

Integrating Components into SORASCS

Bradley Schmerl, Michael W. Bigrigg,
David Garlan, and Kathleen M. Carley

August, 2010
CMU-ISR-10-122

Institute for Software Research
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

 Center for the Computational Analysis of Social and Organizational Systems
CASOS technical report.

This work was supported in part by the Office of Naval Research - ONR -N000140811223. Additional support was
provided by the center for Computational Analysis of Social and Organizational Systems (CASOS). The views and
conclusions contained in this document are those of the authors and should not be interpreted as representing the
official policies, either expressed or implied, of the Office of Naval Research, or the U.S. government.

ii

Keywords: SORASCS, Services, Integration, Thick Services, Thin Services

iii

Abstract

This document describes how components may be integrated into the SORASCS framework as
web services. Two modes of integration are described: 1) Integration of web services as thin
services that can be deployed and run on a SORASCS server; and 2) Integration of thick tools as
thick services that run on user machines but can participate in SORASCS workflows.

iv

v

Table of Contents

1 Introduction ... 1

2 SORASCS Architecture in a Nutshell ... 1

2.1 SORASCS Services.. 3

2.2 Provenance ... 4

2.3 Data .. 4

2.4 Registry .. 5

3 Integrating Thin Services... 5

3.1 SORASCS Service API .. 5

3.1.1 Synchronous Interaction ... 5

3.1.2 Asycnhronous Interaction ... 6

3.1.3 Operation Parameterization .. 7

3.1.4 Categorization ... 9

3.2 Tool Integration .. 11

3.2.1 Java Web Service Interface ... 11

3.2.2 Providing the Operation .. 12

3.2.3 Parameterization ... 15

3.2.4 Bundling and Deployment .. 15

4 Integrating Thick Services ... 16

4.1 Kinds of Thick Integration ... 17

4.2 User Installation: SORASCS Client-side Server ... 17

4.3 Developer Integration ... 18

4.4 SORASCS User Registration ... 19

5 References ... 21

6 Appendix ... 21

6.1 Parameter Schema Definition ... 21

vi

1

1 Introduction

Over the past decade there have emerged a large variety of tools supporting analysis of
heterogeneous information to understand complex real world relationships and trends, including
natural language processing, network analysis, simulation, and what-if reasoning. Most analysis
ensembles assume a relatively limited set of model types and input sources. They are wired
together with special purpose, tool-specific and ad hoc integration code, making them brittle and
requiring low-level system expertise to reconfigure in new ways or add new capabilities. The
underlying problems stem from the lack of a coherent and flexible architectural framework that
will allow tools and models to be seamlessly incorporated and composed by end users. Having
such a framework would ideally allow information analysts to bring together tools from various
vendors and research groups, dynamically compose their analyses in new ways, store and reuse
workflows and settings, ingest new forms of information, and interactively fine tune analyses,
simulations, and report generation through consistent and uniform forms of interaction.

Work on SORASCS is developing an architecture for the intelligence community that will
enable these new capabilities. This architecture is based on service oriented architectures (SOA),
which are typically used in the business community for integration and use of different business
systems and processes developed by different companies at different times. The key aspects of
SOA that enable this are:

- Modularity of components as services, providing simple operations that are loosely
coupled. This allows applications to be easily composed out of existing services.

- Standards for communicating among distributed services over the web.
- Standards based support for discovery, orchestration, governance, security, etc.

The goal of SOA is to support the development of applications using web services, and therefore
many of the features provided are general in nature, so that they can be used in many domains.
SORASCS is layered upon these general features to provide features customized to the domain
of intelligence analysis.

The purpose of this document is to serve as a guide to tool integrators to describe how to
integrate tools into SORASCS. The following section provides a brief summary of the rationale
behind SORASCS and some of the foundational services that are provided by SORASCS.
Following that, instructions are given for tool integrators to integrate their components and
algorithms as thin services. Integration of existing tools as thick services is then described.
Finally, we describe how to build upon SORASCS to new tools in this domain.

2 SORASCS Architecture in a Nutshell
While SOAs provide many foundational technologies and approaches that can be used in the
intelligence domain, there are a number of key challenges that must be addressed to apply SOA:

- SOA provides general features for constructing web-based applications. In the
intelligence community there is a need to provide features customized to this domain that
allow: a) easy integration of intelligence tools, and b) providing workflow use and
creation interfaces that are amenable to users from the intelligence community. This

2

bridge between current SOA technologies and technologies that can be used by the
community is a key challenge for SORASCS.

- Tools in the intelligence community are data-intensive, meaning that they work on and
share large sets of data. The distribution, security, and staging of this data are crucial to
address in this domain.

- Service invocations are potentially long-lived. What are the best models of interaction
with services in this domain?

- Intelligence analysts desire to use a mixture of existing, workstation-based tools with
which they may be familiar, and services of others to get their job done. For example,
they may be familiar with one tool, but require a piece of technology that is not provided
by that tool’s vendor. How can a mixture of these thick and thin services be supported,
both in daily use, and in developing workflows.

