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Abstract

In real-world planning problems, we must reason not only about our
own goals, but about the goals of other agents with which we may interact.
Often these agents’ goals are neither completely aligned with our own nor
directly opposed to them. Instead there are opportunities for cooperation:
by joining forces, the agents can all achieve higher utility than they could
separately. But, in order to cooperate, the agents must negotiate a mutu-
ally acceptable plan from among the many possible ones, and each agent
must trust that the others will follow their parts of the deal. Research in
multi-agent planning has often avoided the problem of making sure that
all agents have an incentive to follow a proposed joint plan. On the other
hand, while game theoretic algorithms handle incentives correctly, they
often don’t scale to large planning problems. In this paper we attempt to
bridge the gap between these two lines of research: we present an efficient
game-theoretic approximate planning algorithm, along with a negotiation
protocol which encourages agents to compute and agree on joint plans
that are fair and optimal in a sense defined below. We demonstrate our
algorithm and protocol on two simple robotic planning problems.
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1 INTRODUCTION

We model the multi-agent planning problem as a general-sum stochastic game
with cheap talk: the agents observe the state of the world, discuss their plans
with each other, and then simultaneously select their actions. The state and
actions determine a one-step reward for each player and a distribution over the
world’s next state, and the process repeats.

While talking allows the agents to coordinate their actions, it cannot by itself
solve the problem of trust: the agents might lie or make false promises. So, we
are interested in planning algorithms that find subgame-perfect Nash equilibria.
In a subgame-perfect equilibrium, every deviation from the plan is deterred
by the threat of a suitable punishment, and every threatened punishment is
believable. To find these equilibria, planners must reason about their own and
other agents’ incentives to deviate: if other agents have incentives to deviate
then I can’t trust them, while if I have an incentive to deviate, they can’t trust
me.

In a given game there may be many subgame-perfect equilibria with widely
differing payoffs: some will be better for some agents, and others will be better
for other agents. It is generally not feasible to compute all equilibria [1], and
even if it were, there would be no obvious way to select one to implement. It
does not make sense for the agents to select an equilibrium without consulting
one another: there is no reason that agent A’s part of one joint plan would
be compatible with agent B’s part of another joint plan. Instead the agents
must negotiate, computing and proposing equilibria until they find one which
is acceptable to all parties.

This paper describes a planning algorithm and a negotiation protocol which
work together to ensure that the agents compute and select a subgame-perfect
Nash equilibrium which is both approximately Pareto-optimal (that is, its value
to any single agent cannot be improved very much without lowering the value to
another another agent) and approximately fair (that is, near the so-called Nash
bargaining point). Neither the algorithm nor the protocol is guaranteed to work
in all games; however, they are guaranteed correct when they are applicable,
and applicability is easy to check. In addition, our experiments show that they
work well in some realistic situations. Together, these properties of fairness,
enforceability, and Pareto optimality form a strong solution concept for a sto-
chastic game. The use of this definition is one characteristic that distinguishes
our work from previous research: ours is the first efficient algorithm that we
know of to use such a strong solution concept for stochastic games.

Our planning algorithm performs dynamic programming on a set-based value
function: for P players, at a state s, V ∈ V(s) ⊂ RP is an estimate of the value
the players can achieve. We represent V(s) by sampling points on its convex
hull. This representation is conservative, i.e., guarantees that we find a subset of
the true V∗(s). Based on the sampled points we can efficiently compute one-step
backups by checking which joint actions are enforceable in an equilibrium.

1



Our negotiation protocol is based on a multi-player version of Rubinstein’s
bargaining game. Players together enumerate a set of equilibria, and then take
turns proposing an equilibrium from the set. Until the players agree, the proto-
col ends with a small probability ε after each step and defaults to a low-payoff
equilibrium; the fear of this outcome forces players to make reasonable offers.

2 BACKGROUND

2.1 STOCHASTIC GAMES

A stochastic game represents a multi-agent planning problem in the same way
that a Markov Decision Process [2] represents a single-agent planning problem.
As in an MDP, transitions in a stochastic game depend on the current state and
action. Unlike MDPs, the current (joint) action is a vector of individual actions,
one for each player. More formally, a general-sum stochastic game G is a tuple
(S, sstart, P,A, T, R, γ). S is a set of states, and sstart ∈ S is the start state.
P is the number of players. A = A1 × A2 × . . . × AP is the finite set of joint
actions. We deal with fully observable stochastic games with perfect monitoring,
where all players can observe previous joint actions. T : S × A 7→ P (S) is the
transition function, where P (S) is the set of probability distributions over S.
R : S × A 7→ RP is the reward function. We will write Rp(s, a) for the pth
component of R(s, a). γ ∈ [0, 1) is the discount factor. Player p wants to
maximize her discounted total value for the observed sequence of states and
joint actions s1, a1, s2, a2, . . ., Vp =

∑∞
t=1 γt−1Rp(st, at). A stationary policy for

player p is a function πp : S 7→ P (Ap). A stationary joint policy is a vector
of policies π = (π1, . . . , πP ), one for each player. A nonstationary policy for
player p is a function πp : (∪∞t=0 (S × A)t × S) 7→ P (Ap) which takes a history
of states and joint actions and produces a distribution over player p’s actions;
we can define a nonstationary joint policy analogously. For any nonstationary
joint policy, there is a stationary policy that achieves the same value at every
state [3].

The value function V π
p : S 7→ R gives expected values for player p under joint

policy π. The value vector at state s, Vπ(s), is the vector with components
V π

p (s). (For a nonstationary policy π we will define V π
p (s) to be the value if s

were the start state, and V π
p (h) to be the value after observing history h.) A

vector V is feasible at state s if there is a π for which Vπ(s) = V, and we will
say that π achieves V.

