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Abstract

Many complex disease syndromes such as asthma consist gfeanilamber of highly related,
rather than independent, clinical phenotypes, raisingnataehnical challenge in identifying ge-
netic variations associated simultaneously with coregldtaits. In this study, we propose a new
statistical framework called graph-guided fused lassd4&86) to address this issue in a principled
way. Our approach explicitly represents the dependenagtsite among the quantitative traits as
a network, and leverages this trait network to encode stradtregularizations in a multivariate
regression model over the genotypes and traits, so thatethetig markers that jointly influence
subgroups of highly correlated traits can be detected wgh kensitivity and specificity. While
most of the traditional methods examined each phenotypepertently and combined the re-
sults afterwards, our approach analyzes all of the traitglyoin a single statistical method, and
borrow information across correlated phenotypes to diectvwe genetic markers that perturbe a
subset of correlated triats jointly rather than a singlé.tidsing simulated datasets based on the
HapMap consortium data and an asthma dataset, we comparertbenance of our method with
the single-marker analysis, and other sparse regressitoogesuch as the ridge regression and
the lasso that do not use any structural information in taistr Our results show that there is a
significant advantage in detecting the true causal SNPs wkencorporate the correlation pattern
in traits using our proposed methods.






1 Introduction

Recent advances in high-throughput genotyping technedolgave significantly reduced the cost
and time of genome-wide screening of individual genetiéedéinces over millions of single nu-
cleotide polymorphism (SNP) marker loci, shedding lighatoera of “personalized genome” [1,
2]. Accompanying this trend, clinical and molecular phepet are being measured at phenome
and transcriptome scale over a wide spectrum of diseasemiwug patient populations and lab-
oratory models, creating an imminent need for appropriadé¢hodology to identify omic-wide
association between genetic markers and complex traitshvare implicative of causal relation-
ships between them. Many statistical approaches have lbepoged to address various challenges
in identifying genetic locus associated with the phenotiypen a large set of markers, with the
primary focus on problems involving a univariate trait [3,5. However, in modern studies the
patient cohorts are routinely surveyed with a large numbgads (from measures of hundreds of
clinical phenotypes to genome-wide profiling of thousanitdgeme expressions), many of which
are correlated among them. For example, in Figure 1, thelkedion structure of the 53 clinical
traits in the asthma dataset collected as a part of the SAgénena Research Program (SARP) [6]
is represented as a network, with each trait as a node, #r@ation between two traits as an edge,
and the thickness of an edge representing the strengthrelabon. Within this network, there ex-
ists several subnetworks involving a subset of traits, amdh&érmore, the large subnetwork on the
left-hand side of Figure 1 contains two subgroups of densahynected traits with thick edges. In
order to understand how genetic variations in asthma gatsgfect various asthma-related clinical
traits in the presence of such a complex correlation patderaong phenotypes, it is necessary to
consider all of the traits jointly and take into account thegirrelation structure in the association
analysis. Although numerous research efforts have beentetkvo studying the interaction pat-
terns among many quantitative traits represented as nesw@r 8, 9, 10, 11, 12, 13, 14] as well as
discovering network submodules from such networks [11, tth$ type of network structure has
not been exploited in association mapping [16, 17]. Manyhefprevious approaches examined
one phenotype at a time to localize the SNP markers with afignt association and combined
the results from a set of such single-phenotype associatipping across phenotypes. How-
ever, we conjecture that one can detect additional wealceggms and at the same time reduce
false signals by combining the information across multjghenotypes under a single statistical
framework.

In QTL mapping studies with pedigree data, a number of ambres have been proposed to
detect pleiotropic effect of markers on multiple correthateits by considering the traits jointly.
However, these approaches involve only a weak and indioect 6f structural information present
in the phenotypes. The methods based on multivariate rggrefl8, 19, 20] with multiple out-
comes were concerned with finding genetic loci that influeaicef the phenotypes jointly, rather
than explicitly taking into account the complex interantjmatterns among the phenotypes. A dif-
ferent approach has been proposed that first applies plencipnponent analysis (PCA) to the
phenotypes and uses the transformed phenotypes in a gihgietype association test [21, 22].
The transformation via PCA allows to extract the compongrasexplain the majority of variation
in phenotypes, but has a limitation in that it is not obvioaw/Ho interpret the derived phenotypes.

More recently, in expression quantitative trait locus (&@@&nalysis with microarray gene
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Figure 1: lllustration of association analysis using phigpe correlation graph for asthma dataset

expression measurements treated as quantitative tiestsarchers have begun to combine an ex-
plicit representation of correlation structure in phempety, such as gene networks, with genotype
information to search for genetic causes of perturbatidres subset of highly correlated pheno-
types [23, 24, 25, 26]. A module network [11], which is a sttial model developed for un-
covering regulatory modules from gene expression data,exssded to incorporate genotypes
of regulators, such that the expression of genes regulgtéiebsame regulator was explained by
the variation of both the expression level and the genotypgheoregulators [23]. Although the
model was able to identify previously unknown genetic pédtions in yeast regulatory network,
the genotype information used in the model was limited tokear in regulators rather than the
whole genome. Several other studies incorporated a geregedation network in a genome-wide
scan for association. In a network eQTL association studynfouse [24], a gene co-regulation
network was learned, a clustering algorithm was appliedhigrietwork to identify subgroups of
genes whose members participate in the same molecular @atiwbiological process, and then,
a single-phenotype analysis was performed between gesmiypd the phenotypes within each
subgroup. If the majority of phenotypes in each subgroupevweapped to the common locus in



