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Abstract

In a distributed environment, such as the World Wide Web, an individual leaves behind personal data at
many different locations. To protect the privacy of an individual’s sensitive information, locations make
separate releases of identifiable data (e.g.name or social security number), and sensitive data (e.g.visitor’s
IP address). To the releasing location the data appears unlinkable, however, links can be established when
multiple locations’ releases are available. This problem, known as trail re-identification, manifests when
an individual’s location-visit patterns are reconstructed from, and linked between, sensitive and identifiable
releases. In this paper, we present a protocol that enables locations to prevent trail re-identification without
revealing identified or sensitive data. Instead, locations communicate encrypted versions of their datasets,
such that decrypted data is never revealed until completion of the protocol. Via the protocol, every piece of
sensitive data, released from any set of locations, is guaranteed to be equally relatable to at leastk identities,
or isk-anonymous.
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1 Introduction

As technologies for collecting information infiltrate society, the ability to record and store personal infor-
mation about specific individuals continues toward ubiquity. Knowingly and unknowingly, individuals shed
data to a number of data collectors both within, as well as beyond, the confines of one’s home. The infor-
mation collection can be overt and apparent to the individual, such as when a consumer visits a retail store
and completes a purchase with a personal credit card. Or data gathering can be less discernable, as when an
individual’s image is captured by an unforeseen video surveillance system. [1] Regardless, one thing is for
certain; the collection of personal information is becoming more widespread. [2]

This is particularly the state of affairs within environments where an individual can leave related, and
even the same, personal information behind at many different locations. For instance, in the realm of the
World Wide Web, electronic commerce has facilitated the sharing and collection of personal information
to an increasing number of independently functioning e-businesses. [3] Within this environment, websites
collect differing types of data on individuals. Following the definitions of many online privacy policies,
data is grossly categorized asnon-identifiableand identifiableinformation. Non-identifiable information
is information that does not explicitly reveal the identity of the individual. It is usually the case that an
individual has little or no control over such information. By this definition, and as stated in many policies,
the IP address of an individual’s computer is considered non-identifiable information. An individual has no
control over whether or not a website collects and stores their computer’s IP address in the website’s access
log. In contrast, when visiting, a website an individual does have a choice regarding whether or not to share
identifiable information. This type of information explicitly reveals the identity of the individual, such as
name, residential address, or credit card number.

Data collectors relate identifiable to non-identifiable information for a number of legitimate purposes in
accordance with their privacy practices. These purposes include direct marketing, website personalization,
and fraud detection. To facilitate an individual’s choice, websites post their privacy policies, which corre-
spond to general aspects about how an individual’s data will be used, managed, and shared. Thus, if an
individual believes that a website’s privacy practices are in accordance with their own, they may choose to
provide their identifiable data. When an individual feels otherwise, they will not reveal identifying informa-
tion. In this latter case, these individuals do not want such websites to know what name, or other identifiable
information, corresponds to the visiting IP address.

Oftentimes, websites treat collections of person-specific, as well as access logs, information akin to
commodities. The collected data can be shared, licensed, or sold with other parties for various purposes
beyond in-house uses. Continuing with our example of e-commerce, customer lists are routinely provided
to affiliated third parties. In the online environment, and beyond, it has been recognized that certain types
of collected information about an individual are more sensitive than others. As specified in many privacy
policies, non-identifiable data can not be shared in a manner that allows for it to be related to identifiable
data. To account for this, many locations separate identifiable from non-identifiable data, and release the
two as different datasets. This model of privacy protection appears to protect the identity of the individual.
Releasing a list of IP addresses provides no more information than any other website might collect. There
is no information that a data user, or adversary, can employ to re-identify the individuals of the released
dataset. Right?

From the perspective of each data releasing location, the partitioning of non-identifiable and identifiable
data appears to protect their consumers’ privacy. However, exogenous factors infringe upon certain privacy
protections that partitioning affords the data. Specifically, there are two factors that in combination rescind
an individual’s privacy. The first factor is the independent nature of data collecting locations. In many cases,
it is a business advantage, or specified by the law, for a data collector to reveal data about consumers to a
affiliated third party only. Data collectors rarely communicate information about their data collections to
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each other, but instead release data collections independently. The second factor is that individuals are not
required, nor restricted to, visiting a particular data collecting location. Subsequently, data corresponding
to each individual in a population can be collected and released by a different set of data collectors. As the
number of locations that are collecting and sharing data increases, the location-visit patterns, or trails, of
an individual’s identifiable and non-identifiable information tends toward uniqueness. When an individual’s
identifiable and non-identifiable information can be uniquely matched to each other, sensitive information is
re-identified! This problem, introduced by Malin and Sweeney [10, 11], is known as trail re-identification.

