
 Stacked Graphical Learning

Zhenzhen Kou

December 2007
CMU-ML-07-123

Stacked Graphical Learning

Zhenzhen Kou

December, 2007
CMU-ML-07-123

Machine Learning Department
School of Computer Science
Carnegie Mellon University

Pittsburgh PA 15213

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Thesis Committee:
William W. Cohen (Chair)

Robert F. Murphy
Tom M. Mitchell

David Jensen, University of Massachusetts Amherst

Copyright © 2007 Zhenzhen Kou

Keywords: Statistical Relational Learning, Graphical Models, Machine Learning

To my parents for love and support.

Abstract

In reality there are many relational datasets in which both features of
instances and the relationships among the instances are recorded, such as
hyperlinked web pages, scientific literature with citations, and social net-
works. Collective classification has been widely used to classify a group of
related instances simultaneously. Recently there have been several studies
on statistical relational learning for collective classification, including re-
lational dependency networks, relational Markov networks , and Markov
logic networks. In statistical relational learning models, collective classifi-
cation is usually formulated as an inference problem over graphical models.
Hence the existing collective classification methods are expensive due to
the iterative inference procedure required for general graphical models.
Procedures that learn collective classifiers are also expensive, especially if
they are based on iterative optimization of an expensive iterative infer-
ence procedure. Our goal is to develop an efficient model for collective
classification for relational datasets.

In my thesis, I have studied a learning scheme called stacked graphi-
cal learning. In stacked graphical learning, a base learner is augmented
by providing the predicted labels of relevant instances. That is, first, a
base learner is applied to the training data to make predictions using a
cross validation-like technique. Then we expand the features by adding
the predictions of relevant examples into the feature vector. Finally the
base learner is applied to the expanded feature sets to make the final
predictions. The intuition behind stacked graphical learning is that com-
bining the predictions on the neighbors with local features can capture
the dependencies among examples; hence we can rely on the base learner
to classify the instances using the expanded feature set.

We have applied stacked graphical learning to many real problems
including collective classification, sequential partitioning, information ex-
traction, and multi-task problems in an information extraction system.
Stacked graphical learning has been demonstrated to achieve competitive
performance to the state-of-art relational graphical models with much less
inference time.

In addition to exploring many applications of stacked graphical learn-
ing in real problems, we formally analyze an idealized version of the al-
gorithm, which can be formulate as an inhomogeneous Gibbs sampling
process with parameters learned in a greedy manner, provide proof of
convergence of the idealized version of stacking, and discuss the condi-
tions under which the algorithm of stacked graphical learning is nearly
identical to the idealized stacked graphical learning.

We also studied an online version of stacked graphical learning, which
integrates a single-pass online learning algorithm Modified Balanced Win-
now with stacked learning. Online stacked graphical learning can save

training time and is capable to handle large streaming datasets with min-
imal memory overhead. We analyze the time and memory cost of online
stacked graphical learning and applied it to several real problems.

ii

Acknowledgments

I owe a lot to my advisors William W. Cohen and Robert F. Murphy
for their great guidance and timely support. I am grateful that they gave
me the invaluable opportunity to join the SLIF project when I was in
the first year. I also appreciate the freedom I was given to work on both
SLIF and CALO projects, which was really an eye opener. It has been a
great pleasure to have the opportunity to work with such true experts in
the field. My advisors taught me how to do research, how to give good
talks, and how to write scientific papers. They are always supportive -
when I met obstacles, their encouragement and optimism help me to gain
more confidence, and to achieve my goal. William is more than just an
academic advisor to me: he introduces me to his fellows and encourages
me to explore opportunities in industry labs to broaden my horizons.

I would also like to thank my other thesis committee members, Tom
Mitchell and David Jensen, for their invaluable assistance, feedback and
patience at all stages of this thesis. Their criticisms, comments, and ad-
vice were critical in making this thesis more accurate, more complete and
clearer to read.

Moreover, I thank all the fellow group members in Murphy’s lab and
text learning group for providing me inspiration and suggestions during
the meetings and discussions. My special thanks go to Juchang, Sam,
Xiang, Kai, Richard, Einat, Quinten, Sophie, Yifen, and Andrew for their
insightful discussions. I thank Vitor R. Carvalho for the joint work on
extending standard stacked graphical learning to the online version.

Thanks to my good friends and fellow graduate students, Yanhua Hu,
Jimeng Sun, Huiming Qu, Minglong Shao, Changhao Jiang, Ke Yang,
Ning Hu, Yanjun Qi, Ting Liu, Jiaxin Fu, Jie Xu, Jiang Ni, Sichen Sun
for their good friendship and support.

I spent one summer at IBM TJ Watson as an intern. The experience
provides me a unique opportunity to see how people outside universities
do real work and do research. I thank my co-workers there who make the
intern experience enjoyable: Yan Liu, Rick Lawrence, Saharon Rosset,
Claudia Perlich, Prem Melville, and Naoki Abe.

I am also indebted to Carnegie Mellon University and many people
here. CMU has the ideal atmosphere for graduate study: open and relax-
ing environment, insightful experts in diverse domains, nice and friendly
people. My special thanks go to Christos Faloutsos for supporting me to
explore research and career opportunities in data mining. I will surely
miss many people here: Diane Stidle, Sharon Cavlovich, Monica Hopes,
Chenyu Wu, Xiaofeng Wang, Leo Gu, Yan Li, and Yiheng Li.

Last, but definitely not the least, I would also like to thank my family
for their love and support, without which I would not have survived the
Ph.D. process.

iv

Contents

1 Introduction 1

1.1 Relational Data and Statistical Relational Learning 1

1.2 Stacked Graphical Learning . 4

1.3 Thesis Outline . 5

2 Stacked Graphical Learning 9

2.1 Notation . 9

2.2 The Algorithm . 11

2.3 An Example . 14

2.4 Theoretical Insight . 17

2.4.1 Gibbs sampling and dependency networks 17

2.4.2 An idealized version of stacked graphical learning 19

2.4.3 Stacked graphical learning as greedy learning of an inhomoge-
neous sampler . 21

2.5 Conclusions . 23

3 Applications 25

3.1 Collective Classification Over Relational Datasets 25

3.1.1 The problems and datasets . 25

3.1.2 Methods . 26

3.1.3 Experimental results . 28

3.2 Sequential Partitioning . 31

3.2.1 The problems, datasets, and methods 31

3.3 Named Entity Extraction . 33

3.3.1 Problems and datasets . 33

3.3.2 Experimental results . 35

v

3.4 Inference Efficiency of Stacked Graphical Learning 36

3.5 A further approximation to the stacked model 41

3.6 An alternative Gibbs sampler . 44

3.7 Conclusions . 45

4 In-depth Case Studies 47

4.1 SLIF Task 1: Collective Classification of Panel Labels 47

4.1.1 SLIF overview . 47

4.1.2 Collective classification in SLIF 51

4.1.3 Experimental results . 53

4.2 SLIF Task 2: Application in SLIF as a Multi-task System 58

4.2.1 A stacked model for mapping 58

4.2.2 Experiments . 62

4.3 WebMaster: Another Multi-task System 66

4.3.1 Problem formulization and WebMaster dataset 66

4.3.2 Experimental results . 68

4.4 Job Title Prediction . 71

4.4.1 Task description . 72

4.4.2 Methods . 75

4.4.3 Experimental results . 79

4.5 Conclusions . 83

5 Online Stacked Graphical Learning 85

5.1 Online Stacked Graphical Learning 86

5.1.1 Single-pass online learning . 86

5.1.2 MBW . 87

5.1.3 Online stacked graphical learning 89

5.2 Experiments . 93

5.2.1 Problems and datasets . 93

5.2.2 Experimental results . 98

5.2.3 Training efficiency of online stacked graphical learning 99

5.3 Conclusions . 101

6 Literature Review and Related Work 103

vi

6.1 Graphical Models and Their Relational Extensions 104

6.1.1 Bayes networks and probabilistic relational models 104

6.1.2 Dependency networks and relational dependency networks . . 106

6.1.3 Conditional random fields and relational Markov networks . . 107

6.1.4 Markov logic networks . 108

6.2 Other Related Work . 108

6.2.1 First-Order learner (FOIL) for hypertext classification 108

6.2.2 Conditional graphical models 109

6.2.3 Associative Markov networks 109

6.2.4 Languages for statistical relational learning 109

6.2.5 Two-stage CRFs . 110

6.2.6 Piecewise CRFs . 110

6.2.7 Sub-sampling techniques for mining massive relational databases110

6.2.8 Aggregation and relational template design 111

6.3 Comparison of stacked graphical learning to other relational models . 111

7 Conclusions and Future Directions 113

7.1 Contributions . 113

7.2 Related Publications . 114

7.3 Future Directions . 115

A Detailed t-test results 117

vii

viii

List of Figures

2.1 A cross-validation-like technique to obtain predictions for training ex-
amples . 12

2.2 Standard Stacked Graphical Learning and Inference. K: the level of
stacking; xk

i : the instance expanded from xi; ŷk
i : the level-k prediction

of xi; and fk: the learned classifier, at kth level of stacking. 13

2.3 An example: the WebKB dataset . 15

3.1 Convergence rate of stacking and Gibbs sampling, on SLIF Task 1 and
WebKB task . 39

3.2 Convergence rate of stacking and Gibbs sampling, on Cora and Citeseer
datasets . 40

3.3 Performance of the further approximation 43

3.4 Performance of the alternative Gibbs sampling methods 44

4.1 A figure caption pair reproduced from the biomedical literature. . . 48

4.2 Another figure caption pair reproduced from the biomedical literature. 48

4.3 Overview of the image and text processing steps in SLIF. 49

4.4 An example figure in SLIF . 52

4.5 A graph for dependencies in SLIF Task 1 53

4.6 Long-range dependency. 62

4.7 An RDN model . 63

4.8 The reporting structure . 72

4.9 A challenging example . 73

4.10 The distribution of job categories . 74

5.1 Online Stacked Graphical Learning . 90

5.2 The procedure to obtain predictions for training examples via an online
base learner, with limited data . 92

ix

6.1 An example Bayes network . 104

6.2 A dependency model for the university registration example 105

x

List of Tables

2.1 Summary of notations. 11

2.2 Evaluation of stacked graphical models with the WebKB dataset. The accu-
racy for “webpage classification” is reported. We compared stacked graphi-
cal model to a local model, a MaxEnt model. 17

3.1 Evaluation on five models. The accuracy for “Document classification” is
reported. We compared stacked graphical model to a local model, other
relational models, and its probabilistic ceiling. The local models are MaxEnt
models. The competitive relational models are RDN models and RMN
models. 29

3.2 Summary of evaluation with t-test on collective classification: this table
shows how many times model i in the row achieves higher accuracy than
model j in the column. 30

3.3 Accuracy comparison of stacked graphical learning for sequential partition-
ing. The local model is MaxEnt. We compared to conditional random fields
(CRFs) and the naive relational model described in section 3.1. 32

3.4 Hand-coded rules to generate features for protein name extraction. 34

3.5 Evaluation on five models. The F1-measure for NER is reported. We com-
pared stacked graphical models (with different relational templates) to a
local model, other relational models, and its probabilistic ceiling. The local
models are CRFs. The competitive relational models are stacked CRFs. . 36

3.6 Summary of evaluation with t-test for named entity extraction: this table
shows how many times model i in the row achieves higher accuracy than
model j in the column. “Stack (seq.)” denotes the stacked model with
sequential relational template, “Stack (rel.)” denotes the stacked model
with relational relational template. 37

3.7 Comparison on performance and efficiency. “39.6” means that the infer-
ence in stacked graphical learning is 39.6 times faster than Gibbs sampling.
“+” means that the accuracy of stacked graphical learning is statistically
significantly better than the accuracy of Gibbs sampling. 38

xi

4.1 Evaluation on six models. We compared stacked graphical model to a local
model, another relational model, and its probabilistic ceiling. The local
models for “SLIF” is MaxEnt. The competitive relational model is RDNs. 54

4.2 Using confidence from local models as stacked features. 54

4.3 Performance of a stacked graphical model with random data splitting. 55

4.4 Performance of a stacked graphical model based on a MexEnt Learner
with expanded feature set (here we used the predicted class labels as
stacked features). 56

4.5 Performance of a stacked graphical model based on a boosted decision
tree learner. 57

4.6 Performance of a stacked graphical model with circular features. . . . 57

4.7 Accuracy of image pointer to pane label matching. 64

4.8 Performance on image pointer extraction and panel label extraction. . 66

4.9 Evaluating stacked graphical model on webmaster data. The local
model was chosen according to Minkov’s paper. Two relational tem-
plates for stacked graphical models were explored. The ceiling was
obtained by using true labels from relevant subtasks. 69

4.10 Evaluating stacked graphical model on webmaster data with a base
feature set. 70

4.11 Accuracies on the first dataset (979 examples) and second dataset (27,626
examples), with simple models. 80

4.12 Accuracy on the 3rd data set, with simple classification models 81

4.13 Accuracy on the data in global business service, stacked models, the upper
bound is obtained using the dist. estimated with true labels 81

4.14 Comparison of non-relational learning and Markov networks, on the 3rd
dataset. 82

5.1 Modified Balanced Winnow (MBW). 89

5.2 Performance of online stacked graphical learning for relational datasets: ac-
curacy for “Document classification” and F1-accuracy for “SLIF” are re-
ported. We evaluated two local models: MaxEnt and MBW. We also com-
pared to a competitive relational model - relational dependency networks.
The standard stacked model used two-fold-cross-validation predictions. The
online stacked graphical model is based on MBW. We used 1 level of stack-
ing, i.e., K=1. 94

xii

5.3 Accuracy comparison of online stacked graphical learning for sequential par-
titioning. We evaluated two local models: MaxEnt and MBW. We compared
to a competitive graphical model - conditional random fields. The standard
stacked model used two-fold-cross-validation predictions. The online stacked
graphical model is based on MBW. We used level 1 of stacking. 95

5.4 Performance of online stacked graphical learning for Named Entity Extrac-
tion, F1 accuracy is reported. “Relational template 1” returns predictions of
adjacent tokens only, “relational template 2” returns predictions of adjacent
and repeated tokens. 96

5.5 Comparison on training time. 100

A.1 Evaluation with t-test on collective classification: SLIF data. 118

A.2 Evaluation with t-test on collective classification: WebKB data. 118

A.3 Evaluation with t-test on collective classification: Cora data. 118

A.4 Evaluation with t-test on collective classification: CiteSeer data. 119

A.5 Evaluation with t-test on named entity extraction: UT data. “Stack (seq.)”
denotes the stacked model with sequential relational template, “Stack (rel.)”
denotes the stacked model with relational relational template. 119

A.6 Evaluation with t-test on named entity extraction: Yapex data.“Stack (seq.)”
denotes the stacked model with sequential relational template, “Stack (rel.)”
denotes the stacked model with relational relational template. 120

A.7 Evaluation with t-test on named entity extraction: Genia data.“Stack (seq.)”
denotes the stacked model with sequential relational template, “Stack (rel.)”
denotes the stacked model with relational relational template. 120

A.8 Evaluation with t-test on named entity extraction: CSpace data.“Stack
(seq.)” denotes the stacked model with sequential relational template, “Stack
(rel.)” denotes the stacked model with relational relational template. . . . 121

xiii

xiv

Chapter 1

Introduction

1.1 Relational Data and Statistical Relational Learn-

ing

Traditional machine learning methods assume that instances are independent and

identically distributed, i.e., i.i.d.. In reality there are many relational datasets, such

as hyperlinked web pages, scientific literature with citations, and social networks.

Relational datasets record both features of instances and the relationships among the

instances. Usually there are multiple types of objects and relations between objects

in relational datasets. The dependencies among data can be complex, i.e., there can

be several types of dependencies and there might be attributes associated with links.

For example, in the international movie database, the relationship between actors and

movies is “act-in”, the relationship between movies and directors is “directed-by”.

And in a social network, people are connected due to “attending the same school”,

or “sharing same interests”, or “having friends in common ”. The instances can also

have varying structures; for example, papers may have different numbers of authors,

and web pages link to different numbers of web pages. Therefore relational datasets

1

often have structures and dependencies that contradict the “i.i.d.” assumption of

traditional machine learning algorithms.

Collective classification has been widely used for classification on relational datasets

[26, 49]. In collective classification, classes are predicted simultaneously for a group

of related instances, rather than predicting a class for each instance separately. Re-

cently there have been several studies on statistical relational learning for collective

classification. Statistical relational learning addresses the challenge of applying statis-

tical learning algorithms to problems which involve rich collections of objects linked

together in complex relational networks. Examples of relational graphical models

include relational dependency networks [25], relational Markov networks [58], and

Markov logic networks [55]. Statistical relational learning models have the capability

of modeling dependencies between examples and provide better predictive accuracy

and better understanding of the relational domains.

Collective classification can be formulated as an inference problem over graphical

models [27], which are a powerful computational tool to represent and analyze complex

statistical dependencies with graphs. In graphical models, nodes represent random

variables, and edges represent conditional independencies. Graphical models define a

joint probability distribution over all the variables as a product of the local functions

at the nodes of the graph and inference queries are answered by marginalization.

Consider collective classification in the context of Markov random fields (MRFs) [27].

Markov random fields are undirected graphical models which define independence

among data as follows: two (sets of) nodes A and B are conditionally independent

given a third set, C, if all paths between nodes in A and B are separated by a set of

nodes in C. In MRFs, the meaning of “locality” is defined in terms of maximal cliques,

cliques that can not be extended to include more nodes without losing the property

of being fully connected. The local function is defined upon maximum cliques C and

referred to as a potential function ψ. Following the setup for a classification task, the

2

conditional probability of the labels Y given the observations x can be written as

follows:

P (Y1, . . . , Yn|x1, . . . ,xn)

=
1

Z

∏
C∈C

ψC(xC)

,

in which C represents a collection of cliques, C refers to a clique in C, and Z is a

normalization factor, obtained by summing the product with respect to x and usually

referred to as partition function.

Inference in MRFs is intractible in the general case [28]. Common approximate

inference approaches includes Gibbs sampling [23] and loopy belief propagation [28],

which are based on iterative updating schemes. Learning the parameters for graphi-

cal models from a dataset is typically expensive, as it requires probabilistic inference

(usually iterative procedures) in order to assess the likelihood of the data, and typi-

cally, this inference is the inner loop of some optimization procedure for training.

An alternative approach which is often used is to maximize the pseudo-likelihood of

the data. Pseudo-likelihood approximates the likelihood function of a graphical model

with a product of conditional distributions of each variable given its neighbors. As

such, using a pseudo-likelihood method avoids the need to calculate the full partition

function. This is quite tractible, as it simply requires learning separate conditional

models for each variable. Gibbs sampling for an MRF with parameters learned to

maximize pseudo-likelihood is closely related to conditional dependency networks [23].

In relational graphical models, the graph is often massive since each example is

a node and each link in the dataset is an edge in the graph. In addition, Gibbs

sampling usually takes many iterations to converge and thus graphical models are

usually expensive, especially when exact inference is infeasible. To summarize, the

3

existing collective classification methods are expensive due to the iterative inference

procedure required for general graphical models. Procedures that learn collective

classifiers are also expensive, especially if they are based on iterative optimization of

an expensive iterative inference procedure. Hence our goal is to develop an efficient

model for collective classification for relational datasets.

1.2 Stacked Graphical Learning

Cohen and Carvalho introduced stacked sequential learning [5]. In a stacked sequen-

tial model, an extended instance is obtained by expanding each instance’s features

with the predicted labels of the nearby instances. To obtain labels predicted by a

base learner, a cross validation-like technique is applied during training. On several

sequential learning tasks the stacked sequential learning achieved better performance

than other sequential algorithms such as conditional random fields (CRFs)[36].

Stacked sequential learning is capable of capturing long-range dependencies easily

and can be constructed with any kind of base learner. It is also very efficient, having

a limited number of rounds of learning. Also the inference is not iterative: instead,

only one iteration is needed.

In my thesis, I have extended the stacked sequential model to a more general case,

where relational data is considered as the application. I proposed a learning scheme

called stacked graphical learning. In stacked graphical learning, a base learner is

augmented by providing the predicted labels of related instances. That is, first, a base

learner is applied to the training data to make predictions using a cross validation-

like technique. Then we expand the features by adding the predictions of relevant

examples into the feature vector. Finally the base learner is applied to the expanded

feature sets to make the final predictions. The intuition behind stacked graphical

4

learning is that combining the predictions on the neighbors with local features can

capture the dependencies among examples; hence we can rely on the base learner to

classify the instances using the expanded feature set.

One advantage of stacked graphical learning is that dependencies can be captured

easily using a relational template C, which finds instances related to a given example.

Stacked graphical learning can be constructed based on any base learning algorithm,

i.e., the base learner does not have to be a graphical model. Stacked graphical learning

is easy to implement, and the training and inference are efficient.

We have applied stacked graphical learning to many real problems including collec-

tive classification, information extraction, and multi-task problems in an information

extraction system. Stacked graphical learning has been observed to achieve com-

petitive performance to the state-of-art relational graphical models with much less

inference time.

