelihood of that region of the parameter

space.

In conjunction with geographical location, the inferred ancestry proportions could be used to

detect migrations, sub-populations etc. Moreover, the ability to estimate population and locus

specific mutation parameters also allows us to substantiate evolutionary dynamics claims based

on high/low mutation parameters in certain geographical population, or on high/low mutation

parameters at certain loci in the genome. While the estimates of mutation parameters that mStruct

provides are not on an absolute scale, the comparison of their relative magnitudes is certainly

informative.

The mutation model we currently use is a computationally simple one. However, it lacks

the ability to distinguish between the effects of per generation mutation rate and the age of the

population. Under the Stepwise Mutation Model, we can model inheritance by using a more

complex but powerful model using Bessel functions [Felsenstein and Others, 2004]. This form

would allow separate inference of the per generation mutation rate as well as the age of the

44



population.

As of now, there remain a number of possible extensions to the methodology we presented

so far. It would be instructive to see the impact of allowing linked loci as in [Falush et al., 2003].

We have not yet addressed the issue of the most suitable choice of mutation process, but instead

have chosen one that is reasonable and computationally tractable. It would also be interesting

to combine mStruct with the nonparametric Bayesian models based on the Dirichlet processes

as in programs such as Spectrum [Sohn and Xing, 2007] and Structurama [Huelsenbeck and

Andolfatto, 2007].

In summary, current population stratification methods such as Structure ignore the effects of

allele mutations, which are a significant factor in shaping allele diversity in microsatellites in

human populations. In doing so, they are restricted to clustering human genetic data rather than

being able to identify admixing of populations. Clustering is useful for population stratification,

but a more accurate representation of events such as genome variations might cast more light

on population evolutionary history. By incorporating the effect of allele mutations, the mStruct

approach developed in this paper represents such an attempt to gain more insight into the fine

structures of genetic admixing of populations and their divergence times.
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(a)

(b)

(c)

Figure 3.4: A comparison of the true and inferred ancestry proportions for a single example. (a) The true ancestry

proportions for the sample. (b) The ancestry proportions inferred by Structure. (c) The ancestry proportions inferred

by mStruct.
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Figure 3.5: Ancestry structure maps inferred from microsatellite portion of the HGDP dataset, using mStruct and

Structure with 4 ancestral population. The colors represent different ancestral populations.
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(a) Structure tree

(b) mStruct tree

Figure 3.6: Neighbour-joining trees constructed using mStruct and Structure for the 52 regional populations in the

HGDP microsatellite data
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(a) Am-spectrum (b) Gm-spectrum

Figure 3.7: Am-spectrum and Gm-spectrum inferred from microsatellite portion of the HGDP dataset, using mStruct

with 4 ancestral population. The colors represent different ancestral populations.

Figure 3.8: Contour map of the empirical mutation parameters over the world map
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Figure 3.9: Ancestry structure maps inferred from SNPs portion of the HGDP dataset, using mStruct and Structure

with 4 ancestral population.

Figure 3.10: Model selection with BIC score for the HGDP data with mStruct on SNP and microsatellite data
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Chapter 4

How many ancestral populations? A

nonparametric Bayesian approach

Clustering of genotype data is an important way of understanding similarities and differences

between populations. A summary of populations through clustering allows us to make inferences

about the evolutionary history of the populations. Many methods have been proposed to perform

clustering on multi-locus genotype data. However, most of these methods do not directly address

the question of how many clusters the data should be divided into and leave that choice to the

user.

We present StructHDP [Shringarpure et al., 2011], which is a method for automatically in-

ferring the number of clusters from genotype data in the presence of admixture. Our method is

an extension of two existing probabilistic clustering methods, Structure and Structurama. Using

a Hierarchical Dirichlet Process, we model the presence of admixture of an unknown number of

ancestral populations in a given sample of genotype data. We use a Gibbs sampler to perform

inference on the resulting model and infer the ancestry proportions and the number of clusters

that best explain the data.

To demonstrate our method, we simulated data from an island model using the neutral coa-

lescent. Comparing the results of StructHDP with Structurama shows the utility of combining
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HDPs with the Structure model. We used StructHDP to analyze a data set of 155 Taita thrush,

Turdus helleri, which has been previously analyzed using Structure and Structurama. StructHDP

correctly picks the optimal number of populations to cluster the data. The clustering based on

the inferred ancestry proportions also agrees with that inferred using Structure for the optimal

number of populations. We also analyzed data from 1048 individuals from the Human Genome

Diversity project from 53 world populations. We found that the clusters obtained correspond

with major geographical divisions of the world, which is in agreement with previous analyses of

the dataset.

4.1 Introduction

An important question that needs to be addressed when solving the problem of population strat-

ification is deciding how many populations are required to best explain the variation observed

in a given set of individuals. The Bayesian models described in Sections 2.3 and 3.2 require

the user to specify the number of clusters (ancestral populations) into which the individuals are

divided. However, this might not always be possible or desirable, in the absence of prior knowl-

edge about the evolutionary history of the sample. A common solution to this problem is to

use fixed-dimensionality models in combination with an information criterion [Akaike, 1974,

Gao et al., 2011, Schwarz, 1978] to decide the number of ancestral populations. To address this

problem, an extension of Structure was developed by Pella and Masuda [2006] using Dirichlet

processes [Ferguson, 1973]. Based on their method, Huelsenbeck and Andolfatto [2007] de-

veloped Structurama. Structurama automatically infers the number of population clusters into

which a given data set should be divided provided individuals only belong to a single population.

Coalescent simulations by Huelsenbeck and Andolfatto [2007] using island models show that

inference of the number of populations is accurate when migration rates are low and differenti-

ation between populations is high. However, the assumption that each individual only belongs

to a single ancestral population implies that Structurama is unable to model admixture between
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ancestral populations.

We develop StructHDP, a method for automatically inferring the number of population clus-

ters present in a group of individuals, while accounting for admixture between ancestral popula-

tions. Using the Hierarchical Dirichlet Process framework for clustering developed by Teh et al.

[2005], we extend the Structure model so that the number of populations is inferred by the model

and need not be specified by the user. This work is also an extension of the Dirichlet process

model developed by Pella and Masuda [2006] which has been implemented in Structurama.

We simulated data from an island model using the neutral coalescent to test the performance

of our method at recovering the true number of ancestral populations. Comparing the results of

StructHDP with Structurama shows the utility of combining HDPs with the Structure model. We

used StructHDP to analyze a set of 155 Taita thrush individuals, Turdus helleri. This dataset has

been previously analyzed using Structure and Structurama. We found that StructHDP correctly

identifies the optimal number of populations to cluster the data. The clustering enforced by

the inferred ancestry proportions for individuals also agrees with that inferred using Structure

with the appropriate choice of the number of populations K. We also analyzed a set of 1048

individuals from the Human Genome Diversity Project (HGDP) using StructHDP. We found

that the clusters inferred coincide with the major geographical divisions present in the data.

We also observed that the distance between populations (based on their cluster memberships)

is strongly positively correlated with Fst between populations, which suggests that the inferred

cluster memberships capture the genetic variation present in the data well.

4.2 Related work

4.3 Approach

We approach the problem of finding the number of ancestral populations by extending the ad-

mixture model of Structure to a setting where there are potentially infinite ancestral population
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components in the mixture. Performing inference then allows us to examine the number of an-

cestral populations that have a non-zero contribution to the set of individuals under consideration.

We use the Hierarchical Dirichlet Process framework [Teh et al., 2005] to model the mixture of

infinite ancestral populations.

Consider the problem of clustering the markers within a single individual based on their

population of origin. We can assume that the number of populations that contribute to the single

individual’s genome is unknown and is a random variable. The Dirichlet process (DP) [Ferguson,

1973] was proposed to solve a problem of this nature, where objects (genetic markers) belong to

one of a potentially infinite number of mixture components (ancestral populations). In the case

of multiple individuals, we can posit multiple DPs, one for each individual, that will address the

problem of not knowing the optimal number of populations. We also require that the ancestral

populations inferred for the DPs be the same across all the individuals. Mathematically, this is

analogous to ensuring that mixture components are shared across DPs.

The Hierarchical Dirichlet process (HDP) is a framework for clustering of observations when

the observations are present in groups. Each group can be modeled using a finite mixture model

or a Dirichlet process. The mixture models or DPs across groups are linked by sharing mixture

components. It is useful to think of each group as having its own Dirichlet processes, with the

processes linked to each other by the parameters of the HDP. StructHDP is based on the Hier-

archical Dirichlet process described by Teh et al. [2005]. In the following section, we provide a

description and mathematical representation of the HDP model.

4.4 Model

A commonly used analogy for representing HDPs is the Chinese Restaurant Franchise (CRF).

This is an extension of the representation of the Dirichlet process (DP) as a Chinese restau-

rant with customers. The DP representation and its application to Structurama are described in

more detail by Huelsenbeck and Andolfatto [2007]. A CRF comprises of a number of Chinese
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restaurants which share a common (possibly infinite) menu of dishes. In a CRF, each restaurant

corresponds to a group of observations, and the customers are observations. The dishes served

in the restaurant are the mixture components, and sharing of mixture components across groups

corresponds to sharing of dishes across restaurants. In the CRF metaphor, a new customer (ob-

servation) arrives at the restaurant corresponding to its group. The customer chooses a previous

occupied table in the restaurant with a probability proportional to the number of customers al-

ready at the table, or, with a constant probability, chooses a new table. Every table serves a dish

from the possible set of dishes, and every customer at the table is assigned that particular dish,

i.e, the observation is assigned the particular mixture component that is associated with the table.

All observations that are assigned to a particular table are considered to originate from the same

mixture component, clustering the observations within the group. The same mixture component

might also be shared across multiple tables within a group. The method of choosing a table for

a new customer is similar to a “rich gets richer” model which is regulated by the probability of

starting a new table. This is the property of the HDP that is responsible for its clustering behavior.

This analogy can be easily extended to the case of genetic data, with every individual con-

sidered to be a separate group corresponding to a restaurant. The loci within an individual are

the customers in the restaurant, and the ancestral populations are the mixture components or the

dishes in the CRF. A minor subtlety that arises in this case is that the set of possible alleles at

each locus might be different, which needs to be accounted for in the inference process. This can

be accomplished easily with some minor additional bookkeeping without changing the inference

process significantly.

Consider a dataset having N individuals genotyped at M loci. The observed allele for indi-

vidual j at locus i is denoted by xji. For ease of representation, we will ignore the diploid nature

of genotype data. In implementation, we shall allow our method to handle data of any fixed

ploidy. The HDP can then be used to generate the allele xji for the jth individual at the ith locus
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as follows:

G0|γ,Hi ∼ DP (γ,Hi)

Gj|α0, G0 ∼ DP (α0, G0)

ζji|Gj ∼ Gj

xji|ζji ∼ F(ζji)

Here, Hi is the base distribution over alleles at locus i, commonly a Dirichlet distribution. γ

and α0 are parameters of the HDP that control how fast new populations are added to the model.

G0 is an intermediate probability distribution over alleles at locus i and Gj is a distribution

specific to individual j. The individual-specific distributions Gj are connected to one another

through G0 and α0, ensuring the sharing of ancestral populations across individuals. G0 and Gj

are both generated by Dirichlet processes (DP) that use γ and α0 as parameters. The ζs denotes

the mixture components. xji is a sample from a distribution F (ζji), a multinomial distribution

over alleles in our case.