We will assume public randomization: the agents can sample from a desired
joint action distribution in such a way that everyone can verify the outcome. If
public randomization is not directly available, there are cryptographic protocols
which can simulate it [4]. This assumption means that the set of feasible value
vectors is convex, since we can roll a die at the first time step to choose from a
set of feasible policies.
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2.2 REPEATED BATTLE OF THE SEXES

One well-known stochastic game that can illustrate many of the concepts we’re
presented is called Repeated Battle of the Sexes or RBoS. The shaded area in
Fig. 1 illustrates the set of feasible value vectors for this game, which has one
state, two players, and two actions for each player, with discount factor γ = 0.99
and reward function

a1 a2

a1 3, 4 0, 0
a2 0, 0 4, 3

(1)

In Eq. 1, the first player’s action determines a row of the table and the
second player’s action determines a column. The corresponding entry lists the
payoffs to players one and two in that order. Stochastic games with only one
state, such as RBoS, are called repeated games.

2.3 EQUILIBRIA

While optimal policies for MDPs can be determined exactly via various algo-
rithms such as linear programming [2], it isn’t clear what it means to find an
optimal policy for a general sum stochastic game. So, rather than trying to
determine a unique optimal policy, we will define a set of reasonable policies:
the Pareto-dominant subgame-perfect Nash equilibria.

A (possibly nonstationary) joint policy π is a Nash equilibrium if, for each
individual player, no unilateral deviation from the policy would increase that
player’s expected value for playing the game. Nash equilibria can contain in-
credible threats, that is, threats which the agents have no intention of following
through on. To remove this possibility, we can define the subgame-perfect Nash
equilibria. A policy π is a subgame-perfect Nash equilibrium if it is a Nash
equilibrium in every possible subgame: that is, if there is no incentive for any
player to deviate after observing any history of joint actions.

Finally, consider two policies π and φ. If V π
p (sstart) ≥ V φ

p (sstart) for all
players p, and if V π

p (sstart) > V φ
p (sstart) for at least one p, then we will say that

π Pareto dominates φ. A policy which is not Pareto dominated by any other
policy is Pareto optimal.

RBoS has three stationary subgame-perfect Nash equilibria, whose value
vectors are indicated with ◦ in Fig. 1.1 The equilibrium marked with both ◦
and × is Pareto dominated by the other two equilibria (marked with ◦ only), but
neither of the latter two equilibria dominates the other. The top right border
of the feasible set (red where color is available) corresponds to the set of Pareto
optimal policies.

1These equilibria are: always play a1, a1; always play a2, a2; and randomize with P (a1) = 3
7

for player 1 and P (a1) = 4
7

for player 2
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Figure 1: Illustration of feasible values, safety values, equilibria, and the folk
theorem for RBoS.

2.4 RELATED WORK

Littman and Stone [5] give an algorithm for finding Nash equilibria in two-
player repeated games. Hansen et al. [6] show how to eliminate very-weakly-
dominated strategies in partially observable stochastic games. Doraszelski and
Judd [7] show how to compute Markov perfect equilibria in continuous-time
stochastic games. The above papers use solution concepts much weaker than
Pareto-dominant subgame-perfect equilibrium, and do not address negotiation
and coordination. Perhaps the closest work to the current paper is by Brafman
and Tennenholtz [8]: they present learning algorithms which, in repeated self-
play, find Pareto-dominant (but not subgame-perfect) Nash equilibria in matrix
and stochastic games. By contrast, we consider a single play of our game,
but allow “cheap talk” beforehand. And, our protocol encourages arbitrary
algorithms to agree on Pareto-dominant equilibria, while their result depends
strongly on the self-play assumption.

2.4.1 FOLK THEOREMS

In any game, each player can guarantee herself an expected discounted value
regardless of what actions the other players takes. We call this value the safety
value. Suppose that there is a stationary subgame-perfect equilibrium which
achieves the safety value for both players; call this the safety equilibrium policy.

Suppose that, in a repeated game, some stationary policy π is better for
both players than the safety equilibrium policy. Then we can build a subgame-
perfect equilibrium with the same payoff as π: start playing π, and if someone
deviates, switch to the safety equilibrium policy. So long as γ is sufficiently large,
no rational player will want to deviate. This is the folk theorem for repeated
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Figure 2: Equilibria of a Rubinstein game with γ = 0.8. Shaded area shows
feasible value vectors (U1(x), U2(x)) for outcomes x. Right-hand circle corre-
sponds to equilibrium when player 1 moves first, left-hand circle, when player 2
moves first. Nash point is indicated by 3.

games: any feasible value vector which is strictly better than the safety values
corresponds to a subgame-perfect Nash equilibrium [9]. (The proof is slightly
more complicated if there is no safety equilibrium policy, but the theorem holds
for any repeated game.)

There is also a folk theorem for general stochastic games [3]. This theorem,
while useful, is not strong enough for our purposes: it only covers discount
factors γ which are so close to 1 that the players don’t care which state they wind
up in after a possible deviation. In most practical stochastic games, discount
factors this high are unreasonably patient. When γ is significantly less than 1,
the set of equilibrium vectors can change in strange ways as we change γ [10].

In RBoS, each player can guarantee herself an expected reward of min {4
7 ·

3, 3
7 · 4} = 12

7 on each step. This level of reward is the safety value (dashed lines
in Fig. 1). It happens that there is a stationary subgame-perfect equilibrium
which achieves the safety value for both players; this is the safety equilibrium
policy for RBoS. This disagreement policy is for each player to play her less
preferred action 4

7 of the time and her more preferred action 3
7 of the time.