the genome, that locus was declared to be significantly egsdowith the subgroup. Using this
approach, new obesity-related genes in mouse were idenifiexamining the network module
associated with the genetic locus previously associatéll ebesity-related traits such as body
mass index and cholesterol level. A similar analysis wasopmed on yeast, where clusters of
yeast genes were mapped to a common eQTL hotspots [26]. @he wiain disadvantages of this
approach is that it first applies a clustering algorithm tenidfy subgroups of phenotypes in the
network, rather than directly incorporating the netwoseit as a correlation structure, since the
full network contains much richer information about conxaleteraction patterns than the clusters
of phenotypes. Another disadvantage of this approach isttedies on a set of single-phenotype
statistical tests and combines the results afterwardsderdo determine whether a marker is sig-
nificantly affecting a subgroup of phenotypes, thus reqgim substantial effort in conducting
appropriate multiple hypothesis testing. We believe timaapproach that considers markers and
all of the phenotypes jointly in a single statistical methas the potential to increase the power
of detecting weak associations and reduce susceptillitpise.

In this article, we propose a family of methods, calleddhegph-guided fused lasso (GFlasso),
that fully incorporates the quantitative-trait networkaas explicit representation for correlation
structure without applying additional clustering algbnits to phenotypes. Our methods combine
multiple phenotypes in a single statistical framework, andlyze them jointly to identify SNPs
perturbing a subset of tighly correlated phenotypes inlstdacombining results from multiple
single-phenotype analyses. The proposed methods levamdgeendency graph defined on multi-
ple quantitative traits such as the graph for the asthnaegltraits shown in Figure 1, assuming
that such a graph structure is available from preprocesgeys or as prior knowledge from pre-
vious studies. It is reasonable to assume that when a sulbgkenotypes are highly correlated,
the densely connected subgraphs over these correlateddmatain variables that are more likely
to be synergistically influenced by the same or heavily @gmring subset(s) of SNPs with similar
strength than an arbitrary subset of phenotypes.

The proposed approach is based on a multivariate regreksimalism with theL, penalty,
commonly known as the lasso, that achieves “sparsistendi& estimated model by setting many
of the regression coefficients for irrelevant markers t@42v, 28]. As a brief digression for clar-
ity, sparsistancy refers to an asymptotic property in ldghensional statistical inference that for
the estimator of @-dimensional vectof from n iid samples, wherg can be> n, the probabil-
ity of recovering the true non-zero elemettts= {i : 6, # 0} in the estimator approach one
in the limit, if the true non-zero elements are sparse in #ress thatS| < n < p [28]. This
property of the lasso makes it a natural approach for genoide association analysis, where
the marker genotypes are treated as the predictors, th@ipenn question is treated as the re-
sponse, and the (sparse) set of markers having non-zemssign coefficients are interpreted as
the markers truely associated with the phenotype. Howexreen applied to association mapping
with multivariate traits, the lasso is equivalent to a sityhit analysis that needs to be repeated
over every single trait. In other words, for a collection dits, each trait would be treated as
independent of all other traits, and every trait would beesged on a common set of marker
genotypes via its own lasso (Figure 2A), ignoring the pdesibupling among traits. Our innova-
tions in GFlasso that enable a departure from the basekse Far a single trait is that, in addition
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Figure 2: lllustrations for multiple output regression wi: lasso, B: graph-constrained fused
lasso, and C: graph-weighted fused lasso.

to the lasso penalty, we employ a “fusion penalty” that fusggession coefficients across cor-
related phenotypes, using either unweighed or weightedexdivity of the phenotype graph as
a guide. This additional penalty will encourage sharing @hmon predictors (i.e., associated
markers) to coupled responses (i.e., traits). The two fus@hemes lead to two variants of the
GFlasso: araph-constrained fused lasso (G Flasso) based on only the graph topology (Figure
2B), and agraph-weighted fused lasso (G,, Flasso) that offers a flexible range of stringency of the
graph constraints through edge weights (Figure 2C). Weldpgd an efficient algorithm based on
guadratic programming combined with gradient search fomesing the regression coefficients
under GFlasso. The results on two datasets, one simulaiedHiapMap SNP markers and the
other collected from asthma patients, show that our metltygesforms competing algorithms in
identifying markers that are associated with a correlatdsst of phenotypes.

2 Material and Methods

2.1 Lasso Regression for Multiple Independent Phenotypes

Let X be anN x J matrix of genotypes fofV individuals and/ SNPs, where each element

of X is assigned 0, 1, or 2 according to the number of minor alletéke j-th locus of thei-th
individual. LetY denote anV x K matrix of K quantitative trait measurements over the same set
of individuals. We useg;, to denote the:-th column ofY. A conventional single-trait association
via linear regression model can be applied to this multipdé-setting by fitting the model tX

and each of thé( traitsy,’s separately:

Y. = X/Bk;_'_ek? szla"'7K7 (1)

whereg,, is a.J-vector of regression coefficients for theh trait that can be used in a statistical test
to detect SNP markers with significant association,@nd a vector of/V independent error terms
with mean 0 and a constant variance. We center each coludXraoflY such tha . y;, = 0 and
> zi; = 0, and consider the model in Equation (1) without an intercéy obtain the estimates
of B={3,,...,08} by minimizing the resisual sum of squares:

A~

B = argmind (yi —XB,)" - (yx — XB)). 2
k
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In a typical genome-wide association mapping, one exanarnasye number of marker loci with
the goal of identifying the region associated with the phypes and markers in that region. A
straight-forward application of the linear regressionimoetin Equation (2) to association mapping
with largeJ can cause several problems such as an unstable estimageesfsien coefficients and
a poor interpretability due to many irrelevant markers wibim-zero regression coefficients. Sparse
regression methods such as forward stepwise selectiojr{@§¢ regression [30, 5], and lasso [27]
that select a subset of markers with true association haref®posed to handle the situation with
large J. Forward stepwise selection method iteratively selecesretevant marker at a time while
trying to improve the model fit based on Equation (2), but iymat produce an optimal solution
becuase of the greedy nature of the algorithm. Ridge reigresas an advantage of performing the
selection in a continuous space by penalizing the residunals square in Equation (2) with the
norm of3,’s and shrinking the regression coefficients toward zerbitldwes not set the regression
coefficients of irrelevant markers to exactly zero. We ugsddlsso that penalizes the residual sum
of square with thel,; norm of regression coefficients and has the property ofrgetggression
coefficients with weak association markers exactly to zdros offering the advantages of both
forward stepwise selection and ridge regression. The lassmate of the regression coefficients
can be obtained by solving the following:

Blasso _ argminZ(yk _ Xﬁk)T (yr — XBi) + A Z |ﬁk:]| (3)
K ki

where \ is a regularization parameter that controls the amount afs#fy in the estimated re-
gression coefficients. Settingto a large value increases the amount of penalizationngatiore
regression coefficients to zero. Many fast algorithms aadatvle for solving Equation (3) [27, 31].

The lasso for multiple-trait association mapping in Equai(3) is equivalent to solving a set
of K independent regressions for each trait with its dwrpenalty, and does not provide a mech-
anism to combine information across multiple traits sucit the estimates reflect the potential
relatedness in the regression coefficients for those epeetkraits that are influenced by common
SNPs. However, several traits are often highly correlateti as in gene expression of co-regulated
genes in eQTL study, and there might be genotype markerstbaaointly associated with those
correlated traits. Below, we extend the standard lasso amglope a new penalized regression
method for detecting markers with pleiotropic effect onretated quantitative traits.

2.2 Graph-Guided Fused Lasso for Multiple Correlated Phenotypes

In order to identify markers that are predictive of multipleenotypes jointly, we represent the
correlation structure over the setgftraits as an edge-weighted graph, and use this graph to guide
the estimation process of the regression coefficients witie lasso framework. We assume that
we have available from a pre-processing step a phenotypelaton graphz consisting of a set

of nodesV/, each representing one of tihétraits, and a set of edgés. In this article, we adopt

a simple and commonly-used approach for learning such graytere we first compute pairwise
Pearson correlation coefficients for all pairs of phenosyw&ngy,’s, and then connect two nodes
with an edge if their correlation coefficient is above theegivthresholdp. We set the weight



of each edgém,!) € E to the absolute value of correlation coefficignt,;|, so that the edge
weight represents the strength of correlation betweernvibenbdes. This thresholded correlation
graph is also known as a relevance network, and has beenywsieti as a representation of gene
interaction networks [32, 33]. It is worth pointing out thiaé choice of methods for obtaining the
phenotype network is not a central issue of our method. Qtméations of the standard relevance
network have been suggested [34], and any of these graplesmabe used within our proposed
regression methods. Below, we first introduegrlasso that makes use of unweighted graph,
and further extend this method ¢, Flasso to take into account the full information in the graph
including edge weights.

Given the correlation graph of phenotypes, it is reasontblessume that if two traits are
highly correlated and connected with an edge in the gragel, ¥ariation across individuals might
be explained by genetic variations at the same loci, poshk#nting the same amount of influence
on each trait. InG Flasso, this assumption is expressed as an additional penaltytteatrfuses
two regression coefficients;,,, and3;, for each markey if traits m and! are connected with an
edge in the graph, as follows:

BEC = argmin Y (yi — XB,)" - (v — XB,)

k
FAD D Bl D D B — sign(ri) Bl @)
kg (

ml)EE J

where)\ and~ are regularization parameters that determine the amouyperadlization. The last
term in Equation (4) is called a fusion penalty [35], and emagess;,, and sigtir,,;)5;; to take
the same value by shrinking the difference between themrtbrexo. A larger value foy leads to
a greater fusion effect, or greater sparsityin, — sign(r,,;)3;|'s. We assume that if two traits
and/ connected with an edge (& are negatively correlated with,; < 0, the effect of a common
marker on those traits takes an opposite direction, and e, and (—3;;), or equivalently,
B;m and signir,,, ;) 3;;. When the fusion penalty is combined with the lasso penaliy &quation
(4), the lasso penalty sets many of the regression coefficterzero, and for the remaining non-
zero regression coefficients, the fusion penalty flatteas#tues across multiple highly correlated
phenotypes for each marker so that the strength of influeinemobh marker becomes similar across
those correlated traits. The idea of fusion penalty has liegnused in the classical regression
problem over univariate response (i.e., single-outpothfhigh-dimensional covariates to fuse the
regression coefficients of two adjacent covariates whertdhariates are assumed to be ordered
such as in time [35]. This corresponds to coupling pairs efmants in the adjacent rows of the
same column in the coefficient matiin Equation (4). InG.Flasso, we employ a similar strategy
in a multiple-output regression in order to identify pleagic effect of markers, and let the trait
correlation graph determine which pairs of regressionfmeits should be fused. Now, every
such coupled coefficient pair corresponds to the elemeriteeaforresponding two columns in the
same row of matrixB in Equation (4). Itis possible to show the asymptotic prtipsiof estimators
of the GFlasso methods & — oo analogous to the ones previously shown for the lasso and the
fused lasso [35, 36].