For modeling purposes, it is helpful to modify the representation of the HDP so that the

generative process looks as follows.

β|γ ∼ GEM(γ) (4.1)

πj|α0, β ∼ DP(α0, β) (4.2)

φik|Hi ∼ Hi (4.3)

zji|θj ∼ Multinomial(1, θj) (4.4)

xji|zji, (φik)∞k=1 ∼ F(φzji) (4.5)

where we say that β = (βk)
∞
k=1 ∼ GEM(γ) if it satisfies the following construction:

β′k|γ ∼ Beta(1, γ) (4.6)

βk = β′k

k−1∏
l=1

(1− β′l) (4.7)
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This construction ensures that
∑∞

k=1 βk = 1. The β thus represents the fractional contributions

of the potentially infinite populations to the given set of individuals.

In the HDP representation above, φik represents the allele frequencies of the kth popula-

tion at the ith locus. θj is a vector that denotes the ancestry proportions (contributions from all

populations) for individual j, and its components sum to 1. The indicator variable zji denotes

which population the observed allele xji at locus i originates from. We will use this notation for

representing the HDP model for our problem due to its similarity with the Structure generative

process. This representation also shows how the model can account for diploid individuals by

changing the step of sampling zji and xji to the following:

zji,1|θj ∼ Multinomial(1, θj)

zji,2|θj ∼ Multinomial(1, θj)

xji,1|zji,1, (φik)∞k=1 ∼ F(φzji,1)

xji,2|zji,2, (φik)∞k=1 ∼ F(φzji,2)

where xji,1 and xji,2 now represent the two alleles at locus i in individual j and zji,1 and zji,2 are

their respective population indicator variables. This allows the model to account for mixed an-

cestries at a single locus as well. For ease of representation, we will drop the subscript indicating

the ploidy in the analysis.

Figure 4.1 shows the graphical model representation of the StructHDP generative process.

In this graphical model representation, the nodes represent random variables which have been

described earlier. The edges denote dependencies between the random variables due to the sam-

pling steps in the generative process. The shaded nodes represent the random variables we ob-

serve, viz, the alleles observed at each locus.

To allow for more flexibility with the parameter settings, we impose priors on α0, γ and the

base distributions Hi. We assume that α0 and γ have Gamma priors with parameters (αa, αb)

and (γa, γb) respectively and that Hi has a symmetric Dirichlet distribution with parameter λ.

57



β θγ z
ji

x
ji

α
0

Φ
ik

H
i

j=1...N

i=1...M

i=1...M

k=1...∞
j

Figure 4.1: Graphical model representation of the generative process of StructHDP. Nodes represent random vari-

ables and edges indicate dependencies between random variables. The shaded circle indicates the observed alleles.

The dataset has N individuals, each genotyped at M loci. For ease of representation, we do not show the ploidy of

the individual in the graphical model.

α0 ∼ Gamma(αa, αb) (4.8)

γ ∼ Gamma(γa, γb) (4.9)

Hi ∼ Dir(λ) (4.10)

4.4.1 Inference

For performing inference on the model, we use Gibbs sampling, an MCMC sampling method,

described for the HDP by Teh et al. [2005]. For inference in the CRF representation of the HDP,

we create some bookkeeping variables m that keep count of the number of tables at the restaurant

and franchise levels.

Inference steps

Using all the variable updates, the inference process can be described as:

1. Set the values for the prior parameters αa, αb, γa, γb, λ.
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2. Start with random values for all other variables.

3. Sample z variables given all other variables.

4. Sample m variables given all other variables, using updated value of z.

5. Sample β given all other variables, using updated values of z and m.

6. Sample α0 using updated values of z, m and β.

7. Sample γ using updated values of all other variables.

8. Repeat 3-7 until convergence.

The Gibbs sampling update distributions can be derived following the methodology in Teh et al.

[2005]. We describe the details of the Gibbs sampling update distributions and their derivations

below.

The population allele frequencies at locus i are assumed to be {φi1, · · · , φiK} where K can

be infinity and only a finite number of the populations are used in the dataset. The prior over the

allele frequencies φik is Hi. In the restaurant analogy, we use tji to denote the table for customer

xji, njtk to denote the number of customers in restaurant j at table t eating dish k, while mjk

denotes the number of tables in restaurant j serving dish k. Marginal counts are represented with

dots. So njt. denotes the number of customers in restaurant j at table t, and m.. represents the

total number of tables in the franchise.

Let x = (xji : all j, i),xjt = (xji : all i with tji = t), t = (tji : all j, i), z = (zji :

all j, i),m = (mjk : all j, k) . When a superscript is used with a set of variables, e.g., x−ji or

n−jijt. , this means that the variable corresponding to the index is removed from the set. In the

example, x−ji = x/xji and n−jijt. is the number of observations in group j associated with table t

leaving out observation xji.

An important quantity we will use often in sampling is the conditional density of xji under

mixture component k given all data except xji. This can be computed as

f
−xji
k (xji) =

∫
f(xji|φik)

∏
j′i′ 6=ji,zj′i′=k

f(xj′i′|φik)h(φik)dφik∫ ∏
j′i′ 6=ji,zj′i′=k

f(xj′i′|φik)h(φik)dφik
(4.11)
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Here, we are marginalizing out the effects of the uncertainty in the allele frequencies φik. For

our purposes, f(.|θ) is a multinomial distribution and hi(.) is a symmetric Dirichlet distribution

with parameters λ, on the simplex of dimension P (where P is the number of alleles observed

at locus i). Therefore the numerator and denominator are the normalization constants of the

posterior Dirichlet distributions.

At locus i, we can represent the observed alleles as {a1, · · · , aP}. Then we have that

f(xji|φik) =
∏
p

φ
I[xji=ap]
ik,p (4.12)

Using this in Equation 4.11 gives us,

f
−xji
k (xji) =

B(h1 +
∑

j′i′,zj′i′=k
I[xj′i′ = a1], · · · )

B(h1 +
∑

j′i′ 6=ji,zj′i′=k
I[xj′i′ = a1], · · · )

(4.13)

where B(.) is the multinomial beta function, which can be written in terms of the Gamma

function:

B(α1, · · · , αP ) =

∏P
p=1 Γ(αp)

Γ(
∑P

p=1 αp)

Sampling for the population indicator variables z is given by

p(zji = k|z−ji,m, β) = (njij.k + α0βk)f
−xji
k (xji)

, if k is previously used

= α0βufknew(xji), if k is new

To sample m, we use a result derived in [Teh et al., 2005],

p(mjk = m|z,m−jk, β) =
Γ(α0βk)

Γ(α0βk + nj.k)
s(nj.k,m)(α0βk)

m

where s(n,m) are unsigned Stirling numbers of the first kind.

Sampling for β is given by

(β1, · · · , βk, βu)|m,k ∼ Dir(m.1, · · · ,m.K , γ)
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Concentration parameter updates

For updating the concentration parameter α0, we use the method described by [Teh et al., 2005],

using a sampling scheme of auxiliary variables. For N individuals, define auxiliary variables,

w = (wj)
N
j=1 and s = (sj)

N
j=1, where each wj ∈ [0, 1] and each sj is a binary variable in {0, 1}.

Then we have the following sampling scheme

q(α0|w, s) ∼ Gamma

(
a+m.. + 1−

∑
j

sj, b+ 1−
∑
j

log (wj)

)
q(wj|α0) ∼ Beta (α0 + 1, nj..)

q(sj|α0) ∼ Binomial(1, nj../α0/(1 + nj../α0))

To update α0, we iterate these three steps until the value of α0 converges. Convergence is usually

quick and takes about 20-30 iterations.

For updating γ we use the method described in Escobar and West [1995], using an auxiliary

variable η. We assume that γ has a gamma prior Gamma(a, b).

We have

q(γ|η,K) ∼ πηGamma(a+ k, 1/(b− log (η)))

+(1− πη)Gamma(a+K − 1, 1/(b− log (η)))

where the mixture weights are given by

πη
1− πη

=
a+ k − 1

m..(b− log (η))

Secondly, we have

q(η|γ,K) ∼ Beta(γ + 1,m..)

Alternating these updates until the value of γ converges provides a method for updating γ.

4.4.2 Other inference details

Like all MCMC methods, the sampler is run for a large number of iterations, with some initial

iterations discarded as burn-in. Samples from the posterior can then be used to estimate the
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ancestry proportions πj for each individual. The posterior distribution for the individual ancestry

proportions πj can be shown to be a Dirichlet distribution.

θj ∼ Dir

(
· · · , α0βk +

M∑
i=1

I[zji = k], · · ·

)
(4.14)

where I[.] denotes an indicator function. If the number of populations remains constant across

iterations in the sampling (as is often seen to happen in our experiments after a large number of

iterations), this estimate can be averaged over multiple samples to get a more accurate estimate

of the individual ancestry proportions.

As with the Gibbs sampler used in Structure, our method could have problems with the iden-

tifiability of clusters, if label switching for the clusters were a frequent occurrence. In practice,

we find that label switching is infrequent, and can avoided by the use of the restricted growth

function (RGF) notation of Stanton and White [1986] in summarizing MCMC results.

4.5 Results

4.5.1 Coalescent simulation data

We performed coalescent simulations based on an island model similar to Huelsenbeck and An-

dolfatto [2007]. We used the program ms [Hudson, 2002] to simulate samples under a neutral

coalescent model. As an initial evaluation of the performance of StructHDP in recovering the

correct number of population clusters, we simulated data from a symmetric equilibrium island

model with 4 demes of equal size, with the mutation rate θ = 4Neµ = 0.5 and migration rate

M = 4Nem = {1, 2, 4}. In each case, 100 diploid individuals were sampled with an equal

number being sampled from each deme. 50 replicates were created for each parameter setting.

We analyzed the data using StructHDP, Structurama and Admixture. For StructHDP, the

priors for both concentration parameters were set to (0.5,0.5) and the parameter for the Dirichlet

distribution of H was set to 0.5. The StructHDP Gibbs sampler was run for 25,000 iterations,
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Method ↓ / Migration rate→ M=1 M = 2 M =4

StructHDP 0.10 0.01 0.15

Structurama 0.0 -0.21 -1.31

Admixture+AIC -1.8 -1.73 -1.65

Admixture+BIC -2.6 -2.78 -2.62

Admixture+CV 2.5 2.63 2.71

Table 4.1: Comparison of simulation results for StructHDP, Structurama and Admixture. 50 replicates, consisting

of 100 diploid individuals each, were sampled from a 4-deme symmetric island model, with θ = 0.5 and M =

{1, 2, 4}. The error in recovering the number of demes is shown, as computed by the error measure E(E(K|X)−

KT ).

with the first 12,500 iterations discarded as burn-in. To thin the Markov chain, samples were

taken every 25 iterations. We computed the expected value of the number of populations, K, us-

ing the sampled values of K from the Gibbs sampler. The expected value of K, E(K|X) can then

be compared against the true value of the number of demes, KT = 4, across multiple replicates,

to get an error measure that is given by E(E(K|X)−KT ) [Huelsenbeck and Andolfatto, 2007].