1.3 Thesis Outline

In this thesis, our primary goal is to develop an efficient statistical relational model

for inference over relational data. In particular, we hope to design models to scale

up statistical relational learning to massive data sources. We organize the rest of the

thesis as follows:

In Chapter 2, we introduce the algorithm of standard stacked graphical learning,

and give an example to demonstrate how the algorithm works and its performance.

Next, we formally analyze an idealized version of the algorithm, compare the stacking

procedure to Gibbs samping, and provide theoretical proof for the convergence, in

order to better understand its performance.

In Chapter 3, we describe the application of stacked graphical learning to three do-

5

mains: collective classification, sequential partitioning, and inter-related subtasks in

multi-task systems. We evaluated stacked graphical learning with eleven real datasets

and compared the performance with state-of-art relational graphical models. The

experimental results demonstrated that stacked graphical learning can improve the

performance of the base learner statistically significantly and are competitive in real

applications: achieving comparable accuracy to state-of-art models with much less

inference time. We also discuss the inference efficiency of stacked graphical learn-

ing compared to other relational models. The experimental results demonstrate that

many iterations in not necessary in the inference of stacked graphical learning.

In Chapter 4, we provide in-depth study the application of stacked graphical

learning to four cases: two applications in an information extraction system, Subcel-

lular Location Image Finder (SLIF), another application to WebMaster system, and

an application to the large-scale job title prediction. In the case study, we not only

provide the performance of stacked graphical learning to solve a collective classifica-

tion problem, but also analyze how to tune the setup to further improve the accuracy

and explore the application in multi-task systems to multi-task learning.

In Chapter 5, we extend the standard stacked graphical learning to an online

version, to save training time and to handle large streaming datasets with minimal

memory overhead. We briefly describe a single-pass online learning algorithm Modified

Balanced Winnow (MBW) [4] and introduce a scheme to integrate MBW with stacked

learning. We analyze the time and memory cost of online stacked graphical learning

and propose an implementation with limited data. In the application to real problems,

we also provide empirical solutions to split relational datasets into disjoint subsets.

In Chapter 6, we survey recent progress in graphical models and their relational

extensions. We reviewed related work on relational template design, efficient graphical

models, and a sampling based scheme to analyze large-scale relational datasets.

6

In Chapter 7, we summarize the thesis work, state its major contributions as well

as limitations, and discuss future directions.

7

8

Chapter 2

Stacked Graphical Learning

2.1 Notation

We consider here collective classification tasks, in which the goal is to “collectively”

classify some set of instances in a relational dataset. In this section we introduce the

notations first.

We denote a random variable by a capitalized letter (e.g., V or W), and the state

or value of a corresponding variable by that same letter in lower case (e.g., v or w).

We denote a list of variables by a bold-face capitalized token (e.g., V or W). We use

a corresponding bold-face lower-case token (e.g., v or w) to denote an assignment

of state or value to each variable in a given set. The probability of W = w given

V = v is denoted as p(W = w|V = v). Let wj
i denote an instance and let xi denote

a collection of instances wi’s: xi =< w1
i , ...,w

Ni
i >. Let yi denote the corresponding

list of labels for xi, and (xi,yi) is a labeled collection of instances. For example, in a

relational dataset containing linked webpages, wi can be a bag-of-word representation

of a webpage and yi is the category of wi. In a sequential classification task (e.g.,

extracting names from sentences), xi can be a sequence of wj
i ’s, where wj

i is the

9

feature vector for token j of xi.

We use p(Y = y|X = x) (or p(y|x) as a shorthand) to denote the probability that

Y = y given X = x. The random variables X and Y are jointly distributed, but Y

is usually inferred from X and in most cases people are interested in p(Y|X) directly

(e.g., in a discriminative framework).

In our notation, a dataset is D = {(x1,y1), ..., (xn,yn)}. Let x denote a set of

instances and y denotes the corresponding labels for x.

In classification tasks, the inference problem is to estimate p(Y|X) given a training

set D. In traditional machine learning with the i.i.d. assumption, the model for

inference is usually in the following format:

pθ(Y|X) ∝
n∏

i=1

pθ(yi|xi)

where θ denotes the parameters in the model.

In relational datasets, dependencies among examples can not be ignored. Collec-

tive classification can be formulated as an inference problem over Markov random

fields (MRFs), where nodes represent random variables and edges represent depen-

dencies. MRFs define a joint probability distribution over all the variables in which

each label yi depends on the labels yi1 , . . . , yiL of some set of “neighboring” or “re-

lated” instances, as well as the instance xi. We let Y−i denote the set of all variables

with indices {j : j 6= i}. We will let MBi denote variables in the Markov blanket (set

of related instances) for yi, i.e., the set such that p(Yi|Y−i,X) = p(Yi|MBi,X). When

it is necessary to make a distinction, MBi will denote a set of random variables, and

MBi(y
′) will denote the projection of the concrete assignment y′ onto the variables

in MBi. Hence in MRFs, we have

p(Y|X) =
n∏

i=1

p(Yi|Y−i,x, θ)

.

10

Table 2.1: Summary of notations.

Symbol Description

V , W Random variables

V, W A set of random variables

v, w Assignments of V , W

v, w Assignments of V, W

xi A collection of instances, xi =< w1
i , ...,w

Ni
i >

yi The corresponding list of labels for xi

D = {(xi,yi)} Dataset

p(Y = y|X = x) Probability of Y = y given X = x

MBi Random variables in the Markov blanket for yi

Table 2.1 summarizes the notations defined here.

2.2 The Algorithm

In classifying relational datasets, the simplest approach of approximating P (Y|X) =

∏n
i=1 p(yi|xi) with the i.i.d. assumption via “ordinary” machine learning algorithms

can not achieve satisfactory accuracy. Hence we aim to develop a model in which

p(Yi|MBi,x) is estimated. However, in general the values in MBi are not known and

they are updated iteratively during inference over MRFs. We propose to approximate

Y ’s in MBi with a simpler model in stacked graphical learning, i.e., predict Y ’s with

simple classification models. In our stacked graphical learning, we model the joint

probability in a scheme similar to the pseudo-likelihood measure, i.e., if Xi and Xj are

not directly connected, Xi is conditionally independent of Xj given Xi’s neighbors.

Hence we model the local conditional probability distribution with a base learner

given features built upon predicted Y ’s in MBi. And the joint probability is modeled

11

Given a training set D = {(x1,y1), ..., (xn,yn)} and a base learner A, construct cross-

validated predictions as follows:

1. Split D into J equal-sized disjoint subsets D1 , ..., DJ .

2. For j = 1 , ..., J , let fj = A(D −Dj). That is, train an ordinary classifier fj,

based on all the data from D except the subset Dj.

3. For xt ∈ Dj, let ŷt = fj(xt). That is, for (xt, yt) in Dj, apply the classifier fj

to xt to obtain a set of predictions, ŷ.

Figure 2.1: A cross-validation-like technique to obtain predictions for training exam-

ples

by the local CPD while treating the data as i.i.d..

We consider a model that captures the dependency by expanding the features

of wj
i with “predicted” labels for the related instances, i.e., variables in the Markov

blanket. We use predicted labels instead of true labels since during inference there

is no way to get true labels. We use a relational template C to pick up the related

instances. A relational template is a procedure that finds all the instances related

to a given example and returns their indices. For wj
i , C(wj

i) retrieves the indices

i1, ..., iL of instances wi1
i , ..., wiL

i that are related to wj
i . Given predictions ŷi for a

set of instances xi, C(wj
i , ŷi) returns the predictions on the related instances, i.e.,

ŷi1 , ..., ŷiL . Since the relation between wj
i and wk

i might be one-to-many, for example,

webpages link to different numbers of webpages, we allow aggregation functions to

combine predictions on a set of related instances into a single feature. In the webpage

example, a COUNT aggregator can be applied to retrieve the number of outgoing

and incoming links in each category, given one webpage.

One practical difficulty to obtain predictions for training examples is that, while

some learning methods produce reasonably well-calibrated probability estimates on

12

• Parameters: a relational template C.

• Learning algorithm: Given a training set D = {(x1,y1), ..., (xn,yn)} and a base

learner A:

– Learn the local model, i.e., when k = 0:

Let f 0 = A(D0). Please note that D0 = D.

– Learn the stacked models, for k = 1...K:

1. Construct predictions ŷk−1
i for xk−1

i ∈ Dk−1 in a cross-validation-like

way, as shown in Figure 2.1.

2. Construct an extended dataset Dk = {(xk
1,y1), ..., (x

k
n,yn)} by con-

verting xi to xk
i as follows: let xk

i =< (w1
i)

k, ..., (wNi
i)k >, where

(wj
i)

k =< wj
i , C(wj

i , ŷi
k−1) >, C(wj

i , ŷi
k−1) will return the predictions

for examples related to wj
i .

3. Let fk = A(Dk).

• Inference algorithm: given a set of testing instances x :

I ŷ0 = f 0(x).

For k = 1...K,

II Carry out Step 2 above to produce xk.

III yk = fk(xk).

Return yK .

Figure 2.2: Standard Stacked Graphical Learning and Inference. K: the level of

stacking; xk
i : the instance expanded from xi; ŷk

i : the level-k prediction of xi; and

fk: the learned classifier, at kth level of stacking.

13

unseen test data, their probability estimates on training data are biased. Thus,

to obtain the “predictions” for training examples, we apply a cross-validation-like

technique suggested by a meta-learning scheme, stacking [61]. The procedure to

obtain the predictions for training examples is shown in Figure 2.1. That is, we split

the training set D = {(x1,y1), ..., (xn,yn)} into J disjoint subsets D1 , ..., DJ , train

an ordinary classifier fj for Dj based on all the data from D except the subset Dj,

and apply fj to examples in Dj to obtain their predictions.

Finally we end up with the inference and learning methods of Figure 2.2 for

collective classification. In stacked graphical learning, we first ignore the dependencies

and obtain the prediction for the training set via a cross-validation-like technique

based on pure local features and an ordinary classifier. Then we expand the feature

vector for each example with features calculated based on the predictions of its related

examples. Finally we learn a model based on the expanded feature set, which contains

both local attributes and information about dependencies.

The relational template can be extended to include aggregation functions based

on ŷ and xi. We will demonstrate the use of aggregations in the next chapter.

2.3 An Example

Consider a collection of webpages with hyperlinks among them, as an example to

demonstrate how stacked graphical learning works. In our example, we consider the

WebKB dataset [11] which contains webpages from four computer science departments

and the task of classifying webpages in a website into six categories: course, faculty,

student, staff, research projects, or other. In this example, xj is a site, yj is the

corresponding label, wi
j is the bag-of-words representation of a webpage, and the

relational template C encodes hyperlinks. We use Cri to denote a webpage labeled

14

Fac
2

Cr
3

Cr
1

Stu
5 O

6

Cr
4

RP
8

Fac
7

Sta
9

Figure 2.3: An example: the WebKB dataset

“course”, Facj for a webpage labeled “faculty”, Stuk for a webpage labeled “student”,

Stal for a webpage labeled “staff”, RPm for a webpage labeled “research project”,

and On for a webpage labeled “other”. Figure 2.3 shows examples with dependencies.

Define the webpages with direct hyperlinks between them to be relevant, e.g., in

Figure 2.3, Cr4 is relevant to Fac2, Cr3, Stu5, O6, and Fac7. The relational template

C selects the predictions of the relevant webpages, e.g., C(w4, ŷ) = (v̂2, v̂3, v̂5, v̂6, v̂7).

In this example, we define the aggregation function to COUNT the number of re-

lated instances in each category. For example, denote the categories course, fac-

ulty, student, staff, research projects, and other with 0, 1, 2,...,5 respectively. If

v̂2 = 1, v̂3 = 0, v̂5 = 2, v̂6 = 5, v̂7 = 1, C(w4, ŷ) will produce additional features

(1,2,1,0,0,1).

In the WebKB problem, we split the webpages into four subsets by departments,

hence J = 4. We use MaxEnt as the base learner (more details about the base learner

and features are described in Chapter 3.1.1) and let A denote the base MaxEnt

learner. The stacked graphical learning works in the following manner:

• To learn the stacked model:

– Construct predictions v̂i for each webpage wi as follows:

1. Split D into 4 subsets D1, D2, D3, D4.

15

2. For j = 1, ..., 4, let fj = A(D −Dj). For example, f1 = A(D2 + D3 +

D4). fj is trained with a bag-of-words representation of webpages.

3. For wi ∈ Dj, v̂i = fj(wi). Here wi is the bag-of-words representation

of a webpage.

– Construct an extended dataset D′ of instances (wi
′, vi) , where wi

′ =

(wi, C(wi, ŷ)). That is, the extended feature vector contains the bag-of-

words representation of a webpage and the additional features returned by

the relational template.

– Return f ′ = A(D′), where f ′ is trained with the extended dataset D′.

• To learn the local model: Return f = A(D).

• Inference algorithm: given a website (or a collection of webpages) x :

I ŷ0 = f 0(x).

For k = 1...K,

II Carry out Step 2 above to produce xk.

III yk = fk(xk).

Return yK .

Table 2.2 shows the performance of stacked graphical models with 1 and 2 it-

erations compared to the local MaxEnt model. On the WebKB dataset, stacked

graphical learning improves the accuracy of the base learner and there is no signif-

icant difference in accuracy for k=1 and k=2 in stacking. We did not include the

performance of stacking with more iterations in the table here. Usually with more

iterations, the performance of stacking keeps at the same level, which suggests that

stacking converges very quickly and does not require many iterations. We will study

further into the performance of stacked graphical models in Chapter 3.

16

Table 2.2: Evaluation of stacked graphical models with the WebKB dataset. The accuracy

for “webpage classification” is reported. We compared stacked graphical model to a local

model, a MaxEnt model.

WebKB

Local model 57.6

Stacked model (k=1) 72.9

Stacked model (k=2) 72.1

2.4 Theoretical Insight

In this section we formally analyze an idealized version of the algorithm, in order

to better understand its performance. We consider a Markov chain to generate the

data to be modeled. Starting with a homogeneous process defined under the scheme

of dependency networks and Gibbs sampling, we introduce an idealized version of

stacked graphical learning, which can be formulate as an inhomogeneous Gibbs sam-

pling process with parameters learned in a greedy manner. Finally we discuss the

conditions under which the algorithm of stacked graphical learning described in this

chapter is nearly identical to the idealized stacked graphical learning.

2.4.1 Gibbs sampling and dependency networks

We will assume that the data to be modeled, D = {(xi,yi)}, can be generated by

a homogeneous Markov chain, i.e., a Markov chain with time-invariant conditional

probabilities. In other words, we assume that each yi is drawn from a distribution

π(Y|X = xi), where π(Y|X) can be defined as the limit of the following process as

T →∞:

1. for i = 1 . . . n, pick y0
i ∼ p(Yi|X = x, θ0)

17

2. for t = 1 . . . T

(a) for i = 1 . . . n,

pick yt
i ∼ p(Yi|Y−i = yt−1

−i ,X = x, θ+)

Under relatively mild conditions [30, 63], this limit will exist, and will be independent

of y0 (and hence θ0).

In the algorithm above, θ0 is some set of parameters that define the initial choice

of values for yi, and θ+ is a set of parameters that defines a process for incrementally

updating Yi given estimated values for Y−i and x. We will assume that θ+ and θ0

are shorthand for a set of n probabilistic classifiers, one that predicts each Yi.

To simplify our notation let us introduce these abbreviations:

Pi(Yi|x; θ) ≡ p(Yi|X = x, θ)

Pi(Yi|x,y; θ) ≡ p(Yi|MBi(Y) = MBi(y),X = x, θ)

P (Y|x; θ) ≡
∏

i

Pi(Yi = yi|x; θ)

P (Y|x,y′; θ) ≡
∏

i

Pi(Yi = yi|x,y′; θ)

The process above can now be re-written as follows.

Definition 1 Gibbs sampling is the following stochastic process:

1. for i = 1 . . . n, pick y0
i ∼ Pi(Yi|x; θ)

2. for t = 1 . . . T

(a) for i = 1 . . . n, pick yt
i ∼ Pi(Yi|x,yt−1; θ+)

(The limit of) Gibbs sampling is one means of approximating inference in a

conditionally-defined Markov random field. It is intuitively appealing, as it simply

18

requires iteratively applying and re-applying a set of conditional probability models—

such as could be learned by logistic regression, probabilistic decision trees, probabilis-

tic SVMs, etc—each of which predicts a single variable Yi from x and some set of

“related” variables, as defined by MBi.

To make these definitions more concrete, let us use them to define the following

well-known learning method.

Definition 2 The pseudo-likelihood learning method [1] for a Gibbs sampler and a

class of models M is defined as follows.

θ̂0 = argmaxθ∈M
∏

(x,y)∈D

P (y|x, θ)

θ̂+ = argmaxθ∈M
∏

(x,y)∈D

P (y|x,y, θ)

= argmaxθ∈M
∏

(x,y)∈D

∏
i

Pi(yi|x,y, θ)

The “argmax” here means that θ̂+ will be the maximum-likelihood (ML) model

in M for each Yi. The optimization over P (yi|MBi(y),x, θ) means that in the ML

optimization used to train each probabilistic classifier for Yi, the values for the “re-

lated” values MBi will be taken from values for y seen in the training data D. The

model learned by this method is sometimes called a dependency network [23].

2.4.2 An idealized version of stacked graphical learning

Pseudo-likelihood/dependency net learning approximates the unknown Gibbs sam-

pling parameters θ0, θ+ with estimates θ̂0, θ̂+ that will be used in a Gibbs sampler

of the same form. We propose to approximate the unknown Gibbs sampler with a

different samping procedure:

Definition 3 Inhomogeneous Gibbs sampling is the following stochastic process:

19

1. for i = 1 . . . n, pick y0
i ∼ Pi(Yi|x; θ0)

2. for k = 1 . . . K

(a) for i = 1 . . . n, pick yk
i ∼ Pi(Yi|x,yk−1; θk)

Note that this sampling procedure is defined by K+1 sets of parameters, θ0, θ1, . . . , θK ,

rather than only two, as in the Gibbs sampling described in Definition 1. We will use

Qk(x; θ0, . . . , θk) to denote the distribution produced after k iterations of inhomoge-

neous Gibbs sampling.

Clearly, inhomogeneous Gibbs samplers include all ordinary Gibbs samplers, since

it could be that K is large and θ1 = θ2 = . . . = θ+. Hence inhomogeneous samplers

produce a larger class of distributions. There are several potential advantages of

considering this larger class. First, there may be practical problems that are better

approximated by the larger class. Second, it is possible that even distributions gen-

erated by a long homogeneous Gibbs sampler can be well-approximated by a short

inhomogeneous Gibbs sampler. Notice that a short inhomogeneous Gibbs sampler

can be executed quickly.

Finally, the larger class of inhomogeneous samplers may be computationally more

efficient to learn. This may seem counter-intuitive, but recall that there are many

instances of learning tasks which are made computationally easier by expanding the

class of possible models (e.g., [56]).

To learn the parameters of an inhomogeneous Gibbs sampler, we begin by posing

the question: can one efficiently learn an ML estimate of the parameters θ0, θ1, . . . , θK

above? We claim that the answer to this question is “no”, even if the Markov blanket

of every Yi is small. This can be demonstrated by viewing the series of models at

k = 1 . . . K as a dynamic Bayes network (DBN) with t = 1 . . . K, in which yt
i

∼ P (Yi|Y−i = yt−1
−i ,X = x, θt) specifies the state transition probability. In general,

20

learning an ML estimate of parameters in DBNs is expensive [21]. Therefore we

propose the following method for approximating the ML estimate.

Definition 4 Idealized stacked graphical learning is the following learning method.

1. Let θ̂0 = argmaxθ∈M
∏

(x,y)∈D P (y|x, θ)

2. For k = 1, . . . , K:

(a) Create Dk by replacing each (x,y) ∈ D with (x,y′) where y′ was drawn

from Qk−1(x; θ̂0, . . . , θ̂k−1). Let y′k−1
x denote the y′ so drawn.

(b) Set

θ̂k = argmaxθ∈M
∏

(x,y)∈D

Q(y|x,y′k−1
x , θ)

The optimization over P (yi|MBi(y),x, θ) means that in the ML optimization used to

train the k-th probabilistic classifier for Yi, the values for the “related” values MBi

will be taken from values for y′ constructed in Step 2a.

2.4.3 Stacked graphical learning as greedy learning of an in-

homogeneous sampler

To understand the idealized stacked graphical learning method better, first notice

that the learning algorithm picks θ̂0 as in pseudo-likelihood training. Let us now

consider how θ̂1 is chosen. We will show that the method picks θ̂1 so as to force the

distribution Q1(x) to be as close as possible to the unknown P (Y|X) on the data D

with regard to KL-divergence.

Intuitively, in the unknown target inhomogeneous Gibbs sampler that we are try-

ing to learn, θ1 will be applied to values (x,y′) where y′ is generated according to

21

Q0(x; θ0). We do not know θ0, but we can approximate θ0 with θ̂0, and pick θ1 by

maximizing the empirical probability of P (y|MBi(y
′),x, θ) where y′ is sampled from

Q0(x; θ̂0):

θ̂1 = argmaxθ∈MP (y|MBi(y
′),x, θ)

The idealized stacked graphical learning method does exactly this, and then continues

this process for K further iterations.