In a multiple-trait association mapping, networks of aaiitraits or molecular traits (i.e., gene
expressions) typically contain many subnetworks withinolvimodes are densely connected, and
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we are interested in finding the genetic variants that pettue entire set of traits in each subnet-
work. This can potentially increase the power of detectir@kvassociations between genotype
and phenotype that may be missed when each phenotype islemindependently. When used
in this setting, theG Flasso looks for associations between a genetic marker and a suibgifa
phenotype network rather than a single phenotype. Unlikergirevious approaches for detecting
pleiotropic effect that first apply clustering algorithnasléarn subgroups of traits and then search
for genetic variations that perturb the subgroGpFlasso uses the full information on correla-
tion structure in phenotypes available as a graph, whersubgroup information is embedded
implicitly within the graph as densely connected subgraphishough the fusion penalty in the
G.Flasso is applied locally to a pair of regression coefficients foighéoring trait pairs in the
graph, this fusion effect propagates to the regressioricieits for other traits that are connected
to them in the graph. For densely connected nodes, the fisieffiectively applied to all of the
members of the subgroup, and the set of non-zero regressaificeents tend to show a block
structure with the same values across the correlated gigéa a genotype marker with pleiotropic
effect on those traits, as we demonstrate in experimentise l€dge connections are sparse within
a group of nodes, the corresponding traits are only weakdya®, and there is little propagation
of fusion effect through edges in the subgroup. Thus(higlasso incorporates the subgrouping
information through the trait correlation graph in a moreifde manner compared to previous
approaches.

Now, we present a further generalization@fFlasso that exploit the full information in the
phenotype networks for association mapping. Note that tie structural information used in
the G.Flasso is the presence or absence of edges between two phenotypes gnaph. The
Gy Flasso is a natural extension of thé.Flasso that takes into account the edge weights in
graphG in addition to the graph topology. The, Flasso weights each term in the fusion penalty
in Equation (4) by the amount of correlation between the tivertypes being fused, so that the
amount of correlation controls the amount of fusion. Moreagally, G, Flasso weights each term
in the fusion constraint in Equation (4) with a monotonicaigreasing function of the absolute
values of correlations, and finds an estimate of the regnessiefficients as follows:

BOY = argmin Y (yx — XB,)" - (v — XB,)

k
A S Bl DD ) Y 1Bim — SiGN(r) Bl (5)

(m,))eE

If the two phenotypes: and! are highly correlated in grapf with a relatively large edge weight,
the fusing effect increases between these two phenotypes thie difference between the two cor-
responding regression coefficiepts, andg;; is penalized more than for other pairs of phenotypes
with weaker correlation. In this article, we considg(r) = |r| for G} Flasso and fy(r) = r? for

G2 Flasso. We note that thé&i.Flasso is a special case of the,, Flasso with f(r) = 1.

The optimization problems in Equations (4) and (5) can benftdated as a quadratic pro-
gramming as described in Appendix, and there are many pyblailable software packages that
efficiently solve such quadratic programming problems. fdgularization parametersand
can be determined by a cross-validation or a validationadttpugh for a large problem, a grid
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search for the\ and~ can be time-consuming. In order to improve the efficiencyatedmining
the A and~, we use a gradient-descent type of algorithm as describagpendix.

2.3 Simulation Schemefor Modd Validation

We simulated genotype data for 250 individuals based on #pEMép data in the region of 8.79-
9.20M in chromosome 7. The first 60 individuals of the genetgata came from the parents
of the HapMap CEU panel. We generated genotypes for additt®0 individuals by randomly
mating the original 60 individuals on the CEU panel. We inded only those SNPs with minor
allele frequency greater than 0.1. Since our primary gotd imeasure the performance of the
association methods in the case of multiple correlated gtiypes, we sampled 50 SNPs randomly
from the 697 SNPs in the region in order to reduce the coroglamong SNPs from the linkage
disequilibrium.

Given the simulated genotype, we generated the true assosiaepresented as regression
coefficientsB and phenotype data as follows. We assumed that the numbéeabtypes is 10,
and that there are three groups of correlated phenotypézead s3, and 4, respectively, so that the
phenotypes in each group form a subnetwork in the correlagiaph of phenotypes. We randomly
selected three SNPs as affecting all of the phenotypes ifirftesubnetwork, and four SNPs as
influencing each of the remaining two subnetwork. We assuimecthere is one additional SNP
affecting phenotypes in the first two subnetworks, whichiegponds to the case of a SNP perturb-
ing a super-network consisting of two subnetworks such esaifye subnetwork on the left-hand
side of Figure 1. In addition, we assumed one additional Siietang all of the phenotypes. We
set the effect size of all of the true association SNPs to éimeesvalue. Once we set the regres-
sion coefficients according to this setup, we generatedhikaqtype data with noise distributed as
N(0, 1), using the simulated genotypes as covariates.