For Structurama, the experiments for each parameter setting were performed with different

priors on the expected number of populations in [Huelsenbeck and Andolfatto, 2007]. For com-

parison purposes, we chose the best result, i.e, the prior setting that gave the least error. Model

selection with Admixture can be done in three different ways by choosing either the AIC, BIC or

the cross-validation error as the measure of model fit. We present results for all three measures.

Table 4.1 shows the results of the simulation. We can see that the error in recovering K is

much smaller for StructHDP than for Structurama and for Admixture, except when the migration

rate is small. The underlying assumption of the Dirichlet process model of Structurama is that

there is no admixture and individuals only belong to a single ancestral population. As a result, in a

simulation setting with less admixture due to migration, the number of recovered populations for

Structurama is almost perfect. As the amount of admixture increases, the error in the number of

63



recovered populations increases. On the other hand, StructHDP explicitly accounts for admixture

in the model. Therefore it recovers the true number of demes in the island model with low

error for all parameter values. In terms of Fst, we can say that as the Fst between the demes

decreases (as migration increases), the accuracy of Structurama drops while that of StructHDP

is unaffected.

Admixture performs worse than both StructHDP and Structurama in recovering the true num-

ber of populations. This may be due to the small number of markers that are used in the simula-

tion study.

4.5.2 Real data analysis

Taita thrush data:

We used our method to analyze a data set of N = 155 Taita thrush, Turdus helleri [Galbusera

et al., 2000]. Each individual was genotyped at M = 7 microsatellite loci. Individuals were

sampled at four locations in southeast Kenya [Chawia (17 individuals), Ngangao (54), Mbololo

(80), and Yale (4)]. The thrush data were previously analyzed in [Huelsenbeck and Andolfatto,

2007, Pritchard et al., 2000a] so we use it to verify the correctness of StructHDP.

We ran StructHDP for 25,000 iterations, with the first 12,500 iterations as burn-in. Samples

were taken every 25 iterations to thin the Markov chain. The priors for both concentration pa-

rameters were set to (0.5,0.5) and the parameter for the Dirichlet distribution of H was set to

0.5.

We find that our method converges to K=3 populations in a few thousand iterations. The

posterior distribution for K is shown in Figure 4.2. From the posterior, we can see that K = 3

is the most likely value for K. Figure 4.3 shows a single sample for the ancestry proportions of

the thrush data. The clusters agree with geographical labels well except for a few individuals.

We also see that the 4 Yale individuals fall into the same cluster as the Ngangao individuals. All

of these findings agree with those of Pritchard et al. [2000a] when Structure is initialized with
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Figure 4.2: Posterior distribution for number of populations, Pr(K|X) for the thrush data.

Figure 4.3: A single sample of the ancestry proportions for the thrush data. The black lines separate the individuals

according to their geographic labels. The analysis did not use any geographical information.

K = 3 clusters. Figure 4.4 shows the results of Structure analysis of the thrush data with K = 3.

In their analysis, Pritchard et al. also found that K = 3 explains the data best. Their conclusion

was based on an ad hoc approximation to Pr(K|X), the posterior likelihood of K given the data

X, while StructHDP automatically infers this from the data.

Chawia Mbololo Ngangao Yale

Figure 4.4: The ancestry proportions for the thrush data from a single Structure run for K=3.
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Figure 4.5: Posterior distribution for number of populations, Pr(K|X) for the HGDP data.

Human Genome Diversity Project:

The Human Genome Diversity Project dataset we analyze consists of 1048 individuals from

53 world populations genotyped at 783 microsatellite loci. Along with genotype information,

the individuals are also labeled with the geographical divisions to which they belong. Using

Structure, Rosenberg et al. [2002] have previously analyzed the genotype data and found that the

population clusters correspond to major geographical divisions of the world. We used StructHDP

to reanalyze this data (without making use of the geographical information). The sampler was

run for 20,000 iterations with the first 10,000 iterations discarded as burn-in. Samples were taken

every 25 iterations to thin the Markov chain.

To determine the optimal number of ancestral populations, we examined the posterior dis-

tribution of the number of populations (K). Figure 4.5 shows the posterior distribution. We find

the posterior distribution has a single mode at K = 4 and non-zero probability mass for values

of K up to 8. For further analyses, we use the maximum-likelihood sample from the MCMC

sampling, which has 4 ancestral population components.

The contributions of the four ancestral populations to an individual’s genome can be repre-
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Figure 4.6: The ancestry proportions for the 1048 individuals from the Human Genome Diversity Project plotted in

3-dimensional space. Each individual is represented by a small sphere and the color of the sphere depends on the

continental division the individual belongs to. Different colors correspond to different continental divisions. The

geographical divisions are indicated by the labels on top of the graph.

sented using a 4-dimensional vector whose components sum to 1. All these vectors (referred to

as ancestry proportions) lie within a tetrahedron in 3-dimensional space. Each of the four ver-

tices of the tetrahedron represents an ancestral population. To visualize the clustering, we plotted

the ancestry proportions for the 1048 individuals in 3 dimensions along with the tetrahedron in

which the vectors lie. In this representation, the distance of a vector from the vertices of the

tetrahedron indicates the amount of admixture present in an individual’s genome. The further

away from a vertex the vector is (and the closer it is to the center of the tetrahedron), the more

the admixture present in the individual’s genome.

Figure 4.6 shows the resulting plot for the 1048 individuals in the HGDP dataset. In the plot,

each individual is represented by a small sphere. For ease of interpretation, the individual spheres

are colored based on the geographical division they belong to. In the populations we examine,

67



1 29 62 95 132 174 216 258 300 342 384 426 468 510 552 594 636 678 720 762 804 846 888 930 972 1019

0.
0

0.
4

0.
8

1.
2

AFRICA AMERICA CENTRAL_SOUTH_ASIA EAST_ASIA EUROPE MIDDLE_EAST OCEANIA

Figure 4.7: The ancestry proportions for the 1048 individuals from the Human Genome Diversity Project inferred

by StructHDP. Each thin line denotes the ancestry proportions for a single individual. Different colors correspond

to different ancestral populations. Dark black lines separate individuals from different major geographical divisions.

The geographical divisions are indicated the labels at the top of the graph.

the divisions are Africa, the Americas, Central and South Asia, East Asia, Europe, Middle East

and Oceania. These are represented by seven different colors. From the figure, we can see that

individuals from a single continent cluster together in the same region of the tetrahedron. Some

individual genomes are derived from a single ancestral population and lie at the vertices of the

tetrahedron. Some other individuals, particularly those belonging to the Middle Eastern, Central

Asian and South Asian populations, show a lot of admixture.

To analyze these results further, we plotted the ancestry proportions of the 1048 individuals

as a bar graph, where every individual is represented by a thin bar with 4 components which sum

to 1. Figure 4.7 shows the resulting bar graph.We can see that the clusters obtained correspond

to the major geographical divisions of the world and the ancestral populations can be roughly

described as ancestral African (denoted by green color), ancestral American-East Asian (blue),

ancestral European (yellow) and ancestral Oceanian (red). From the ancestry proportions, we

can see that the modern East Asian populations and American populations are similar, with the

modern East Asian populations having a larger contribution from the ancestral population cor-

responding to Europe. Modern Asian populations also show some Oceanic ancestry (from the

ancestral population denoted by red color). Modern Central and South Asian populations show

an admixture of European and East Asian ancestral populations. The Middle Eastern populations

show contributions from the ancestral African population and the ancestral European population.
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Modern Oceanic populations are an admixture of an ancestral Oceanic population with an an-

cestral East Asian population. All of these observations are in agreement with previous analyses

of the data by Rosenberg et al. [2002] and other studies of regional populations. We should note

that the clusters inferred by StructHDP are not identical to the ones observed by Rosenberg et al.

[2002] for K = 4, who observe that East Asia separates out into a separate cluster for K = 4

while Oceania separates from the rest of the data only for values of K larger than 4.

To analyze the similarity and differences within and between continental divisions, we com-

puted the mean ancestry proportions for the 7 continental divisions by averaging the ancestry

proportions for all individuals belonging to each continental division. We then constructed a

distance matrix by computing the euclidean distance between the 4-dimensional vectors rep-

resenting each continental division. Figure 4.8 shows the resulting distance matrix. From the

figure, we can see that the distance matrix has a block structure. Modern American and East

Asian populations are similar to each other and show little separation. We also see that modern

European, Central-South Asian and Middle Eastern populations are close to each other. Within

these 3 divisions, we see that Europeans and Middle Eastern populations group together while

the Central-South Asians are further apart.

We hypothesized that if the inferred ancestry proportions capture the genetic variation be-

tween and across populations, then the pairwise Euclidean distance computed earlier should be

correlated with genetic distance. To test this hypothesis, we computed the pairwise Fst distance

between the 7 continental divisions of the data. To test for correlation between the pairwise

Euclidean distance matrix and the pairwise Fst distance matrix, we used a Mantel test [Mantel,

1967]. A Mantel test tests the alternate hypothesis of correlation between two matrices against

the null hypothesis of no correlation by permuting the rows and columns of one of the matrices

and observing the distribution of the correlation statistic. The Mantel test on the Euclidean and

Fst distance matrices shows that the correlation between the two distance matrices is 0.57 (P-

value = 0.0025 with 10,000 replicates). The distribution of the observed and simulated Mantel
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Figure 4.8: A matrix representing the distances between the mean ancestry proportions of the 7 major continental

divisions of the HGDP. Red color indicates less distance while blue color indicates more distance.

correlation statistic is shown in Figure 4.9. Thus, we can see that the Euclidean distance and Fst

distance are strongly positively correlated, which supports the inferred population structure.

To compare our results on the HGDP data with other methods, we analyzed the data using

Structurama. However, due to computational reasons, we were unable to run Structurama on

the full data at optimal settings. Therefore we analyzed a subset of the data that included only

100 loci per individual. We found that the posterior distribution of K inferred by Structurama

has non-zero mass only at K = 5. Figure 4.10 shows the inferred ancestry proportions based on

the mean partition from Structurama. We can see that Structurama also clusters the European,

Middle Eastern and Central South Asian populations into a single cluster. However, since it

does not allow partial membership, the individuals in different clusters have zero similarity. It is

therefore unable to model the partial similarity between populations from different geographical

divisions, for example, the Central Asian populations and European populations.
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Figure 4.9: The distribution of the Mantel correlation statistic for the pairwise Euclidean distance matrix and the

pairwise Fst distance matrix. The stem indicates the observed value of the statistic. The result is significant, with

the associated P-value=0.0025

4.6 Discussion

We have presented StructHDP, a method for automatically inferring the number of population

clusters present in a group of individuals while accounting for admixture between populations.

At the same time, it also infers individual ancestry estimates under a Structure-like model. We

demonstrated the effectiveness of our method on data simulated from an island model. We also

analyzed the Taita thrush dataset and demonstrated that StructHDP chooses the number of clus-

ters that best explain the data. Our analysis of the HGDP dataset shows that our method is

able to cluster populations even when the individuals in the dataset are admixed. The ancestry

proportions inferred for populations can be used to compute a distance measure between popula-

tions. We found that the Euclidean distance between populations has a strong positive correlation

with the Fst distance between populations. The ancestry proportions therefore provide a useful

low-dimensional representation of populations.

