Carnegie Mellon

OrgAhead: A Computational Model of Organizational
Learning and Decision Making [version 2.1.5]

CASOS Technical Report
Ju-Sung Lee' and Kathleen M. Carley’
December 2004
CMU-ISRI-04-117

!Social and Decision Sciences,
Carnegie Mellon University
jusung@andrew.cmu.edu

’International Software and Research Institute,
Carnegie Mellon University
kathleen.carley@cmu.edu

Abstract. OrgAhead is a computational model of organizational learning and decision-
making. The simulated organization consists of agents whose communication structure
resembles hierarchies and whose primary goals are to learn the correct decision or
answer to one or more tasks, or objective functions (e.g. typically the majority
classification task); we refer to these task functions as the task environment. The
organization also seeks to adapt to an optimal structure under the specified, and possibly
changing, task environment, by admitting changes in the form of turnover and re-
assignment of personnel and tasks. OrgAhead can be used to test various aspects of real
life organizations, such as complexity in the task environment and constraints on
structure and adaptability, under the intellective paradigm of simulation models. An
intellective model contains analogous entities, constructs, and complexities of the
modeled organizations rather than mimicking each specific behavior.

Keywords: simulated annealing, organizational learning, adaptation, dynamic, decision-
making, organizational model, computational organization theory.

CMU-ISRI-04-117 -1- CASOS Tech Report

L OVBIVIBW oo e e e e e e e e et e e e e e e e e s et eeeeeeeea e s reaeeeens -3-

2 Details 0Of OrgARNEAdccoooviiiiieeeeeeeee e -4 -
2.1 Structure of the Organization and Task (Static Representation) -4 -
2.2 The Dynamic Organization...........c..cceeeeiuieiiieieeieeeieeeeeeeeie et -5-
2.3 Detailed Organization..............coeeeveeeueeeeeeeeeeee e e -6-
2.4 Organizational Adaptationc.ccceeveeiieiiiieceeeeeeeee e -9-
2.5 Other Primary ParametersS........cccoovieoveeeieeeeeeee e -10 -

2.5.1 The memory cycle and the relative efficiency cycle......................... - 10 -
25.2 Standard Operating Procedures (SOP)ccccccveeiieeicciieeeeieene, -10 -
2.5.3 Personnel RESTFICTIONSccvevvieiicicececceeee e -11-
254 Specifying the Organization..............cccooeeeveeeieeieecieceeceeeeeeee e -11-
2.6 Task SPECITICAtIONS...........ccooevieiieieeececeeee e -11-
2.6.1 Task COMPIEXITYooooeeieieecee e -11-
2.6.2 TasK GENEFALION........c.ooovieiieiieetieie et -11-
2.6.3 Task Bit GENEration...........cccoeeeieieiienieneeeeeeeeeee e -11-
2.6.4 DeCISION RUIE ..o -12 -
2.6.5 Changing the Task EnVironmentcccoeevveeeieeeeecieccieceee, -12-
2.7 Inter-Relation of Parameters.........c.coooeevieieieecieeceeeeee e - 13-

3 Version 2 Features of OrgaAhead...........cc.ooovveeveeeveieieeeeeceeeee e -13 -
3.1 Meta-matrix Linking OrgAhead with CASOS ToolS........c.ccoeevvevenenne. - 13-

4 RUNNINGg OFJARNEAU........cooeeeeeeeeee et -14 -
4.1 1 0] U | £ USRS -14 -

4.1.1 Organizational StFUCTUIEcc.oeovieiiieeeceeee e -14 -
4.1.2 Task ENVIFONMENTocooiiiiiieceeeeeeee e -15-
4.1.3 OPEFALION ...ttt et -15-
4.1.4 ANNCAIING ...t -15 -
4.1 OULPULS. ...ttt e et e e e e saae e e taeeeaseeesseeesseeenneas -15-
4.1.1 Hlustrative Input and OULPULccoeevieieiiieieceeeeeeeee e - 15 -
4.2 Using the OrgAhead GUI (Windows VEISIiON)..........ccceevveeeeereevieeieereennen. - 16 -
4.4 BENCRMAIKS......ccuiiiiieieieeeeee et -17 -

5 ValALION......ccooiiiceiceeeee ettt et -17 -
5.1 Validation by Docking with SIMVision..........c.ccccceovevieviiiicnieieceeeee, -17 -
5.2 Validation with Military Command and Control Structures................. - 18 -
5.3 Validation with Hospital Unit Performance...........cccccccoevvevieiieeeneenee. -19 -

B WWED SOUICES ...ttt ettt ettt et e re s e ereens -19 -

7 ACKNOWIEAGEMENTS ..ot -19 -

RETEIEINCES ...t ettt et be e b e e taesaaeereessseeseeeaneas -20 -

Appendix A — Details of Organizational Structure and Outputs...........c.ccoccueeee. -22 -

Appendix B — Meta-Matrix Input File for OrgAhead: Structure File.................. -29 -

Appendix C —Version 2 Details.........ccooviiiiieiiieeeeeeeeeeeee e -31-

Appendix D — New Performance MEASUIES............ccveveeueecreeieeieeereeeeee e -33-

Appendix E — An Exhaustive List of OrgAhead Parameterscccccoeeveruennene. -38-

CMU-ISRI-04-117 -2- CASOS Tech Report

1 Overview

OrgAhead is a computational model of organizational learning and decision-making. The
simulated organization consists of agents whose communication structure resembles
hierarchies and whose primary goals are to learn the correct decision or answer to one or
more tasks, each in the form of an objective function, which can be as simple as a
majority classification task; we refer to the task function(s) as the task environment. The
organization also seeks to adapt to an optimal structure under the specified, and possibly
changing, task environment, and has the ability to admit changes in the form of turnover
and re-assigning personnel and tasks. As an adaptation feature, the organization has a
look-ahead ability that allows it to assess the short-term impact of a change before taking
action; this is where the “Ahead” part of the OrgAhead comes from. The look-ahead
ability can be used in conjunction with one of two optimization heuristics, hill-climbing
or simulated annealing [Carley and Svoboda, 1996]. With hill-climbing, the organization
selects only beneficial moves or changes at every opportunity for change. Under
simulated annealing, the selection of moves depends on an annealing schedule that would
allow the organization to select some bad moves, so that it wouldn’t get caught in local
optima.

The OrgAhead is used to test various aspects of real life organizations, such as
complexity in the task environment and constraints on structure and adaptability, under
the intellective paradigm of simulating models. An intellective model contains analogous
entities, constructs, and complexities of what it is modeling rather than mimic each
specific behavior. Hence, the sizes of organizations will tend to be small, less than 100
agents. Models that capture a higher level of organizational detail are called ‘emulative’
models.

OrgAhead can be (and has been) used for both validation and hypothesis testing.
Validation exercises include comparison of performance results with those of real-life
A2C2 teams [Lee et al, 2003] and nursing units across multiple hospitals [Lee et al,
2003]. We have also validated OrgAhead with an emulative model, VDT or Virtual
Design Team, through a process called ‘docking’ [Louie et al, 2003] in which two models
are tested and compared using equivalent, or close to equivalent, inputs and parameters.

We can use and test a specified organization or allow OrgAhead to randomly generate
them, testing more theoretical hypotheses. We often test hypotheses through virtual
experiments, meaning we run Monte Carlo simulations for each of the experimental
conditions and statistically compare results. Questions we have asked and answered
include:

e How do adaptive organizations differ structurally from maladaptive ones?
[Carley and Lee, 1998]

e What are the adaptation patterns that lead to higher levels of performance?
[Lee and Carley, 1997]

e How does a hierarchy differ from teams and under what circumstances does
one perform better? [Carley, 1992]

e Does initial learning, or training, have long-term effects?

OrgAhead is the successor and aggregate of a series of past organizational simulation
models as the following figure shows.

CMU-ISRI-04-117 -3- CASOS Tech Report

ORGAHEAD
adaptive structure

ORGSIM DYCORP Radar-Soar
change in task dynamic task cognitive agent
P-ELM | Ternary Task CORP
SOP biased task

ELM - binary task - unbiased

Fig. 1. Lineage of OrgAhead consists of half-a-dozen or so distinct models.

2 Details of OrgAhead

2.1 Structure of the Organization and Task (Static Representation)

The two primary components of OrgAhead are the organization and the task that the

organization works on and solves. The following figure depicts a static snapshot of a
typical organization that OrgAhead might model:

Yes

ABCEFGHIJTaskInputs

Fig. 2. Typical hierarchical organization having three levels. Task inputs appear as a feature
vector. Top level agents give the final decision or answer, upon which performance and
adaptation is based.

At the bottom of the figure is the representation of the task or inputs level. Different
actors may see different parts of the input/task. The organization here is a three-level
hierarchy; OrgAhead can model an arbitrary number of levels each containing up to an
arbitrary number of agents. Traditionally, we label these levels similarly to those of
corporate organization: analysts, managers, and CEOs. Decisions are communicated
upwards the hierarchy; that is, analysts can only report to managers or CEOs, and

CMU-ISRI-04-117 -4 - CASOS Tech Report

managers to only CEOs. Currently there is no intra-level communication. Finally, the
upper level agents provide a final decision or answer as its response to the task vector;
here the response can be a 0 or 1 and it is 1. In the figure, the organization works on a
single task and receives feedback from the environment as to whether its answer was
correct or not.

The authors have used the radar task as a metaphor for the kind of task that OrgAhead
tries to solve. An incoming aircraft is detected and the organization, or radar-tower, must
assign it the appropriate danger level: friendly, neutral, or hostile.

RADAR
AIRCRAFT DETECTION
SPACE

CHARACTERISTICS 1
OF AN AIRCRAFT TRUE STATE OF
THE AIRCRAFT
F1.SPEED RADAR SYSTEM
F2--DIRECTION FRIENDLY
F3--RANGE
F4--ALTITUTE
F5--ANGLE |:> NEUTRAL
RN S |)
F8--SIZE <:I HOSTILE
F9--RADAR EMISSION
TYPE
OBSERVED BY UNKNOWN_TO FEEDBACK TO
ORGANIZATION ORGANIZATION ORGANIZATION

Fig. 3. A sample empirical task. The radar task requires the organization to properly categorize a
detected, incoming aircraft as friendly, neutral, or hostile using a finite set of feature values about
aircraft. Similar classification tasks map well onto the OrgAhead task schema.

2.2 The Dynamic Organization

However, we cannot infer general behavior from the solving of a single task instance.
The power of computational modeling lies in the ability to generate multiple instances of
our problem allowing us to make statistical inferences from a population of samples. So,
the modeled organization works on a series of tasks; the length of this series is defined by
the user as a parameter (-task limit) and constitutes the life cycle of the organization.
Furthermore, since OrgAhead does not have an explicit representation of human time, we
think of the series of tasks or task cycles as the proxy for time. The following figure
depicts OrgAhead operating across time (i.e. tasks):

CMU-ISRI-04-117 -5- CASOS Tech Report

,thl:al/performance
organizational OPERATI

decision

STRATEGI

experience
information from othe
information from task
eedback

rs

Forecasting:
Current performance
Possible change

Expected performance
Who knows who
Who knows what

Fig. 4. Organization working on tasks over time. This figure also characterizes the feedback of
information constituting learning and the strategic behavior including forecasting of performance
and effecting change.

As the organization solves the series of tasks, it keeps a count of correctly performed
tasks (i.e. correct answers). The proportion of correctly answered tasks out of total tasks
worked on is the organizational performance; in the model output, we use the term
“efficiency”.

We briefly introduce OrgAhead’s two primary performance output measures,
absolute efficiency and relative efficiency. Absolute efficiency measures the percentage
of correct answers for all tasks worked on, as defined by the —task_limit parameter.
However, say we are interested in how the organization is doing every X many task
cycles. The —efficiency_cycle, or —ec, parameter specifies this periodic check.

OrgAhead —tl 20000 —ec 500 means we simulate an organization over 20,000
tasks. However, we take efficiency/performance checks every 500 task cycles or
windows.

2.3 Detailed Organization

The next figure shows the same organization with more operational detail:

CMU-ISRI-04-117 -6- CASOS Tech Report

+ Agent constraints:

1. Limited memory

2. Maximum of seven
resourcesfinputs

+ Organizational activities:
1. After every n tasks, propose a
change: hire, fire, or change
Managers ties.
2. Test change.
0 3. Accept all good changes and
some bad changes depending
"\.\ on annealing schedule
‘Analysts

00=0
D=1
10=1
11=0

17 1t o 1% N\
oo=0 'I -
ni=1

ol

1i=0

+ Agent activities:
F; = A 1. Update memory table based on
7 { 4 \ % % % correctness of final decision.

! | J:,-’ e

) ! \ IS 2. Report truthfully.

1 0 1 1 0 1 1 1 «Olnputs

Decision Rule: If# of 1's > # of 0's, then “1”
Else “0”

Fig. 5. Detailed organization: agents appear as memory tables and the task is represented as a

binary vector. A list of common dynamics are listed on the right

We see now the numerical task representation: a series of binary bits; OrgAhead can
handle up to trinary bits for the task. Through the course of the simulation, the
organization sees many of such task instances, typically generated randomly from a
Bernouilli distribution, meaning that each bit has a 50/50 chance of being a 0 or 1.'

The objective function, or decision rule, typically used is a majority classifier. This
means, for a given task bit vector, if there are more 1s than Os, the correct answer is 1,
and 0 otherwise. In this example, we show only one decision rule meaning there is only
one kind of task to solve. The job of the organization is to learn and adapt to produce
correct answers as often as possible.

The organization employs reinforcement learning to improve accuracy. Each agent in
the figure is assigned resources from one or more sources, either task information or
reports from a subordinate. These interconnections form the organizational “structure”.
How these are initially assigned is left up to the user: the assignments can be specified or
randomly made. The agent makes a single decision (for each task) based its inputs and
reports its decision to its superiors.

For a binary task, each communication takes on a value of 0 or 1. For each
combination of values an agent sees, the agent keeps track of which combinations
produced the correct answer for the entire decision rule. For instance, say an agent has
two resources; it does not matter who the sources are, task or another agent. There are
four combinations of values this set (of two resources) can take: 00, 01, 10, or 11. For
each task instance, the organization sees, this agent will receive information from its
resources which will take on one of the combinations. The agent refers to its memory to
see which decision (0 or 1) in that past has been most often matched the true answer and
passes its decision its superiors. If the agent has no experience (i.e. the organization is
just starting out), its decision is randomly chosen.

' The Bernoulli probability can be user-altered; e.g. instead of 50/50, it could be 30/70.

CMU-ISRI-04-117 -7 - CASOS Tech Report

The following figures provide a glimpse of the organizational performance pattern
over time as the organization works on a series of tasks as well as how performance can
be dependent on the most basic of parameters such as organizational size and density of
communication links.