One can formalize the claim that idealized stacked graphical learning is a greedy

learner for homogeneous Gibbs-sampler distributions. Let M be some set of param-

eter values θ, and let Pk
M be the set of all distributions defined by inhomogeneous

Gibbs samplers using parameters θ0, . . . , θk from M. Let Pk
M(θ̃0, . . . , θ̃k−1, ∗) be the

set of all distributions defined by inhomogeneous Gibbs samplers using parameters

θ0 = θ̃0, . . . , θk−1 = θ̃k−1 and θk ∈M. We have the following claim.

Theorem 1 Let π ∈ PK
M, and let dataset D be generated by picking each x from a

fixed distribution, and picking the associated y according to π(Y|x). Let θ̂0, . . . , θ̂K

be the parameters learned by idealized stacked graphical learning from dataset D, and

consider the limit as |D| → ∞. For all i : 0 ≤ i ≤ K,

Qi(θ̂0, . . . , θ̂i) = argminQ∈Pi
M(θ̂0,...,θ̂i−1,∗)KL(Q||π)

where KL(Q||P) is the KL-divergence of Q and P .

Proof. Every distribution in P i
M(θ̂0, . . . , θ̂i−1, ∗) is defined by an inhomogeneous

Gibbs sampler with parameters θ̂0, . . . , θ̂i−1 and some θi ∈ M. Let π̃i−1 denote

Qi(θ̂0, . . . , θ̂i−1), and let π̃i ∈ P i
M(θ̂0, . . . , θ̂i−1, ∗). For any such π̃i and any x, π̃i(y|x)

is defined by

π̃i(y|x) = π̃i−1(y
′|x) · P (y|x,y′; θi)

In the limit as |D| → ∞, minimizing KL-divergence to P is equivalent to maximiz-

ing the probability of a dataset drawn from the distribution P . Thus minimizing

22

KL(πi||π) can be accomplished by choosing θi to maximize probability of

∏

(x,y,y′)∈D′
P (y|x,y′; θi)

where y is drawn from π(Y|x) and y′ is drawn from π̃i−1(Y|x). Notice that Step 2a of

idealized stacked graphical learning constructs the appropriate y′ for x, and Step 2b

performs the appropriate optimization.

Notice that idealized stacked graphical learning is nearly identical to the algo-

rithm introduced in this chapter, if we assume that the relational template C(xi,y)

returns MBi(y). The main differences are the use of most-likely predictions from

cross-validation rather than sampling to produce values y′kx , and the use of aggrega-

tion functions in our implementation.

2.5 Conclusions

In this chapter, we describe the algorithm of stacked graphical learning, illustrate

how it works with the WebKB example, and provide theoretical analysis on an ide-

alized version of the algorithm to show its convergence and better understand its

performance.

We formulate the idealized version of stacked graphical learning as an inhomo-

geneous Gibbs sampling process with parameters learned in a greedy manner. The

intuition behind the quick convergence can be understood in the following way: we

expand the concept space such that it may be easier for the learning algorithm to

produce a nearly correct answer from a rich set of alternatives more quickly than from

a small concept set.

23

24

Chapter 3

Applications

In this chapter, we discuss the performance of stacked graphical model. We evalu-

ated stacked graphical learning on tasks from several domains, including collective

classification over relational datasets, sequential partitioning [5], and named entity

extraction.

3.1 Collective Classification Over Relational Datasets

3.1.1 The problems and datasets

One straightforward application of stacked graphical learning is collective classifica-

tion of relational data. We evaluated stacked graphical learning on three document

classification corpus: the WebKB dataset, the Cora dataset, and the Citeseer dataset.

We consider webpage classification on the WebKB dataset [11], which contains

webpages from four computer science departments, and paper classification on the

Cora dataset and the CiteSeer dataset [39]. The webpages in WebKB dataset were

manually labelled with one of six categories: course, faculty, student, staff, research

projects, or other. The WebKB data contains 3818 webpages and 8073 hyperlinks.

25

The relational template applies the COUNT aggregator and returns the number of

outgoing and incoming links in each category, given one webpage.

The Cora dataset [42] contains 2708 machine learning papers and citations among

them, and each paper was manually labelled into seven topics: Case Based, Genetic

Algorithms, Neural Networks, Probabilistic Methods, Reinforcement Learning, Rule

Learning, and Theory. The Cora data contains abstracts of 2708 papers and 5429

citations. If paper A cites paper B, we consider there is a link from paper A to paper

B. The relational template applies the COUNT aggregator and returns the number

of outgoing and incoming links in each category, given one paper.

The Citeseer dataset [22] is another collection of papers from six categories:

Agents, Artificial Intelligence, Databases, Human Computer Interaction, Machine

Learning, and Information Retrieval. The Citeseer data contains 3312 papers and

4732 citations. The relational template is the same as the template for Cora data

and WebKB data, i.e., returning the number of outgoing and incoming links in each

category.

For the document classification tasks, the initial feature representation is a bag-

of-word feature set giving the counts of each token in a document.

3.1.2 Methods

We use a maximum entropy learner [53] as the base learner in stacked graphical

learning for document classification.

Maximum Entropy is widely used for inducing probabilistic classifications. The

principle of maximum entropy states that the least biased distribution that encodes

certain given information is that which maximizes the information entropy. In a

maximum entropy classifier, the probability distribution of a possible class label v

26

given an instance w, p(v|w), is modeled as follows:

P (v|w) =
1

Z(w)
exp(

∑
i

λifi(w, v))

In this definition, usually each feature fi(w, v)is expressed as a binary function based

on w and its proposed classification v, λi is the corresponding feature weight, and

Z(w) is a normalization factor. The unknown parameters λi’s are usually estimated

by maximum likelihood.

We compare our stacked graphical models to two state-of-art statistical relational

learning models: relational dependency networks [25] and relational Markov net-

works [58].

Relational dependency networks (RDNs) [25] are a statistical learning model capa-

ble of expressing and reasoning with dependencies in relational datasets. RDNs learn

the local conditional probability distribution (CPD) independently using pseudo-

likelihood learning techniques. Gibbs sampling is applied to estimate the full joint

distribution and extract probabilities of interest in RDNs. Ideally any relational learn-

ing approach can be used in a relational dependency network [25]. Here we implement

a naive relational method to model the local CPD. Our implementation is a Max-

Ent learner with relational features. The features include the local feature for each

instance, and a set of relational features calculated with the relational template. In

the training set, the relational features are calculated with true values for the related

instances. In the test set, relational features are calculated once the predicted labels

are updated during Gibbs sampling.

Relational Markov networks (RMNs) [58] are another state-of-art relational graph-

ical model. Relational Markov networks correspond to undirected graphical models.

Hence a RMN specifies a set of cliques and potentials between attributes of related

entities at a template level. Usually the cliques are instantiated by a certain relational

template and the corresponding clique potentials are also in a relational setting up.

27

Unlike RDNs, there is no pseudo-likelihood technique in RMN and the joint probabil-

ity has to be computed in a complex way. Loopy belief propagation is usually applied

for the inference over RMNs. Our implementation is based on a naive relational

potential function: a MaxEnt learner with relational features. Similar to our imple-

mentation of RDNs, the features include the local feature for each instance, and a set

of relational features calculated with the relational template. In the training set, the

relational features are calculated with true values. In the test set, relational features

are calculated once the predicted labels are updated during loopy belief propagation.

We also consider a naive relational model. This is similar to stacked graphical

learning except that in the naive model the predictions for the training examples are

obtained by applying the model learned with all training data instead of applying the

cross-validation-like trick.

The last model is an upper-bound for the stacked graphical model: i.e., we use the

stacked graphical model but allow Ätrue labels of related instances to be used during

the feature extension at both training and testing time. This can not be implemented

in practice, but gives some idea of what performance is theoretically achievable for

collective classification with our model.

3.1.3 Experimental results

To evaluate the effectiveness of stacked graphical learning for collective classification,

we compare five models. The first model is a local model, i.e., the model trained with

the base learner. For document classification, the local model is a MaxEnt model.

The second model is a “competitive” collective classification model. For docu-

ment classification, we compare to relational dependency networks (RDNs) [25] and

relational Markov Networks(RMNs). The RDN model uses the same features as the

stacked model, but learns via a pseudo-likelihood method and inference with Gibbs

28

sampling. RMNs also use the same features but performs inference with loopy belief

propagation.

The third model is a naive relational model described in Section 3.1.2.

The fourth model is stacked graphical models. We study two cases here, with one

and two iterations respectively.

The fifth model is an upper-bound (noted as ceiling model in Table 4.1) for the

stacked graphical model as described in Section 3.1.2.

Table 3.1: Evaluation on five models. The accuracy for “Document classification” is re-

ported. We compared stacked graphical model to a local model, other relational models, and

its probabilistic ceiling. The local models are MaxEnt models. The competitive relational

models are RDN models and RMN models.

Document classification

WebKB Cora CiteSeer

Local model 57.6 63.1 54.9

RDNs 73.1 72.3 57.9

RMNs 72.9 71.3 56.1

Naive relational model 70.6 65.9 56.3

Stacked model (k=1) 72.9 73.0 59.3

Stacked model (k=2) 72.1 73.0 59.3

Ceiling for stacked model 73.4 76.1 61.8

Table 4.1 shows the performance for each of the five models on three real-world

datasets. We used 5 fold cross validation for all datasets, except for WebKB data,

where we used 4 fold cross validation by departments. We use paired t-tests to assess

the significance of the changes in accuracy. The t-tests compare the stacked graphical

models with k=1 to each of the other four models. The null hypothesis is that there is

29

no difference in the accuracy of the two models. The differences that are statistically

significant at a p < .05 level are reported below. Table 3.2 shows the summary of

t-test. Each element in Table 3.2 records how many times (out of the three tasks

in this section) model i in the row achieves higher accuracy than model j in the

column. Detailed t-test evaluation results on each task are described in Appendix A.

On all of the three datasets, stacked graphical learning improves the performance

of the base learner statistically significantly. On all the tasks, stacked graphical

learning achieves statistically indistinguishable results to the competitive models. On

the WebKB dataset, stacked graphical learning achieves comparable results to the

ceiling models. Usually there is no significant difference in accuracy for k=1 and k=2

in stacking. We did not include the performance of stacking with more iterations in

the table here. Usually with more iterations, the performance of stacking stays at the

same level, which suggests that stacking converges very quickly and does not require

many iterations. We will study further the convergence rate of stacked graphical

learning in Chapter 3.4.

Table 3.2: Summary of evaluation with t-test on collective classification: this table shows

how many times model i in the row achieves higher accuracy than model j in the column.

Local RDN RMN Naive Stack (k=1) Stack (k=2)

Local

RDNs 3 2

RMNs 3 2

Naive model 3

Stacked (k=1) 3 1 1 3

Stacked (k=2) 3 1 1 3

30

3.2 Sequential Partitioning

3.2.1 The problems, datasets, and methods

Sequential partitioning tasks are sequential classification tasks characterized by long

runs of identical labels: examples of these tasks include document analysis, video

segmentation, and gene finding [5]. In this work we consider three datasets.

The signature dataset is originated from the problem of recognizing the “signa-

ture” section of an email message. Each line of an email message [3] is labels as either

positive or negative. A positive label indicates that a particular line in the message

was part of a signature section, and negative otherwise. This dataset contains 33,013

labeled lines from 617 email messages. About 10% of the lines are labeled “positive”.

One set of tasks involved classifying lines from FAQ documents with labels like

“header”, “question”, “answer”, and “trailer”. We used the features adopted by

McCallum et al [40] and the ai-general task adopted by Dietterich et al [13]. The data

consists of 7 long sequences, each sequence corresponding to a single FAQ document;

the task contains 10909 labeled lines. Our current implementation only supports

binary labels, so we considered the label “answer” (A) for the FAQ dataset.

Another task was video segmentation task, in which the goal is to take a sequence

of video “shots” (a sequence of adjacent frames taken from one camera) and classify

them into categories such as “anchor”, “news” and “weather”. This dataset contains

12 sequences, each corresponding to a single video clip. There are a total of 406 shots,

and about 700 features, which are produced by applying LDA to a 5x5, 125-bin RGB

color histogram of the central frame of the shot. We constructed a video partitioning

task, corresponding to the most common label [5].

We use MaxEnt as the local model, and split the datasets according to sequences.

The relational templates returns the predictions of ten adjacent examples (five pre-

31

ceding examples and five following examples).

We compared to a state-of-art conditional random fields (CRFs) [36] model for

tagging sequences. CRFs give the conditional probability of a possible label sequence

y = (v1, ..., vn) given the input sequence x = (w1, ..., wn):

P (y|x) =

exp(
∑
j

∑
i

λifi(vj,x, j))

Z(x)

In this definition, each fi is a function that measures a feature relating the state vj at

position j with the input sequence around position j, λi is the corresponding feature

weight, and Z(x) is the normalization factor, usually referred to as the partition

function. CRFs are generally expensive computationally during training. Learning

CRFs is usually an iterative optimization procedure and in each step it requires to

calculate the partition function, which is in general an iterative inference procedure.

The experimental results are summarized in Table 3.3.

Table 3.3: Accuracy comparison of stacked graphical learning for sequential partitioning.

The local model is MaxEnt. We compared to conditional random fields (CRFs) and the

naive relational model described in section 3.1.

Sequential Partitioning

FAQ signature video

Local model 67.3 96.3 80.9

Competitive CRFs model 85.6 98.1 83.0

Naive relational model 70.8 96.5 80.9

Standard Stacked model (with MaxEnt, k=1) 87.1 98.1 85.8

Ceiling for stacked model 93.1 99.7 91.3

32

3.3 Named Entity Extraction

3.3.1 Problems and datasets

We also study collective named entity extraction(NER) with stacked graphical learn-

ing. We cast the name extraction task as a binary classification problem, i.e., tokens

corresponding to name entities are labeled as “positive” and non-name tokens are

labeled as “negtive”. One NER problem is protein named entity extraction from

Medline abstracts. We used three datasets to evaluate our method for protein name

extractions. The University of Texas, Austin dataset contains 748 labeled abstracts[2];

the GENIA dataset contains 2000 labeled abstracts[9]; and the YAPEX dataset con-

tains 200 labeled abstracts[14].

We use conditional random fields as the base learner, as discussed in Section

3.2.1. The feature set contains hand-coded features and part-of-speech (POS) tags.

The hand-code features are calculated with rules defined according to protein naming

conventions. Details about the hand-coded rules are summarized in Table 3.4. Each

rule generates corresponding binary features. For example, one feature associated

with the rule of “has suffix -in” is:

fi(x, y) =





1 if current token ends with − in and x is labelled as protein

0 otherwise

The relational template will retrieve the predictions for the nearby words (with

window size 3) and for the same word appearing in one abstract, apply the COUNT

aggregator, and return the number of words in each category, given one word. For

example, let wi be the word in a document. For words wj = wi in the same document,

we count the number of times wj appearing with label y and use it as one of the

stacked features for wi. In the experimental part, we will also explore another simpler

relational template as a comparison.

33

Table 3.4: Hand-coded rules to generate features for protein name extraction.

Rules/templates Example token

Initial Caps There

All Caps CRF

Caps mix-case 1 SthSth

Caps mix-case 2 sthSthsth

Caps mix-case 3 sthSth

Caps mix-case 4 SthsthSth

Char digit mix 1 Sth-123

Char digit mix 2 Sth-123-Sth

Greek letter alpha

Suffix -in, -ase

Single Digit 1

Double Digit 12

More Digits 123

Caps+Punctuation1 Aname,sth

Caps+Punctuation2 aname,sth

We also studied person name extraction for the CSpace email corpus. The CSpace

corpus we used contains 216 email messages collected from a management course

at Carnegie Mellon University [45]. We use conditional random fields as the base

learner and the feature set described in the previous work [7], which includes a history

of length one, plus the lower-cased value of the token, letter cases, and letter-case

patterns for all tokens in a window of size three centered at the i − th token. The

relational template is the same as the template for protein name extraction.

34

3.3.2 Experimental results

Five models are evaluated for the NER tasks. The first model, a local model, is a

CRF model.

The second model, a competitive model, is a stacked sequential model [5]. Stacked

sequential models are similar to stacked graphical models, except that the model can

only retrieve dependencies along the sequence, i.e., dependencies among adjacent

words in a sentence. Here we use a stacked CRF model.

The third model is the naive relational model, with an advance relational template

as described in the next paragraph. The fourth model is stacked graphical models

with one iteration, but different relational templates. The fifth model is a probabilistic

upper-bound (noted as ceiling model in Table 3.5) for the stacked graphical model.

As shown in Table 3.5, we explored different relational templates for NER. A

simple relational template will just retrieve the predictions for the adjacent words

(with window size 5), denoted as sequential stacking in Table 3.5. Another more

“advanced” relational template will retrieve the predictions for the adjacent words

(with window size 5) and for the same word appearing in one document, apply the

COUNT aggregator, and return the number of words in each category, given one

word. In Table 3.5 we denote this relational template as relational stacking.

Table 3.5 shows the F1 for each of the five models on NER task. We used 5 fold

cross validation and t-tests to evaluate our results. Again, we observe that stacked

graphical learning improves the performance of the base learner significantly and is

competitive to the state-of-art models.

Table 3.6 shows the summary of t-test for NER tasks. Each element in Table

3.6 records how many times (out of the three tasks in this section) model i in the

row achieves higher accuracy than model j in the column. Detailed t-test evaluation

35

Table 3.5: Evaluation on five models. The F1-measure for NER is reported. We compared

stacked graphical models (with different relational templates) to a local model, other rela-

tional models, and its probabilistic ceiling. The local models are CRFs. The competitive

relational models are stacked CRFs.

Protein NER Email NER

UT Yapex Genia CSpace

Local CRF model 73.1 65.7 72.0 80.3

Stacked sequential CRFs 76.8 66.8 77.1 81.2

Naive relational models 74.5 67.3 77.0 82.3

Stacked model (sequential stacking) 76.5 66.9 77.1 81.4

Stacked model (relational stacking) 78.3 69.3 77.9 82.5

Ceiling for stacked model 80.5 70.5 80.3 84.6

results on NER task are described in Appendix A.

There are usually two ways to improve the performance of a classifier: 1. fea-

ture engineering, or 2. a better (usually more sophisticated) model. In the NER

applications, we demonstrate that stacked graphical learning can easily do feature

engineering to improve the performance. In the next chapter, we will show that

stacked graphical learning with simple features can achieve performance competitive

to a model with highly engineered features.

3.4 Inference Efficiency of Stacked Graphical Learn-

ing

In this section, we study the inference efficiency of stacked graphical models. We

evaluate the inference of standard stacked graphical learning and show that stacked

36

Table 3.6: Summary of evaluation with t-test for named entity extraction: this table shows

how many times model i in the row achieves higher accuracy than model j in the column.

“Stack (seq.)” denotes the stacked model with sequential relational template, “Stack (rel.)”

denotes the stacked model with relational relational template.

CRFs Stacked CRFs Naive (rel.) Stack (seq.) Stack (rel.)

CRFs

Stacked CRFs 4 1

Naive model (rel.) 4 2 2

Stacked (seq.) 4 3

Stacked (rel.) 4 2 3

graphical learning is 40 to 80 times faster than Gibbs sampling during inference.

We compared the performance and computational cost of inference in stacked

graphical model with one iteration to that of Gibbs sampling in RDNs with 50 iter-

ations and 100 iterations, evaluating on the SLIF problem and the document clas-

sification problems. Table 3.7 shows the speedup - in the table “39.6” means the

CPU time used by Gibbs sampling is 39.6 times that used by the inference of stacked

graphical learning, i.e., the inference in stacked graphical learning is 39.6 times faster

than Gibbs sampling. If the accuracy of stacked graphical learning is statistically

significantly better than the accuracy of Gibbs sampling, there is a “+” marked by

the number indicating the speedup; otherwise there is a “-” mark. If there is no

significant difference, there is no mark.

Table 3.7 shows that compared to Gibbs sampling with 50 iterations, stacked

graphical learning generally achieves better accuracy but is about 40 times faster

during inference. Compared to Gibbs sampling with 100 iterations, stacked graphical

learning can achieve competitive or better accuracy but is more than 80 times faster

37

during inference.

Here we also include the experimental results on SLIF Task 1 - more details about

the dataset and the collective classification task are described in the next Chapter.

Table 3.7: Comparison on performance and efficiency. “39.6” means that the inference in

stacked graphical learning is 39.6 times faster than Gibbs sampling. “+” means that the

accuracy of stacked graphical learning is statistically significantly better than the accuracy

of Gibbs sampling.

Gibbs 50 Gibbs 100

SLIF Task 1 39.6+ 79.3+

WebKB 43.4+ 87.0

Cora 42.7+ 85.4

Citeseer 43.6+ 87.3

Average speed-up 42.3 84.8

Figure 3.1 and Figure 3.2 show the convergence rate of stacking compared to

Gibbs sampling on RDNs. The plots were generated using SLIF Task 1 data and

the document classification datasets: the WekKB dataset, the Cora dataset, and the

Citeseer dataset, for the collective classification task. We created the plots with a

natural logarithm of k, where ln(k) = −1 corresponds to k = 0, ln(k) = 0 corresponds

to k = 1, and ln(k) = 1 corresponds to k = e. In addition to the Gibbs sampling

with random starting points, we also evaluated Gibbs sampling starting with same

y0 as the corresponding stacked graphical models.