2.4.2 RUBINSTEIN’S GAME

Rubinstein [11] considered a game where two players divide a slice of pie. The
first player offers a division x, 1−x to the second; the second player either accepts
the division, or refuses and offers her own division 1 − y, y. The game repeats
until some player accepts an offer or until either player gives up. In the latter
case neither player gets any pie. Rubinstein showed that if player p’s utility
for receiving a fraction x at time t is Up(x, t) = γtUp(x) for a discount factor
0 ≤ γ < 1 and an appropriate time-independent utility function Up(x) ≥ 0, then
rational players will agree on a division near the so-called Nash bargaining point.
This is the point which maximizes the product of the utilities that the players
gain by cooperating, U1(x)U2(1 − x). As γ ↑ 1, the equilibrium will approach
the Nash point. See Fig. 2 for an illustration. For three or more players, a
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similar result holds where agents take turns proposing multi-way divisions of
the pie [12].

While the game above is restricted to two players, there is also a general
multi-player version of the bargaining game. The multi-player version works as
follows. Agents take turns proposing multi-way divisions of a pie. After each
proposal, all agents other than the proposer decide independently whether to
accept or reject. If all agents accept, the proposal is implemented. Otherwise,
any agents who accepted have their shares fixed at the proposed level and are
removed from further play; the next remaining agent then proposes a division
of the remaining pie. As in the two-player game, the unique subgame-perfect
equilibrium approaches the Nash point as γ ↑ 1 [12].

2.5 NASH BARGAINING POINT

In a multi-player game, the Nash bargaining point is the solution maximizing
the product of the excess values to each player above her safety value. That is,

VNash = arg max
V

( P∏
p=1

(
Vp − V safety

p

))

This argmax is taken only over values of V such that Vp ≥ V safety
p for all

p. The Nash bargaining point can be uniquely characterized as meeting some
criteria for a “good” bargaining solution, such as symmetry and weak Pareto
optimality. See [13] or [14] for more details.

3 NEGOTIATION PROTOCOL

The Rubinstein game implicitly assumes that the result of a failure to cooperate
is known to all players: nobody gets any pie. The multi-player version of the
game assumes in addition that giving one player a share of the pie doesn’t force
us to give a share to any other player. Neither of these properties holds for
general sum stochastic games. They are, however, easy to check, and often hold
or can be made to hold for planning domains of interest.

So, we will assume that the players have agreed beforehand on a subgame-
perfect equilibrium policy πdis, called the disagreement policy, that they will
follow in the event of a negotiation failure. In addition, for games with three or
more players, we will assume that each player can unilaterally reduce her own
utility by any desired amount without affecting other players’ utilities.2

2Our results for the multi-player problem also hold under the alternate assumption that
utilities are transferable, by an argument due to Krishna and Serrano [12]. We prefer our stated
assumption, since it does not require the players’ utilities to be expressed in compatible units.
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Given these assumptions, our protocol proceeds in two phases. In the first
phase agents compute subgame-perfect equilibria and take turns revealing them.
On an agent’s turn she either reveals an equilibrium or passes; if all agents pass
consecutively, the protocol proceeds to the second phase. When an agent states
a policy π, the other agents verify that π is a subgame-perfect equilibrium and
calculate its payoff vector Vπ(sstart); players who state non-equilibrium policies
miss their turn (Such players are assigned to receive their disagreement utilities,
as described below.)

At the end of the first phase, suppose the players have revealed a set Π of
policies. Define

Xp(π) = V π
p (sstart)− V dis

p (sstart)

U = convhull {X(π) | π ∈ Π}
U = {u ≥ 0 | (∃v ∈ U | u ≤ v)}

where Vdis is the value function of πdis, Xp(π) is the excess of policy π for player
p, and U is the set of feasible excess vectors.

In the second phase, players take turns proposing points u ∈ U along with
policies or mixtures of policies in Π that achieve them. After each proposal, all
agents except the proposer decide whether to accept or reject. If everyone
accepts, the proposal is implemented: everyone starts executing the agreed
equilibrium.

Otherwise, the players who accepted are removed from future negotiation
and have their utilities fixed at the proposed levels. Fixing player p’s utility at
up means that all future proposals must give p exactly up. (Invalid proposals
result in the proposer losing her turn.) To achieve this, the proposal may require
p to voluntarily lower her own utility; this requirement is enforced by the threat
that all players will revert to πdis if p fails to act as required. The choose(i)
in Figure 3 marks the place in the protocol where agent i gets to choose one
of several alternatives: i picks which of the lines inside the choose/end pair
will execute. The parameter ε is an arbitrary small positive number which
determines whether we force a phase to end early; it should be small enough
that there is little risk of the protocol ending before the agents want it to, but
large enough that the agents feel pressure to arrive at an agreement rather than
stalling forever. At the end of Phase I, the set pol contains the policies which
the agents will bargain over in Phase II.

If at some point one of the remaining players declares that further nego-
tiation is pointless, or if we hit the ε chance of having the current round of
communication end, all remaining players are assigned their disagreement val-
ues. The players execute the last proposed policy π (or πdis if there has been
no valid proposal), and any player p for whom V π

p (sstart) is greater than her
assigned utility up voluntarily lowers her utility to the correct level. (Again,
failure to do so results in all players reverting to πdis.)

Under the above protocol, player’s preferences are the same as in a Rubin-
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pol ← ∅
repeat

done ← true
for each agent i

choose(i)
i says “pass”
i adds a policy or set of policies to pol; done ← false

end choose
end for
With probability ε, done ← true

until done

Figure 3: Phase I of the negotiation protocol.

stein game with utility set U: because we have assumed that negotiation ends
with probability ε after each message, agreeing on u after t additional steps is
exactly as good as agreeing on u(1 − ε)t now. So with ε sufficiently small, the
Rubinstein or Krishna-Serrano results show that rational players will agree on
a vector u ∈ U which is close to the Nash point argmaxu∈UΠpup. Because of
this property we can give a coarse description of how the agents should play in
Phase I: they should nominate policies that give themselves high payoffs to try
to steer the outcome in their favor. But they will also want to nominate policies
that give high payoffs to other agents, because such policies are more likely to
eventually be incorporated into the plan accepted by the group as a whole.