Fig. 6. Performance time series. Y-axis shows performance as a percentage (45% to 95%) while
the X-axis shows the cumulative number of tasks worked on across time (i.e. sequentially). Each
line depicts the performance measures of a separate run of OrgAhead. The behavior of OrgAhead
is rarely perfectly stable and often large variations in performance occur as a result of other
externalities such as specific parameters or maladaptations.

Maximum
Performance

120 Structural
100
80 [
60 [
40 [

Density

Fig. 7. Performance surface response. OrgAhead’s performance is highly contingent on the
interconnectivities (i.e. density) and the raw number of agents (i.e. size) in the organization.
However, the relationships can be neither monotonic nor linear as depicted in the figure.

CMU-ISRI-04-117 -8- CASOS Tech Report

2.4 Organizational Adaptation

While we can test an unchanging organizational structure using OrgAhead, the power of
this tool comes from the adaptation component. After every X tasks the organization
works on, the organization proposes a change in its structure. The user defines how often
this can occur and also the details of the change. Currently, possible changes include:
1. Turnover (i.e. hire a person, fire a person, or replace a person)
Task re-assignment (i.e. change, add, or remove a link between a task bit and
a person)
3. Personnel re-assignment (i.e. change, add, or remove a link between people)

The —change_cycle (-cc) parameter determines how often the organization proposes
a change. For example —cc 500 means, at every 500 tasks worked on, the organization
randomly generates a change.

The organization does not automatically accept and implement the change.
OrgAhead implements a look-ahead feature that allows the organization to test the
change for a short time horizon, which can be defined by the user. If the change
produces a higher level of performance/efficiency, the organization will accept the
change. If the change is not necessarily performance-enhancing, the organization might
accept the change anyways depending on the simulated annealing schedule. The solution
landscape for organizations is often complex and reaching an optimal solution or
organizational form requires a more sophisticated strategy than merely picking the better
move at every opportunity; this is also known as hill-climbing. OrgAhead overcomes this
limitation by allowing the organization to sometimes take bad moves; this algorithm is
known as simulated annealing. Refer to [Carley and Svoboda, 1996] for further details.
Typically, nascent organizations suffer from what organization theorists call a ‘liability of
newness’, meaning they are uncertain at their outset and should take risky moves in order
to grow and adapt. However as organizations mature, they need not take so many risky
moves. The probability of accepting risky or bad moves is determined by an exponential
function taking several user-defined parameters:

Probability of accepting move (Metropolis criterion):
___-cost *k/T

[1] Pi=¢€ ¢ ¢

Cooling of “temperature” T:
[2] Twu1=a- Tiwhere 0.0 < &< 1.0 (cooling ratio)

Cost of next move:
[3] cost, = current_performance, - lookahead performance,

The following figure shows what risk probability curve looks like, as measured from a set
of Monte Carlo runs; the theoretical curve would be perfectly smooth:

CMU-ISRI-04-117 -9- CASOS Tech Report

Empirical Probabilities of Accepting a Risky Move

Probability * 100%
i
=

D T T T T T T T T
1 10 19 28 ar 46 a5 4 73

Tasks {in Thousands)

Fig. 8. Annealing curve denoted by percentage of risky moves accepted at various points of the
organizations life cycle

The shape of this curve is somewhat user configurable. How fast the curve drops and
whether not it spikes up again, restarting at 100% are configurable.”

2.5 Other Primary Parameters
2.5.1 The memory cycle and the relative efficiency cycle.

All agents have the same amount of memory, or a tally of each combination of resources
seen and which of the agents’ decisions were correct. This memory capacity is set with
the —memory cycle (-mc) parameters. This means the memory is zeroed after every X
tasks, where X is the number set with —-memory cycle. The memory cycle parameter is
often coupled with the efficiency cycle parameters, -ec, that we discussed earlier.

OrgAhead —ec 500 —mc 500

After every 500 tasks the organization works on, each agent’s memory is reset and the
performance for the past 500 tasks is recorded, and output if desired.

2.5.2 Standard Operating Procedures (SOP)

OrgAhead allows agents to make decisions in a routine fashion, using organizational
SOP, rather than their experiences. The —s or —stupid switch parameter forces each
agent to simply pick the most common input as its output/decision. SOP can be set
probabilistically for each level by first setting —s and the using —sop <level>
<probabi lity> where <level> starts from 0 for the lowest and <probability> is a real
number between 0.0 and 1.0.

? OrgAhead’s Medeiro parameters define an annealing curve that spikes back up to, or near to, 100% temperature; refer to
publications by F. Medeiro for further information on the advantages of this kind of cooling curve.

CMU-ISRI-04-117 -10 - CASOS Tech Report

2.5.3 Personnel Restrictions

Maximum Resources (-max_resources or —mr) restricts the maximum number of
resources/inputs an agent may have whether these resources are task bits or decisions
from subordinate agents. Default is 7 resources.

Maximum People (-max_people or -mp) restricts the maximum number of people that
can exists at each hierarchy level. Default is 15 people.

2.5.4 Specifying the Organization

By default, OrgAhead randomly generates an organization of up to three tiers and with up
to fifteen people in each level. The user can specify the exact structure of the initial
organization using meta-matrices (see Version 2 section below) or through the command-
line options.

2.6 Task Specifications

Thus far, we have only touched upon one way the task environment can vary (i.e. binary
vs. trinary type bits). In this section, we go into all the ways the user may configure the
task environment.

2.6.1 Task Complexity

Task complexity is the size of the task, or the number of bits that represent each task
vector. It is crucial for the user to understand the implications of this parameter since it
can drive much of the performance/efficiency outputs.

The task complexity is defined by the —task_complexity, or —tc, parameters and
defaults to 9 bits; several other task parameters default to values that assume the 9 bit
default.

i.e. at some command-prompt: OrgAhead —tc 9 or OrgAhead —task_complexity 9
2.6.2 Task Generation

Internally, a task bit can take on three values, 1, 2, or 3; why these aren’t 0, 1, and 2 will
become clear in section.

2.6.3 Task Bit Generation
By default, these are randomly generated with almost equal probabilities, .33, .34, and

33. These probabilities are set with the —task friendly, -task_neutral,
-task_hosti le parameters, or —tf, -tn, —th, respectively. The previous figures used a

CMU-ISRI-04-117 -11- CASOS Tech Report

binary task, which requires an alternate setting of these probabilities: OrgAhead —tf .5
—tn .0 —th .5

2.6.4 Decision Rule

The decision rule, that determines the correct answer, has two components: the objective
function and a partitioning, or set of cut-offs.

The default objective function multiplies each of the bits. Say at task cycle t the task
vector X of size 9 is generated. The correct answer Y; is:

Default Objective Function:

41 Ve =[] Xit

The range of values for Y, is partitioned into 2 or 3 whole regions; 2 for binary and 3 for
trinary task. Currently, OrgAhead does not allow un-segmented partitioning.

The task cut-off parameters determine which partitions represent an answer of 1, 2, or 3.
The parameters are —primary_cutoff_friendly and —primary_cutoff_hostile or
-pcf and —pch. The partitioning formula is as follows:

[5] friendly region < friendly cutoff <= neutral region
[6] neutral region <= hostile cutoff < hostile region

Any objective value less than —pcf has an answer of 1 or friendly. Any value that is
greater than —pch has an answer of 3 or hostile. Any other value is neutral or 2. The
defaults for these parameters assume a trinary task. If we wanted a binary majority
classifier under 9 task bits, we would use parameters like —-pcf 82 and —pch 82. Setting
—pcf equal to —pch automatically implies a binary task; none of the answers will be
neutral or 2. Any product of nine digits of 1 or 3 that contains five or more (majority) 1s
will result in values of 81 or less. Any product having five or more 3s will result in
values of greater than 81; actually 243 and above.

2.6.5 Changing the Task Environment

Users have the option of making the task environment even more uncertain, by allowing
the decision rule to shift. Secondary parameters, -secondary_cutoff_friendly and
-secondary_cutoff_hostile (-scf and —sch), control a secondary decision. How it
takes effect is determined by the —primary_duration_mean and
-secondary_duration_mean, which denote how long the primary decision rule is in
effect and then how long the secondary rule remains in effect. If these durations sum less
than the —task_limit, we go back to the -primary_duration_mean and the —pcf and
-pch decision rules.

CMU-ISRI-04-117 -12- CASOS Tech Report

2.7 Inter-Relation of Parameters

How the organization performs, that is the range of performance values it exhibits, is
strongly constrained by how the user sets the various cycles, the task complexity, and the
cut-off/decision rules. Let’s take an extreme example. Let’s say the task complexity is 2
(i.e. two bits of binary information). There are only four values that the task can take on:
00, 01, 10, and 11. The default memory cycle is 500, meaning the agents can remember
feedback for the past 500 tasks. However, it doesn’t take many examples of 2 bits to
learn the majority classification pattern. An organization with just a single agent can
learn this task perfectly within a few dozen tasks. A memory cycle of 50 would allow the
agent to perform perfectly, and 500 is certainly over-kill.

The user should analogize the relationship between the cycles and the task complexity as
the relative difference in complexities between the real life learning and adaptive
capabilities of the organization and the complexity of the task it is working on. One can
structure the parameters such that the organization will consistently perform at a
miserable level (e.g. 30%) or an excellent level (e.g. 80%) of performance. Usually the
goal is to structure the parameters such that there is sufficient variance in the results, as
one would expect to see in the real life organization. Alternatively, one can imagine an
organization with an environment that is heavily constrained, such that the model would
also give results with low variance. The user in this case might use OrgAhead to find an
optimal structure whose performance excels despite the constraints.

3 Version 2 Features of OrgaAhead

3.1 Meta-matrix Linking OrgAhead with CASOS Tools

The second generation of OrgAhead (Version 2) includes modeling of more complex
organizational dynamics, appearing the form of a meta-matrix. The meta-matrix captures

networks of dependencies important to organizational dynamics. Most CASOS tools,
including OrgAhead, allow for meta-matrix inputs.

Personnel Resources Tasks
Personnel |Networks Capabilities | Assignments
(e.g., authority and
cé)?z?mcmn) Coverage Workload
Span of control
Resources Substitutes Needs
Uniqueness Usage
Tasks Precedence
Complexity
CMU-ISRI-04-117 -13 - CASOS Tech Report

Fig. 9. Meta-matrix comprises key dependencies in organizational dynamics. OrgAhead does
not implement all of them

The meta-matrix for OrgAhead includes people (or personnel), resources, and tasks.
Another meta-matrix component which OrgAhead does not currently implement is
knowledge. The personnel-to-personnel matrix refers to the communication network
already discussed. Personnel-to-resources matrix refers to agent links to task bits, which
are now called “resources” in version 2. Earlier, we implied that the organization solves
one kind of task, for which there is only one set of primary cutoffs or one primary
objective function. In Version 2, the organization may be required to solve multiple
tasks, each of which is dependent on all or a subset of the resources, or task bits.
Remember, “resources” originally referred to any kind of input into an agent. In version
2, we make the distinction between personnel links and task-bit information links.
Hence, we assign multiple tasks to various personnel (personnel-to-tasks matrix), and
have those tasks depend on various resources (personnel-to-resources matrix).
Furthermore, we can specify an ordering or precedence for the tasks (tasks-to-tasks
matrix). OrgAhead does not currently employ resource substitution (resources-to-
resources matrix).

The meta-matrices for OrgAhead need to be contained in a text file.

4 Running OrgAhead

OrgAhead runs under Windows and two Unix platforms, Solaris (Sun Microsystems) and
Linux. Under Windows, users have the option of running OrgAhead from the command-
line or use the GUI (graphical user interface) implemented in Java. The command-line
version allows for batch/scripted runs of OrgAhead.

4.1 Inputs

The primary OrgAhead inputs and associated command-line parameters appear below.
Omitting a parameter engages its default value. An exhaustive list of parameters appears
in the Appendix.

4.1.1 Organizational Structure

Organizational structure may be specified through a file or on the command line. The
command-line options accommodate up to three hierarchy levels and are:
-ceos, -managers, and -analysts or —c, -m, and —a.

Refer to the Appendix X for details on the format of the structures. The —sfn,
-structure_Tfilename option allows the user to specify a file containing the
metamatrices. Meta-matrices may be specified using

-stn <filename>
-structure_filename <filename>

<filename> includes specifications for the number of levels and the number of people in
each level as well as the following meta-matrices: People X People, People X Resources.

CMU-ISRI-04-117 -14 - CASOS Tech Report

People X Tasks, Resources X Tasks, and Tasks X Tasks. Refer to Appendix X for details
on the meta-matrix.

4.1.2 Task Environment

The partitioning of the primary solution space is specified with the —pcf and —pch
options (-primary_cutoff_friendly and —primary_cutoff_hostile). If a secondary
task is specified, then a set of secondary cutoffs is appropriate using —scf and —sch.

4.1.3 Operation

-ec/ -efficiency_cycle <integer> A performance review/check every <number>
tasks.

-cc/ -change_cycle <integer> Org attempts a change every <number> tasks.

-mc / -memory_cycle <integer> Agents remember feedback of <number> tasks.

-tp / -training_period <integer> Agents initially train on <number> tasks which
does not count towards performance.

4.1.4 Annealing

-ip/ -initial_partition <real> Setting for initializing the annealing curve.

-fp/ -freezing_partition <real> Setting for determining when the problem is
“frozen”.

-cr/ -cooling_ratio <real> How fast the temperature drops each change cycle.

4.1 Outputs
-po / -print_organization Organizational structure at each change cycle.
-pc / -print_change The change attempted.

-pe / -print_efficiency The efficiency/performance at each check.

The following produces much output:

-pt/ -print_task Print each task the org solves and decisions made by each
person and the org.
-pp / -print_persons Print the memory tables of each person.

4.1.1 lustrative Input and Output

The following parameters have been used for various OrgAhead publications and

workships; these may be set through the GUI as well (see below).
OrgAhead —ec 500 —cc 500 —mc 500 —tp 500 —ip .95 —Ffp 1e-900 —cr .7 —pcf
82 —pch 82 —tc 9 —tl 20000 —tf .5 —tn .0 —th .5 —po —pe —pc

Explanation of parameters:
-ec 500, - cc 500 , -mc 500, -tp 500 , -tc 9 , -pcfF 82

CMU-ISRI-04-117 -15- CASOS Tech Report

Since the various cycles and task complexity are interrelated (see 2.7), these parameters
can give the organization a range of performance from about 40% to 90%. The cycles set
to 500 are primarily aligned the task complexity of 9, which has a solution space of 512
(i.e. 2°). —pcf 82 —pch 82 gives us the majority classification decision rule. —th .5
-tn .0 —th .5 produce only the friendly and hostile bits, our definition of the binary
task.

-ip .95 —fp 1e-900 —cr .7 —tl 20000 gives us a smooth annealing curve for 20,000
tasks whereby the probability of taking a costly move starts from 1.0 and shrinks to .0
without ever freezing. The —fp 1e-900 guarantees non-freezing.

Notice we don’t include a meta-matrix file nor specify the organization structure with the
—ceo, -manager, and —analyst commands because for most of our OrgAhead
experiments we deal with randomly generated, Monte Carlo organizations.