2.4 Asthma Dataset

We apply our methods to data collected from 543 asthma patana part of the Severe Asthma
Research Program (SARP). The genotype data were obtain@d f8NPs within or near IL-4R
gene that spans a 40kb region on chromosome 16. This genesaagpleviously shown to be
implicated in severe asthma [37]. We used the publicly atzéél softward®HASE [38] to impute
missing alleles and phase the genotypes. The phenotypéandatded 53 clinical traits related to
severe asthma such as age of onset, family history, andityeokvarious symptoms. The phe-
notype correlation graph thresholded at 0.7 as shown inr€igueveals several subnetworks of
correlated traits. For example, the subset of traits rélaadung physiology (the nodes for base-
lineFEV1, PreFEFPred, PostbroPred, PredrugFEV1P, MaxlFEstc.) form a large subnetwork
on the left-hand side of Figure 1, whereas traits represgrguality of life of the patients (the
nodes for AQLQ Environment, AQLQSymptom, AQLQ Emotion, ak@LQ Activity) are found

in a small subnetwork near the center of Figure 1. Our goal &xémine whether any of the SNPs
in the IL-4R gene are associated with a subnetwork of cdeeél&raits rather than an individual
trait. We standardized measurements for each phenotypme/éornean 0 and standard deviation 1
so that their values are roughly in the same range acrosopipes.
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Figure 3: ROC curves for comparison of association anatysthods with different sample size
N. A: N=50, B: N=100, C: N=150, D: N=200, and E:N=250. The effect size is 0.5, and
the thresholdy for the phenotype network is set to 0.3. Note that the cureeshie G.Flasso,
Gl Flasso, andG? Flasso almost entirely overlap.

3 Results

We compare the results from our proposed meth@dB]asso , G} Flasso andG? Flasso, with the
ones from the single-marker analysis as well as multivaregression methods such as the ridge
regression and the lasso that do not use any structurahiatosn in the phenotypes. In the ridge
regression, we set the regularization parameter to 0.00bBith is equivalent to adding a small
value of 0.0001 to the diagonal & X to make the standard regression problem non-singular. For
the lasso and our proposed methods, we used the gradiergrdsgarch for the regularization pa-
rameters\ and~ as described in Appendix. We useth(p-value)) for the standard single-marker
analysis, and the absolute value of regression coefficightss for the multivariate regression
methods and our proposed methods, as a measure of the Btoémagsociation.

3.1 Simulation study

We evaluate the performance of the association methodd bag®/o criteria, sensitivity/specificity
and phenotype prediction error. The sensitivity and spztifmeasure whether the given method
can successfully detect the true association SNPs withdése positives. The (1-specificity) and
sensitivity are equivalent to type | error rate and (1-tyiperor rate), and their plot is widely known
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The sample size is 100, and the effect size is 0.8.

as a receiver operating characteristic (ROC) curve. Thagtlgpe prediction error represents how
accurately we can predict the values of phenotypes givegehetypes of new individuals, using
the regression coefficients estimated from the previougjlable genotype and phenotype data.
We generate additional dataset of 50 individugl$)' and X", and compute the phenotype pre-
diction error as sum of squared differences between thevaluesy"*" and predicted valueg™"”

of the phenotypesy, (y1¢" — ™)' - (ype" — y"®"), wherey,"*" = X"ew3, . For both criteria for
measuring performance, we show results averaged over B0mdn generated datasets.

In the results shown below, for each dataset of sVzewe fit the lasso and the graph-guided
methods usingN — 30) samples, and use the remaining 30 samples as a validatitor sietter-
mining the regularization parameters. Once we determmegtularization parameters, we use the
entire dataset of siz&¥ to estimate the final regression coefficients given the sedgegularization
parameters.

We apply the various association methods to datasets wiyingasample sizes, and show the
ROC curves in Figure 3. We used the threshat.3 to obtain the phenotype correlation graph,
and set the effect size to 0.5. The results confirm that tts®lssan effective method for detecting
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Figure 6: Comparison of association analysis methods mg@f phenotype prediction error. The
thresholdp for the phenotype correlation network is A=0.1, B: p=0.3, C:p=0.5, and D»p=0.7.

Figure 7: Results of association analysis by different m@sHbased on a single simulated dataset.
Effect size 0.8 and thresho}d= 0.3 for the phenotype correlation graph are used. Bright pixels
indicate large values. A: The correlation coefficient mabf phenotypes, B: the edges of the
phenotype correlation graph obtained at threshold 0.3layevis as white pixels, C: The true re-
gression coefficients used in simulation. Rows corresporfsBNPs and columns to phenotypes.
D: -log(p-value). Absolute values of the estimated regression cosfiis are shown for E: ridge
regression, F: lasso, Gi.Flasso, H: G} Flasso, and I: G2 Flasso.

true causal SNPs and is affected less by the irrelevant SldRgared to the single-marker analysis
and ridge regression. When we use the weighted fusion peinattddition to the lasso penalty
as inG.Flasso, G! Flasso, andG? Flasso, the performance significantly improves over the lasso
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Figure 8: Comparison of the computation time for lagsgrlasso, Gl Flasso, andG2 Flasso. A:
Varying the number of SNPs with the number of phenotypes fitdd. The phenotype correlation
graph at threshold = 0.3 with 31 edges is used. B: Varying the number of phenotypées thi
number of SNPs fixed at 50. The phenotype networks are obtaismg thresholgp = 0.3.
The number of edges in each phenotype network is 11, 34, 53r&8142 for the number of
phenotypes 10, 20, 30, 40, and 50, respectively.

across all of the samples sizes shown in Figure 3.