In figures 3 and 4 we give an algorithmic description of the specific protocol
followed by negotiating players.

4 COMPUTING EQUILIBRIA

In order to use the protocol of Sec. 3 for bargaining in a stochastic game, the
players must be able to compute some subgame-perfect equilibria. Computing
equilibria is a hard problem [15], so we cannot expect real agents to find the
entire set of equilibria. Fortunately, each player will want to find the equilibria
which are most advantageous to herself to influence the negotiation process in
her favor. But equilibria which offer other players reasonably high reward have
a higher chance of being accepted in negotiation. So, self interest will naturally
distribute the computational burden among all the players.

In this section we describe an efficient dynamic-programming algorithm for
computing equilibria. The algorithm takes some low-payoff equilibria as input
and (usually) outputs higher-payoff equilibria. It is based on the intuition that
we can use low-payoff equilibria as enforcement tools: by threatening to switch
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for each agent i
utility[i] ← di

accepted[i] ← false
end for
repeat

for each agent i
if accepted[i] then continue
i proposes a distribution s over complete policies from pol
done ← true
for each agent j 6= i

if accepted[j] then continue
u ← utility of s to j
choose(j)

j says “accept”; utility[j] ← u; accepted[j] ← true
j says “reject”; done ← false

end choose
end for
if done then

utility[i] ← utility of s to i
return

end if
end for
With probability ε, done ← true

until done

Figure 4: Phase II of the negotiation protocol.
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Initialization
for s ∈ S

V(s) ← {V | V dis
p (s) ≤ Vp ≤ Rmax/(1− γ)}

end

Repeat until converged
for iteration ← 1, 2, . . .

for s ∈ S
Compute value vector set for each joint action,

then throw away unenforceable vectors
for a ∈ A

Q(s, a) ← {R(s, a)}+ γ
∑

s′∈S T (s, a)(s′)V(s′)
Q(s, a) ← {Q ∈ Q(s, a) | Q ≥ Vdev(s, a)}

end
We can now randomize among joint actions
V(s) ← convhull

⋃
a Q(s, a)

end
end

Figure 5: Dynamic programming using exact operations on sets of value vectors

to an equilibrium that has low value to player p, we can deter p from deviating
from a cooperative policy.

In more detail, we will assume that we are given P different equilibria
πpun

1 , . . . , πpun
P ; we will use πpun

p to punish player p if she deviates. We can
set πpun

p = πdis for all p if πdis is the only equilibrium we know; or, we can
use any other equilibrium policies that we happen to have discovered. The al-
gorithm will be most effective when the value of πpun

p to player p is as low as
possible in all states.

We will then search for cooperative policies that we can enforce with the
given threats πpun

p . We will first present an algorithm which pretends that we
can efficiently take direct sums and convex hulls of arbitrary sets. This algorithm
is impractical, but finds all enforceable value vectors. We will then turn it into
an approximate algorithm which uses finite data structures to represent the
set-valued variables. As we allow more and more storage for each set, the
approximate algorithm will approach the exact one; and in any case the result
will be a set of equilibria which the agents can execute.

4.1 THE EXACT ALGORITHM

Our algorithm maintains a set of value vectors V(s) for each state s. It initializes
V(s) to a set which we know contains the value vectors for all equilibrium
policies. It then refines V by dynamic programming: it repeatedly attempts to
improve the set of values at each state by backing up all of the joint actions,
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excluding joint actions from which some agent has an incentive to deviate.

In more detail, we will compute V dis
p (s) ≡ V πdis

p (s) for all s and p and use
the vector Vdis(s) in our initialization. (Recall that we have defined V π

p (s)
for a nonstationary policy π as the value of π if s were the start state.) We
also need the values of the punishment policies for their corresponding players,
V pun

p (s) ≡ V
πpun

p
p (s) for all p and s. Given these values, define

Qdev
p (s, a) = Rp(s, a) + γ

∑

s′∈S

T (s, a)(s′)V pun
p (s′) (2)

to be the value to player p of playing joint action a from state s and then
following πpun

p forever after.

From the above Qdev
p values we can compute player p’s value for deviating

from an equilibrium which recommends action a in state s: it is Qdev
p (s, a′) for

the best possible deviation a′, since p will get the one-step payoff for a′ but be
punished by the rest of the players starting on the following time step. That is,

V dev
p (s, a) = max

a′p∈Ap

Qdev
p (s, a1 × . . .× a′p × . . .× aP ) (3)

V dev
p (s, a) is the value we must achieve for player p in state s if we are planning

to recommend action a and punish deviations with πpun
p : if we do not achieve

this value, player p would rather deviate and be punished.

Our algorithm is shown in Fig. 5. After k iterations, each vector in V(s)
corresponds to a k-step policy in which no agent ever has an incentive to deviate.
In the k + 1st iteration, the first assignment to Q(s, a) computes the value
of performing action a followed by any k-step policy. The second assignment
throws out the pairs (a, π) for which some agent would want to deviate from
a given that the agents plan to follow π in the future. And the convex hull
accounts for the fact that, on reaching state s, we can select an action a and
future policy π at random from the feasible pairs.3 Proofs of convergence and
correctness of the exact algorithm are in the appendix.