We observe that stacked models converge more quickly than Gibbs sampling and

achieve a satisfactory performance much faster, even if the Gibbs sampling starts with

same y0 as the corresponding stacked graphical models. Stacked graphical models can

achieve significant improvement over the base learner after the first iteration. More

38

0 1 3 8 20 55 148 403
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy vs. number of iterations k, WebKB data

k (# iterations), log scale

A
c
c
u
ra

c
y

RDN,sampling starting randomly

RDN,sampling starting with y
0

Stacked graphical learning

0 1 3 8 20 55 148 403
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Accuracy vs. number of iterations k, SLIF data

k (# iterations), log scale

A
c
c
u
ra

c
y

RDN,sampling starting randomly

RDN,sampling starting with y
0

Stacked graphical learning

Figure 3.1: Convergence rate of stacking and Gibbs sampling, on SLIF Task 1 and WebKB

task

39

0 1 3 8 20 55 148 403
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy vs. number of iterations k, Cora data

k (# iterations), log scale

A
c
c
u
ra

c
y

RDN,sampling starting randomly

RDN,sampling starting with y
0

Stacked graphical learning

0 1 3 8 20 55 148 403
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Accuracy vs. number of iterations k, CiteSeer data

k (# iterations), log scale

A
c
c
u
ra

c
y

RDN,sampling starting randomly

RDN,sampling starting with y
0

Stacked graphical learning

Figure 3.2: Convergence rate of stacking and Gibbs sampling, on Cora and Citeseer datasets

40

iterations of stacking do not seem to be more helpful, with the performance staying

at about the same level. We observe that Gibbs sampling converges to a same level

after many more iterations and the convergence rate when k is small depends heavily

on the starting points. We plot error bars along the curve for Gibbs sampling with

random starting points. The error bars are calculated over 5 randomly initial samples,

i.e., in each fold, Gibbs sampling is run 5 times with random initials.

3.5 A further approximation to the stacked model

In this section, we study a further approximation to stacked graphical models. As

discussed in Chapter 2, in stacked graphical models, parameters θ0, θ1, . . . , θK are

learned in a greedy fashion to sample y1, y2, . . . , yK . A further approximation is to

set y1, y2, . . . , yK to all be equivalent, and all equal to y0. This approximation is

conceptually useful, as it allows us to “unroll” the functions defined by θ1, θ2, . . . ,

θK , and enumerate the features that contribute to each. Let MB2
i be the set of all

variables Y` such that Y` ∈ MBj for some Yj ∈ MBi—i.e., MB2
i is the Markov blanket

of the Markov blanket of Yi. Likewise, let MBk
i be the “order k Markov blanket of

i”, or set of all variables Y` such that Y` ∈ MBj for some Yj ∈ MBk−1
i . Intuitively,

MBK
i is a diameter-K subgraph centered around Yi—a sort of generalized “sliding

window”.

Letting Q̃k be approximation to Qk (recall that Qk is the distribution over Y k

defined by the inhomogeneous Markov process) that is obtained in this way, it is easy

41

to see that

Q̃1(Yi = yi|x) depends only on the values of x, yi, MBi(y
0)

Q̃2(Yi = yi|x) depends only on the values of x, yi, MB2
i (y

0)

.

Q̃K(Yi = yi|x) depends only on the values of x, yi, MBK
i (y0)

This suggests a new approximate learning method, in which we set θ0 as in the

greedy method above; construct, in some way, an expanded set of features that relate

the value of yi to the values of x and MBK
i (y0); and finally find parameters θ̃ that are

MAP estimates for the dataset D using these features. The further approximation

suggests that a multi-stage stacking is related to a single-stage stacking with features

from an order-k “window”. Therefore this approximation leads to an inhomogeneous

chain that is only two steps long.

In Cohen and Carvalho’s work [5], this sort of approximation was found to be

effective for certain sequential classification problems—a special case of the collective

classification task considered here in which the Markov network is a linear chain.

However, there are reasons to believe that this “window” approximation will be less

appropriate for general graphs. Consider a simple case, where the expanded feature

set includes only a single edge between yi and each yj ∈ MBi, the Markov network

has a maximum clique size of 2, and every |MBi| is bounded by some small constant b.

Let n be the number of parameters in the model θ+. It is easy to see that the number

of features used in this “unrolled” 2-step chain can grow rapidly with K: because

|MBK
i | can grow as bK , the 2-step chain can have up to n ·bK parameters. This means

that learning and evaluating the classifiers used in the second step of the chain will

be expensive, and that the learner will be prone to overfit. While with linear chains,

such as sequential classification problems, MBK
i contains only O(K) variables, which

is probably why overfitting is less of a problem in [5].

42

0 1 3 8 20 55 148 403
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Accuracy vs. number of iterations (or size of windows) k, SLIF data

k (# iterations), log scale

A
c
c
u
ra

c
y

Stacked graphical learning (K=10)

2-step Stacked graphical learning with window size k

0 1 3 8 20 55 148 403
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy vs. number of iterations k, WebKB data

k (# iterations), log scale

A
c
c
u
ra

c
y

Stacked graphical learning (K=10)

2-step Stacked graphical learning with window size k

Figure 3.3: Performance of the further approximation

43

0 1 3 8 20 55 148 403
0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Accuracy vs. number of iterations (or size of windows) k, SLIF data

k (# iterations), log scale

A
c
c
u
ra

c
y

RDN,sampling starting with local MLE

Stacked graphical learning (K=10)

2-step Stacked graphical learning

Gibbs sampling with stacked parameter

0 1 3 8 20 55 148 403
0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy vs. number of iterations k, WebKB data

k (# iterations), log scale

A
c
c
u
ra

c
y

RDN,sampling starting with local MLE

Gibbs sampling with stacked parameter

Figure 3.4: Performance of the alternative Gibbs sampling methods

Under the same assumptions, the method of stacked graphical models will use

only n · K parameters: even though QK(Yi = yi|x) also depends on the values of

x, yi, MBK
i (y0), this dependency is “funnelled through” small Markov blankets in-

volving variables y1, . . . , yK−1.

We evaluated this approximation with the SLIF data and WebKb data. The

further approximation suggests that a multi-stage stacking is related to a single-stage

stacking with features from an order-k “window”. Figure 3.3 shows that this is true

when k is small, while the two-step approximation tends to overfit when the window

size k grows (black curves).

3.6 An alternative Gibbs sampler

Viewed from a high level, relational dependency networks use pseudo-likelihood learn-

ing and Gibbs sampling and stacked graphical models use conditional learning and

very few iterations of stacking. In this section, we explore an alternative strategy,

where the parameters learned via conditional learning (level 1 of the stacked model)

44

is used during Gibbs sampling, i.e., the parameters learned in stacked models and

Gibbs sampling are enforced together. We evaluated this idea with SLIF task 1 data

and WebKb data, the results are shown in Figure 3.4.

We observe that the performance of this alternative strategy tracks the Gibbs sam-

pler in relational dependency networks closely - i.e., unlike the previously-described

version stacking, this variant does not improve over pseudo-likelihood plus Gibbs

sampling. Further, the normal Gibbs sampler tends to converge after about 100 it-

erations, while the Gibbs sampler with “stacked parameters” seems to take longer to

converge.

3.7 Conclusions

In this chapter, we evaluated stacked graphical models on tasks from several domains

and demonstrate the accuracy and inference efficiency of stacked graphical models.

Our experiments show that stacked graphical models can achieve competitive ac-

curacy compared to state-of-art relational learning models, via much less inference

time.

We also discussed a further approximation to stacked models, where a single-stage

stacking with features from an order-k “window” is used instead of a multi-stage

stacking. Our study suggested that the two-step approximation tends to overfit when

the window size k grows. An alternative Gibbs sampling procedure with parameters

learned from stacked graphical models is also studied. This Gibbs sampler tends to

track the ordinary Gibbs sampler, yet harder to converge.

45

46

Chapter 4

In-depth Case Studies

In this chapter, we study four applications in more depth and demonstrate more

strengths of stacked graphical learning.

4.1 SLIF Task 1: Collective Classification of Panel

Labels

4.1.1 SLIF overview

Subcellular Location Image Finder (SLIF) is a system which extracts information

from both figures and the associated captions in biological journal articles [33, 47, 48].

SLIF applies both image analysis and text interpretation to figures. Figure 4.1 and

Figure 4.2 are typical figures that SLIF can analyse. SLIF is an information extraction

system involving relational data and many inter-related tasks.

Figure 4.3 shows an overview of the steps in SLIF system with references to

publications in which they are described in more details.

SLIF analyses both images and text. Image processing includes several steps:

47

Fig. 5. Double immunofluorescence confocal
microscopy using mouse mAb against cPABP
and affinity-purified rabbit antibodies against

mrnp 41. Methanol-permeabilized and fixed
HeLa cells were incubated with affinity-purified
rabbit anti-mrnp 41 antibodies (a) and with
monoclonal anti-cPAPB antibodies (b), and the
bound antibodies were visualized with
fluorescently labeled secondary antibodies.

(Bar = 10 µm.)

Figure 4.1: A figure caption pair reproduced from the biomedical literature.

Fig. 1. Kinase inactive Plk inhibits Golgi fragmentation by

mitotic cytosol. (A) NRK cells were grown on coverslips and

treated with 2mMthymidine for 8 to 14 h. Cells were

subsequently permeabilized with digitonin, washed with 1M

KCl-containing buffer, and incubated with either 7 mgyml

interphase cytosol (IE), 7mgyml mitotic extract (ME), or

mitotic extract to which 20 mgyml kinase inactive Plk (ME +

Plk-KD) was added. After a 60-min incubation at 32C, cells

were fixed and stained with anti-mannosidase II antibody to

visualize the Golgi apparatus by fluorescence microscopy.

(B) Percentage of cells with fragmented Golgi after

incubation with mitotic extract (ME) in the absence or the

presence of kinase inactive Plk (ME + Plk-KD). The

histogram represents the average of four independent

experiments.

Figure 4.2: Another figure caption pair reproduced from the biomedical literature.

48

Figure-
caption

pair

Caption

Panels

Scope Annotated
Scopes

Annotated
Panels

ImagePtr

Panel
labels

Label

Matching

Caption

understanding

Panel

splitting

Label

finding

Panel classification,

Micrograph analysis

Entity matching &

extraction
proteins,

cells

image type,

image scale,

subcellular

location

features…

[Murphy et

al, 2001]

[Murphy et al, 2001; current work]

[Cohen et al, 2003]

[Cohen & Sarawigi,
2004; Ravikumar &
Cohen, 2004; Cohen et al

2003;Kou et al, 2005]

[Kou et al, 2006]

[Kou et al, 2003]

SLIF DB

[Murphy et al,
2005]

Figure 4.3: Overview of the image and text processing steps in SLIF.

Decomposing images into panels. For images containing multiple panels (in-

dependently meaningful sub-figures), the individual panels are recovered from the

image.

Identifying fluorescence microscope images. Panels are classified as whether

they are fluorescence microscope images, so that appropriate image processing steps

can be performed.

Image preprocessing and feature computations. Firstly the annotations

such as labels, arrows and indicators of scale contained within the image are detected,

analyzed, and then removed from the image. In this step, panel labels are recognized

to by Optical Character Recognition (OCR). Panel labels are textual labels which

appear as annotations to images, for example, “a” and “b” printed in panels in

Figure 4.4. Recognizing panel labels is very challenging. Even after careful image pre-

processing and enhancement the F1 accuracy is only about 75%. The OCR results

are used as candidate panel labels and a set of heuristic rules are applied to filter out

some candidates [33]. After filtering candidates an F1 of 78% is obtained.

Secondly, the scale bar is extracted. Automated analysis of fluorescence micro-

scope images requires knowing the scale of an image since some of the previously

49

developed subcellular location features (SLF) directly depend on the scale of the im-

ages. Microscope images published in journals often have scale information included

in the figures. The images usually contain a scale bar and the respective caption

contains the number of micrometers corresponding to the scale bar. Imaging pro-

cessing techniques are used to locate the scale bar associated with a panel. The size

of the scale bar is extracted from the accompanying caption. Scale bar extraction is

currently done with a precision of 76% and a recall of 50%.

Finally subcellular location features (SLFs) are produced and the localization

pattern of each cell is determined.

Caption Processing is done as follows.

Entity name extraction. In the current version of SLIF we use an extractor

trained on conditional random fields and an extractor trained on Dictionary-HMMs

to extract protein names [34].

Image pointer extraction. The linkage between the panels and the text of

captions is usually based on textual labels which appear as annotations to the im-

ages (i.e., panel labels), and which are also interspersed with the caption text. We

call these textual labels appearing in text image pointers. In the example shown in

Figure 4.1, “(a)” appearing in the sentence “... 41 antibodies (a) and with mono-

clonal ...” is an image pointer. In our analysis, image pointers are classified into four

categories according to their linguistic function: Bullet-style image pointers, NP-style

image pointers, Citation-style image pointers, and other. Bullet-style image pointers

function as compressed versions of bulleted lists; the strings “(A)” and “(B)” in Fig-

ure 4.2 are bullet-style image pointers. NP-style image pointers are used as proper

names in grammatical text; an example is the string “(A)” in the text: “Follow-

ing a procedure similar to that used in (A), ...”. Citation-style image pointers are

interspersed with grammatical caption text, in the same manner that bibliography

50

citations are interspersed with ordinary text; the remaining image pointers in Fig-

ure 4.2 are citation-style. The image-pointer extraction and classification steps are

done via a machine learning method [8].

Entity to image pointer alignment The scope of an image pointer specifies

what text should be associated with that image pointer. The scope of an image pointer

is the section of text (sub-caption) that should be associated with it. The scope is

determined by the class assigned to an image pointer [8]. For example, the scope of

a NP-style image pointer is the set of words that (grammatically) modify the proper

noun it serves as. The scope of a bullet-style image pointer is all the text between it

and the next bullet-style image pointer. The scope of a citation-style image pointer is

some sequence of tokens around the image pointer, usually corresponding to a nearby

noun phrase.

4.1.2 Collective classification in SLIF

The task of text region detection in SLIF is a collective classification problem. Usually

there are multiple panels within one figure. Finding the text regions, i.e., the regions

in panels containing their labels, is one important task in SLIF. The problem studied

here is to classify if the candidate regions found via image processing are text regions

or not. The text region detection dataset contains candidate regions found in 1396

panels from 207 figures. The dataset contains 4129 connections among the examples.

The problem studied here is to classify if the candidate regions are text regions or

not.

There are dependencies among the locations of candidate regions. Intuitively, if

after image processing a candidate text region was found at the upper-left corner of

panel B and two candidate regions were found in panel A, one located at the upper-left

corner, another in the middle, it is more likely the candidate region at the upper-left

51

Figure 4.4: An example figure in SLIF

of panel A is the real text region. We define the neighbor of a candidate text region to

be the region located in the “same” position (i.e., the regions with same the x-y coor-

dinates in panels) in adjacent panels in the same figure and consider the neighbors on

four directions - left, right, upper, and lower. We also consider the dependency among

candidate regions within the same panel, called competitors. Figure 4.4 is an example

figure in SLIF which demonstrates candidate regions, neighbors and competitors.

The relational template returns the predictions on one candidate region’s neigh-

bors and competitors. Since one candidate region can have several competitors from

the same panel, we apply an EXISTS aggregator to the competitors, i.e., as long as

there is one competitor which is predicted to be a text region, we assign 1 to the

corresponding feature added during stacking. We use a maximum entropy learner as

the base learner. The features for the base learner are obtained via image processing

and contain binary features indicating whether Optical Character Recognition(OCR)

extracts a character or not from the candidate region and its neighbors.

Figure 4.5 shows the dependency among instances in SLIF Task 1. The horizontal

52

y
A

is the label for Candidate 1

y
competitor

is the label for a

competitor

The diamond is the “OR”

aggregator on the competitors

y
A

y
C

y
Dy

B

y
competitor

y
competito

y
competitory

competitor

y
competitor

y
competito

y
competitory

competitor

Figure 4.5: A graph for dependencies in SLIF Task 1

and vertical edges represent the neighboring information along the horizontal and

vertical direction respectively. The diamond represents the EXISTS aggregator on

the competitor.

4.1.3 Experimental results

Accuracy of Stacked Graphical Learning

Similar to the previous chapter, we compare five models. The competitive models

here are RDNs and RMNs. The local model is a MaxEnt model.

Table 4.1 shows that stacked graphical learning achieves the best performance on

text region detection.

Because of the practical importance of this problem to our work and our familiarity

with the problem, in addition to the standard setup for stacked graphical learning,

we explored more settings to study more aspects of stacked graphical learning, in

particular, interaction between stacked graphical learning and feature engineering.

53

Table 4.1: Evaluation on six models. We compared stacked graphical model to a local

model, another relational model, and its probabilistic ceiling. The local models for “SLIF”

is MaxEnt. The competitive relational model is RDNs.

SLIF

Local model 81.5

RDNs 86.7

RMNs 87.1

Naive relational model 83.9

Stacked model (k=1) 90.1

Stacked model (k=2) 90.1

Ceiling for stacked model 96.3

Improvements to stacked graphical learning

We can refine the model by passing a numeric value indicating the probability of

being that class – the predicted confidence of being that class. The results of using

the confidence as stacked features are shown in Table 4.2. Adding the confidence

instead of the class labels gave an improvement to the performance of the stacked

model. Yet we keep passing the class labels as the default setting and the results

presented are based on using the predicted class labels if not specified.

F1(%)

With class labels as stacked features 92.1

With confidence as stacked features 93.7(+1.6)

Table 4.2: Using confidence from local models as stacked features.

We noticed that the text region detection dataset contains many disjoint subgraphs

in it, i.e., the information from every figure is disjoint from other figures’ information.

54

F1 (%)

Local model Stacked

model

Data splitting by figure 81.5 92.1 (+10.6)

Random data splitting 81.5 85.3 (+3.8)

Table 4.3: Performance of a stacked graphical model with random data splitting.

This characteristic was used to split the dataset during training for the stacked model.

If we split the dataset totally randomly, and do not keep the text regions from one

figure in the same subset, we obtained the result shown in Table 4.3.

Table 4.3 shows that the dependency among the data is very important in a

stacked graphical model. When splitting the dataset, a random splitting might break

the relevant instances into disjoint subsets. Therefore some relevant stacked features

are missed and the performance of the stacked model drops.

Sensitivity to the feature set

Besides the output of GOCR, we tried to include more features, such as the region

size, the mean of the gray values, the standard deviation of gray values, whether the

candidate region is considered clean or not (based on whether binarization is needed

before running GOCR). Four additional features were added to each candidate region

and its neighbors and now the feature vector contains 26 features. The values of size

and gray values are continuous and in a wide scale compared to the binary features.

Directly adding the additional features helped the local model yet did not help

the stacked model, as shown in Table 4.4. Therefore we applied discretization by

introducing 10 binary features for each continuous feature: we divide the values of

a feature into 10 bins and the 10 binary features indicate into which bin the feature

55

F1(%)

Local model Stacked model

With basic features 81.5 92.1 (+10.6)

With extended features

Before discretization 89.3 89.8 (+0.5)

After discretization 89.3 91.2 (+0.9)

After normalization (to [0,1]) 88.2 91.6 (+3.4)

After feature selection (top 6) 89.5 91.9 (+2.4)

Table 4.4: Performance of a stacked graphical model based on a MexEnt Learner with

expanded feature set (here we used the predicted class labels as stacked features).

falls. For example, the range of mean gray values might be (12∼245). For a mean

gray value of 240, we get a vector of (0, 0, 0, 0, 0, 0, 0, 0, 0, 1) and append it to

the feature vector. The performance on the expanded feature sets is summarized in

Table 4.4. Normalization and feature selection based on information gains were also

applied to observe the influence of feature engineering.

Table 4.4 shows that there is a complex relationship between stacked models and

feature engineering. The stacked model always performs better than the local one;

but unlike the local model, the performance of the stacked model degrades when more

features are added directly– even features that improve the local model can degrade

the stacked model. One conjecture is that MaxEnt degrades with many redundant

features, and new features are redundant for stacked learning. Thus, while stacking

improves performance, the feature engineering is still important. Simply putting the

features together to get an extended instance might not as work well as choosing them

carefully.

One possible reason for the necessity of feature engineering could be that the base

56

F1 (%)

Local model Stacked model

With basic GOCR features 82.3 91.4

With expanded features 88.7 91.0

Table 4.5: Performance of a stacked graphical model based on a boosted decision tree

learner.

F1 (%)

Local model Stacked model

With basic GOCR features 81.5 91.4

With circular features 85.0 93.1

Table 4.6: Performance of a stacked graphical model with circular features.

learner we used, the MaxEnt learner, is biased to give equal or nearly equal importance

to all features, and also sensitive to feature scales. Therefore when there are more

features, the added stacked features tend to play a weaker role in the classification.