Our method uses a Hierarchical Dirichlet process to model the admixture of an unknown

number of ancestral populations present in individual genomes in a given dataset. The HDP
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Figure 4.10: The ancestry proportions for the 1048 individuals from the Human Genome Diversity Project inferred

by Structurama. Each thin line denotes the ancestry proportions for a single individual. Different colors correspond

to different ancestral populations. Dark black lines separate individuals from different major geographical divisions.

The geographical divisions are indicated the labels on top of the graph.

framework allows us to impose a Bayesian prior on the number of populations. We use an

MCMC sampling algorithm, Gibbs sampling, to estimate the model parameters. The number

of ancestral populations that best explain the data is one of the parameters of our model. The

collapsed Gibbs sampler we implemented according to Teh et al. [2005] marginalizes the un-

certainty in the population allele frequencies, thus eliminating a possible source of error in the

inference. Our experiments suggest that the HDP is not sensitive to the priors on the parameters

α0 and γ since we sample them in the algorithm. The results are more sensitive to the choice

of λ for the base distributions. A large value of λ tends to produce populations with uniform

(high-entropy) allele frequency distributions while a small value of λ produces populations with

allele frequency distributions highly skewed in favor of very few alleles (low-entropy).

The model as described here can handle both SNP and microsatellite markers. However, one

of the limitations of our method is the computational time required for the Gibbs sampling. This

means that while our method can handle datasets of a few thousand markers and individuals, it

cannot be efficiently used on large datasets of hundreds of thousands of markers. However, as

our simulations show, even with few loci, the method performs well at recovering the number of

populations required to explain the data best. Teh et al. [2008] have described a way of imple-

menting collapsed variational inference for HDPs. Applying the variational inference algorithm

to StructHDP would improve its speed significantly.
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In this work, we have shown how the basic admixture model can be extended to allow au-

tomatic inference of the number of populations. Just as extensions to the Structure model that

account for recombination [Falush et al., 2003] and mutation [Shringarpure and Xing, 2009] have

been developed, we can also extend StructHDP to model other evolutionary processes.

Genetic datasets are often accompanied by geographical information about the genotyped

individuals. In some cases, there is a single geographical label associated with each individual,

while in others, there are labels at different resolutions (for example, region, nation, continent). It

has been shown that geographical distance correlates well with genetic distance between popula-

tions [Cavalli-Sforza et al., 1994, Novembre et al., 2008, Ramachandran et al., 2005]. Therefore

the amount of sharing of ancestral population components between modern population groups is

likely to depend on their geographical distance.

In its current form, StructHDP does not make use of geographical information in the infer-

ence process. Teh et al. [2005] describe how an HDP can be extended to include multiple levels

of hierarchy and be generalized to a tree-like hierarchy. Use of the hierarchical geographical

labels could allow us to impose a tree structure on the dataset that respects the geographical la-

bels and enforces a level of population-sharing among individuals that is consistent with their

geographical labels and distances.
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Chapter 5

Effect of sample selection bias on

population structure

Many public genotyping projects have made a large number of datasets available for population

genetics studies. However, practical constraints dictate that of a geographical/ethnic population,

only a small number of individuals are genotyped. The resulting data are therefore a sample from

the entire population. If the distribution of sample sizes is not representative of the populations

being sampled, the accuracy of population stratification analyses of the data could be affected.

We attempt to understand the effect of biased sampling on the accuracy of population struc-

ture analysis and individual ancestry recovery. We develop a mathematical framework to account

for sample selection bias in models of population structure. We examined two commonly used

methods for the analysis of such datasets - Admixture and Eigensoft. We found that the accuracy

of population structure recovery by these methods is affected to a large extent by the sample used

for analysis and how representative it is of the underlying populations. Using simulated and real

data from the Human Genome Diversity Project, we show that sample selection bias can affect

the results of population structure analyses. This is the first attempt at modeling sample selection

bias in unsupervised clustering settings.

We propose a correction for sample selection bias using auxiliary information about the sam-
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ple. We demonstrate that such a correction is effective in practice using simulated and real data.

5.1 Introduction

A large number of genetic datasets such as the HAPMAP [Gibbs, 2003], Human Genome Diver-

sity Project (HGDP) [Cavalli-Sforza, 2005] and others are available for the study of population

structure. Many datasets which sample a number of individuals from a specific region have also

been analyzed to look for evidence of population stratification. These datasets contain individ-

uals from many geographically and ethnically diverse populations. Due to practical constraints,

only a small number of individuals from each population are genotyped and the resulting data

form a sample from the entire population. This often means that the sample selected for analy-

sis is a biased sample from the underlying populations. This problem is also encountered when

multiple datasets are combined to detect population structure with better resolution.

We hypothesize that if the distribution of sample sizes is not representative of the populations

being sampled, the accuracy of population stratification analyses of the data could be affected.

This is because a fundamental assumption of many statistical learning algorithms is that the

sample available for analysis is representative of the entire population distribution. While most

algorithms are robust to minor violations of this assumption, sampling bias in the case of genetic

datasets may be too large for algorithms to accurately recover stratification.

Our results on simulated data show that accuracy of population stratification and recovery

of individual ancestry are affected to a large extent by the sampling bias in the data collection

process. Both likelihood-based methods and eigenanalysis show sensitivity to the effects of

sampling bias. We show that sample selection bias can affect population structure analysis of

the HGDP data, leading to potentially incorrect interpretations of evolutionary history. We also

propose a mathematical framework to model sample selection bias, and a correction that can

reduce its effects. We show how such a correction can be implemented and its effectiveness in

practice.
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5.2 Related work

In this section, we briefly examine the factors that affect the accuracy of population stratification

methods. We also examine related work on addressing the problem of sample selection bias in

various contexts and demonstrate that sample selection bias may exist in genetic datasets.

5.2.1 Factors affecting accuracy of stratification

A number of factors are known to affect the accuracy of population stratification and individual

ancestry recovery. In one of the early studies on model-based methods for population strati-

fication, Pritchard et al. [2000a] showed that the number of loci available for analysis had a

significant effect on the recovery of individual ancestry using Structure. Kaeuffer et al. [2007]

studied the effect of linkage disequilibrium on recovery of population structure using simulated

data. McVean [2009] suggested an interpretation of the eigenanalysis method that is the basis of

the Eigensoft method in terms of the coalescence times of individuals. They also explored many

scenarios in which eigenanalysis performs well or badly. In the following subsection, we discuss

the problem of sample selection bias and some related work on the effect of biased sampling on

population stratification accuracy.

5.2.2 Sample selection bias

A common assumption of many statistical algorithms is that the available sample is representative

of the underlying population. In reality, however, this assumption may not always be correct.

Sample selection bias is any systematic difference between the sample and the population. It

affects the internal validity of an analysis by leading to inaccurate estimation of relationships

between variables. It can also affect the external validity of an analysis since the results from a

biased sample may not generalize to the population.

The problem of sample selection bias was first widely studied in econometrics, where it ap-
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peared as a bias among survey responders. Heckman [1979] provided a method of addressing

this problem in linear regression models by estimating the probability of an individual being in-

cluded in the sample. Sample selection bias has also been addressed in statistics and machine

learning literature by attempts to understand its effect on various classifiers and how estimation

and prediction can be made correctly in the presence of sampling bias [Cortes et al., 2008, David-

son and Zadrozny, 2005, Vella, 1998, Zadrozny, 2004]. Zadrozny [2004] discusses the properties

of various learning algorithms and the effect of sample selection bias on their accuracy. It also

outlines a possible way of correcting for sample selection bias provided we know the nature

and structure of the bias. Sample selection bias is also studied in ecology when trying to model

species distributions using presence-only data [Phillips et al., 2009]. An alternative view of sam-

ple selection bias is provided by the statistics literature examining the problem of incorporating

sampling weights in models. Bertolet [2008] examines the problem of incorporating sampling

weights in mixed-membership models similar to the models we examine here.

To demonstrate that existing genetic datasets show evidence of sample selection bias, we use

data from the HGDP. It is important to note that in the absence of knowledge of the underlying

distribution over genotypes (which are very high-dimensional and therefore have very complex

distributions) or the underlying true ancestries (presumed to be low dimensional and therefore

easier to characterize), an exact quantification of sample selection bias is impossible in real

datasets. However, since it has been shown that geographic distance correlates well with genetic

distance [Ramachandran et al., 2005], we will use geographic labels as proxy for true ancestry

in this demonstration. The HGDP includes continent, nation and geographic region labels for

every individuals. We choose to use nation labels as the proxy for true ancestry here since the

data for the true population of nations is readily available. Figure 5.1 shows the plot of the

population of a country against the number of individuals from that country genotyped in the

HGDP. An unbiased sample according to population size should allow a good linear fit to the

graph. However, we observe that the linear fit is not good (R2 = 0.22). This suggests that the
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HGDP sample is biased. This bias could be due to constraints on the sampling, or by design (to

obtain more data about certain groups which are of more evolutionary interest).
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Figure 5.1: Plot of population vs number of individuals in the HGDP, by country. A line fit to the graph gives

r2 = 0.22. Four outliers, which are overrepresented or underrepresented in the sample compared to the expected

number by the linear fit, are labeled by their country names.

In population genetics, sample selection bias could be a serious problem since the estimates

of ancestry obtained from stratification analyses are often used to make inferences about the

evolutionary history of populations. The inferred individual ancestries are also used as input

in correcting for stratification in association studies (for instance, in Admixmap [Hoggart et al.,

2003]). Pritchard et al. [2000a] suggest that detecting stratification is difficult unless a significant

number of unmixed individuals from each ancestral (or pseudo-ancestral) population is present

in the sample. This observation was verified by Tang et al. [2005] through experiments on a

small number of simulated datasets. To our knowledge, there has been no systematic study of the

effect of sample selection bias on the accuracy of population structure recovery and individual

ancestry recovery.

We propose to study the effect of sample selection bias on the accuracy of population strati-

fication and individal ancestry recovery using both a model-based approach (Admixture) and an

eigenanalysis-based approach (Eigensoft). Since the analysis of McVean [2009] provides guide-

lines on the effect of sampling bias on stratification accuracy using eigenanalysis, we will focus
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our attention mainly on probabilistic models such as Admixture.

5.3 A mathematical framework for sample selection bias

We consider the problem of studying genotype data using a probabilistic model. For probabilistic

modeling, we would ordinarily assume that we have genotypes (g) drawn independently from a

distribution D (with domain G) over the feature space G. We assume that our points (g, u, s) are

drawn independently from a distribution D over G × U × S , where G is the space of genotypes,

U are some auxiliary features of the data that are not of direct interest for modeling and S is a

binary space. The variable s controls the selection of points (1 means the point is selected and is

observed in our sample, 0 means the point is not selected). Our observed sample contains only

points that have s = 1. We will refer to this as the selected sample and refer to its distribution as

D′.

We consider the setting where s is independent of g given u, that is P (s|g, u) = P (s|u).

This setting, where the selection is controlled by features different from the genotype we want

to model, arises frequently in real applications. In population genetics, whether an individual is

included in a genotyping study often depends on factors such as geographical location.