4.2 Using the OrgAhead GUI (Windows version)

The user may use the graphical user interface (GUI) for OrgAhead which works currently
only for the Windows platform. Java JRE 1.4.1 must be preinstalled or will install as part
of the main OrgAhead installation process. The interface may be downloaded from the
main CASOS website. Currently, the GUI supports mainly version 1.0 of OrgAhead and
the meta-matrix feature of 2.0.

& OrgAhead
File Tools
© Virtual Experiment | Run Simulation | View Results | Visualization
Explorer Duration
] Enter Sirmulation Pararmeters TR Tas 1
D Curation
[output Efficiency Cycle 500
& 3 Anneal
D Adaptation Memory Cycle 100
D Qrganization
& [Task Change Cycle a00
D Matrix Input S] -
raining perioo
D Reset U
Rand Seed
Hypothetical Efficiency Period a00
Hypothetical Training Period a00
Help
This gives a list of duration parameters -

CMU-ISRI-04-117 -16 - CASOS Tech Report

Fig. 10. A sample screenshot of the OrgAhead GUI. In this page, we see cycle/period settings
4.4 Benchmarks

The following measurements were taken using a Pentium 1.5 GHz machine using v2.1.6
of OrgAhead. There were 20 Monte Carlo runs, meaning randomized organizations, each
of which ran for 20000 tasks. The organizations had a maximum hierarchy of 3 levels.
We vary base the benchmarks on parameters that are likely to affect the running times:
the maximum number of people per level (-mp) and maximum resources per agent (-mr).

Table 1. Performance times for OrgAhead varying size per level. Maximum resources is set to
7. Typical experiments with OrgAhead involve between three and twenty people per level.

Max people | Time
per level

5 8.902s
10 14.521s
15 21.041s
20 34.114s
30 47.554s

Table 2. Performance times for OrgAhead varying resources or inputs per person. Maximum
people per level set to 15. In typical experiments, agents will have between zero and twenty
resources.

Max resources | Time
per person

3 15.39s
5 22.64s
7 26.85s
9 51.94s

5 Validation

Validation on OrgAhead has included docking approaches and direct comparisons with
empirical data across several different contexts. Docking refers to aligning the
parameters of two similar models and comparing their results; empirical data may be also
compared, if appropriate.

5.1 Validation by Docking with SimVision
OrgAhead has been docked with the simulation model SimVision developed at Stanford

by Raymond Levitt et al. Alignment or docking involves assessing which of the
important parameters of each model has analogues in the other.

CMU-ISRI-04-117 -17 - CASOS Tech Report

Table. 3. This table shows results from docking OrgAhead with SimVision and compares both
model outputs to the empirical data [Marcus et al, 2004]. The rank ordering of OrgAhead results
matches the human performance scores; however the specific results of SimVision naturally
differs from OrgAhead’s.

TABLEI
COMPARISON OF MODEL PREDICTIONS
ORGAHEAD SimVision Human
o Performance
2002 (Duration in
(% Accuracy) days) (Qutcome
° Y Y Scores)

A06 60.2 73.7+2.5 79.7
Al4 59.4 87.6 £ 3.0 76.2
Al6 65.1 712+25 85.1

For ORGAHEAD 2002 and SimVision, the mean performance over
all simulation runs is reported. An analysis of variance demonstrates
a significant difference between each of the organizational forms.
The performance reported for the Real Data are the actual scores
reported during the experiment.

5.2 Validation with Military Command and Control Structures

Validation of empirical data involves aligning OrgAhead parameters with those of the
real situation or experiment and comparing OrgAhead outputs to measures obtained from
the real situation. The Navy conducts A2C2 (adaptive architecture and command-
control) war game experiments to assess the efficacy of organizational structure and
information flow on tactical situations. We have used OrgAhead to reproduce some the
results from these experiments.

7 92
66.5 %0
3 S
8 88
g e
86
655
2
645
78
6
op DF [FF >) F
O

rganizational Structure Organizational Structure

Mean Accuracy (%)

Absolute Perform
©
2

I
g

«
3

Fig. 11. Comparison of A2C2 performance results (left) with OrgAhead (right). The results
above show the ranking of OrgAhead results matching the empirical results.

CMU-ISRI-04-117 - 18- CASOS Tech Report

5.3 Validation with Hospital Unit Performance

Faculty and administrators at the Nursing College of the University of Arizona desired to
use OrgAhead to help improve the efficacy of various hospital units in the city of Tucson,
Arizona. By using expert informed parameters, we obtained the following comparison of
OrgAhead results and the unit performance measures.

40
304 .S
Y A
TS r N
1 N 4 N 4
’ \ / |4 /
) \ / \y ’
] A -’ SN —_
AN P A\ W4
204 4 . ’ v -
’l \‘ '/ Medication Errs per
~ V4
' S/ 1000 Patient Days
Weighted Sum
10+ ¢
of Errors
g ORGAHEAD
0 Anti-Performance

51 53 54 55 61 62 63 64 65 66

Unit Name

Fig. 12. OrgAhead results roughly match empirical performance of hospital units. The
Spearman rank correlation p = 0.60 with significance/p-value = 0.067.

The correlation result shows strong predictive abilities of OrgAhead on the performance
of these hierarchical groups; these results are especially surprising considering the small
sample size.

6 Web Sources

CASOS Web Page: http://www.casos.cs.cmu.edu
OrgAhead Page: http://www.casos.cs.cmu.edu/projects/OrgAhead/index.html

7 Acknowledgements

The original version of OrgAhead was developed under NSF IST-8607303. More
recently, research to extend, validate and develop an interface for OrgAhead has been
supported in part by the National Science Foundation NSF IRI9633 662, 662, NSF KDI
11S-9980109, the NSF IGERT program in CASOS, and by the Office of Naval Research
(ONR), United States Navy Grant No. N00014-97-1-0037, the Army Research Lab
Contract No. DASWO01-00-K-0018 and NASA. Additional support was provided by
CASOS and ISRI at Carnegie Mellon University. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing the

CMU-ISRI-04-117 -19 - CASOS Tech Report

official policies, either expressed or implied, of the Office of Naval Research, the Army
Research Labs, NASA, the National Science Foundation, or the U.S. government.

References

Carley, K.M. 1992, "Organizational Learning and Personnel Turnover." Organization
Science, 3(1): 20-46.

Carley, K.M. and A. Newell. 1994. "The Nature of the Social Agent." Journal of
Mathematical Sociology 19(4): 221-262.

Carley, K.M. and M. Prietula. 1994. “ACTS Theory: Extending the Model of Bounded
Rationality” in Computational Organization Theory. Edited by Kathleen Carley and
Michael Prietula. Hillsdale, NJ: Lawrence Earlbaum Associates.

Carley, K.M. and D.M. Svoboda. 1996. “Modeling Organizational Adaptation as a
Simulated Annealing Process.” Sociological Methods and Research. 25(1):138-168.

Carley, K.M. and J. Lee. 1997. “C2 Adaptation in a Changing Environment.” pp. 287-
297 in Proceedings of the 1997 International Symposium on Command and Control
Research and Technology. June, Washington, DC.

Carley, K.M. 1998. “Organizational Adaptation.” Annals of Operations Research. 75:
25-47.

Carley, K.M. and J. Lee. 1998. “Dynamic Organizations: Organizational Adaptation in a
Changing Environment.” Ch. 15 (pp. 269-297) in Joel Baum (Ed.) Advances in Strategic
Management Disciplinary Roots of Strategic Management Research. Vol. 15. JAI Press,
Inc.

Carley, K.M. 1999. “Learning Within and Among Organizations.” Ch. 1 (pp 33-56) in
Philip Anderson, Joel Baum and Anne Miner (Eds.) Advances in Strategic Management:
Population-Level Learning and Industry Change, Vol. 16. Elsevier Science Ltd.

Carley, K.M. and D. Krackhardt. 1999. “A Typology for C> Measures.” In Proceedings
of the 1999 International Symposium on Command and Control Research and
Technology. June, Newport, RI.

Carley, K.M., Y. Ren, and D. Krackhardt. 2000. “Measuring and Modeling Change in
Csl Architecture.” In Proceedings of the 2000 Command and Control Research and
Technology Symposium. June, Naval Postgraduate School, Monterey, CA.

Carley, K.M. forthcoming. “On the Evolution of Social and Organizational Networks.”

In David Knoke and Steve Andrews (Eds.) special issue of Research on the Sociology of
Organizations on Networks In and Around Organizations. JAI Press, Inc.

CMU-ISRI-04-117 -20 - CASOS Tech Report

Carley, K.M. and L.Gasser. forthcoming. “Computational Organization Theory." Ch. 7
in Distributed Artificial Intelligence edited by Gerhard Weiss. Cambridge, MA: MIT
Press.

Lee, J. and K. M. Carley. 1998. ‘“Adaptive Strategies for Improving C2 Performance.”
In Proceedings of the 1998 International Symposium on Command and Control Research
and Technology. June, Monterey, CA.

Lee, J., K.M. Carley and J. Eftken. 2003. “Validating and Justifying a Computational
Model of Decision Making using Empirical Data.” NAACSOS 2003 Conference
Proceedings, Pittsburgh, PA.

Lin, Z. and K.M. Carley. 1993. “Proactive or Reactive: An Analysis of the Effect of
Agent Style on Organizational Decision Making Performance.” International Journal of
Intelligent Systems in Accounting, Finance and Management, 2(4): 271-288.

Lin, Z. 1994. “A Theoretical Evaluation Of Measures Of Organizational Design:
Interrelationship And Performance Predictability”, in K.M. Carley and M.J. Prietula
(Eds.) Computational Organization Theory, Hillsdale, NJ: Lawrence Erlbaum Associates.

Louie, M.A., K.M. Carley, L. Haghshenass, J.C. Kunz, and R.E. Levitt, 2003, “Model

Comparisons: Docking ORGAHEAD and SimVision.” NAACSOS 2003 Conference
Proceedings, Pittsburgh, PA.

CMU-ISRI-04-117 -21- CASOS Tech Report

Appendix A — Details of Organizational Structure and Outputs

The information in this appendix also applies to OrgSim, a predecessor of OrgAhead, and
OrgStat, an organizational statistical package which is the predecessor of ORA.’

Input Format for Initial Org Arguments (-analysts, -managers , —~ceos)

Each of these arguments takes a quote-enclosed string. The string given should consist of
words separated by spaces; each word indicates the resources to give to a person. For
example "a Ob cd" means create 3 people, the 3rd gets two resources, and the others each
get one.

Each word should consist of characters indicating the resources given to this new person.
For example, the string "abc" means the new person gets the first 3 resources of the
immediate lower level (i.e. CEO gets managers who get analysts who get tasks). Each
character may have a modifying digit preceding it. The modifying digit can be '0' for task,
'1" for analyst, or "2' for manager. Case is not important. This indicates that the level of the
resource the person sees is not necessarily the default level for the person. For example
"Ob" indicates the person gets task B, even if the person is a manager or CEO. "albc"
means the person gets resources A and C of the default level, and analyst B. (Of course, if
the person is a manager, saying "abc" would have been the same as "albc".) A "-"
indicates a person with no resources (who has to randomly guess at the answer), and a "."
indicates no person (a silly thing to input, but nonetheless, it can be done). Passing an
empty string indicates that there shall be no members on the level associated with the

nn nn

argument; however, if all three arguments get empty strings (-analysts "" -managers

nn

-ceos ""), then a random org is created for each simulation.

In addition, the -president switch indicates if the org should have a President, who
oversees all CEOs and any unsupervised managers or analysts.

Output format for Organizations (seen if —print _organization is specified)

This format specifies the org's structural hierarchy, who supervises whom. If
-print_organization is specified, it is printed once before simulation starts, once at the
end, and every time a change to the org is made. Here is what a sample org might look
like:

Organizational structure is: President: abc
alaOa blbOb 1cOc

abcgi defh

abcdefghi

The bottom line indicates that the first analyst sees task A, the second analyst sees task B,
and so on. The next line up shows 2 managers; the first one supervises the first, second,
third, seventh, and ninth analysts, and the second manager oversees the other ones. The
top line depicts three CEOs. The first one oversees the first manager (A), as well as the

3 OrgStat and OrgSim are both available for public use.

CMU-ISRI-04-117 -22- CASOS Tech Report

first analyst (1A) and task (0A). The second one sees the second manager, analyst and
task. The third one oversees the third analyst and task. Finally, the first line indicates that
this org has a President, who supervises the three CEOs.

OrgStat reads orgs from a file or stdin in this same format. It only reads orgs whose
preceding line reads "Final Organizational structure is". This way you could pipe output
of OrgSim to OrgStat, and OrgStat will ignore initial and intermediate orgs, using only
final orgs, one for each simulation performed.

Output format for People (seen if -print_person is specified)

This format specifies the experience of every person in the org. If -print_person is
specified, this data is printed for every person after each efficiency check. Here is what a
single person's experience might look like:

Manager #1 has resources: Al T2 EFff: 43.00% (Recent: 43%) from 400 tasks.
For pattern: 1 1

42 = 41 1 o | 31 0 0 8 0 0 10 0] 0 = 49

13 = 12 1 (O | 12 1 0 1 0 0 6 0 0= 20

3= 3 0 o | 3 0 0 1 0 0 0 0 0 = 4
2

For pattern: 1

From the top line, we see that the first manager oversees the first analyst and the second
task. He has an overall efficiency of 43.00, and a 43% relative efficiency from the last
efficiency check. And he's seen 400 tasks. Then we will see a listing of each pattern he
may see; only his output for pattern (1 1) is shown above. The data is collected into 4 3x3
matrices, and they indicate his absolute, initial, relative, and old relative experience, from
right to left. The rows indicate what the correct answer was (top=1, middle=2, bottom=3),
and the columns indicate what he guessed (left=1, middle=2, right=3). So, in the full 400
tasks, where the pattern (1 1) emerged, the answer was 1 42 times, and 41 of those times
he guessed 1. However, when he started off (initial experience) there were 31 1's and he
guessed correctly every time. Since the last efficiency check, there were 8 1's, and he
guessed them all, and in the previous efficiency check, there were 10 1's and he guessed
them all correctly again. The numbers on the left and right sides are sums, the right ones
are useful in judging how he will react the next time he sees (1 1) Since the answer was 1
42 times (from the left side), we figure he'd be best to guess 1. That's what he'll do,
because the right number (49) is greatest on the right side.

Output format for Tasks (seen if —-print task is specified)

This format specifies what happens for each task, what everyone decides, what the org
decides, and what the correct answer was. If —-print_task is specified, this is printed for
each task. Here is what a single task might look like:

3

2 2 1

1 2 2 2 2 1 2 2

2 2 2 2 2 2 2 2 A: 3D: 3

CMU-ISRI-04-117 -23- CASOS Tech Report

The bottom line shows that all the task bits were 2. The next line up indicates that the
first (Ileftmost) and 6th analysts guesed 1; the others guessed 2. The next line shows that
the first two managers guessed 2 while the third guessed 1. The top line shows that the
CEO guessed 3. At the end of the bottom line, one can see that the answer was 3, and so
was the decision.