We also applied a boosted decision tree as the base learner, and achieved similar

performance with the basic GOCR feature set and the expanded feature set without

feature engineering, as shown in Table 4.5. The performance of a decision tree is

not affected by the scale of features. Table 4.5 shows that without any feature

engineering, the performance of the stacked model based on a boosted decision tree

does not change when adding more features, while the local model achieves a better

performance with more features.

It suggests that the stacked model can achieve a satisfactory performance even

with fewer features. Also, when there are more features, stacking becomes sensitive

to the feature selection and the base learner selectioin.

57

As another experiment in feature engineering, we also defined the neighbor of

a candidate region circularly, for example, the Candidate 2 in Figure 3 is also the

“left” neighbor of Candidate 1, and the Candidate 3 is also the “upper” neighbor

of Candidate 1. With these features, the stacked graphical model achieves better

performance, as shown in Table 4.6. This suggests that a relational template that

gives a more uniform set of features might be better than one with a feature set that

varies.

4.2 SLIF Task 2: Application in SLIF as a Multi-

task System

The original idea of stacking is to take advantage of the dependencies among instances.

In many systems, there are several learned modules that interact with each other, for

example, extracting named entities from emails and recognizing the request type of

the email are closely related. SLIF is such an information extraction system with

many inter-related subtasks. We applied the idea of stacking to SLIF as a multi-task

system. Without the stacking idea, each subtask was accomplished independently.

After applying the idea of stacking to SLIF system, we will use the predictions of

relevant subtasks as features for the other subtask.

In our application to SLIF system, we conjecture the panel label extraction and

image pointer extraction are inter-related, and design a stacked model that combines

them.

4.2.1 A stacked model for mapping

In the previous version of SLIF, we map panel labels to image pointers by finding

the equal-value pair. Below we first review the previously implemented models for

58

solving these subtasks. Then we apply the idea of stacked graphical models to map

panel labels to image pointers.

In SLIF the image pointer finding was done as follows. Most image pointers are

parenthesized, and relatively short. We thus hand-coded an extractor that finds all

parenthesized expressions that are (a) less than 15 characters long and (b) do not con-

tain a nested parenthesized expression. We replace X-Y constructs with the equivalent

complete sequence. (E.g., constructs like “B-D” are replaced with “B,C,D”.) We call

the image pointers extracted by this hand-coded approach candidate image pointers.

The hand-coded extractor has high recall but only moderate precision. Using a clas-

sifier trained with machine learning approaches, we then classify the candidate image

pointers as bullet-style, citation-style, NP-style, or other. Image pointers classified

as “other” are discarded, which compensates for the relatively low precision of the

hand-coded extractor[8].

In SLIF the panel label extraction was done as follows. Image processing tech-

niques and OCR techniques are applied to find the labels printed within the panel.

That is, first candidate text regions are computed via image processing techniques, and

OCR is run on these candidate regions to get candidate panel labels. This approach

has a relatively high precision yet low recall. We call the panel labels recognized by

image processing and OCR candidate panel labels. Then grid analysis, i.e., finding the

number of total columns and rows, and also determine the row and column position

of each panel, is applied to figure out how the panels are ranged. For example, in

Figure 4.1, the grid contains 1 row and 2 columns. Panel “a” is located in row 1 and

column 1. A strategy based on grid analysis is applied to the candidate panel labels

to get a better accuracy [33].

The task of matching panels labels to image pointers can be formulated as a

classification problem. We construct a set of pairs < oi, pj > for all candidate panel

59

labels oi’s and candidate image pointers pj’s from the same figure. That is, for a

panel with li representing the real label, oi representing the panel label recognized by

OCR, and pj’s representing the image pointers in the same figure, we construct a set

of pairs < oi, pj >. We label the pair < oi, pj > as positive only if li = pj, otherwise

negative.

For example, in Figure 4.1, the real label li for panel a is “a”. If OCR recognizes oi

where oi =“a”, image pointers for the figure are “a” and “b”, we construct two pairs,

< a, a > labelled as positive and < a, b > labeled as negative. Please notice that the

pair is labelled according to the real label and the image pointers. If unfortunately,

OCR recognizes oi incorrectly for panel a in Figure 4.1, for example oi =“o”, we have

two pairs, < o, a > stilled labelled as positive (while the features for this pair will be

different, as described in the next paragraph) and < o, b > labeled as negative.

We designed features based on the oi’s and pj’s. In the base feature set, there are

3 binary features: one boolean value indicating whether oi = pj, one boolean value

indicating whether oi left = pj − 1 or oi upper = pj − 1, and another boolean value

indicating whether oi right = pj + 1 or oi down = pj + 1. Here i left is the index of

the left panel of panel i in the same row, i upper is the index of the upper panel of

panel i in the same column, pj + 1 is the successive letter of pj and pj − 1 is the

previous letter of pj. This feature set takes advantage of the context information by

comparing oi left to pj − 1 and so on. The second and third features capture a sort of

short-range dependency. That is, if the neighboring panel (an adjacent panel in the

same row or the same column) is recognized as the corresponding “adjacent” letter,

there is a higher chance that oi is equal to pj.

In the inference step for the base learner in the stacked model, if a pair < oi, pj >

is predicted as positive, i.e., f 0 predicts that oi matches pj. We apply a hand-coded

rule to update the feature: if f 0 predicts that oi matches pj, let ôi = pj, otherwise ôi

60

remains as oi for a negative pair. With ôi, we recalculate the features via comparing

ôi’s and pj’s. We call the procedure of predicting < oi, pj >, assigning ôi, and re-

calculating features based on < ôi, pj > “stacking”. We choose MaxEnt as the base

learner to classify < oi, pj > and in our experiments we implement one iteration of

stacking.

Besides the basic features, we also include another feature that captures the “long-

range context”, i.e., consider the spatial dependency among all the “sibling” panels,

even though they are not adjacent. In general the arrangement of labels might be

complex: labels may appear outside panels, or several panels may share one label.

However, in the majority of cases, panels are grouped into grids, each panel has its

own label, and labels are assigned to panels either in column-major or row-major

order. The “panels” shown in Figure 4.6 are typical of this case. For such cases, we

analyze the locations of the panels in the figure and reconstruct this grid, i.e., the

number of total columns and rows, and also determine the row and column position

of each panel. We compute the long-range feature as follows: for a panel located at

row r and column c with label o, as long as there is a panel located at row r
′

and

column c
′
with label o

′
(r
′ 6= r and c

′ 6= c) and according to either row-major order

or column-major order the label assigned to panel (r
′
, c

′
) is o

′
given the label for

panel (r, c) is o, we assign 1 to the long-range feature. For example, in Figure 4.6,

recognizing the panel label “a” at row 1, column 1 would help to recognize “e” at row

2, column 2 and “h” at row 3, column 2.

With the first order-features and long-range features from neighboring panels, it

increases the chance of a missing or mis-recognized label to be matched to an image

pointer.

61

a b c

d e f

g h i

Figure 4.6: Long-range dependency.

4.2.2 Experiments

Dataset

To evaluate the stacked model for panel label and image pointer matching, we col-

lected a dataset of 200 figures which includes 1070 panels. This is a random subsample

of a larger set of papers from the Proceedings of the National Academy of Sciences.

Our current approach can only analyse labels contained within panels, (internal la-

bels) due to the limitations on the image processing stage therefore in our dataset we

only collected figures with internal labels. Though our dataset does not cover all the

cases, panels with internal labels are the vast majority in our corpus.

We hand-labeled all the image pointers in the caption and the label for each panel.

The match between image pointers and panels was also assigned manually.

Baseline algorithms

In the previous version of SLIF, the match between image pointers and panel labels

was done via comparing their values and finding the equal-value pair.

The approaches to find the candidate image pointers and panel labels have been

described in Section 4.2.1. In this work, we take the hand-code approach and machine

learning approach as the baseline algorithms for image pointer extraction. The OCR-

62

o_i p_j

 Panel label Image pointer

equal

L_pre L_next P_left

P_right

P_upper

P_down

p_tru

e

o_tru

e

Figure 4.7: An RDN model

based approach and grid analysis approach[33] are baseline algorithms for panel label

extraction.

We also compare the stacked model to relational dependency networks (RDNs)[25].

We build an RDN model as shown in Figure 4.7.

In the RDN model there are two types of entities, image pointer and panel label.

For a image pointer, the attribute pj is the value of the candidate image pointer and

oi is the candidate panel label. p true and o true are the true values to be predicted.

The linkage L pre and L next capture the dependency among the sequence of image

pointers: L pre points to the previous letter and L next points to the successive letter.

P left, P right, P upper, and P down point to the panels to the left, right, upper and

down direction respectively. The RDN model takes the candidate image pointers and

panel labels as input and predict their true values. The match between the panel

label and the image pointer is done via finding the equal-value pair.

63

Table 4.7: Accuracy of image pointer to pane label matching.

Image pointer to panel label matching (accuracy)

Baseline algorithm 1 48.7%

Baseline algorithm 2 64.3%

RDN 70.8%

Stacked model (short-range) 75.1%

Stacked model (long-range) 81.3%

Experimental Results

We used 5-fold cross validation to evaluate the performance of the stacked graphical

model for image pointer to panel label matching. The evaluation was reported in two

ways; the performance on the matching and the performance on image pointer and

panel label extraction. To determine the matching is the “real” problem, i.e., what

we really care about are the matches, not getting the labels correctly. Evaluation

on the image pointer and panel label extraction is a secondary check on the learning

technique.

Table 4.7 shows the accuracy of image pointer to pane label matching. For the

baseline algorithms, the match was done via finding the equal-value pair. Baseline

algorithm 1 was done via comparing the candidate image pointers to the candidate

panel labels, i.e., predict a match if two labels are the same. Baseline algorithm 2

was done via comparing the image pointers extracted by the learning approach to the

panel labels obtained after grid analysis. The stacked graphical model takes the same

input as Baseline algorithm 2, i.e., the candidate image pointers extracted by the

hand-coded algorithm and the candidate panel labels obtained by OCR. We observe

64

that the stacked graphical model improves the accuracy of matching. Both the short-

range dependency and long-range dependency help to achieve a better performance.

RDN also achieved a better performance than the two baseline algorithms.

Our stacked model achieves a better performance than RDN, because in stack-

ing the dependency is captured and indicated “strongly” by the way we design fea-

tures. That is, the stacked model can model the matching as a binary classification

of < oi, pj > and capture the short-range dependency and long-range dependency

directly according to our feature definition. However, in RDNs, the data must be

formulated as types of entities described with attributes and the dependency is mod-

eled with links among attributes. Though RDNs can model the dependency among

data, the matching problem is decomposed to a multi-class classification problem and

a matching procedure. Besides that, the long-range dependency can not be modeled

explicitly.

Also the stacked models here correspond to a complicated graph, e.g., the model

with short-range features includes additional dependencies among Lpre to Pleft/Pupper,

Lnext to Pright/Pdown. The model with long-range features is even more sophisticated.

Hence stacking can easily cast a complicated model to capture more dependencies in

a flexible way.

Table 4.8 shows the performance on the sub-tasks of image pointer extraction and

panel label extraction. The results are reported with F1-measurement. Since during

the stacked model we update the value of oi and set it to be pj when finding a match,

the stacking also improves the accuracy of panel label extraction. The accuracy for

image pointer extraction remains the same since we do not update the value of pj.

Baseline algorithm 1 is the approach of finding candidate image pointers or candi-

date panel labels. Baseline algorithm 2 for image pointer extraction is the learning

approach, and the grid analysis strategy for panel label extraction. The inputs for

65

Table 4.8: Performance on image pointer extraction and panel label extraction.

Image pointer Panel label

extraction extraction

Baseline algorithm 1 60.9% 52.3%

Baseline algorithm 2 89.7% 65.7%

RDN 85.2% 73.6%

Stacked model with first order dependency - 77.8%

Stacked model with second order dependency - 83.1%

the stacked graphical model are candidate image pointers and candidate panel labels.

We observe that by updating the value of oi, we can achieve a better performance of

panel label extraction, i.e., provide more “accurate” features for stacking. RDN also

helps to improve the performance yet the best performance is obtained via stacking.

4.3 WebMaster: Another Multi-task System

4.3.1 Problem formulization and WebMaster dataset

Another application we studied is understanding website update requests [6]. Minkov

et al. describe an intelligent system that can process email requests from users to

update an organizational database. Some example web site update requests include

“Add the following contact to the Staff list. Arthur Scott, ascott@ardra.com, Rm

7992, 412 281 1914” and “Please delete Freddy Smith’s phone number”.

The information extraction system contains several sub-tasks:

Request type classification As suggested by preliminary analysis of real web-

66

master request logs, factual-update requests are in one of the following forms: add a

new tuple to the database; delete an existing tuple; delete a value from an existing

tuple; or alter (add or replace) a value of an existing tuple. One step of the analysis is

thus determining the type of request. This is casted as a text classification problem.

Named entity recognition Another important step is to identify all entity

names in a request.

Target relationship classification To execute the user’s request, the relation

associated with each request needs to be determined. For any fixed database schema,

there is a fixed set of possible relations, so this is a text classification task.

Target attribute classification Usually the “deleteValue” request needs to spec-

ify the attribute to be deleted. For example, for request “Please delete Freddy Smith’s

phone number”, consider the previous analysis tells us we should delete some at-

tribute value from the tuple of the “person” relation with the key value of “Freddy

Smith”, but does not specify the value to be deleted. Hence, to complete the analysis

for deleteValue requests, it is necessary to determine the attribute that needs to be

deleted. This is also a text classification task.

Knowing the answer to one sub-task could improve the accuracy on other sub-

tasks. For instance, it was shown in Minkov’s paper that knowing the entity type will

improve the performance of target relationship classification.

We applied the idea of stacking to several subtasks of the information extrac-

tion system. Without stacking, each subtask was accomplished independently. With

stacking, we use the predictions for relevant subtasks as features for one subtask.

The datasets and features we used for each task are as in Minkov’s paper. The

base learner for each subtask was chosen according to Minkov’s paper, i.e., VPHMMs

for named entity recognition, SVMs for target relationship classification, request type

classification, and target attribute classification. In the stacked model, we include the

67

predictions from other subtasks to expand the feature sets for each task.

4.3.2 Experimental results

We evaluated the idea of applying stacking to an information extraction system with

the webmaster data. In stacking, we used two relational templates: (1). a universal

relational template, (i.e., including the predictions from all other subtasks to expand

the feature sets), or (2). an engineered relational template, which includes only the

predictions from the subtasks believed to be relevant.

The performance is summarized in Table 4.9. F1 is used for the evaluation on

entity extraction and accuracy is used for the evaluation on other tasks. Table 4.9

shows the performance of including predictions from all other subtasks (a universal

template), and the performance of including predictions from relevant subtasks (an

engineered template). The relevant subtasks were selected through experience, i.e.,

for each subtask, we provided the true labels of another subtask. If adding the true

labels from subtask T1 improves the performance of T2, we define T1 to be relevant

to T2.

Table 4.9 shows that in an information extraction system, applying the stacked

idea to break the system into a set of subtasks and use the predictions for subtasks as

additional features for relevant subtasks, can improve the performance of the whole

system. Request type classification is the only subtask where stacking hurts. One

thing we want to mention here is that the qualities of the subtasks are different,

i.e., they are quite different classification problems. The last column in Table 4.9

shows the result using the true labels, i.e., the upper bound a stacked model can

achieve. We observe that the interrelated subtasks can help improve each other. The

reason why stacking did not help much in some cases is probably that there is not

much room to improve consider the upper bound obtained by using the true labels.

68

Stacked models

local model all subtasks selected subtasks ceiling

Entity recognition

Date 89.6 90.3(+ .7) 90.1(+ .5) 91.5(+1.9)

Time 85.1 85.6(+ .5) 85.5(+ .4) 86.0(+ .9)

Room 90.7 92.8(+2.1) 93.3(+2.6) 95.3(+4.6)

Phone 91.3 92.3(+1.0) 91.6(+ .3) 98.0(+6.7)

Person Name 81.5 81.5 82.9(+1.4) 84.6(+3.1)

Amount 89.3 90.2(+ .9) 89.8(+ .5) 88.9(- .9)

Overall F1 (%) 85.6 86.1(+ .5) 86.6(+1.0) 88.3(+2.7)

Target relation classification

accuracy 97.9 98.1(+.2) 98.1(+.2) 99.2(+1.3)

Request type classification

accuracy 96.1 95.5(-.5) 95.5(-.5) 97.1(+1.0)

Target attribute classification

accuracy 87.8 90.3(+2.5) 90.3(+2.5) 91.9(+4.1)

Table 4.9: Evaluating stacked graphical model on webmaster data. The local model

was chosen according to Minkov’s paper. Two relational templates for stacked graph-

ical models were explored. The ceiling was obtained by using true labels from relevant

subtasks.

69

local model with

tuned features

local model with

basic features

stacked model

with basic fea-

tures

Target relation classification

accuracy 97.9 96.4 95.9

Request type classification

accuracy 96.1 88.0 89.3

Target attribute classification

accuracy 87.8 83.5 86.1

Table 4.10: Evaluating stacked graphical model on webmaster data with a base feature

set.

Also there are few examples of some tasks, for example, there are only 167 examples

(111 of category ’deltuple’ and 56 in category ’delval’) for request type classification.

For target relation classification, there are 378 examples in category ’D people’, 62

examples in category ’D buget’, 140 examples in category ’D events’ and 37 examples

in category ‘D sponsors’.

Since the features used in Minkov et al’s paper are well tuned, we also explored

the performance of stacking given a weaker feature set. Table 4.10 shows the perfor-

mance using a base feature set that contains bag-of-words feature and capitalization

templates over a window including the word to be classified and the three adjacent

words to each side. It is observed that with a weaker feature set, the improvement

that stacking can achieve is larger. However, there is still more to explore when ap-

plying stacking to a system with many variables and complex dependencies to figure

out where it works well and where it does not.

70

4.4 Job Title Prediction

In this section, we consider the task of job-title classification using data obtained from

online employee directories. These data include organizational reporting structures

as well as information provided by employees about their own job responsibilities.

Assigning accurate job-categories to a large employee population is an essential step in

enabling state-of-the-art workforce management practices. Combined with employee

skills assessments, job categorization is required to match employees to specific job

openings, and form well-balanced, multi-disciplinary project teams. Assigning job

categories to a large population of employees is a time-consuming task, and hence

automation of this process can play a role in improving overall workforce management.

It can be particularly important in the case where a company inherits a large number

of new employees via a merger or acquisition.

Job title prediction is a challenging classification task for several reasons:

1. the available textual information is very limited, because most people do not

provide a detailed description of the job responsibilities

2. the population of employees is very large

3. the distribution over different job categories is very skewed - in our application

about 80% employees fall into a few dominant classes.

We applied stacked graphical models for large-scale job title prediction and com-

pare stacked models to a Markov network model and several non-relational machine

learning approaches, such as Support Vector Machines, naive Bayes, and MaxEnt,

with different feature sets.

71

Figure 4.8: The reporting structure

4.4.1 Task description

Like most large companies today, IBM maintains an online directory consisting of

profiles for all employees. Known internally as “Blue Pages”, this directory contains

the usual contact information, as well as other sources of information relevant to the

task of inferring the job-classification label for each employee. These data include

1. the name of the employee’s department (e.g. “Predictive Modeling”)

2. a relatively short, employee-entered description of the employee’s job responsi-

bilities (e.g. “Research in machine learning and data mining”)

72

Figure 4.9: A challenging example

3. a separate section where an employee can provide a longer description of their

experience, and attach a resume (this section is typically completed by only a

small fraction of employees)

4. the organizational reporting tree, i.e. links to the profile for each manager above

the employee in the organization tree

5. a list of peers of this employee, i.e. links to the profile for each employee

reporting to the same manager

Hence, we have profiles for each employee, for all managers in the reporting structure

above them, and for each of their peers. Figure 4.8 shows an example of a Blue Pages

reporting structure.

The machine-learning problem is to predict the job category label for each em-

ployee using the data described above. Each employee in IBM is assigned to a job

category – in our data, there are 23 unique job-category labels. Figure 4.10 shows

the distribution of these labels for one of our datasets described in detail in Section

5. Note that the 3 most common labels, “Consultant”, “IT Specialist”, and “Project

73

Figure 4.10: The distribution of job categories

Management” account for over 80% of the population. 1 We ignore any labels on a

Blue Page that are provided by Human Resources and which can align closely with

the job category label we wish to predict.

Figure 4.9 illustrates a practical challenge encountered in this specific application.

The correct label for this employee is “IT Specialist”, yet the description provided by

the employee includes the terms “Consultant”, “Architect”, and “Project Manager”

which are very similar to other labels. One explanation may be that the job-category

label is out of date, and does not reflect the employee’s current responsibilities. An-

other possibility is that this employee has a different view of his responsibilities than

implied by the label. In any event, this issue introduces some incorrect labels into

the process.

1This distribution is for a specific sample of IBM employees and is not indicative of the complete

IBM employee population.