Trail re-identification is a real threat to the privacy of individuals whose data is distributed over multiple
locations. Due to the recent formalization of the problem, there has been little research into methods for
protecting against trail re-identification. In this paper, we present a protocol that allows for locations to
work together to prevent trail re-identification without revealing their datasets to each other. The protocol
guarantees that the trails constructed from any set of locations’ data will adhere tok-anonymity protection.
[4], [5] By this protection, the protocol guarantees that each piece of non-identifiable data will be equally
relatable to a minimum ofk identities via location-visit patterns. This research is the first to provide formal
methods for preventing trail re-identification.

The remainder of this paper is organized as follows. In Section 2, relevant background to the trail
re-identification problem is formally characterized and reviewed. In Section 3, relevant concepts from mul-
tiparty computation and encryption for the protection protocol are presented. Following the background, in
Section 4, the protection protocol. In addition, particularly relevant security and privacy enabling charac-
teristics are proven. In Section 5, security concerns with respect to the protocol are addressed. Finally, in
Section 6, limitations and possible extensions to this work are discussed.

2 Trail Re-identification

In this section, a formal characterization of the models and data structures used throughout this paper is
developed. The notation is based upon matrix algebra, and each locationl maintains a datasetDl as an
n × m matrix. The columns ofDl are a set of semantically-defined attributesAl = Al1, Al2, . . . , Alm.
Each row vector corresponds to information about a single individual over the attributes. For example,
Dl[ai1, . . . , ain] represents the valuesai1 ∈ Al1, . . . , aim ∈ Alm for theith row of datasetD.

Figure 1: Sample datasetDl with attribute setAl = {Name, Residential Address, Purchase, IP Address}.
The first two attributes are considered identifiable attributes, while the fourth attribute is considered non-
identifiable.

A location’s releases of non-identifiable and identifiable data are represented as submatrices of the matrix
Dl. The submatrices are the result of a vertical-partitioning ofDl. We refer to a partitionp asDp

l . The first
partition, called the de-identified submatrixD−

l , is devoid of explicit identifiers. The second partition, called
the identified submatrixD+

l , contains explicit identifiers. To make evident the disjoint relationship between
identifiable and non-identifiable data, the intersection of the submatrices is null1, or A−

l ∩ A+
l = ∅. Fig.

1We neglect the fact that many IP addresses can leak geographic information. For more information on this topic, readers are
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1 provides an example of a data collectionDl{Name, Residence, Item Purchased, IP Address}. A vertical
partitioning ofDl is D+

l {Name, Residence Item Purchased} andD−
l {IP Address}.

The goal of vertical-partitioning is to prevent an adversary from correctly reconstructingDl. Therefore,
while D+

l andD−
l are submatrices ofDl, the ordering of the rows do not have to be equal toDl. Once

partitioning is performed, rows in the submatrices are randomly ordered. Though we omit the proof, it
should be relatively simple to discern that the probability an adversary reconstructsDl from D−

l andD+
l

alone is no better than random guessing. Thus, the relationship between every piece of data fromD+
l and

D−
l is equivalent to the maximum degree of unlinkability as defined by Steinbacker and Kopsell. [9]

Though a location’s de-identified submatrix is not susceptible to re-identification by itself, the suscep-
tibility increases as more locations’ releases are considered. Malin and Sweeney [10, 11] introduced a
formal model of re-identification, referred to as trail re-identification, for an environment where multiple
locations release data. It is this model of re-identification that the protocol below explicitly protects against.
The model makes the assumption that an individual’s identifiable and de-identified sensitive information is
traceable across locations. Formally, this means that for every pair of locationsli, lj , there exists a set of
relations between the attributesA−

i , A−
j andA+

i , A+
j . When these relations are sufficiently strong, then an

individual’s data can be traced across locations. For example, if the identified attributesA+
i = A+

j = {first
name, last name, date of birth}, then it is assumed sufficient information exists to trace an individual from
D+

i to D+
j .

When an individual’s data is traceable, the trail re-identification attack proceeds as follows. LetL
be the set of data releasing locations. When the releases from these locations are collected by a single
data collector, the released datasets are transformed into two location-based matrices. The first matrix is
called the de-identified matrixN and it consists of sensitive information from the set of released datasets
D−

1 , . . . , D−
L . The other matrix, called the identified matrixP, consists of identifiable information from the

set of released datasetsD+
1 , . . . , D+

L . We continue with the construction ofN. The construction ofP is a
simple corollary. The dimensions ofN are (the number of distinct data pieces)× (|

⋃
l∈L A−

l | + |L|). The
first |

⋃
l∈L A−

l | columns correspond to the released sensitive data. The latter|L| attributes correspond to
location-based information. Without loss of generality, we assume that the attribute set is the same for each
location’s release and the number of columns is|A−|+|L|. For thexth row vector in matrixX, the latter
|L| attributes are referred to as the trail of the data, ortrail(x,X). Furthermore, we usetrail(l, x, X)to
refer to the value of thelth cell in trail(x,X). We refer to the identity or de-identity from a row vector as
identity(x,X) anddeidentity(x,X), respectively.