Output format for Efficiency (seen if -print efficiency is specified)

This format specifies what happens for each efficiency check, how everyone is doing,
and how well the org is doing. If -print_efficiency is specified, this data is printed out
during each efficiency check, before any orgal changes take place. A sample efficiency
check might look like:

Organizational Efficiency: 53.00% Overall: 54 _03%

54.00 54.00 37.00 54.00 54.00 54.00 54.00 45.00
54.00 45.00 54.00 50.00

37.00 53.00 48.00 45.00 47.00 51.00 56.00 47.00

The org's overall efficiency is 54.03%, while its relative efficiency (since the last
efficiency check) is actually 53%. From the bottom line, we see the analysts all had
efficiencies ranging from 37-56%. The managers, one line above, ranged from 45-54%,
and the CEOs ranged from 37-54%.

Experience: How Each Member Learns

Each person has a set of resources, which may be tasks, or the decisions of his inferiors
(or both). From these resources, he sees a 'pattern', a single vector of numbers ranging
from 1-3, and he must guess if the true answer is 1, 2, or 3 based on this pattern. He does
this by storing experience matrices for every possible pattern. So when he next sees that
pattern, he knows what the answer has been recently, and therefore can make a good
educated guess on what the answer will be this time.

For each pattern, he stores 4 matrices. The first one, known as the initial matrix, records
all of his experience while he is being trained. (He is in training as long as he has less
than 500 tasks, this number is passed to the program under the parameter
-training_period). When he is no longer in training this matrix ceases to be
incremented.

He also stores relative experience and old relative experience. Assuming an efficiency
check occurs every 100 tasks (the default), his relative experience will encompass all
tasks he has seen since the last efficiency check (which will be less than 100 tasks). After
the next efficiency check, his relative experience matrix gets copied to his old relative
experience matrix, and then gets zeroed. So his old relative experience matrix records his
guesses for the last 100 tasks before the last efficiency check.

The fourth matrix records his absolute experience, it gets updated for every task he views,
but he does not use it in making decisions; it mainly exists to examine his efficiency.

Each matrix is a 3x3 matrix indicating how many times the member guessed 1, 2, or 3
and how many times the answer was 1, 2, or 3. Whenever a person receives feedback, he

CMU-ISRI-04-117 -24 - CASOS Tech Report

increments a single index in his relative and absolute matrices, as well as his initial
experience if he is still in training. As long as a person's resources don't change, his
matrices give an accurate history of what tasks have transgressed.

When his resources change, then the numbers of his matrices will be altered to reflect the
change. If he loses a resource, then the matrices that represent patterns only differing by
that resource are summed together. When he adds a new resource, all his matrices are
triplicated and divided by 3. Thus, adding and then deleting a resource should leave
experience matrices close to their initial values (there will be precision errors from
discarded remainders when dividing numbers by 3).

Making a Change in the Org

Org change is handled very formally, and has different meanings in OrgSim and
OrgAhead. However, both treat change very similarly, so we will look at their similarities
first, and then the difference in org change that distinguishes OrgSim from OrgAhead.

OrgSim and OrgAhead conduct org change differently, but they may only change the org
at specific points in the simulation. Periodically they stop simulation and attempt a
change...if a change succeeds, the simulation continues with the changed org, otherwise,
the original org continues until the next time for changing comes up.

There are five ways to change an org: hire someone new, fire someone, add a connection
between two members, or a member and a task, change a connection, and delete a
connection. Each of these may be done several times at once, but all the times must apply
to the same level (or levels). For example the org can hire 3 new analysts, or change 2
connections between managers and tasks, but it may not hire an analyst and a manager at
the same time.

Once a specific type of change is requested, OrgSim and OrgAhead both proceed with
the type of change in the same way. First they decide how many such changes can occur.
This can be specified as either a constant (hire 2 people), or the program can be instructed
to randomly decide how many changes to do based on a Poisson distribution.

Next, the programs pick a level of the org (for hiring and firing), or they pick a superior
and inferior level (for add/change/delete connections).

Then they must decide which people on the levels picked are influenced. Usually there
are parameters to decide this, and the options will be adjectives like "best", "worst",
"busiest", "laziest", and "random". Specifying "best" means use the person on that level
with the highest relative efficiency, and "worst" means the person on that level with the
lowest relative efficiency. Similarly "busiest” means the person on that level with the
most tasks and "laziest" means the person with the least tasks. Finally, "random" means
pick anyone on that level without regard to their efficiency or resources.

At this point the idiosyncrasies of each change come into play. The behavior of each
change is described below:

CMU-ISRI-04-117 -25- CASOS Tech Report

For hiring, the level chosen indicates at what level the new member will exist in the org.
If that level is full of members (the number of members meets a limit variable set by the
program), no one may be hired on that level. The new person can receive no resource, or
a random task or inferior person to supervise. Or he can receive resources from a
'mentor’, a colleague on that same level. Like all members chosen, you can elect to use
the busiest, laziest, best, worst, or random person to be a mentor. The mentor gives half
his tasks to the new person. You may elect to have the mentor continue to supervise the
resources he gave away, or to drop them. Finally a superior on the next level is assigned
to supervise the new person (unless the new person is a CEO).

The above scenario is typical for when a person is hired on a level that already has people
on it (who could serve as mentors). When a person is hired on a level with no current
people on it, the program behaves slightly differently, depending on the level. When a
CEO is added to an org with no CEOs, he supervises all the managers, or all the analysts
if there are no managers. When a manager is added to an org with no managers, he
supervises all the analysts, and the CEOs that were (presumably) supervising the analysts
drop them. Or the manager supervises all the tasks if there are no analysts. When an
analyst is added to an org with no analysts, he gets all the tasks his supervisor is currently
overseeing. One final note: instead of a person supervising all the resources on a level,
the program can be directed to give him one resource at random on that level instead.

For firing, the level chosen indicates what level the 'victims' occupy. A victim must be
chosen from the level, and all his resources are given to one of his colleagues. It is
possible to fire the last member on a level, but only if other members exist on other
levels... you cannot fire the last person in an org. As with hiring, the programs behave
slightly differently when the last person on a level gets fired. When the last CEO gets
fired, his resources go to anyone that can supervise them (keeping mind that a supervisor
must be on a higher level than a resource he must supervise). When the last manager gets
fired, his task resources go to the analysts, and his analyst resources go to the CEOs if the
CEOs were supervising the manger. When the last analyst gets fired, his tasks get
distributed amongst his supervisors, or the existing managers, if no one is supervising the
analyst.

When adding a connection, two levels must be chosen, the level of the superior and the
level of the inferior, and someone on the superior level winds up supervising someone (or
something) on the inferior level. The program first decides if the inferior resource must
be an 'orphan' resource, that is, the resource is currently not supervised by anyone on the
superior level. Then it picks an appropriate inferior resource, and superior person, and
directs the superior to supervise the resource. (It ensures that the superior is not already
supervising the resource.)

Changing connections also requires a superior and inferior level, and it is not possible to
change a connection from level A to level B if there is no connection there in the first
place. For example, you cannot change a manager-task connection if no managers are
supervising tasks. First it picks a person on level A and resource on level B on which a

CMU-ISRI-04-117 -26 - CASOS Tech Report

connection exists. Then, it picks, either a second person on level A, or a second resource
on level B, depending on whether it has been instructed to change the connection on the
superior side or the inferior side, and makes the change.

Compared to the above, deleting connections is quite simple. A member on the superior
level is found, who contains a resource on the inferior level chosen, and he loses that
resource. Easy, isn't it?

OrgSim and OrgAhead differ in how they decide what kind of change to make. OrgSim
assigns for each change, a threshold. As long as the relative efficiency does not change
by more than that change's threshold, the org will not undergo that change. Also, if a
change is successful, the org cannot be changed for a period of time depending on the
type of change.

OrgAhead ignores thresholds. It uses simulated annealing to determine what kind of
change would be profitable; if a particular change improves the org, or at least, does not
worsen the org significantly, that change is implemented, and the new org continues
simulating, otherwise the old org continues until the next opportunity for change.

How to Handle Murphies

In organizational jargon, a 'murphy' is an event that embodies Murphy's Law; i.e. it is
some catastrophe that afflicts orgs. A murphy can be represented as a person being lost,
due to the person leaving the org, or disappearing. Or it can be represented as a line of
communication that breaks, where one person cannot contact another, although both
people are functioning perfectly fine in all other aspects.

OrgSim and the other programs provide flexible enough parameters to handle murphies,
although they aren't implicitly aware of what a 'murphy' is. Here is how you would
specify murphies to OrgSim:

A murphy that destroys a person can be simulated in OrgSim by firing a random number
of people at a random level at a random time. Unlike normal firing, the org doesn't plan
the action, so it does nothing (immediately) to reallocate resources. So the victim's
resources are not immediately allocated to other colleagues. Of course, OrgSim cannot
destroy the last person in an org. Murphies should be used with hiring enabled, which
simulates an org losing people at random intervals and having to patch itself up by hiring
new people.

There is another type of murphy; it destroys a communication line between two people,
leaving them otherwise intact. This is identical to deleting a random connection between
two random people at two levels. This can be done with adding and changing connections
enabled, which simulates an org trying to compensate for losing communication lines at
random intervals.

CMU-ISRI-04-117 -27 - CASOS Tech Report

Task Problem Specification

The task problem determines how to determine the actual solution from the task bits.
Generally, you can use a decomposable problem (where each task bit has the same
weight as any other), or a nondecomposable one. You can also determine that the task
should be biased (lean heavily towards an answer of 3) or unbiased (equal probability on
all answers). These can be specified by the -nondecomposable and -biased switches.

First a total is determined from the task bits, and then it is compared against two cutoffs.
If the total is less than the first cutoff, the answer is 1, if it is less than the second cutoff
the answer is 2, otherwise the answer is 3. The -nondecomposable flag affects the cutoff
points, and so does the -biased flag. Additionally, you can tweak the
-cutoff_friendly and -cutoff_hostile flags to introduce whatever level of bias you
please.

If a decomposable problem is used, the total is the product of the task bits. Otherwise, the
following formula is used:

Total = 2*t1*t2*t3 + 2*t4*t5 + 16 + t7 + 2*t7*t8*t9

If the cutoffs are not specified, the following cutoff values will be used:

Friendly Biased Unbiased Hostile Biased Unbiased
Decomposable 71 109 Decomposable 287 432
Nondecomposable 28 34 Nondecomposable 42 49

CMU-ISRI-04-117 -28- CASOS Tech Report

Appendix B — Meta-Matrix Input File for OrgAhead: Structure File

Each of the dependency matrices (i.e. person-person, person-task, task-resources, etc.)
may not be read in via a file containing the original matrices, for both V1 and V2 modes
of ORGAHEAD.

The input file is specified by the parameter -sfn or -structure_file_name:
c:\> OrgAhead —sfn matrices.txt

Output matrices are printed with the output according to the print flag —-pm or

-print_matrices:
c:\> OrgAhead -pm

The structure of the file, still under development and improvement, is as follows:

Line 1 contains 4 numbers separated by space or tab:
Number of Hierarchy Levels

Maximum People Per Level

Number of Tasks

Number of Resources (i.e. Task Complexity or -tc)

For example:

3 15 5 9 - gives the default maximum hierarchy of 3, default max people per level of 5,
5 tasks (i.e. 5 task sets or 5 task definitions), and 9 resources, or Task Complexity default.
Note: The current version of ORGAHEAD is V2.0.3, which allows only 3 levels. The
V2.1 will allow for more than 3 levels.

Line 2 contains the number of people per level in the matrices contained in the file:

For example:

3 4 8 — says 3 analysts, 4 managers, and 8 ceos are contained in the matrices. The
people matrices must contain 3+4+8=15 rows or columns (depending on which axes is P)

After line 2, the matrices are specified by a token, on line by itself:
The two capital letter token describes the rows by columns:

TR = Task-by-Resource PP = Person-by-Person
PT = Person-by-Task PR = Person-by-Resource
TT = Task-by-Task (precedence)

So TR means that each row is a task and each column is a resource and has to be of the
correct size. On the line immediately following the token, the matrix is presented.

So, continuing with the example, the TR matrix would be 5 x 9:
TR

100010010

101010100

101010101

101010100

000010010

CMU-ISRI-04-117 -29 - CASOS Tech Report

In the future, a random spot will be denoted with an 'x' in place of a '1' or '0'. That means,
when the org is generated, the 'x' will take a '1' or '0' randomly determined. This is not
functioning yet. Also, the TT matrix is not used yet.

Matrices can have only white-space, letter or tab, or nothing in between each matrix
entry; that is, as with TR example, you don't need to delimit the matrix entries with a

space.

Additional task set information still needs to be entered via the —ts parameter; for
example, you cannot yet add the cutoffs through the structure file ... yet.

Finally, any line beginning with the pound symbol, '#', will be treated as a comment line.
For the PP matrix, the links are supervisor ties. So the upper diagonal can be just zeroes.

A “1” in row 5, column 2 means that the 5™ person supervises the 2", Currently, lateral
ties are ignored and should not be included as the results might be unpredictable.

CMU-ISRI-04-117 -30 - CASOS Tech Report

Appendix C - Version 2 Details

INTRO:
In version 2 of OrgAhead, agent pointers to the task level are now treated as pointers to a
resources level; hence AxR can change via annealing.

PARAMETERS:
-v2 0,1 : 1 means engage version 2 of ORGAHEAD, default: O

Each task is defined on the command-line using -ts #, which stands for -task_set. A

-ts # parameter can have the following old parameters apply to that task:
-pcf default: 109

-pch default: 432

-tf default: .33

-tn default: .34

-th default: .33

-rc "ones_and_zeros"™ ==> resources (explained below)

For instance:

"-ts 0 -pcf 81 -pch 81 -tf .5 -tn .0 -th .5 " will make task #0 (the first task)
a binary majority task. If that is followed by "-ts 1 <other parms>", then a second
task (#1) is created.

The number after -ts will force the creation of tasks below that number. So if you only
have "-ts 3 <parms>", the ORGAHEAD will create tasks 0-2 as well with default
values.

TASK X RESOURCES:

-rc following -ts will define the resources for that task specified by -ts. Example: -ts
3 -rc 101010101 means every other bit is considered in the calculation of the answer
for fourth task (#3). If the size of the -rc string is null or less than Task Complexity
(which is now the resource pool), then the rest is filled with 1.

PERSON X TASK ASSIGNMENTS;

-ta following -ts will define the task assignments for that task to sets of strings
defining each level. Example: -ts 2 -ta "111 010 001" means that Task 2 will be
assigned to the first three analysts, the second manager, and the third CEOS. The firs and
third managers and the first two CEOS are forcibly not assigned the task.