74

4.4.2 Methods

From the data mining perspective, we can solve the job title prediction task via

multiple approaches: (1) we can treat it as a simple classification problem. Similar

to text classification, we can convert the textual features into vectors using the “bag-

of-words” representation and feed them into classifiers; (2) we can cast the task as a

multiview learning: for one employee, there are two disjoint sub-sets of features (or

views), i.e. the employees’ profiles as well as their managers’ profiles. Therefore the

multiview learning algorithms can be applied if we assume each feature is sufficient

to learn the job title; (3) we can also approach the task as a stacking problem: the

reporting tree provides rich information about the relationships between employees,

including their job titles. A computational efficient way to make use of these relations

is stacking, that is, generating additional “local” features, such as the predicted labels

from their managers or peers, and incorporating them into the models; (4) finally, we

can solve the problem using the graphical models: we construct a graph with the nodes

representing the employees and the edges denoting their reporting structures so that

the “global” relations between employees can be captured. There are two variables

associated with each node: the job title, either observed or hidden and to be inferred,

and the employees profile features. Using the inferencing algorithms, we can predict

the job title for unlabeled employees. As we can see, those four methods progress from

simple classifiers without modeling any dependencies between employees to graphical

models that capture the whole reporting trees.

Simple Classification

In our simple classification model, a bag-of-word feature set is used. The base bag-

of-word feature set contains only the textual information available on the employee’s

webpage. An enriched bag-of-word feature set contains textual information from both

75

the employee’s and the manager’s webpages. Here we consider different vocabular-

ies for employees and managers, i.e., if the word “business” appears both in the

employee’s and the manager’s webpage, it is considered as different words.

Support vector machines (SVMs), naive Bayes, MaxEnt, and boosted Decision

Tree classifier are chosen as baselines. Support vector machines are discriminative

classifiers that simultaneously minimize the empirical classification error and maxi-

mize the geometric margin [60]. SVMs have been very successful in many applications

and are chosen as one of the baselines in our approach. Naive Bayes (NB) classifier

is a probabilistic classifier based on Bayesian theorem with naive independence as-

sumptions [41]. Naive Bayes often works well in many real-world applications and is

particularly suited when the dimensionality of the inputs is high. Maximum Entropy

(MaxEnt) models have been successfully applied to many fields, e.g., computer vision

and natural language processing [54]. We apply MaxEnt to our job title prediction

task. Decision tree classifier is another popular classification algorithm in data min-

ing, which uses information gain to find predictive input attributes and can generate

concise and meaningful models. In our practise, we also apply AdaBoost algorithm

to Decision Tree to improve the performance. Some of the baseline algorithms are

defined as binary classifiers, e.g., Naive Bayes and SVMs. The one-vs-all strategy is

used to build a multi-class classifier using a binary model.

Stacked Models

Besides the information from the manager, there is also rich information among peer

workers (the peers are defined as people working with the same manager). Instead

of using the textual information on the peers’ webpages, we consider the job title

distribution among peers. To estimate this distribution, we need to estimate the job

titles first.

76

Stacking was applied to obtain the “predictions” for training examples,i.e., we first

run the simple classification model with the enriched feature set in a cross-validation

way to obtain the predicted job titles, estimate the job distribution of peer workers,

and add the distribution to the feature set. Finally we run a learning model with the

feature set containing the estimated distribution of peers.

In contrast to using the predictions to estimate the job title distribution among

peers, true labels can be used to estimate the distribution and the accuracy achieved

is the upper bound for the stacked model, i.e., the accuracy that can be achieved if

there is a perfect prediction on job titles.

Graphical Models

The job title classification can be formulated as an inference problem over a graphical

model, in which the nodes denote individual employees and the edges represent the

“reporting to” relationships. We build an undirected graphical model, i.e., a Markov

network, with each node associated with observed bag-of-word features based on the

employee’s profiles and hidden labels for the job titles. The potential function Φ, is

defined to include the bag-of-word features in connected nodes. Following the idea

of conditional random fields and discriminative relational Markov networks, we have

the conditional probability of the labels given the observation as follows:

P (Y1, . . . , Yn|x1, . . . ,xn)

=
1

Z

n∏
i=1

Φ(x1, . . . ,xn, yi)Φ(x1, . . . ,xn, yi, y
↑
i)

=
1

Z
exp(

n∑
i=1

K∑

k=1

λkfk(x1, . . . ,xn, yi, y
↑
i)),

in which y↑i represent the neighbor of yi on the upper depth of the reporting tree,

i.e. the manager of yi; fk are the features defined over the pair of labels and the

77

observations. We further factorize fk as

fk(x1, . . . ,xn, yi, y
↑
i) = f ′k(xi,x

↑
i)δ(〈yi, y

↑
i 〉, 〈y, y′〉),

where δ is the indicator function and 〈y, y′〉 is the pair of label values. λk is the

feature weight, which is usually learned by maximizing the likelihood of the training

data. We do not have a fully labeled set on the whole graph to learn the parameters.

Therefore we use an alternative estimation that trains one simple logistic regression

by assuming each pair of employee and manager as independent and the use the

corresponding learned weights in the graphical models.

To predict the labels for each node in the graph, we use the marginal probability,

i.e.

ỹi = arg max
y

P (Yi = y|x1, . . . ,xn).

The marginal probability can be estimated using the belief propagation (BP), given

that our graph topology is simply a tree [50]. The algorithm maintains a message

mj,i(yi) from node yj to node yi. The update from yj to yi is given by:

mj,i(yi) ←
∑
yj

Φ(x, yj)Φ(x, yi, yj)
∏

k∈N (j)/i

mk,j(yj),

where N (j) is the neighbor of node yj. Given the message vector m, the marginal

probability can be computed as

p(yi) ← 1

Z ′
1

Φ(x, yi)
∏

j∈N (i)

mj,i(xi),

where Z ′
1 is the local normalization term over node yi.

One practical difficulty of applying graphical models is the computational expense

and the scale of the dataset that can be handled. In our practise, the implemented

Markov networks can process a graph with about 300 nodes at a time. To handle

the computational constraints, we split the original reporting tree into sub-trees em-

pirically, i.e., we only allow to cut the edge from a non-leaf node to its manager,

78

so as to keep the peers in one sub-graph. Borrowing the idea of generalized belief

propagation [62], we first run belief propagation on each subtree, then update the

messages between the nodes where an edge was cut, and run BP again to pass the

new information to other nodes in the subgraph.

4.4.3 Experimental results

Datasets

We examined our models with 3 datasets. The first dataset contains 979 examples

randomly selected from whole US employee population, maintaining the original ratio

of the 21 different job categories. The second dataset contains 27,626 examples that

were selected based on the employment year, i.e before a particular year cut-off. The

third data set contains 20,320 US IBM employees within a particular department

labeled with one of the 23 categories. For the first two datasets, there are employee

profiles associated with the reporting structure, while the labels for managers and

peers are not available in general. The third dataset includes the whole employee

population in a particular department and there are both profiles and labeling infor-

mation available along the reporting chain, i.e., for each example in the third dataset,

there is the label for the employee’s manager. The distribution of the job categories

are skewed in all of these three datasets, For example, in the third dataset, there

are 23 job categories yet about 80% employees fall into the 3 dominant classes. Fig-

ure 4.10 shows the distribution of the job categories in the third dataset. All the

experiment results are reported in prediction accuracy on 10-way cross-validation.

As described in the previous section, we examined the simple classification models

on two feature sets: (1) a base feature set with “bag-of-word” representation contain-

ing only information from the employee’s profiles; (2) an enriched feature set with

bag-of-word features from both the employee’s and the manager’s profiles. We exam-

79

ined the simple models on all of the three datasets to evaluate the impact of different

feature sets.

The stacked models and graphical models can capture the dependencies between

employees along the reporting chain and among peers. Therefore we study their

effectiveness on the third dataset with the whole the whole reporting structure and

profiles available.

Random samples

Table 4.11: Accuracies on the first dataset (979 examples) and second dataset (27,626

examples), with simple models.

Algorithm 1st dataset 2st dataset

base feature enriched feature base feature enriched feature

Naive Bayes 55.5 61.6 67.3 69.5

SVMs 52.2 58.5 67.3 74.6

Decision Tree 61.4 59.2 65.8 71.4

Boosted DTree 57.6 64.3 70.7 76.6

MaxEnt 60.1 64.2 71.2 78.2

The first and second datasets are random samples with different sizes. We applied

simple models on the two random samples to evaluate the impact of the size of training

data and feature sets. The results are summarized in Table 4.11. As we can see, the

additional feature set with the managers’ profiles helps to improve the accuracy; a

larger training set also boosts the performance. Among the simple models, MaxEnt

and Boosted Decision Tree yields the best accuracy in general.

80

Department-level experiments

The third dataset we collected contains 20,320 employees from one whole business

department. It is essentially a complete relational data that can be represented via a

tree, considering the employee as nodes and reporting chains as edges. We examine

both simple classification models and the two relational models - stacked models and

graphical models to the third dataset.

Table 4.12 summarizes the results of “simple classification”, with two feature sets.

Similar to the performance on the 1st and 2nd datasets, MaxEnt and Boosted Decision

Tree with enriched feature sets give best results in general.

Table 4.12: Accuracy on the 3rd data set, with simple classification models

Algorithm Accuracy

base feature enriched feature

Naive Bayes 72.7 76.0

SVMs 72.2 80.5

Decision Tree 70.2 77.2

Boosted Decision Tree 75.6 82.2

MaxEnt 76.5 82.6

Table 4.13: Accuracy on the data in global business service, stacked models, the upper

bound is obtained using the dist. estimated with true labels

Algorithm Accuracy

stacked feature upper bound

MaxEnt 82.9 84.9

Boosted Decision Tree 84.6 85.9

81

Table 4.14: Comparison of non-relational learning and Markov networks, on the 3rd

dataset.

Solution Accuracy

Baseline 1: base feature 76.5

non-relational learning Baseline 2: enriched feature 82.6

Stacked model: enriched + stacked

feature

84.6

Relational Learning Markov network 83.1

Stacked models can capture the dependencies among employees in a natural way

and are easy to implement based on any simple learning algorithm. We explore the

stacked models built upon MaxEnt and Boosted Decision Trees, with the enriched

feature set. An upper bound of the performance by stacked models can be achieved

when the generated features are reliable and noise-free, that is, they are built upon

the true labels of the managers and the peers. Table 4.13 summarizes the results

of stacked models. Compared with the best performer of simple classification in

Table 4.12, we observe an improvement of 2.4% via the stacked models which capture

the local dependencies. Compared to the upper bound that can be achieved via

stacked models, there is still room for further improvement.

The graphical models that can capture the global dependencies is also applied to

the third dataset. The tree representing the whole dataset with 20,320 nodes can

not be processed via the inference algorithm. Therefore we split the whole graph

into sub-graphs by cutting the edges between a non-leaf node and its parent, as

described in Section 4.4.2. Table 4.14 shows the accuracy achieved by the graphical

model. The best performance of other models are also summarized in Table 4.14. We

can see: (1) the graphical model achieves better performance than the baseline with

82

simple classification, but worse than the stacking algorithms; (2) With well-tuned

features, simple models can obtain satisfactory accuracies. There are two potential

reasons for less competitive performance of graphical models: (1) the approximation

algorithm we take in the experiment lose important relational information; (2) the

local dependencies dominate the job title assignment. However, there is room for

graphical models to improve, for example, we can design potential functions that

include information from peers directly, rather than passing through the managers,

or develop more robust approximation algorithms to handle a larger dataset at a time.

In this section, we explore models for large-scale job title classification. The

experiment results show that the graphical model is able to achieve comparable results

to other classification methods using well-engineered features as input. Stacking can

easily capture more dependencies and achieved the best performance so far.

4.5 Conclusions

In this application, we explored four in-depth case studies and demonstrate the accu-

racy and flexibility of stacked graphical models - the relational template can capture

the dependency among data in a very flexible way and is easy to implement.

With case studies, we not only show more successful applications of stacked graph-

ical models, but also demonstrate the flexibility of stacked models, both in the sense

of modeling the dependency properly to improve the accuracy and in the sense of

capture more dependencies in a natural and easy way.

83

84

Chapter 5

Online Stacked Graphical Learning

Existing collective classification methods are usually expensive due to the iterative

inference in graphical models, and learning procedures based on iterative optimiza-

tion. Also, for large dataset, the cost of maintaining large graphs or related instances

in memory becomes a problem.

As we have seen in previous chapters, one advantage of stacked graphical learning

is that the inference is very efficient. We have shown that stacked graphical learning

is 40 to 80 times faster than Gibbs sampling during inference. However, the time and

memory cost during training for standard stacked graphical learning can be expensive,

relative to using a purely local base learner, since it applies a base learner to the

training data in a cross-validation-like way to make predictions.

In this chapter, we described a scheme to integrate a recently-developed single-pass

online learning method with stacked learning, to save training time and to handle large

streaming datasets with minimal memory overhead. During the learning procedure of

an online learner, predictions are made to learn the online model. Thus the predictions

for training data can be obtained naturally, and there is no need to apply the base

learner several times to the training data to obtain the predictions. Therefore online

85

stacked graphical models will save training time - obtain in average more than 50 time

speed-up compared to standard stacked graphical learning. Also the learner needs to

maintain only the classifiers, and does not need to store all the examples in memory;

thus online stacked graphical learning will save training time and memory.

5.1 Online Stacked Graphical Learning

5.1.1 Single-pass online learning

Compared to batch methods, online learning methods are often simpler to implement,

faster, and require considerably less memory. For these reasons, online techniques are

natural ones to consider for large-scale learning problems. Online learning methods,

such as Perceptron or Winnow [10, 17], are also naturally suited to stream processing.

Unfortunately however, in practice multiple passes over the same training data are

required to achieve accuracy comparable to state-of-the-art batch learners.

In order to address this problem, Carvalho & Cohen [4] investigated the perfor-

mance of different algorithms in the single-pass online learning setting, i.e., online

learning algorithms restricted to a single training pass over the available data. This

setting is particularly relevant when the system cannot afford several passes through-

out the training set: for instance, when dealing with massive amounts of data, or

when memory or processing resources are restricted, or when data is not stored but

presented in a stream.

Their work revealed that some single-pass online learning algorithms can provide

batch-level performance on a variety of tasks. More specifically, it was observed

that in classification tasks for datasets with sparse features (very common in Natural

Language Processing tasks), a modification of the Balanced Winnow algorithm (MBW

or Modified Balanced Winnow) [4] presented excellent performance - even comparable

86

to batch learners. They also observed that a variation on the Perceptron algorithm

called the Voted Perceptron [16] presented fairly good results on classification tasks

when the feature is not sparse.

Voting (a.k.a. averaging) an online classifier is a technique that, instead of using

the best hypothesis learned so far, uses a weighted average of all hypotheses learned

during a training procedure. The averaging procedure is expected to produce more

stable models, which leads to less overfitting [15]. Averaging techniques have been

successfully used with the Perceptron algorithm [16] as well as with several other

online learning algorithms, including MBW [4].

5.1.2 MBW

MBW is a modification of the Balanced Winnow algorithm, which in turn is an

extension of the Winnow algorithm [12, 37]. It is based on multiplicative updates and

it assumes the incoming example wt is a vector of positive features, i.e., wt,j ≥ 0, ∀t
and ∀j, where wt,j denotes the jth feature of wt. This assumption is usually satisfied

in NLP tasks, where the wt,j values are typically the frequency of a term, presence

of a feature, TFIDF value of a term, etc. The learning algorithm is detailed in Table

5.1.

In general terms, for each new example wt presented, the current model will make

a prediction v̂t ∈ {−1, 1} and compare it to the true class vt ∈ {−1, 1}. The prediction

will be based on the score function f , on the example wt and on the current hypothesis.

MBW is mistake-driven, i.e., only in the case of a prediction mistake the hypothesis

(or model) will be updated.

Like Balanced Winnow, MBW has a promotion parameter α > 1, a demotion

parameter β, where 0 < β < 1 and a threshold parameter θth > 0. It also has a

margin parameter M , where M ≥ 0.

87

After the algorithm is initialized, an augmentation and a normalization prepro-

cessing step is applied to each incoming example wt. When learning, the algorithm

receives a new example wt with m features, and it initially augments the example

with an additional feature(the (m + 1)th feature), whose value is permanently set to

1. This additional feature is typically known as “bias” feature. After augmentation,

the algorithm then normalizes the sum of the weights of the augmented example to

1, therefore restricting all feature weights to 0 ≤ wt,j ≤ 1.

In MBW, the hypothesis is a combination of two parts: a positive model ut and

a negative model vt. After normalization, the score function is calculated as score =

〈wt, ui〉 − 〈wt, vi〉 − θth, where 〈wt, ui〉 denote the dot product of vectors xt and ui.

If the prediction is mistaken, i.e., (score · vt) ≤ M , then the models are updated.

The update rule will be based on multiplicative operations on the two models, taking

into consideration the promotion and demotion parameters (α and β), as well as the

particular feature weight of the incoming example.

Following the parameters suggested by by Carvalho & Cohen [4], our implemen-

tation sets the promotion parameter α = 1.5, the demotion parameter β = 0.5, the

threshold θth = 1.0, the “margin” M was set to 1.0, and the initial weights were

θ+
0 = 2.0 and θ−0 = 1.0.

In testing mode, the augmentation step in MBW is the same, but there is a small

modification in the normalization. Before the normalization of the incoming instance,

the algorithm checks each feature in the instance to see if it is already present in the

current models (ui and vi). The features not present in the current model are then

removed from the incoming instance before the normalization takes place.

88

Table 5.1: Modified Balanced Winnow (MBW).

1. Initialize i = 0, and models u0 and v0.

2. For t = 1, 2, ..., T :

(a) Receive new example wt.

(b) Augmentation: add “bias” feature to wt.

(c) Normalize wt to 1.

(d) Calculate score = 〈wt, ui〉 − 〈wt, vi〉 − θth.

(e) Receive true class vt.

(f) If prediction was mistaken, i.e., (score · vt) ≤ M :

i. Update models. For all feature j s.t. wt > 0 :

ui+1,j =





ui,j · α · (1 + wt,j) , if vt > 0

ui,j · β · (1− wt,j) , if vt < 0

vi+1,j =





vi,j · β · (1− wt,j) , if vt > 0

vi,j · α · (1 + wt,j) , if vt < 0

5.1.3 Online stacked graphical learning

The Algorithm

During the learning procedure of an online learner, intermediate predictions for train-

ing data are generated as the online model is generated. Thus the predictions for train-

ing data can be obtained naturally and there is no need to apply the base learner

many times to the training data in a cross-validation-like procedure to obtain the

predictions. Therefore combining the online learning scheme with stacked graphical

models can save training time.

89

x1 x2
… xb x2b

…

…0ˆ
by

0
2

ˆ
by

…

…

…1
2

ˆ
by …

…

…

…

…1ˆk

kby
−

xn

0ˆ
ny

1ˆ
ny

1ˆk

ny
−

0
f

1
f

k
f

Figure 5.1: Online Stacked Graphical Learning

One practical difficulty is that, while online learning methods produce satisfactory

predictions after learning on the whole training set, the intermediate predictions for

the training data in the starting stage can be quite inaccurate. Thus, to obtain fair

“predictions” for training examples, we define a burn-in data size b. That is, after

training on b examples, we start using intermediate predictions from the online learner

and expanding features with the predictions, i.e., these predictions are used to train

a stacked model online.

The learning procedure of online stacked learning is shown in Figure 5.1. Figure 5.1

shows that in the learning procedure of online stacked graphical models, f 0 is trained

on the whole training dataset. Here xi =< (w1
i), ..., (w

Ni
i) > is a set of instances, and

yi is the corresponding labels for xi. After training on b sets of examples, we start

recording the intermediate predictions ŷ0
b , ..., ŷ

0
n, which are generated naturally during

the learning of f 0. For the first level of stacking, i.e., k = 1, we apply the relational

template to expand features (i.e., (wj
i)

1 = (wj
i , C(wj

i , ŷ
0
i)), and train f 1 with expanded

examples (x1
b ,yb)..., (x

1
n,yn). Similarly, for the kth level of stacking, intermediate

predictions ŷk−1
kb , ..., ŷk−1

n (which are generated naturally during the learning of fk−1)

are recorded to expand features and the kth stacked model is trained with expanded

90

instances xk
kb, ...,x

k
n.

One thing we would like to point out is that, in stacked graphical learning for

collective classification, given an instance wi, we need to apply the relational template

to retrieve the predicted labels for the related instances to extend features. Assume wi

and its neighbors are contained in a subset, we provide the instances in a subset to the

online learner as a group and extend the features after the predictions for instances in

the whole subset are made. Therefore in general, we provide the instances in groups

to the base learner and the burn-in data size b will be chosen to include a few subsets

of instances. In practice, the dataset might not be able to be split into disjoint subsets

naturally. In Section 5.2 we will demonstrate how to split the dataset into subsets

heuristically .

Efficiency Analysis

Theoretically, when there are infinitely many training examples, i.e., kb << n, apply-

ing the online stacked graphical learning shown in Figure 5.1 only requires single-pass

training over the training set. We do not need to apply the cross-validation-like trick

to get the predictions for training examples. That is, the complexity of the online

scheme is in the order of O(n). Therefore, online stacked graphical learning can save

training time. In Section 5.2.3 we will show the speed-up experimentally as well.

In online stacked graphical learning, there are reliable predictions at level k after

(k+1)b examples have streamed by, and the learner needs to maintain only k classifiers

and does not need to store examples. Therefore, the algorithm can save memory. This

becomes extremely important when the size of training data is huge. Also this feature

allows online stacked graphical learning to be applied to streaming data.