Re-identification ofdeidentity(n, N) to deidentity(p, P) occurs whentrail(n,N) is correctly matched
with trail(n, P). Malin and Sweeney provide several re-identification algorithms, collectively termed REI-
DIT (re-identification of Data in Trails) for location-based attributes with Boolean values, where 1 and 0
represent the presence and absence of information at a location, respectively. [12, 10, 11] The REIDIT
algorithms correctly link rows ofN to P by exploiting unique patterns in the trails.

In addition, the effects of data completeness are taken into account. A matrixX is said to beunreserved
to a matrixY, if for every individual, the data trails corresponding to the individual in both matrices are
equivalent. In some situations, an individual leaves behind both identifiable and de-identified data to a lo-
cation. However, there are times when a location does not release all data that it has in its possession. In
either of these cases, matrixX is said to bereservedto matrix Y if the trail of each individual in matrix
X, trail(x,X) can be transformed into the individual’s correspondingtrail(y, Y) in matrix Y by flipping
only Boolean values of 0 to 1. When this transformation can be performed, we say that The relationship
these trails is such thattrail(x,X) is a subtrail (represented with the� symbol) oftrail(y, Y). Similarly,
trail(y, Y) is said to be the supertrail oftrail(x,X), or trail(y, Y) � trail(x,X). It is this more gen-

directed to consult [6], [7], and [8].
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Algorithm 1 REIDIT-I (X, Y)
{Assumes:1) X andY consist of de-identified and identified data, respectively; 2) X is reserved toY}
REID ⇐ ∅
for n = 1 to |X| do

if there is one and only oney, such thattrail(n, X) � trail(y,Y) then
REID⇐〈identity(y, Y), deidentity(n, X)〉 ∪REIDIT-I(X- n, Y- y) {Remove n and y from further
consideration}

end if
end for
if |X| ≡ |Y| then

for m = 1 to |Y| do
if there is one and only onex, such thattrail(m,Y) � trail(x,X) then

REID ⇐ 〈identity(m,Y), deidentity(x,X)〉 ∪ REIDIT-I(X- x, Y- m) {Remove x and m from
further consideration}

end if
end for

end if
return REID

eral scenario that we consider for this research. Fig. 2 provides an example of location-based matrices
where matrixP is reserved to matrixN. In this example,trail(Mary,N) � trail(167.92.182.1,P) and
trail(Mary,N) � trail(114.32.40.81,P).

Figure 2: (left)Releases of four locations, (right)Resulting location-based matrices

The REIDIT-Incomplete (REIDIT-I) algorithm, pseudocode of which is provided, returns correct re-
identifications. No false re-identifications are made. This algorithm will be used to validate our protection
protocol. The algorithm works as follows. For each trail in the track containing incomplete trails, the set
of its supertrails from the track containing complete trails are found. If there is only one supertrail, then a
correct trail re-identification has occurred (Proof provided in [10]). The re-identified trails fromN and from
P are removed. Processing continues until no more re-identifications can be made.
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3 Quasi-commutative Encryption

The protection protocol described below makes use of an interesting concept from secure multiparty com-
putation known as the one way accumulator, or OWA. [13] In previous research, OWAs have been applied
to a variety of distributed secure computations. For example, Zachary [14] demonstrates that OWAs provide
the necessary features for securely testing membership of nodes in distributed sensor networks. Faldella
and Prandini [15] make use of OWAs for certificate authentication in a distributed public-key infrastructure.
The protocol also employs OWAs for computation in a distributed environment. However, with respect to
this research, one think of an OWA as a method that empowers disparate locations, using different encryp-
tion keys, with the ability to reveal encrypted information from their local datasets, such that an encrypted
identity or de-identity is equivalent across locations. The OWA applied in this manner permits trail re-iden-
tification and protection methods to be computed over encrypted data. Plaintext information need not be
revealed until it is computationally guaranteed that re-identification is impossible.