5 Approximate Algorithm

The exact algorithm performs operations on convex sets of value vectors. Ac-
tually storing these sets exactly may require a prohibitive amount of space, and
thus a prohibitive amount of computation to perform operations on these sets.
So our approximate algorithm, rather that storing V(s) explicitly, chooses a
finite set of witness vectors W ⊂ RP and stores V(s,w) = arg maxv∈V(s)(v ·w)
for each w ∈ W. V(s) is then approximated by the convex hull of {V(s,w) |

3It is important for this randomization to occur after reaching state s to avoid introducing
incentives to deviate, and it is also important for the randomization to be public.
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Initialization
for s ∈ S, w ∈ W

V (s,w) ← w Rmax/(1− γ)
end

Repeat until converged
for iteration ← 1, 2, . . .

for w ∈ W, s ∈ S
Approximate value vector set for each joint action,

then throw away unenforceable vectors
for a ∈ A

Q(s, a) ← R(s, a) + γ
∑

s′∈S T (s, a)(s′)V (s′,w)
if Q(s, a) 6≥ V dev(s, a)

Q(s, a) ← V dis(s)
end

end
Approximate the convex hull
V (s,w) ← arg maxq∈{Q(s,a)|a∈A} q ·w

end
end

Figure 6: Dynamic programming using approximate operations on arrays of
value vectors

w ∈ W}. The approximate algorithm is shown in Fig. 6. With a small |W| it
is inaccurate but conservative: because the convex hull of V(s,w) taken over
w is smaller than V(s), we can only discard vectors and not add them, so all
of the returned value vectors will still correspond to vectors that the exact al-
gorithm would have returned. However, if W samples the P -dimensional unit
hypersphere densely enough, the maximum possible approximation error will
be small. (In practice, each agent will probably want to pick W differently, to
focus her computation on policies in the portion of the Pareto frontier where
her own utility is relatively high.) As |W| increases, the error introduced at
each step will go to zero.

6 EXPERIMENTS

We tested our value iteration algorithm and negotiation procedure on two ro-
botic planning domains: a joint motion planning problem and a supply-chain
management problem.

In our motion planning problem (Fig. 7), two players together control a two-
wheeled robot, with each player picking the rotational velocity for one wheel.
Each player has a list of goal landmarks which she wants to cycle through, but
the two players can have different lists of goals. We discretized states based on
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Figure 7: Execution traces for our motion planning example. Left and Center:
with 2 witness vectors per state, the agents randomize between two selfish paths.
Right: with 4–32 witnesses per state, the agents find a cooperative path. Steps
where either player achieved a goal are marked with ×.

X,Y, θ and the current goals, and discretized actions into stop, slow (0.45m
s ),

and fast (0.9m
s ), for 9 joint actions and about 25,000 states. We discretized time

at ∆t = 1s, and set γ = 0.99.

For both the disagreement policy and all punishment policies, we used “al-
ways stop,” since by keeping her wheel stopped either player can prevent the
robot from moving. Planning took a few hours of wall clock time on a desktop
workstation for 32 witnesses per state.

Based on the planner’s output, we ran our negotiation protocol to select an
equilibrium. Fig. 7 shows the results: with limited computation the players
pick two selfish paths and randomize equally between them, while with more
computation they find the cooperative path.

Usually, in the first phase of the negotiation protocol, we simply had each
agent reveal all the policies she knew about; this strategy is optimal if both
agents know the same set of equilibria, as they do here. In the second phase,
the optimal strategy is for the first player to immediately propose the Nash
point and for the second to accept.4

We also ran experiments in the same domain, but limiting the computation
of one agent and determining how that would affect the outcome of negotia-
tion. Fig. 8 shows the results of negotiation between two players using different
amounts of computation. Because the more restricted agent doesn’t know about
some of the best equilibria, the less restricted agent can influence negotiation
by revealing only some of the equilibria that she knows about, and can alter the
outcome significantly in her favor. But, revealing too few equilibria leads to an
outcome that is worse for both agents.

4For the purpose of this experiment, we take ε to be so small as to make the difference
between the equilibrium and the Nash point negligible. It is an interesting subject for future
work to determine how large ε needs to be to give real agents the necessary incentive to come
to an agreement expeditiously.
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Figure 8: Negotiation between agents with different computational abilities.
Solid line: Pareto frontier computed by a 32-witness agent; dash-dot line: 4-
witness agent’s frontier; × marks: Nash points of sets formed from the 4-witness
agent’s frontier and some of the 32-witness agent’s frontier; ⊗ mark: Nash point
of full set.

For our second experiment we examined a more realistic supply-chain prob-
lem. Here each player is a parts supplier competing for the business of an engine
manufacturer. The manufacturer doesn’t store items and will only pay for parts
which can be used immediately. Each player controls a truck which moves parts
from warehouses to the assembly shop; she pays for parts when she picks them
up, and receives payment on delivery. Each player gets parts from different
locations at different prices and neither player can individually provide all of
the parts the manufacturer needs.

Each player’s truck can be at six locations along a line: four warehouse
locations (each of which provides a different type of part), one empty location,
and the assembly shop. Building an engine requires five parts, delivered in
the order A, {B,C}, D, E (parts B and C can arrive in either order). After
E, the manufacturer needs A again. Players can move left or right along the
line at a small cost, or wait for free. They can also buy parts at a warehouse
(dropping any previous cargo), or sell their cargo if they are at the shop and the
manufacturer wants it. Each player can only carry one part at a time and only
one player can make a delivery at a time. Finally, any player can retire and sell
her truck; in this case the game ends and all players get the value of their truck
plus any cargo. The disagreement policy is for all players to retire at all states.
Fig. 9 shows the computed sets V(sstart) for various numbers of witnesses. The
more witnesses we use, the more accurately we represent the frontier, and the
closer our final policy is to the true Nash point.

All of the policies computed are “intelligent” and “cooperative”: a human
observer would not see obvious ways to improve them, and in fact would say
that they look similar despite their differing payoffs. Players coordinate their
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Figure 9: Supply chain management problem. In the left figure, Player 1 is about
to deliver part D to the shop, while player 2 is at the warehouse which sells B.
The right figure shows the tradeoff between accuracy and computation time.
The solid curve is the Pareto frontier for sstart, as computed using 8 witnesses
per state. The dashed and dotted lines were computed using 2 and 4 witnesses,
respectively. Dots indicate computed value vectors; × marks indicate the Nash
points.

motions, so that one player will drive out to buy part E while the other delivers
part D. They sit idle only in order to delay the purchase of a part which would
otherwise be delivered too soon.

