
Construct User Guide

Kathleen M. Carley, David T. Filonuk, Kenny Joseph,
Michael Kowalchuck, Michael J. Lanham, Geoffrey P. Morgan

May 2014
CMU-ISR-14-105

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

 Center for the Computational Analysis of Social and Organizational Systems
CASOS technical report.

Supercedes “Construct User Guide” CMU-ISR-12-112, November 2012

This work was supported in part by the IRS project in Computational Modeling, the Air Force Office of
Sponsored Research (MURI FA9550-09-1-001 mathematical methods for assisting agent-based
computation), and the NSF IGERT in CASOS (DGE 997276). In addition support for Construct was
provided in part by Office of Naval Research (N00014-06-1-0104 and MURI N000140-81-1-186 a
structural approach to the incorporation of cultural knowledge in adaptive adversary models), and the
National Science Foundation (SES-0452487). Additional support was provided by the Air Force Office of
Sponsored Research (MURI N00014-08-1-1186 cultural modeling of the adversary). Further support was
provided by CASOS - the Center for Computational Analysis of Social and Organizational Systems at
Carnegie Mellon University. The views and conclusions contained in this document are those of the
authors and should not be interpreted as representing the official policies, either expressed or implied, of
the Internal Revenue Service, the National Science Foundation, the Office of Naval Research, the Air
Force Office of Sponsored Research, or the U.S. Government.

ii

Keywords: Construct, multi-agent simulation, dynamic network analysis, agent-based
modeling, information diffusion, belief diffusion, agent-based simulation, modeling and
simulation,

iii

Abstract

This technical report provides users and researchers information on the configuration and use of
Construct, the CASOS dynamic network, agent-based, information and belief diffusion
simulation of complex socio-technical systems. The report provides a Quick Start Guide to
Construct, a detailed discussion of its configuration, and use through a sample problem and
virtual experiment configuration exemplar, and a set of appendices with additional useful
information. This document is intended both as an introduction to Construct for casual modelers
as well as a reference guide for researchers, modelers, and simulationists.

iv

v

Construct User Guide
INTRODUCTION
Construct is an agent-based network-centric simulation. Although frequently lumped together,
agent-based simulations vary widely in complexity and computational cost – some are
extremely inexpensive (e.g., Swarm) and allow hundreds of thousands or even millions of
agents to operate in the same simulation, while others are rather expensive and often require
the support of an entire processor per agent (e.g., Soar or ACT-R). This increase in
computational expense, however, is matched by construct validity to the actions of cognitively
bounded humans: the least computationally expensive (per agent) simulations replicate the
behavior of insects (specifically ants) while ACT-R has been able to replicate the brain
activation patterns of children solving algebra problems and Soar has replicated fighter pilot
operations in concert with human pilots.

Although economics are an important consideration in picking an agent-based simulation, they
should not be the only consideration; the specific phenomena of interest should impose its own
set of criteria. For problems of traffic analysis or collision avoidance, swarm agents are
particularly appropriate. However, in phenomena with significant cultural freight, such as those
involving deception, leadership, participation in group activities, and/or compliance with group
norms, these swarm-based technologies offer little useful insight to the policy analyst without
additional (expensive) modification and incurring significant increases in computational cost. At
the same time, not all group- based phenomena require the detail and expense imposed by
high-fidelity models of individual agents. Construct, which can support hundreds and thousands
of agents, supports an appropriate middle-ground. It is also one of the only agent-based models
which explicitly unites (Herb) Simon’s dual requirement of bounded rationality, that rationality
should be bounded both cognitively, and socially. Most of the highest-fidelity models constrain
interaction to explicit messages, if at all, and many work entirely in isolation from other agents.
Construct, thus, is less expensive and yet more useful for studying group phenomena.

A common query is to which specific theory of group behavior does Construct adhere?
Construct does not subscribe to a specific theory of group behavior. Indeed, the question can
reflect a fundamental misunderstanding of interesting modeling work – rather, the level at which
a simulation is specifically coded/designed is its least interesting level of analysis. Analysis at
the level in which a model is coded suggests merely how well the simulation programmers did
their work, this is an important verification question, but not of practical application interest to
model consumers. It is necessary, but not sufficient, for a model to be correctly coded. Instead,
the more interesting question, available to be asked of agent-based simulations, is what are the
larger implications with how these agents interact. We call this principle “emergence”, what
larger phenomena “emerge” from the interactions of these modeled agents. Construct is, as
previously said, an agent-based simulation, and thus represents a theory of individuals and how
they choose to interact. Construct makes a claim based on research that people tend to interact

vi

with other people based on two competing drives. One, that people tend to interact with others
because they believe they are similar (the drive for homophily), and two, that people tend to
interact with others who they believe have valuable knowledge they do not have (the drive for
knowledge expertise). Both of these human drives are cross-cultural.

Emergent properties of the simulation, then, are much more interesting to the agent-based
simulation modeler than the direct consequences of their modeling decisions. Based on agents
interacting with others due to knowledge expertise and homophily, Construct has been able to
replicate many group-level behaviors found in people: the S-Shaped curve of diffusion, yes, but
also that beliefs are more durable than the information used to support a belief. Construct has
examined cultural norms in organizations, belief-changes in national decision-makers, and
group stability. In practice, Construct is a valuable support for group-level behavioral theories
because it provides an explanation rooted in individuals for the origin of these phenomena.
These emergent properties, however, may not always be intuitive to the model consumer or
model developer. At such points, it is important to recheck questions of verification, that some
bug in the model process is not to blame for the errant results. But more interesting is when the
model’s code is not in error but the results are still surprising.

Although not directly attributable to programming error, there may be other sources of surprising
results that should be described. One, the model simulation is, at its core, not a sufficiently good
model of the atomic primitive it represents; this is often the case when extending swarm agents
beyond issues of traffic and navigation. Two, the experimental approach was not well-matched
to the empirical reality – if, for example, 75% of adults in the population are internet-literate, but
the model assumes that only 10% of the agents will receive information from internet sources,
the model will significantly underestimate the prevalence of information from internet sources,
and there may be further cascading effects of that error. Three, the results may simply not be
well-communicated. Relating accurately (and conservatively) the implications of models is itself
a skill that must be polished.

But sometimes, the results are non-intuitive and yet none of these errors appears to be present.
In such a case, this is the value and joy in modeling counter-factual scenarios – we can place
our simulated humans in situations that do not exist and will never exist, and be surprised and
intrigued by how they behave.

vii

Table of Contents
Abstract.. iii

Contrust User Guide ... v

Table of Contents .. vii

Table of Figures ... xi

Table of Tables .. xi

Introduction to the Report ... 1

Construct Versions and this Report .. 1

Conventions Used in this Report .. 1

Organization of this Overall Report ..22

A Motivating Example .. 2

Construct’s Core Mechanisms .. 2

A Scenario .. 3

PART ONE: Construct Quick-Start ... 5

The Objects .. 5

Agents .. 5

Knowledge .. 6

Tasks .. 6

Beliefs ... 7

Time .. 7

Their Relations ... 7

The Interaction Sphere.. 8

The Knowledge Network ..11

Transactive Memory ..11

Thoughts on Experimentation ..15

Outputs ..15

High Level Diagrams of Construct Program Flow ..17

PART TWO: Construct in Detail ..25

Variables ...25

Declaring, defining, and casting variables ..25

Evaluating Variables ..28

Variables, Macros, and with Statements ..28

viii

Using variables ..30

Common Gotchas ..31

Parameters ..32

Seed ..32

Verbose Initialization ..32

Dynamic Environment ..32

Default Agent Type ..33

Learning and forgetting ..33

Use mail ...33

Default communication weights ..33

Thread count ..34

Active models ..34

Active mechanisms ..35

Nodes ..36

Agent node class ...37

Knowledge node class ...37

Belief node class + belief formation equations ...37

Binary task node class ...38

Energy task node class ..39

Time period node class ..40

Agent group node class ...40

Knowledge group node class ...40

Dummy node class ..41

Agent type ..41

Other node classes ..42

Networks ...42

Access Network ...46

Agent Active Time Period ...46

Agent Belief Network ...47

Agent Forgetting Rate ..47

Agent Group Membership ..48

Agent Initiation Count ...48

Agent Learn by Doing Rate ..49

ix

Agent Learning Rate ..50

Agent Message Complexity ...50

Agent Reception Count ..51

Agent Type ..51

Belief Knowledge Weights ... 522

Binary Task Assignment ..52

Binary Task Requirements ...53

Binary Task Truth ...53

Binary Task Similarity Weight ...53

Interaction Network ..54

Interaction Knowledge Weight ..54

Knowledge – Binary and non-Binary ..54

Knowledge Expertise Weight ...55

Knowledge Group Membership ..55

Knowledge Priority ...56

Knowledge Similarity Weight ..56

Learnable Knowledge ..57

Physical Proximity ..57

Physical Proximity Weight ..57

Selective Attention Effect ...58

Social Proximity ...58

Socio-Demographic Proximity ..58

Susceptibility (beInfluenced) ..59

Transmission Weight ...59

Transactive Memory ..60

Knowledge transactive memory ...64

Belief transactive memory ..65

References ...67

Appendices ...68

APPENDIX A The Sample Input File (aka Input Deck) ..68

APPENDIX B A History of Construct ...82

APPENDIX C Construct ‘Operations’ ...84

Turn 0 ..84

x

Operations ...84

‘Decisions’ ..90

Common Gotchas ..94

APPENDIX D Additional Construct ‘Generators’ ..95

APPENDIX E Scripting .. 103

General Syntax .. 104

Logical Expressions ... 1066

Generating Random Numbers ... 107

Conditional Statements - IF .. 107

Looping - foreach ... 110

Return .. 110

Macros ... 111

Get/Set network values .. 112

ReadFromCSVFile ... 113

APPENDIX F Construct in High Performance Computing (HPC) Environments 114

APPENDIX G Construct in Research Literature ... 118

xi

Table of Figures
Figure 1. A graphical depiction of the interior workings of a Construct simulation 3
Figure 2. A depiction of two ‘clean-room’ teams of product developers 4
Figure 3. Bob's Transactive Memory ...12
Figure 4. Construct's process has three main components. ..17
Figure 5. Construct's intialization process starts by reading the deck, then initializes nodes and
networks, then goes through model specific setup. ...18
Figure 6. Stables of models can be run each turn in Construct. They run linearly, in an order
defined by the user. ..19
Figure 7. Operation Runner allows for various operations to take place. Operations can be
ordered by the user. ..20
Figure 8. The Interaction Model is a core part of the Construct. ..21
Figure 9. The probability network for "who talks to who" is an output of a variety of factors, some
static, and some dynamic. ...22
Figure 10. Interactions are created through matching up available initiators and receivers.23
Figure 11. Information Exchange relies on both medium and message.....................................24

Table of Tables
Table 1. Mechanism for evaluating variables in Construct. ..28
Table 2. Variables as evaluated. ...29
Table 3. List of networks for Construct ..34
Table 4. Common node classes in Construct ..36
Table 5. Network relations to node classes ...43
Table 6. Key transactive memory networks in the demo input deck ..60
Table 7. Examples of foreach loops ... 109
Table 8. Examples of macros .. 111

1

Introduction to the Report

Construct Versions and this Report
Construct is, like all but end-of-life software, undergoing continuing development in both its
capabilities and its implementation. Experiment developers and designers should ensure they
are using the most current version of Construct available on the CASOS public web site at
www.casos.cs.cmu.edu. They should also ensure they are referencing the most current set of
documentation to reduce the probability of a disconnect between the documentation and the
application. Finally, experiment developers and designers should consider subscribing to the
CMU-CASOS Google group for ad-hoc and peer-to-peer assistance as well as assistance from
students, staff, and faculty of CASOS.

Conventions Used in this Report
Where feasible, this technical report quotes a provided example of a Construct experiment
configuration file. The file is also included in a 2-up printed format in Appendix A and is also
available for download at the Training and Sample Data page on the Construct page of
CASOS’s website. To help you follow along, this report uses a few conventions in type face:
Construct keywords, such as variable or network names, will use a monospace font to clearly
differentiate the example from the surrounding text.
 Code snippets will also be written in the courier new, as these snippets are quotes from the
demonstration input file. We’ll also frequently call the input file the input deck, or shorten the
name to deck, throughout the document. The origins of this use of ‘deck’ will deliberately remain
in the mists of our collective memory lest the authors prove how old they really are.

Boldface and an exclamation mark (!) indicate information the experiment developer and

designer, researcher and simulationist should be particularly aware of when using Construct.
We’ll reduce that string of potential audience members, in most cases, to researcher and/or
simulationist throughout the document.
Egos and Alters are common referents in social science literature that we will use throughout
this report. Their use simplifies establishing frames-of-reference and scoping of interaction
possibilities. When we refer to a single agent, it will most often have the label of ego. When we
refer to the agents or other entities that the ego is connected (in any sense of the word), they
will most often have the label of alter or alters. Agents in the simulation not connected to an ego
are beyond the scope of awareness of the ego, and do not directly impact the ego.

http://www.casos.cs.cmu.edu/projects/construct/software.php
https://groups.google.com/forum/?fromgroups#!forum/cmu-casos
http://www.casos.cs.cmu.edu/projects/construct/sample.php

2

Organization of this Overall Report
The report has three main components and does not need to be read or referred to in front-to-
back sequence. The three parts are shown in the list below

• Quick Start Guide - for a relative quick movement from introduction to execution
• Construct in Detail - for an in depth explanation of Construct, complex inputs and

outputs and complex experiments
• Appendices - for additional useful sets of information ranging from additional exemplar

input decks, to the use of Construct in High Performance Computing (HPC)
environments such as Condor, to brief synopsis of peer-reviewed projects within which
Construct played a role.

A Motivating Example
One method of introducing a set of concepts and the application of those concepts to problem
solving is through the use of a motivating example. In this report, we adopt this method and
present a motivating example for both the questions of interest (QoI) as well as an experimental
configuration that can help answer the QoI.

Like all scientists, if we are not attempting to answer a specific QoI, or even a set of QoI, it
behooves the reader to take some amount of time to focus the upcoming effort. It is appropriate
at this time to remind the experimenter that Constructs roots lie in social network, information
diffusion and belief diffusion modeling. This motivating example will stay with this core capability
and defer discussions of additional capabilities and experimental purposes to Part 2.

Construct’s Core Mechanisms
Figure 1 offers one depiction of the interior workings of a Construct simulation that helps us
scope our motivating example to enable a researcher to rapidly move from introduction to
experimentation. Starting at the ten o’clock position and moving clockwise, the reader will note
agents without which the remainder of this report and use of Construct is pointless. At the
eleven o’clock position, each agent is capable of having mental models (often referred to as
transactive memory (Wegner, 1987) of what the agent knows, what the agent believes, and
perhaps most importantly, what its alters know and believe. This perception is, also importantly,
error prone, personal, and both learned and forgotten over the course of a simulation. The one
o’clock position depicts agents embedded in social, communication, and other networks with
other agents. Some alters may be as cognitively robust as the egos, while others may represent
Information Technology (IT) resources, or mass media (e.g., newspapers, TV, radio). Agents
are also potentially aware of stylized representations of social and social-demographic
information about themselves and their alters, which shape the agent’s decisions during the
interaction and knowledge cycle. At the three o’clock position, agents have culture as a
consequence of their learning knowledge. Technology, at the five o’clock position, is most often
modeled as agents capable of receiving, storing, retrieving, and transmitting knowledge to other
agents in the simulation. The five and six o’clock positions in Figure 1 represent the ability of

3

Construct to incorporate such stresses as personnel turnover and time-dependent task-
completion modeling, though we’ll defer discussion of those capabilities to Part 2.

Figure 1. A graphical depiction of the interior workings of a Construct simulation

In the center of the diagram are two blue circles that are, after the calculations to determine
which alter, if any, each ego will interact with, the most important components of Construct. The
interaction and knowledge cycle represents the process each ego goes through in its decision to
interact, or not, with its alters. Each agent’s decision takes into account that agent’s current
knowledge, its current perception of similarity to its egos (knowledge homophily), its current
perception of unique knowledge each alter has that the ego does not, as well as the social,
physical, and socio-demographic similarity of the ego and alter. On a probabilistic basis, should
interaction occur, each agent will exchange messages. The ego and alter both build their
message from their own knowledge or beliefs sets or their perception of their own alters’
knowledge or belief sets. After message exchange, agents may learn, with and without error,
the contents of those messages as well as forget previously learned knowledge that has not
been referenced recently.

A Scenario
We, the researchers, are analysts that Acme, Inc. has hired to help Acme design two software
development teams in a ‘clean room’ configuration. Acme wants the two teams to be co-
developing a product. Acme also wants structural mechanisms in place to control how much
information flows between the two groupsits a deliberate choice to help reduce the probability of
unintentional release of Acme’s intellectual property. One way of visualizing this scenario is in

4

Figure 2. In this figure, we also call each team a cluster, aligning with the social network
analysis literature when groups of entities are meaningfully connected to each other.

Figure 2. A depiction of two ‘clean-room’ teams of product developers

In the figure above, possible questions of interest that are appropriate for the model to help
forecast answers could be:

Without direct modeling, is there any leak of knowledge from one team/cluster to the other? If
so, how fast does the information flow?

Assuming no friendship networks or other communication networks not modeled, how fast does
specific knowledge or specific beliefs within each team spread?

Assuming a requirement to have a controlled mechanism to support the teams passing limited
information back-and-forth, to whom would such an intermediary best talk in each team for rapid
spread of information or beliefs?

Does either team have any organizational weak point that can be structurally overcome?

After stability is reached within teams for knowledge saturation/diffusion, what kinds and how
large are impacts of personnel turnover of various sizes and frequencies have on the group?
How long, if at all, does the team take to return to pre-turnover levels for specific measures of
interest?

These and other questions can be explored within the Construct framework. In Part 1, we will
describe the entities and key relationships between those entities. The treatment in Part 1 is
intended to be useful towards further orienting a potential model builder or a model consumer.
Part 2 describes mechanisms at a high-level of detail, and is suitable to act as a reference even
to a regular user of Construct.

5

PART ONE: Construct Quick-Start
This is an introduction to core mechanisms of Construct, introduces three of the most important
networks to understand, and suggests a set of experiments that may be of some interest to the
model consumer. It is intended to provide an initial suggestion of how Construct may be useful
to the model developer. More detail is provided in the second part of this report. We assume
that the example deck included in this technical report is available to the reader of this guide.

We begin this guide by providing a summary of key objects within Construct and provide
examples of the various semantics between these key entities. We then describe, in more
detail, the more precise semantics of three critical networks in Construct. We will then conclude
with a suggestion of some experiments that could be done using only those key networks,
referencing the motivating scenario.

The Objects
There are five classes of objects in Construct. These are 1) agents, 2) knowledge, 3) tasks, 4)
beliefs, and 5) time. A singleton example of each of these object classes is referred to
(respectively) as 1) an agent, 2) a knowledge bit, 3) a task, 4) a belief, and 5) a turn.

Agents
Agents are the most important class of objects in Construct. Agents have, appropriately,
agency, and thus make choices that can potentially affect other agents. Typically, agents
represent human-like entities, but researchers can also represent other types of entities such as
sources of information (e.g., newspapers, radio programs, or television ads) and information
technology (IT) systems (e.g., databases, data-stores). Agents have various critical capacities
and capabilities that we’ll address briefly here and more thoroughly throughout the report.

Individual agents possess different bits of knowledge and they are aware of other agents. Each
person has a unique, error-prone perception of those other agents’ knowledge and beliefs that
they learn throughout the course of a simulation from some starting condition. This guide
discusses how to manipulate both what agents know, who they know, and what they think other
people know.

People may be members of groups. Groups are not explicitly defined in Construct but it is useful
concept to remember. Group members, like in our motivating example, tend to have many more
connections within the group than outside of it. It is usually easier, but not semantically
important, to define groups of agents contiguously. If I were, for example going to group my
digits by which hand they’re on, it’d be easier on me to simply count them off, so that my right
hand’s digits were 0,1,2,3, and 4, while my left hand’s digits were 5,6,7,8, and 9. Then, all I
need to remember is that my right hand’s digits start at 0 and end at 4, while my left hand’s start
at 5 and end at 9. Alternatively, I could count them off by functional role (right thumb 0, left
thumb 1, right pointer 2, left pointer 3, etc), but that’d quickly confusing if their membership in
my hand groups was their most salient characteristic.

6

Individuals can also have beliefs, and work to do (as described by tasks), and they may not
remain unchanged by time. Information on this is out of scope on this portion of the guide, but
will be discussed in Part 2.

Just as with people, some agents may have more capacity than others to send or receive
information. As with people, they may have more or less retentive memories than others. And
as with people, they may have more or less social reach than others. Specifics on how to
implement any of these (and other) characteristics is included in Part 2.

Knowledge
Knowledge represents information. Construct represents real-world knowledge through a
stylized and simplified series of bits (0 or 1). Any particular knowledge bit should represent a
single atomic piece of information, such as “Sol is the name of the star at the center of our solar
system”, or “Each water molecule is comprised of two hydrogen and one oxygen atom.” It is
incumbent on a researcher to try and keep the stylized representation consistent in their
experiments--one bit should not represent “How to pilot a 747 jumbo jet” while another bit
represents ‘flight departed.’

Collections of knowledge, which we characterize as expertise, can be assembled by labeling a
range of bits as relevant to that larger expertise. The relative size of each range is intended to
be representative of the amount of effort required to achieve a given level of expertise. For
example, a child’s understanding of the solar system may be represented some 30 facts (the
names of the planets, names of interesting moons, relative distances of the planets to the sun,
and some representation of relative size), while the requirements of celestial navigation (the role
of seasons, star identification, etc) requires a significantly larger set of facts, one that may be
estimated usefully if not precisely. We call this form of knowledge specification “stylized
knowledge.” Another example of this sizing decision would be if a simulation involves agents
with knowledge about recent movies, and also recent literature – a researcher may decide that,
because there are fewer movies made than books written in most years, that there is
correspondingly less to know and correspondingly fewer bits in the one expertise collection than
the other. These sizing decisions may end up being poor modeling decisions, but the researcher
must make them and communicate them to the model consumer.

Knowledge can be used to inform the quality of decision-making tasks agents can perform, and
also used as evidence either in support of or opposed to a belief, but these connections are
outside the scope of this guide.

When a researcher links knowledge to one or more beliefs, the possession of knowledge will
impact the strength of the held beliefs as well as the likelihood of changing those beliefs. Beliefs
have a more in-depth discussion below as well as in Part 2.

Tasks
Tasks in Construct represent, appropriately, tasks. Specifically, these tasks can best be thought
of “decision tasks”, where agents (see previous) need information (see previous!) to perform the
task adequately.

7

Tasks are outside the explicit purview of this quick-start guide, see Part 2.

Beliefs
Beliefs in Construct represent, also appropriately, beliefs. These differ from information because
beliefs cannot, it is presumed, be judged for their inherent truth. Also, agents may or may not
possess any particular knowledge bit, but they may have believe or disbelieve a belief more or
less strongly. Beliefs may or may not be linked to information. Beliefs linked to information are
sometimes labeled “Evidence-Based Beliefs”.

Beliefs are outside the scope of this guide, see Part 2.

Time
Turns, in Construct, represent chunks of discrete time. Agents each have some opportunity to
interact with other agents during each turn. Agent order is randomized each turn, to avoid
agents early in a static order having an unfair primacy advantage. Agents interacting with other
agents may not be able to support further interaction. It is usually good practice to attempt to
identify, loosely, a length of time with each turn. Turns may be minutes, days, weeks, or months.
This mapping of turns to time periods should be chosen relative to the knowledge being
transmitted during each turn – it is unrealistic for highly complex knowledge, such as “Civilian
Flight Operations”, to be conveyed in less than some number of months or years. Thus, either
the number of knowledge bits that represents Civilian Flight Operations is very large, or turns
are likely to represent weeks or months in this model (or both).

Time is part of every model, but a detailed discussion of Time is out of scope of this guide.

Their Relations
In Construct, we note how each of these various objects are related to each other through the
use of dense matrices. Each matrix, usually referred to as a network, represents a meaningful
and distinct tie between objects. Matrix values may be binary (either 0 or 1) or weighted (any
real number). These networks can represent relationships between objects of the same class
(Single-Mode), or between objects of different classes (a multi-mode matrix). The objects listed
down the rows are always listed first, then the objects in each column.