First, we review the general concepts of OWAs, then their transformation into a blinding cryptosystems.
An OWA is a hash functionh : X × Y → X that satisfies thequasi-commutativeproperty. In equation (1),
the following property holds for an arbitrary number and ordering ofyi.

h(h(x, y1), y2) = h(h(x, y2), y1) (1)

Benaloh and de Mare note that the modular exponentiation functionen(x, yi) = xyimod(n), as defined
in RSA encryption, is an OWA. [16] For appropriately chosenn, wheren is the product of two large prime
integersp, q, computingx from en(x, yi) andy can not be accomplished in polynomial time. Since repeated
use ofen may reveal hash collisions, values ofn are further restricted to be chosen from the set ofrigid
integers, wheren is the product of two safe primesp, q. A prime numberp is a safe prime ifp = 2p′ + 1,
wherep′ is an odd prime.

The trapdoor feature of modular exponentiation was exploited by Kantarcioglu and Clifton [17], such
that OWAs can be converted into public key cryptosystems. In order to do so, each encryption keyyi is
paired with a decryption keyzi, whereyi ∗ zi = 1mod(ϕ(n)).2 Whenyi andzi are defined in this manner,
decryption of an encrypted valuev can proceed overm independent locations as

x = (h . . . h(h(v, z1), z2), . . . zm) (2)

Again, the ordering of the decryption keysz1, z2, . . . , zm is of no consequence. Thus, the encrypted
value v can be decrypted in a sequential manner using the same hash function ash(x, zi) = xzimod(n).

4 Protection Protocol

In this section, we construct a protocol that explicitly prevents trail re-identification. The protocol is called
central authority trail anonymization, or the CATA protocol. As the name implies, the current implementa-
tion requires a central authority. We assume that the central party is semi-trusted. It is trusted to receive and
analyze encrypted data, but not plaintext data. This central party will be permitted collect encrypted data
from each of the data releasing locations. In addition, given encrypted data, the central authority is expected
to return honest information to each location.

2The termϕ(n), Euler’s totient function, specifies the number of relatively prime positive integers less thann.
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4.1 CATA Protocol

We begin with a general overview of the protocol. A more in-depth description and formal treatment follows.
First, each location encrypts every other location’s de-identified and identified submatrices. Then, the central
authority is provided with the encrypted datasets. Upon reception of each locations dataset, the central
authority runs its own trail re-identification and anonymization techniques. Discovered re-identifications
inform the central party which encrypted values would be re-identified if they were released in their plaintext
form. Given the re-identifications, the central party determines which encrypted data must be removed by
each location in order to anonymize the trails. A de-identity, such as an IP address, is considered anonymous
if its corresponding trail can not be correctly matched to its identity. We say that a trail from matrixX is
k-anonymous if the trail is equally relatable tok trails from matrixY . Thus, we will usek as a protection
parameter. The greater the value ofk, the more protection is afforded to the data. Once the central party has
sufficiently anonymized the data, it returns a list of encrypted values to each location. The encrypted values
are decrypted by the set of locations, such that the final decrypter is the location the list was destined for.
The decrypted data is removed from the locations’ releases. Finally, when the locations datasets have been
reduced as specified by the central party’s lists, each location releases its plaintext datasets.

More formally, the CATA protocol is defined as follows. There are two types of participants, data re-
leasing locationsL = {l1, l2, . . . , l|L|} and a central authorityC. Each locationl ∈ L maintains a pair of
encryption and decryption keys,<yi, zi>, for a reversible quasi-commutative encryption functionh as de-
fined above. These keys are kept private, akin to Chaum’s blinding system. [18] The encryption function is
known to all data releasing parties. We now step through the protocol.

Step 0a: Participating Location. (Partitioning) Prior to releasing any data, each locationl partitions its
data collection matrixDl into a de-identified and identified submatrix,D−

l andD+
l , respectively.

Step 0b: Central Party. (Path Allocation) The central party issues an encryption pathpe
l and decryption

pathpd
l for each locationl. There are certain constraints on the paths that can be issued, which will be

discuss below in the security analysis.

The following Steps 1 and 2 are equivalent forD−
l andD+

l . Without loss of generality, we continue with the
encryption process forD−

l only.

Step 1. (Initial Encryption) Each locationl encrypts each value inD−
l usingyl andh. For simplicity,

we represent the set of encrypted values ash(D−
l , yl). After initial encryption, a hashed dataseth(D−

l , yl)
exists for, and is in the possession of, each location.

Step 2. (Full Encryption) After a location encrypts its dataset, it shuffles the ordering of the rows in
h(D−

l , yl) and sends it to the next location in pathpe
l for encryption. This process continues in a sequential

manner, for each dataset, until every location has hashed the dataset with its own encryption key. ForDl, we
say that the dataset isfull encryptedwhen every location inL has encrypted it. We refer to the full encrypted
dataset asf(D−

l ) = h(h . . . (h(h(h(D−
l , yl), y1), y2), . . . , y|L|−1), y|L|).