In order to see how the effect size affects the performantiesofinethods for association anal-
ysis, we vary the effect size and show the ROC curves in Figufer the thresholg=0.1 of the
phenotype correlation network and sample size= 100. The Gl Flasso andG?2Flasso outper-
form all of the other methods across all of the effect sizescdBise of the relatively low value
of the thresholg = 0.1, the correlation phenotype contains many edges betweeir afgahe-
notypes that are only weakly correlated. Thus, th&'lasso that does not distinguish edges for
strong correlation from those for weak correlation doesshatwv a consistent performance across
different effect size, performing better than the lassdffacesize 0.3 but worse than the lasso at
effect size 1.0. Thé&! Flasso andG2Flasso have the flexibility to handle different strengths of
correlation in the graph, and consistently outperfofimElasso as well as the methods that do not
consider the structural information in the phenotypes.

In order to examine the effect of the thresheldor the phenotype correlation graph on the
performance of our methods, we evaluate the GFlasso methitily at 0.1, 0.3, 0.5, and 0.7,
and show the ROC curves in Figure 5. We include the ROC cunraté single-marker analysis,
the ridge regression, and the lasso that do not use the thdeshphenotype correlation graph in
each panel of Figure 5 repeatedly for the ease of compari@nuse the sample siz€ = 100
and the effect size 0.8. Regardless of the thresppttie G Flasso and G2 Flasso outperform
all of the other methods or perform at least as well as theolagss we have seen in Figure
4, the G .Flasso does not have the flexibility of accommodating edges of veyygorrelation
strength in the phenotype correlation graph, and this neggtaffects the performance of the
G.Flasso at the low thresholgh = 0.1 in Figure 4A. As we increase the threshglan Figures
4B and C, the phenotype correlation graph include only tleakgges with significant correlations.
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Thus, the performance @f Flasso approaches that @! Flasso andG? Flasso, and the curves
of the three methods in the GFlasso family almost entireriap. When the treshold is relatively
high atp = 0.7, the number of edges in the graph is close to 0, effectivatyoreng the fusion
penalty. As a result, the performance of the graph-guidethoas becomes close to the lasso.
Overall, taking into account the correlation structure iepotypes improves the detection rate of
true causal SNPs. Once the phenotype correlation grapadesithe edges that capture strong
correlations, including more edges by further loweringttiresholdo does not significantly affect
the performance of! Flasso andG2 Flasso. The same tendency is shown in the prediction errors
in Figure 6.

We show an example of a simulated dataset and the estimaeciation strength in Figure 7,
using the sample siz&¥ = 100 and effect size 0.8. Although the lasso is more successfdtiing
the regression coefficients of irrelevant SNPs to zero thamnitige regression, it still finds many
SNPs as having a non-zero association strength Giligasso, G Flasso, andG2 Flasso remove
most of those spurious SNPs, and shows a clear block-stelictthe estimated regression coeffi-
cients, with each causal SNP spanning subgroups of of ebecephenotypes. Sin€g Flasso uses
only the information on the presence or absence of edges) ethges of weak correlation con-
nect nodes across two true subgraphsGhielasso is unable to ignore the weak edges, and fuses
the effect of SNPs on the phenotypes across those two sutggrdjhnis undesirable property of
G.Flasso disappears when we incorporate the edge weightf.ifilasso andG?2 Flasso.

We show the computation time for solving a single optimmaproblem for the lassé;.Flasso,
andG,,Flasso in Figure 8 for varying number of SNPs and phenotypes.

3.2 Case Study Using Asthma Dataset

Figure 9A shows the correlation matrix of the phenotypesrattordering the phenotypes using
the agglomerative hierarchical clustering algorithm sat thighly correlated phenotypes are clus-
tered with a block structure along the diagonal. Using thoéspy = 0.7, we obtain a phenotype
correlation graph as shown in Figure 9B, where the whitelgikposition(i, j) indicates that the
i-th andj-th phenotypes are connected with an edge in the graph. Hpé ghows several blocks
of white pixels representing densely connected subgrapbshow the full graph in Figure 1. We
present results for the single-marker regression analyssidge regression, the lass@,Flasso,
Gl Flasso, and G2 Flasso in Figure 9C-H, respectively, where the rows represent ptyges,
and the columns correspond to genotypes, with bright pixeleating high strength of associa-
tion. The phenotypes in rows are rearranged according torttexing given by the agglomerative
hierarchical clustering so that each row in Figures 9C-Higgad with the phenotypes in the cor-
relation matrix in Figure 9A. In the fusion penalty in our posed methods, we use the edges in
Figure 9B obtained at threshald= 0.7. The graph obtained at threshgld= 0.7 seems to capture
the previously known dependencies among the clinicaktgith as subnetworks corresponding to
lung physiology and quality of life. We select the regulatian parameters in the lasse,Flasso,
G Flasso, andG2 Flasso using a five-fold cross validation.

As shown in Figures 9C and E, both the single-marker regrassialysis and the lasso find a
SNP near the top row, known as Q551R, as significantly agsalowath a block of correlated phe-
notypes. This subset of traits corresponds to the bottometulork (consisting of baselineFEV1,
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Figure 9: Results for the association analysis of the astiataset. A: Phenotype correlation
matrix. B: Phenotype correlation matrix thresholdegat 0.7. C: -log(p-value) from single-
marker statistical tests using a single-phenotype arsal§stimated3,’s for D: ridge regression,
E: lasso, FG.Flasso, G: Gl Flasso, and H:G2 Flasso.