‘0’ is usually a safe default value for matrices. Non-zero values usually indicate that the two
entities (represented by the row-column pair) are “connected”. There are exceptions, discussed
in Part 2, for the various ‘weight’ networks.

8

For example, a binary (0 or 1s) Agent x Knowledge multi-mode matrix might look like so:

 Biology Physics Sociology

Aba 1 1 0

Jane 0 1 1

Lu 0 1 1

Raj 1 0 1

Fred 1 0 0

In practice, each of these large areas would be represented by a range of knowledge bits, since
none of these sciences are single atomic facts, but as an example we hope it suffices.

Part 2 will discuss all of the different matrices present in Construct, their real-world meaning,
and their practical impact within Construct. This guide will focus on three key matrices: the
interaction sphere, the knowledge network, and transactive memory. It will also show you the
snippet of XML code required to specify each of these key networks.

The Interaction Sphere
The interaction sphere defines “who may know who”. It is a single-mode, Agent x Agent, binary
matrix. If two agents are NOT connected within the interaction matrix, they will never be able to
directly interact with each other. Agents who are connected in the interaction matrix may still
never interact.

Because agents must be able to interact to pass information, it is easy to see how changes to
the interaction sphere can change how the experiment will play out. Generally, agents should
not be connected in the interaction sphere if it is unlikely they would ever have reason to
interact. Separate organizations, for example, may not have any connections to each other,
save perhaps through explicit liaison personnel.

Here is the code required to specify the interaction sphere:

<network src_node class_type="agent" target_node class_type="agent"
id="interaction sphere network" link_type="bool" network_type="dense">

 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="mean" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

9

This is your first jolt of Construct XML, so it may seem a little daunting at first, but let’s attempt
to parse this XML line by line.

<network src_node class_type="agent" target_node class_type="agent"

The network at the beginning indicates we’re defining one of the matrices used in Construct.
The argument src_node class_type tells us that the matrix we’re defining should have rows
defined by agents, and the target_node class_type argument tells us that the columns should
also be defined by agents.

id="interaction sphere network" link_type="bool"

The “id” argument gives us the name of this network, this name is important to Construct. The
“link_type” argument tells us that this network is boolean (stored as a binary value), either a link
exists (1/True/T), or it does not (0/False/F).

network_type="dense">

Typically, most networks will have this argument network_type set to dense. This means that
every possible cell combination should be defined.

<generator type="randombinary">

The generator is a new object, it’s being defined to help us fill in the values of the interaction
sphere. There are different generator types - this one, a randombinary generator, will generate
only 1s or 0s. It generates 1s at a given rate. A more complete discussion of the various
generator types is in Appendix D.

<rows first="0" last="node class::agent::count_minus_one"/>

All numbers used to count things in Construct XML use cardinal numbers, also known as
“computer science counting”, where the ! first indice value is 0, not 1. Thus, the last digit on
my right hand is digit number 4, not 5, even though I have five digits. I have, after all, counted
out five numbers (0,1,2,3,4). The rows object tells the generator in what parts of the matrix it
should assign numbers. You can (and often will) use multiple generators for one network. In this
case, the generator should assign values for all rows of the matrix - 0 is the first agent, and
agent::count_minus_one is a built in mechanism for construct to identify the number of nodes
in a node set. It works with all defined node sets in the input file. It’s handy shorthand so you
don’t need to keep track of how many agents exist.

All generators assume (except one) that they should fill in all values inclusive of and between
the first and last of both the row and column arguments. The one exception, not discussed in
detail here, is reading in a network from a file (this is covered in the CSV generator section).
Thus, if you want two or more groups of agents, you may want to keep track of the start and end
of those groups. This is why it’s easier, almost always, to number your agents contiguously by

10

their most important group affiliation, as discussed previously with hands and digits in the
Agents section above.

<cols first="0" last="node class::agent::count_minus_one"/>

This serves the same purpose as the previous line, except it defines what columns the
generator will be assigning values to. As you can probably guess, we are assigning values
(either 1 or 0s) to all columns as well. This means this generator will provide a value for every
cell in the matrix.

 <param name="mean" value="1"/>

This is the parameter that defines how often a “1” is likely to come up. In this case, a 1 should
populate every cell in this matrix. What does that mean for our simulation? Think about it for a
second. Done? In this case, it means that every agent can talk to every other agent. If you were
going to modify this code for use in our motivating example, how might you go about it?

If we set this to a different value, such as “0.20”, what would that mean for the simulation? It
would mean that each agent would be able to interact with roughly 20% of the potential alters.
How is this calculated? If the implicit uniform random number generator generates a value less
than 0.2, it will output a one, otherwise it will ouput a zero – this mean is as accurate as any
mean when evaluated in the context of the Law of Large Numbers, not necessarily true for a
particular set of generated numbers.

<param name="symmetric_flag" value="false"/>

The symmetric_flag is very important, and important to understand. Not all relationships go both
ways. My boss, for example, may have access to me, but I don’t alway have access to the boss.
If the president wants to see me, he will, but I can’t bully my way into the Oval Office. If the
symmetric flag is set to the true, then none of the relationships in your group will be asymmetric
- they will all go both ways. If it is set to false, then some asymmetries may arise, but not
necessarily. Would there be any asymmetrical relationships in this network, given the current
generator with a mean parameter set to “1.0”? How about when the mean parameter is set to
“0.20”? Multi-mode matrices should not have the symmetric_flag set to true.

</generator>

This indicates that the generator has been fully defined, and closes the object.

</network>

This closes the definition of the network, remember, you may have multiple generators in a
single network definition. I include the entire XML snippet again for easy review, we hope it’s
easier to understand the second time, beneath it, I give my read-aloud version of how I parse
this network and relate it verbally.

11

<network src_node class_type="agent" target_node class_type="agent"
id="interaction sphere network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

“This is the interaction sphere network, it is an agent by agent network with boolean/binary links.
It uses a random-binary generator, which will define values for every agent to every agent. This
random-binary generator will put 1’s in 100% of the cells of this matrix. The generator is
functionally but not explicitly symmetric.”

The Knowledge Network
The knowledge network defines “who knows what”. It is a multi-mode, Agent x Knowledge, non-
binary matrix. A ‘1’ in this matrix indicates the agent “knows” the fact represented by that bit.
Construct updates the knowledge network throughout the run of a simulation.

Agents can only communicate knowledge that they “know,” or have access to, when they
interact with other agents. Thus, changes in the knowledge network will have strong effects on
how the simulation proceeds.

This is the Construct XML used to define the knowledge network in our example deck and how I
would read it aloud:

<network src_node class_type="agent" target_node class_type="knowledge"
id="knowledge network" link_type="float" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="mean" value="0.1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
</network>

“This is the knowledge network, it is an agent by knowledge network with non-binary links. It
uses a random-binary generator, which will define values for every agent to every knowledge
bit. The random-binary generator uses a probability of ‘.1’ to place a 1 in each cell. The
generator is not, both explicitly and functionally, symmetric.”

Most of the XML looks very similar to the previous example.

Transactive Memory
Transactive Memory is how Construct implements perceptional differences from reality. In
simulation, if agents receive state information directly from the simulation, then they have no

12

“perceptual filter”, rose-colored or any other shade. Humans, however, must perceive signals
from their senses and grapple with that signal to make sense of it, to turn it into symbols. For
example, if my stomach feels empty and I hear it growling, I may eventually realize that I am
hungry. Retreating from larger philosophical issues, perception is an important source of human
error. Thus, most simulations that attempt to address human-like behavior have some sort of
perceptual mechanism. In Construct, that perceptual mechanism is transactive memory. The
following figure displays an example of transactive memory.

Figure 3. Bob's Transactive Memory

But what is transactive memory? It is a three dimensional matrix, representing what every agent
(A) thinks every other agent (A) knows (K) or believes (B). There are, currently, two separate
transactive memory matrices, a knowledge transactive memory (A x A x K) and a belief
transactive memory (A x A x B). In Construct’s implementation of Transactive Memory, ! each
ego maintains transactive memory only of alters it is connected to in the interaction
sphere. ! Agents do not necessarily (and often do not) have a good grasp of what other agents
actually know. You have probably met people that thought you knew things you didn’t, or,
conversely, you may have assumed that somebody else didn’t know much about a topic dear to
your heart, but they actually knew quite a lot about it. Both of these real-life experiences can be
approached via appropriate modification of Transactive Memory.

These perceptual processes are important because these agents use their perceptions, not the
ground-truth of the simulation (who “actually” knows what) to inform their twin primary
motivations for interaction. Those twin drives are homophily and knowledge expertise. While
defering a more detailed conversation about homophily and knowledge expertise to Part 2, a
brief discussion about both these drives is appropriate.

13

Homophily, in its most general description, is the tendency for people to prefer to interact with
people who are like themselves. This perception of ‘like themselves’ is, in Construct, a function
of the amount of knowledge an ego and an alter share. In the real world, people may assume
that others people are like themselves, even when that is not true. These egos may interact with
their alters, because of the perceived similarity. In the actual event the ego is not like the alter,
through the exchange of information, both could end up changing their knowledge and end up
being more similar to each other than when they started.

The second primary interaction motivation is knowledge expertise. This motivation reflects
human’s tendency to seek out knowledge they do not have from others--in the real social world,
this behavior is most frequently seen when needing knowledge to successfully complete one or
more tasks. In Construct, an ego with a perception that an alter has knowledge the ego does
not, will have a higher probability of interacting with the alter than it might otherwise have.

This guide focuses on knowledge transactive memory (AAK), and this is the Construct XML
required to define the knowledge transactive memory in our example deck:

<network id="'knowledge transactive memory network'"
 ego_node class_type="agent"
 src_node class_type="agent"
 target_node class_type="knowledge"
 link_type="bool" network_type="TMBool"
 associated_network="knowledge network">

<generator type="perception_based">
 <ego first="0" last="node class::agent::count_minus_one"/>
 <alter first="0" last="node class::agent::count_minus_one"/>
 <transactive first="0"

 last="node class::knowledge::count_minus_one"/>

<param name="false_positive_rate" value="0.0"/>
 <param name="false_negative_rate" value="0.5"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="true"/>
 </generator>
</network>

Whew! Well, it might seem intimidating at first, but much of it is very similar to things we’ve seen
before, but carried to the third dimension. ! It is essential that this network id contain the
single quotation marks (‘) inside the double quotation marks. !

The argument ego_node class indicates the agents that have these perceptions, the set of egos
in the network. The argument src_node class indicates the agents for which the ego have
perceptions, and the argument target_node class shows that, further, the perceptions are about
what these other agents know. The associated_network indicates that the ground-truth network
these perceptions will be based on is the knowledge network. A specific example with named

14

agents could be Mike thinks Geoff knows about dancing. In more generalized form, this is a
matrix that stores what each ego believes their connected alters know.

The associated_network particularly matters for this special type of generator -
perception_based. Again, it’s very similar to the other generator, taken to a third dimension. The
arguments ego, alter and transactive are parallel to the node classes defined in the network:
ego_node class, src_nodelcass, and target_node class, respectively. The parameter
false_positive_rate indicates how likely egos are to perceive that their alters know things they do
not, in this case, not at all likely. The parameter false_negative_rate indicates how likely agents
are to assume that agents do not know things they actually do - this happens approximately
50% of the time in this example. The parameter rounding_threshold is useful when knowledge
bits are not integer values. Values other than integer zero and integer one represent a
knowledge bit that is partially known. This “sorta known” state is, for the purposes of transactive
memory, binarized using the parameter as the cut-off point--values below the threshold will
become zero and values equal to or greater than the threshold will become one. This parameter
is necessary but not useful in this example. Part 2 will discuss its utility in depth. The final
parameter verbose, if defined and set to true, will cause Construct to write a set of progress
indicators to the console’s standard out informing a researcher how far along the initialization
process has progressed. If the parameter is undefined, Construct defaults to it being false.

The full snippet of XML, and how it could be read aloud, follows:

<network id="'knowledge transactive memory network'"
 ego_node class_type="agent"
 src_node class_type="agent"
 target_node class_type="knowledge"
 link_type="bool" network_type="TMBool"
 associated_network="knowledge network">

<generator type="perception_based">
 <ego first="0" last="node class::agent::count_minus_one"/>
 <alter first="0" last="node class::agent::count_minus_one"/>
 <transactive first="0"

last="node class::knowledge::count_minus_one"/>

<param name="false_positive_rate" value="0.0"/>
 <param name="false_negative_rate" value="0.5"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="true"/>
 </generator>
</network>

“This is the knowledge transactive memory network, it is an agent by agent by knowledge
network with binary links. It uses the knowledge network as its ground-truth. It uses one
perception-based generator and will populate values for all egos and how they perceive all
alters and all of their associated knowledge. Egos will be pessimistic, they never assume agents

15

have knowledge they do not, and often assume agents do not have knowledge they actually
do.”

Thoughts on Experimentation
In this guide, we have discussed a set of primitive objects in Construct and three key networks.
These networks are:

• the interaction sphere networks--which defines “who could ever know who”,
• the knowledge network, which defines “who knows what”, and
• knowledge transactive memory, which defines “what people think other people know”.

The deck, as provided, does not quite the serve the needs of the scenario as given. This is
intentional. The changes required are relatively minor, and can be confronted with a variety of
approaches, but should be explored directly. The motivating scenario suggests:

• Two groups of agents
• Each group has unique knowledge to their group
• The two groups are, initially, completely isolated from each other.

Whereas, the deck, as shown here says that:

• All agents connected to all other agents
• All agents have similar knowledge

Obviously, some effort will need to be made to reconfigure the interaction-sphere and the
knowledge network so that groups can be isolated and also that groups may have unique
knowledge. We leave it up to the reader to consider how such a change may be achieved.
Remember that multiple generators can be used to define values for portions of the matrice
space.

Outputs
Researchers and simulations usually compare outputs of Construct simulations by examining
files written over the course of the simulation. It’s outside the scope of this quick start guide to
offer in-depth suggestions on how to deal with large quantities of simulation data, but the deck
comes prepared with a set of handy outputs. A brief English summary of each output is below.

! When Construct writes matrices to file(s), as in this example to a comma separated value
file, it will separate each row from the others with a line termination symbol appropriate for
the host operating system (Carriage Return/Line Feed for Windows-type OS). If a researcher
has Construct write multiple time periods to a single file, each time period is separated from
others with a single empty line. !

• The knowledge network at every time period, with each agent separated by a new line
from other agents. Each time period is separated by a blank line, but is otherwise un-
numbered.

16

• Per-Agent diffusion values (# of bits agent has/# of all knowledge bits)
• Who interacted with whom every time period.
• Who was likely to interact with whom every round

Use these outputs (particularly the diffusion values) to examine questions of interest, see how
they change (going up or down) as you manipulate the construction of the interaction sphere
and the knowledge network. Do so, and you will quickly become comfortable with Construct.

17

High Level Diagrams of Construct Program Flow
The set of figures below show Construct’s program flow. It is helpful for the user to keep track of
what is set up for the simulation and these figures aid in describing the overall picture. They are
intended for both Consruct users and also as a helpful referent for Construct developers.

Figure 4. Construct's process has three main components.

This illustrates the three main components to a Construct run. They are an initialization section,
then a loop with all models and output operations running repeatedly until the simulation ends. It
is important to know that certain processes take place only within the Constuct initialization
phase, such as setting up Transactive Memory and determining possible interactions partners
for each ego.

Construct developers can create multiple models – this tech report focuses on the standard
interaction model, but this model can be extended or amplified with special case models. Many,
but not all, special case extensions are then folded into the larger simulation as appropriate.

18

Figure 5. Construct's intialization process starts by reading the deck, then
initializes nodes and networks, then goes through model specific setup.

Here we see a list of the components of the initialization section of Construct. They are run from
top to bottom. The input deck is read. Nodes are created, and then relationships between nodes
ae defined. All models enabled in the Construct deck are then initialized.

19

Figure 6. Stables of models can be run each turn in Construct. They run linearly,
in an order defined by the user.

Here we see that models can be arranged in different orders and that they run in sequence from
top to bottom. The order of models in the Construct Deck specifices the order in which they run
in the simulation. Also, new models can be introduced into the stack at any point by including
them in the input-deck.

20

Figure 7. Operation Runner allows for various operations to take place.
Operations can be ordered by the user.

Just as with the models, the output operations are run in order from top to bottom and can be
reordered in the same way. They run in order based on their order of appearance (from top to
bottom) in the Construct Deck. This can include model-specific operations, but often involves
outputting networks.

21

Figure 8. The Interaction Model is a core part of the Construct.

The Interaction Model is the most widely used Construct model. It has two parts. First, the
system is initialized. Certain networks (specifically the Interaction Sphere) are read during this
process and not again, changes to those networks after initialization will not produce useful
change. Afterwards, this model is responsible for determining the likelihood of interaction with all
available partners, and tracks information gained to update those interactions over time.

22

Figure 9. The probability network for "who talks to who" is an output of a variety
of factors, some static, and some dynamic.

The probability that two agents will form a communication pair is dictated by similarity and
expertise. Some of these values will change as a result of interaction. These changes will also
influence future interaction. Together the influence of interaction on the similarity and expertise
values as well as the similarity and expertise influence on interaction creates a feedback loop
inside the Interaction Model.

23

Figure 10. Interactions are created through matching up available initiators and
receivers.

Agents are placed into pools of communication initiators and receivers. Agent pairs are drawn
from these pools and placed in communication queues. The Interaction Probability Network
influences which pairs are created.

24

Figure 11. Information Exchange relies on both medium and message.

During Information Exchange, three important things occur. One, the information chosen to
exchange is determined. Two, the medium over which the information will be sent is
determined. Three, the actual exchange of information takes place.

25

PART TWO: Construct in Detail
This section of the report is, to some degree repetitive to the information in Part 1: Construct
Essentials. This is a deliberate choice by the authors.

Part 2 provides in-depth details of the workings of Construct. Topics include the operations of an
example deck, the outputs of an example deck, agents, knowledge, Binary Knowledge, Non-
Binary Knowledge, Forgetting, Transactive Memory of Knowledge, Beliefs, Belief Formation
equations, Tasks, Binary Task Selection, Energy Tasks, Biased Binary Task Selection,
Interactions, and additional special topics will be included in the appendix. Throughout this
portion of the report and the appendices, we make an assumption that readers have some
familiarity with general programming concepts and terminology--which may lead us to skip
details that an introduction to programming text would include but would seem pedantic here.

Variables

Declaring, defining, and casting variables
Variables in Construct are generally user specified constants for a specific simulation.
Modifying the values of Construct variables is part of the Scripting Language support which
Appendix E discusses in detail. Researchers frequently use variables to make the input file
easier to read and adjust for future simulations--changing a value in a single place makes
maintaining consistency easier than relying on ‘Search and Replace.’ Examples of variable use
include setting the total number of agents, changing agent group sizes as a function of the
number of agents, and many other uses. Construct expects variables to be at the top of the
input file enclosed in a <construct_vars></construct_vars> ConstructML tags. Modelers declare
and define assign variables once, and then reference that variable whenever needed throughout
the input deck. ! Modelers must declare variables prior to using them, !or Construct’s parser
will fail. Below is a sample of ConstructML showing the three ways a modeler can declare and
define variables. The three ways are: declare and define as a constant (var1, var2, var3 below);
declare and define in terms of other, prior-declared, variable (var4 below); and finally to declare
and define in terms of a mathematical or logical operation on other prior-declared variables or
constants (var4 and var5 below).

<construct_vars>
<var name="[name]" value="[value]"/>
...
<!-- examples of var declarations and definitions -->
<var name=”var1” value=”1” />
<var name=”var2” value=”’var2 as string’” />
<var name=”var3” value=”var3 as another string” />
<var name=”var4” value=”construct::intvar::var1” />
<var name=”var5” value=”construct::intvar::var1+1” />
<var name=”var6”
 value=”construct::intvar::var1+construct::intvar::var1” />
...

26

</construct_vars>

! Construct variables are not case sensitive. Construct converts variables to lowercase for
internal use. ! Like many programming languages, Construct requires variables start with an
alphabetical letter. Variables can use ASCII alphanumerics and the underscore; other special
characters while cause the parser to fail. Variable names are globally accessible throughout a
simulation’s input file, and must therefore be unique across the simulation’s input file; there is no
lexigraphical scoping or overloading. Construct supports the multiple variable types though the
astute reader will note the above ConstructML has no explicit typing associated with each
variable. The supported variable types are floats/decimal values, integer values, strings,
booleans, and even expressions that can be evaluated as scripts. Appendix E discusses scripts,
scripting, and evaluation of script segments in detail. To reference a variable, a modeler would
type the following as a general syntax:

construct::[type]::[variable name]

And an example of a specific variable would be:

construct::boolvar::short_experiment

While the [variable name] field can refer to any variable defined within the simulation, there are
a limited number of [type] values that Construct accepts. The use of [type] helps Construct cast
the [variable name] to the C++ type for processing. ! If a modeler omits construct::[type]:: as
a preface to [variable name], Construct will attempt to deduce the variable type. !
Modelers that rely on Construct’s built-in type heuristics for type guessing may get unexpected
results and the authors highly encourage the verbose method of referring to variables in input
decks! The five acceptable values for [type] are shown, in alphabetical order, below.

§ boolvar, defines the variable as a boolean (true or false). Construct follows the C convention
that zero is false, non-zero is true. The authors highly recommend modelers to stick with the
newer convention of zero is false, and one is true. If the modeler is attempting to cast a variable
to a float, the following casting rules are in place.

• If casting from an non-zero integer or float, Construct casts the value as true.
• If casting an zero-valued integer or float, Construct casts the value as false.
• If casting from a string, if the string is “true” (case insensitive) or evaluations to a non-

zero integer or float, Construct casts the value as true, otherwise it casts the value as
false.

§ floatvar, defines the variable as a float (sometimes refered to as double in this report).
Construct supports positive and negative floats. If the modeler is attempting to cast a variable to
a float, the following casting rules are in place.

• If casting from an integer, Construct simply adds a decimal place and zeros.
• If casting from a bool, Construct treats false as 0.0 and true as 1.0.

27

• If casting from a numeric string (e.g., ‘2’, ‘2.15’), Construct will cast to a float and
maintain or add decimal place digits as appropriate.

• If a mathematical function uses an integer value as a float variable, the result will be a
float value.

• If casting from a non-numeric string or other variable that cannot be cast as an number,
Construct silently casts the value as 0.0. There is no mechanism to warn a modeler of
this situation in the deck during parsing, nor during execution.

§ intvar, defines the variable as an integer. Construct supports positive and negative integers. If
the moder is attempting to cast a variable to an integer, the following casting rules are in place.

• If casting from float/double to integer, Construct silently truncates the original value.
There is no mechanism to warn a modeler of this situation in the deck during parsing,
nor during execution.

• If casting from a bool, Construct treats false as 0 and true as 1.
• If casting from a numeric string (e.g., ‘2’, ‘2.15’), Construct will cast to an int, and silently

truncate, as it does with floats/doubles.
• If casting from a non-numeric string or other variable that cannot be cast as an number,

Construct silently casts the value as 0. There is no mechanism to warn a modeler of this
situation in the deck during parsing, nor during execution.

§ stringvar, defines the variable as a string.

Construct can cast all variable types to strings.

If the modeler decides to omit the single quotation marks in the variable declaration (e.g, var3
above), Construct may still treat the variable as a string. It does this if the first white-space
separated word in the string is not a Construct-reserved word. This behavior is silent. There is
no mechanism to warn a modeler of this situation in the deck during parsing, nor during
execution.

§ expressionvar, defines a variable as an expression. Construct evaluates the expression and
returns it. An expression can evaluate to any of the other four [type] though it may require the
modeler to cast the result to the desired final [type].

There are at least two ways of casting a variable, or an expression composed of variables. The
first is to cast within the value attribute of a var tag. Some examples are below. The second is to
assign the value of one variable to another variable and cast it during the assignment process.