91

Given a training set D = {(x1,y1), ..., (xn,yn)}, where xi =< (w1
i), ..., (w

Ni
i) > is a

set of instances, and an online learner A, construct predictions as follows:

1. Give the training data,(x1,y1), ..., (xn,yn), to the online learner, train a classi-

fier f1, and record the intermediate predictions from online learning on xj for

j = n/2, ..., n.

2. While xj, j = n/2, ..., n, streaming by, train another online learner f2 with

(xn/2,yn/2), ..., (xn,yn), go back to x1, ...,xn/2, keep learning f2 and record the

intermediate predictions for xj, j = 1, ..., n/2− 1.

Figure 5.2: The procedure to obtain predictions for training examples via an online

base learner, with limited data

An Implementation With Limited Data

Theoretically, we assume kb << n and online stacked graphical learning only requires

single-pass training over the training set. In practice, the assumption kb << n

may not hold. An implementation with limited training data is to let b = n/2 and

apply a one-and-half-pass procedure shown in Figure 5.2, to obtain the predictions for

training examples. Using the procedure shown in Figure 5.2 to obtain the predictions,

we end up with a learning and inference method similar to the procedure of standard

stacked graphical learning, except that the predictions are no longer obtained in a

cross-validation-like way.

In the practical implementation, given n training examples, training a stacked

graphical model with level K has the complexity of O((K + 0.5)N).

92

5.2 Experiments

We evaluated stacked graphical learning on tasks from three domains - collective

classification over relational datasets, sequential partitioning [5], and named entity

extraction.

5.2.1 Problems and datasets

Relational Datasets

The relational datasets we consider here include text region detection in Subcellular

Location Image Finder (SLIF) [33, 47] and document classification. More details

about the SLIF dataset and the dependencies defined in the data can be found in

Chapter 3.1.1.

We use MBW as the base online learner for SLIF. The features are the same as in

Chapter 3.1.1. In the SLIF text region detection task, the candidate regions can be

naturally grouped into disjoint subgraphs, i.e., candidate regions from the same figure

construct a subgraph. Therefore as long as the prediction for candidate regions from

the same figure is obtained, we can apply the relational template to expand features.

The relational template is the same as in Chapter 3.1.1.

The document classification includes the webpage classification on the WebKB

dataset [11] and paper classification on the Cora dataset and the CiteSeer dataset [39].

More details about the document classification dataset can be found in Chapter 3.1.1.

We use MBW as the base online learner for document classification. The cur-

rent implementation of MBW only supports binary labels, so we considered the task

corresponding to the most common label. The relational template for document

classification is the same as in Chapter 3.1.1.

93

Table 5.2: Performance of online stacked graphical learning for relational datasets: accu-

racy for “Document classification” and F1-accuracy for “SLIF” are reported. We evaluated

two local models: MaxEnt and MBW. We also compared to a competitive relational model -

relational dependency networks. The standard stacked model used two-fold-cross-validation

predictions. The online stacked graphical model is based on MBW. We used 1 level of stack-

ing, i.e., K=1.

SLIF Document classification

WebKB Cora CiteSeer

Local model

MaxEnt 81.5 57.6 63.1 54.9

MBW 82.3 58.0 62.8 55.8

Competitive relational model

Relational Dependency Networks 86.7 73.1 72.3 57.9

Stacked model

Standard Stacked model (with MaxEnt, k=1) 90.1 72.9 73.0 59.3

Standard Stacked model (with MBW, k=1) 92.1 73.8 72.9 60.0

Online Stacked model (k=1) 92.3 73.5 70.7 -

The feature sets and relational templates are the same as in Chapter 3. We use

the following heuristic to split the datasets: the WebKB dataset contains webpages

from four computer science departments, hence we split them into groups according to

departments. We group the papers in Cora dataset by the year of publishing. There

is no such year-of-publishing information available for the Citeseer dataset, thus we

only applied the implementation shown in Figure 5.2 to Citeseer data.

94

Table 5.3: Accuracy comparison of online stacked graphical learning for sequential parti-

tioning. We evaluated two local models: MaxEnt and MBW. We compared to a competitive

graphical model - conditional random fields. The standard stacked model used two-fold-

cross-validation predictions. The online stacked graphical model is based on MBW. We

used level 1 of stacking.

Sequential Partitioning

FAQ signaturevideo

Local model

MaxEnt 67.3 96.3 80.9

MBW 64.9 96.5 78.4

Competitive relational model

CRFs 85.6 98.1 83.0

Stacked model

Standard Stacked model (with MaxEnt, k=1) 87.1 98.1 85.8

Standard Stacked model (with MBW, k=1) 84.1 98.3 85.5

Online Stacked model (k=1) 86.3 98.3 85.7

95

Table 5.4: Performance of online stacked graphical learning for Named Entity Extraction,

F1 accuracy is reported. “Relational template 1” returns predictions of adjacent tokens

only, “relational template 2” returns predictions of adjacent and repeated tokens.

Named Entity Extraction

UT Yapex Genia CSpace

Local model

MaxEnt 69.1 62.1 66.5 74.2

MBW 67.9 62.3 66.9 75.1

Competitive relational model

CRFs 73.1 65.7 72.0 80.3

Stacked model

With relational template 1

Standard Stacked model (with MaxEnt, k=1) 70.1 63.7 70.8 77.9

Standard Stacked model (with MBW, k=1) 72.1 63.9 71.3 79.9

Online Stacked model (with MBW, k=1) 72.6 64.6 72.3 80.0

With relational template 2

Standard Stacked model (with MaxEnt, k=1) 77.3 68.2 78.5 82.1

Standard Stacked model (with MBW, k=1) 76.6 68.9 78.9 83.3

Online Stacked model (with MBW, k=1) 76.6 69.1 78.9 83.4

96

Sequential Partitioning Datasets

The Sequential partitioning datasets include a signature dataset, an FAQ dataset,

and a video dataset, as decribed in Chapter 3.1.1.

We use a Modified Balance Winnow learner [4] as the base online learner in stacked

graphical learning for sequential partitioning. In the sequential partitioning task, the

instance is naturally grouped into sequences. Therefore as long as the prediction for

a sequence is obtained, we can apply the relational template to expand features. The

relational templates returns the predictions of ten adjacent examples (five preceding

examples and five following examples).

Named Entity Extraction Datasets

We applied stacked graphical learning to named entity extraction from Medline ab-

stracts and emails. More details about the named entity extraction datasets can be

found in Chapter 3.1.1.

The feature sets and relational templates for named entity extraction are the

same as in Chapter 3.1.1. The relational template will retrieve the predictions for

the adjacent words (with window size 5) and for the same word appearing in one

abstract, apply the COUNT aggregator, and return the number of words in each

category, given one word. That is, let wi be the word in a document. For words

wj = wi in the same document, we count the number of times wj appearing with

label y and use it as one of the stacked features for wi.

In addition to this relational template, we applied another relational template

which just retrieves the predictions for the adjacent words (with window size 5).

97

5.2.2 Experimental results

Accuracy of Stacked Graphical Learning with efficient training

To evaluate the effectiveness of online stacked graphical learning on the collective

classification task, in Table 5.2 we compare local models, stacked models, and a state-

of-art competitive model. We evaluated two local models, MaxEnt and MBW. We

considered a standard stacked model based on MaxEnt (with two-fold-cross-validation

predictions), a standard stacked model based on MBW (with two-fold-cross-validation

predictions), and an online stacked graphical model based on MBW. We compared

stacked graphical model to relational dependency networks [25].

Table 5.2 shows that on all of the four relational datasets, stacked graphical

learning improves the performance of the base learner significantly. The two local

models achieved performance at the same level, so did the stacked graphical models

based on them. Our comparison to relational dependency networks shows that stacked

models can achieve competitive results to the state-of-art model. However, the online

stacked graphical model requires much less training time, which will be discussed in

the next section.

One thing we want to point out is that, due to the lack of information on the year

of publication, we can not implement online stacked model to Citeseer data. And the

performance of online stacked model for Cora data is not as good as the standard

stacked graphical models. The reason for the performance drop is that providing

papers in the order of years of publication to the online learner can only provide the

predictions of papers that were published before the current timestamp and were cited

by the current paper, i.e., the predictions available so far can only provide information

on the papers cited by the current paper, while in reality, there is also information

contained in the paper that would be published and would cite the current paper.

98

Table 5.3 shows the performance of online stacked models on sequence partition-

ing. The state-of-art models we consider here are conditional random fields (CRFs).

On all of the three datasets, stacked graphical learning improves the performance of

the base learner significantly. The MaxEnt model did better than MBW on two of

three tasks, yet the stacked graphical models based on them achieved performance of

the same level.

Table 5.4 reported the F1-accuracy of online stacked graphical learning for Named

Entity Extraction. In Section 3.3 we described two relational templates for named en-

tity extraction. One relational template captures sequential dependency only(denoted

as relational template 1 in Table 5.4), the other one can also capture the dependency

among the adjacent and repeated tokens(denoted as relational template 2 in Table

5.4).

Table 5.4 shows that on all of the four named entity extraction tasks, stacked

graphical learning improves the performance of the base learner. With relational

template 1, the stacked graphical models can capture the sequential dependency and

achieved comparable results to CRFs. With relational template 2, the stacked graph-

ical models achieved better performance than CRFs. Moreover, the online stacked

graphical model requires much less training time.

5.2.3 Training efficiency of online stacked graphical learning

One big success of online stacked graphical learning is the efficiency during training.

We compared the training time of online stacked graphical models (with one iteration)

to that of competitive relational models and the baseline standard stacked graphical

model. The baseline algorithm we compare to is the best algorithm in previous

work [32], the standard stacked graphical model based on MaxEnt, with 5-fold-cross-

validation to obtain predictions during training. We compare the baseline algorithm

99

Table 5.5: Comparison on training time.

Standard SGM vs

Online SGM

Competitive relational model

vs Online SGM

SLIF 38.1 7.9

WebKB 50.0 10.1

Cora 49.7 9.9

Signature 67.4 13.6

FAQ 69.0 14.0

Video 45.0 9.7

UT 68.7 20.3

Yapex 60.6 17.1

Genia 69.4 22.4

CSpace 52.0 15.3

Average speed-up 57.0 14.0

to the online stacked graphical learning with implementation shown in Figure 5.2.

Table 5.5 shows the speedup, i.e., in the table “38.1” means the training in

standard stacked graphical learning is 38.1 times slower than that of online stacked

graphical learning. Table 5.5 shows that compared to online stacked graphical learn-

ing, standard stacked graphical learning based on MaxEnt is approximately 57 times

slower in training.

We also compared online stacked graphical learning with the competitive relational

models. Table 5.5 shows that online stacked graphical learning is approximately 14

times faster in training. Moreover, in the previous work [32], it has been shown

that during inference stacked graphical learning is 40 to 80 times faster than Gibbs

sampling in relational dependency networks.

100

Therefore, online stacked graphical models can achieve high accuracy with efficient

training and testing.

5.3 Conclusions

In this chapter, we combine an online training scheme with stacked graphical learning,

so as to be able to handle large streaming data with linear training time and minimal

memory overhead. Integrating single-pass online learning algorithm with stacked

graphical learning can save the time and memory cost during training.

With high accuracy and efficiency and low memory cost, stacked graphical learning

is very competitive in real world large-scale applications where an efficient algorithm is

extremely important. Furthermore, with the online learning scheme, stacked graphical

learning is also able to be applied to streaming data.

101

102

Chapter 6

Literature Review and Related

Work

Traditionally, machine learning methods have assumed that instances are indepen-

dent and identically distributed, which makes it possible to classify examples on an

one-by-one basis. With relational data, the entities influence each other’s category.

Hence it is beneficial to classify all related instances simultaneously, i.e., do collective

classification. Collective classification over relational data is closely related to collec-

tive inference over graphical models and statistical relational learning. Our stacked

graphical learning model is an efficient statistical learning approach for collective

classification, which simplifies a relational graphical model by using a base learner, a

relational template, and a collective inference procedure.

In this section we first review some related approaches in the context of graphical

models and their relational extensions, followed by reviewing related work on rela-

tional template design and efficient approximation for graphical models, especially

several variations of conditional random fields for collective inference. We conclude

the section by a comparison of stacked graphical learning to the related work.

103

6.1 Graphical Models and Their Relational Exten-

sions

6.1.1 Bayes networks and probabilistic relational models

Figure 6.1: An example Bayes network

Bayes networks (BNs) [46] are directed graphical models to represent a joint prob-

abilistic distribution among a set of random variables. A Bayes network consists of

a directed acyclic graph in which nodes represent random variables, and the directed

edges represent conditional independence assumptions, and a set of local conditional

probability distributions (CPDs) . A Bayes Network can be parameterized by speci-

fying all the local CPDs, i.e., the distributions P (Xi|Pai), where Xi represents node

i and Pai are its parents. In a Bayes network, the joint distribution of Xi’s can be

written as the product of the local distributions of each Xi and its parents, i.e.,

P (X1, ..., Xn) =
n∏

i=1

P (Xi|Pai)

.

Figure 6.1 shows an example Bayes network. Bayes networks can be used to

calculate the conditional distribution of a subset of random variables, given some know

104

Figure 6.2: A dependency model for the university registration example

values for another subset of variables (i.e., the evidence). Typically this procedure is

done by apply Bayes rule.

Though Bayes networks are useful for answering queries about any variable in the

network given some evidence, BNs are not well suited for modelling relational datasets

since BNs are attribute-based and lack the concept of an object. Probabilistic rela-

tional models (PRMs) [18, 31] are a relational extension to Bayesian networks which

allows relational structure to be represented and exploited. PRMs specify a relational

schema for the corresponding relational domain, a set of probabilistic dependencies

between the attributes (i.e., local CPDs), and a joint probability distribution over a

collection of related entities. A relational schema describes entities, their attributes

and relations between them.

In Bayes networks, there is one graph that represents the structure and depen-

dencies. While in PRMs, there are three components: skeleton, model, and ground

graph.

A university registration problem is used to illustrate a PRM [19]. The task defines

three classes of instances: Course, Student, and Registration. A skeleton is a set of

instances for each class as well as the relationships among them.

One crucial difference between a PRM and a BN is that a PRM defines the de-

105

pendency model between attributes at the class level. Figure 6.2 demonstrates the

dependency structure in the university registration problem. The local probability

model, which specifies CPDs, can rely on a set of simple attributes and an aggregation

of a set of attributes of related entities. For example, in the university registration

problem shown in Figure 6.2, a Student’s GPA will depend on an aggregate property

of the set of all of his Registrations: the average Grade.

During inference, the skeleton and model are rolled-out to get an ground graph,

i.e., a massive Bayes network for inference.

6.1.2 Dependency networks and relational dependency net-

works

Dependency networks (DNs) [23] approximate the joint distribution with a set of con-

ditional probability distributions which are learned independently, i.e., dependency

networks model the pseudo-likelihood. Thus DNs are an approximate representation

and are not guaranteed to specify a consistent joint distribution.

Relational dependency networks (RDNs) are a relational extension to DNs [25].

In RDNs, there are three graphs: the data graph, the model graph, and the inference

graph, corresponding to skeleton, model, and ground graph in PRMs. The model

graph captures the dependency among the variables and the data graph represents

the dataset. And the inference is carried out over a massive dependency network.

Relational dependency networks learn local CPDs independently due to the use of

pseudo-likelihood learning techniques. A relational learning approach, Relational

Probability Trees, is used in standard relational dependency networks to model the

local CPDs [25]. Gibbs sampling is applied to estimate the full joint distribution and

extract probabilities of interest in RDNs.

106

6.1.3 Conditional random fields and relational Markov net-

works

Conditional Random Fields [36] are an undirected graphical model (Markov networks)

widely used for labeling and segmenting structured data, such as sequences, trees and

lattices. A CRF defines a global log-linear conditional probability of Y given X in a

discriminative manner. Let G = (V, E) be a graph such that so that Y = (Yv)v∈V is

indexed by the vertices of Y. The joint distribution over given has the form

p(Y|X) ∝ exp

(∑

e∈E,k

λkfk(e,y|e,x) +
∑

v∈V,k

µkgk(v,y|v,x)

)

, where Y|s is the set of component of Y associated with the vertices in subgraph

s, fk and gk are feature functions, and λk and µk are parameters to be estimated

from training data. CRFs offer several advantages, such as the ability to relax strong

independence assumptions and avoid the label bias.

Taskar et al introduced relational Markov networks [58], which are the relational

version of Markov networks. A RMN specifies a set of cliques and potentials between

attributes of related entities at a template level. Usually the cliques are instantiated

by a certain relational template and the corresponding clique potentials are also in

a relational setting up. Given a relational dataset, the RMN produces an unrolled

Markov network over all the attributes in the data.

Unlike RDNs, there is no pseudo-likelihood technique in RMN to facilitate the

calculation of the joint probability. Loopy belief propagation is usually applied for

the inference over RMNs, and learning RMNs is in general an iterative optimization

procedure requiring the inference procedure.

107

6.1.4 Markov logic networks

Domingos et al. proposed Markov logic networks [29, 38, 55]. A Markov logic net-

work [55] (or MLN) is a uniform framework to describe and also relate the existing

statistical relational learning approaches, such as relational Markov networks and re-

lational dependency networks. An MLN is a first-order logic with a weight attached

to each formula. The weights associated with the formulas in an MLN jointly deter-

mine the probabilities of those formulas in the form of a log-linear model. An MLN

defines a probability distribution over possible worlds. Domingos and Richardson

showed that many existing statistical relational learning approaches are special cases

of Markov logic, for example, formulas and corresponding weights can be viewed as

a template for constructing Markov networks. Inference in MLNs can be performed

using standard Markov network inference techniques, such as Gibbs sampling, loopy

belief propagation, or approximation via pseudo-likelihood, over the minimal subset

of the relevant Markov network required for answering the query.

6.2 Other Related Work

6.2.1 First-Order learner (FOIL) for hypertext classification

Sean Slattery studied webpage classification in his thesis [57] and explored the ap-

plication of a First-order learner (FOIL) for hypertext classification. FOIL learns

a set of rules based on the hyperlinks and the key words in a document to classify

webpages. Slattery proposed an extension of FOIL, FOIL-PILFs, which uses both

the hyperlinks and document content effectively.

108

6.2.2 Conditional graphical models

Conditional graphical models [51] are a modification of CRF-like algorithms to solve

multi-class problems. In conditional graphical models, the CRF loss-function is upper

bounded in order to obtain an optimization functional, which is easier to optimize via

decomposing the training into independent optimization problems per clique. The

decomposition in this model also allows for using large-scale training datasets and

application over more complex graphs. It is also shown that training per clique in

conditional graphical models is more precise than training of the sequences as a whole.

6.2.3 Associative Markov networks

Associative Markov networks (AMN) [59] aim at a subclass of Markov networks where

the clique potential favors the same class labels for all variables in the clique. A linear

programming relaxation of the MAP problem is proposed for max-margin training

of associative Markov networks. Hence a polynomial time algorithm can be reached.

For binary classification problem, AMNs are guaranteed to find the optimal solution.

6.2.4 Languages for statistical relational learning

There have also been studies on the languages for statistical relational learning in-

cludes “PRL: A probabilistic relational language” [20] and “Blog: Probabilistic Mod-

els with Unknown Objects” [44]. Their work describe a set of languages to define

probability models over attribute uncertainty, structural uncertainty, and identity

uncertainty. This work aims to develop language and standard for the representation

of relational domains.

109

6.2.5 Two-stage CRFs

Krishnan and Manning [35] independently developed a “two stage” learning method

for Named Entity Recognition, in which predictions from one CRF are used to gen-

erate predictions for another. This method is like Cohen and Carvalho’s stacked

CRFs [5], but in Krishnan and Manning’s experiments, they used different functions

to aggregate the predictions of the base classifier. Stacked graphical models are a

generalization of Krishnan and Manning’s method.

6.2.6 Piecewise CRFs

McCallum and Sutton introduced parameter independence diagrams for introducing

additional independence assumptions into parameter estimation for efficient training

of undirected graphical models[43]. Their method is a pseudo-likelihood measure for

Markov fields and obtained a gain in accuracy via training in less than one-fifth the

time.

Our work is focusing on an efficient approach for relational data and the gain is

primarily in inference time, though an online version has been studied for efficient

training.

6.2.7 Sub-sampling techniques for mining massive relational

databases

Stacked graphical learning provides an efficient approach for collective classification,

as well as a solution for large-scale relational datasets.

Hulten et al. address the problem of applying statistical relational learning to

massive datasets [24]. Their work is based on applying sampling techniques. The

first way they used is to minimize the number of instances and relationships that

110

need to be read, while ensuring that the sufficient statistics (and consequently the

model) obtained from them is essentially the same that would be obtained from the

full dataset. The second is to minimize the number of instances that are used in

computing an aggregate (e.g., sum, average, count), again ensuring that the result is

not significantly different from what we would obtain using all the relevant instances.