For random orgs, these are applied only if people appear in these positions. Otherwise,
the assignment is a random, Bernoulli draw.

So if a there exists a fourth analyst, his or her assignment to task #2 is random.

A value n' greater than 1 will create an assignment for 'n' individuals on that level; this is
just shorthand.

CMU-ISRI-04-117 -31- CASOS Tech Report

For instance: -ta "3 3 3" is the same as -ta 111 111 111". These numbers can be 9
at max and can be used in cumulatively: -ta 999 999 999" implies the first 27
individuals of each level has the task defined by the previous -ts.

PERSON X RESOURCES ASSIGNMENTS:
Remember, the old task vector is now treated as the resource vector, so these linkages are
defined using the old scheme (e.g. -analyst "0a0b0c0d").

MAX TASKS is currently set to 10
MAX PERSONS per level is currently set to 40

LIMITATIONS:
Tasks are worked on consecutively each round.
Neither the Task X Resources nor the Task x Person matrices change at this point.

CALCULATING DIFFERENT TASKS USING A COMMON MEMORY
STRUCTURE:

If task #0 requires resources 110 and task #1 requires 011 and the agent sees all three
resources (111), the agent's memory table has overlapping information. So let's say the
agent sees 13 for task #0. The feedback process will record the feedback for 131, 132,
and 133; the third position is like a "don't care". If then for task #1 the agent needs to
answer for 23, he will sum up his responses from 123, 223, and 333 and pick the max
from those.

If the agent doesn't have a required resource, it is treated as a "don't care". That is, the
feedback is spread across all values of that resource and the answer takes into account all
those values.

If an agent has no task assigned to him or her, s/he will use the entire memory table to
formulate answers, restricted by the # of resources s/he sees.

SPEED ISSUES:

Having to process these "dont cares" slows down the program. Sparse TxR and AxT will
cause "dont cares" to be used and the sparser these are (in conjunction with more people
and bigger tasks) will significantly slow down the program.

PERFORMANCE MEASURES:

Only a single performance value is given, rather than separate ones for each task.
Performance is the same as before, but this time it incorporates all of the tasks (i.e. divide
by the number of tasks). The SD result, for now, is just an average SD over the tasks.

PRINTOUTS:
Preliminary assignments are shown to stdout.
The Task Structure is shown following the Organizational Structure when -v2 is 1.

CMU-ISRI-04-117 -32- CASOS Tech Report

Appendix D — New Performance Measures

Several new performance measures have been introduced into OrgAhead. These are
completion, time (or duration), certainty, and consensus. These may be engaged with

switch parameters:
usage:
OrgAhead —v2 -print_completion -print_time -print_certainty —print_consensus -

po
or:
OrgAhead —v2 —pcomp —ptime -pcert—pcons -po

-pcomp and —ptime require —po (or —print_organization)

-print_completion:

The completion measure refers to the degree to which agents, and the org, have the
resources required for their assigned tasks. The degree of completion for agent i is the
sum, over each task to which s/he is assigned (ATjj), the resources that a) the task requires
(TRix) and b) the agent possesses (ARj). Finally, take the final sum and divide by the sum
of the number of resources required by each the task, such that a given resource may be
counted more than once, if needed by more than one task.

AT is the agent-task assignment matrix, TR is the task-resource requirement, and AR is
the agent-resource acquisition matrix. There are nr tasks, ng resources, and na agents.
COMP; is an completion measure for agent i across all required resources and tasks for
the agent.”

Do (ATux " (TRix ARw)
ZTT:()(ATIJ X ZEioTRjk)

> COMPijnum;

> COMPigen;

(1) COMP; =

(2) COM Poverall =

> COMP
Na

(3) COMPaverage =

The overall completion measure varies slightly from the average, which is simply the
sum of completions over all agents and dividing by the number of agents. The overall
measure refers to the completion status for the entire organization, not making as clear a
distinction between the agents as the average measure does. The overall measure sums
the requirements met across all agents, and then divides by the sum of requirements. The
COMPjgnym) refers to just the numerator portion of the COMP; equation and, similarly, the
COMPiggeny refers to the denominator. A high completion ratio indicates that the
requirements for each task are being met and, thus, the agent will learn each task
properly. A low completion ratio will result in the agent basing his actions on too few

* The measure(s) are not captured at the person per task level; though, we can add that in if needed.

CMU-ISRI-04-117 -33- CASOS Tech Report

resources and inputs or those that are not relevant to his or her tasks, adversely affecting
his performance.

To address the latter issue, having too many non-relevant tasks, we provide an overflow
measure along with completion:

ZL(ATU x> (1= TRi) x ARW))
Do (ATix > TRi)
> OVERFLOWijnum;

(4) OVERFLOWoveraII = r17A
zi:O OVERFLOWi(den;

(3) OVERFLOWi =

> OVERFLOW;
Na

(5) OVERFLOWhuerage =

The calculation for overflow is virtually identical to completion, except that we tabulate
the resources the task does not require. The ratio per agent or overall or average can
easily be greater than one, which indicates an inefficient assignment of agents to tasks or
agents to resources.’

Additional parameters:

-pcompp : -print_completion_personal (only)
-pcompo : -print_completion_overall (only)
-pcompt : -print_completion_task (only)

-print_time:

The time measure estimates about how long, in a real-time organization, it would take for
an agent to receive and process his inputs, which are resources and subordinates. L or Lg
refers to the level of agent i or K in the hierarchy, with 1 being the level of analyst and 0
the task input level. AA is the agent-to-agent reporting network (e.g. AAj; means agent |
reports to agent i). The calculation basically sums, over each task, the difference in levels
between agent i and his subordinates who also work on his or her task and also sums the
resources, required by the task, and the distance to those, which just depends on agent i's
level in the hierarchy. This summation is divided over the number of tasks the agent has
giving an average time measure over all of an agent i's tasks. TIME; is an average time
measure for agent i over all the tasks to which s/he is assigned.

TATix (O AAKxATi x|Li— L+ 3 LixTRikx AR«)
ZJ k=0 k=0

ZT:O ATij

(6) TIME: =

> TIMEijum;
> TIMEien;

(7) Tl M Eoverall =

* A future addition might be a single inefficiency index that combines both completion and overflow measures.
® Again, it might useful to have the measure also at the per task level.

CMU-ISRI-04-117 -34 - CASOS Tech Report

> TIME:
NA

(8) TIMEaverage =

Additional Parameters:

-tiw, -time_ineff_weight:

There is a secondary parameter, which weights those resources or subordinates an agent
has which are not relevant to a task. By default, it is set to 0.0 and does not appear in
equation (6). If you use, for example, —tiw 1.0, resources and subordinates not relevant
to the task j will also become added into the equation, increasing the overall time
measures.’

-print certainty:

Certainty measures the degree to which agent i's decision choice was clearly the correct
answer. If his memory shows that other decisions were almost as likely to be chosen,
then the agent is uncertain about the choice. If the decision is a clear winner, then
certainty will be high.

Certainty is measured over a single relative efficiency cycle.® To explain briefly, if the
efficiency cycle is 100, then after every 100 tasks worked on, an efficiency, or accuracy,
report for the last 100 tasks is produced.

To briefly review, an agent has a set of inputs, resources or subordinates. In a cycle, an
agent makes a decision, based on the past answers to these inputs has produced the
correct result. The decisions are 1, 2, or 3, which are named friendly, neutral, and hostile,
respectively. The agent refers to its memory and asks which decisions is the most likely
correct given what the real correct answer was for the same inputs seen before. The
number of times in the agent j's memory that decision 1 was the correct answer for the
inputs at time t is tallyj;; the number of times 2 was correct answer is tallyjo, and so
forth.

The ratio of the maximum of these tallies to the sum of all of them gives us the certainty
in the agent's answer. These ratios are summed for agent relevant tasks over the
efficiency cycle and appropriately averaged. effcycles is set by the —ec or
-efficiency_cycle parameter and is the window during which each set of efficiency, as
well as certainty, measures are obtained. Certainty is reset at the beginning of each
efficiency cycle. CERT; is an average certainty measure for agent i per task inputs seen.

Z:ffcycles Zm ATii x max {tal |yjtl..3}>
) i
=0 2507 allyi + tallyje + tallyi

(9) CERTi=
effcycles x ATijj

7 The issue of non-relevant resources interfering with task decisions is still an open issue.
However, this can also be changed such that the certainty cycle is independent of the efficiency cycle.

CMU-ISRI-04-117 -35- CASOS Tech Report

> CERTifmum)
> CERTisen;

(1 0) CERToveraII =

CERTi{num}
Na

(1 1) CERTaverage = zi:()

-print _consensus:

The consensus measure provides the degree to which all of the agents' answers matched
the organization's final answer for a task i.’ decision;; refers to the answer agent j gave
for task i at time t in the current efficiency cycle. decisionoret refers to the organization's
decisi?(}q for task i at time t. Consensus is reset at the beginning of cach efficiency
cycle.

F{decision;i = decisionorai} is an indicator function which yields 1 when the condition is

met and 0 if not. CONS; is the consensus on a task I, only if it was performed. That is,
the —task_order_file, or —tof, can specify the orders of tasks for each cycle and can
prevent the org from working on some tasks. If the org does not work on a task, it is not
counted in the consensus measures. ${workingi} is an indicator function that yields 1 if

the task 1 is being worked on in the current cycle. It is possible for a cycle to not include
a task depending on the task orderings.

> didecisionyi = decisionors}
effcycles x na
> CONSinum; x ${working}
effcycles xnax > " ${workingi}
> CONS;
nr

(12) CONSi =

(13) CONSoveran =

(14) CONSaverage =

® Currently the overall consensus equals the average consensus.
1 We can also make the consensus cycle different from the efficiency cycle if need be.

CMU-ISRI-04-117 -36 - CASOS Tech Report

Lifetime Measures

At the end of a lifecycle, or a single simulation run, of ORGAHEAD, a lifetime set of
summary measures of the above will be produced. MEASURE is one of the
aforementioned measures: COMP, OVERFLOW, CERT, or CONS. samples is the
number of times a measure is taken. Remember, measures are taken at either at the
output of an organization (for —pcomp and —ptime) or at the end of an efficiency cycle (for
—pcert and —pcons). S denotes a particular sampling; samplings occur at regular intervals.
na_or_nt refers to the limit of the summation depending on the measure.

samples

> MEASURE: fnumis
(15) MEASU REIifetimefoveraII = za:rgples L

P T MEASURE e

samples naornt
~~ MEASURE:s
(1 6) MEASU REdiifetime _average — 25:0 ZI:O
samplesxna_or_nr

samples

25:0 MEASUREoveraII, S

(1 7) M EASU R Eoverall _average =
samples

samples

zs:0 M EASUREaverage, s

samples
lifetime_overall sums the numerator and denominator of a measure independently and
produces a final ratio; as if, we do not differentiate the activities of the agents or when the
activities occur.

(1 8) MEASU REaverage _average =

lifetime_average calculates each average behavior of the agent, or task, across their
population and time; as if we do not differentiate the behavior across time or per
organization structure.

overall_average and average average are merely the averages of the overall and
average measures.

CMU-ISRI-04-117 -37- CASOS Tech Report

Appendix E — An Exhaustive List of OrgAhead Parameters

OrgAhead has a simple lookahead feature. When its time to change an org, instead of
seeing if relative efficiency has exceeded some threshold, a lookahead process is used.
An org. will contemplate itself undergoing some change and the resulting efficiency
increase/decrease incurred, and if considered profitable, the org. will itself undergo that
change. This program uses simulated annealing to determine when a change is profitable.

Almost every aspect of the simulator is specifiable as a command-line argument. The
current and proposed arguments (vis model 1) are described below. The arguments
correspond to creating new triggers for studying organizational adaptation and creating
alternative performance functions. Items in boxes are interdependent (i.e. if you change
one significantly, you have to consider changing some or all of the others). Additional
comments and pointers appear in italics.

-help, ?, usage_help, full_help: Display Command Information

Display information about this command, which includes a command description with examples, plus a
synopsis of the command line parameters. If you specify -full help rather than -help complete
parameter help is displayed if it's available.

-simulation_times, st: integer = 1
Specifies how many times to simulate the org. If more than 1 is specified, prints out mean and standard

deviation for several efficiency statistics.

Annealing Parameters:

-cooling_ratio, cr: real = 0.9

The ratio by which the annealer's temperature drops when cooling.

-changes_between_coolings, cbc: integer = 1

How many changes the organization can undergo between temperature coolings.
-task_limit, tl: integer = 50000

If the organization does this many tasks, the program quits. If set to 0, the program will not quit no matter
how many tasks are done. This is dangerous because (depending on -freezing_partition) a simulation can
continue forever.

Since one cooling occurs per change, the number of coolings will depend on the change cycle (i.e. how
often changes occur) and the total task limit. The —cr .9 gives a full cooling for —tI 50000 but lower
coolings would be required for shorter task limits, which is typical in authors’ experiments (i.e. we
normally use a faster cooling depending on the task limit)

-medeiro_efficiency_threshold, met: real

If efficiency ever drops by more than this much, then increase temperature. (Actually, this should only
happen as a result of an environmental change that causes the organization to perform poorly.)
-medeiro_efficiency_ratio, mer: real = 2.0

If the -medeiro_efficiency_threshold is exceeded, multiply temperature by this ratio. If zero, temperature
is instead set to initial temperature.

-medeiro_cycle, mcy: integer

If specified, indicates that temperature should be raised periodically. Indicates how often temperature
should be raised.

-medeiro_cycle_ratio, mcr: real = 2.0

If the -medeiro_cycle number is specified, indicates the ratio by which to increase temperature. If zero,
temperature is instead set to initial temperature.

CMU-ISRI-04-117 -38- CASOS Tech Report

The medeiro parameters are employed when we desire multiple coolings within a single run of OrgAhead,
reflecting empirical conditions in which risk-taking abruptly occurs at levels equal to or near initial
conditions.

Annealing Cost Parameters:

-initial_partition, ip: real =0.9

On a scale of 0 to 1, how much of the range of uphill costs should be accepted when the simulation starts.
-freezing_partition, fp: real = 0.1

On a scale of 0 to 1, how much of the range of uphill costs should be accepted when the simulation ends.
This is used as a means for ending the simulation. As the annealer's temperature cools, the actual range of
costs accepted slips lower and lower, approaching 0 asymptotically. When the actual range slips below
this value, the simulation ends. Setting this value to 0 causes simulation to continue until -task limit is
reached.

A —fp 0.1 can potentially result in premature freezing (i.e. simulation ends before the end of task limit). To
avoid this, we recommend setting —fp 1e-700 (i.e. 107, a number very, very close to zero).

-theoretical_delta_efficiency, tde: real = 0.50

The maximum change in efficiency allowable, theoretically. (Note this should range between 0 and 1, not
0 and 100 (percent) like most other efficiency parameters.)

-theoretical_delta_resources, tdr: real = 7.0

The maximum change in resources allowable, theoretically.