Step 3. (Encrypted Re-identification)Once a dataset is full encrypted, the final encrypter submits the it
to the central authorityC. Upon receiving all full encrypted datasets, theC constructs de-identifiedN and
identifiedP location-based trail matrices. At this point,C performs re-identification and reduction over the
location-based matrices. Reduction is performed, such that the resulting matrices adhere to thek-anonymity
formal protection model. [5] By adhering to this model, our method guarantees that for any element in a
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released dataset there arek-1 other elements that are indistinguishable from that element over some dis-
tinguishability function. For our model, an element is a data trail and the distinguishability function is the
REIDIT-I algorithm. The current implementation of the protocol uses a simple method we call theRandom
k-Obscurealgorithm, the pseudocode of which is provided below.

Algorithm 2 Randomk-Obscure (N, P, k)
{Assumes:P is reserved toN}
Let X be a|P| × |N| matrix, whereX[xpn] equals the minimum number of Boolean location values in
trail trail(p, P) for trail(p, P) � trail(n, N), to be true
Let S = {s1, s2, . . . , s|L|} be a set of|L| empty lists
for i = 1 to |P| do

Let ri equal the number of cells equal to zero in theith row of X
if ri < k then

Let Z be the set ofk − ri indices of rowi in X with the smallest values> 0
for eachz ∈ Z do

Let B be the set of indices wheretrail(b, i, P) � trail(b, z,N)
for eachb ∈ B do

trail(b, p,P) ⇐ 0
sb ⇐ sb ∪ identity(p, P)

end for
end for

end if
end for
if |N| ≡ |P| then

for i = 1 to |N| do
Let ci equal the number of cells equal to zero in theith column ofX
if ci < k then

Let Z be the set ofk − ci indices of columni in X with the smallest values> 0
for eachz ∈ Z do

Let B be the set of indices wheretrail(b, z,P) � trail(b, i, N)
for eachb ∈ B do

trail(b, p,P) ⇐ 0
sb ⇐ sb ∪ identity(p, P)

end for
end for

end if
end for

end if
return S

The Randomk-Obscure algorithm accepts three parameters; the first two consists of the location based ma-
trices and the third is the anonymity parameterk. To begin, the algorithm computes the minimal distance
necessary to convert trails of identifiable data into subtrails of de-identified data. Letrt be the number of
trails that trailt is a subtrail of. Ift is the subtrail of at leastk pieces of data (i.e.rt ≥ k), t is sufficiently
protected. Otherwise, the method finds thek − rt trails of closest distance tot. The bits of value 1 that
convertt into a subtrail of thert trails are flipped to value 0. For every bit flip, the trail value is allocated to
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the appropriate lists1, . . . , s|L| to be returned to locationsl1, . . . , l|L|. Each value in a listsl is an encrypted
value that locationl must remove fromD−

l to prevent re-identification.

Step 4. (Full Decryption)Each listsl is sent back toL for decryption via pathpd
l . Whenl decryptssl, the

sl is said to be full decrypted. The decryption of the dataset proceeds sequentially. Thus, the full decryption
can be represented asf(sl):

h(h . . . h(h . . . (h(h(sl, y1), y2), . . . , yl−1), yl+1), . . . , y|L|), yl).

Step 5. (Local Obscure)At this point, each locationl is in possession off(sl), a plaintext listing of entries
from D−

l . For locationl to ensure thatk-anonymous privacy, they must remove all entries inf(sl) from
D−

l . Eachl reduces its dataset and releases the (D−
l −f(sl)) andD+

l .

4.2 Protocol Example

For a more concrete understanding of the protocol, we will walk through an example. Consider the datasets
from Fig. 1 with the following numerical representations substituted for names and IP address. For names,
let John = 100, Mary = 200, Bob = 300, and Kate = 400. Similarly, let their corresponding IP address
be 128.2.41.234 = 1000, 167.92.182.1 = 2000, 32.221.5.15 = 3000, and 114.32.70.81 = 4000. Using this
mapping,D+

1 = [100, 200] andD−
1 = [1000, 2000, 3000].

Let n = 11 ∗ 839 = 9229, h(x, y) = xymod(n), and the set of encryption and decryption key
pairs 〈yi, zi〉 be {<31, 811>, <199, 379>, <227, 443>, <337, 373>}. For each of the locations,C
generates a random path for each dataset to follow for serialized encryption. Let the set of paths be
{〈l1→l2→l4→l3〉, 〈l2→l4→l3→l1〉, 〈l3→l1→l4→l2〉, 〈l4→l3 →l1 →l2〉}. The serialized full encryption
for D+

1 is h(h(h(h([100, 200], 31), 199), 337), 227) = [3004, 2191]. AfterC receives the all full encrypted
datasets, it constructs the location based matrices over the encrypted values and runs the randomk-obscure
algorithm withk = 2. This level of protection has already been achieved for all values, except for 3004.
The closest de-identified trail to3004 is the trail of3277, which is of distance 0. Thus, one more trail is
necessary to satisfy thek protection level.