6.2.8 Aggregation and relational template design

The choice of relational template and proper aggregation are important in model-

ing relational datasets. Perlich and Provost studied aggregation for relational learn-

ing [52]. They present a hierarchy of relational concepts, with increasing complexity,

and derive several classes of aggregation operators that are needed to express and

learn these concepts. An analysis of desirable properties of aggregation operators is

also discussed in Perlich’s work. They also explored target-dependant aggregation and

demonstrated empirically that in a noisy domain a complex aggregation can improve

performance.

6.3 Comparison of stacked graphical learning to

other relational models

The biggest difference between stacked graphical learning and other relational graph-

ical models is the learning and inference strategy. Stacked graphical learning is a

meta-learning schema which is used to augment a base learner, which does not re-

quire the iterative optimization of a graphical model. Instead, the learning of stacked

graphical models is the learning of a base learner. The inference in stacked graphical

does not require many iterations, compared to Gibbs sampling in RDNs.

111

112

Chapter 7

Conclusions and Future Directions

In this chapter, we summarize the major research results presented in this thesis, and

discuss some future directions.

7.1 Contributions

The contributions of this thesis can be summarized as follows,

1. This thesis proposes a framework for a statistical relational learning model,

stacked graphical learning, which allows fast inference for collective inference.

We formally analyze an idealized version of the algorithm and provide theoret-

ical proof for the convergency, in order to better understand its performance.

2. This thesis evaluates the proposed approach with many real problems includ-

ing collective classification, sequential partitioning, information extraction and

demonstrates the accuracy and efficiency of stacked graphical learning. Also this

thesis surveys a number of state-of-art models and compares their performance

to stacked graphical learning.

113

3. This thesis provides four in-depth case studies. In the case study, we not only

provide the performance of stacked graphical learning to solve collective clas-

sification problem, but also analyze how to tune the setup to further improve

the accuracy and explore the application in multi-task systems to multi-task

learning.

4. This thesis extends the standard stacked graphical learning to an online version,

to save training time and to handle large streaming datasets with minimal

memory overhead. Analysis of the time and memory cost of online stacked

graphical learning is also provided.

7.2 Related Publications

Part of the thesis work have been published in major conferences of computational

biology and data mining. Below is an incomplete list. The following publications are

related to Chapter 2, Chapter 3, and Chapter 4:

• Zhenzhen Kou, William W. Cohen, and Robert F. Murphy (2007). A Stacked

Graphical Model for Associating Information from Text And Images In Figures,

Pacific Symposium on Biocomputing, 2007.

• Zhenzhen Kou and William W. Cohen (2007). Stacked Graphical Models for

Effcient Inference in Markov Random Fields, SIAM Conference on Data Mining

(SDM07), 2007.

The following publication is related to Chapter 5:

• Zhenzhen Kou, Vitor R. Carvalho and William W. Cohen (2007). Online

Stacked Graphical Learning, to be presented at NIPS 2007 Workshop on Ef-

ficient Machine Learning.

114

7.3 Future Directions

There are many interesting future research directions that can be explored, including:

Application to large-scale datasets The goal of stacked graphical learning is to

do efficient learning and inference for classifying relational data. We have applied

the algorithm to several real problems and provided several in-depth case studies.

However, the largest dataset we have explored is the job title classification dataset

with about 20,000 instances. We plan to evaluate stacked graphical models with much

larger datasets to demonstrate its efficiency.

Explore the “stacking” procedure more We have proved the convergence of

the idealized version of stacked graphical learning. The idealized stacked graphical

learning is identical to the stacked graphical learning algorithm introduced in Chapter

2, only if (1) we assume that the relational template C(xi,y) returns MBi(y), (2)

the predictions from cross-validation are comparable to sampling from the previous

stage. Therefore exploring how the cross-validated predictions simulate the sampling

procedure will provide more theoretic support to our approach.

Relational template design The choice of relational template and proper aggre-

gation are important in modeling relational datasets, especially in stacked graphical

models we use relational template to generate new features to capture the dependen-

cies among instances. So far the choice of relational template in our work is very

empirical. Studies on relational concepts and relational autocorrelations will provide

guidelines to the relational template design.

115

116

Appendix A

Detailed t-test results

Here are the detailed t-test results for each task.

The following tables show the results of t-test on eight datasets: SLIF Task1,

WebKB, Cora, and Citeseer datasets for collective classification; and UT, Yapex,

Genia, CSpace corpus for named entity extractions. Each element in the table records

the significance score of the corresponding t-test, i.e., model i in the row does not

achieve an accuracy different than model j in the column. If the significance score

is lower than 0.05, the null hypothesis is rejected, i.e., the difference between the

performance of model i in the row and the performance of model j in the column is

considered statistically significant. Since most of the significance score is very small,

such as “5.73e(-9)”, we denote all the small numbers with “< .01” and only list the

exact significant score if it is larger than .01.

117

Table A.1: Evaluation with t-test on collective classification: SLIF data.

Local RDN RMN Naive Stack (k=1) Stack (k=2)

Local < .01 < .01 < .01 < .01 < .01

RDNs .039 < .01 < .01 < .01

RMNs < .01 < .01 < .01

Naive model < .01 < .01

Stacked (k=1) 0.245

Stacked (k=2)

Table A.2: Evaluation with t-test on collective classification: WebKB data.

Local RDN RMN Naive Stack (k=1) Stack (k=2)

Local < .01 < .01 < .01 < .01 < .01

RDNs 0.190 < .01 0.431 0.405

RMNs < .01 0.478 0.452

Naive model < .01 < .01

Stacked (k=1) 0.597

Stacked (k=2)

Table A.3: Evaluation with t-test on collective classification: Cora data.

Local RDN RMN Naive Stack (k=1) Stack (k=2)

Local < .01 < .01 < .01 < .01 < .01

RDNs 0.371 < .01 0.533 0.534

RMNs < .01 0.278 0.391

Naive model < .01 < .01

Stacked (k=1) 0.849

Stacked (k=2)

118

Table A.4: Evaluation with t-test on collective classification: CiteSeer data.

Local RDN RMN Naive Stack (k=1) Stack (k=2)

Local < .01 < .01 < .01 < .01 < .01

RDNs 0.295 0.242 0.035 0.035

RMNs 0.547 0.021 0.021

Naive model 0.031 0.031

Stacked (k=1) 0.903

Stacked (k=2)

Table A.5: Evaluation with t-test on named entity extraction: UT data. “Stack (seq.)”

denotes the stacked model with sequential relational template, “Stack (rel.)” denotes the

stacked model with relational relational template.

CRFs Stacked CRFs Naive Stack (seq.) Stack (rel.)

CRFs < .01 < .01 < .01 < .01

Stacked CRFs < .01 0.903 < .01

Naive model < .01 < .01

Stacked (seq.) < .01

Stacked (rel.)

119

Table A.6: Evaluation with t-test on named entity extraction: Yapex data.“Stack (seq.)”

denotes the stacked model with sequential relational template, “Stack (rel.)” denotes the

stacked model with relational relational template.

CRFs Stacked CRFs Naive Stack (seq.) Stack (rel.)

CRFs < .01 < .01 < .01 < .01

Stacked CRFs 0.041 0.943 < .01

Naive model 0.048 < .01

Stacked (seq.) < .01

Stacked (rel.)

Table A.7: Evaluation with t-test on named entity extraction: Genia data.“Stack (seq.)”

denotes the stacked model with sequential relational template, “Stack (rel.)” denotes the

stacked model with relational relational template.

CRFs Stacked CRFs Naive Stack (seq.) Stack (rel.)

CRFs < .01 < .01 < .01 < .01

Stacked CRFs 0.957 0.998 0.831

Naive model 0.956 0.828

Stacked (seq.) 0.830

Stacked (rel.)

120

Table A.8: Evaluation with t-test on named entity extraction: CSpace data.“Stack (seq.)”

denotes the stacked model with sequential relational template, “Stack (rel.)” denotes the

stacked model with relational relational template.

CRFs Stacked CRFs Naive Stack (seq.) Stack (rel.)

CRFs < .01 < .01 < .01 < .01

Stacked CRFs < .01 0.759 < .01

Naive model < .01 0.908

Stacked (seq.) < .01

Stacked (rel.)

121

122

Bibliography

[1] J. Besag. Efficiency of pseudolikelihood estimation for simple gaussian fields.

Biometrika, 64:616–618, 1977.

[2] R. Bunescu and et al. Comparative experiments on learning information ex-

tractors for proteins and their interactions. Artificial Intelligence in Medicine,

33:139–155, 2005.

[3] V. R. Carvalho and W. W. Cohen. Learning to extract signature and reply

lines from email. In Proceedings of CEAS 2004 - First Conference on Email and

Anti-Spam, Mountain View, CA, 2004.

[4] V. R. Carvalho and W. W. Cohen. Single-pass online learning: Performance, vot-

ing scheme and online feature selection. In Proceedings of KDD-2006, Philadel-

phia, PA, 2006.

[5] W. W. Cohen and V. R. Carvalho. Stacked sequential learning. In Proceedings of

Nineteenth International Joint Conferences on Artificial Intelligence, Edinburgh,

Scotland, 2005.

[6] W. W. Cohen, E. Minkov, and A. Tomasic. Learning to understand web site

update requests. In Proceedings of Third International Joint Conference on Ar-

tificial Intelligence, Edinburgh, Scotland, 2005.

123

[7] W. W. Cohen and S. Sarawagi. Exploiting dictionaries in named entity extrac-

tion: Combining semi-markov extraction processes and data integration meth-

ods. In Proceedings of the Tenth ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, 2004.

[8] W. W. Cohen, R. Wang, and R. F. Murphy. Understanding captions in biomed-

ical publications. In Proceedings of The Ninth ACM SIGKDD International

Conference on Knowledge Discovery and Data Mining (KDD-2003), Washing-

ton, DC, 2003.

[9] N. Collier and et al. The genia project: Corpus-based knowledge acquisition and

information extraction from genome research papers. In Proceedings of EACL-99,

1999.

[10] K. Crammer, O. Dekel, S. Shalev-Shwartz, and Y. Singer. Online passive-

aggressive algorithms. In Proceedings of NIPS 03, Bonn, Germany, 2003.

[11] M. Craven, D. DiPasquo, D. Freitag, A. McCallum, T. Mitchell, K. Nigam, and

S. Slattery. Learning to extract symbolic knowledge from the world wide web.

In Proceedings of the Fifteenth National Conference on Artificial Intelligence

(AAAI-98), Madison, WI, 1998.

[12] I. Dagan, Y. Karov, and D. Roth. Mistake-driven learning in text categorization.

In Proceedings of EMNLP, 1997.

[13] T. G. Dietterich, A. Ashenfelter, and Y. Bulatov. Training conditional random

fields via gradient tree boosting. In Proceedings of the Twenty-first International

Conference (ICML-04), Banff, Alberta, Canada, 2004.

[14] K. Franzé and et al. Protein names and how to find them. International Journal

of Medical Informatics, 67:1–3, 2002.

124

[15] Y. Freund, Y. Mansour, and R. E. Schapire. Why averaging classifiers can pro-

tect against overfitting. In Proceedings of the Eighth International Workshop on

Artificial Intelligence and Statistics, 2001.

[16] Y. Freund and R. E. Schapire. Large margin classification using the perceptron

algorithm. In Computational Learing Theory, pages 209–217, 1998.

[17] Y. Freund and R. E. Schapire. Large margin classification using the perceptron

algorithm. Machine Learning, 37:277–1296, 1999.

[18] N. Friedman, L. Getoor, D. Koller, and A. Pfeffer. Learning probabilistic rela-

tional models. In Proceedings of Nineteenth International Joint Conference on

Artificial Intelligence, Stockholm, Sweden, 1999.

[19] L. Getoor. Learning Statistical Models from Relational Data. PhD thesis, Stan-

ford University, June 2002.

[20] L. Getoor and J. Grant. Prl: A probabilistic relational language. Machine

Learning, 62:7–31, 2006.

[21] Z. Ghahramani. Learning dynamic Bayesian networks. Lecture Notes in Com-

puter Science, 1387:168–197, 1998.

[22] C. L. Giles, K. Bollacker, and S. Lawrence. Citesee: An automatic citation

indexing system. In Digital Libraries 98 - The Third ACM Conference on Digital

Libraries, Pittsburgh, PA, 1998.

[23] D. Heckerman, D. M. Chickering, C. Meek, R. Rounthwaite, and C. M. Kadie.

Dependency networks for inference, collaborative filtering, and data visualiza-

tion. Journal of Machine Learning Research, 1:49–75, 2000.

125

[24] G. Hulten, P. Domingos, and Y. Abe. Mining massive relational databases. In

the IJCAI-2003 Workshop on Learning Statistical Models from Relational Data,

Acapulco, Mexico, 2003.

[25] D. Jensen and J. Neville. Dependency networks for relational data. In Proceedings

of 4th IEEE International Conference on Data Mining (ICDM-04), Brighton,

UK, 2004.

[26] D. Jensen, J. Neville, and B. Gallagher. Why collective classification inference

improves relational classification. In Proceedings of the 10th ACM SIGKDD

International Conference on Knowledge Discovery and Data Mining, 2004.

[27] M. I. Jordan. Graphical models. Statistical Science (Special Issue on Bayesian

Statistics), 19:140–155, 2004.

[28] M. I. Jordan, Z. Ghahramani, T. S. Jaakkola, and L. K. Saul. An introduc-

tion to variational methods for graphical models. Learning in Graphical Models,

Cambridge: MIT Press, 1999.

[29] S. Kok and P. Domingos. Learning the structure of markov logic networks. In

Proceedings of the Twenty-Second International Conference on Machine Learning

(ICML05), Bonn, Germany, 2005.

[30] J. E. Kolassa. Convergence and accuracy of gibbs sampling for conditional dis-

tributions in generalized linear models. Annals of Statistics, 27:129–142, 1999.

[31] D. Koller and A. Pfeffer. Probabilistic frame-based systems. In Proceedings of

AAAI98, Madison, Wisconsin, 1998.

[32] Z. Kou and W. W. Cohen. Stacked graphical learning for efficient inference in

markov random fields. In Proceedings of SDM 07, 2007.

126

[33] Z. Kou, W. W. Cohen, and R. F. Murphy. Extracting information from text and

images for location proteomics. In Proceedings of the BIOKDD 2003, Washington

D.C., 2003.

[34] Z. Kou, W. W. Cohen, and R. F. Murphy. High-recall protein entity recognition

using a dictionary. In Proceedings of ISMB 2005, 2005.

[35] V. Krishnan and C. D. Manning. An effective two-stage model for exploiting

non-local dependencies in named entity recognition. In Proceedings of the 21st

International Conference on Computational Linguistics and 44th Annual Meeting

of the Association for Computational Linguistics, Sydney, Australia, 2006.

[36] J. Lafferty, A. McCallum, and F. Pereira. Conditional random fields: Proba-

bilistic models for segmenting and labeling sequence data. In Proceedings of the

International Conference on Machine Learning (ICML-2001), Williams, MA,

2001.

[37] N. Littlestone. Learning quickly when irrelevant attributes abound: A new linear-

threshold algorithm. Machine Learning, 2(4), 1988.

[38] D. Lowd and P. Domingos. Efficient weight learning for markov logic networks.

In Proceedings of the Eleventh European Conference on Principles and Practice

of Knowledge Discovery in Databases, Warsaw, Poland, 2007.

[39] Q. Lu and L. Getoor. Link-based classification. In Proceedings of International

Conference on Machine Learning, Washington, DC, 2003.

[40] A. McCallum, D. Freitag, and F. Pereira. Maximum entropy Markov models

for information extraction and segmentation. In Proceedings of the International

Conference on Machine Learning (ICML-2000), pages 591–598, Palo Alto, CA,

2000.

127

[41] A. McCallum and K. Nigam. A comparison of event models for naive bayes

text classification. In Proceedings of AAAI-98 Workshop on Learning for Text

Categorization, 1998.

[42] A. McCallum, K. Nigam, J. Rennie, and K. Seymore. Automating the construc-

tion of internet portals with machine learning. Information Retrieval, 3:127–163,

2000.

[43] A. McCallum and C. Sutton. Piecewise pseudolikelihood for efficient crf training.

In Proceedings of the International Conference on Machine Learning (ICML),

Corvalis, Oregon, 2007.

[44] B. Milch, B. Marthi, S. Russell, D. Sontag, D. L. Ong, and A. Kolobov. Blog:

Probabilistic models with unknown objects. In Proceedings of 19th International

Joint Conference on Artificial Intelligence (IJCAI 05), 2005.

[45] E. Minkov, R. C. Wang, , and W. W. Cohen. Extracting personal names from

emails: Applying named entity recognition to informal text. In Proceedings of

Human Language Technology Conference and Conference on Empirical Methods

in Natural Language Processing (HLT/EMNLP 2005), Vancouver, B.C., Canada,

2005.

[46] K. P. Murphy. Bayes net toolbox for matlab. Computing Science and Statistics,

33, 2001.

[47] R. F. Murphy, Z. Kou, J. Hua, M. Joffe, and W. W. Cohen. Extracting and

structuring subcellular location information from on-line journal articles: the

subcellular location image finder. In Proceedings of the IASTED International

Conference on Knowledge Sharing and Collaborative Engineering, St. Thomas,

US Virgin Islands, 2004.

128

[48] R. F. Murphy, M. Velliste, J. Yao, and G. Porreca. Searching online journals for

fluorescence microscope images depicting protein subcellular location patterns.

In Proceedings of the 2nd IEEE International Symposium on Bio-informatics and

Biomedical Engineering (BIBE-2001), pages 119–128, December 2001.

[49] J. Neville and D. Jensen. Iterative classification in relational data. In Proceed-

ings of the AAAI-2000 Workshop on Learning Statistical Models from Relational

Data, 2000.

[50] J. Pearl. Reverend bayes on inference engines: A distributed hierarchical ap-

proach. In Proceedings of AAAI-82, 1982.

[51] F. Perez-Cruz, Z. Ghahramani, and M. Pontil. Conditional graphical models. In

Predicting Structured Data, chapter 12, pages 265–282. MIT Press, 2006.

[52] C. Perlich and F. Provost. Aggregation-based feature invention and relational

concept classes. In Proceedings of the ninth ACM SIGKDD international con-

ference on Knowledge discovery and data mining, Washington, D.C., 2003.

[53] A. Ratnaparkhi. A simple introduction to maximum entropy models for nat-

ural language processing. In Technical Report 97-08, Institute for Research in

Cognitive Science, University of Pennsylvania, 1997.

[54] A. Ratnaparkhi. A simple introduction to maximum entropy models for natural

language processing. Technical Report Technical Report 97-08, Institute for

Research in Cognitive Science, University of Pennsylvania, 1997.

[55] M. Richardson and P. Domingos. Markov logic networks. Machine Learning,

62:107–136, 2006.

[56] R. L. Rivest. Learning decision lists. Machine Learning, 2(3), 1987.

129

[57] S. Slattery. Hypertext classification. Technical Report CMU-CS-02-142, Carnegie

Mellon University, 2002. (PhD thesis).

[58] B. Taskar, P. Abbeel, and D. Koller. Discriminative probabilistic models for rela-

tional data. In Proceedings of Eighteenth Conference on Uncertainty in Artificial

Intelligence (UAI02), Edmonton, Canada, 2002.

[59] B. Taskar, V. Chatalbashev, and D. Koller. Learning associative markov net-

works. In Proceedings of the twenty-first international conference on Machine

learning (ICML04), Banff, Alberta, Canada, 2004.

[60] V. Vapnik. The Nature of Statistical Learning Theory. Springer-Verlag, 1995.

[61] D. H. Wolpert. Stacked generalization. Neural Networks, 5:241–259, 1992.

[62] J. Yedidia, W. Freeman, and Y. Weiss. Generalized belief propagation. In Pro-

ceedings of Neural Information Processing Systems, 2000.

[63] A. Zellner and C.-K. Min. Gibbs sampler convergence criteria. Journal of the

American Statistical Association, 90:921–927, 1995.

130

Carnegie Mellon University does not discriminate and Carnegie Mellon University is
required not to discriminate in admission, employment, or administration of its programs or
activities on the basis of race, color, national origin, sex or handicap in violation of Title VI
of the Civil Rights Act of 1964, Title IX of the Educational Amendments of 1972 and Section
504 of the Rehabilitation Act of 1973 or other federal, state, or local laws or executive orders.

In addition, Carnegie Mellon University does not discriminate in admission, employment or
administration of its programs on the basis of religion, creed, ancestry, belief, age, veteran
status, sexual orientation or in violation of federal, state, or local laws or executive orders.
However, in the judgment of the Carnegie Mellon Human Relations Commission, the
Department of Defense policy of, "Don't ask, don't tell, don't pursue," excludes openly gay,
lesbian and bisexual students from receiving ROTC scholarships or serving in the military.
Nevertheless, all ROTC classes at Carnegie Mellon University are available to all students.

Inquiries concerning application of these statements should be directed to the Provost, Carnegie
Mellon University, 5000 Forbes Avenue, Pittsburgh PA 15213, telephone (412) 268-6684 or the
Vice President for Enrollment, Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh PA
15213, telephone (412) 268-2056

Obtain general information about Carnegie Mellon University by calling (412) 268-2000

Carnegie Mellon University
5000 Forbes Avenue
Pittsburgh, PA 15213