5.3.1 Sample selection bias correction

It is evident that if g is independent of u in the previous setting, then sample selection bias has

no effect and the probability of x in the selected sample is the same as probability of g under D

(asymptotically). If g and u are not independent, then we can write using Bayes rule:

P (g, u) =
P (s = 1)P (g, u|s = 1)

P (s = 1|g, u)
(5.1)

=
P (s = 1)P (g, u|s = 1)

P (s = 1|u)
(5.2)
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which can be rewritten as

PD(g, u) =
P (s = 1)PD′(g, u)

P (s = 1|u)
(5.3)

where D′ represents the distribution of the selected sample. Since the term P (s = 1) is constant

with respect to (g, u), we can say that

PD(g, u) =
c× PD′(g, u)

P (s = 1|u)
(5.4)

where c is a constant that need not be evaluated for tasks such as learning model parameters.

Therefore, to model PD(g, u) accurately (upto a multiplicative constant), we can follow the pro-

cedure below:

1. Compute PD′(g, u) using a model learned on the selected sample.

2. Apply a correction using the term P (s = 1|u). This can be done in two ways:

(a) If we know the selection procedure, we know P (s = 1|u) and can directly use it.

(b) If we don’t know the selection procedure, but we have access to large number of

points for which we know (u, s), but not g, we can estimate P (s = 1|u). In the

population genetics example, this would correspond to knowing the income or geo-

graphical region of an individual and whether or not they could have been included

in the study (genotyping individuals to find g for a large sample would be expensive).

However, this analysis, which can accurately correct for sample selection bias in the de-

scribed setting, requires a model of both g and u. In many applications, we are interested in

only modeling g and not u. For instance, while there is interest in modeling the distribution

of genotypes, distributions of income or geography are not of interest in genetics. Therefore,

we consider a similar analysis in the case where we only model P (g) and attempt to derive a

correction for sample selection bias.
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5.3.2 Approximate correction

We consider the case when we only want to model P (g). Proceeding in a similar way as before,

we can write:

P (g) =
P (s = 1)P (g|s = 1)

P (s = 1|g)
(5.5)

which can be restated as:

PD(g) =
c× PD′(g)

P (s = 1|g)
(5.6)

A correction for sample selection bias could therefore be found if we could estimate P (s =

1|g). However, g is typically high-dimensional — in genetics applications, g may have dimen-

sions from 1,000-1,000,000. P (s = 1|g) is therefore hard to estimate from the small selected

sample. We propose that since g and u are dependent and u typically has much lower dimen-

sionality than g, we can approximate P (s = 1|g) by P (s = 1|u). We can therefore write the

correction for sample selection bias as

PD(g) ≈ c× PD′(g)

P (s = 1|u)
(5.7)

with the quality of the approximation varying as a function of the dependence between g and u.

In practice, we find that the approximate correction method is adequate for most applications,

since probabilistic models are often robust to some differences between the true distribution of

the data and the distribution of the selected sample.

It is important to note that even if the selection is determined in reality by the u variables

only, the correction proposed in Equation 5.7 is only an approximate correction. The exact

correction would require computing the term P (s = 1|g) which can be written as
∑

u P (s =

1|u)P (u|g). The second term is a distribution conditioned on g and is hard to specify due to the

high dimensionality of g.
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5.3.3 Implementing correction in learning

While applying the proposed correction for accurate probability modeling only requires an extra

multiplication step, implementing the correction in learning models consistent with the true dis-

tribution is more complex. This problem is well-studied as cost-sensitive learning. A discussion

of the ways in which the correction can be applied to classifiers can be found in Zadrozny et al.

[2003]. In this work, we will use sampling with replacement to implement the correction. To

perform sampling with replacement, we sample points in the selected sample (with replacement)

with probability proportional to their correction factor (1/p(s = 1|u)). If the selected sample

contains N points, the probability of inclusion for the ith point is given as 1/p(s=1|ui)∑N
j=1 1/p(s=1|uj)

. Since

we sample with replacement, our corrected sample can include non-unique points from the se-

lected sample.

5.4 Methods

We will demonstrate the effects of sample selection bias on the accuracy of ancestry recovery

using experiments on simulated and real data. We will also show how the approximate correction

for sample selection bias is effective in practice.

5.4.1 Simulation experiments

To examine the recovery of individual ancestry, we simulated data depicting the scenario shown

in Figure 5.2. In this scenario, a population P0 of size N at mutation-drift equilibrium splits into

two isolated subpopulations P1 and P2, each of size N. For a number of generations (that can

be varied as a parameter), the two populations have no gene flow between them. Finally, the

two populations are pooled and random mating takes place for G generations in the combined

population. This allows us to record the true ancestry of every individual in the resulting sample

P .
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Figure 5.2: Simulation scenario for data generation.

For our experiments, we set the size of the original population to 1000 (N=1000). We set

the mutation rate to 10−9 per site per generation and the recombination rate to 10−8 per site

per generation and generated a region with 50,000 SNPs. The generated ancestral populations

had high FST differentiation (mean FST=0.44). The FST and number of loci were chosen to be

high to avoid the confounding effects of these two factors on the accuracy of ancestry inference.

The pooled populations were randomly mated for a single generation (G=1). For statistical

significance, we generated 30 datasets using the simulation settings. We used the coalescent

software Genome [Liang et al., 2007] to generate the two ancestral populations.

For each diploid individual in the resulting population, two parents were randomly chosen

from the pool. Therefore, in expectation, 25% of the resulting individuals will have both parents

from population 1, 25% will have both parents from population 2 and 50% will have a parent

each from both populations. We generated 1000 individuals from the random mating. We use

the 2-dimensional ancestry vector (θi, 1 − θi) to represent the contributions from the two an-

cestral populations to the genome of the ith individual. The generated population contained the

following three groups:
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1. 250 unmixed inds. with ancestry from the first ancestral population, (θi, 1− θi) = (1, 0)

2. 250 unmixed inds. with ancestry from the second ancestral population, (θi, 1−θi) = (0, 1)

3. 500 admixed inds. with ancestry from both populations. While the specific proportions of

ancestry within this group vary, we have that E[(θi, 1− θi)] = (0.5, 0.5)

To study the sampling bias, we subsample individuals from the dataset to generate a dataset

of size x+y+z where x is the number of individuals with both parents from population 1, z is

the number of individuals with both parents from population 2, and y is the number of individ-

uals with one parent from each population. By varying x, y, and z, we can generate smaller

datasets with different kinds of bias and deviations from the original dataset. We choose x and z

from {5,10,25,100,250} and y from {5,10,25,100,250,500}. Thus the smallest possible dataset

is {5,5,5} (15 individuals) and the larget possible dataset is the same as the original dataset

{250,500,250} (1000 individuals). We will use Sxyz to refer to the dataset {x, y, z}.

In this case, g represents the genotypes of the individuals (which are 50,000-dimensional), u

represents the group memberships of each individual according to their ancestry (u ∈ {1, 2, 3},

with the 3 groups as defined earlier). By design, s depends only on u, and we can write the

probability distribution P (s = 1|u) as:

P (s = 1|u = 1) = x/250 (5.8)

P (s = 1|u = 2) = z/250 (5.9)

P (s = 1|u = 3) = y/500 (5.10)

5.4.2 Evaluation measure

A fair evaluation of the results for both Admixture and Eigensoft is difficult to achieve because the

individual ancestries produced by Admixture and Eigensoft are different in nature. WithK ances-

tral population, an individual ancestry vector produced by Admixture has the form {q1, · · · , qK}

such that
∑K

k=1 qk = 1. Thus it has only K − 1 independent components. With K eigenvectors,
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an individual ancestry vector produced by Eigensoft is the projection of the genotype of the in-

dividual on the K eigenvectors. It has no restrictions, unlike the Admixture ancestry vectors, and

has K independent components. The ancestry vectors that we store as the true ancestry when

generating the simulation data have the same form as those produced by Admixture.

To reduce the effects of the different natures of inferred ancestries on our evaluation, we de-

vised an evaluation measure that depends only on the distances induced by the ancestry. Suppose

two individuals i and j have ancestry vectors qi = {qi1, · · · , qiK} and qj = {qj1, · · · , q
j
K} respec-

tively in K dimensions (ancestral populations in Admixture or eigenvector projections in Eigen-

soft). The euclidean distance between their ancestries is given by ‖qi−qj‖2 =
√∑K

k=1(q
i − qj)2.

Therefore, given a set of ancestry vectors for a dataset S, we can compute the distance matrix

induced by the ancestry vectors computed using a particular method. We denote the distance ma-

trix induced on dataset S by the Admixture ancestry vectors as DS
Admixture and the distance matrix

due to the Eigensoft ancestry vectors as DS
Eigensoft. If DS

true represents the distance matrix of the

true ancestry vectors, measuring the magnitude of the correlation between the distance matrices

gives us a measure of the accuracy of recovery of individual ancestry that should be agnostic of

the method used to infer ancestry. To evaluate the effect of biased sampling on the accuracy of

Admixture, we will examine the effect of varying x, y and z on |Correlation(D
Sxyz

true , D
Sxyz

Admixture)|.

For Eigensoft, we shall do the same usingDSxyz

Eigensoft. For statistical soundness, we report the mean

of the absolute value of the correlation over 30 datasets simulated using the same parameters.

An alternative evaluation metric that is more intuitive for likelihood-based methods is dis-

cussed in the Appendix (Section 5.6). However, this metric does not generalize to eigenanalysis

methods and therefore we do not use it in our analyses.

5.5 Results

We examined the effect of biased sampling of individuals by constructing subsets of the whole

dataset and measuring the correlation between the distances induced by the true and inferred
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ancestry. Figure 5.3(a) shows the results of this analysis with the Admixture software with

6 sub-plots. Within each sub-plot, the number of admixed individuals in the sample remains

constant and the number of unmixed individuals from the two ancestral populations is varied.

Figure 5.3(b) shows the results of an identical analysis of the same dataset with the Eigensoft

software.

We observed some common trends in the results of both analyses. Overall, both methods

recovered individual ancestry well, with the average correlation being 0.92 for Admixture and

0.62 for Eigensoft. Previous work has shown that the accuracy of individual ancestry recovery

is a function of the FST differentiation between the ancestral populations. We shall therefore

note that the results we obtain may vary for datasets with different FST values between the

ancestral populations and quantifying this effect will require more study. The simulation setting

we described earlier generates ancestral populations that are easily separable even when we have

access to little data. This can be observed in Figures 5.3(a) and 5.3(b).

However, in the scenario where we have few unmixed individuals from both ancestral pop-

ulations, Figures 5.3(a), 5.3(b) show that the accuracy of individal ancestry recovery drops sig-

nificantly. This effect is noticeable in the sub-plots with 250 and 500 admixed individuals. In all

sub-plots, the results show no noticeable drop in accuracy when we have 100 or more unmixed

individuals from at least one ancestral population. Pritchard et al. [2000a], Tang et al. [2005]

have previously noted that a significant number of unmixed individuals from each ancestral pop-

ulation is required for accurate recovery of stratification. An initial examination of the results

suggests that it may be sufficient to have a large number (around 50-100) of unmixed individuals

from just one of the two ancestral populations to be able to correctly resolve stratification.

We note that this guideline, which is relevant when the number of admixed individuals is

large, does not apply if the dataset contains few admixed individuals and few unmixed indi-

viduals. When there are few admixed individuals, both methods perform well (relative to their

best performance) even with 5 unmixed individuals in the dataset. Mantel tests [Mantel, 1967]
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(b) Using Eigensoft with top two eigenvalues

Figure 5.3: Correlation between the true individual ancestry and the individual ancestry inferred using (a) Admixture

with K=2 and (b) Eigensoft with the top two eigenvalues. The different levelplots are drawn for different number of

admixed individuals in the dataset. The X and Y axes of the plots are logarithmic in scale.
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over the resulting distance matrices reveal that the high correlations obtained with few admixed

individuals are statistically significant (p < 10−3) in all cases.