<var name="cast_example1" value="(4/2):bool"/>
<var name="cast_example2" value="(4/2):string"/>
<var name="cast_example3" value="(4.0/2.0):int"/>
<var name="cast_example4" value="(4/2):float"/>
<var name=”cast_example5” value=”construct::stringvar::cast_example1” />
<var name=”cast_example6” value=”construct::intvar::cast_example2” />

28

Evaluating Variables
Like many programming languages and applications, Construct reads its input deck from top to
bottom, left to right. Variable names are read and stored before variable values.

! Construct evaluates mathematical and logical expressions, as well as casting between
variable types, from right to left, though modelers can make use of parentheses to specify a
different evaluation ordering. !

The example mathematical expressions below in Table 1 provides another mechanism to allow
this important point to be retained by modelers

Table 1. Mechanism for evaluating variables in Construct.

Variable Declaration Actual
Value

Expected
Value Warning! Non-Intuitive Explanation

<var name=”var1” value=”3/5.0+1” /> 0.5 1.6 X 5.0 + 1 happens first

<var name=”var2” value=”(3/5.0)+1” /> 1.6 1.6

<var name=”var3” value=”3-1-1” /> 3 1 X 1-1 happens first

<var name=”var4” value=”3-1+1” /> 1 3 X 1+1 happens first

<var name=”var5” value=”(3/5):float” /> 0 .6 X
Integer division
happens first

<var name=”var6” value=”(3/5.0)” /> 0.6 .6

<var name=”var7” value=”(3.0/5)” /> 0.6 “0.6” X
if either operand in
division is a float,
the result is a float

<var name=”var8” value=”(3/5.0):string” /> “0.6” “0.6”

<var name=”var9” value=”(3/5.0)”
with=”delay_interpolation/>

“3/5.0” “3/5.0”
See section on
Variables, Macros,
and with Statements

Variables, Macros, and with Statements
Construct supports the use of a macro language. With macros, users can automate the creation
and use of variables to make their simulation input decks more flexible--at the expense of
adding a level of complexity.

With dollar sign ($) delimited macro variables, a modeler can create a complex set of variables
for use. With the use of dollar sign macros, a modeler must also use a with attribute in the var
tag that declares the variable. Examples of macro use to declare and define variables are
below.

29

<construct_vars>
<var name=”letters” value=”x,y,z” />
<var name=”numbers” value=”2,3” />
<var name=”var_i” value=”i”

with “i=construct::stringvar::numbers” />

<var name=”$letters$_$numbers$” value=”$letters$$numbers$”

with “$letters$=construct::stringvar::letters,

 $numbers$=construct::stringvar::numbers”/>
<var name=”variable_1” value=”i” with i=1 />
<var name=”variable_2” value=”construct::intvar::variable_i”

with i=1 />

<var name=”variable_I”
value=”construct::intvar::variable_$I:int$ + 1”

 with “I=3” />

<var name=”variable_i” value=”i”

with “i=construct::stringvar::letters” />

<var name=”variable_4” value=”j”

with “i=3, j=construct::intvar::variable_i,verbose”/>

</construct_vars>

Table 2. Variables as evaluated.

Variable Name Value

Letters “x,y,z”

Numbers “2”

var_2
var_3

2
3

x_2
y_2
z_2
x_3
y_3
z_3

x2
y2
z2
x3
y3
z3

variable_1 1
variable_2 1

30

variable_3 4
variable_x
variable_y
variable_z

X
y
z

variable_4 4

Like non-macro variables, variables defined using macros must start with an alphabetic
character. ! Construct macro variables are case sensitive. ! A macro of i is lexicographically
distinct from I. Additionally, no macro should use a reserved word from the scripting language
discussed in Appendix E. The declaration of a macro is valid only within the var tag it is in.
Attempting to reuse a macro, such as i in a new var tag will create a new macro, not reuse
the previous instance of i. Macro’s are expanded before any further evaluation of the variable
occurs. Modelers that attempt to use macros without the with statement will receive a
Construct error when parsing the input deck.

The with attribute within a var tag can accept several pre-defined values as shown below.

• verbose - will print to the console standard out the evaluation of the parameter. Values
will reflect the value before the Construct initializes the parser, after the parser complete,
and after the evaluation is complete. It will also cause Construct to provide additional
error information if there is an error during parsing the input file.

• details - when the modeler uses this value inside the with attribute within a var tag in
conjunction with the verbose value, to allow the modeler to see the values of the macro
substitutions. It will also cause Construct to provide additional error information if there is
an error during parsing the input file.

• preserve_all_white_space - will cause Construct’s parser to retain all white space (e.g.,
tabs, linefeeds, carriage returns, spaces) when evaluating the expression.

• preserve_spaces_only - will cause Construct’s parser to retain all spaces.
• delay_interpolation - will cause Construct to not evaluate the value of the variable during

its declaration and definition. Instead, Construct will evaluate the value of the variable
each time the simulation deck includes it in an construct::expressionvar::[variable name].

Using variables

When introducing variables earlier we provide a few examples of uses of variables within a
Construct input deck. Below, we’ll discuss these uses more to provide examples of the ways
researchers within CASOS have used variables.

Variables as logical flags. One common use for variables is to create logical flags in the input
deck. An example of changing values to the variable time_count variable, which is dependent
on short_experiment, is below:

<var name="short_experiment" value="true"/>
<var name="time_count" value="if(construct::boolvar::short_experiment)
 {

31

 50
 } else {
 100
 }"/>

This is telling Construct to change time_count value to 50 if short_experiment is true, otherwise
set time_count to 100.

Another example could be to declare a debug variable that allows deck-wide enabling verbose
output or not. Putting such a variable near the top of the deck would supporting making the
change quickly and easily.

<var name="debug_output" value="true"/>

Variables for important or key quantities. Another use is to specify values that control the
experiment. Examples of such values could be the number of agents, the number of knowledge
facts, the number of beliefs, as well as the size of other node classes. An example of changing
such a quantity, as a function of whether debug is enabled.

<var name="debug" value="true"/>
<var name=”agent_count”

value=”if (construct::boolvar::debug) {15} else {150}” />
<var name="num_groups" value="4"/>

Variables for defining bounds. Another example could be setting up the start and end values for
agents in adjacent groups, assuming groups of agents are important to the modeler’s
experimental design.

<var name="group_size" value="15"/>
<var name="group0_start" value="0"/>
<var name=”group0_end”
value=”construct::intval::group0_start + group_size - 1” />
<var name="group1_start" value=”construct::intval::group0_end + 1 />
<var name=”group1_end”
value=”construct::intval::group1_start + group_size - 1” />

Redefinitions of key values for logical clarity. A modeler may thing about the average degree, or
the average number of connections, per agent. The various network generators require an
average density as a parameter. Both measures are related, so using a variable and a bit of
math, allows the modeler to keep their concepts while meeting the input expectations of
Construct.

 Common Gotchas
In no particular order are lessons from the authors, both as modelers and as developers.

• Construct’s parser will silently ignore any XML tags within the <construct_vars>
</construct_vars> pair that are not <var> tags.

32

• Using an editor that can check for well-formed XML will generally save a modeler
significant amounts of time in avoiding Construct parser errors. Use of scripting support
throughs most such editors for a loop, so we are still looking for viable ways others have
used to help reduce non-well-formed-XML errors.

• ConstructML requires both the name and value attributes of a var tag to be non-empty
strings. Empty strings (e.g., “”) will cause Construct’s parser to fail.

• Networks within Construct represent connections between nodes of the various node
classes (e.g., agents, tasks, knowledge, time). Most networks have names that include
spaces (e.g., “interaction sphere network”). If a modeler needs to store a the name of a
network in a stringvar, the authors strongly recommend using the
with=”preserve_spaces_only” attribute when declaring the variable.

Parameters
Parameters are global values that control how construct operates, and are used to modify the
experiment. All parameters should be set within the parameters tag of the input deck, and
syntaxed as follows:

<construct_parameters>
<param name=“[name]” value=“[value]”>

</construct_parameters>

Parameter names must be valid like the parameters listed below and the values for parameters
must be valid depending on the type of parameter, otherwise Construct will yield errors. The
following are common parameters used in Construct simulations.

Seed
Seed is a parameter used to control the random seed for the simulation. For a time dependant
seed, set this parameter value to 0, otherwise set to an integer value to get constant results if
the experiment were to be run multiple times.

<param name="seed" value="1"/>

Verbose Initialization
Verbose initialization is used to determine values of every construct variable and every value
when defining nodes and networks. It is recommended to enable this parameter as true to aid in
debugging a simulation.

<param name="verbose_initialization" value="true"/>

Dynamic Environment
This parameter determines whether or not to include an “outside world” agent that possesses
different knowledge and can exchange information each turn of the simulation, which would
introduce new information to agents in the simulation. The default value is false.

33

<param name="dynamic_environment" value="false"/>

Default Agent Type
This parameter determines which kind of agent is set to be the default type agent. The default
type is set to human.

<param name="default_agent_type" value="human"/>

Learning and forgetting
These parameters determine how an agent gains or loses information during the simulation.
There are various forms of forgetting and learning that agents can take on. Forgetting
determines if agents can lose facts that they learned and is a boolean parameter. If true,
forgetting can decay at a sest rate under binary forgetting network. Binary Forgetting determines
if agents are to lose the fact entirely or not. The agent either loses the entire fact or loses
nothing. Binary Learning determines if agents can either learn the entire fact at once or not at all
or learn part of the fact. When true, the agent either leanrs the entire fact at once or not at all.
When false, the agent can learn a portion of the knowledge fact.

<param name="forgetting" value="false"/>
<param name="binary_forgetting" value="true"/>
<param name="binary_learning" value="true"/>

Use mail
The Use_mail parameter enables or disables mail communication, which allows agents to send
a message at one period that agents can read at a later period and acquire knowledge. For
agents to use mail, they must use the communicationMechanism called mail, and must employ
various additional networks and parameters. For more detail on the mail system, reference
CMU-ISR-08-114.

<param name="use_mail" value="false"/>

Default communication weights
This parameter determines what kinds of messages are sent whenever agents communicate
with each other. Agents can communicate complex messages with multiples components,
including knowledge, belief, and transactive memory. The communication weights set the type
of content of the message. Belief Weight is set as the probability that an agent chooses to
include its belief on any belief in the message. Transactive memory Belief weight is set as the
probability that an agent decides to send its perception of any third party’s belief in the
message. Fact Weight is set as the probability that an agent chooses to include a fact in the
message. Transactive memory belief weight is set as the probability that an agent decides to
send its perception of any third party’s knowledge in the message. These weights need to sum
to a value of 1, otherwise they will normalize.

<param name="communicationWeightForBelief" value="0.2"/>
<param name="communicationWeightForBeliefTM" value="0.1"/>

34

<param name="communicationWeightForFact" value="0.5"/>
<param name="communicationWeightForKnowledgeTM" value="0.2"/>

Thread count
The thread count parameter sets the number of threads construct can use to parallelize a
construct process. It is best to keep this set to 1 and seperate the processes and runs rather
than to increase the threads.

<param name="thread_count" value="1"/>

Active models
This parameter specifies the models that are active in the simulation to govern interaction.
There are three main models. The first is the Standard interaction model which uses homophily
and expertise to guide interaction among agents. The Standard influence model contains
influence and influencibility networks that determine how an agent’s beliefs are influenced. The
Standard belief model updates beliefs based on an agen’ts knowledge, belief weights, and
beliefs of others. Below, Table 3 lists the required networks for all three standard models.

Table 3. List of networks for Construct

Required Networks for
Standard Interaction Model

Required Networks
for
Standard Influence
Model

Required Networks for
Standard Belief Model

for agent interaction (23) for agent influence (3) for agent belief (4)

agent initiation count
agent reception count
agent message complexity
agent selective attention effect
agent learning rate
agent forgetting rate
agent learn by doing rate
knowledge
physical proximity
sociodemographic proximity
social proximity
physical proximity weight
sociodemographic proximity weight
social proximity weight
binarytask similarity weight
binarytask assignment

beInfluenced
influenceability
agent belief

beInfluenced
knowledge
agent belief
belief knowledge weight

35

binarytask requirement
binarytask truth
knowledge similarity weight
knowledge expertise weight
interaction knowledge weight
transmission knowledge weight
knowledge priority
learnable knowledge

The Five Core Networks (always required, regardless of model)

interaction sphere
access
agent active timeperiod
agent group
knowledge group

note: the word “network” has been
omitted from the end of all network names

Active mechanisms
This parameter specifies network post processes that are performed when setting up a
simulation. This parameter includes access constraints such as literacy and information
mechanisms.

<param name="active_mechanisms" value="none"/>

 Transactive Memory Model
Modern Construct allows an option for how Transactive Memory should be handled, should
Construct:

1) Should use group stereo-types for unknown alters, or
2) Attempt to keep a full transactive memory alter x knowledge network for all known-about

alters.

The new stereotype model is much more efficient as the number of agents increases. There
are several parameters involved:

<param name="tm_model" value="multi_level"/>

This parameter tells Construct that rather than using the default (Option 2), it should use group
stereotyping. Several additional parameters are used to control aspects of stereo-type process.

36

All four of these parameters do nothing if “tm_model” is not set to “multi_level”, as shown in the
line above.

<param name="activation_threshold_agent" value="0.0"/>
<param name="activation_threshold_group" value="-5.0"/>

In the new model, interaction between agents (both as themselves and as representatives of
their groups) raises the agent’s interest. But the agent can’t keep track of everyone they meet;
these two parameters control how quickly the agent dumps their knowledge representation of an
agent or group (respectively) by defining the minimum value for an ‘interesting’ alter or group.
As currently set in this example, group representations tend to endure much longer than alters.

<param name="agent_annealing_halflife" value="6"/>
<param name="group_annealing_halflife" value="25"/>

Our conceptions of our friends and of social groups tends to harden over time, these two
parameters indicate the amount of time (in turns) that the definition of a group or an alter can be
adjusted while they are an active alter. If an alter is lost, but then regained, this timer is
effectively reset.

Nodes
Nodes are grouped into classes called node classes. All agent nodes are within agent node
classes, and all nodes of the same type are in the same node class. node classes can be
associated with each other to create networks through node links. Node links are manipulated
within construct and can be added or modified. An example of this would be agents learning
knowledge. There is a node link between the agent node and the knowledge node that is now
created as the agent learns. Below in Table 4, are some common node classes with some
important networks that contain links between nodes, in an input deck.

Table 4. Common node classes in Construct

NODE
CLASS

Agent Belief Knowledge Binary
Task

Timeperiod Dummy_
node class

Agent interaction
sphere ntwk

Belief
Network

knowledge
network

task
assign.
Network

agent active
time ntwk

agent type
network

Belief belief
weight ntwk

Knowledge

 task truth
ntwk

37

Binary Task

Timeperiod

Dummy

Agent node class
The agent node class represents the actors in the simulation. Agents interact with each other,
exchange messages that contain beliefs and facts, and make decisions based on interaction.
Many networks in the input deck are associated with agents as shown in the table___ above.
Some common types include agent by knowledge and agent by belief networks. The agent
node class must be present in the simulation and must have at least one node, otherwise the
experiment has nothing to model. Agent nodes also have an associated agent type, which
determines things that an agent can do, such as give and receive knowledge. Most agents are
set as human, however this is not always the case. In some cases a user may want to simulate
an intervention as a source of information such as a website that human agents can gain
knowledge from.

Knowledge node class
The knowledge node class represents knowledge that can be exchanged between agents. Each
knowledge bit is represented by one node. There are two types of knowledge, stylized and
specific knowledge. Stylized knowledge would be something that drives interaction between
agents while specific knowledge would have specific meaning such as an agent knowing how to
pass a certification exam. Agents are associated with knowledge through the knowledge
network. Agents can have knowledge of entire bits or partial knowledge by adjusting knowledge
link weight in the knowledge network. Agents keep track of other agents’ knowledge through
knowledge transactive memory network. In the input deck, there are knowledge count
knowledge bits within the node class.

<node class type="knowledge" id="knowledge">
<properties>

 <property name="generate_node class" value="true"/>
<property name="generator_type" value="count"/>

 <property name="generator_count" value=
 "construct::intvar::knowledge_count"/>

</properties>
</node class>

Belief node class + belief formation equations
Beliefs represent whether or not an agent agrees or disagrees with a principle. These principles
are represented by nodes in the belief node class. Agents are associated with these beliefs
through the agent belief network, either with positive beliefs (agreements) or negative beliefs

38

(disagreement). The standard belief model defines complete agreement with a value of 1.0, and
complete disagreement with a value of -1.0. Neutral belief is set at 0.0. These values are set for
a single belief, however in some cases multiple beliefs rather than one single belief will be
criteria for a decision that an agent makes. In terms of agents’ perception on other agents’
beliefs, their perception is not perfect, i.e they don’t always know exactly what another agent
believes. Their perceptions are stored in the belief transactive memory network and agents will
refer to this when determining social influence. So in essence, an agent’s belief as well as their
perception of what other agents believe, will play a role in their decision making and will show
the effects of social influence on decisions. The number of beliefs in the input deck is set by
modifying belief_count.

<node class type="belief" id="belief">
<properties>

<property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value=
 "construct::intvar::belief_count"/>

</properties>
</node class>

Binary task node class
Binary tasks are actions that agents can perform during the simulation. These actions are
represented by nodes in the belief class. To perform these tasks, knowledge relevant to the task
is required by the agent and can be attempted multiple times throughout an experiment time
period. An example of this would be an agent having to pass a test; with insufficient knowledge
during the first time period, the agent would not pass, but throught the second time period the
experiment could be set up to allow that agent to gain enough knowledge bits to perform the
task of passing the test. If an agent is able to perform a binary task, which is set in binary task
assignment network, agents will use a subset of their knowledge related to the task. This
knowledge is set in the binary task requirement network. That subset is then matched up
against the true values that confirm the task to be performed. This is set in binary task truth
network.

Agents will perform binary tasks in the following manner:
1. The agent is assumed to be able to complete the task correctly
2. All required knowledge bits are checked relevant to the agent’s knowledge in the binary

task truth network. If the agent’s knowledge matches the required knowledge, the
agent’s accuracy is unchanged. If it doesn’t match, the agent guesses with 50%
probability. If correct, the next knowledge bit is checked, and if guessed incorrectly, the
agent does not perform the task accurately.

3. There is a chance that an agent can misrepresent information. This is set in the
misrepresentation probability network and inverts the decision that would be made
based on knowledge and guessing. For example, an agent who should be able to pass a
test, won’t pass the test with a probability equal to the misrepresentation rate.

39

4. If misrepresentation is not set, the agent will always guess when their knowledge does
not match the knowledge bits in the truth network. Agents that are assigned the same
binary task will become more similar to each other. Similarity can be changed via the
binary task similarity network. Agents who are assigned the same binary task would
typically have similar knowledge bits, however they do not gain transactive memory
through through binary tasks.

<node class type="binarytask" id="binarytask">
<properties>

<property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value=

"construct::intvar::binarytask_count"/>
 </properties>
</node class>

Energy task node class
Energy tasks, represented as nodes in Construct, are actions that require a specific amount of
effort rather than knowledge. Their ability to complete an energy task are setup in the energy
task assignment network, and will expend energy on the task until they meet the required
amount of energy to complete the task, which is set in the energy task requirement network.
Similar to binary tasks, energy tasks can be attempted through different time periods in the
simulation, however they are completely independent of binary tasks and knowledge.

The following procedure is used for an energy task:

1. An energy task instance is created and set by the energy task time network for a given
agent.

2. The total number of energy task instances is tallied for the agent, which determines the
total number of instances which an agent can devote energy.

3. For all incomplete energy tasks, the total amount of energy devoted to completion is
equal to the reciprocal of the total number of tasks. So if an agent has three tasks, the
amount of energy added to each task is equal to ⅓. Once the agent has spent the
required amount of energy on the task, the task is complete and the agent will no longer
spend time working on the task.

4. Any energy not spent on the task is lost and isn’t saved for future time periods.
5. There is no measurement of accuracy with energy tasks. Instead, the total number of

energy tasks completed is measured following a simulation.

<node class type="energytask" id="energytask">
<properties>

<property name="generate_node class" value="true"/>
<property name="generator_type" value="count"/>

 <property name="generator_count" value=
 "construct::intvar::energytask_count"/>

</properties>
</node class>

40

Time period node class
Nodes in the time period node class represent one simulated time period in the simulation. The
length of the simulation is represented by the number of nodes in this node class. The
experimenter can decided whether agents are active during a time period by changing values in
the agent active time period network. Some models treat the first period as a baseline and may
alter some algorithms due to a lack of a previous time period to calculate a change from. For
this reason it is better to run simulations for larger time periods.

<node class type="timeperiod" id="timeperiod">

<properties>
<property name="generate_node class" value="true"/>

 <property name="generator_type" value="count"/>
 <property name="generator_count" value=
 "construct::intvar::time_count"/>

</properties>
</node class>

Agent group node class
The agent group node class keeps track of collections of similar agents. Construct can use
these node classes to calculate network metrics and for simulation analysis. For example,
Construct can determine how many agents have learned one specific fact within a group of
agents.

<node class type="agentgroup" id="agentgroup">
<properties>

 <property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value=
 "construct::intvar::agentgroup_count"/>

</properties>
</node class>

Knowledge group node class
The knowledge group node class keeps track of collections of similar knowledge bits. Construct
can also use these to calculate a number of metrics. For example, Construct can determine how
many knowledge bits have been learned by agents in a particular agent group.

<node class type="knowledgegroup" id="knowledgegroup">
<properties>

<property name="generate_node class" value="true"/>
<property name="generator_type" value="count"/>
<property name="generator_count" value=

 "construct::intvar::knowledgegroup_count"/>
</properties>

</node class>

41

Dummy node class
The dummy node class is designed to act as a placeholder node class in order to create column
vectors for other node classes. Construct works by manipulating two dimensional input and
internal networks, and with the dummy node class, one can create an agent by dummy node
class network that acts as a one dimensional network. This essentially makes visualization of
networks much easier, as well as data manipulation.

<node class type="dummy_node class" id="dummy_node class">
<node id="constant" title="constant"/>

</node class>

Agent type
This node type sets the type of agent nodes within the simulation. The agent node type has the
folllowing attributes:

• communicationMechanism - this attribute determines how an agent communicates. The
agent can communicate with others either directly or via mail. Direct communication is
where agents exchange messages face to face during a current time period, while mail
communication delays the information exchange.

• canSendCommunication - this determines whether nodes are able to send information to
other nodes of this type. Most agents should be able to send information regardless if
they are human or not. Agents who can’t send information cannot influence knowledge
or beliefs of other agents.

• canReceiveCommunication - this determines which nodes can receive information.
Agents who cannot receive information can’t learn new knowledge or change beliefs and
transactive memory.

• canSendKnowledge - this determines whether nodes can send knowledge when
communicating. This mostly has to do with content of messages that agents send.

• canReceiveKnowledge- this determines whether nodes can receive knowledge when
communicating. The content of the message received depends on the knowledge of the
sender if this is enabled. Agent’s who can’t receive knowledge will ignore knowledge bits
within a message.

• canSendBeliefs - this determines whether nodes can send beliefs.
• canReceiveBeliefs - this determines whether nodes can receive beliefs.
• canSendBeliefsTM - this determines whether or not nodes can send transactive memory

about third party beliefs.
• canRecieveBeliefsTM - this determines whether nodes can receive transactive memory

about third party beliefs.
• canSendKnowledgeTM - this determines whether nodes can send transactive memory

about third party knowledge.
• canReceiveKnowledgeTM- this determines whether nodes can receive transactive

memory about third party knowledge.
• canSendReferral - this determines if agents can send referrals to other agents in

addition to knowledge and beliefs. An example of a referral would be if an agent is

42

seeking a specific piece of information and the sender has transactive memory about
someone else who has the information desired, the sender can then reffer the agent
seeking information to the agent with information. In other words, the sender agent can
recommend an expert to the receiver agent.

• canReceiveReferral - this attribute determiens if agents can receive referals from agents
in addition to knowledge and beliefs. If the receive wants information and can receive
referrals, an agent with transactive memory about an expert agent can send the referall
to the receiving agent, directing them to the source of information that they seek.