PreFEFPred, AvgNO, BMI, PostbroPred, BaseFEVPer, PrédvdP, MaxFEV1P, FEV1Diff,
and PostFEF) that resides within the large subnetwork otefbdand side of Figure 1, and rep-
resents traits related to lung physiology. This Q551R SNHeen previously found associated
with severe asthma and its traits for lung physiology [3Tid @ur results confirm this previous
finding. In addition, the results from the single-markerlgsia in Figure 9C show that on the
downstream of this SNP, there is a set of adjacent SNPs tpabtapto be in linkage disequilib-
rium with this SNP and at the same time has generally a highl lvassociation with the same
subset of phenotypes. On the other hand, the lasso in Figuset® most of the regression coef-
ficients for this block of SNPs in linkage disequilibrium WiQ551R to zero, identifying a single
SNP as significant. This confirms that the lasso is an effectigthod for finding sparse estimates
of the regression coefficients, ignoring most of the irralgvmarkers by setting corresponding re-
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Table 1: Summary of results for the association analysie@bisthma dataset

Number Number of nonzero
P\ of edges regression coefficients
Lasso| G.Flasso | Gl Flasso | G2 Flasso
03| 421 105 106 108
05| 165 125 108 107 107
0.7 71 105 105 110
0.9 11 125 123 123

gression coefficients to zero. The ridge regression as simoWwigure 9D does not have the same
property of encouraging sparsity as the lasso. In fact,atissical literature, it is well-known that
the ridge regression performs poorly in problems that meqaiselection of a small number of
markers affecting phenotypes.

Since our methods in the GFlasso family include the lassalpgmnhe results fronts Flasso,
Gl Flasso, andG2 Flasso show the same property of sparsity as the lasso in their atnas
can be seen in Figures 9F-H. In addition, because of therfymoalty, the regression coefficients
estimated by our methods form a block structure, where theession coefficients for each SNP
are set to the same value within each block. Thus, each mdailZbar indicates a SNP influencing
a correlated block of phenotypes. It is clear that the hotizldoars in Figures 9F-H are generally
aligned with the blocks of highly correlated phenotypesiguFe 9A. This block structure is much
weaker in the results from the lasso in Figure 9E. For exanfpires 9F-H show that the SNPs
rs3024660 and rs3024622 on the downstream of Q551R areiassbwith the same block of
traits as Q551R, generating an interesting new hypothiesigtiese two SNPs as well as Q551R
might be jointly associated with the same subset of clinicts. This block structure shared by
the two SNPs is not obvious in the results of single-mark&stand the lasso.

We fit the lasso and our methods in the GFlasso family, whitging the threshold for the
correlation graph, and summarize the results in Table 1.\Meethreshold is high at= 0.9, only
a very small number of edges are included in the phenotypelation graph, and the contribution
of the graph-guided fusion penalty in GFlasso is low. Thbe,tumber of non-zero regression
coefficients found by thé: Flasso, G Flasso, andG2 Flasso is similar to the result of the lasso
that does not have the fusion penalty. When we lower thelibidgo p = 0.7, the number of
non-zero regression coefficients decreases significamtlyur methods. As can be seen in Figure
9B, most of the significant correlation structure is capdurethe thresholded correlation graph at
p = 0.7. Thus, as we further lower the threshold, the number of reyn-regression coefficients
generally remains unchanged.
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4 Discussion

When multiple phenotypes are involved in association mappit is important to combine the
information across phenotypes and make use of the full imédion available in data in order to
achieve the maximum power. Most of the previous approacitiesreonsidered each phenotype
separately, or used a two-stage method that first extraletisvedy primitive types of phenotype
correlation structure such as phenotypes transformedighr®CA or subgroups of phenotypes
found by clustering algorithms, and then performs a sipiienotype analysis in the second stage.
Networks or graphs have been extensively studied as a mpeg®n of correlation structure of
phenotypes such as gene expression or clinical traits bedaey provide a flexible and explicit
form of representation for capturing dependencies. Graphtain rich information on phenotype
interaction patterns such as densely connected subgtaitan be interpreted as a cluster of phe-
notypes participating in the same biological process. ypgla clustering algorithm to identify
subgraphs as in the two-stage methods can potentiallytiesalloss of information, decreasing
the power of the study. Developing a tool for multiple-phigmpe association mapping that can
directly leverage this full graph structure of phenotypas offer a way to combine the large body
of previous research in network analysis with the work omeisgion mapping.

In this article, we proposed a new family of regression meshcalled GFlasso that directly
incorporates the correlation structure represented agghgand uses this information to guide
the estimation process. The methods consider all of theqtiyees jointly and estimates the
model in a single statistical framework instead of using a-stage algorithm. Often, we are
interested in detecting genetic variations that perturblaraodule of phenotypes rather than a
single phenotype, and the GFlasso achieves this througbnfpenalty in addition to the lasso
penalty that encourages parsimony in the estimated modwl.fusion penalty locally fuses two
regression coefficients for a pair of correlated phenotyged this effect propagates through edges
of graphs, effectively applying fusion to all of the nodeshin each subgraph. Th@. Flasso
used an unweighted graph structure as a guide to find a sulbsgéwant covariates that jointly
affect highly correlated outputs. THe, Flasso used additional information of edge weights to
further add flexibility. Using simulated and asthma datasge demonstrated that including richer
information on phenotype structure as in figFlasso and G.Flasso improves the accuracy in
detecting true associations.