Since all other de-identified trails are equidistant with a distance of 1 from3277, we randomly choose
a trail, say 3990, to make3004 a subtrail of. The only index that needs a bit flip is index 1. So, this bit
is flipped into 0. The set of information to return to the participating locations isS={{3004}, {}, {}, {}}.
Again,C generates random paths for the encrypted datasets to follow to their locations. Here, since we only
need one path, let this path be〈l2 → l4 → l3 → l1〉. The decryption ofs1 proceeds ash(h(h(h([3004],
379), 373), 443), 811) = [100].

4.3 Correctness

The CATA protocol allows for claims about the privacy and security of the data to be made. Here, we prove
several crucial guarantees as theorems. For now, we assume that there exists no collusion among parties. In
the following section, the effects of collusion and practical ways minimize the effects of such, are discussed.

The first aspect of CATA that we prove is its ability to prevent an independent location from learning the
plaintext information of encrypted data. LetDp

i be an arbitrary partition ofDi.

Theorem 1. There exists no locationlj , wherelj 6= li, that can independently determineDp
i from h(Dp

i , yi).
Proof. Let hx(Dp

i ) be the values ofDp
i hashed by an arbitrary number ofx locations as observed bylj .

In the base case, which is the best scenario forlj , the dataset has been hashed by one location only,hx(D′
i)
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= h1(D′
i). If x = 1, thenDp

i must have been hashed byli only: h1(D′
i) = h(Di, yi). Obviously, sincelj

does not know eitheryi or zi, it can not determine the plaintext value for any of the encrypted values.
However, we must also account for the additional manipulation thatlj is capable of;lj can hash the

dataset with its own key to createh2(D
p
i ) = h(h(Di, yi), yj). This new dataset can reveal much, that is, if

lj could encrypt its own dataset ash2(D
p
j ) = h(h(Dj , yj), yi). In this case, the intersection of the datasets,

h2(D
p
i ) ∩ h2(D

p
j ), reveals encrypted values fromli’s dataset thatlj knows the decrypted values of - because

they exist inlj ’s dataset as well. Yet, this is impossible, sincelj can never recoverh2(D
p
j ). Under the CATA

protocol, no location receives their dataset as hashed by another location. The only values oflj ’s dataset
thatlj knows are the plaintext valuesDj , the hashed valuesDj , and the hashed valuesh(Dj , yj). �

Now that simple security has been established, we concentrate on the privacy of the released datasets.
Let L be the set of participating locations participating in the CATA protocol. LetN andP be location-based
matrices constructed from reduced datasets from all locations inL, with P reserved toN.

Theorem 2. There exists noidentity(p, P) released from a subset of locationsL′ ⊆ L that can be re-
identified to its correspondingdeidentity(n, N) with probability≤ 1/k.

Proof. In the base case, we consider the set of encrypted data releases from all locations inL and the
distance matrixX as defined in thek-obscure algorithm above. For an arbitrarytrail(p, P), the rowsum of
X corresponds to the number of supertrails fortrail(p, P) in N. If the rowsum ofX for trail(p, P) is < k,
then bits of value 1 intrail(p, P) are flipped until the number of supertrails fortrail(p, P) equalsk. Thus,
the probability that an adversary could map the plaintexttrail(p, P) from the set of reduced datasets of|L|
locations is at most1/k. The probability is≤ 1/k, and not equal to1/k, because there it is possible that the
flipping of bits intrail(p, P) has created supertrails oftrail(p, P) in Nthat are beyond the set ofk trails in
Nconsidered for reduction oftrail(p, P).