To examine the effect of the number of unmixed individuals on the ancestry recovery in

more detail, we looked at the subset of the generated subsamples which had the same number

of unmixed individuals from both ancestral populations, i.e., subsets of the form Sxyx where the

number of unmixed individuals x∈{5,10,25,100,250} and the number of admixed individuals

y∈{5,10,25,100,250,500}. For each value of x (the number of unmixed individuals from each

ancestral population present in the dataset), we observed the effect of varying y (the number

of admixed individuals present in the dataset) on the ancestry recovery. Figure 5.4(a) shows

the results for Admixture and Figure 5.4(b) shows the results for Eigensoft. When the number

of unmixed individuals is large, the methods recover ancestry well and the number of admixed

individuals have no effect on accuracy. However, when the number of unmixed individuals in

the sample is small, adding more admixed individuals to the sample reduces the accuracy of the

ancestry recovery for both Admixture and Eigensoft. In Figures 5.4(a), 5.4(b) we see a thresh-

old effect due to the number of unmixed individuals when the number of unmixed individuals

changes from 25 to 100.

The high accuracy of ancestry recovery when there are few admixed and few unmixed in-

dividuals suggests that previous intuition about the requirement of a large number of unmixed

individuals for accurate ancestry recovery may be an incomplete explanation. The results in Fig-

ures 5.3(a) and 5.4(a), along with the likelihood model underlying Admixture, suggest that the

effect on accuracy may depend on the ratio of the number of admixed individuals to unmixed

individuals from each population in the sample. For notational convenience, we will refer to this

ratio as τsample = y/x.

To examine this hypothesis, we replot the data used for Figure 5.4(a) by examining the cor-

relation measure as a function of the ratio of admixed individuals to unmixed individuals in

the sample. Figures 5.6(a) and 5.6(b) show the results for this visualization for Admixture and
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Figure 5.4: Effect of adding more admixed individuals to the dataset on the correlation measure of accuracy when

using (a) Admixture with K=2 and (b) Eigensoft with the top two eigenvalues. The X axis is logarithmic in scale.
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Eigensoft respectively. From the figure, we can see that the effect of sample selection bias can be

understood using τsample. The accuracy of ancestry recovery is high while the value of τsample is

less than 10 and drops as this ratio increases. This behavior is independent of the exact number

of unmixed individuals in the dataset and can be observed for both Admixture and Eigensoft. An

oversampling experiment using Admixture (Section 5.5.1 below) showed that even with 100 un-

mixed individuals from both ancestral populations, the correlation measure drops to 0.15 when

τsample was increased to 25.

5.5.1 Oversampling experiment to demonstrate the effect of τsample

Our experiments show that the effect of sample selection bias on accuracy of population strati-

fication depends on τsample, the ratio of admixed individuals to unmixed individuals (from each

ancestral population) in the sample. To verify our hypothesis that this effect is independent of the

exact number of unmixed individuals in the sample, we performed an oversampling experiment

starting with subsets S100,10,100. We oversampled the 10 admixed individuals from the sample

while keeping the number of unmixed individuals fixed to obtain τsample values of 5,10,25,50,

and 100. Figure 5.5 shows the results of the oversampling experiment reporting means over 30

datasets. From the figure we can see that the correlation measure of accuracy drops to 0.5 when

τsample = 10 and decreases to around 0.15 as τsample reaches 25 or higher values. This veri-

fies our hypothesis that the effect of τsample on accuracy can be observed regardless of the exact

number of unmixed individuals in the sample. The observed drop in accuracy is sharper than in

Figure 5.6(a) due to the effects of oversampling.

As described in the simulation settings, the ratio of the number of admixed individuals to

the number of unmixed individuals in the entire population, τpopulation, has expected value 2.

In our experiments, we observe that individual ancestry can be recovered perfectly even when

τsample > 2 as long as τsample < 10. A deficit of admixed individuals, indicated by τsample < 2

has no adverse effect on the accuracy of ancestry recovery. The effects of sample selection

91



●

●

● ● ●

Ratio of admixed individuals to unmixed individuals (τsample)

C
or

re
la

tio
n 

m
ea

su
re

0.02 0.1 0.25 1 2 4 10 20 50

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

100 unmixed individuals

Figure 5.5: Effect of τsample with 100 unmixed individuals in an oversampling experiment. Admixed individuals

are oversampled from 10 to obtain the desired value of τsample.

bias on the accuracy of ancestry recovery in a simple two-population admixture scenario using

mixed-membership models can thus be explained in two scenarios: (i) when τsample < 10, sam-

ple selection bias has no effect on the accuracy of individual ancestry recovery and (ii) when

τsample > 10, the accuracy of individual ancestry measured using the correlation measure de-

creases logarithmically with τsample.

5.5.2 Comparing results of Structure and Admixture

To verify that the results we observed were a characteristic of the model underlying Admixture

and not a result of the optimization method, we replicated our experiments using Structure.

However, due to the high computational cost of Structure, we had to reduce the number of loci

from 50,000 to 500 for all datasets.

Figure 5.7 shows the results of the Structure in the same format as the results for Admixture
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Figure 5.6: Effect of the ratio of the number admixed individuals to the number unmixed individuals in the dataset

(τsample) on the correlation measure of accuracy using (a) Admixture with K=2 and (b) Eigensoft with the top two

eigenvalues. The X-axis is logarithmic in scale.
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Figure 5.7: Correlation between the true individual ancestry and the individual ancestry inferred using Structure for

K=2. The different levelplots are drawn for different number of admixed individuals in the dataset. The X and Y

axes of the plots are logarithmic in scale.

in Figure 5.3(a). We can see that the two figures are similar, with the mean accuracy of Structure

(0.91) slightly lower than that of Admixture (0.92). This suggests that the results are not an

artifact of the different optimization methods chosen in the two methods.

Correction by resampling

From Equation 5.7, we can see that an approximate correction can be applied to the selected

samples using the weights from Equation 5.10. We use the sampling with replacement method

to implement a correction. On implementing such a correction, we found that the correlation

measure of accuracy was larger than 0.99 in 99% of the corrected datasets. Since the corrected

datasets only used the genomes of individuals present in the biased samples, we can infer that

the loss in accuracy observed earlier was due to biased sampling.
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5.5.3 Sample selection bias in the HGDP data

To demonstrate the effects of sample selection bias on a real dataset, we analyzed data from the

HGDP. We used individuals from the HGDP for which the national labels were unambiguous and

the national population data was readily available. We also ignored any SNPs which had missing

data. The resulting dataset had 918 individuals from 24 countries genotyped at 2810 SNPs.

We used the mixed-membership model of Admixture with K = 5 to produce low-dimensional

ancestry representations for each individual since previous work suggests that K = 5 adequately

demonstrates variations in human populations at the continental level. To analyze the results,

we used the nationality labels for individuals to construct a mean ancestry representation for

each of the 24 nations. A distance matrix was then constructed using these low-dimensional

representations. Figure 5.8(a) shows the results of this analysis. From the figure, we can see

that the national populations cluster by their continental locations, with much lower distances

between two nations within a continent than two nations in different continents.

5.5.4 Correction for HGDP data

As we previously described, the number of individuals sampled from each country in the HGDP

is not well-correlated with the population of that country. This bias can cause the results of

ancestry inference on this data to not be representative of the underlying populations. In this

case, we assume that the variable u, on which the selection procedure is based, is the country of

origin for the individual. Let n(u) denote the number of individuals from the country u included

in the HGDP, N(u) be the population of that country and N be the population of the world.

Then, we can evaluate the correction probability for the HGDP dataset using:

p(s = 1|u) =
n(u)

N(u)
(5.11)

We can apply this correction using sampling with replacement and re-analyze the HGDP data as

described earlier with K = 5. Figure 5.8(b) shows the results of this analysis. We see that while
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the results of the analysis are similar to the uncorrected results in Figure 5.8(a), there are some

important differences between them. The uncorrected analysis suggests that the populations in

the Indian subcontinent (India and Pakistan) are similar to the European populations as well as the

East Asian populations (China, Japan and Cambodia) while the corrected analysis suggests that

Indian and Pakistani populations are much closer to European populations than to the East Asian

populations. Recent work on a large dataset from Indian populations supports the claim that

populations in the Indian subcontinent are genetically more similar to European populations than

to East Asian populations [Reich et al., 2009]. The analysis with the correction also separates

the East Asian populations from the African populations more distinctly than the uncorrected

analyses. While it is difficult to argue that the correction provides objectively better results, it

is clear that due to sample selection bias, there are differences between the two samples and

analyses that could lead to different interpretations of evolutionary history.
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(b) Corrected

Figure 5.8: Analysis of distance between low-dimensional representations of national populations using Admixture

for K = 5. (a) Original HGDP data, without correction (b) With correction for sample selection bias. The nations

are sorted by their continental location.
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5.6 Discussion

Our experiments suggest that sample selection bias can be a problem in accurate population

stratification and recovering individual ancestry. In most stratification analyses, the recovered

ancestry is used to make inferences about the evolutionary history of the underlying populations.

It is also used in association studies to account for the effects of stratification. Therefore, it is

essential to have accurate recovery of ancestry. Our simulations show that unlike observations

from previous studies, the accuracy of individual ancestry recovery is not dependent only on

the number of unmixed individuals present in the sample. We observe a threshold effect where

the accuracy of ancestry inference is affected by sample selection bias depending on the ratio

of admixed individuals to unmixed individuals in the sample. Our simulations showed that the

accuracy of ancestry inference is affected when this ratio, τsample, is less than 10. However,

more analysis is needed to determine whether this guideline is applicable in all scenarios and

may differ depending on the FST differentiation between ancestral populations, number of loci

available and other factors.

While our analyses used two specific methods (Admixture and Eigensoft), we claim that the

effects we observed are a feature of the assumptions underlying both methods rather than the

specific implementations. In the case of likelihood-based models, we demonstrated this by de-

veloping a probabilistic framework for sample selection bias. Admixture is a representative of

the likelihood-based models that assume: (a) admixture between ancestral population and (b)

that modern individual genomes are mixture of contributions from different ancestral popula-

tions. This is the model underlying Structure and Frappe, and to a large extent the extensions

mentioned earlier. We observed similar effects on the accuracy of ancestry recovery using Struc-

ture (Figure 5.7 in the Appendix). Likelihood-based methods are susceptible to the effects of

sample selection bias since each individual is given equal weight in the sample a priori. This is

a result of the fundamental assumption of many learning methods that the sample observed is

representative of the underlying population distribution. Eigenanalysis, which also weighs each
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individual equally a priori, also suffers from a similar problem as the likelihood-based method.

The sensitivity of eigenanalysis to sample size variation and outliers is well known and has been

reported by McVean [2009].

Our experiments used a simple two-population simulation scenario to examine the effects of

sample selection bias on the accuracy of stratification. We used two populations that were easily

separable and examined the data resulting after only a single generation of admixture. In reality,

the demographic processes underlying the evolution of populations are much more complicated.