-theoretical_delta_analysts, tda: real = 1.0

The maximum change in analysts allowable, theoretically.

-theoretical_delta_managers, tdm: real = 1.0

The maximum change in managers allowable, theoretically.

-theoretical_delta_ CEOs, tdc: real = 1.0

The maximum change in CEOs allowable, theoretically.

-stodginess_factor, sf: real = 0.0

This factor is added to the cost of any hypothetical organization when comparing it to the real org. So a
positive factor will make orgs more resistant to being changed.

-weight_efficiency, we: real = 100.0

How strongly efficiency (or rather, inefficiency, which is -1 * efficiency) should weigh in determining the
cost of an org.

-weight_resources, wr: real = 0.0

How strongly the number of resources (totaled over everyone) should weigh in determining the cost of an
org.

-weight_analysts, wa: real = 0.0

How strongly the number of analysts should weigh in determining the cost of an org.

-weight_managers, wm: real = 0.0

How strongly the number of managers should weigh in determining the cost of an org.

-weight_CEOs, wc: real =0.0

How strongly the number of CEOs should weigh in determining the cost of an org.

-weight_people, wp: real = 0.0

-weight_inverse_efficiency, wie: real = 1.0

How strongly the reciprocal of the efficiency weighs in determining cost

-weight_efficiency_people, wep: real = 0.0

How strongly the ratio between inefficiency and people weighs

-weight_people_efficiency, wpe: real = 0.0

How strongly the ratio between people and efficiency weighs

-weight_efficiency_resources, wer: real = 0.0

How strongly the ratio between inefficiency and resources weighs

-weight_resources_efficiency, wre: real = 0.0

How strongly the ratio between resources and efficiency weighs

CMU-ISRI-04-117 -39 - CASOS Tech Report

Typically, we run our experiments such that efficiency (i.e. performance of organization at each efficiency
window) determines the risk-taking cost. However, users may want alternative definitions to risky costs,
such as massive organizational growth or downsizing.

Annealing Move Parameters:

-hustin_window, huw: integer = 10

How many temperatures to base Hustin probabilities on.

-hustin_probability, hup: real = 0.1

The minimum probability a move can achieve from Hustin. Also, the maximum value, which is computed
as 1 - hustin_probability.

-enable_augmenting , eh: switch

If set, then the organization is allowed to augment people.
-enable_move-to-other-problem , ef: switch

If set, then the organization is allowed to move-to-other-problem people.
-enable_add_person_person, eapp: switch

If set, then the organization is allowed to add connections between people.
-enable_change_person_person, ecpp: switch

If set, then the organization is allowed to change connections between people.
-enable_delete_person_person, edpp: switch

If set, then the organization is allowed to delete connections between people.
-enable_add_person_task, eapt: switch

If set, then the organization is allowed to add connections between people and tasks.
-enable_change_person_task, ecpt: switch

If set, then the organization is allowed to change connections between people and tasks.
-enable_delete_person_task, edpt: switch

If set, then the organization is allowed to delete connections between people and tasks.

By default, all the move classes are enabled. To only allow personnel changing, do: -ef -eh.
NOTE: you generally want to use the default which means all change are enabled.

To allow only connection changing, do: -ecpp -ecpt

To do both personnel and connection changing, do: -ef -eh -ecpp -ecpt

To do both, except disallowing fires, do: -eh -ecpp -ecpt

Duration Parameters:

NOTE: these set the windows that are used to determnine when efficiency/accuracy is measured, when it is
measured, the level of training, forgetting, they also affect when *““churn’ such as turnover, reassignment
can occur. So the hypothetical is for the model of the organization is trying to do lookahead on.

-hypothetical_efficiency_period, hep: integer = 500

How many tasks a hypothetical organization performs after training. The hypothetical org's efficiency is
computed from these tasks.

-hypothetical_training_period, htp: integer = 500

How many tasks a hypothetical organization gets to train on.

So the hypothetical organization = the old organization + a change, this is how many times it runs with
the proposed change before the manager starts thinking about performance

If you knew whether the manager made errors in how they thought about the future you would change
these, if you do not use the defaults of 500.

-efficiency_cycle, ec: integer = 500
Periodically this program performs an efficiency check. It prints and resets efficiency statistics on the
org. This parameter specifies the size of the period.

Periodic performance measures occurs every efficiency cycle. An —ec 500 means perform (and report) a
efficiency check every time the org works on 500 tasks.

CMU-ISRI-04-117 -40 - CASOS Tech Report

-memory_cycle, mc: integer = 100
Periodically this program resets everyone's memory, in order to compute everyone's relative efficiency.
Specifies the size of this period.

This is how much the individual can retain and is a generally a good default

-change_cycle, cc: integer = 500
Periodically this program attempts to change the org's structure. Specifies the size of this period.

This is how often is churn going on — this is dynamism, this is turnover. This has to be set relative to the
efficiency cycle. So if efficiency is 100 and you have so much churn that multiple changes occur even
during on performance cycle then set this to say 50, if it is a low churn organization with little change
going on you might set it to 200

-training_period, tp: integer = 500
Specifies how many tasks to 'train' the organization on. Until the organization has done this many tasks, no
absolute efficiency values are reported, and no changes are possible. Also, no new people added on later
may be fired if they have less than this much experience.

If highly trained you might use 500 if poorly trained you might use 100 or 200.

-rand_seed, rs: integer

Specifies a seed number for the random number generator. If unspecified, the random number generator
will be seeded based on the current time. (This exists mainly for debugging purposes. if you give
OrgAhead the same parms, it will still come up with different results, unless you include -rand seed x,
where x is a constant integer.) Since the training period signifies how much initial experience each person
has, and the memory cycle signifies 1X to half of how much current experience each person has, you will
want the memory cycle to be about one half the training period.

Output Parameters:

These parameters determine what information the simulator prints. All output goes to stdout. If no
parameters are specified then only the final organization structures and efficiency statistics are printed,
once for each simulation. If more than one simulation occurs, some overall efficiency statistics are also
printed.

-print_task, pt: switch

If set, the task bits and solution are printed for each task. This can yield heavy output if many tasks are
done.

-print_person, pp: switch

If set, each person's resources and experience are printed during each efficiency check. This can yield very
heavy output.

-print_organization , po: switch

If set, the organization structure is printed when each simulation begins, ends, and every time a change in
the organization occurs. Otherwise, the organization structure is only printed at the end of each
simulation.

-print_efficiency, pe: switch

If set, the org's efficiency and efficiency of each person are printed whenever the organization performs an
efficiency check.

-print_change, pc: switch

If set, this program prints out each change of the organization as it occurs, including some annealing
statistics.

Organization Parameters:
These specify the initial organization structure, as well as constraints on possible future organization

structures.
-analysts, a: string =

CMU-ISRI-04-117 -41 - CASOS Tech Report

Specifies the resource access structure, that is, the network the analysts use to view the tasks.
-managers, m: string = """

Specifies the network the managers use to supervise the analysts.
-ceos , c: string ="

Specifies the network the top managers or CEOs use to supervise the managers. If no analysts, managers,
or CEOs are specified (all are given as empty strings), this program will create a random organization for
each simulation.
-president, p: switch

Specifies if the organization should be overlooked by a 'president'. He oversees all CEOs as well as any
unsupervised analysts or managers, and makes the organization’s decisions based on experience.
-SOP, s: switch

If set, indicates that everyone should follow an SOP, that is, when making a decision, they should ignore
their experience, and pick the most commonly occurring number in their resource pattern.

Note: if SOP is on training is ignored in terms of its impact on performance — but the simulation will still
run that many time periods.

-max_people, mp: integer = 15
Indicates the maximum number of people on a single level.

-max_resources, mr: integer =7

Indicates the maximum number of resources a person may use.

This is the “cognitive limit”” on how much an individual can use. If set to 7 the individual sees 2 to the 7"
different patterns. All other time windows are set relative to this.

-drop_resource, dr: key first, last, random, keyend = last
When a person is assigned more resources than they can handle, they must drop one. This parameter
indicates which resource to drop.

To start OrgAhead with a voting team,use -a"ABCDEFGHTI"

For managed team, use-a"ABCD EF GHI"-m "ABC DEF GHI"

For hierarchy, use-a"ABCD EF GHI" -m "ABC DEF GHI" -c "ABC"
For random start, use -a """ -m "" -¢ ""

Task Parameters:

These specify what kind of tasks the organization must solve, and how each solution should be generated.
-task, t: key primary, switch, toggle, glide, keyend = primary

This program has two sets of task parameters, primary and secondary. This parameter indicates how to
use them. If set to 'primary', only the primary task parameters are used, if set to 'switch', the task
parameters switch from primary to secondary at some point in each simulation. If set to 'toggle', the task
periodically toggles between primary and secondary task parameters. If set to 'glide', the task gradually
glides from primary to secondary parameters through each simulation.

-task_complexity, tc: integer =9
How many task resources are used.

Task complexity is one of the more crucial parameters to OrgAhead as it defines the size of the problem
space. A binary task (i.e. —tf .5 —tn .0 —th .5) will yield a problem of size two to the power of task
complexity. For example, if —tc 9 and binary task, then the possible combinations of tasks that the
organization sees is 2° = 256. Note that default —tf, -tn, -th produce a trinary task with problem space size
3°. Consider the implications on other parameters such memory (i.e. -mc). If an agent sees all 9 task bits
and has a default memory of 100, then the agent will remember less than half of the possible combinations
and remember, that agents need to see multiple instances of combinations in order to learn effectively.
While, typically, agents will not see all 9 task bits, the —tc parameter does set an upper bound. The more
tasks bits and/or subordinate an agent has, the less effect his or her experience and memory will be. On
the otherhand, seeing more information allows an agent to be more accurate about the “real”” answer to
the task.

CMU-ISRI-04-117 -42 - CASOS Tech Report

-nondecomposable, n: switch
Determines the formula used to compute the correct answer from the task bits. If not set, the task bits are
multiplied, and the total is compared to the cutoffs. If specified, the following non-linear formula is used:

Total = 2*t1 *t2*t3 + 2*t4*t5 + t6 + t7 + 2*t7*t8*t9

And the total is compared to the cutoffs to yield a solution. This flag may not be set if -task_complexity is
a value other than 9.
-primary_biased, pb: switch

If set, the primary task will be biased; if not set, the primary task will be unbiased. Unbiased means that an
answer of 1 (friendly) is about as likely as an answer of 3 (hostile), biased makes the answer of 3 more
likely than 1.

-primary_cutoff friendly, pcf: integer

How small the sum of the task bits must be to yield a friendly answer (of 1).
-primary_cutoff hostile, pch: integer

How large the sum of the task bits must be to yield a hostile answer (of 3). If these cutoffs are specified,
they override the -biased switch, otherwise, default cutoffs are used depending on if the task is biased or
decomposable. These cutoffs must be specified if the task complexity is a value other than 9. The default
cutoffs are as follows:

In the binary task setup, -pcf and —pch will be equal; that is, there is no middle partition of the solution
space.

The following table displays the default cutoff settings for a trinary task:

Friendly Biased Unbiased Hostile Biased Unbiased
Decomposable 71 109 Decomposable 287 432
Nondecomposable 28 34 Nondecomposable 42 49

-primary_duration_mean, pdm: real = 5000
This declares for how many tasks the primary task parameters should be used. After this many tasks, if the
task parameter is 'switch' or 'toggle', the secondary task parameters are used. If the task parameter is 'glide’,
this specifies how long before the secondary task. Parameters have totally subsumed the primary task
parameters. If the -task parameter is 'primary’, this parameter is ignored.

Primary and secondary (below) durations allow the user to specify different solution criteria for a subset
of the tasks, or organizational life cycle. Additional parameters allow the user to specify when and how
often each criterion (primary or secondary) will take effect (e.g. toggle from one to another, switch back
and forth, etc.)

-primary_duration_variance, pdv: real =0

Specifies the variance for how many tasks the primary task parameters should be used. The duration is
chosen along a Normal distribution using this mean and variance. If set to 0, the mean is used as a
constant.

Leave this at 0 unless you want waves to occur in the task.

-secondary_biased, sh: switch

Works like primary_biased, except applies to secondary task.

e.g, if you know that the secondary task is biased more or less that the first then you set this to illustrate
that — so for example, if in December you switch to most flu patients then you might go from an unbiased
to a biased task - bias sets the proportion of cases that have a particular answer.

-secondary_cutoff_friendly, scf: integer

Works like secondary cutoff friendly, except applies to secondary task
-secondary_cutoff hostile, sch: integer

Works like secondary cutoff hostile, except applies to secondary task

CMU-ISRI-04-117 -43 - CASOS Tech Report

Only set these if the secondary task is trinary and if you want it to be biased

-secondary_duration_mean, sdm: real = 5000
-secondary_duration_variance, sdv: real =0

Specifies the variance for how many tasks the secondary task parameters should be used. The duration is
chosen along a Normal distribution using this mean and variance. If set to 0, the mean is used as a
constant.
This sets when it switches back to the primary task

-task_friendly, tf: real = 0.33

Indicates the probability that a task bit will be 1.

-task_neutral, tn: real = 0.34

Indicates the probability that a task bit will be 2.

-task_hostile, th: real = 0.33

Indicates the probability that a task bit will be 3. These three numbers must total 1.

Specifying all three probabilities implies a trinary task bit. A binary task is typically set up using —tf .5 —tn
.0 -.th .5, but not necessarily; the user need only specify two bits at 50% and the third at 0% so —tf .5 -tn .5
—th .0 is also a binary task and will yield identical behavior assuming the cutoffs are adjusted accordingly.

Although this program defaults to trinary unbiased tasks, you can configure it to binary unbiased tasks, by
eliminating the posibility that a 2" will be selected. Use the following parameters:
-tf 0.5 -tn 0.0 -th 0.5 -pcf 100 -pch 100

For a biased binary task (only 4 3's guarantee a 3 answer), do:

-tf 0.5 -tn 0.0 -th 0.5 -pcf 80 -pch 80

and for a heavily biased binary task (only 3 3's guarantee a 3 answer):
-tf 0.5 -tn 0.0 -th 0.5 -pcf 25 -pch 25

Hiring Parameters:

These parameters apply to all aspects of augmenting or adding new people to the org.
-hiring_dormancy, hd: integer =0

Using the dormancy thesis in time units, if greater than the change cycle it stalls hiring if less than it hires
at most once every change cycle in general use the default of 0.

After augmenting someone, the organization may not change itself for this many tasks. If a value less than
change_cycle is given, then -change_cycle is used.

-hiring_analyst_probability, hap: real = 0.33

Specifies the probability that, when the organization augments new people, they will be analysts.
-hiring_manager_probability, hmp: real = 0.34

Specifies the probability that, when the organization augments new people, they will be managers.
-hiring_ceo_probability, hcp: real =0.33

Specifies the probability that, when the organization augments new people, they will be CEOs.