<node class>
<node id="human" title="human">

<properties>
<property name="canSendCommunication" value="true"/>
<property name="canReceiveCommunication" value="true"/>
<property name="canSendKnowledge" value="true"/>
<property name="canReceiveKnowledge" value="true"/>
<property name="canSendBeliefs" value="true"/>
<property name="canReceiveBeliefs" value="true"/>
<property name="canSendBeliefsTM" value="true"/>
<property name="canReceiveBeliefsTM" value="true"/>
<property name="canSendKnowledgeTM" value="true"/>
<property name="canReceiveKnowledgeTM" value="true"/>
<property name="canSendReferral" value="true"/>
<property name="canReceiveReferral" value="true"/>

</properties>
 </node>

</node class>

Other node classes
While the ten node classes listed above are standard node classes in construct models,
Construct is not limited to these ten node classes. Users can define their own node classes if
desired, as long as they follow the same syntax as the node classes above and are unique
names.

Networks
Networks are the main data structures in Construct. Since construct is a network based
simulation, most of the data that goes into input for simulation are in the form of network.
Networks are the relationships between node classes listed in the section above. The
algorithms in Construct reference these networks in order to perform tasks. For example the
agent by agent knowledge network represents which knowledge is known by which agents.

Table 5 shows specific networks with their relationship to node class as well as a brief
description.

43

Table 5. Network relations to node classes

NetworkName
Source & Target

node classes
Function or Purpose in

Demo Input Deck

agent type name agent x dummy specifies the agent type for each agent,
thereby identifying key behavior

agent initiation count agent x timeperiod number of times agent can seek a
partner, actively initiating
communication

agent reception count agent x timeperiod number of times agent can be sought
out, passively receiving communication

agent message complexity agent x timeperiod amount of info an agent can send when
communicating

beInfluenced agent x dummy how resistant an agent is to changing
its belief

influentialness agent x dummy how strongly an agent can influence the
beliefs of others

agent selective attention effect agent x dummy percentage of agent knowledge that an
agent will examine when
communicating

agent learning rate agent x knowledge how quickly an agent will learn new
knowledge when communicating

agent forgetting rate agent x knowledge how quickly an agent will forget
old knowledge

agent learn by doing rate agent x dummy how quickly an agent will learn new
knowledge when performing tasks

knowledge agent x knowledge the knowledge associated with an
agent,
i.e. what an agent currently knows

agent belief agent x belief the beliefs associated with an agent,
i.e. what an agent currently believes

belief knowledge weight knowledge x belief the impact that each

44

knowledge bit has on belief

interaction sphere agent x agent which agents are able to potentially
interact with, and keep TM, of which

access agent x agent which agents have access to which
(supplement to interaction sphere)

agent active timeperiod agent x timeperiod which agents are active
during which timeperiods

physical proximity agent x agent how close each pair of agents are
physically

sociodemographic proximity agent x agent how close each pair of agents are
socio-demographically

social proximity agent x agent how close each pair of agents are
socially

Network Name
Source & Target

node classes
Function or Purpose in

Demo Input Deck

physical proximity weight agent x timeperiod weight placed on physical proximity
when choosing interaction partner

sociodemographic
proximity weight

agent x timeperiod weight placed on s-d proximity
when choosing interaction partner

social proximity weight agent x timeperiod weight placed on social proximity
when choosing interaction partner

binarytask similarity
weight

agent x timeperiod weight placed on shared binary tasks
when choosing interaction partner

binarytask assignment agent x binarytask which agents are assigned
to which binary tasks

binarytask requirement knowledge x binarytask which knowledge bits are required
to complete which binary tasks

binarytask truth knowledge x binarytask what values knowledge bits must have
to complete which binary tasks

knowledge similarity
weight

agent x timeperiod weight placed on shared knowledge
when choosing interaction partner

45

knowledge expertise
weight

agent x timeperiod weight placed on different knowledge
when choosing interaction partner

interaction knowledge
weight

agent x knowledge weight placed on knowledge bits
when choosing interaction partner

transmission knowledge
weight

agent x knowledge weight placed on knowledge bits
when sending a message

knowledge priority agent x knowledge priorities placed on knowledge bits
when sending a message

learnable knowledge agent x knowledge what knowledge bits can or cannot
be ever be learned

agent group
membership

agent x agentgroup what agents are associated with
which agent groups

knowledge group
membership

knowledge x
knowledgegroup

what knowledge bits are associated
with
which knowledge groups

It is quite possible for a user to create more networks than there are listed in Figure 6. Networks
are specified within the <networks> ConstructML tag.

<networks>
<!-- Put all networks here -->

</networks>

Each networks tag must have five attributes: network id, source node class, target node class,
link type, and network type.

<network src_node class_type="[node class]"
 target_node class_type="[node class]"
 id="[name]" link_type="[type]" network_type="dense">
 <!-- Set links and generators here -->
</network>

Network ID is the name that refers to a given network. The source node class type and target
node class type indicate the node classes that are related by the network. Relationships
between networks are weighted and unweighted relations between node classes. Network type
specifies the storage mechanism used to represent the network. The link type defines the type
of relation stored in the network. There are boolean link types, integer link types, floating
number link types, and string link types. The link type must be the same for all links in the
network i.e it is not possible to have a boolean relationships in integer networks. Links can be
specified either through the <link> tag or the <generator> tag.

46

The syntax for link generation is listed below:

<link src_node_name="[id]" target_node_name="[id]" value="[value]"/>

For using generator to specify links, use the following syntax:

<generator type="[type]">
<rows first="[firstrow]" last="[lastrow]"/>

 <cols first="[firstcol]" last="[lastcol]"/>
 <param name="[name1]" value="[value1]"/>
 <param name="[name2]" value="[value2]"/>
 ...
</generator>

The following sections are more detailed descriptions of the networks listed above in Table 5.

Access Network
The access network is an addition to the interaction sphere and can restrict which alters agents
can communicated with. This network prevents agents from potentially interacting rather than
absolute prevention from interacting.

<network src_node class_type="agent" target_node class_type="agent"
 id="access network" link_type="float" network_type="dense">

<generator type="randomuniform">

 <rows first="0" last="node class::agent::count-1"/>
 <cols first="0" last="node class::agent::count-1"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>

</generator>
</network>

Agent Active Time Period
The agent active time period network determines which agents are active during time periods.
Active agents during a time period can interact and exchange messages as well as beliefs.

<network src_node class_type="agent" target_node class_type="timeperiod"
id="agent active timeperiod network" link_type="bool"
network_type="dense">

<generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="node class::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>

</generator>
<generator type="constant">

47

<rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>

<cols first="0" last="node class::timeperiod::count-1"/>
<param name="constant_value" value="1"/>

</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>

<cols first="0" last="node class::timeperiod::count-1"/>
<param name="constant_value"

 value="construct::boolvar::bridging_agents_active"/>

</generator>

</network>

Agent Belief Network
The agent belief network specifies how strongly an agent holds a particular belief. During the
simulation, agent beliefs can change based on what they learn and what agents around them
believe.

<network src_node class_type="agent" target_node class_type="belief"
id="agent belief network" link_type="float" network_type="dense">

<generator type="constant">

 <rows first="0" last="node class::agent::count-1"/>
 <cols first="0" last="node class::belief::count-1"/>
 <param name="constant_value" value="0"/>

</generator>
</network>

Agent Forgetting Rate
The agent forgetting rate network specifies how quickly agents forget knowledge that they
learned. Agents can partially learn knowledge bits depending on the forgetting method, through
forgetting and binary forgetting. If binary forgetting is enabled, knowledge may be forgotten
more unevenly, while if it is disabled it may be difficult for agents to completely forget a
knowledge bit. These settings depend on the experiment.

<network src_node class_type="agent" target_node class_type="knowledge"
 id="agent forgetting rate network" link_type="float"
 network_type="dense">

<generator type="randomuniform">
 <rows first="0" last="node class::agent::count-1"/>
 <cols first="0" last="node class::knowledge::count-1"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>

48

</generator>
</network>

Agent Group Membership
The agent group membership network is used to identify related sets of agents.

<network src_node class_type="agent" target_node class_type="agentgroup"
 id="agent group membership network" link_type="bool"
 network_type="dense">

<generator type="constant">
<rows first="construct::intvar::agentgroup_A_start"

 last="construct::intvar::agentgroup_A_end"/>
<cols first="0" last="0"/>

 <param name="constant_value" value="1"/>
</generator>
<generator type="constant">

<rows first="construct::intvar::agentgroup_B_start"
last="construct::intvar::agentgroup_B_end"/>

 <cols first="1" last="1"/>
 <param name="constant_value" value="1"/>

</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"
last="construct::intvar::agentgroup_C_end"/>

<cols first="2" last="2"/>
<param name="constant_value" value="1"/>

</generator>
</network>

Agent Initiation Count
The agent initiation count network specifies the number of times each agent can select other
agents to interact with. Agents can either initiate communication with others by calculating a
probability of interaction and choosing a partner based on this probability, or can wait until an
agent choose to initiate interaction with them. Initiation count specifies the number of times
agents initiate communication.

The process for agent initiation is as follows:

1. The probability of interaction is first computed between all pairs of agents that are within
their respected interaction sphere.

2. Initiation count network is examined and each agent that can initiate interaction is added
to a vector.

3. While there are agents remaining in the vector, a random agent is chosen and named
the ego agent. Using the ego agent’s interaction sphere, all possible partners are
examined and potential partners are kept. The pre computed probabilities of interaction
are then normalized for these potential partners by the total absolute probability. An

49

interaction partner is then selected from this set of probabilities with a probability equal
to that of its relative probability of interaction.

4. If the agent can’t find a partner it will interact with itself.

Below is the syntax for initiation count:

<network src_node class_type="agent" target_node class_type="timeperiod"
id="agent initiation count network" link_type="int"
network_type="dense">

<generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="node class::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>

</generator>
<generator type="constant">

<rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>
 <cols first="0" last="node class::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>

</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>
 <cols first="0" last="node class::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>

</generator>
</network>

Agent Learn by Doing Rate
The agent learn by doing network specifies how quickly agents learn particular bits of
knowledge when performing binary tasks. This allows agents to learn more about knowledge
bits that are partially known. This can allow agents to hone knowledge they already have in
order to perform a task more accurately, without interacting with other agents to gain the
knowledge.

<network src_node class_type="agent" target_node
class_type="dummy_node class" id="agent learn by doing rate network"
link_type="float" network_type="dense">

<generator type="randomuniform">

 <rows first="0" last="node class::agent::count-1"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>

</generator>

50

</network>

Agent Learning Rate
The agent learning rate network specifies how quickly agents learn knowledge. This network
also allows agents to partially learn facts.

<network src_node class_type="agent" target_node class_type="knowledge"
 id="agent learning rate network" link_type="float"
 network_type="dense">

<generator type="randomuniform">
 <rows first="0" last="node class::agent::count-1"/>
 <cols first="0" last="node class::knowledge::count-1"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>

</generator>
</network>

Agent Message Complexity
Agent message complexity specifies the number of items an agent can include in its message
when communicating with others. The process for message creation is as follows:

1. As long as the agent’s message is less than the message complexity, the type of
message item to include according to communication weights is randomly chosen. If the
agent can’t send that message item, another is chosen.

2. An item is selected of the appropriate type and verified whether it has not already been
added to the message.

Below is the syntax for message complexity:

<network src_node class_type="agent" target_node class_type="timeperiod"
id="agent message complexity network" link_type="int"

network_type="dense">

<generator type="constant">
<rows first="construct::intvar::agentgroup_A_start"

last="construct::intvar::agentgroup_A_end"/>
<cols first="0" last="node class::timeperiod::count-1"/>
<param name="constant_value" value="1"/>

</generator>
<generator type="constant">

<rows first="construct::intvar::agentgroup_B_start"
last="construct::intvar::agentgroup_B_end"/>

<cols first="0" last="node class::timeperiod::count-1"/>
<param name="constant_value" value="1"/>

</generator>
<generator type="constant">

<rows first="construct::intvar::agentgroup_C_start"

51

last="construct::intvar::agentgroup_C_end"/>
<cols first="0" last="node class::timeperiod::count-1"/>
<param name="constant_value" value="1"/>

</generator>
</network>

Agent Reception Count
The agent reception count specifies the number of times each agent can be chosen as an
interaction partner. The reception count is the maximum number of times each agent can be
selected as an interaction partner each time period.

Below is the syntax for agent reception count.

<network src_node class_type="agent" target_node class_type="timeperiod"
id="agent reception count network" link_type="int"
network_type="dense">

<generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"
 last="construct::intvar::agentgroup_A_end"/>
 <cols first="0" last="node class::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>

</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_B_start"
 last="construct::intvar::agentgroup_B_end"/>
 <cols first="0" last="node class::timeperiod::count-1"/>

 <param name="constant_value" value="1"/>
</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"
 last="construct::intvar::agentgroup_C_end"/>

<cols first="0" last="node class::timeperiod::count-1"/>
 <param name="constant_value" value="1"/>

</generator>
</network>

Agent Type
The agent type network determines which agents are of which types. While the agent nodes are
definedi n the node class, their role in the simulation is not yet defined. To determine which
properties an agent has, it must be associated with an agent type. Agent type will determine
agent behaviors such as communication mode and what can be communicated. For simplicity, a
string network was chosen to represent the agent type.

The following is syntax for setting up an agent type network via <generator> that sets agents to
be human and allows direct communication:

<network src_node class_type="agent" target_node

52

class_type="dummy_node class" id="agent type name network"
link_type="string" network_type="dense">

<generator type="constant">

 <rows first="construct::intvar::agentgroup_A_start"
last="construct::intvar::agentgroup_A_end"/>

 <cols first="0" last="node class::dummy_node class::count-1"/>
 <param name="constant_value" value="human"/>

</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_B_start"
last="construct::intvar::agentgroup_B_end"/>

 <cols first="0" last="node class::dummy_node class::count-1"/>
 <param name="constant_value" value="human"/>

</generator>
<generator type="constant">

 <rows first="construct::intvar::agentgroup_C_start"
last="construct::intvar::agentgroup_C_end"/>

 <cols first="0" last="node class::dummy_node class::count-1"/>
 <param name="constant_value" value="human"/>

</generator>
</network>

Belief Knowledge Weights
The belief knowledge weight network specifies how much impact a fact has on an agent’s belief.
This weight allows the user to associate beliefs with particular knowledge bits.

<network src_node class_type="belief" target_node class_type="knowledge"
id="belief knowledge weight network" link_type="float"
network_type="dense">

<generator type="constant">

<rows first="0" last="node class::belief::count-1"/>
 <cols first="0" last="node class::knowledge::count-1"/>
 <param name="constant_value" value="0"/>

</generator>
</network>

Binary Task Assignment
The binary task assignment network specifies which agents are assigned to which binary tasks.
Agents can learn knowledge by performing the binary task and also increase their similarity with
others who are performing the same tasks.

<network src_node class_type="agent" target_node class_type="binarytask"
id="binarytask assignment network" link_type="bool"

network_type="dense">

<generator type="randombinary">

53

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::binarytask::count-1"/>
<param name="mean" value="0"/>

</generator>
</network>

Binary Task Requirements
The binary task requirement network specifies which knowledge bits are examined when an
agent attempts to complete a binary task. For each knowledge bit required for the task, if the
agents knowledge value doesn’t equal the value specified in the binary task truth network, the
agent will guess and possibly complete the task incorrectly.

<network src_node class_type="knowledge" target_node class_type="binarytask"
id="binarytask requirement network" link_type="bool"
network_type="dense">

<generator type="randombinary">

<rows first="0" last="node class::knowledge::count-1"/>
<cols first="0" last="node class::binarytask::count-1"/>
<param name="mean" value="0"/>

</generator>
</network>

Binary Task Truth
The binary task truth network specifies what the values of the required bits must be for an agent
to complete a task without guessing.

<network src_node class_type="knowledge" target_node class_type="binarytask"
id="binarytask truth network" link_type="bool" network_type="dense">

<generator type="randombinary">

<rows first="0" last="node class::knowledge::count-1"/>
<cols first="0" last="node class::binarytask::count-1"/>
<param name="mean" value="0"/>

</generator>
</network>

Binary Task Similarity Weight
The binary task similarity weight network specifies how much weight agents place on shared
tasks. Agents are more likely to interact if they have more similar tasks that they need to
perform.

<network src_node class_type="agent" target_node class_type="timeperiod"
id="binarytask similarity weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">

54

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::timeperiod::count-1"/>
<param name="min" value="0.0"/>
<param name="max" value="0.0"/>

</generator>
</network>

Interaction Network
Construct maintains this network as an Agent x Agent matrix of interactions in a particular turn.
It is not available for manipulation by the modeler and is reset by Construct at the end of each
turn in preparation for the upcoming turn. This network is available for reading and providing
output via Construct operations.

Interaction Knowledge Weight
The interaction knowledge weight network specifies how much weight agents will put on
particular knowledge bits when computing probabilities of interaction.

<network src_node class_type="agent" target_node class_type="knowledge"
id="interaction knowledge weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

Knowledge – Binary and non-Binary
The knowledge network specifies which agents have what knowledge. Knowledge is used to
select interaction partners, perform tasks, and form beliefs. Agents learn and forget knowledge
as the simulation runs.

<network src_node class_type="agent" target_node class_type="knowledge"
id="knowledge network" link_type="float" network_type="dense">

<generator type="randombinary">

<rows first="construct::intvar::agentgroup_A_start"
last="construct::intvar::agentgroup_A_end"/>

<cols first="construct::intvar::knowledgegroup_K1_start"
last="construct::intvar::knowledgegroup_K1_end"/>

<param name="mean" value="0.20"/>
</generator>
<generator type="randombinary">

<rows first="construct::intvar::agentgroup_B_start"

55

last="construct::intvar::agentgroup_B_end"/>
<cols first="construct::intvar::knowledgegroup_K2_start"

last="construct::intvar::knowledgegroup_K2_end"/>
 <param name="mean" value="0.20"/>

</generator>
<generator type="randombinary">

<rows first="construct::intvar::agentgroup_C_start"
last="construct::intvar::agentgroup_C_end"/>

<cols first="construct::intvar::knowledgegroup_K1_start"
last="construct::intvar::knowledgegroup_K1_end"/>

<param name="mean" value="0.10"/>
</generator>
<generator type="randombinary">

<rows first="construct::intvar::agentgroup_C_start"
last="construct::intvar::agentgroup_C_end"/>

<cols first="construct::intvar::knowledgegroup_K2_start"
last="construct::intvar::knowledgegroup_K2_end"/>

<param name="mean" value="0.10"/>
</generator>

</network>

Knowledge Expertise Weight
The knowledge expertise network specifies how much weight ego agents place on knowledge
known only by the alter when calculating probabilities of interaction.

<network src_node class_type="agent" target_node class_type="timeperiod"
id="knowledge expertise weight network" link_type="float"

network_type="dense">

<generator type="randomuniform">
<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::timeperiod::count-1"/>
<param name="min" value="0.2"/>
<param name="max" value="0.2"/>

</generator>
</network>

Knowledge Group Membership
The knowledge group membership network is used to identify related sets of knowledge bits.

<network src_node class_type="knowledge" target_node
class_type="knowledgegroup" id="knowledge group membership network"
link_type="bool" network_type="dense">

<generator type="constant">

<rows first="construct::intvar::knowledgegroup_K1_start"
last="construct::intvar::knowledgegroup_K1_end"/>

<cols first="0" last="0"/>

56

<param name="constant_value" value="1"/>
</generator>
<generator type="constant">

<rows first="construct::intvar::knowledgegroup_K2_start"
last="construct::intvar::knowledgegroup_K2_end"/>

<cols first="1" last="1"/>
<param name="constant_value" value="1"/>

</generator>
</network>

Knowledge Priority
The knowledge priority network specifies the priority level of a particular fact when building a
message.

<network src_node class_type="agent" target_node class_type="knowledge"
id="knowledge priority network" link_type="int" network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

Knowledge Similarity Weight
The knowledge similarity weight network specifies how much weight agents place on shared
knowledge when calculating probabilities of interaction. It is measured by comparing an agent’s
knowledge against its perception of another agent’s knowledge. Knowledge similarity is
increased when the ego knows a knowledge bit and perceives that an alter also knows the
same knowledge bit. The increase will be equal to the agent’s knowledge of the bit.

<network src_node class_type="agent" target_node class_type="timeperiod"
id="knowledge similarity weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::timeperiod::count-1"/>
<param name="min" value="0.8"/>
<param name="max" value="0.8"/>

</generator>
</network>

57

Learnable Knowledge
The learnable knowledge network specifies which agents are able to learn what knowledge bits.
An experimenter may want to restrict which groups of agents are capable of learning knowledge
bits and can do so using this network.

<network src_node class_type="agent" target_node class_type="knowledge"
id="learnable knowledge network" link_type="bool" network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

Physical Proximity
The physical proximity network specifies how close two agents are to each other physically.
Physical distance is a factor in how likely two agents are to interact. With weights put on
sociodemographic proximity as well as other forms of proximity, an experimenter can limit
interaction between groups of agents.

<network src_node class_type="agent" target_node class_type="agent"
id="physical proximity network" link_type="float" network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::agent::count-1"/>
<param name="min" value="0.0"/>
<param name="max" value="0.0"/>

</generator>
</network>

Physical Proximity Weight
Physical proximity weight network specifies how strongly agents will value physical proximity
when deciding who to interact with.

<network src_node class_type="agent" target_node class_type="timeperiod"
id="physical proximity weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::timeperiod::count-1"/>
<param name="min" value="0.0"/>
<param name="max" value="0.0"/>

</generator>

58

</network>

Selective Attention Effect
The agent selective attention effect network will determine how much of an agent’s knowledge it
will examine when deciding which knowledge bit to to use in a message. The size of the
selective attention effect determines how much of an agent’s knowledge it will examine when
choosing knowledge to communicate.

<network src_node class_type="agent"target_node class_type="dummy_node class"
id="agent selective attention effect network" link_type="float"
network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="0"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

Social Proximity
Social proximity network determines how close two agents are socially. This serves as a way of
making agents more or less likely to interact based on social factors, such as career type or
personality type.

<network src_node class_type="agent" target_node class_type="agent"
id="social proximity network" link_type="float" network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::agent::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

Socio-Demographic Proximity
The socio-demographic proximity network specifies how close agents are physically based on
sociodemographic distance, and thus determines probability of interaction based on this metric.

<network src_node class_type="agent" target_node class_type="agent"
id="sociodemographic proximity network" link_type="float"
network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::agent::count-1"/>

59

<param name="min" value="0.0"/>
<param name="max" value="0.0"/>

</generator>
</network>

Susceptibility (beInfluenced)
The beInfluenced network specifies how susceptible an agent is to influence. This network
affects how strongly other alter agents can affect an ego’s beliefs. Egos with a high
susceptibility to influence will be more likely to change their beliefs.

<network src_node class_type="agent" target_node
class_type="dummy_node class" id="beInfluenced network"
link_type="float" network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="0"/>
<param name="min" value="0.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

Transmission Weight
The transmission knowledge weight network specifies how much weight agents will put on
particular knowledge bits when sending a message to a chosen interaction partner.

<network src_node class_type="agent" target_node class_type="knowledge"
id="transmission knowledge weight network" link_type="float"
network_type="dense">

<generator type="randomuniform">

<rows first="0" last="node class::agent::count-1"/>
<cols first="0" last="node class::knowledge::count-1"/>
<param name="min" value="1.0"/>
<param name="max" value="1.0"/>

</generator>
</network>

60

Transactive Memory
Transactive memory, a term often associated with the work of Wegner (1987) in group process
literature, is the term used to refer to an agent’s perception of the knowledge and beliefs of
those around them. Transactive memory networks are the way in which Construct allows agents
within the simulation to be “boundedly rational”, meaning that they do not have a perfect
perception of the knowledge and beliefs of the people around them. Because perception is often
imperfect, it will often be the case that an agent’s perception of the knowledge or beliefs of
those around him differ from the truth. This notion of bounded rationality (Carley & Newell 1994;
Simon 1957) is what allows Construct to be different than most other social simulation tools,
which simply allow agents to be homophilous based on the current state of the system, rather
than a perception of the environment.

Transactive memory networks store not just networks but each ego agent’s perception of a
network. Thus, while most networks in Construct are two dimensional, transactive memory data
structures have three dimensions: each agent has a perception of the knowledge or skills of
each other agent they are connected to. It is important to note here that this does not mean
each agent has a perception of all others, which would be highly memory intensive, but rather
only of those agents that it is connected to in the interaction sphere network.