In the more general case, when the set of releasing locations isL′ ⊆ L, the probability of re-identification
for an arbitrarytrail(p, P) remains no better than it was in the base case. LetNL′ andPL′ be the location
matrices generated by encrypted data from the data releases ofL′. Now, lettrail(p, P′) be the subtrail of at
leastk trails in N as guaranteed by randomk-obscure. Eachtrail(p, P′) is equivalent totrail(p, P) when
P is constructed from locationsL ∩ L′. This is the same as makingtrail(p, P′) � trail(p, P) by zeroing
out all bits of indicesL∩L′. The number of supertrails fortrail(p, P) with the values of indicesL∩L′ set
to 0, must bey, wherey ≥ k. Furthermore, zeroing out the values for the indices of every trail inN makes
the number of supertrails fortrail(p, P) with the values of indicesL ∩ L′ set to 0, equal toy. Since trails
from the zeroed outP andN matrices is the same as usingP′ andN′, the probability that anytrail(p, P′)
can be re-identified must be1/y. And sincey ≤ k, the probability that a correct re-identification is made is
≤ 1/k.�

4.4 Computational Overhead

Assume that encryption and decryption can be done in constant time. Encryption of each dataset is dis-
tributed across locations and the total number of encrypts performed by any location is|L|. In addition,
each location must make|L|+1 communications, the first|L| to pass encrypted datasets to the next location
and the final step for submission to the central party. The order of complexity is the same for decryption
of datasets returned from the central party. Thus the computational overhead for the participating locations
is due to encryption and decryption, and can be performed in O(|L|) time with O(|L|2) communication
messages.

The majority of computation is the burden of the central location. Assuming thatP is reserved toN, |P| ≤
|N|, so in worst case|P| = |N|. Thus, construction of the location based matrices can be completed in O(|N|2).
The construction of the trail distance matrix can be completed by first by sorting in O(|L||N| log |N|). Con-
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version of each trails inP the subtrails ofk trails in N can be completed in O(k|N ||L|). Therefore, the
order of complexity for the central location is O(|N|2) + O(|L||N| log |N|) + O(k|N ||L|). When|L| < |N |,
complexity is approximately O(|N|2). When|N | < |L|, k < |L|, and complexity is approximately O(|L|).
Finally, when|N | ≈ |L|, complexity is approximately O(|L||N| log |N|). In the real world, it is expected
|N | � |L|.

5 Security Concerns

Theorem 1 only guarantees security when each location functions independently. Though a single location
can not independently discern any plaintext values of another location, colluding locations can collaborate to
bound the set of plaintext values an encrypted value corresponds to. Colluding locations can not discern the
exact plaintext values due to the fact that non-colluding location will perform random shuffling of hashed
datasets. LetL be the set of participating locations andL. For example, referring back to the protocol
example, ifl1 knows that the full encrypted value 2191 resides in bothf(D+

1 ) andf(D+
3 ), thenl1 learns

thatl3 has either John or Mary inD+
1 .

The are several types of collusion that can exist, which we now explore.

5.1 Central Party Collusion

When collusion occurs between participating locations and the central party, each colluding locations can
compare their full encrypted dataset with full encrypted data set of another party. As stated above, if an
encrypted valuev is found to be common between the colluding and non-colluding locations full encrypted
data sets, then the colluding party can bound the set of plaintext values forv. When there are multiple
colluding parties, it is possible that the exact plaintext value forv can be learned. This would occur when
trail(v,V) is unique over the set of colluding locations indices. When the trail ofv is unique, the plaintext
value ofv is uniquely determined by mapping to the lone value resulting from the union of the colluding
paries datasets.

5.2 Non-random Data Paths

If the allocation of paths for dataset encryption and decryption are chosen at random, then the following
type of collusion can occur. LetP = p1, . . . , p|L| be the set of paths for locationsl1 . . . l|L|. Imagine a

scenario with two colluding locationsli andlj and non-colluding locationlk. Let xij
i be the set locations

thatli’s dataset passes through between, and including,li andlj in pi. There are several ways that colluding
locations can boundlk’s values. Collusion can occur when any of the following conditions are satisfied

xij
i − lj = xki

k (3)

xij
i = xki

k (4)

xij
i = xkj

k (5)

When Equation 3 holds,lj receivesli’s dataset after bothli and lk have hashed it. Also,li receives
lk’s dataset after it has been hashed by the same set of locations that hashed its own dataset. Consider the
following pathspi = 〈 li→lc→lk→lj→la〉 andpk = 〈lk→lc→li→la→lj〉. For an arbitrary valuev, location
lj receivesh(h(h(v, yi), yc), yk) and locationli receivesh(h(h(v, yk), yc), yi). By the definition of the hash
functionh, these two hashes are equivalent.