In such scenarios, it is reasonable to expect that the stratification problem may be harder to

resolve and would suffer from the effects of sample selection bias more severely.

Our experiments on data from the HGDP suggests that existing genetic datasets may also

contain sample selection bias. Depending on the degree of such bias, the results obtained on

these datasets may not be representative of the true evolutionary history and relationships of the

underlying populations.

We proposed a resampling correction for sample selection bias using a mathematical frame-

work we developed. The proposed correction requires knowledge of some auxiliary information

that is correlated with the genotypes. For genetic datasets, geography provides one such criteria

that is easy to acquire during data collection. Using this information, we proposed a correction

that is easy to implement. We showed using simulation experiments and the HGDP data that

such a correction is effective in practice and leads to more accurate results.

In our experiments, we either knew the nature of the bias (by design in the simulation exper-

iments) or assumed that it was known. In general, correction of sample selection bias requires

some domain-specific knowledge of the underlying bias. The accuracy of the correction method

proposed will strongly depend on the relationship between the correction criteria and the geno-

types. Corrections factors therefore may be dataset-specific. An alternative future direction for

correcting sample selection bias would be to develop models of population structure that can

also model the auxiliary factors, such as geography or language, that may determine the selec-
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tion process responsible for the presence of the bias.

Appendix

An alternative evaluation metric
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Figure 5.9: L1-norm error |θStrue − θSinfer| between the true individual ancestry and the individual ancestry inferred

using Admixture with K=2. Levelplots are drawn for different number of admixed individuals in the dataset.

An alternative metric for evaluating the recovery of individual ancestry inference is the mean

L1-norm distance between the true and inferred ancestry vectors, i.e, |θStrue− θSinfer|, which mea-

sures the error in ancestry recovery. We find that this metric also shows similar behavior to the

correlation measure of accuracy, with the error being low when the ratio of admixed individuals

to unmixed individuals is less than 10 and high otherwise. Figure 5.9 shows the results using this

error measure.
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Chapter 6

Artificial selection for association

Disease association is the task of inferring genetic variants that contribute to disease risk or ex-

plain phenotypic diversity observed in inheritable traits. Traditional methods for genetic analysis

of diseases used techniques such as linkage analysis of candidate markers or genes and quanti-

tative trait locus (QTL) mapping using one marker and one phenotype at a time [Easton et al.,

1993], followed by a correction for multiple hypothesis testing [Benjamini and Hochberg, 1995,

Storey and Tibshirani, 2003]. Recently, methods have been developed that enhance power by

allowing simultaneous analysis of multiple markers [Balding, 2006]. Methods such as eigenanal-

ysis [Price et al., 2006] and regression [Cordell and Clayton, 2002] can perform simultaneous

analysis of multiple markers for associations. Mixed models such as EMMA [Kang et al., 2008]

extend the regression framework to model the association problem (with confounding variables)

as a linear mixed model.

In this chapter, we propose an artificial selection setup for finding genetic associations. Arti-

ficial selection experiments belong to a class of experiments know as laboratory selection [Hill

and Caballero, 1992], which can be used to answer questions about adaptations, trait associ-

ations, etc [Garland Jr and Garland, 2003]. In artificial selection experiments, individuals are

chosen to propagate the next generation if they express particular values of a desired phenotypic

trait. These experiments allow the experimenter more control over the selection experiment. We
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show using simulated and semi-simulated data from artificial selection experiments that such

methods enable better recovery of causal variants than conventional association techniques.

6.1 Proposed approach

The artificial selection experiment setup involves two sets of individuals, a selected group and a

control group. The control group is a set of individuals on which no selection is performed. The

selected group undergoes selection according to a regime of selection strength and consistency

as chosen by the experimenter. As we described earlier, individuals from the selected group are

chosen to reproduce to form the next generation if they express particular values of a phenotypic

trait. For most traits, selection can be performed to obtain either high values of the trait or low

values of the traits. Artificial selection experiments therefore often have two selected sets of

individuals, one group selected for high values of the traits and the other selected for low values

of the trait. To ensure that the experiment results are due to selection and not due to genetic drift,

the experiment is often performed with more than one replicate.

The steps in an artificial selection experiment are:

1. Begin with an initial population of individuals as the current generation.

2. Measure the value of the phenotypic trait chosen for selection in all individuals in the

current generation.

3. Individuals whose phenotype value matches a prespecified criterion for the phenotype (for

example, trait value larger than an absolute or relative threshold) are chosen to be the

parents for the individuals in the next generation.

4. The chosen parents are allowed to mate to produce a new generation of individuals. The

number of individuals created is the same as that in the original population.

5. Repeat steps 2-4 with the new population.

Steps 2-5 are performed for the number of generations chosen by the experimenter.
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We propose to set up an artificial selection experiment by breeding Drosophila Melanogaster

for a trait of interest. We can then genotype (some of) the generations of individuals created

during the artificial selection experiment. The sequenced genotypes and measured phenotypes

can then be used for performing association between genotype and phenotype.

This approach has the advantage that it allows the experimenter control over the strength of

selection. Low-frequency causual variants can therefore be enriched so that they can be detected

statistically. In Drosophila Melanogaster, linkage disequilibrium decays to r2 = 0.2 on average

within 10 base pairs on autosomes [Mackay et al., 2012]. Therefore, causal variants can be found

directly and not through association with a linked marker.

6.2 Large scale simulations

In our preliminary experiments [Shringarpure and Xing, 2012], we demonstrated how sparse

regression methods can be used to perform association on data from an artificial selection ex-

periment using genotypes from the initial (1st) and final (20th) generations. We simulated ar-

tificial selection experiments with 1200 individuals per generation and 100, 000 SNPs per in-

dividual. The recombination probability (between the ends of the chromosome) is set to 0.25

across all experiments. Individuals from a generation are chosen to be parents only if their phe-

notype is larger than the mean for the generation. For the experimental parameters, we varied

the number of QTLs over {10, 20, 50}. The total heredity of the phenotype was varied over

{0.01, 0.1, 0.3, 0.5}. The initial frequency of the QTLs was varied over {0.05, 0.1, 0.2}. Each

experiment was repeated 20 times to obtain mean values of the F1 score of the methods at re-

covering the QTLs. To compute p-values for the sparse regression, we used the “screen and

clean” (SC) method by Wasserman and Roeder [2007] and the adpative “multi-sample-split”

(AMS) method proposed by Meinshausen et al. [2008]. We use the Cochran-Armitrage-Trend

test (CATT) [Cochran, 1954] as a single-SNP test for association. For all methods, we used false

discovery rate control (at the 5% level) using the method proposed by Benjamini and Yekutieli
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Figure 6.1: F1 performance of the adaptive multi-split method. The different panels are for the different initial QTL

frequencies.

[2001].

Figures 6.1 and 6.2 shows the F1 results for the multi-split (AMS) and screen-and-clean (SC)

regression methods respectively. The CATT produces F1 scores < 0.01 in almost all cases and

therefore we do not plot its performance. Figure 6.3 shows the best performing method (multi-

split) of the three when there is no artificial selection.

We find that conventional association (with no selection) performs well when the total hered-

ity is high (0.5) and the number of loci is low (10), which is in line with our expectations of the

scenarios in which genome-wide association studies are useful. In general though, performance

at association is better under selection than without selection. AMS and SC perform well at

recovering the QTLs with 20 QTLs even when total heredity is only 0.2. However, we find that

when there are 50 QTLs, no method can recover QTLs reliably at the chosen sample size. We
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Figure 6.2: F1 performance of the screen-and-clean method. The different panels are for the different initial QTL

frequencies.
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Figure 6.3: F1 performance under no selection. The different panels are for the different initial QTL frequencies.
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also find that screen-and-clean performs slightly better than the adaptive multi-split method, but

has higher variance.

6.2.1 Detecting epistasis

We simulated a phenotype with additive epistasis between two loci (with no individual effects).

The heredity contribution of the epistasis term was varied over {0.001, 0.01, 0.1} and was added

to the parameters from the previous simulation. Epistasis terms can be added as a new covariate

to the regression as the product xi ∗ xj (where xi and xj are the individual SNP genotypes at

the ith and j th SNPs respectively). However, adding all possible pairs of SNPs is computational

infeasible for the large number of SNPs we wish to include in the simulation or an actual study

(indeed, we find that the fast exhaustive epsistasis testing method, BOOST [Wan et al., 2010] has

running times larger than a day per run for the size of data we wish to simulate). Methods have

therefore been proposed that suggest prioritizing pairs for inclusion based on their occurrence in

SNP-SNP or gene-gene interaction networks [Lee and Xing, 2012]. We examine the power of

sparse regression methods at recovering the true epistatic interaction term. For this experiment,

we included 10,000 interaction terms in the sparse regression along with the individual SNPs.

Figures 6.4 and 6.5 show the power of the AMS and SC methods at recovering the epistatic

interaction. Figure 6.6 shows the power at recovering the epistatic interaction when there is no

selection.

As before, we find that power at recovering epistasis is much higher when there is selection.

We also find the screen-and-clean performs better than the adaptive multi-split method. We can

observe the effect of using a sparse regression which considers all the association covariates

simultaneously in that the power varies not only as a function of the heredity contribution due to

the epistatic term, but also as a function of the total heredity of the trait.
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Figure 6.4: Power of the multi-split method at recovering the epistatic interaction. The power is plotted as function

of the total heredity of the trait and the heredity contributed by the epistatic interaction term.
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Figure 6.5: Power of the screen-and-clean method at recovering the epistatic interaction. The power is plotted as

function of the total heredity of the trait and the heredity contributed by the epistatic interaction term.
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Figure 6.6: Power at recovering the epistatic interaction when there is no selection. The power is plotted as function

of the total heredity of the trait and the heredity contributed by the epistatic interaction term.
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6.3 Analysis of data from an artificial selection experiment on

Drosophila Melanogaster

Burke et al. [2010] performed a selection experiment on Drosophila Melanogaster for acceler-

ated development. Flies in the selected populations develop from egg to adult 20% faster than

flies of ancestral control populations. The resequencing data from these populations contains

allele frequencies for 688,520 SNPs in the control and selected populations. Using this data,

they identified 30 SNPs (out of 662 potential candidate SNPs) that show significant allele fre-

quency differences between the selected populations and the control populations. These 30 SNPs

were genotyped in 35 females in each of the populations (a total of 175 selected individuals and

175 control individuals) using cleaveage amplified polymorphic sequence (CAPS) techniques.

The data we obtained therefore consists of 350 individuals genotyped at 30 SNP loci. 175 of

the 350 individuals have undergone selection for accelarated development and 175 are control

individuals.

6.3.1 Experiment setup

We use the genotype data from Burke et al. [2010] to verify that the sparse regression method

we proposed works on data from an existing artificial selection experiment. Since we do not

have genotype data for the other SNPs in the dataset, we cannot perform sparse regression to find

how well the predictions from regression agree with the 30 known SNPs. We therefore use an

alternate way of verifying the accuracy of the regression by simulating neutral SNPs.