An agent’s transactive memory of others, or their imperfect knowledge of the world around
them, is used when computing their probability of interacting with others and when computing
the effect of social influence on their beliefs. The existence of this divide between reality and
perception allows Construct agents to better match social theory and real-world behaviors. For
example, Ren et al (Ren et al, 2001) use Construct’s transactive memory mechanisms to show
evidence that people trained on a task in a group setting are better able to solve a problem than
those trained individually and then forced into a group setting. Below, Table 6 shows the two
transactive memory networks used in the demo input deck. Currently, Construct only supports
perception (or transactive memory) of knowledge and beliefs- though there are other cases
where perception may make sense (such as the perception of tasks one agent has of another
agent), such mechanisms do not currently exist within Construct.

Table 6. Key transactive memory networks in the demo input deck

Network
Name

Source & Target
node classes

Function or Purpose in
Demo Input Deck

knowledge
transactive memory
network

agent x timeperiod store agent perceptions of
other agents’ knowledge

belief transactive
memory network

agent x timeperiod store agent perceptions of
other agents’ beliefs

61

Transactive memory networks in Construct are specified within a <transactivememory>
ConstructML tag in the input deck. Within this tag, we use the <network> tag to define the
different types of networks that we will use for transactive memory - in this implementation of
Construct, the two networks will be the knowledge transactive memory network and the belief
transactive memory network.

So, the outline of our transactive memory network looks like the following

<transactivememory>
 <network id=”knowledge transactive memory network”>
 ...
 </network>
 <network id=”belief transactive memory network”>
 ...
 </network>
</transactivememory>

Within the <network> tag, we need to specify seven different attributes: the network id (name),
ego node class, source node class, target node class, link type, network type, and associated
network, as seen below.

<network id="[name]"
 ego_node class_type="agent" src_node class_type="[node class]"
 target_node class_type="[node class]" link_type="[ltype]"
 network_type="[ntype]" associated_network="[network]">
 ...(Generator code, defined below)...
</network>

The network ID [name] is the name that refers to the transactive memory network - as we have
seen, each network within Construct has a specific name that must be used to refer to it - if the
name is, for example, misspelled, Construct will behave as though it does not exist and will
likely exist with an error saying so.

In the present implementation of Construct, the eg_node class_type is assumed to be the agent
node class - any other value is expected to behave in a non-obvious fashion, and will likely exit
with an error. As we have stated, only agents in Construct are designed to have transactive
memory, and they are only designed to have it for the knowledge and beliefs of others. It is also
important to note that while certain agents may not use transactive memory in advanced
models, it is still necessary to initialize their transactive memory. This is done to simplify certain
internal mechanisms in Construct and actually happens to decrease run-time of the model.

While only agents are allowed to have transactive memory, Construct allows for them to have it
of varying types of other node classes in the model. Thus, the src_node class_type does not
strictly have to be defined as an agent, though models otherwise may be hard to justify. The
src_node class_type and target_node class_type are related in the fact that each ego has a
perception of how these two node classes relate. One can think of a transactive memory
network as a three-dimensional array, where the first index refers to the ego, the second to

62

some source, and the third to what the ego percieves the source to have of the target node
class. So, for example, in the knowledge transactive memory network, an ego has, for each
other agent they are connected to, a perception of whether or not that alter has the given
knowledge.

The associated_network network is the underlying two-dimensional network that the ego
perceives the source as having. For example, the knowledge transactive memory network is
associated with the underlying knowledge network (The Knowledge Network). Specifying this
network helps to initialize the network, particularly with certain types of generators we will
discuss below.

The network_type specifies the storage mechanism used within Construct for each transactive
memory network. The current implementation provides two options for this storage mechanism -
the TMBool mechanism will store boolean values (either true or false), while the TMFloat
mechanism will store the values -1, 0 and +1. While these methods have been optimized for
large numbers of agents, the storage of these values is a chief reason why Construct runs can
consume large amounts of RAM. Future iterations of the model hope to alleviate these issues.

The link_type parameter ltype defines the way in which Construct stores the data - as of the
present implementation, the link type parameter can be either bool or float. Note, however, that
this need not coincide with the value set for network_type, though it is often of interest to the
user to specify the link_type as bool if the network_type is of kind TMBool. This is because bool
links are boolean values, which allow certain specially designed storage mechanism for binary
values to be utilized within Construct. Float links are stored as two-bit values representing either
-1, 0, or +1. Note that the typical definition of floating point integers is really extended to
significantly larger numbers of bits. However, an implementation decision was made to store
only -1,0, or +1 to conserve large amounts of RAM during runs.

Given this description of the network tag within transactive memory tags, we now move to
defining how these networks can be initialized. It is important to note that transactive memory
networks, unlike other networks in Construct must be set using <generator> tags (other
networks can be set using the explicit <link> command).

The general syntax for a transactive memory network generator, similar to the network
generators described in Appendix D, is shown below.

<generator type="[type]">
<ego first="[efirst]" last="[elast]"/>

 <alter first="[afirst]" last="[alast]"/>
 <transactive first="[tfirst]" last="[tlast]"/>
 <param name="[name1]" value="[value1]"/>
 <param name="[name2]" value=="[value1]"/>

...
 <param name="verbose" value="[verbose]"/>
</generator>

63

The [type] attribute specifies the type of network that is to be generated - as in previous
sections, many different types of generators exist. The <ego> tag specifies the range of egos
(the first column of our three-dimensional matrix), the <alter> tag the second, and the
<transactive> tag the third. Thus, for the knowledge transactive memory network, to specify all
agents and all knowledge bits, we would specify the first and last of <ego> and <alter> to be the
ranges of the agent node class, and the transactive as the ranges of the knowledge node class.
Note that the same generator-specific <param>s must be supplied in order for the generator to
function correctly, as in other network generators. Finally, if desired, a <verbose> parameter can
be given to have Construct print out a message indicating every hundredth agent that has been
initialized.

Below, we give an example of how to use a constant generator for a transactve memory
network:

<generator type="constant">
 <ego first="[efirst]" last="[elast]"/>
 <alter first="[afirst]" last="[alast]"/>
 <transactive first="[tfirst]" last="[tlast]"/>
 <param name="constant_value" value="[value]"/>
</generator>

Certain generators exist that are specific to the three-dimensional networks that are implied by
the structure of transactive memory. In particular, the perception_based generator is specific to
transactive memory, and the one used in the sample deck is provided below:

<generator type="perception_based">
 <ego first="[efirst]" last="[elast]"/>
 <alter first="[afirst]" last="[alast]"/>
 <transactive first="[tfirst]" last="[tlast]"/>
 <param name="false_negative_rate" value="[fnrate]"/>
 <param name="false_positive_rate" value="[fprate]"/>
 <param name="rounding_threshold" value="[threshold]"/>
 <param name="verbose" value="[verbose]"/>
</generator>

This generator will create a “perception” for each agent of the associated_network specified as
an attribute in the network tag described above. The accuracy of the values of these
perceptions can be modified by the false_negative_rate, false_positive_rate,and the
rounding_threshold. These are three different ways to specify perception errors- note, however,
that they have certain meanings for the different implementations of network_type, and will only
be described as they exist in the demo input deck.

There are three additional points which are important to note about transactive memory
generators. First, like other network tags, generators will be run in sequence, and thus any
generator code placed after a previous generator will overwrite what has been done previously.
Second, if the value for a given piece of the three dimensional transactive memory network is
not specified, the value will default to false in TMBool networks or 0 in TMFloat networks.

64

Finally, after all generator code in the model, Construct will internally make sure that agents
have a perfect perception of their own knowledge - thus, for example any perception_based
generator used to initialize an agent’s perception of themselves that initializes the agent to
having imperfect knowledge of themself will be overwritten before the simulation begins.

 Knowledge transactive memory
The knowledge transactive memory network is the way in which a user specifies what each
agent perceives the knowledge of each of his alters to be. Thus, it is an agent x agent x
knowledge network, or as we have referred to it, a three dimensional array. This array, once
initialized, cannot be modified by the scripting mechanisms in Construct, introduced in Appendix
E. As noted, agents will use this perception to calculate probabilities of interaction - thus, in
combination with the other networks of the standard interaction model (of which the knowledge
transactive memory is a piece), perceptions will evolve and change probabilities of interaction
as the simulation runs.

As we have discussed, because transactive memory network store perceptions, they can be
either correct or incorrect. Incorrect perceptions can occur during intialization, via
miscommunication, or because of other Construct mechanisms that affect the spread of
information. In addition, because the ego can tell an alter about the knowledge of a different
alter, incorrect perceptions can actually be learned in Construct through traditional means of
knowledge diffusion.

The knowledge transactive memory network is updated when an agent learns a new fact. In the
current implementation of Construct, the previous perception an agent has is always overwritten
by the newest information they obtain. The only exception to this rule is that an agent will always
perceive their own knowledge correctly- thus, they cannot be told something that they know.
Agents are therefore always trusting other completely and assuming that information received
from others is more up-to-date than the agent’s own knowledge.

The knowledge transactive memory network is of network_type TMBool, meaning values can be
either 0 (false) or 1 (true). This allows the knowledge transactive memory network to utilize the
perception_based generator - given the fact that value can be either 0 or 1, the parameters of
this generator are relatively straightforward. The only exception to this is the rounding_threshold
parameter, which is used to round values coming from the knowledge network - values that are
below the rounding threshold are rounded down to 0, while values above the rounding threshold
are rounded up to 1. This is one more point at which misperception can occur, if the knowledge
network used is implemented with floating point values. The false_negative_rate is the rate at
which the ego perceives an alter having a knowledge bit as not having the knowledge bit, and
the false_positive_rate the percentage of time that the ego is initialized to believe an alter has a
knowledge bit when they actually do not.

The demo input deck uses a perception_based generator to generate the knowledge network
with a rounding threshold of 0.0 (only 0s will be interpreted as having no knowledge), a false
negative rate of 50% (egos incorrectly “assume” alters do not have knowledge bit when they
actually do 50% of the time) and a false positive rate of 0%. Note that each draw for false

65

negative rates and false positive rates are independent and identically distributed ~Uniform(0,1),
and therefore errors can be assumed to be uncorrelated.

The code to initialize is given below.

<network id="knowledge transactive memory network"
ego_node class_type="agent" src_node class_type="agent"
target_node class_type="knowledge" link_type="bool"
network_type="TMBool" associated_network="knowledge network">

<generator type="perception_based">

<ego first="0" last="node class::agent::count-1"/>
<alter first="0" last="node class::agent::count-1"/>
<transactive first="0"

last="node class::knowledge::count-1"/>
<param name="false_negative_rate" value="0.50"/>
<param name="false_positive_rate" value="0.0"/>
<param name="rounding_threshold" value="0.0"/>
<param name="verbose" value="false"/>

</generator>
</network>

Belief transactive memory
The belief transactive memory network is analogous to the knowledge transactive memory
network with only a few, but important, differences. First, agents will use the belief transactive
memory network when computing social influence, and it is thus a part of the standard influence
model (and not the standard interaction model). Second, instead of an agent x agent x
knowledge network, the belief transactive memory network is, of course, an agent x agent x
belief network. Similar to the knowledge transactive memory network, scripting mechanisms
cannot be used to change these values once initialized.

Similar to the knowledge transactive memory network, the belief transactive network can be
correct or incorrect, and can be incorrect due to initialization, miscommunication, other active
Construct mechanisms or via diffusion from other agents. Furthermore, like the knowledge
transactive memory network, agents will update their transactive memory of others beliefs by
overwriting any of their perceptions with information coming from other agents. The single
exception is that the agent cannot have a misperception of its own beliefs. Note, however, that
any and all updates described here will only occur when the standard belief model is active and
in mask_mode.

The chief difference between the two transactive memory networks described in this report
(besides their reference to different associated_networks) is the difference in how they are
stored and, consequently, how values are generated for them. The values in the belief
transactive memory network are stored as TMFloats, which can take on three values: -1, 0 and
+1. A value of -1 indicates the ego perceives that the alter does not support the belief, a +1 that
the alter does, and a 0 the perception that the alter is neutral on the belief. Because of this
difference in storage mechanism, the perception_based generator for belief transactive memory

66

works slightly differently than that for knowledge transactive memory. In particular, the
rounding_threshold value is used as an absolute value- thus, for example, a value of .3 for the
rounding threshold would mean that -.4 is rounded to -1, .4 is rounded to 1, and .2 or -.2 are
rounded to 0. The false_positive_rate becomes the rate at which negative values actually are
interpreted as positive values (e.g. -.4 misinterpreted as .4) and vice versa for
false_positve_rate.

The specification for the belief transactive memory in the input deck is given below:

<network id="belief transactive memory network" ego_node class_type="agent"
src_node class_type="agent" target_node class_type="belief"
link_type="float" network_type="TMFloat"
associated_network="belief network">

<generator type="perception_based">

<ego first="0" last="node class::agent::count-1"/>
<alter first="0" last="node class::agent::count-1"/>
<transactive first="0" last="node class::belief::count-1"/>
<param name="false_negative_rate" value="0.25"/>
<param name="false_positive_rate" value="0.25"/>
<param name="rounding_threshold" value="0.0"/>
<param name="verbose" value="false"/>

</generator>

</network>

67

References
Carley, K. M. (1990). Group stability: A socio-cognitive approach. Advances in group processes,

7, 1-44.
Carley, K., & Newell, A. (1994). The nature of the social agent*. Journal of mathematical

sociology, 19(4), 221-262.
Carley, K. M. (2002). Computational organization science: A new frontier. Proceedings of the

National Academy of Sciences of the United States of America, 99(Suppl 3), 7257-7262.
Carley, K. M. (2006). A dynamic network approach to the assessment of terrorist groups and the

impact of alternative courses of action. CARNEGIE-MELLON UNIV PITTSBURGH PA INST
OF SOFTWARE RESEARCH INTERNAT.

Carley, K. M., Robertson, D., Martin, M., Lee, J. S., St Charles, J., & Hirshman, B. (2010).
Predicting Intentional and Inadvertent Non-compliance. Recent Research on Tax
Administration and Compliance.

Giddens, A. The constitution of society: Outline of the theory of structuration. Berkeley, CA:
University of California Press. 1984

Manis , J. G. and B. N. Meltzer. Symbolic interaction: A reader in social psychology. Boston:
Allyn & Bacon. 1978.

Ren, Y., Carley, K. M., & Argote, L. (2001). Simulating the role of transactive memory in group
training and performance. Pittsburgh, PA: CASOS, Dept. of Social and Decision Sciences,
Carnegie Mellon University.

Salancik, G. R. and J. Pfeffer. A social information processing approach to job attitudes and
task design. Administrative Science Quarterly, v.23, p.224-253. 1978.

Schreiber, C., & Carley, K. (2003). The impact of databases on knowledge transfer: simulation
providing theory. In NAACSOS conference proceedings, Pittsburgh, PA (p. 2).

Schreiber, C., Singh, S., & Carley, K. M. (2004). Construct-a multi-agent network model for the
co-evolution of agents and socio-cultural environments (No. CMU-ISRI-04-109).
CARNEGIE-MELLON UNIV PITTSBURGH PA INST OF SOFTWARE RESEARCH
INTERNAT.

Schreiber, C., & Carley, K. M. (2007). Agent interactions in construct: An empirical validation
using calibrated grounding. In 2007 BRIMS Conference Proceedings, Norfolk, VA.

Simon, H. A. (1957). Administrative Behavior: A study of decision-making processes in
administrative organization.

Tsvetovat, M., & Carley, K. M. (2004). Modeling complex socio-technical systems using multi-
agent simulation methods. KI, 18(2), 23-28.

Wegner, D. M. (1987). Transactive memory: A contemporary analysis of the group mind.
Theories of group behavior, 185, 208.

68

Appendices

 APPENDIX A The Sample Input File (aka Input Deck)
<construct>
 <construct_vars>
 <var name="time_count" value="100"/>
 <var name="agent_count" value="200"/>
 <var name="knowledge_count" value="100"/>
 <var name="knowledgegroup_count" value="0"/>
 <var name="agentgroup_count" value="1"/>

 </construct_vars>
 <construct_parameters>
 <param name="seed" value="1"/>
<!--
 <param name="operation_output_working_directory" value=""/>
-->
 <param name="verbose_initialization" value="false"/>
 <param name="default_agent_type" value="human"/>
 <param name="out_of_sphere_comm_allowed" value="false"/>
 <param name="forgetting" value="false" />
 <param name="use_mail" value="false" />
 <param name="belief_model" value="mask_mode" />
 <param name="interaction_requirements" value="disable" />
 <param name="communicationWeightForBelief" value="0.2" />
 <param name="communicationWeightForBeliefTM" value="0.1" />
 <param name="communicationWeightForFact" value="0.5" />
 <param name="communicationWeightForKnowledgeTM" value="0.2" />
 <param name="thread_count" value="1" />
 <param name="transactive_memory" value="enable"/>
 <param name="active_models"
value="standard interaction model,standard task model"
with="delay_interpolation"/>
<param name="active_mechanisms" value="none"/>
 </construct_parameters>

 <nodes>
 <node class type="agent_type" id="agent_type">
 <node id="human" title="human">
 <properties>
 <property name="canSendCommunication" value="true"/>
 <property name="canReceiveCommunication" value="true"/>
 <property name="canSendKnowledge" value="true"/>
 <property name="canReceiveKnowledge" value="true"/>
 <property name="canSendBeliefs" value="true"/>
 <property name="canReceiveBeliefs" value="true"/>
 <property name="canSendBeliefsTM" value="true"/>
 <property name="canReceiveBeliefsTM" value="true"/>
 <property name="canSendKnowledgeTM" value="true"/>
 <property name="canReceiveKnowledgeTM" value="true"/>
 <property name="canSendReferral" value="true"/>

69

 <property name="canReceiveReferral" value="true"/>
 <property name="communicationMechanism" value="direct"/>
 </properties>
 </node>
 </node class>

 <node class type="CommunicationMedium" id="CommunicationMedium">
 <node id="facetoface" title="facetoface">
 <properties>
 <property name="maxMsgComplexity" value="1"/>
 <property name="msgCost" value="1.0"/>
 <property name="maximumPercentLearnable" value="1.0"/>
 <property name="time_to_live" value="1"/>
 <property name="time_to_send" value="1"/>
 <property name="passive" value="0"/>
 </properties>
 </node>
 </node class>

 <node class type="agent" id="agent">
 <generator type="count">
 </generator>
 <properties>
 <property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value="agent_count"/>
 </properties>
 </node class>

 <node class type="knowledge" id="knowledge">
 <generator type="count">
 </generator>
 <properties>
 <property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value="knowledge_count"/>
 </properties>
 </node class>

 <node class type="binarytask" id="binarytask">
 <node id="t1" title="ttt1" />
 <node id="t2" title="ttt2" />
 <node id="t3" title="ttt3" />
 <node id="t4" title="ttt4" />
 </node class>

 <node class type="belief" id="belief">
 <node id="b1" title="b1"/>
 <node id="b2" title="b2"/>
 <node id="b3" title="b3"/>
 </node class>

 <node class type="agentgroup" id="agentgroup">
 <properties>

70

 <property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value="agentgroup_count"/>
 </properties>
 </node class>

 <node class type="knowledgegroup" id="knowledgegroup">
 <node id="FG1" title="FG1"/>
 <node id="FG2" title="FG2"/>
 <node id="FG3" title="FG3"/>
 </node class>

 <node class type="timeperiod" id="timeperiod">
 <properties>
 <property name="generate_node class" value="true"/>
 <property name="generator_type" value="count"/>
 <property name="generator_count" value="time_count"/>
 </properties>
 </node class>

 <node class type="dummy_node class" id="dummy_node class">
 <node id="dummy1" title="dummy1"/>
 </node class>

 </nodes>

 <networks>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="agent message complexity network" link_type="unsigned int" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1"/>
 <param name="max" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="agent initiation count network" link_type="int" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="10"/>
 <param name="max" value="10"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

71

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="beinf network" link_type="float" network_type="dense">

 <generator type="randomuniform">
 <rows first="0" last="0"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="0.5"/>
 <param name="max" value="0.8"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 <generator type="randomuniform">
 <rows first="1" last="1"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="0.5"/>
 <param name="max" value="0.8"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 </network>

 <network src_node class_type="agent" target_node class_type="knowledge"
id="knowledge network" link_type="float" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="mean" value="0.1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="agent" id="access
network" link_type="float" network_type="dense">
 <generator type="constant">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="constant_value" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="knowledge" target_node class_type="binarytask"
id="binarytask requirement network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::knowledge::count_minus_one"/>
 <cols first="0" last="node class::binarytask::count_minus_one"/>
 <param name="mean" value="0.5"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="knowledge" target_node class_type="binarytask"
id="binarytask truth network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::knowledge::count_minus_one"/>

72

 <cols first="0" last="node class::binarytask::count_minus_one"/>
 <param name="mean" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="binarytask"
id="binarytask assignment network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::binarytask::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="knowledge similarity weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="knowledge expertise weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="binarytask similarity weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="knowledge"
id="interaction knowledge weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="min" value="1.0"/>

73

 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="knowledge"
id="transmission knowledge weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="physical proximity weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="social proximity weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="sociodemographic proximity weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="belief" target_node class_type="knowledge"
id="belief knowledge weight network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::belief::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="min" value="1.0"/>

74

 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="belief" id="agent
belief network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::belief::count_minus_one"/>
 <param name="min" value="0.3"/>
 <param name="max" value="0.3"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="agent" id="physical
proximity network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="agent" id="social
proximity network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="agent"
id="sociodemographic proximity network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="agent active timeperiod network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="mean" value="1.0"/>

75

 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="agent"
id="interaction sphere network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="mean" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 </network>

 <network src_node class_type="agent" target_node class_type="agentgroup"
id="agent group membership network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agentgroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="public message propensity network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="knowledge" target_node class_type="knowledgegroup"
id="fact group membership network" link_type="bool" network_type="dense">
<!-- medium -->
 <!-- This group has ALL facts -->
 <generator type="randombinary">
 <rows first="0" last="node class::knowledge::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

 <!-- This group contains first 5 facts -->
 <generator type="randombinary">
 <rows first="0" last="5"/>
 <cols first="0" last="0"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

76

 <!-- This group contains facts after the first 5 -->
 <generator type="randombinary">
 <rows first="5" last="node class::knowledge::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

<!--
 DEFAULTS HERE
 <generator type="randombinary">
 <rows first="0" last="node class::knowledge::count_minus_one"/>
 <cols first="0" last="node class::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
-->

 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="agent reception count network" link_type="int" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="mean" value="10.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>

<!--
 This is the state of the art in my filter work. Have to get this working properly!
 <generator type="randombinary">
 <rows groups="agent_grp1,agent_grp2" group_membership_network="'agent
group membership network'"/>
 <cols groups="agent_grp3" group_membership_network="'agent group
membership network'"/>
 <param name="mean" value="1.0" />
 </generator>

-->
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="agent selective attention effect network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

77

 <network src_node class_type="agent" target_node class_type="knowledge"
id="knowledge priority network" link_type="unsigned int" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="min" value="1"/>
 <param name="max" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="timeperiod"
id="dynamic environment reset timeperiods network" link_type="bool"
network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::timeperiod::count_minus_one"/>
 <param name="min" value="0"/>
 <param name="max" value="0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="beInfluenced network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="influentialness network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="agent learning rate network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

78

 <network src_node class_type="agent" target_node class_type="knowledge"
id="learnable knowledge network" link_type="bool" network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::knowledge::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="agent forgetting rate network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="agent learn by doing rate network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="0.0"/>
 <param name="max" value="0.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="agent forgetting mean network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="dummy_node class"
id="agent forgetting variance network" link_type="float" network_type="dense">
 <generator type="randomuniform">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="0"/>
 <param name="min" value="1.0"/>
 <param name="max" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

79

 <network src_node class_type="agent" target_node class_type="agent"
id="interaction network" link_type="bool" network_type="dense">
 <generator type="constant">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="constant_value" value="0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <network src_node class_type="agent" target_node class_type="agent"
id="interaction probability network" link_type="float" network_type="dense">
 <generator type="constant">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::agent::count_minus_one"/>
 <param name="constant_value" value="0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <!--
 This network determines which agent has access to which mediums.
 Set access to zero if you do not want the agent to have access to that medium.
 -->
 <network src_node class_type="agent" target_node class_type="CommunicationMedium"
id="communication medium access network" link_type="float" network_type="dense">
 <generator type="constant">
 <rows first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
 </network>

 <!--
 This network shows what medium is prefered when communicating with a
 given agent.