These last three parameters must total 1.
-first_person_gets_random, fpgr: switch

When someone is augmented on an empty level, he usually gets all the resources from a particular level or
colleague (depending on the circumstances). If this switch is set, he gets one random resource from same
level or person instead of all the resources.

If you wish augments to occur on every level with equal probability, you can do: -hap 0.33 -hmp 0.33 -hcp
0.33

Hiring Analyst Parameters:

CMU-ISRI-04-117 -44 - CASOS Tech Report

These parameters only apply to augmenting analysts.

-hiring_analyst_mean, ham: real = 1.0

Specifies how many analysts should be augmented at a time.

-hiring_analyst_distribution, had: switch

If specified, indicates that the number of analysts augmented should be determined from a Poisson
distribution using the mean. Otherwise the number of analysts augmented should always be the mean.
-hiring_analyst_resource, har: key none, random, best, worst, busiest, laziest, keyend = random
Specifies what resource should be given to each new analyst. (they can only be given tasks). They can
receive no resource, or a random task, or be given a resource by their most efficient, least efficient,
busiest or laziest colleague.

-hiring_analyst_keep, hak: switch

Specifies that when a new analyst gets a resource from a colleague, does that colleague keep the resource,
or does he lose it? Lose is the default

-hiring_analyst_supervisor, has: key best, worst, random, laziest, busiest, keyend = random

Specifies which supervisor each new analyst should get. Each analyst may be assigned a random
supervisor, or one with the highest or lowest efficiency, or the one with the most or least resources
(busiest/laziest). Default is random.

Hiring Manager Parameters:
These parameters only apply to augmenting managers.

-hiring_manager_mean, hmm: real = 1.0

Specifies how many managers should be augmentd at a time.

Keep the default of 1 as no reason to think they leave in clumps

-hiring_manager_distribution, hmd: switch

If specified, indicates that the number of managers augmented should be determined from a Poisson
distribution using the mean. Otherwise, the number of managers augmented should always be the mean.
-hiring_manager_resource, hmr: key none, random, task, person, best, worst, busiest, laziest, keyend
= random

Specifies what resource should be given to each new manager. (they can be given tasks or analysts). They
can receive no resource, or a random resource (either person or task), or a random person, or a random
task, or be given a resource by their most efficient, least efficient, busiest or laziest colleague.
-hiring_manager_keep, hmk: switch

Specifies that when a new manager gets a resource from a colleague, does that colleague keep the
resource, or does he lose it?

-hiring_manager_supervisor, hms: key best, worst, random, laziest, busiest, keyend = random
Specifies which supervisor each new manager should get. Each manager may be assigned a random
supervisor, or one with the highest or lowest efficiency, or the one with the most or least resources
(busiest/laziest).

Hiring CEO Parameters:
These parameters only apply to augmenting CEOs.

-hiring_ceo_mean, hcm: real = 1.0

Specifies how many CEOs should be augmented at a time.
-hiring_ceo_distribution, hcd: switch

If specified, indicates that the number of CEOs augmented should be determined from a Poisson
distribution using the mean. Otherwise the number of CEOs augmented should always be the mean.
-hiring_ceo_resource, hcr: key none, random, task, person, best, worst, busiest, laziest, keyend =
random

Specifies what resource should be given to each new ceo. (they can be given tasks, analysts, or managers).
They can receive no resource, or a random resource (either person or task), or a random person, or a
random task, or be given a resource by their most efficient, least efficient, busiest or laziest colleague.

-hiring_ceo_keep, hck: switch

CMU-ISRI-04-117 -45 - CASOS Tech Report

Specifies that when a new ceo gets a resource from a colleague, does that colleague keep the resource, or
does he lose it?

Adding Connection Parameters:
These parameters apply to all types of connection adding between people.

-adding_threshold, at: real = 100.0

Specifies how much the org's relative efficiency should change before adding connections. (Not used in
OrgAhead).

Note; this reflects how ““reactive” the unit is, very reactive you might set this to 25 not reactive or
following sops — set it to 300
-adding_when, aw: key rises, sinks, rises_or_sinks, keyend = rises

Specifies how the org's relative efficiency should change in order to add connections. The organization can
do this when its efficiency rises, sinks, or does either, by more than the adding threshold. (Not used in
OrgAhead).
-adding_dormancy, ad: integer =0

After adding connections, the organization may not change itself for this many tasks. If a value less than
change cycle is given, then change cycle is used.

This is set in time units and if you use a value less than the change cycle then it will change the people-to-
problem at most every change cycle, if you use value longer than the change cycle it will slow down how
often it makes this type of change. Default of 0 works fine which means change at change cycle

The next 6 measures have to add to 1, here is an example of how to set them,

Degree of family
orientation, interaction of
all to all
Low <=1 std below mean | Medium High >= 1 std above
mean
Dynamism or change in
organization
Low <= 1 std below | Set all of the 6 to the | Set people to task to %2 | Set people to task to 3
mean default (apx 1/6™) people to people people to people
aatp=amtp=actp= 1/9" | aatp=amtp=actp=1/12"
amap=acmp=acap= amap=acmp=acap=
2/9th 3/12th
medium Set people to task to twice Set people to task to Y2

the people to people
aatp=amtp=actp=2/9™
amap=acmp=acap= 1/9th

Set all of the 6 to the
default (apx 1/6™)

people to people
aatp=amtp=actp= 1/9™
amap=acmp=acap=
2/9th

High >= 1 std above
mean

Set people to task to twice
the people to people

aatp=amtp=actp=3/12"

amap=acmp=acap=1/122th

Set people to task to
twice the people to
people
aatp=amtp=actp=2/9"
amap=acmp=acap=
1/9th

Set all of the 6 to the
default (apx 1/6"™)

These next 3 are set based on dynamism
-adding_analyst_task probability, aatp: real =0.17
Specifies the probability that when the organization adds connections, they will be from analysts to tasks.

-adding_manager_task_probability, amtp: real = 0.17

Specifies the probability that when the organization adds connections, they will be from managers to

tasks.

-adding_ceo_task probability, actp: real = 0.16
Specifies the probability that when the organization adds connections, they will be from CEOs to tasks.

For these 3 — people-to-task - since dynamism is based on a 6 point scale

CMU-ISRI-04-117

- 46 -

CASOS Tech Report

-adding_manager_analyst_probability, amap: real = 0.17

Specifies the probability that when the organization adds connections, they will be from managers to
analysts.

-adding_ceo_analyst_probability, acap: real =0.16

Secifies the probability that when the organization adds connections, they will be from CEOs to analysts.
-adding_ceo_manager_probability, acmp: real =0.17

Specifies the probability that when the organization adds connections, they will be from CEOs to
managers.

These six parameters should total 1. If you want connections to be added between any two levels with
equal probability, you can specify:
-aatp 0.16 -amtp 0.16 -actp 0.16 -amap 0.16 -acap 0.16 -acmp 0.16

Note: if you do not specify one it uses the default value listed above

Adding Connection Parameters: (Analyst-Task)
These parameters are used whenever analyst-task connections are being added.

-adding_analyst_task_mean, aatm: real = 1.0
Specifies how many analyst-task connections should be added at a time.

Note; leave this at 1, as we don’t if they are firing in droves

-adding_analyst_task_distribution, aatd: switch
If specified, indicates that the number of analyst-task connections to be added should be determined from
a Poisson distribution using the mean. Otherwise the number of connections added should always be the
mean.

-adding_analyst_task orphan, aato: real = 0.5
Specifies the probability that the task being connected should be an 'orphan' task, i.e. unsupervised by
every analyst.

-adding_analyst_task_superior, aats: key best, worst, random, busiest, laziest, keyend = random
Specifies which analyst should acquire a task. The best, worst, busiest, laziest, or a random analyst can be
chosen.

-adding_analyst_task_inferior, aati: key random, keyend = random
Specifies which task the analyst should acquire.

Adding Connection Parameters: (Manager-Task)
These parameters are used whenever manager-task connections are being considered.

-adding_manager_task_mean, amtm: real = 1.0
Specifies how many manager-task connections should be added at a time.
Note; leave this at 1 as we don’t if they are firing in droves
-adding_manager_task_distribution, amtd: switch
If specified, indicates that the number of manager-task connections to be added should be determined from
a Poisson distribution using the mean. Otherwise the number of connections added should always be the
mean. Note: thisison
-adding_manager_task_orphan, amto: real = 0.5
Specifies the probability that the task being connected should be an 'orphan' task; i.e: unsupervised by
every manager. Note: this is 0 according to SME
-adding_manager_task_superior, amts: key best, worst, random, busiest, laziest, keyend = random
Specifies which manager should acquire a task. The best, worst, busiest, laziest, or a random manager can
be chosen.
-adding_manager_task_inferior, amti: key random, keyend = random
Specifies which task the manager should acquire.

Adding Connection Parameters: (Manager-Analyst)
These parameters are used whenever manager-analyst connections are being considered.

CMU-ISRI-04-117 -47 - CASOS Tech Report

-adding_manager_analyst_mean, amam: real = 1.0
Specifies how many manager-analyst connections should be added at a time.
-adding_manager_analyst_distribution, amad: switch
If specified, indicates that the number of manager-analyst connections to be added should be determined
from a Poisson distribution using the mean. Otherwise the number of connections added should always be
the mean. Note: this ison
-adding_manager_analyst_orphan, amao: real = 0.5
Specifies the probability that the analyst being connected should be an 'orphan' analyst, i.e: currently
unsupervised by every manager. Note: this is 0 according to SME
-adding_manager_analyst_superior, amas: key best, worst, random, busiest, laziest, keyend =
random
Specifies which manager should acquire a analyst. The best, worst, busiest, laziest, or a random manager
can be chosen.
-adding_manager_analyst_inferior, amai: key best, worst, random, busiest, laziest, keyend = random
Specifies which analyst the manager should acquire. The best, worst, busiest, laziest, or a random analyst
can be chosen.

Adding Connection Parameters: (CEO-Task)
These parameters are used whenever CEO-task connections are being considered.

-adding_ceo_task_mean, actm: real = 1.0

Specifies how many CEO-task connections should be added at a time.
-adding_ceo_task_distribution, actd: switch

If specified, indicates that the number of CEO-task connections to be added should be determined from a
Poisson distribution using the mean. Otherwise the number of connections added should always be the
mean. Note: thisison
-adding_ceo_task_orphan, acto: real =0.5

Specifies the probability that the task being connected should be an 'orphan' task, i.e: unsupervised by
every ceo. Note: this is 0 according to SME
-adding_ceo_task_superior, acts: key best, worst, random, busiest, laziest, keyend = random

Specifies which ceo should acquire a task. The best, worst, busiest, laziest, or a random ceo can be chosen.
-adding_ceo_task inferior, acti: key random, keyend = random

Specifies which task the ceo should acquire.

Adding Connection Parameters: (CEO-Analyst)
These parameters are used whenever CEO-analyst connections are being considered.

-adding_ceo_analyst_mean, acam: real = 1.0

Specifies how many CEO-analyst connections should be added at a time.
-adding_ceo_analyst_distribution, acad: switch

If specified, indicates that the number of CEO-analyst connections to be added should be determined from
a Poisson distribution using the mean. Otherwise the number of connections added should always be the
mean. Note: thisison
-adding_ceo_analyst_orphan, acao: real = 0.5

Specifies the probability that the analyst being connected should be an 'orphan' analyst, i.e: unsupervised
by every ceo. Note: this is 0 according to SME
-adding_ceo_analyst_superior, acas: key best, worst, random, busiest, laziest, keyend = random
Specifies which ceo should acquire a analyst. The best, worst, busiest, laziest, or a random ceo can be
chosen.
-adding_ceo_analyst_inferior, acai: key best, worst, random, busiest, laziest, keyend = random
Specifies which analyst the ceo should acquire. The best, worst, busiest, laziest, or a random analyst can
be chosen.

Adding Connection Parameters: (CEO-Manager)
These parameters are used whenever CEO-manager connections are being considered.

CMU-ISRI-04-117 -48 - CASOS Tech Report

-adding_ceo_manager_mean, acmm: real = 1.0

Specifies how many CEO-manager connections should be added at a time.
-adding_ceo_manager_distribution, acmd: switch

If specified, indicates that the number of CEO-manager connections to be added should be determined
from a Poisson distribution using the mean. Otherwise the number of connections added should always be
the mean. Note: this ison
-adding_ceo_manager_orphan, acmo: real =0.5

Specifies the probability that the manager being connected should be an 'orphan' manager, i.e:
unsupervised by every ceo. Note: this is 0 according to SME

-adding_ceo_manager_superior, acms: key best, worst, random, busiest, laziest, keyend = random
Specifies which ceo should acquire a manager. The best, worst, busiest, laziest, or a random ceo can be
chosen.

-hiring_ceo_manager _inferior, acmi: key best, worst, random, busiest, laziest, keyend = random
Specifies which manager the ceo should acquire. The best, worst, busiest, laziest, or a random manager
can be chosen.

Changing Connection Parameters:

The next 6 have to add to 1 and you should set them up in the same way as the add connections
And specify all nine of them

These parameters apply to all types of connection changing between people.

-changing_dormancy, cd: integer =0

After changing connections, the organization may not change itself for this many tasks. If a value less than
change cycle is given, then change cycle is used.

-changing_analyst_task probability, catp: real = 0.17

Specifies the probability that when the organization changes connections, they will be from analysts to
tasks.

-changing_manager_task_probability, cmtp: real = 0.17

Specifies the probability that when the organization changes connections, they will be from managers to
tasks.

-changing_manager_analyst_probability, cmap: real =0.17

Specifies the probability that when the organization changes connections, they will be from managers to
analysts.

-changing_ceo_task probability, cctp: real =0.16

Specifies the probability that when the organization changes connections, they will be from CEOs to tasks.
-changing ceo_analyst probability, ccap: real = 0.16

Specifies the probability that when the organization changes connections, they will be from CEOs to
analysts.

-changing_ceo_manager_probability, ccmp: real = 0.17

Specifies the probability that when the organization changes connections, they will be from CEOs to
managers. These six parameters should total 1.

If you want connections to be changed between any two levels with equal probability, you can specify:
-catp 0.16 -cmtp 0.16 -cctp 0.16 -cmap 0.16 -ccap 0.16 -ccmp 0.16

Changing Connection Parameters: (Analyst-Task)

These parameters are used whenever analyst-task connections are being considered.
-changing_analyst_task_mean, catm: real = 1.0

Specifies how many analyst-task connections should be changed at a time.
-changing_analyst_task_distribution, catd: switch

If specified, indicates that the number of analyst-task connections to be changed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections changed should always
be the mean.
-changing_analyst_task_superior, cats: key best, worst, random, busiest, laziest, keyend = random

CMU-ISRI-04-117 -49 - CASOS Tech Report

Specifies which analyst should acquire a task. The best, worst, busiest, laziest, or a random analyst can be
chosen.
-changing_analyst_task_inferior, cati: key random, keyend = random

Specifies which task the analyst should acquire.
-changing_analyst_task _remove, catr: key inferior, superior, keyend = superior

If set to 'superior', the analyst that acquired the task loses some other task. If set to 'inferior', the task
acquried by the analyst becomes unsupervised by some other analyst (it 'loses' the analyst.)
-changing_analyst_task_loser, catl: key best, worst, random, busiest, laziest, keyend = random
Depending on the setting of -changing analyst task remove, deletes the connection between the
best/worst/laziest/busiest/random analyst and the task just acquired, or a random task and the analyst just
acquired.