- Workstation-based (thick) tools are typically UI intensive, allowing interactivity such as
network manipulation, interaction with maps, etc., whereas SOA typically support call-
return style operations not requiring user interaction. How can these thick tools best be
incorporated into a SOA setting

Work on SORASCS is developing an architecture that will be useful with both web-based and
non web-based models and analysis tools. The aim of SORASCS is to be:

- Light: SORASCS should not involve providers completely rewriting their tools to
conform to SORASCS. SORASCS should automate mundane tasks such as security, data
use, etc., so that users and integrators are not burdened with these issues.

- Extensible: SORASCS should easily accommodate new kinds of tools, models, and
services that are currently being developed in this thriving community.

- Community-based: Provisioned services will not be provided by SORASCS, but by tool
providers in the intelligence community. The architecture therefore needs to be
community based and open source.

In a nutshell, SORASCS will serve as the glue for linking a set of heterogeneous data sources
and tools needed for modeling and analysis to support the needs of the intelligence community.

Figure 1. The SORASCS Architecture.

3

Figure 1 outlines the architecture for SORASCS; it consists of:

- Tools and components wrapped as web services and provided to the community via
standard web service interfaces. Services are invoked by sending them messages
(formatted as SOAP messages) through these interfaces. SORASCS defines a set of
domain-specific APIs that SORASCS clients (web portals, workflow tools, and other
custom tools) can use to interact with SORASCS services.

- A service registry, built on top of standard web service registry technologies, that
provides additional information about services (currently parameterization, but other
information such as quality of service, security related information, etc., is envisioned
to go here).

- Data Services, that provide files and data required by services. References to data are
passed to services and then resolved by SORASCS to reside on the local machine, for
access by components and tools.

- Client-side services that provide SORASCS access to thick client tools that can be
used on a user’s local machine

- SORASCS level workflows, that are defined using a domain-specific workflow
language that is designed to be accessible to data analysts. This workflow language
allows analysts to capture and share common tasks with other analysts. The domain-
specific language is translated into the technical language, BPEL, which is a standard
SOA orchestration language and then executed on an open source execution platform.
This translation allows a number of mundane steps to be automatically added to the
analyst level workflow, such as

This document focuses on the first four aspects of SORASCS, which are of primary
concern to integrators of tools into SORASCS.

2.1 SORASCS Services
A service in SORASCS provides a single HSCB operation, such as applying a delete list,
generating a report, visualizing a network, etc. This is consistent with the standard definition of
web services. However, in SORASCS, services are divided into two broad categories of services:
Thin and Thick. A thin service is a service that can be run remotely, and does not require any
user interaction other than when invoking the service. On the other hand, a thick service can be
seen as the web service implementation of an existing tool, providing a user interface, user
interactivity, etc. These latter services are not typically supported in by SOAs, and in fact run
contrary to the accepted definition of a web service: they provide many operations, are often
tightly coupled and monolithic, and their user interfaces are not amenable to distributed
operation. However, in this domain, many users are familiar with these large tools, and in fact
want to be able to automate them in some way with thin services into workflows to capture
common tasks. SORASCS supports both thin and thick services.

Regardless of whether a service is thin or thick, it must provide some information to SORASCS
in order to integrate with other SORASCS services. These interfaces are described in more detail
in later sections, but they are broadly defined as:

- Ports for providing both synchronous and asynchronous communication protocols for
service invocation. Synchronous operations are the typical way that clients interact
with web services. However, in this domain, service operations may take
exceptionally long on large data; SORASCS therefore provides an asynchronous

4

interface that allows clients to submit operations to be done and then check later
whether the operation has completed and get results. Synchronous operations should
only be used in cases where operations are being performed on small amounts of data.
In SORASCS, the normal mode of interaction will be through the asynchronous
interfaces.

- Registry information. Standard SOA service descriptions, such as WSDLs, provide
syntactic information about the API, but are impoverished with respect to the semantic
meaning of an operation. Languages such as OWL are used for describing ontologies
of services and provide more semantic meaning. SORASCS is exploring the use of
OWL, but in the meantime SORASCS requires something in between that describes
the optional parameters available for an operation. For example, a delete service, while
requiring inputs and outputs and a list of words to delete, may also optionally allow
clients to specify whether adjacent or rhetorical delete is to be used; services for
visualizing networks may allow the layout algorithm to be specified. SORASCS
provides a way of describing both the parameters that can be passed to a service and
the results that can be obtained. This description is useful for a client to know what
parameters the service understands, and what defaults are. Furthermore, such a
description can be used by clients to construct user interfaces allowing users to specify
the parameters. This port is primarily used by the registry when a service is registered
to get additional information about the service.

2.2 Provenance
One of the goals of SORASCS is to provide to users some form of provenance, so that users can
understand and inspect things that they and others have done before. Ideally, this consists of at
least two aspects: 1) What services have been used to construct a result, their parameters and so
on; and 2) any intermediate data that was produced. Currently, SORASCS provides information
about the first aspect only through a service called the History Service.

Whenever a service is called in SORASCS, a record is kept by the History Service of the service
called, the inputs that were passed, the outputs produced, who called the service, whether it was
part of a workflow, and when the service was started and ended. SORASCS does this
unobtrusively by intercepting all service calls and returns between the client and the service and
keeping a record. The history service can be queried by the user to get this service call history.
This service will not be described further in this document, as the developer and the client may
interact with SORASCS unaware that the service calls are being stored.