7 CONCLUSION

Real-world planning problems involve negotiation among multiple agents with
varying goals. To take all agents incentives into account, the agents should
find and agree on Pareto-dominant subgame- perfect Nash equilibria. For this
purpose, we presented efficient planning and negotiation algorithms for general-
sum stochastic games, and tested them on two robotic planning problems.
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A Proof of Convergence of Value Iteration

In the exact algorithm of figure 5 we presented a dynamic programming algorithm
for computing the value vectors achievable in equilibrium in a stochastic game. In
the section we provide a proof of the correctness of this algorithm. Specifically, we
show that the algorithm will converge and, after convergence, will return the set of
discounted value vectors achievable in subgame perfect equilibrium using the given set
of punishment policies. We’ll start by analyzing a simplified version of our algorithm,
which omits the pruning step. (This version computes all achievable value vectors,
without regard to whether they are achievable in equilibrium.) Then we will generalize
the proof to apply to the full version of our algorithm.
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Both versions of our algorithm can be seen as repeatedly applying a value-iteration
backup operator (T or Tprune, defined below) to an initial conservative estimate of the
achievable values. In contrast to the version of value iteration for discounted MDPs,
our operators are not contractions in any standard norm. Instead, our proofs rely on
a monotonicity property, described in more detail below.

A.1 Definitions

We will start with some definitions that will be useful in our proof. As above, there
are N states and P players, a ∈ A is a joint action in the full set of joint actions A, and
R(s, a) is the one-step reward vector for state s and joint action a. Ra is an N -vector
of P -vectors, telling the rewards in each state to each player of following joint action a.
Pa ∈ RN×N is a transition matrix corresponding to joint action a. So ∀i, j. Pa,ij ≥ 0
and ∀i. Pj=N

j=1 Pa,ij = 1.

Write RM for the largest absolute value of any one-step reward to any player in the
game. That is, RM = maxa,s,p |Rp(s, a)|. Given RM , VM = RM

1−γ
is an upper-bound

on the absolute expected discounted value that any player, following any policy, can
hope to achieve.

Write V for the vector of sets of discounted value vectors achievable at all states in
the game. That is, V is a vector of length N ; each component V(s) is a subset of RP

which represents a set of value vectors achievable in the game starting from state s.
We introduce the overline notation to make it clear when we are referring to a vector
over game states. We use the boldface notation to indicate that the structure is a
set or vector of sets. V is an N -vector of sets of P -vectors, where each element of a
P -vector is a discounted value achievable to a player. We only introduce this complex
structure (vector of sets of vectors) because it precisely captures what we want to
know about the game. We need to capture all possible discounted values that can be
achieved, under any policy, by all P players starting from state s: this is precisely a
set of P -vectors. Since the game can start from any of the N states, we need N of
these sets of P -vectors.

To measure the size of a vector of sets of vectors, we use a generalization of the
infinity norm:

‖V‖∞ ≡ max
i
‖Vi‖∞

That is, applying the infinity norm to a vector of sets V returns the max of the infinity
norm applied to each set in V.

I ⊂ RP is the hypercube centered at the origin with sides of length 2 in each
dimension. That is, I = {V ∈ RP | ‖V‖∞ ≤ 1}. I is a vector of N copies of I. So,
‖I‖∞ = 1.

A + B, where A,B ⊂ RP , is the cross-sum operator: A + B =
S

a∈A,b∈B{a + b}.
CHa(G(a)) is the convex closure operator: if G(a) is a set of vectors for each value
of the dummy variable a, then CHa(G(a)) is the set of all convex combinations of
points in

S
a Ga. CHa(G(a)) is the componentwise generalization of CH to vectors

of sets.

We can now define the simplified transition operator, which is the same as one
iteration of the exact algorithm in figure 5 except that it omits the pruning step.
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Definition
T(V) = CHa∈A(Ra + γPaV)

In this expression, applying a function Pa to a vector of sets is defined as one might
expect: we use the usual expression for a matrix multiplication,

PaV(s) =
X
s′

(Pa)s,s′V(s′)

but with cross-sum and scalar multiplication of sets rather than the usual real sum
and product operations. This generalizes the usage of the transition matrix in the
standard Bellman backup equations.

A.2 Convergence of the simplified algorithm

Having completed the definitions, the goal of the first set of proofs is to show that, if
V is initialized to a superset of the hypercube VM × I, and the operation V ← TV is
repeatedly applied, V will converge.

Lemma 1 For any V,
‖PaV‖∞ ≤ ‖V‖∞

Proof: Define Vm = ‖V‖∞. Then

‖PaV‖∞ = max
i
‖(PaV)i‖∞ = max

i




X
j

Pa,ijVj





∞
≤

max
i




X
j

Pa,ijVm





∞

= Vm ×max
i

X
j

Pa,ij = Vm

The first equality applies the definition of the infinity norm and the second applies
the definition of matrix multiplication. The third inequality holds because all values
Pa,ij ≥ 0, so replacing the sets Vj with something at least at large makes the result no
smaller. The last equality holds because Vm, a scalar, factors out, and by construction
the sum of each row of any transition matrix Pa is 1. 2

Lemma 2
V ⊆ V

′ ⇒ PaV ⊆ PaV
′

Proof: First note that
V
′ ≡ V

′ ∪V

Using this fact,

(PaV)i =
X

j

Pa,ijVj ⊆
X

j

Pa,ijV
′
j = PaV

′
i

The first equality applies the definition of matrix multiplication. The second uses the
fact that a scalar times a subset of a set is a subset of that scalar times the set itself.
The third equality again applies the definition of matrix multiplication. 2
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Lemma 3 V ⊆ V
′ ⇒ T(V) ⊆ T(V

′
)

Proof: Again note that
V′ ≡ V ∪V′ (4)

Therefore

TV = CHa∈A(Ra + γPa(V)) ⊆ CHa∈A(Ra + γPa(V ∪V′)) = T(V ∪V′)

The first equality is the definition of T. The next relation follows from (4) and
Lemma 2. The last equality again follows by the definition of T. 2

Lemma 3 says that T is monotone. So, if we start with some vector V and happen
to find that TV ⊆ V, we can see by applying T to both sides of the relation that
T2V ⊆ TV, and in general TkV ⊆ Tk−1V for k > 0. That is, each application of
the operator T gives a result that is contained in the previous iteration’s V.