 This network is actually a 3d network. It is agent x agent x medium. One
 way to view it is a collection of agent x medium networks. There is one of
 these agent x medium networks for every agent, so each agent has a custom
 agent x medium network that shows what mediums he prefers to use when
 communicating with any given agent.
 -->
 <network src_node class_type="agent" inner_node class_type="agent" target_node
class_type="CommunicationMedium" id="communication medium preferences network 3d"
link_type="float" network_type="dense3d">
 <generator type="constant3d">
 <rows first="1" last="node class::agent::count_minus_one"/>
 <inners first="0" last="node class::agent::count_minus_one"/>
 <cols first="0" last="node class::CommunicationMedium::count_minus_one"/>
 <param name="constant_value" value="1"/>
 <param name="symmetric_flag" value="false"/>

80

 </generator>

 </network>

 <!--
 This network limits what knowledge a given medium may send by limiting
 what knowledgegroups the medium may use.
 -->
 <network src_node class_type="CommunicationMedium" target_node
class_type="knowledgegroup" id="medium knowledgegroup network" link_type="bool"
network_type="dense">
 <generator type="randombinary">
 <rows first="0" last="node class::CommunicationMedium::count_minus_one"/>
 <cols first="0" last="node class::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
<!--
 DEFAULT all mediums can use all knowledge groups
 <generator type="randombinary">
 <rows first="0" last="node class::knowledge::count_minus_one"/>
 <cols first="0" last="node class::knowledgegroup::count_minus_one"/>
 <param name="mean" value="1.0"/>
 <param name="symmetric_flag" value="false"/>
 </generator>
-->
 </network>
 </networks>

 <transactivememory>
 <network id="'knowledge transactive memory network'" ego_node class_type="agent"
src_node class_type="agent" target_node class_type="knowledge" link_type="bool"
network_type="TMBool" associated_network="knowledge network">
 <generator type="perception_based">
 <ego first="0" last="node class::agent::count_minus_one"/>
 <alter first="0" last="node class::agent::count_minus_one"/>
 <transactive first="0" last="node class::knowledge::count_minus_one"/>
 <param name="false_positive_rate" value="0.0"/>
 <param name="false_negative_rate" value="0.5"/>
 <param name="rounding_threshold" value="0.0"/>
 <param name="verbose" value="true"/>

 </generator>
 </network>
 </transactivememory>

<operations>
 <operation name="ReadGraphByName">
 <parameters>
 <param name="output_filename" value="km.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="'all'"/>

81

 <param name="graph_name" value="'knowledge network'"/>

 </parameters>
 </operation>

 <operation name="ReadKnowledgeDiffusion">
 <parameters>
 <param name="output_filename" value="diff.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>
 <param name="no_empty_lines" value="true"/>
 </parameters>
 </operation>

 <operation name="ReadGraphByName">
 <parameters>
 <param name="output_filename" value="prob.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>

 <param name="graph_name" value="'interaction probability network'"/>

 </parameters>
 </operation>

 <operation name="ReadGraphByName">
 <parameters>
 <param name="output_filename" value="im.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>

 <param name="graph_name" value="'interaction network'"/>

 </parameters>
 </operation>

 <operation name="DeltaFeed">
 <parameters>
 <param name="output_filename" value="deltafeed.csv"/>
 <param name="output_format" value="csv"/>
 <param name="time" value="all"/>
 </parameters>
 </operation>
</operations>
</construct>

82

APPENDIX B A History of Construct
The foundational research from which construct was built upon lies within the fields of sociology
and cognitive sciences, particularly in research done on human interaction and information
exchange. Construct is based on Constructural theory, which states that social groups create
concepts and actions based on reality, learning, and knowledge(a b Beaumie Kim; et al "Social
Constructivism" Association for Educational Communications and Technology). Construct was
designed to apply this theory computationally.

In 1990, research done by Kathleen M. Carley on group stability initiated early model designs
for Construct. In her paper, Group Stability: A socio-cognitive approach, she created a socio-
cognitive model based on nonstructural theory to predict changes in interaction patterns among
workers in a tailor shop in Zambia (Carley, 1990). The model tested behaviors that occurred on
individuals, such as social change or stability changes that were derived from interaction, as
well as the exchange of information between the workers. The resulting observation and
analysis of these behaviors provided an explanation for why the workers were able to go on
strike successfully after an aborted first strike (Carley, 1990). The first basic principle of the
model is that in every social group, there are facts within the group that have the potential to be
learned by members in the group (Carley, 1990). Information can be broken down into individual
facts, which can then be measured quantitatively for a social group. The second basic principle
of the model states that there is a probability that certain individuals will interact with one
another and exchange facts, which then leads to shared knowledge (Carley, 1990). The third
basic principle states that similar individuals who share common knowledge are more likely to
interact (Carley, 1990). This implies that individuals consider how much in common they have
with others before they choose to interact and communicate information. The combination of
these three principles leads to the interaction/knowledge cycle, which is what Construct is
designed to simulate. This model initially takes a description of a particular society in terms of
culture and structure, and predicts the ways in which the society can evolve (Carley, 1990). With
these concepts in place, the Construct model continued to evolve.

With advancements in computing throughout the 1990’s, the construct model gained more
opportunities and capabilities for real world application. The ability to process large amounts of
data in order to predict outcomes on large scaled populations, was critical in construct’s
development. One of the key developments for the construct model computationally was
research done on knowledge transfer, and its effect on an organization or social group. In 2003,
Carley and Schreiber explored data base technology and its support of knowledge transfer.
Virtual experiments using the construct model were run using two group conditions, task
complexity and experience, in order to examine how task and referential data types differ when
simulating knowledge transfer (Schreiber and Carley, 2003). Transactive memory is also
represented by the model to incorporate perception of other’s knowledge in the social group
(Schreiber and Carley, 2003). Each agent in the model is assigned task and transactive
knowledge which are then represented by task databases and referential databases (Schreiber
and Carley, 2003). The virtual experiment showed that these databases have an effect on task
complexity as well as experience, and that knowledge transfer can be represented in different
forms to effectively simulate transfer within an organization. Task data was shown to be most

83

useful for knowledge transfer of simple to moderate level tasks, while referential data was
shown to be more useful for complex tasks (Schreiber and Carley, 2003).

In 2004 Schreiber, Carley, and Singh, described a more complex version of the original
Construct-TM model. In addition to having the ability to interact with other human agents, in this
model agents could interact with objects that contain information, such as a book or an
advertisement. Agents were given several types of capabilities and limitations; examples
included control over the ability to communicate and receive information (Schreiber 2004). The
number of agent groups was limited to 3 and the number of agents limited to 101 (Schreiber
2004). The interaction mechanism allowed agents to interact based on proximity, perception of
others, referrals, access to information, and the ability of forgetting (Schreiber 2004). Knowledge
was represented as binary strings, which determined an agent’s decision as well as perception
of other agents’ knowledge. (Schreiber 2004). Knowledge was limited to 500 facts and up to 25
tasks were assigned for each particular knowledge bit (Schreiber 2004).

84

APPENDIX C Construct ‘Operations’
At the end of each simulation turn, Construct executes each of the <operation></operation>
tags within the <operations></operations> tag of the simulation input file. There are
numerous operations, only some of which are shown in the sample input file of Appendix A. This
appendix discusses each of the <operation></operation> tags supported by Construct.
Construct will ignore any <operation></operation> tag that is outside the
<operations></operations> tags with no indicator of error to the modeler.
Its important for a modeler to keep in mind the processing sequence of Construct. Construct
does not process any operation until all agents have finished their interactions, finished learning
and task execution efforts, and are otherwise poised for the next turn.

Turn 0

! Turn zero (0) is a special turn in that Construct uses turn zero as the initialization turn. !
There are no interactions and no simulation driven changes to the inputs at turn 0.

One way a modeler can increase their confidence that their nodes and node relationships
(networks) are correct is to use the ReadGraphByName operation at time zero.

Operations
All the operations discussed in this section provide mechanisms for having Construct provide
output to the modeler and simulationist. Modelers can use operations to debug the simulation,
both at time point 0 and at other time points, as well as provide ways of communicating
simulation behavior to consumers of the model’s outputs.There are three general ways of
having Construct output data.
Entire Networks - At specified timepoints, Construct writes the contents of the specified
network(s) to file. One written, post-processing can occur which presumably turns the dense

matrix outputs into a meaningful measure or set of measures. ! Entire network outputs can

take up significant amounts of disk space, and inflict network congestion when

Construct is operating in a high performance computing environment. !

Process Outputs / Measures - Construct has several in-built matrix analytics that the modeler
can use. These include various information diffusion metrics and task accuracy metrics. A
primary caveat is that Construct may be applying these measures to agents or knowledge not of
interest to a modeler or simulation.
Scripted Outputs - Using the capabilities of Construct’s scripting language, modelers can build
customized output operations.

General Operation Syntax

85

The general syntax for a Construct <operation></operation> is shown below. Each of the
specific [name] values that Construct supports are addressed in sub-sections below.
<operation name="[name]">
 <parameters>
<param name="’output_filename’" value="[filename].[extension]"/>
<param name="output_format" value="[csv|dynetml]"/>
<param name="run" value="all"/>
<param name="time" value="[first|last|all| csv timeperiod list]"/>
<!-- the following params are optional with default=all -->
<param name=”first_row” value=”” />
<param name=”last_row” value=”” />
<param name=”first_col” value=”” />
<param name=”last_col” value=”” />
<!-- the following params are optional with default=false -->
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

Construct will place the output file in the same directory as the input file by default. Modelers
can prepend path information to the file name and Construct will write the output to the directory
specified by the path name. Users should ensure that if they have opened any output files (e.g.,
in Excel to view the files), they should either close the file or use an application that does not
place a file-level lock on the file (e.g., Notepadd++).

! Construct silently overwrites pre-existing files with no warning. !

The output_format supports two values, csv and dynetml. The dynetml format is an XML
based format that CASOS uses in its Organizational Risk Analyzer (ORA) network analytic
software package. The csv format is the only format that allows the modeler to output multiple
time periods to a single file.

The run parameter remains necessary to support legacy input decks. The time parameter
shown above is directing Construct to provide output at all time periods. Additional valid values
for the time parameter are: first, last, and a comma separated list of positive integers that
are less than the length of the simulation (first is equivalent to 1). The verbose parameter,
when true, will print additional information about the decision during parsing of the input deck.
The boolean header_row tells Construct to print a header row in the output file if the value is
true.

The <ListExpr> is a comma separated list of node ids (e.g., 1,2,55,99). A modeler can also
use the agent group reference syntax. (i.e. construct::agentgroup::<name> to provide the
comma delimited list of agents. For each value in the <ListExpr> for the decision_names
parameter, the modeler must add a parameter using that value as a decision name and define

86

the decision using scripting syntax. If the value attribute does not define the decision (as it does
for d1 and d2 below), the modeler must include a type attribute with a decision_name_list
value to tell Construct that the definitions of the decisions appear later in the input deck (see
also decision d3 below, which is composed of 2 1-bit decisions, d4 and d5). A more specific
example of this syntax is shown below.

ReadGraphByName
This is a general purpose operation that allows a modeler to read an output any specified
network. An important syntax issue to remember is to always include the name of the graph
within single quotes (‘). If the modeler mis-spells the name, does not include a proper name in
single quotes (‘), or Construct cannot otherwise find the named graph, it will fail during it’s first
attempt to execute the operation with an error message.

<operation name="ReadGraphByName">
 <parameters>
 <param name="graph_name" value="'interaction probability network'"/>
 <param name="output_filename" value="prob.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 <param name="time" value="0,1,2,3,4,
(construct::intvar::time_count *10)/100,
(construct::intvar::time_count *20)/100,
(construct::intvar::time_count *30)/100,
(construct::intvar::time_count *40)/100,
(construct::intvar::time_count *50)/100,
(construct::intvar::time_count *60)/100,
(construct::intvar::time_count *70)/100,
(construct::intvar::time_count *80)/100,
(construct::intvar::time_count *90)/100,
construct::intvar::time_count-1"/>
 </parameters>
</operation>

In the example above, Construct will print the probability of interaction matrix for all agents with
row and column headers. Construct will print at time points 0,1,2,3, and 4. It will also print at
time points that are in 10% increments of the total simulation run time as defined using the
construct::intvar::time_count variable.

The remainder of the Construct supported operations will be in alphabetical order

87

ReadAgentsWhoDoNotInteractWithAnyone
This will print a report to standard out of agents who did not interact with anyone at the end of
each time period. It does not support writing the outputs to file. Changing the
output_to_stdout to false will turn this operation off, but still consume processing time.

<operation name="ReadAgentsWhoDoNotInteractWithAnyone">
 <parameters>
 <param name="output_to_stdout" value="true"/>
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />

 </parameters>
</operation>

ReadBinaryTaskAccuracy
This operation prints out an Agent vector with each entry specifying the agent's accuracy across
all assigned binary tasks. In order to use this operation, a “binarytask truth network” and a
“binarytask requirement network” must be specified.For each task the agent is assigned to,
Construct assigns a 1 if accurate and a 0 if inaccurate.

<operation name="ReadBinaryTaskAccuracy">
 <parameters>
 <param name="output_filename" value="binaryTaskAccuracy.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all" />
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadInteractionMatrix
This specific operation has been deprecated by CASOS. Instead, below is the appropriate way
of accessing and printing the values of the interaction matrix. Recall the interaction matrix is an
Agent x Agent matrix whose cells store integer counts of the number of times the row agent and
column agent have interact during the specified turn. The matrix is reset to all zero’s at the end
of each turn.
<operation name="ReadGraphByName">
 <parameters>
 <param name="graph_name" value="'interaction network'"/>
 <param name="output_filename" value="interaction.csv"/>

88

 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 <param name="time" value="first,
(construct::intvar::time_count *10)/100,
(construct::intvar::time_count *20)/100,
(construct::intvar::time_count *30)/100,
(construct::intvar::time_count *40)/100,
(construct::intvar::time_count *50)/100,
(construct::intvar::time_count *60)/100,
(construct::intvar::time_count *70)/100,
(construct::intvar::time_count *80)/100,
(construct::intvar::time_count *90)/100,
last"/>
 </parameters>
</operation>

ReadKnowledgeDiffusion
This will print an Agent x PercentKnowledgeDiffused vector at time period 0, time period 1, time
periods that correspond to 20%, 40%, 60%, and 80%, and the last time period. Construct will
separate each time period from the others by a blank line. In order to determine the number of
knowledge facts that an agent has, Construct simply sums the number of bits set to 1 for that
agent’s index into the knowledge network.

<operation name="ReadKnowledgeDiffusion">
 <parameters>
 <param name="graph_name" value="'knowledge network'"/>
 <param name="output_filename" value="diffusion.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="0,first,
(construct::intvar::time_count *20)/100,
(construct::intvar::time_count *40)/100,
(construct::intvar::time_count *60)/100,
construct::intvar::time_count *80)/100,
construct::intvar::time_count-1" />
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadKnowledgeDiffusionByAgentGroup

89

This will print a Knowledge x AgentGroup matrix at all time periods to a single file. Construct will
print row and column headers. Construct will separate each time period from the others by a
blank line. For this operation to operate, the modeler must have defined an Agent x AgentGroup
matrix. The ReadKnowledgeDiffusionByAgentGroup operation will output a matrix where each
row is an agent group, and each column is a fact. The value at a particular row-column cell in
this matrix is the percentage of agents who know that fact.

<operation name="ReadKnowledgeDiffusionByAgentGroup">
 <parameters>
 <param name="output_filename" value="KnowledgeDiffusionByAgentGroup.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadKnowledgeDiffusionByFactGroup
This will print an Agent x Percentage of Facts per FactGroup matrix at all time periods to a
single file. Construct will print row and column headers. Construct will separate each time period
from the others by a blank line. Each cell of the matrix at a given time period will output the
percentage of facts in the given FactGroup that the agent at that row of the matrix knows.
<operation name="ReadKnowledgeDiffusionByFactGroup">
 <parameters>
 <param name="output_filename" value="KnowledgeDiffusionByFactGroup.csv"/>
<param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="time" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 </parameters>
</operation>

ReadKnowledgePriorityMatrix
This specific operation has been deprecated by CASOS. Instead, below is the appropriate way
of accessing and printing the values of the knowledge priority matrix. This network does not
normally change during the execution of the run unless the modeler uses scripting to do so. As
such, printing out time periods other than the first is probably not useful.

<operation name="ReadGraphByName">
 <parameters>
 <param name="graph_name" value="'knowledge priority network'"/>

90

 <param name="output_filename" value="interaction.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
 <param name="time" value="first"/>
 </parameters>
</operation>

ReadSphereMatrix
This specific operation has been deprecated by CASOS. Instead, below is the appropriate way
of accessing and printing the values of the interaction sphere matrix. Recall the interaction
sphere matrix is an Agent x Agent matrix whose cells store boolean values that indicate the row
agent can interact with the column agent. This network does not normally change during the
execution of the run unless the modeler uses scripting to do so. As such, printing out time
periods other than the first is probably not useful.
<operation name="ReadGraphByName">
 <parameters>
<param name="graph_name" value="'interaction sphere network'"/>
 <param name="output_filename" value="interaction_sphere.csv"/>
 <param name="output_format" value="csv"/>
 <param name="run" value="all"/>
 <param name="print_row_names" value="true" />
 <param name="print_col_names" value="true" />
<param name="time" value="first"/>
 </parameters>
</operation>

 ‘Decisions’
Construct is capable of generating arbitrary computable output through the use of expressions
and scripting on a per-agent, per-turn basis. When an agent executes a ‘Decision,’ the agent is
not only able to generate additional non-in-built output, but can modify its internal state in ways
the original developers had not necessarily contemplated. In the <operations></operations>
portion of a construct input file, a modeler can create an operation that supports this
functionality. A modeler can also make a ‘decision’ that can affect the entire simulation, and not
just single agents or nodes.

ReadDecisionOutput
The modeler will use the <ReadDecisionOutput></ReadDecisionOutput> tags when creating
an arbitrary decision. The complete syntax is shown in the example below and the name of the
tag is case sensitive. Construct will place the output file in the same directory as the input file;
there is no capability to write to a different directory or path. The output_format, similarly to
other output options, supports two values, csv and dynetml.

91

<operation name="ReadDecisionOutput">
<parameters>
<param name="output_filename" value="[filename]"/>
<param name="output_format" value="csv"/>
<param name="run" value="all"/>
<param name="time" value="all"/>
<param name="verbose" value="<BoolExpr>"/>
<param name="header_row" value="<BoolExpr>"/>
<param name="applicable_agents" value="<ListExpr>"/>
<param name="decision_names" value="<ListExpr>"/>
<param name="<decision name value 1>" value="<ListExpr>"/>
<param name="<decision name value 2>" value="<ListExpr>"/>
<param name="<decision name value ...>" value="<ListExpr>"/>
<param name="<decision name value n>" value="<ListExpr>"/>
<parameters>
</operation>

Unlike other operations, the ReadDecisionOutput gets executed at the end of every turn. The
time parameter shown above is directing Construct to provide output at all time periods, though
how frequently a modeler wants that output is situation dependent. Note the additional valid
values for the time parameter: first, last, all, and a comma separated list of positive
integers that are less than the length of the simulation (first is equivalent to 1). The run
parameter remains necessary to support legacy input decks. The verbose parameter, when
true, will print additional information about the decision during parsing of the input deck. The
boolean header_row tells Construct to print a header row in the output file if the value is true.

The <ListExpr> is a comma separated list of node ids (e.g., 1,2,55,99). A modeler can also
use the agent group reference syntax (i.e. construct::agentgroup::<name> to provide the
comma delimited list of agents). For each value in the <ListExpr> for the decision_names
parameter, the modeler must add a parameter using that value as a decision name and define
the decision using scripting syntax. If the value attribute does not define the decision (as it does
for d1 and d2 below), the modeler must include a type attribute with a decision_name_list
value to tell Construct that the definitions of the decisions appear later in the input deck (see
also decision d3 below, which is composed of 2 1-bit decisions, d4 and d5). A more specific
example of this syntax is shown below.

<operation name="ReadDecisionOutput">
 <parameters>
<param name="output_filename" value="decision_outputs.csv"/>
<param name="output_format" value="csv"/>
<param name="run" value="all"/>
<param name="time" value="first,10,20,30,last"/>
<param name="verbose" value="false"/>

92

<param name="header_row" value="true"/>
<param name="applicable_agents" value="1,15,99"/>
<param name="decision_names" value="d1,d2,d3"/>
<param name="d1” value="getKnowledgeNetwork[agent,1]" with="agent"/>
<param name="d2" value="getKnowledgeNetwork[agent,20]" with="agent"/>
<param name="d3" value="d4,d5" type=”decision_name_list"/>
<param name="di" value="getKnowledgeNetwork[agent,i]"
 with="agent,i=(4,5),i"/>
 <parameters>
</operation>

Reading the decision above, would sound like the follow:
“This is an operation to get the decision from agents 1, 15, and 99 for decision 1, decision 2,
and decision 3, and to print the results of that retrieval at time 1 (the first time period), time 10,
20, 30 and the last time period of the simulation. Decision 1 is a represented by a single bit of
knowledge, in column 1 of the Agent x Knowledge Network. Decision 2 is also a single bit of
knowledge, in column 20. Decision3 is ____________. Decision 4 & 5, defined with a macro
variable, are also single bits in the AxK network, and are with respect to Agents 4 & 5 only. The
output format will be CSV with decision 1 in the first column, and decision 5 in the fifth column.”

Specifying Decisions
Construct does not have a defined limit on the number of decisions a modeler can define.
Experience within CASOS and developmental testing indicate that no more than 200 decisions
be created per simulation.

Modelers must define their decisions in the decision_names parameter or within a chain of
decisions. One way of ensuring reachability is to have the header_row parameter set to true. If
the decision of interest is in the header row, Construct is attempting to evaluate it.

A modeler can use all the scripting language capabilities and features available when specifying
variables. The practical result is that a decision can use constants, mathematical and logical
expressions, string operations, and conditional statements. There are an additional five (5)
scripting features available to modelers when declaring and specifying decisions:
network getters
network setters
agent references
time period references
decision references

Network Getters
A very important part of the decision system in Construct is its ability to read and return a set of
values from any network within the simulation. The general syntax is getSomeNetworkName
[row, col]. The complete syntax to accomplish this functionality is in Appendix E Scripting in
the Network Operations section.

93

Network Setters
A very important part of the decision system in Construct is its ability to a set of values within
any network within the simulation. An example use case of this functionality could be an agent
in the simulation learns of the existence of a web site from an interaction partner. This
functionality could then set the interaction network row+column value to 1 between the agent
and the website--knowledge of existence preceded ability to interact. The general syntax is
setSomeNetworkName [row, col, value]. The complete syntax to accomplish this
functionality is in Appendix E Scripting in the Network Operations section.

Agent References
Construct processes decisions iteratively for each of the agent values in the
applicable_agents parameter. The modeler may frequently need to refer to the specific agent
under evaluation, and can accomplish this by using the reserved word, agent, in the decision
declaration.

Time Period References
The modeler may need Construct to refer to the current time period when processing decisions.
This is possible using the reserved word timeperiod as part of the with=”” attribute.

Decision References
It is possible that a modeler needs to evaluate decisions both independently and in some form
of combined output. Construct supports the chaining of decisions to allow a modeler to meet this
need. In the example below the modeler has two independent decisions (XX, YY) and needs to
also model the combined XX || YY. Specifically, the modeler is trying to determine if agent ever
talked with agent 0, or if agent 0 ever talked with agent, or if either happened in previous
execution of this decision script.