We generated N (for different values of N ) neutral SNPs of varying minor allele frequency

(MAF) and constructed genotypes in the form of minor allele counts at each SNP for the 350

individuals according to the MAF value at the SNP. We then combined the genotypes at the 30

candidate SNPs and N artificial SNPs and ran the sparse regression, using the individuals’ status

as control (0) or selected (1) as the response variable. The sparse regression was set to choose
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Figure 6.7: Histogram of MAF values for the 688,520 SNPs in the dataset

the top 30 most relevant SNPs out of the N+30 total SNPs. The number of the original 30 SNPs

chosen by the regression then gives us an estimate of the accuracy of the regression. We can also

examine which of the original 30 SNPs are chosen by the regression. Repeating the experiment

multiple times for a particular value of N allows us to get a statistically meaningful estimate of

the result.

To see the effect of changing the number of non-causal SNPs, we varied N from 1 to 1 mil-

lion in powers of ten. From the data, we can also observe that the distribution of minor allele

frequency (MAF) is almost uniform over (0,0.5], as seen in Figure 6.7. We generated artifi-

cial SNPs so that the distribution of MAFs matched this observed distribution. For statistically

meaningful estimates, 50 runs of simulation and regression were set up for each value of N .

6.3.2 Results

For each setting of N , we observed how many times the 30 candidate SNPs were chosen by the

regression in the 50 runs. Figure 6.8 shows the results.

From the figure, we can see that as the number of simulated SNPs increases, fewer of the 30
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Figure 6.8: Simulation results. On the X-axis are the indices of the 30 candidate SNPs and the Y-axis shows how

many times they are chosen by the regression in 50 runs. As the number of artificial SNPs increases, some SNPs out

of the 30 candidates stop being chosen by the regression. However, even when 1 million artificial SNPs are added

to the data, 23 of the original 30 SNPs show a strong signal and are chosen.
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Figure 6.9: Simulation results using only control populations. On the X-axis are the indices of the 30 candidate

SNPs and the Y-axis shows how many times they are chosen by the regression in 50 runs. As the number of artificial

SNPs increases, the regression method is unable to pick any of the original 30 candidate SNPs.

candidate SNPs are chosen by the regression. The set of SNPs chosen by the regression decreases

almost monotonically, i.e, once a SNP is not chosen by regression, it is never chosen again as the

number of simulated SNPs increases. However, even when 1 million artificial SNPs are added to

the data, 23 of the original 30 SNPs show a strong signal and are chosen by the regression. This

suggests that the regression method does well at picking loci that have undergone selection.

To ensure that this is not an artifact, we performed the simulation using only the individuals

from the control populations. Figure 6.9 shows the results forN upto 1000. We can see that even

at N=1000, almost none of the original 30 candidate SNPs can be picked up by the regression.

Since the simulation using only control populations has only half the number of individuals

as the original populations, it is helpful to see what effect sample size has when analyzing the

combined populations. To test this, we used only half the individuals from the control and

selected populaitons and repeated the experiments. The results are shown in Figure 6.10. We
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can see that there is a significant impact on performance at recovering the original 30 SNPs.

With 1 million simulated SNPs, only 15 of the original 30 SNPs are chosen by the regression.

6.4 Discussion

We proposed that artificial selection can be used in conjunction with sparse regression techniques

to perform association better. Our simulation experiments show that data from artificial selection

experiments enables better recovery of the true causual variants than a conventional association

setup with no selection. For traits with a small number of QTLS and high heredity, associa-

tion without selection performs better than our proposed approach but its performance degrades

quickly as the number of QTLs increases and the heredity of the trait reduces to moderate or low

amounts. We also find that the proposed method performs better than conventional association

when trying to recover additive epistatic effects.

The analysis of genotype data from an artificial selection on Drosophila Melanogaster by Burke

et al. [2010] with the simulated noise SNPs show that the regression method does well at identi-

fying the original 30 candidate SNPs (23 of the 30 are picked up even when there are 1 million

non-causal SNPs). On the other hand, using only the control populations along with simulated

genotypes does not enable us to identify any of the candidate SNPs even when there are only 1000

artificial SNPs. This shows that our method works because it can identify the difference between

control individuals and selected individuals. It is important to note that the data from Burke et al.

[2010] is from an artificial selection experiment that lasted 600 generations. The differentiation

between the control and selected populations is therefore quite large, which makes the problem

easier.

Another phenomenon that we can observe in these experiments is the effect of sample size.

Using only control populations reduces the number of available samples by half, which affects

the recovery of the 30 candidate SNPs. If we halve the total number of individuals from the

complete dataset and perform regression on the resulting dataset, we find that the accuracy of
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Figure 6.10: Simulation results using half the number of individuals. On the X-axis are the indices of the 30

candidate SNPs and the Y-axis shows how many times they are chosen by the regression in 50 runs. As the number

of artificial SNPs increases, some SNPs out of the 30 candidates stop being chosen by the regression. When 1

million artificial SNPs are added to the data, 15 of the original 30 SNPs show a strong signal and are chosen.
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the regression is affected noticeably and the number of candidates recovered by the regression

drops to about 15. A sample size of 300-400 therefore seems to be necessary for recovering

associations. However, all the p-value computation methods we examine in our analysis require

splitting of data into multiple parts. Therefore, to obtain reliable p-values from such analyses,

sample sizes close to 1000 may be more desirable. At these sample sizes, our proposed approach

can recover QTLs with some success for a moderate number of QTLs (20) and moderate values

of heredity (0.1). For the method to work reliably for a larger number of causal variants, even

larger sample sizes would be necessary.

Artificial selection approaches have advantages over conventional association that are im-

portant for performing association. They provide the experimenter with greater control on the

expression of the trait of interest in the selected population. Using model organisms such as

Drosophila Melanogaster which show weak linkage disequilibrium allows more accurate lo-

calization of the causal variants. Burke et al. [2010] demonstrate that artificial selection ex-

periments can be used to determine causal variants for accelarated development in Drosophila

Melanogaster. With larger sample sizes, artificial selection experiments are likely to provide an

effective way of performing association on complex traits.
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Chapter 7

Conclusions and Future work

In this thesis, we have developed methods to improve our understanding of genetic variation

in populations - population structure detection and disease association. Both these problems

have been extensively studied in the literature and our attempts aim to extend our understanding

using efficient statistical methods that can model the evolutionary processes that shape genetic

variation.

In Chapter 3, we presented a hierarchical Bayesian model, mStruct [Shringarpure and Xing,

2009], that can model admixing of populations along with allele mutations. We developed an

efficient inference algorithm for the model using variational inference. Our simulations showed

that modeling mutations allows us to model ancestries more accurately than a model which

only takes admixture into account. Analysis of data from the Human Genome Diversity project

showed that mStruct allows us to model similarities and differences between populations in a

meaningful way. It also enables the study of the accumulated mutation in populations, which can

be used to qualitatively estimate the age of populations.

The mStruct method developed in Chapter 3, like most other methods used to analyze popu-

lation structure, requires the user to specify the number of ancestral populations that contribute to

the given sample of individuals. This requires prior knowledge of the evolutionary history of the

sample and may not always be possible or desirable. Chapter 4 addressed the problem of choos-
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ing the number of ancestral populations using a non-paramatric Bayesian model, StructHDP, in

a data-dependent manner [Shringarpure et al., 2011].

Through experiments on real and simulated data, Chapter 5 showed that biased sampling can

affect the results of ancestry inference using likelihood-based methods. We developed a mathe-

matical framework for modeling sample selection bias and also proposed a correction that is easy

to implement and effective in practice. This is the first attempt to address sample selection bias

in an unsupervised clustering setting. As more datasets of genetic sequences become available

for analyses and are combined in an attempt to improve the accuracy and resolution of ancestry

inference, we believe that sample selection bias will become an important concern that will need

to be addressed. A useful extension of existing methods that could account for sample selec-

tion bias would be to develop methods that can incorporate weights for samples directly into the

models.

Another problem that must be addressed with larger datasets is that of scalability. The meth-

ods we have proposed for population structure detection, while efficient for smaller datasets, do

not scale well to genotypes consisting of hundreds of thousands or millions of SNPs. In such

cases, development of efficient inference algorithms requires better optimization techniques,

such as the quasi-Newton techniques used in Admixture [Alexander and Lange, 2011, Alexander

et al., 2009]. We also note that using genotype data with many SNPs is likely to violate the

assumptions of unlinked loci made in mStruct and StructHDP.

We have made an attempt to incorporate evolutionary processes affecting genetic variation

into our models. Our experiments with modeling mutation in mStruct show that this can improve

the accuracy of ancestry inference. It is therefore natural to expect that extensions incorporating

other evolutionary process such as recombination and selection into the modeling will improve

ancestry inference. An important caveat in making more expressive models is that such models

have high complexity and may not produce biologically meaningful results in the absence of

enough data and constraints on the model. For instance, the ancestral populations inferred using
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these models are mathematical entities and may have no true historical counterpart. Recently,

however, many new sequencing projects have genotyped ancient individuals from various geo-

graphical regions, such as the Neandarthals [Green et al., 2010], the Tyrolean Iceman [Ermini

et al., 2008], the Denisovans [Reich et al., 2010], Australian aborigines [Rasmussen et al., 2011].

Data from these genome sequences may allow the development of models where the ancestral

populations can be constrained to be similar to these putative ancestral populations.

Chapter 6 examined the problem of disease association through a novel approach. We pro-

posed that genotype data from artificial selection experiments enables us to perform association

with better power than conventional approaches. We proposed the use of sparse regression meth-

ods to perform the association efficiently, and demonstrated the validity of the claims using

simulated data and semi-simulated data from an artificial selection experiment on Drosophila

Melanogaster. Our experiments also suggest that sample size is an important factor in deter-

mining the accurate recovery QTLs when a trait is affected by a large number of loci with small

individual effects. Similiar observations have been made in a previous study by Yang et al. [2010]

in the context of human height. Another important problem of future interest would be to develop

ways of determing the statistical significance of the predictions (made by the sparse regression

methods) that can make effective use of available data. Current methods [Meinshausen et al.,

2008, Wasserman and Roeder, 2007] require the data to be split into two or more parts, which

greatly reduces the power of association methods when dealing with a very large number of loci.
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Liming Liang, Sebastian Zöllner, and Gonçalo R Abecasis. GENOME: a rapid coalescent-

based whole genome simulator. Bioinformatics, 23(12):1565–7, June 2007. ISSN

1367-4811. doi: 10.1093/bioinformatics/btm138. URL http://bioinformatics.

oxfordjournals.org/cgi/content/abstract/23/12/1565. 5.4.1

P Liang and Michael I Jordan. An asymptotic analysis of generative, discriminative, and pseu-

134

http://www.springerlink.com/index/N811M25287935571.pdf
http://www.springerlink.com/index/N811M25287935571.pdf
http://dx.doi.org/10.1038/sj.hdy.6801010
http://dx.doi.org/10.1038/sj.hdy.6801010
http://www.ncbi.nlm.nih.gov/pubmed/18385116
http://www.ncbi.nlm.nih.gov/pubmed/18385116
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/28/12/i137
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/28/12/i137
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/12/1565
http://bioinformatics.oxfordjournals.org/cgi/content/abstract/23/12/1565


dolikelihood estimators. In Proceedings of the 25th international conference on Machine

learning, pages 584–591. ACM, 2008. URL http://portal.acm.org/citation.

cfm?id=1390230.

Cécile Libioulle, Edouard Louis, Sarah Hansoul, Cynthia Sandor, Frédéric Farnir, Denis Franchi-
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