To take advantage of this fact, the next few lemmas describe an initialization that
will guarantee TV ⊆ V for the first backup.

Lemma 4
Pa(k × I) ⊆ k × I

for any positive scalar k.

Proof: This follows directly from lemma 1.

By contradiction, if Pa(k× I) is not a subset of I, then ‖Pa(k× I)‖∞ > ‖k× I‖∞,
a violation of lemma 1 . 2

Lemma 5
‖TV‖∞ ≤ RM + γ‖V‖∞

Proof:
‖TV‖∞ = ‖CHa∈A(Ra + γPaV)‖∞ =

max
a∈A

(‖Ra + γPaV‖∞) ≤ max
a∈A

‖Ra‖∞ + γ max
a∈A

‖PaV‖∞ =

RM + γ‖V‖∞
The first equality applies the definition of T. The second equality applies the

definition of infinity norm on a vector of sets, and uses the fact the the convex hull
operator on a set won’t increase the infinity norm. The third equality uses the fact
that the max of a sum is not greater than the sum of the maxes. The last equality
uses the definition of RM and lemma 1. 2

Lemma 6 T(VMI) ⊆ VMI

Proof:

‖T(VMI)‖∞ ≤ RM + γ × VM = RM + γ × RM

1− γ
=

RM

1− γ
= VM
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Since ‖T(VMI)‖∞ ≤ VM , it follows that T(VMI) ⊆ VM × I by the definition of I. 2

In fact, lemmas 6 and 3 are sufficient to show convergence. By lemma 3, as long
as V is initialized to VM × I, we have

TV ⊆ V

But by lemma 6 we can apply T to both sides of this equation k > 0 times to get

Tk+1V ⊆ TkV

Since Tk is a monotone non-increasing sequence which cannot become smaller than
the empty set, it must converge.

A.3 Transition operator with pruning

To take pruning into account, we can define a new transition operator Tprune. Tprune

is like T except that it enforces incentive constraints by intersecting its backed up
values with a fixed set at each state before taking the convex hull. Write Ga for the
vector of N components whose component Ga(s) is the pruning set for state s and
action a,

Ga(s) = {V | (∀p) Vp ≥ V p
dev(s, a)}

With this definition, we can write

Definition
Tprune(V) = CHa∈A

�
Ga ∩ (Ra + γPaV)

�
(5)

where intersection between vectors of sets is defined to operate on each component
separately.

Lemma 7 If V ⊆ V
′
, then Tprune(V) ⊆ Tprune(V

′
)

Proof:

V ⊆ V
′ ⇒ ∀a, γPaV ⊆ γPaV

′ ⇒ ∀a, Ra + γPaV ⊆ Ra + γPaV
′ ⇒

∀a,Ga ∩ (Ra + γPaV) ⊆ Ga ∩ (Ra + γPaV
′
) ⇒

CHa∈A

�
Ga∩(Ra+γPaV)

�
⊆ CHa∈A

�
Ga∩(Ra+γPaV

′
)
�
⇒ Tprune(V) ⊆ Tprune(V

′
)

The first implication applies lemma 2 and the second uses the fact that multiplying
by a positive scalar and adding a vector preserve containment properties. The next two
implications use the fact that intersection with a fixed set and the convex hull operator
preserve containment properties, and the last implication applies the definition of
Tprune. 2

Lemma 8 Tprune(VM × I) ⊆ VM × I
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Proof:
Tprune(VM × I) = CHa∈A

�
Ga ∩ (Ra + γPa(VM × I))

�
⊆

CHa∈A(Ra + γPa(VM × I)) = T(VM × I) ⊆ VM × I

The first equality is the definition of Tprune. The second inequality uses the fact
that intersecting with a fixed set can’t make the result any bigger. The third inequality
applies the definition of T. The last inequality is lemma 6. 2

Lemma 9 The sequence Tk
prune(VM × I) converges as k increases.

Proof: Lemmas 7 and 8 are sufficient for convergence of Tprune, since together they
make the sequence Tk

prune(VM × I) monotone non-increasing, and a monotone non-
increasing sequence which is bounded below (by the vector of empty sets) must con-
verge. 2

Definition A fixed point of Tprune is any V s.t. Tprune(V) = V. A maximal fixed
point is a fixed point of Tprune that is not a strict subset of any other fixed point.

Lemmas 7 and 9 imply that there will be a unique maximal fixed point: by Lemma
7 (monotonicity) our value function is bounded from below by each fixed point, and by
Lemma 9 (convergence) we eventually converge to a fixed point, which must therefore
contain every other fixed point. Write Vfixed for this unique maximal fixed point.

The point of the value iteration algorithm is to find the maximal fixed point, since
it tells us everything we need to know about equilibria: we show below that this fixed
point contains all the value vectors that are achievable in equilibrium using the given
punishment strategies. More specifically, Lemma 10 guarantees that our initial V
contains the maximal fixed point, which (because of monotonicity) guarantees that
we cannot converge to a non-maximal fixed point. Lemma 11 will tell us a policy to
achieve, in expectation, any discounted value in the fixed point, and Lemma 12 will
use this policy to define a subgame-perfect equilibrium.

Lemma 10
‖V‖∞ > VM ⇒ ‖Tprune(V)‖∞ < ‖V‖∞

So, if ‖V‖∞ > VM then V cannot be a fixed set.