<operation name="ReadDecisionOutput">
<parameters>
<param name="decision_names" value="everTalkedTo0" type="decision_name_list"/>

<param name="everTalkedTo0"
value="getInteractionNetwork[agent,0] ||
 getInteractionNetwork[0,agent] ||
 previousResult:bool}" with="agent"/>
</parameters>
</operation>

The previousResult reserved word shown above allows a modeler to retrieve, as a
construct::stringvar the result of this decision during the previous time period.

Decisions using with statements

94

A modeler can use all the with functionality described in Part 2 Variables. The authors in fact
strongly encourage the use of the with=”verbose” attribute and value to help enable more
effective debugging of input decks.

The example script above shows one example of the with=”agent” attribute that allows
Construct to move through the applicable_agents list.

The example script at the top of this section also shows an example of the use of macros inside
the with=”” attribute. In this example, Construct creates decisions d4 and d5 as a result of the
i macro in the with attribute.

The decision parsing differs slightly from the parsing of regular Construct variables. Construct
can interpret regular variables that contain non-reserverd words, not contained in single
quotation marks (‘) as stringvars. This is not true for decisions, and modelers must use single
quotation marks (‘) stringvars to delimit string variables.

Common Gotchas
If Construct is unable to open an input file, it will exit and close. There are times when an error
message is not present to the user in this situation! Users should ensure that if they have
opened any output files (e.g., in Excel to view the files), they should either close the file or use
an application that does not place a file-level lock on the file (e.g., Notepadd++).

95

APPENDIX D Construct ‘Generators’
This section discusses various generators. Several have previously been mentioned, but will be
covered here as well.

Constant
This generator is used to set a constant value across a wide-range of tables – it assumes that
matrix fill-in should occur from the ‘first’ cell to the ‘last’, all inclusive.

Constant generators are frequently used to set a default value, which is then elaborated on with
other generators.

<generator type="constant">
 <rows first="0" last="nodeclass::agent::count_minus_one" />

<cols first="0" last="nodeclass::knowledge::count_minus_one" />
 <param name="constant_value" value="1.0" />
</generator>

This generator sets every cell in an Agent x Knowledge network to ‘1’. Note that
“nodeclass::agent::count_minus_one” reduces to a single number - there is no check that this is
actually an Agent by Knowledge network. Common errors include using the wrong node type.

There is also a Constant3D Generator – the same principle applies, but is applied across 3
dimensions.

<generator type="constant3d">
 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <inners first="0" last="nodeclass::agent::count_minus_one" />

<cols first="0" last="construct::intvar::comms_media_email_id" />
 <param name="constant_value" value="1.0" />
 <param name="symmetric_flag" value="false" />
</generator>

This is intended to set values in a 3D matrix, in this case an Agent x Agent x
CommunicationMedium matrix.

Random Uniform
This generator is used to set values, using a uniform distribution, between a minimum and
maximum value. Every value in between is equally probable.

As with the constant generator, this generator sets every cell between the first and last given
cell value across both dimensions, inclusive.

96

<generator type="randomuniform">
 <rows first="0" last="nodeclass::agent::count_minus_one" />
 <cols first="0" last="nodeclass::agent::count_minus_one" />
 <param name="min" value="0.0" />
 <param name="max" value="1.0" />
</generator>

This generator sets values for all agents to all agents between a minimum of 0.0 and a
maximum of 1.0.

Random Binary
This generator is used to set values of either 0 or 1 across a range of cells. As with a constant
generator, all cells between ‘first’ and ‘last’, inclusive, are filled in. The mean argument
identifies the target proportion of 0s and 1s. A value of .3 means that roughly 70% of the cells
should have 0s, and 30% should have 1s.

<generator type="randombinary">
<rows first="0" last="nodeclass::agent::count_minus_one"/>
<cols first="0" last="nodeclass::agent::count_minus_one"/>
<param name="mean" value=".5"/>
<!-- This is commented out

 <param name="symmetric_flag" value="true"
 -->
</generator>

This generator sets values for all agents to all agents so that roughly half (.5) the values will be
0, and the other half 1. If the symmetry flag was not commented out, then early cell value writes
would then be overwritten to be consistent with later cell value writes. Since it’s not included, Vij
may be 1, while Vji is 0 (or vice versa).

CSV
This is a very useful generator – used for taking externally generated or inferred networks from
outside processes (such as ORA) that have been exported into a CSV file.

It’s important, prior to loading, that the indexes of the external file match the Construct file.

CSV network files come in two common types, link-lists and network matrices:

- Link-lists are sparse network files, where every row defines a single edge. They are
smaller (in size) when networks are not very dense.

Source, Sink, Value
 0, 1, .3
 0, 2, .8
 1, 0, .1
 2, 1, 1.0

97

- Network Matrices are dense network files, where every row defines all the connections
the row node has. They may have header rows and node labels, or not. They are
smaller and more efficient (in size) when the networks are dense.

, 0, 1, 2
 0, 0.0, 0.3, 0.8
 1, 0.1, 0.0, 0.0
 2, 0.0, 1.0, 0.0

The first generator we will discuss is the “csv_binarize” generator. This is used when you need
the final values to be 0s or 1s, but may want to use a weighted network as the input.

<generator type="csv_binarize">
<cols first="0" last="nodeclass::knowledge::count_minus_one"/>

 <rows first="0" last="nodeclass::agent::count_minus_one"/>
<param name="filesystem_path" value="knowledge_network.csv"/>
<param name="skip_first_col" value="false"/>
<param name="skip_first_row" value="false"/>
<param name="csvrow" value="construct::stringvar::agent_list"/>
<param name="csvcol" value="construct::stringvar::knowledge_list"/>
<param name="load_style" value="dense"/>
<param name="binarization_threshold" value="0.0"/>

</generator>

This is an agent x knowledge network. This generator has a bunch of special arguments so
we’ll cover them in some detail:

- filesystem_path is the location of the network file – it can be either an absolute or relative
path

- skip_first_col – if the file has a header row, set this value to true – this is usually used
with dense matrices with a node id to the right.

- skip_first_row – if the file has a header column, set this value to true
- csvrow – this is a list of indices from the row group (agents, in this case) from the

construct deck that will be set (0,1,2,3,4,5, etc)
- cvscol – this is a list of indices from the column group (knowledge, in this case) from the

construct deck that will be set.
- load_style – this is how you tell Construct what kind of network file the file is, “dense”

means the network file is a matrice, “sparse_to_dense_convert” means that the file was
a link-list

- binarization_threshold – the threshold used to identify the minimum value, exclusive, that
will be set as a ‘1’ – this is used in the csv_binarize generator

The csv and csv_binarize generator are very similar – every argument in the csv generator has
already been discussed in the csv_binarize discussion. You use a CSV generator when you
want the values listed in the network to be placed untransformed into Construct input.

98

<generator type="csv">
<rows first="0" last="nodeclass::agent::count_minus_one" />
<cols first="0" last="nodeclass::timeperiod::count_minus_one" />
<param name="filesystem_path" value="agent_initiation_fname" />
<param name="skip_first_row" value="true" />
<param name="csvrow" value="construct::stringvar::agent_list" />
<param name="csvcol" value="construct::stringvar::timeperiod_list" />
<param name="load_style" value="sparse_to_dense_convert" />

</generator>

Transactive Memory Generators
Transactive Memory is an inherently three dimensional concept, agents have their own
representations of other agents (called alters) on some third axis. In Construct, that third axis is
usually knowledge, but there is belief TM, and one could imagine tasks as a useful supplement.

We have two kinds of transactive memory generators for knowledge as currently defined in
modern Construct code:

1) Perception-Based Generators
2) Group-Based Generators

In perception-based generators, each agent is granted a (usually flawed) view of ground-truth
(i.e., what agents actually know), and uses that to set values for their own personal alter x
knowledge matrix.

<generator type="perception_based">
<ego first="0" last="node class::agent::count_minus_one"/>
<alter first="0" last="node class::agent::count_minus_one"/>
<transactive first="0" last="node class::knowledge::count_minus_one"/>
<param name="false_positive_rate" value="0.0"/>
<param name="false_negative_rate" value="0.0"/>
<param name="rounding_threshold" value="0.0"/>
<param name="verbose" value="true"/>

</generator>

The “false_positive_rate” indicates the chance that an alter will be thought to have knowledge
they do not actually have. The “false_negative_rate” indicates the chance that an alter will be
thought to not have knowledge they do actually have. Both values should range between 0 to 1,
and usually should be much closer to 0. Keep in mind that Construct’s homophily drive works
based on ‘positive’ homophily, a preference to interact with people that are similar to us. Agents
with high false negatives will tend to interact only with themselves.

In group-based generators, agents are identified as members of groups, and they are assigned
knowledge based on what is known by the majority of the members of the groups to which they
belong.

99

<generator type="group_based">
 <ego first="0" last="nodeclass::agent::count_minus_one"/>
 <alter first="0" last="nodeclass::agent::count_minus_one"/>
 <transactive first="0" last="nodeclass::knowledge::count_minus_one"/>
 <param name="group_flip_to_positive_rate" value="0.0"/>
 <param name="group_flip_to_negative_rate" value="0.0"/>
 <param name="agent_flip_to_positive_rate" value="0.0"/>
 <param name="agent_flip_to_negative_rate" value="0.0"/>
 <param name="verbose" value="true"/>
</generator>

Group members are assumed to have knowledge that the majority of their group members
share based on ground-truth. The ‘flip’ variables indicate the chance that the perception of the
group or alter (respectively) will be more or less generous.

Group to Group Generators
Group to Group Generators are intended to support detailed configurations where nodes that
set to be set with a common value may not be contiguous in the node list. All of the previous
generators have been what are sometimes called ‘box’ generators, where values are set for a
given rectangle of the matrix space defined by the row and col arguments. So nodes that need
to be set with a specific value need one box generator per contiguous listing – thus, you may
end up needing thousands of box generators for large simulations.

Reading CSV input is the other common way to handle this problem, but some process needs
to manage the creation of a composite image – group generators may be a more elegant
solution.

An example use-case is you have agents in two groups – you want to assign them to groups
randomly, and not define it previously. Using box-generators for this could be very difficult –
you’d probably need a pre-processor that creates the CSV input. Instead, you assign each
agent to a group at random and then use group generators to set values of interest.

You need a reference to the group membership network Uses a reference to a second network
for the mappings as well as references to the two group networks

100

The above xml shows the group to group generator in use. Note that this generator is the only
generator for the knowledge network. The common rows/cols values are set to zero, but are not
actually used. Instead the following parameters are used:

src_net_name
This tells the generator where the group to group mapping is found. It refers to another network
that should already be loaded. In the example, the network is called “ag_to_kg_gen_net”.
Note that you can call this network whatever you want, but src_net_name must have correct
name, whatever you choose.

 row_grp_membership_net
• This tells the generator where the membership network for the row groups is at. In this case
the network’s name is “agent group membership network”.
• A membership network is a mapping of nodes to groups. In this case it maps agents to
agentgroups.
• Construct uses the “agent group membership network” for its own purposes, and you can use
it in this case, but you can also use your own node to nodegroup network. Just make sure you
give the correct name in the row_grp_membership_net.

 col_grp_membership_net
• This tells the generator where the membership network for the col groups is at. In this case
the network’s name is “knowledge group membership network”.
• This is a knowledge to knowledgegroup network.
• It is just like the row_grp_membership_net, but it applies to the column nodeset type, which in
this case is knowledge instead of agent.

101

The above xml shows the mapping between the agent group and knowledge group nodesets.
• Note the value string: gen_typeXXXrandombinary,meanXXX0.0.
• This is parsed to find the parameters for the generator for the mapping between agentgroup:
ag0 and knowledgegroup: fg0.
• Once parsed, the gen_type will be randombinary and its sole parameter “mean” will be 0.0.
• If there should be more parameters, just follow the pattern and use XXX between parameter
name and its value, and use a comma between individual parameters.
• Unfortunately limitations in our xml parser preclude the use of more sensible delimiters. Once
fixed, we will change from XXX to something like “||” or “:”.

102

• Maps nodes to groups.
• Groups must exist in their own nodeset.
• Typically the group nodeset’s name has the name of the nodes it will be associated with
followed by the word “group”.
• Example: agentgroup is a nodeset of agent groups
• Example groups: finance_dept, advertising_dept, friendlist
• Example: knowledgegroup is a nodeset of knowledge groups.
• Normal generators can be used so csv, dynetml, and constant generators are typical for
membership networks.
• Usually the bounds of each group are critical
• Example: finance has 10 agents in it, advertising has 3 agents, etc.
• If groups are not contiguous then generators can specify those agents too.

103

APPENDIX E Scripting

Variables and ‘Decisions’ are subsets of the more general concept of scripting within Construct.
In this section, we will discuss in more detail the parts of the scripting system. We first begin on
a rather important note by stating that when using the scripting functionality of Construct, it is
important that the modeler does not use any of the following words, which are reserved for
certain uses and, if used incorrectly, may provide unexpected results.

agent
bool
construct
delay_interpolation
details
else
error
get
if
preserve_all_white_space
preserve_spaces_only
preserve_white_space
random
randomBinary
randomNormal
randomUniform
return
set*
spaces_only
static_if
timeperiod
verbose

Note that any string beginning with the word “get” or “set” is reserved for use with referencing
networks, and thus the remaineder of the network reference must be one of the networks that
Construct is aware of, specified in CamelCase. string that begins with the word “get” or “set” will
be treated as a network reference. In addition, any and all words beginning with “construct” or
“random” should not be used – though the list above specifies all current reserved words,
anything beginning with either of these two words may become a reserved word at some point
during future development. Finally, one should note that all words beginning with an alphabetic
character will be considered variables, though in many cases it will only be a valid variable with
the use of with.

104

Having stated what should not be used when doing scripting in Construct, we now define the
lexemes that are possible within Construct’s scripting system. Note in the sections below that an
expression surrounded by angled brackets, such as <text>, indicates an expression can be
used in place of it. One other note is that in all cases below, square brackets ([]) and curly
braces ({}) are deliberate and must be included.

General Syntax
§ comment: /* <This is an example comment> */

Comments within scripts occur within /* */, as shown above. It is important to note that the user
not put commas or quotes within comments. Beyond this, however, users should feel free to
use comments as desired, including the use of newlines, e.g.
/* <This is another
 example comment> */

§ quoted literal: '<Text>'

To specify a string of text to be used, the user can enclose it within two single quotes. Again, as
with comments, the user should refrain from putting other single quote characters or commas
into quoted literals. To avoid errors where quoted literals are mistakenly not closed being too
confusing, there is a limit of 100 characters per literal – to create literals with more than 100
characters, concatenate multiple literals together.

§ numbers: <Number> or <Number>.<Number> or -<Number>.<Number>

It is important to note two things when specifying numbers. First, Construct will attempt to
represent the number using the smallest type possible- that is, if the user does not explicitly (via
:float) or implicitly (via adding a .0) cast a number to a float, it will be stored as an integer.
Construct supports up to sixteen-bit, twos complement signed integers in addition to C-style
floats.

§ white space: <space> or <tab> or <newline>

All whitespace is ignored by the Construct parser- please be aware that under certain
conditions, this may produce unexpected results. If the user wishes to specify a variable
addressing networks in Construct, which often have spaces, the user must refer to them within a
quoted literal.

Mathematical Expressions
§ sub-expression: (<Expr>)

105

Parentheses are used for two reasons. The first, as discussed in the variables section, is to
specify order of operations. The second is to specify subexpressions – for example, when
writing an if statement, it is necessary to use parentheses.

§ addition: <Expr>+<Expr>

§ subtraction: <Expr>-<Expr

§ multiplication: <Expr>*<Expr>

§ division: <Expr>/<Expr>

§ exponentiation: <Expr>**<Expr>

The five mathematical operators are presented here together, for clarity. There are some
differences between these – chiefly, the addition operation performs a concatenation if either of
the operands used are strings; for instance, adding “test” and “1” will create the string “test1”. If
both operands are numeric or Boolean, then a standard addition will be performed – note that in
addition, as in all cases, the result will be a float if one at least one operand is a float and will be
an integer otherwise. Subtraction, multiplication, division and exponentiation (which evaluates to
the C function pow()) can be used as expected, and cannot be used with string
§ concatenation: <Expr>,<Expr>

Not to be confused with string concatenation, the he concatenation operator is used to separate
two values in a sequence. This can be used in order to 1) create a list of entries, or 2) internally
by the parser to separate parameters to other scripting commands.

§ subsequence: <StringExpr>/<StringExpr> or
<StringExpr>|<StringExpr>

The subsequence (/or |) operator is specifies a group of related items within a single sequence,
and can be used to specify a list within a list. It is important to note that the subsequence
operator is the same as the division and or operators, and will be used if one or more of the
expressions involved are strings. For example, 1/2/3 will be evaluated as a numerical division
operation, while 1/2/3:string will utilize the subsequence operator.

§ enumeration: <Min>..<Max>

The enumeration operator is used to create a sequence of integers between the values of
<Min> and <Max>. The primary use for the enumeration operator is to quickly and concisely
create comma-separated lists of integers without having to utilize a loop. An example of its
usage is 1..5, which will generate the sequence 1,2,3,4,5. Further examples, re-illustrating the
principle of left-to-right evaluation, are provided below:

106

 3+1..5 -> 31,2,3,4,5
 (3+1)..5, -> 4,5.

Logical Expressions
§ logical and: <Expr>&&<Expr>
§ logical or: <Expr>||<Expr>
§ exclusive or: <Expr>^<Expr>
§ negation: !<Expr >

The logical operators are defined here for convenience. In the case that one of the operands is
a string, all of the given operations will fail. Otherwise, all values will first be converted to
Booleans and then the expression will be applied. In all cases, if the expression evaluates to
true, the Boolean value 1.0 is returned, otherwise 0.0 is returned.
It is important to note that although Construct will be able to interpret it, the && operator is not a
standard XML token, and thus certain text and XML editors may warn that your syntax is
incorrect.

§ equality: <Expr>==<Expr>
§ inequality: <Expr>!=<Expr>
§ less than: <Expr> < <Expr>
§ greater than: <Expr> > <Expr>
§ less than or equal to: <Expr> <= <Expr>
§ greater than or equal to: <Expr>>=<Expr>

The comparison operators are provided here together for convenience. If either value the
equality or inequality operations is a string, both sides of the equation are first converted to
strings, and then the comparison occurs. The less than, greater than, less than or equal to and
greater than or equal to operations will all fail if one or more of the operators are a string. If one
or more of the values are a float for any of these operations, then all values are converted to
floating point values before the comparison is completed. Finally, if both operands are integers,
then an integer comparison will be applied.

In all cases, it is important to keep in mind two things. First, if the expression evaluates to true, a
Boolean value of 1.0 is returned, otherwise, 0.0 is returned. Second, recall that Construct does
not implement operator precedence, and continues with right-to-left evaluations. Thus,
evaluating the expression 2+1==3 will result in a value of 2, because the script will compare 3
and 1, generating a value of 0, and then add this amount to 2. Though we only show this for the
== operator, the same holds for all others here.

As with the expression && above, standard XML editors do not allow for the use of < or > (less
than or greater than) in places outside of tags, and thus including these expressions in your
ConstructML may cause your editor to warn you that you have an error.

107

Generating Random Numbers
§ generate random number from a uniform distribution:
randomUniform(<MinExpr>,<MaxExpr>)

§ generate random number from a normal distribution:
randomNormal(<MeanExpr>,<VarianceExpr>,<MinExpr>,<MaxExpr>)

These two functions allow for the creation of random numbers. In both cases, A new value is
generated each time a call to this expression is made, and thus, for example, would generate a
unique value for each turn if placed within an expression evaluated on each turn. The random
number generator utilized is the same one used by Construct, and hence utilizes the same
seed. dom number generator generates a new random number each time it is invoked, meaning
that the expression is evaluated as Construct is executed and not when the statement is parsed.

The randomUniform expression generates a randomly drawn floating point value from the
uniform distribution defined by the parameters <MinExpr> and <MaxExpr>, which can be
any values that evaluate to either integer or float values. If they are not supplied, (e.g. if the
expression is written as randomUniform(), the default values assumed are 0 and 1. Thus,
a call will generate a value inclusive of the minimum and maximum values given. If an integer is
desired, for example, between two and five, the user can utilize a call of the form
randomUniform(2,6):int.

The random normal number generator generates a float value from a normal distribution with
mean MeanExpr and variance VarianceExpr, and the MeanExpr, VarianceExpr,
MinExpr, and MaxExpr expressions can be anything evaluating to either a float or an int. If
no minimum or maximum values are specific, the range of possible values can theoretically go
from negative infinity to infinity. Note that these need not be symmetric, but that because there
is usually little need to evaluate infinity, it is often desirable to bound the distribution by
something. In order to adhere to the bounds, Construct uses post-processing – that is, it
repeatedly draws random numbers from a normal with the specified mean and variance until it
finds values within the desired range set by the minimum and maximum values, inclusive. Note
that in certain cases, this may be a very slow process.

Conditional Statements - IF
§ if expression:
if(<BoolExpr>) { < Expr> } else { <Expr> }
or
if(<BoolExpr>) { < Expr> } else if(<BoolExpr>) { < Expr> }
else { <Expr> }

The if (and subsequent else ifs and else statements) allow the scripting language to evaluate a
series of Boolean expressions. These expressions are evaluated sequentially, starting with the
first expression (which must be an if) through zero or more else if conditions and to a final (and

108

necessary) else command. If any of the <BoolExpr> within one of these is true, then the
statement within the curly brackets is executed, and the rest of the conditions are ignored. Thus,
if expressions will execute only a single expression (or set of expressions) enclosed within curly
brackets.

Note that there are two significant departures from C-like syntax in Construct’s version of an if
statement. First, one must use curly brackets when expressing a statement to be executed after
an if or an else (note in C-like languages, this is not necessary for single-line expressions.
Second, there cannot be an if statement without an else statement – all curly brackets in an if
expression that are not part of the final else must be followed by an else (which may be part of
an else if).

Thus, in the case that the user wants to test a single condition, the syntax would look something
like the following:

if(<BoolExpr>) { < Expr> } else { }

When testing a conditional inside the parentheses, it is necessary to have as output an explicitly
Boolean value. Thus, implicit conversion will not occur for floats or integers, in order to reduce
the possibility of user error. If a user wishes to use an integer, float or string for the conditional,
they must explicitly cast with :bool. Finally, the returned types of all expressions executed
should match

§ static if expression:
static_if(<BoolExpr>) { <Expr> } else { <Expr> }
or
static_if(<BoolExpr>) { <Expr> }
else if(<BoolExpr>) { <Expr> } else { <Expr> }

The static_if expression differs from the standard if expression in that it is evaluated statically –
while if conditional is considered when the statement is executed, the static_if is executed at the
time at which it is parsed. This can be used in cases where the experimenter is sure that the
conditional statement will never change, and in these cases will dramatically speed up
execution time, as a static_if will be evaluated only once. Such a situation might occur if the
user were to test for some constant variable that may be changed once, by the user, in the file,
but will stay constant throughout the simulation.

The second use if the static_if is that if utilized, only the expressions within the brackets {} of the
conditional evaluating to true will be evaluated. Thus, one can introduce whole sections of code
conditional on whether or not a variable is initialized to a certain value, where if it is not, that
code will never be utilized by Construct. Simply put, however, the difference between if
statement and a static_if is portrayed best in the following example: Consider the two

 if(timeperiod > 0)…
 static_if(timeperiod > 0)…

109

In the case of the if statement, the condition would be evaluated each turn of the simulation –
thus at every time period after the first, the code within the if statement would be run. In
contrast, the static_if would be checked one time, when it was parsed. Because it evaluates to
false in that case

§ assignment: $variable$ = <Expr>;

The assignment operator, or the equals sign, allows the assignment of the value on the right
hand side to the variable on the left, which must be surrounded by dollar signs. The right hand
side of the equation can be any expression, though note that it must end with a semicolon (;).
This expression can include any variables declared previously that have already had values
assigned to them.

Upon assignment, the variable with name variable will be given the type of the type for whatever
the right hand side evaluates to. Assignments take on a global scope within the ConstructML
attribute they are defined in – thus, unlike, for example, C, a variable defined as such inside a
loop can be utilized outside of it. However, once outside of an attribute, the variable loses that
definition – even within the same element, a variable declared in its “name” attribute will be
different than one defined in its “value” attribute.