Changing Connection Parameters: (Manager-Task)
These parameters are used whenever manager-task connections are being considered.

-changing_manager_task_mean, cmtm: real = 1.0
Specifies how many manager-task connections should be changed at a time.

-changing_manager_task_distribution , cmtd: switch
If specified, indicates that the number of manager-task connections to be changed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections changed should always
be the mean.

-changing_manager_task_superior, cmts: key best, worst, random, busiest, laziest, keyend = random
Specifies which manager should acquire a task. The best, worst, busiest, laziest, or a random manager can
be chosen.

-changing_manager_task_inferior, cmti: key random, keyend = random
Specifies which task the manager should acquire.

-changing_manager_task_remove, cmtr: key inferior, superior, keyend = superior
If set to 'superior', the manager that acquired the task loses some other task. If set to 'inferior', the task
acquried by the manager becomes unsupervised by a some other manager (it 'loses' that manager).

-changing_manager_task_loser, cmtl: key best, worst, random, busiest, laziest, keyend = random
Depending on the setting of -changing manager task remove, deletes the connection between the
best/worst/laziest/busiest/random manager and the task just acquired, or a random task and the manager
just acquired.

Changing Connection Parameters: (Manager-Analyst)
These parameters are used whenever manager-analyst connections are being considered.

-changing_manager_analyst_mean, cmam: real = 1.0

Specifies how many manager-analyst connections should be changed at a time.
-changing_manager_analyst_distribution, cmad: switch

If specified, indicates that the number of manager-analyst connections to be changed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections changed should always
be the mean.
-changing_manager_analyst_superior, cmas: key best, worst, random, busiest, laziest, keyend =
random

Specifies which manager should acquire an analyst. The best, worst, busiest, laziest, or random manager
can be chosen.
-changing_manager_analyst_inferior, cmai: key best, worst, random, busiest, laziest, keyend =
random

Specifies which analyst the manager should acquire. The best, worst, busiest, laziest, or random analyst
can be chosen.
-changing_manager_analyst_remove, cmar: key inferior, superior, keyend = superior

If set to 'superior', the manager that acquired the analyst loses some other analyst. If set to 'inferior', the
analyst acquried by the manager becomes unsupervised by some other manager (the analyst 'loses' the
manager).
-changing_manager_analyst_loser, cmal: key best, worst, random, busiest, laziest, keyend = random

CMU-ISRI-04-117 -50 - CASOS Tech Report

Depending on the setting of -changing manager analyst remove, deletes the connection between the
best/worst/laziest/busiest/random manager and the analyst just acquired, or the
best/worst/laziest/busiest/random analyst and the manager just acquired.

Changing Connection Parameters: (CEO-Task)

These parameters are used whenever CEO-task connections are being considered.
-changing_ceo_task_mean, cctm: real = 1.0

Specifies how many CEO-task connections should be changed at a time.
-changing_ceo_task_distribution, cctd: switch

If specified, indicates that the number of CEO-task connections to be changed should be determined from
a Poisson distribution using the mean. Otherwise the number of connections changed should always be the
mean.
-changing_ceo_task_superior, ccts: key best, worst, random, busiest, laziest, keyend = random
Specifies which ceo should acquire a task. The best, worst, busiest, laziest, or random ceo can be chosen.
-changing_ceo_task_inferior, ccti: key random, keyend = random

Specifies which task the ceo should acquire.
-changing_ceo_task_remove, cctr: key inferior, superior, keyend = superior

If set to 'superior', the ceo that acquired the task loses some other task. If set to 'inferior', the task acquried
by the ceo becomes unsupervised by some other ceo (it 'loses' the ceo).
-changing_ceo_task_loser, cctl: key best, worst, random, busiest, laziest, keyend = random

Depending on the setting of -changing ceo task remove, deletes the connection between the
best/worst/laziest/busiest/random ceo and the task just acquired, or a random task and the ceo just
acquired.

Changing Connection Parameters: (CEO-Analyst)
These parameters are used whenever CEO-analyst connections are being considered.

-changing_ceo_analyst_mean, ccam: real = 1.0
Specifies how many CEO-analyst connections should be changed at a time.

-changing_ceo_analyst_distribution, ccad: switch
If specified, indicates that the number of CEO-analyst connections to be changed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections changed should always
be the mean.

-changing_ceo_analyst_superior, ccas: key best, worst, random, busiest, laziest, keyend = random
Specifies which ceo should acquire an analyst. The best, worst, busiest, laziest, or a random ceo can be
chosen.

-changing_ceo_analyst_inferior, ccai: key best, worst, random, busiest, laziest, keyend = random
Specifies which analyst the ceo should acquire. The best, worst, busiest, laziest, or a random analyst can
be chosen.

-changing_ceo_analyst_remove, ccar: key inferior, superior, keyend = superior
If set to 'superior', the ceo that acquired the analyst loses some other analyst. If set to 'inferior', the analyst
acquired by the ceo becomes unsupervised by some other ceo (the analyst 'loses' the ceo).

-changing_ceo_analyst_loser, ccal: key best, worst, random, busiest, laziest, keyend = random
Depending on the setting of -changing ceo analyst remove, deletes the connection between the
best/worst/laziest/busiest/random ceo and the analyst just acquired, or the
best/worst/laziest/busiest/random analyst and the ceo just acquired.

Changing Connection Parameters: (CEO-Manager)
These parameters are used whenever CEO-manager connections are being considered.

-changing_ceo_manager_mean, ccmm: real = 1.0

Specifies how many CEO-manager connections should be changed at a time.
-changing_ceo_manager_distribution, ccmd: switch

CMU-ISRI-04-117 -51 - CASOS Tech Report

If specified, indicates that the number of CEO-manager connections to be changed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections changed should always
be the mean.

-changing_ceo_manager_superior, ccms: key best, worst, random, busiest, laziest, keyend = random
Specifies which ceo should acquire a manager. The best, worst, busiest, laziest, or a random ceo can be
chosen.

-changing_ceo_manager_inferior, ccmi: key best, worst, random, busiest, laziest, keyend = random
Specifies which manager the ceo should acquire. The best, worst, busiest, laziest, or a random manager
can be chosen.

-changing_ceo_manager_remove, ccmr: key inferior, superior, keyend = superior
If set to 'superior’, the ceo that acquired the manager loses some other manager. If set to 'inferior', the
manager acquired by the ceo becomes unsupervised by some other ceo (the manager 'loses' the ceo).

-changing_ceo_manager_loser, ccml: key best, worst, random, busiest, laziest, keyend = random
Depending on the setting of changing ceo manager remove, deletes the connection between the
best/worst/laziest/busiest/random ceo and the manager just acquired, or the
best/worst/laziest/busiest/random manager and the ceo just acquired.

Deleting Connection Parameters:

The next 6 have to add to 1 and you should set them up in the same way as the add connections
And specify all nine of them

These parameters apply to all types of connection removal.

-deleting_threshold, dt: real = 100.0

Specifies how much the org's relative efficiency should change before deleting connections. (Not used in
OrgAhead).
-deleting_when, dw: key rises, sinks, rises_or_sinks, keyend = sinks

Specifies how the org's relative efficiency should change in order to delete connections. The organization
can do this when its efficiency either rises, sinks, or does either, by more than the -deleting_threshold.
(Not used in OrgAhead).
-deleting_dormancy, dd: integer =0

After deleting connections, the organization may not change itself for this many tasks. If a value less than
change cycle is given, then change cycle is used.
-deleting_analyst_task_probability, datp: real =0.17

Specifies the probability that when the organization deletes connections, they will be from analysts to
tasks.
-deleting_manager_task _probability, dmtp: real = 0.17

Specifies the probability that when the organization deletes connections, they will be from managers to
tasks.

-deleting_manager_analyst_probability, dmap: real =0.17

Specifies the probability that when the organization deletes connections, they will be from managers to
analysts.

-deleting_ceo_task probability, dctp: real =0.16

Specifies the probability that when the organization deletes connections, they will be from CEOs to tasks.
-deleting_ceo_analyst_probability, dcap: real = 0.16

Specifies the probability that when the organization deletes connections, they will be from CEOs to
analysts.

-deleting_ceo_manager_probability, dcmp: real = 0.17

Specifies the probability that when the organization deletes connections, they will be from CEOs to
managers. These six parameters should total 1.

If you want connections to be deleted between any two levels with equal probability, you can specify:
-datp 0.16 -dmtp 0.16 -dctp 0.16 -dmap 0.16 -dcap 0.16 -dcmp 0.16

Deleting Connection Parameters: (Analyst-Task)

These parameters are used whenever an analyst-task connections are being considered.

CMU-ISRI-04-117 -52- CASOS Tech Report

-deleting_analyst_task_mean, datm: real = 1.0

Specifies how many analyst-task connections should be deleted at a time.
-deleting_analyst_task_distribution, datd: switch

If specified, indicates that the number of analyst-task connections to be removed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections deleted should always
be the mean.

Deleting Connection Parameters: (Manager-Task)
These parameters are used whenever manager-task connections are being considered.

-deleting_manager_task_mean, dmtm: real = 1.0

Specifies how many manager-task connections should be deleted at a time.
-deleting_manager_task_distribution, dmtd: switch

If specified, indicates that the number of manager-task connections to be removed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections deleted should always
be the mean.

Deleting Connection Parameters: (Manager-Analyst)
These parameters are used whenever manager-analyst connections are being considered.

-deleting_manager_analyst_mean, dmam: real = 1.0

Specifies how many manager-analyst connections should be deleted at a time.
-deleting_manager_analyst_distribution, dmad: switch

If specified, indicates that the number of manager-analyst connections to be removed should be
determined from a Poisson distribution using the mean. Otherwise the number of connections deleted
should always be the mean.

Deleting Connection Parameters: (CEO-Task)
These parameters are used whenever CEO-task connections are being considered.

-deleting_ceo_task_mean, dctm: real = 1.0
Specifies how many CEO-task connections should be deleted at a time.

-deleting_ceo_task_distribution, dctd: switch
If specified, indicates that the number of CEO-task connections to be removed should be determined from
a Poisson distribution using the mean. Otherwise the number of connections deleted should always be the
mean.

Deleting Connection Parameters: (CEO-Analyst)
These parameters are used whenever CEO-analyst connections are being considered.

-deleting_ceo_analyst_mean, dcam: real = 1.0

Specifies how many CEO-analyst connections should be deleted at a time.
-deleting_ceo_analyst_distribution, dcad: switch

If specified, indicates that the number of CEO-analyst connections to be removed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections deleted should always
be the mean.

Deleting Connection Parameters: (CEO-Manager)
These parameters are used whenever CEO-manager connections are being considered.

-deleting_ceo_manager_mean, dcmm: real = 1.0

Specifies how many CEO-manager connections should be deleted at a time.
-deleting_ceo_manager_distribution, dcmd: switch

CMU-ISRI-04-117 -53- CASOS Tech Report

If specified, indicates that the number of CEO-manager connections to be removed should be determined
from a Poisson distribution using the mean. Otherwise the number of connections deleted should always
be the mean.

Firing Parameters:

These parameters apply to all aspects of dropping people from the org. Dropping is similar to move-to-
other-problem , except it is not considered a voluntary move by the organization ; it is more like the person
was taken out by the opposing forces.

-firing_probability, np: real = 0.0

Specifies the probability that someone should be dropped at each effeciency check,
-firing_analyst_probability, nap: real = 0.33

Specifies the probability that when the organization drops people, they will be analysts.
-firing_manager_probability, nmp: real = 0.34

Specifies the probability that when the organization drops people, they will be managers.
-firing_ceo_probability, ncp: real = 0.33

Specifies the probability that when the organization drops people, they will be CEOs. These three
parameters must total 1.

Firing Analyst Parameters:
These parameters only apply to dropping analysts.

-firing_analyst_mean, nam: real = 1.0

Specifies how many analysts should be dropped at a time.
-firing_analyst_distribution, nad: switch

If specified, indicates that the number of analysts dropped should be determined from a Poisson
distribution using the mean. Otherwise the number of analysts dropped should always be the mean.
-firing_analyst_victim, nav: key best, worst, random, busiest, laziest, keyend = random

Specifies which analyst should get dropped. The organization can nuke the best, worst, busiest, or laziest
analyst, or can pick one randomly to nuke.

-firing_analyst_resources, nar: key none, best, worst, random, busiest, laziest, keyend = none
Specifies how a dropped analyst's tasks should be redistributed among the remaining analysts. The
dropped analyst's tasks can go to the best, worst, busiest, laziest, or a random analyst.

Firing Manager Parameters:
These parameters only apply to dropping managers.

-firing_manager_mean, nmm: real = 1.0
Specifies how many managers should be dropped at a time.
-firing_manager_distribution, nmd: switch
If specified, indicates that the number of managers dropped should be determined from a Poisson
distribution using the mean. Otherwise the number of managers dropped should always be the mean.
-firing_manager_victim, nmv: key best, worst, random, busiest, laziest, keyend = random
Specifies which manager should get dropped. The organization can nuke the best, worst, busiest, or laziest
manager, or can pick one randomly to nuke.-firing manager resources, nmr: key none, best, worst,
random, busiest, laziest, keyend = none
Specifies how a dropped manager's resources should be redistributed among the remaining managers. The
dropped manager's resources can go to the best, worst, busiest, laziest, or a random manager.

Firing CEO Parameters:
These parameters only apply to dropping CEOs.

-firing_ceo_mean, ncm: real = 1.0

Specifies how many CEOs should be dropped at a time.
-firing_ceo_distribution, ncd: switch

CMU-ISRI-04-117 -54 - CASOS Tech Report

If specified, indicates that the number of CEOs dropped should be determined from a Poisson distribution
using the mean. Otherwise the number of CEOs dropped should always be the mean.
-firing_ceo_victim, ncv: key best, worst, random, busiest, laziest, keyend = random

Specifies which ceo should get dropped. The organization can nuke the best, worst, busiest, or laziest ceo,
or can pick one randomly to nuke.-firing ceo_resources, ncr: key none, best, worst, random, busiest,
laziest, keyend = none
-firing_ceo_resources:

Specifies how a dropped CEOQ's resources should be redistributed among the remaining CEOs. The
dropped CEO’s resources can go to the best, worst, busiest, laziest, or a random ceo.

CMU-ISRI-04-117 -55- CASOS Tech Report

	Acknowledgements
	Appendix B – Meta-Matrix Input File for OrgAhead: Structure
	Appendix D – New Performance Measures