Proof: Let M ≡ ‖V‖∞. Then

M > VM ⇒ M >
RM

1− γ
⇒ (1− γ)M > RM (6)

So,
‖Tprune(V)‖∞ ≤ RM + γ ×M < (1− γ)M + γ ×M = M

The first inequality comes from lemma 5, which also holds for Tprune since Tprune(V) ⊆
T(V) always. The second inequality holds because of equation 6: (1− γ)M is strictly
larger than RM . 2
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Lemma 11 Let V(s) be a fixed point of Tprune. For any value vector V goal ∈ V(s),
there exists a joint policy π(V goal, s) which achieves V goal if the initial state is s.

Proof: We will begin by defining π(V, s) for all states s and value vectors V ∈ V(s).
To motivate our definition we will pretend that, after the first step, we can achieve
any value vector V ′ ∈ V(s′) at any state s′. We will then justify our definition by
proving that our defined policy does in fact achieve the target value vector V . The
proof will be by induction on the number of time steps of execution.

To define π(V, s), we need to specify a distribution over joint actions to take from
s, as well as which value vectors we will try to achieve if we wind up at another state
s′. Since V ∈ V(s) and V is a fixed point, we can represent V as a convex combination
of points from the sets

Qa(s) = Ga(s) ∩
�
Ra(s) + γ

X
s′

Pa,s,s′V(s′)
�

(7)

for the joint actions a ∈ A. That is, there exists some set of weights wa (with
P

a wa =
1 and (∀a) wa ≥ 0), with each wa corresponding to a single point qa in Qa(s), such
that X

a

waqa = V (8)

(We only need one point from each Qa(s) since Qa(s) is convex.) Now, we will choose
a joint action a at random with probabilities wa. By the definition of Qa(s), we know
that

qa = Ra(s) + γ
X
s′

Pa,s,s′Va,s′

for some vectors Va,s′ ∈ V(s′). So, if the game transitions to state s′, we will follow
policy π(Va,s′ , s

′) to try to achieve Va,s′ .

Now that we have defined π(s, V ) for all s and V ∈ V(s), we will prove by induction
that following π(s, V ) for k steps yields an actual expected discounted value vector
V actual

k (V, s) which satisfies

‖V actual
k (V, s′)− V ‖ ≤ γkVM

Taking the limit as k →∞ then shows that π(s, V ) achieves V exactly.

Base Case Following any policy for 0 steps from any state s achieves discounted
expected value V actual

0 (V, s) = 0. So,

‖V actual
0 (V, s)− V ‖ ≤ VM = γ0VM

because V ∈ V(s) and ‖V‖∞ ≤ VM (Lemma 10).

Inductive Case We now know that following π(V, s) for k steps starting from state
s yields a value V actual

k (V, s) which satisfies

‖V actual
k (V, s)− V ‖ ≤ γkVM (9)

The expected value of following π(V, s) for k + 1 steps therefore satisfies:


V actual
k+1 (V, s)− V





∞

=
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V actual
k+1 (V, s)−

X
a

waqa





∞

=


X
a

wa

�
Ra + γ

X
s′

Pa,s,s′V
actual

k (Va,s′ , s
′)
�
−
X

a

wa

�
Ra + γ

X
s′

Pa,s,s′Va,s′
�




∞
=

γ



X

a

wa

X
s′

Pa,s,s′(V
actual

k (Va,s′ , s
′)− Va,s′)





∞
≤

γ
X

a

wa

X
s′

Pa,s,s′(γ
kVM ) =

γk+1VM

X
a

wa

X
s′

Pa,s,s′ =

γk+1VM

The first two equalities simply plug in the definitions of the two value vectors, where
the wa are the weights defined in equation (8). The next equality factors and cancels
common terms in the sums. The inequality between the fourth and fifth lines holds
because of the inductive hypothesis stated in (9). The remaining inequalities rearrange
terms and use the fact that each row of the transition matrix sums to 1, as do the
weights wa. 2

We’ve demonstrated how to construct a policy that, starting from some state s,
comes arbitrarily close to any given value vector V ∈ V(s). Now we will show that an
appropriate modification of this policy is an equilibrium.

Lemma 12 Let V be a fixed point of Tprune. Any value vector V ∈ V(s) is achievable
in subgame-perfect Nash equilibrium starting from state s.

Proof: We have already showed (in Lemma 11) that a joint policy exists to achieve
V from s. We can extend this policy in a simple way to make it an equilibrium:
if the agents observe a deviation by player p, they will punish it by switching to
the policy πp

dev. (For concreteness, if two or more agents deviate simultaneously, the
agents will pick at random one of the deviations to punish.) Our assumptions of public
randomization and perfect monitoring mean that the agents always know what they
and everyone else are supposed to do, and no agent can deviate without being caught.

All that remains is to show that, with the above threats, no agent ever wants to
deviate. Since we have assumed that πp

dev is a subgame-perfect equilibrium for each
p, we only need to worry about the first deviation: there cannot be an incentive to
deviate again in any subgame in which some agent has already deviated once.

To see whether an agent can ever have an incentive to deviate first, consider its
state of knowledge immediately before acting: it knows the current state s and the
joint action a which was selected by public randomization. It also knows a vector
qa ∈ Qa(s) and vectors Va,s′ ∈ V(s′) for each s′; these vectors satisfy

qa = Ra(s) + γ
X
s′

Pa,s,s′Va,s′

If agent p deviates, it will receive V p
dev(s, a) for the best possible deviation. On the other

hand, if agent p does not deviate, it expects to receive qa: it will get Ra immediately
and Va,s′ after one step, for s′ chosen according to Pa,s,s′ . But by the definition of
Qa(s) (Eq. 7), we know Qa(s) ⊆ Ga(s). In particular, qp

a ≥ V p
dev(s, a), so agent p gets

at least as much by following its part of action a as by deviating. 2
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