When a variable is used, it is given a variable type. If the right-hand side expression is a
Boolean the first time the variable is initialized, the variable will be type as a Boolean.
Otherwise, if it is an integer, float, or string, the variable will be typed as an integer, float, or
string (respectively). The most specific type that can be used for a variable will be used to type
the variable. If a specific variable type is to be used, the right-hand side can be cast to the
desired type using the cast (:) operation. When

An additional point to note is that it is necessary to declare any variable first declared on the left-
hand side of an assignment using a with variable, as is done in the example in Table 7 below
with the variable result. As can also be seen in Table 7 below, it is necessary to include a return
statement in the script in order to specify which result will be returned. If the end of a script does
not contain a return statement, the parser will error.

Table 7. Examples of foreach loops

Variable Value

<var name="loop1" value="
$result$ = „‟;
foreach i („a‟,„b‟,„c‟,„d‟) {
$result$ = $result$ + i;
}
return $result$;"
with=“$result$”/>

"abcd"

110

<decision name="loop2" value=" foreach col (0..10) {
setKnowledgeNetwork[row:int,col:int,0]
}"
with=”row=2”/>

"" (sets
network
values)

§ error: error(<StringExpr>)

The error expression will force Construct to output the string given and then exit immediately
after being evaluated. Typically, one will want to use this to debug code in order to make sure
that “impossible” conditions within the code are actually never hit. If a string expression is not
give, a default message of “<no error message provided>”) will be returned. Note that the string
expression can, of course, be a quoted literal, but can also be a dynamically evaluated string
variable.

 Looping - foreach

§ foreach expression: foreach $iterator$ (<IterableExpr>)
{ <Expr> }

The foreach loop allows the user to give a list that can be iterated over to produce an
aggregated result. To use a foreach loop, one must specify the foreach keyword, then the name
of the parameter while will be used to iterate over the list encoldes by dollar signs, followed by
the parentheses enclosing what is to be iterated over, and then finally the statements to be run
for each element in the list within the brackets {}. For example, the expression “foreach val
(1,2,3)” will generate a parameter, val, which will be given a value of 1, 2 and then 3 on the first,
second and third iterations of the loop, respectively.

Within the brackets, a sequences of any number of statements can be written-in most cases,
these statements will include reference to the iterator parameter, and in many other cases will
use variables, such as an aggregate variable, outside the loop as well. However, loops can also
use the set* operations and therefore will not always need such an aggregate value.

In the case that the user does not, under certain conditions, want to iterate through the entire
loop, a return statement, which will break the loop and return a value from the script
immediately, can be used within an if statement. In addition, it is important to note that foreach
loops can be embedded within other results, and that results coming from a foreach can be
used outside of the loop.

 Return
§ return: return <Expr>;

The return statement allows for a script to return a value at any point during its execution- it is
mostly intended for use with complicated scripts. All return statements must begin with the work

111

return, but must only have a trialing semicolon if they are not placed at the end of a script.
Perhaps most importantly, the user must note that in ignoring whitespaces, Construct will
interpret something of the form “return_val” as meaning the need to return the variable _val, and
thuse should not be used. However, expressions after the return statement, such as return
$count$+1; will evaluate correctly (i.e. in this case will return the value stored in count plus one).

Another important point is that statements which contain assignments, if statements or foreach
must contain a return statement so that the script in its entirety returns a value. In the case
where this does not happen, Construct should error. Finally, values evaluated as part of an
expressionvar are considered to be part of the script- thus, any return statements in the
expression variable will serve as returns for the entire script.

Macros

§ macro variable expression: $<Name>$

Macros may be the most important tool in developing an extendible and maintainable deck, but
also may be the most confusing to the reader. A macro is defined in two parts – see Figure 18
below for examples. First, within the script, an identifier (name) for the macro is placed within
two dollar signs. Like in all cases in Construct, this identifier should be limited to alphanumeric
characters. Second, the variable value for the macro should be specified – in most cases, this
will occur in the with tag of the enclosing piece of ConstructML. The with tag must address the
same identifier, and the second dollar sign must be immediately followed with an assignment
operator.

The results of macro expansion directly effect the text of the expression. So, for example, in
Table 8, the expansion of the variable i is converted to an integer and incremented in variable
x1. In contrast, the substituted variable can also create a new lexeme – in variable x2 the
expansion will substitute in the value 1 for i, creating a new variable, construct::intvar::x1.In
turn, when this is expanded and evaluated, x2 will then take on the value of x1.

Table 8. Examples of macros

Variable Value

<var name="x1” value="i:int+1" with="i=1"/> "2"

<var name="x2" value="construct::intvar::xi"
with="i=1"/>

"2"

<var name="x3" value="$2*i:int$+1" with="i=1"/> "3"

<var name="xi" value="i" with="i=(4,5)"/>

x4="4" x5="5"

112

In most cases, variables should be defined inside of the with tag, as is the case with x1, x2,
x3.Note that the value of the macro variable must be written as a string, but can easily be cast
to any desired type. Also, note that it is possible to have several macro variables each having
separate variable lists –thus, if there are three values for macro i and four for macro j, then
twelve different expansions will be performed.

It is important to remind the reader that not all values surrounded by dollar signs are macros –
for example, variables used in assignment operators may be modified dynamically as the script
is evaluated, and such variables are thus usually specified as with parameters to ensure that
they are recognized by the parser. The difference here is that macros, being defined by the
parser, are static and cannot change during the course of execution, but may be embedded in
more complex variable names. Finally, note that variables created via macros can be accessed
in the standard way- for example, we see that the last example of Figure 18 above gives us x4
and x5, not a variable with the name xi.

Get/Set network values
§ get network value: get<NetworkName>[<RowExpr>,<ColExpr>]
§ set network value: set<NetworkName>[
<RowExpr>,<ColExpr>,<ValueExpr>]

The word get, when followed immediately by the name of a network in CamelCase (e.g.
getKnowledgeNetwork) retrieves the given value from a specific location in a network. The
location is indexed by two integers in brackets, where network value operation retrieves the
value as a specific location in a network. In order for this expression to function, the network
must exist, the row and column values given must be integers, be enclosed by bracket
characters ([]) and be separated by a comma (,). The returned value will have the type of the
network the call is made to. Also, it is important to note that these calls are somewhat time
intensive, and thus the user should take care when making such calls repeatedly, such as
making them inside loops or at every turn of the simulation. Finally, note that variables cannot
yet be initialized in this way, as variables are currently initialized before networks.

Similarly, the word set, followed immediately by the name of a network in CamelCase, can be
used to change the value at a given row and column in a network. In this case, it is importatnt to
verify that the value given in <ValueExpr>, which will be the value that this row and column are
set to, is of the same type as the network it is being set in. Otherwise, Construct will exit with an
error. Note that this is the case even where an implicit cast would make sense- i.e. from integer
to Boolean. It is also important to note that the set command returns a value, which is equal to
ValueExpr.

§ aggregate network values: get<NetworkName>[
<RowExpr>,<ColExprString>]

§ set aggregate network values: set<NetworkName>[

113

<RowExpr>,<ColExprString>,<ValueExpr>]

This version of the get expression will simply call get on a single row in a table and a series of
columns, given by the indicies listed in the list ColExprString, a string containing a series of
comma-separated integers. The value treturned by this function is the sum or concatenation
of these values. A common usage of the aggregate get call is to get the network values for a
specific group of agents or facts- for example, we can get the number of facts in the knowledge
group G that agent 0 knows with the call getKnowledgeNetwork[0,
construct::knowledgegroupvar::G].

The set aggregate network values operation analogous to the set expression, except with a list
of columns. In this case, the value returned is the summation or concatenation of all values set.
Additionally, one should note that if the expression ValueExpr references a dynamic value, such
as a call to a uniform random number generator, then the value will be recomputed for each
element in ColExprString.

 ReadFromCSVFile
§ get value from csv file: readFromCSVFile[<FileExpr>,<RowExpr>,<ColExpr>]

<var name=”param_val_col” value=”1” />
<var name="attack_prob"
 value="readFromCSVFile[params.csv,0,
construct::intvar::param_val_col]:float" />

This command reads a value from a CSV file named params.csv in the example above. The file
location is relative to the location of the Construct execution directory. The file must also have a
value at location <RowExpr>,<ColExpr> (row 0,column 1 in the example above). If all of these
conditions are true, then Construct will return the value at the given row and column of the CSV,
otherwise, it will exit with a failure. Note that file IO is extremely time-intensive, and thus should
be used with care.

114

APPENDIX F Construct in High Performance Computing (HPC)
Environments
In many ways, the resource we are concerned when we do simulation shifts from man-hours
necessary to complete surveys and in-depth interviews to computational complexity in both time
and space. In particular, the goal is to be able to complete a large-scale simulation project with
the idea of “single-click” from starting the simulation through result generation, and with an
implementation which allows us to quickly tweak simulation parameters and rerun all
simulations.

to understand the difficulties associated with simulation in a large-scale project, we now present
the scenario we faced in a previous experiment, described in more detail in [IRS_Intervention].
In this project, we were faced with approximately 2000 runs, each of a population of 4000
agents, along with their attributes, their initial knowledge, and the associated social network.
This model, perhaps one of the most complex social simulation models run in Construct, took
nearly five hours per run. Thus, the sequential cost of running these simulations for a single
researcher on a single processor is just about enough time for a research grant to expire.
Luckily, a series of innovations in computing over the past fifty or so years, with which most of
us are familiar have saved us from such a fate. In this section, we detail such innovations for the
interested user, and then give examples of how to utilize the tools for HPC environments
employed at CASOS.

The first innovation, of course, is the ability for computers to talk to each other. This allows us to
use a single terminal to run simulations on other computers at our disposal and have them
return the results. The second innovation was the development of multi-core processors and
computers with multiple processors. Because Construct, by default, runs on a single core of a
processor, we have the ability to not only run our simulations on other computers, but to run
multiple simulations on each of them at the same time, independently of each other. The
computing power of our center is likely better than most settings, but by no means ideal. Upon
the running of simulations for [IRS_Intervention], our center possessed 234 processor cores
upon which simulation runs could be done, though many of these cores were being
intermittently used by other members of our research center.

The final innovation of computer science, the “map-reduce” framework [Map_Reduce], answers
the question of how we can “black-box” both the distribution of simulations and the coallation of
their output to various machines which can be potentially interrupted at any time. In its most
basic definition, the map-reduce framework “maps” out simulations to different machines,
ensuring in some way that we will receive output from each machine, and “reduces” all of out
output to a single format which we can specify.

Several open-source packages exist to rapidly install the map-reduce framework on computers
that researchers have available to them. Importantly, such a framework allows for the
researcher to be ignorant of the number of processors he or she has available – the map-
reduce concept works exactly the same (though with obvious time increases) on a single core
as it does on the millions of cores used by companies such as Google. We use the CONDOR

115

cluster software [Condor] to connect machines in our center, and their DAGMan [Dagman]
application, along with some straightforward scripting, to implement the map-reduce framework.

The map-reduce framework, along with some well known interventions, allow our workflow to
have two vital properties. First, the given workflow maximizes the resources available to the
researcher. A problem which could have naively taken, even under ideal computing
circumstances on a single machine, months to complete, has been reduced to a few days at
most. Indeed, a researcher need not even obtain more machines, as with the advent of cloud
computing, they can access technologies which hide all implementation details of the map-
reduce framework and give cheap access to an unlimited supply of machines, such as
Amazon’s EC2 cluster. Indeed, workflow technologies like SORACS [SORACS] are rapidly
evolving to allow for this full workflow to be completed without a research having acess to
anything other than a single computer and the Internet. If the researcher does have a large
supply of machines available, such speedup has been achieved with free, open-source, easy-
to-install technologies.

Having explained, at a high level, the concepts incorporated in running Construct in parallel on
multiple machines, it is now useful to describe in more detail how such tools can be utilized. The
first objective, of course, is to obtain some way of submitting Construct runs to multiple
machines. Here, we will discuss the CONDOR cluster framework [Condor] implemented at
CASOS. The first step, of course, is to install CONDOR onto machines in your cluster- this step
is not covered here, but is described in detail in the CONDOR setup manual, located at
[Condor].

Once installed properly, a machine with CONDOR installed on it and a user with submission
priviledges from that machine can submit jobs from that machine onto the cluster in a series of
simple steps. First, the user should set up a CSV file with the parameters indicating the
conditions of the experiment they would like to have changed. From here on out, we will refer to
this file as the conditions file, to represent the fact that it holds all of the conditions necessary for
the entire experiment. We will differentiate this later with a parameter file, which holds the
conditions necessary to run a single cell of the experiment. In a trivial experiment, where the
goal is to test an effect on different population sizes, the conditions file would look something
like this:

 AgentSize,10,100,100

The first column of the file simply labels the condition being changed - though this is not
necessary (we will never tell Construct to look at this value), it is naturally useful in keeping track
of which lines of your parameters file refer to which condition. Once this parameter file has been
specified, we need some way to submit (in this case) three different runs to multiple machines
via CONDOR. to do so, we need to complete three further steps.

The first step is to create three different parameter files - one for each of the different conditions.
This can be done using your favorite scripting language. Below, we give a simple example, in
python, which reads a conditions file and generates a parameter file (recall that a parameter file
is simply a set of conditions necessary to run a single experiment) in a directory who’s name

116

specifies the conditions for that directory. (Note that If you are not comfortable doing such
programming, for small experiments, it is quite easy to do this step manually).

import csv, itertools, os
with open("conditions_file.csv", "r") as condFile:
 reader = csv.reader(condFile)
 values = []
 conditionTitles = []
 for line in reader:
 conditionTitles.append(line[0])
 values.append([val for val in line[1:] if val != ""])
 experimentalSet = list(itertools.product(*values))
 numVals = len(conditionTitles)
 for experiment in experimentalSet:
 condsString = '_'.join(str(i) for i in experiment)
 os.mkdir(condsString);
 with open(os.path.join(condsString,"params.csv"), "w") as
paramFile:
 for i in range(numVals):
 paramFile.write(conditionTitles[i]+ "," +
experiment[i] + '\n')

To run this script, place it in the same directory as your conditions file, name the conditions file
“conditions_file.csv”, and use python (version 2.7) to run the script. For information on how to
download python version 2.7 and run a script, consult the Python documentation at [Python].

Assuming you use the same methodology suggested in the script above, you will now have the
following in the directory in which you placed your conditions file and ran the script: your
conditions file (conditions_file.csv), the python script (your_naming_of_python_script_above.py)
and three Folders 10, 100, and 100, each with one file called params.csv. The second step to
submit to condor is to develop your model (i.e. the XML file described above) and to allow the
model to read in as a parameter from a CSV file the conditions you are interested in. In this
case, we would change the “agent_count” variable to be instantiated as follows:

<var name="agent_count" value="readFromCSVFile[“params.csv” ,0,1]/>

As we know from the above sections, this tells Construct to read the agent_count variable from
the first (zeroth) row and the second (zero-indexed) column of the csv file “params.csv”. Once
we have done this, we can add our XML file to the directory we are working in (i.e. at the same
level as conditions_file.csv). Note that this implementation will only require us to have a single
model file, which is desirable with respect to man-hours required to change the model and the
amount of space needed to store results.

The final step is to create a submission file that CONDOR will use. Though we do not detail in
depth the details of CONDOR submission, below is a file that, placed at the same level of the
directory as your XML model file, will allow you to run the simple experiment described here.
Note that you should replace YOUR_MODEL_FILE_NAME.xml with the name of your XML file,
and include a construct executable with the name “Construct.exe” in your directory as well.

117

universe = vanilla
requirements = ((ARCH == "INTEL" || ARCH=="X86_64") &&
((OPSYS == "WINNT51") ||(OPSYS == "WINNT52") || (OPSYS == "WINNT61") ||
 (OPSYS == "WINDOWS"))
should_transfer_files = YES
when_to_transfer_output = ON_EXIT
executable = Construct.exe
transfer_executable = true
notification = Never
arguments = YOUR_MODEL_FILE_NAME.xml
output = out_setup_to_construct.txt
error = err_setup_to_construct.txt
log = condor.log
transfer_input_files = params.csv
initialdir = 10
queue
initialdir = 100
queue
initialdir = 1000
queue

The file, generally, tells CONDOR where to find your executable and model file, and then to run
three times in each of your experimental directories, using the parameter file within that
directory. This file also contains requirements for what operating system to run on, and specifies
that all files written out by Construct (e.g. in ReadGraph operations) should be transferred back
to your machine after they are run. Putting the text above into a file called
“condor_submission.sub” and assuming the PATH variable on your machine includes the
condor executables, opening a command prompt, changing to the directory we have discussed
here, and typing in the following will run the given experiment.

THIS_DIRECTORY> condor_submit condor_submission.sub

You can use other CONDOR programs, such as condor_q to check the status of your runs -
for full details, see [Condor].

118

APPENDIX G Construct in Research Literature

Below are some brief descriptions of projects that Construct has been used in. Links to the full
publications and project sites are provided below the project title and authors.

Predicting Intentional and Inadvertent Non-compliance

By: Kathleen M. Carley, Dawn C. Robertson, Michael K. Martin, Ju-Sung Lee, Jesse L. St.
Charles, Brian R.Hirshman

http://www.irs.gov.edgesuite-staging.net/pub/irs-soi/10rescon.pdf#page=162

Models for predicting intentional and inadvertent errors on tax returns were developed using two
approaches: the first was metamodeling using literature on errors, and the second was using
statistical machine learning to derive a model from tax audits. The reliability of the models is
dependent on the amount of data, the quality of the data, and whether the learning techniques
are supervised or unsupervised. IRS audit data does have some reliability issues; the taxpayer’s
motives are unknown at the time of filing, and the standard is high for proving intentional
misreporting. The models take these biases into account through an ensemble modeling
approach. The methods shown in this study are useful in creating a predictive model of taxpayer
behavior.

Agent Interactions in Construct: An Empirical Validation using Calibrated Grounding

By: Kathleen M. Carley, Craig Schreiber

http://brimsconference.org/archives/2007/papers/07-BRIMS-054.pdf

 Carley and Schreiber conducted a validation study for Construct. The focus of the study
was on the ability of Construct to produce an initial state of agent interactions which resemble
how a real world network communicates. The Calibrated grounding technique was used to
validate the model. Construct was shown to produce a valid initial state of interactions.

Computational organization science: A new frontier

By: Kathleen M. Carley

http://www.pnas.org/content/99/suppl.3/7257.short

According to synthetic adaptation, any entity that is composed of intelligent, adaptive, and
computational agents, is also an intelligent, adaptive, and computational agent. Organizations
are inherently computational because of synthetic adaptation. The behavior of groups and

http://www.irs.gov.edgesuite-staging.net/pub/irs-soi/10rescon.pdf%23page=162
http://brimsconference.org/archives/2007/papers/07-BRIMS-054.pdf
http://www.pnas.org/content/99/suppl.3/7257.short

119

organizations can be explained by using multi agent computational models that are composed
of intelligent adaptive agents. Construct is an example of such a model; by combining a network
with a multi-agent approach, the model becomes more realistic. A series of virtual experiments
use this model to show the power of this approach for analysis of societies and organizations.

A Dynamic Network Approach to the Assessment of Terrorist Groups and the Impact of
Alternative Courses of Action

By: Kathleen M. Carley

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA477116

Dynamic network analysis is based on the collection, analysis, understanding, and prediction of
dynamic relations amongst various entities such as actors, events, and resources, and their
impact on individual and group behavior. Using dynamic network analysis, terrorist groups were
examined as complex dynamic networked systems that evolve over time. The use of dynamic
network analysis tools to analyze a terrorist group is demonstrated. Techniques that are
demonstrated include identifying sphere of influence amongst actors, determining emergent
leaders in the network, and how using network metrics can assess the impacts of various
actions within the group.

Modeling Complex Socio-technical Systems using Multi-Agent Simulation Methods

By: Maksim Tsvetovat, Kathleen M. Carley

http://www.css.gmu.edu/~maksim/pdf/TsvetovatCarley_2003_OfficialReprint.pdf

In order to study complex social and technological systems, underlying psychological and
sociological principles, as well as communication patterns and technologies within these
systems must be measured and understood. The creation of high fidelity models of these
systems requires a combination of analytical models with empirically grounded simulation, to
form multi agent systems. These multi agent systems incorporate learning algorithms as well as
other social network phenomena. The power of these methods are demonstrated by creating a
multi-agent network model of networks such as terrorist organizations. This ultimately creates a
generalizable and valuable process for analyzing complex social systems, by using AI
algorithms combined with an analytic approach.

http://oai.dtic.mil/oai/oai?verb=getRecord&metadataPrefix=html&identifier=ADA477116
http://www.css.gmu.edu/~maksim/pdf/TsvetovatCarley_2003_OfficialReprint.pdf

	Construct User Guide
	Abstract
	INTRODUCTION
	Table of Contents
	Table of Figures
	Table of Tables
	Introduction to the Report
	Construct Versions and this Report
	Conventions Used in this Report
	Organization of this Overall Report

	A Motivating Example
	Construct’s Core Mechanisms
	A Scenario

	PART ONE: Construct Quick-Start
	The Objects
	Agents
	Knowledge
	Tasks
	Beliefs
	Time

	Their Relations
	The Interaction Sphere
	The Knowledge Network
	Transactive Memory

	Thoughts on Experimentation
	Outputs

	High Level Diagrams of Construct Program Flow
	PART TWO: Construct in Detail
	Variables
	Declaring, defining, and casting variables
	Evaluating Variables
	Variables, Macros, and with Statements
	Using variables
	Common Gotchas

	Parameters
	Seed
	Verbose Initialization
	Dynamic Environment
	Default Agent Type
	Learning and forgetting
	Use mail
	Default communication weights
	Thread count
	Active models
	Active mechanisms
	Transactive Memory Model

	Nodes
	Agent node class
	Knowledge node class
	Belief node class + belief formation equations
	Binary task node class
	Energy task node class
	Time period node class
	Agent group node class
	Knowledge group node class
	Dummy node class
	Agent type
	Other node classes

	Networks
	Access Network
	Agent Active Time Period
	Agent Belief Network
	Agent Forgetting Rate
	Agent Group Membership
	Agent Initiation Count
	Agent Learn by Doing Rate
	Agent Learning Rate
	Agent Message Complexity
	Agent Reception Count
	Agent Type
	Belief Knowledge Weights
	Binary Task Assignment
	Binary Task Requirements
	Binary Task Truth
	Binary Task Similarity Weight
	Interaction Network
	Interaction Knowledge Weight
	Knowledge – Binary and non-Binary
	Knowledge Expertise Weight
	Knowledge Group Membership
	Knowledge Priority
	Knowledge Similarity Weight
	Learnable Knowledge
	Physical Proximity
	Physical Proximity Weight
	Selective Attention Effect
	Social Proximity
	Socio-Demographic Proximity
	Susceptibility (beInfluenced)
	Transmission Weight

	Transactive Memory
	Knowledge transactive memory
	Belief transactive memory

	References
	Appendices
	APPENDIX A The Sample Input File (aka Input Deck)
	APPENDIX B A History of Construct
	APPENDIX C Construct ‘Operations’
	Turn 0
	Operations
	ReadGraphByName
	ReadAgentsWhoDoNotInteractWithAnyone
	ReadBinaryTaskAccuracy
	ReadInteractionMatrix
	ReadKnowledgeDiffusion
	ReadKnowledgeDiffusionByAgentGroup
	ReadKnowledgeDiffusionByFactGroup
	ReadKnowledgePriorityMatrix
	ReadSphereMatrix

	‘Decisions’
	ReadDecisionOutput
	Specifying Decisions
	Network Getters
	Network Setters
	Agent References
	Time Period References
	Decision References

	Decisions using with statements

	Common Gotchas

	APPENDIX D Construct ‘Generators’
	Constant
	Random Uniform
	Random Binary
	CSV
	Transactive Memory Generators
	Group to Group Generators

	APPENDIX E Scripting
	General Syntax
	Logical Expressions
	Generating Random Numbers
	Conditional Statements - IF
	Looping - foreach
	Return
	Macros
	Get/Set network values
	ReadFromCSVFile

	APPENDIX F Construct in High Performance Computing (HPC) Environments
	APPENDIX G Construct in Research Literature