Equations 4 and 5 are mutually exclusive properties. They can not both be true at the same time because
eitherxki

k ⊂ xkj
k orxki

k ⊃ xkj
k is true. When Equation 4 holds,lj hasli’s dataset after it has been hashed bylk;
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andli holdsl′ks dataset after it has been hashed bylj . Equation 5 allows for the same, except nowlj haslk’s
dataset. For an example that satisfies this condition, consider the following paths:pi = 〈li→lc→lk→le→lj〉
andpk = 〈lk→lc→li→le→lj〉. With these allocated paths,xij

i = xkj
k = {lc, le, li, lj , lk} and for an arbitrary

valuev:

h(h(h(h(v, yi), yc), yk), ye), yj) = h(h(h(h(v, yk), yc), yi), ye), yj)

Based on this phenomena, it is evident that data paths should not be chosen at random. Rather, they should
be chosen such that none of Equations 3 - 5 are satisfied. Path allocation in this manner would prevent
collusion among all locations inL; however, there is a small problem. Path allocation that does not satisfy
Equations 3 - 5 can be achieved for up to|L| − 1 colluders, but the central party must know which locations
are colluding. For example, one simple way to prevent collusion is to generate paths, such that the first|U |
positions of a colluding locations path consists only of locations fromU .

When the set of colluders is unknown to the central location proper path allocation is impossible to
achieve. This can be illustrated with a simple contradiction proof. First, assume that such a set of paths
exists that Equations 3 - 5 are never satisfied. LetL = {l1, l2, l3} and the set of colludersU = {l2, l3}.
There is only one way to allocatel1 in the three paths to prevent collusion. Obviously,l1 must be in the first
position ofp1. For pathsp2 andp3, l1 must be in the final position, or else one of the colluders could capture
the other colluders dataset as hashed byl1. Now, if we change the set of colluders to equalU = {l1, l2},
both Equation 3 and 5 are satisfied.

The ability to generate a set of paths that minimize collusion with an unknownU is easier to achieve as
|U |/|L| decreases. In future research, one of our goals is to determine methods for generating paths when
the colluders are unknown.

6 Conclusions and Future Work

This work introduced a novel protocol, termed central authority trail anonymization (CATA), for anonymiz-
ing a set of individual’s location visit patterns. It is the first protocol explicitly proven to prevent trail
re-identification. The protocol allows for multiple locations to conduct distributed re-identification analysis
before plaintext, as well as proprietary information (e.g. the purchases made by individuals at a particular
location). Though the protocol facilitates anonymization, one of the necessary areas for extension to this
research is the design of more efficient anonymization schemas. While any number of possible methods
could be employed to anonymize trails, one must ask when is one method better than another. For example,
the randomk-obscure generates 2-anonymous trail distance matrices for the trails in Fig. 3 with equal prob-
ability. Yet, there are several drawbacks to using such an algorithm that are opportunities for extending this
research.

First, randomk-obscure measures the distance between trails as a scalar. While a scalar is an unbiased
metric for measuring the distance between two trails, it suppresses necessary information for relating the
distance between three or more trails concurrently. It is possible that distance vectors (i.e. n-dimensional
with one dimension for each index of a trail) will be more useful in optimizing the choice of which bits in a
trail should be used for anonymization. [19]

Second, the randomness and greediness of the randomk-obscure algorithm leaves much room for op-
timizing the obscuring method. This issue is particularly pertinent to situations when there are many trails
within an equal distance of each other, but only a subset are necessary to achievek-anonymous trails.
Which trails should be chosen? Optimization over a distance vector can help in this decision, but it be of
great assistance if an objective function is considered. Notice that in Fig. 3, two different 2-anonymous trail
distance matrices are shown. Each one has redeeming characteristics. The matrix in the top-right maximizes
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Figure 3: Variants of the 2-anonymous distance matrices generated via randomk-obscure.

the number of pieces of data each location can release, whereas the matrix in the bottom-right maximizes
variance in the relationships between trails.

Third, there is the definition of anonymity itself. Thek-anonymity model defines anonymity through
indistinguishability, or the ability to tell data apart. [4], [5] Initially applied to field- structured data, it has
been extended and adapted for an ever widening field of data types, from anonymous message transmission
[20] to privacy preserving facial recognition systems [21]. However, the currentk-anonymity model, though
computational, is deterministic in the characterization of anonymity. Other models characterize anonymity
from a more probabilistic framework. For example, recent models of communication [22], [23] define
anonymity in terms of information theory. In a sense, these models are very similar tok-anonymity. They
both measure the amount of information that an adversary can use to distinguish between different identities.
Yet, k-anonymizing data is not equivalent to stating that the probability of re-identification for the data is
less than or equal to 1/k due to lack of confirmation. The adversary is only assured that, in a best case, he
can relatek identities, one of which is correct, to the data. It will be interesting to see how anonymizing
methods based onk-anonymity compare to these other types of models. Comparison and analysis into the
relationships between information theoretic andk-anonymous models will help to further the definition of
anonymity.

The proper choice of anonymization method will be dependent on the objective of the parties involved
and will be dictated by the needs of the data users. Thus, the design of applied anonymization methods is
both an interesting and challenging area of research for the computer science community.
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