We used a simple scheme of a thresholded correlation graypéaiming the correlation struc-
ture for phenotypes to be used in the GFlasso. Many difféyges of network-learning algortihms
have been developed previously. For example, graphicadssaumodels (GGMs) are constructed
based on patrtial correlations that capture the direct inflaef interacting nodes, and have been
commonly used for inferring gene networks from microarratad Furthermore, in order to handle
the case with a large number of nodes and a relatively smalbkasize, sparse GGMs have been
developed. It would be interesting to see if using more ssifgated graph learning algorithms can
improve the performance of the GFlasso.

In this study, we assumed that the graph structure is aVaifatom pre-processing step. One
of the possible extensions of the proposed method is to teargraph structure and the regression
coefficients jointly by combining the GFlasso with the grimghlasso [39] that learns sparse co-
variance matrix for phenotypes. Geronemo, both the module network structure and the markers
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of regulators regulating modules were learned simultasigpalthough the genotype information

was limited to the markers within regulators [23]. When tHd&3so is extended to learn the graph
structure as well as regression coefficients, the methodeapplied to a full genome-wide scan

for associations.

The GFlasso considered only dependencies among phenpgpéslid not assume any de-
pendencies among the markers. Since recombination breakmosomes during meiosis at non-
random sites, segments of chromosomes are inherited asfeonmancestors to descendants rather
than an individual nucleotide, creating a relatively lowatdsity in observed haplotypes than would
be expected if each allele were inherited independentlysTENPs with high linkage disequilib-
rium are likely to contribute jointly to a phenotype in a regsion-based penetrance function. By
incorporating the structural information in both the gemosmd phenome, we expect to be able to
identify a block of correlated markers influencing a set afelated phenotypes.

Appendix: Parameter Estimation

In this section, we describe the procedure for obtainingredes of the regression coefficients in
GyFlasso. Since theG Flasso is a special case @k, Flasso with f(r) = 1, the same procedure
can be applied t6:.Flasso in a straight-forward manner. The optimization problem gugition
(5) is the Lagrangian form of the following optimization ptem:

Gy Flasso : BC®W = argmin Z(yk —XB8.)" - (yr — XBy) (6)
k
st Y Y Bl <siand > frm) Y |Bjm — SigN(r) Bl < sa.
kK J (m,))eE J

wheres; ands, are tuning parameters corresponding tand~ in Equation (5).
Since the objective function and constraints in Equatigrafé convex, we can formulate this
problem as a quadratic programming (QP) as follows. Betenote aJ - K)-vector that can

be obtained by concatenatiry)’s such that3. = (31,...,8%)7. We represent;, = B —

B3, Whereg’ > 0andg;, > 0, and let3; and 8. denote(J - K)-vectors of3}’s and 5;,’s
respectively. We definé; .,y = B, — sign(r,,;)8;,; for all (m,l) € Eandj = 1,...,J,
and 1etd; () = 07 ) — 05y With 67 > 0andé; > 0. Leto. = (67,...,0[;)",
wheref, = (01.,...,0;.)" fore = (m,l) € E. We defined] and@ similarly. Let M be a
(J-|E|) x (J - K) matrix, or equivalently aF| x K matrix of J x J sub-matrices. Each sub-
matrix B, , of M fore = 1,...,|E| andk = 1,..., K is an identity matrix ife = (m, ) and
k= m. If e = (m,l) andk = [, B, is set to a diagonal matrix witk-1 along the diagonal.
Otherwise B, ;. is set to a matrix of 0's. LeR be a(.J - | E|)-vector of| | sub-vectors with length
J. Each sub-vector i is set tof (r,, ;) - 1;, wherel; represents d-vector of 1's. Then, the QP

problem for Equation (6) can be written as

min “(ye — XBy)" - (vr — XB;) (7)
k
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Figure 10: An example of the cross validation error surfager @ grid of (s, s2) from graph-
weighted fused lasso.
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wherel isa(J - K) x (J - K) identity matrix, andl;.x is a(J - K')-vector of 1's.

The above QP procedure finds the optindals for fixed s; ands,. Thes; ands, can be
selected via cross-validation by running the QP procedara grid ofs; ands, and selecting the
s; ands, that give the lowest validation-set err6f(s;, so) as was suggested for the fused lasso
[35]. The QP solver foG, FLasso runs reasonably fast for fixed ands,, but the grid search
with a cross-validation can be time-consuming. Insteadtake a gradient-descent approach that
iterates between solving the QP with the current values @inds, and updating; ands, with
(s1,82) < (s1,52) —nVC(s1, s2), where the gradient is approximated by a finite differenagore
(Yt Clons) Closath)=Clans)y - Figure 10 shows a typical example of the cross-validation

h )
error over the grid of(sq, s2) from Gy Flasso. We exploit the shape of this error surface, and

determine the initial valuesgo) and sg‘” for the gradient descent as follows. We first search for
s§°> that produces the minimum cross-validation error by s@jtfre lasso withs; = co. Then we
fix s; at s§°>, and perform another one-dimensional search in the diredtf s,, starting from 0

to find the optimalsgo) for the G, Flasso along this path. In our experiments, we found that the
initial values obtained by this procedure was sufficientbse to the global optimum, and that it
converged to the optimum within a relatively small numbeitefations.
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