2.3 Data
SORASCS services typically operate on large sets of data, such as text files, networks, etc. In a
distributed web service environment, web services require access to this data. Because SOAs
have restrictions on the size of messages that can be sent to services, sending data along with
messages to the services is not possible. Many of the components that need to be integrated in
SORASCS manipulate files, and expect them to be available on the machine on which the
component is executing. We require clients to pass the files by reference to services and provide
a Data Service that fetches the data as required. This data service is currently in rudimentary
form. When integrating components into SORASCS, the Data service is invoked behind the
scenes, to shield integrators as much as possible from a part of SORASCS that will rapidly
change. When integrating a component in SORASCS, integrators are passed absolute filenames

5

to files and directory on the local machine, that have been mapped by SORASCS from the
parameters that clients pass to the service.

2.4 Registry
The SORASCS registry is where clients can go to discover services, determine their interfaces,
parameters, and locations. Other meta data about a service will be stored in the registry as
SORASCS develops. Once a component has been integrated into SORASCS by implementing
the APIs, the integrator must register the new service with SORASCS. A governance process for
this, which would involve authorization, testing, etc., could be implemented by SORASCS. In
the meantime, service registration is currently done through the SORASCS portal.

3 Integrating Thin Services
Thin clients are services that provide a single operation and do not require a user interface (other
than to start the operation) or user interaction. Such services can be run on a server. Thin clients
are the building block for more powerful services, embodied in workflows. There are several
advantages to having thin client services:

- Data-intensive operations can be run on powerful server clusters;
- There are opportunities for parallelism / data farming / cloud services
- Service providers can provide alternative versions of operations that can be used in

workflows
In most cases, users will not interact directly with these thin clients. However, they are required
for building up workflows, or for special purpose tools built on top of these services.
There are two aspects to a service, and this document describes both: a) the protocols/ports that
each service must provide to so that it can interact with other parts of SORASCS; and b) the tool
facing interface of the service, specifying how developers may integrate (wrap) a third-party tool
or component into SORASCS. Developers need to understand both.

3.1 SORASCS Service API
SORASCS thin client services are responsible for providing the following kinds of interactions,
or ports.

1. They must provide a synchronous interaction mode, in which the client blocks waiting for
the operation to be performed.

2. They must provide an asynchronous interaction mode, in which the client submits a
request to run the operation and then polls until the request has been finished.

3. They must provide a port that provides a description of how the operation is
parameterized, which can be used by clients to build forms or interfaces to get parameters
from the user.

These ports are client-facing ports, in that tools and clients of SORASCS services will assume
that these ports exist and use them. They are operations that will appear in the web service
description of the service. These ports are described in more detail below.

3.1.1 Synchronous Interaction
Synchronous interaction is the most common programming paradigm, and developers often
strive to implement this interaction mode even when it is not provided. SORASCS provides this
mode of interaction in the API, however it should be used judiciously; SORASCS services can

6

take a long time to complete on large data sets, and so depending on the client, waiting for
completion may time out, or cause blocking of the client for large amounts of time.
The synchronous interaction mode is a single web service operation. Consider the synchronous
operation on a thin client graph visualization service, IGraphVisualizer:

String visualizeGraph (String graphFile, Properties additionalProperties)

The way to read this operation is that the name for the operation is visualizeGraph. It has one
required parameter, called graphFile1

1. Optional parameters to the operation can be passed in. In the case of this operation it
might include the algorithm to use for laying out the graph, which nodes in the graph to
focus on, etc. The kinds of properties that an operation understands are described by an
XML document that the service provides through the description port, described later in
this section.

, that is an argument to the port. The other argument to the
port is a Properties argument, which is used to pass «key, value» pairs to the operation. All
SORASCS operations have as their last argument this Properties object. The intent here is two-
fold:

2. SORASCS passes some information to the service through this object, such as the
identification of the caller, their credentials, etc., that are required by the SORASCS
infrastructure.

If the operation fails for any reason, it throws a SORASCSException.

3.1.2 Asynchronous Interaction
Asynchronous operations allow clients to request the service to execute an operation, and then
the clients are free to come back later to check on progress and get results. For large sets of data,
operations can take hours or days, and typical synchronous web service calls will time out if a
reply is not returned within a certain time period. SORASCS implements the asynchronous port
as a pattern of methods for submitting the request, checking completion, and getting any results.
Consider again the interface to a Graph Visualization service. It has three methods:

String submitVisualizeGraphRequest (String graphFile, Properties additionalProperties)
boolean isDone (String clientId)
String getVisualizeGraphResults (String clientId)

The first method is used for submitting the request to do an operation. The arguments to this
method are the same as the arguments to the synchronous port. The name of the method is also
based on the name of the method for the synchronous port, and has the pattern
submit<operation>Request. This method always returns a String, which is a universally unique
identifier that the client can use for interaction with the other methods on the asynchronous port.

The second method, isDone, is used for checking if a request has completed. The argument to this
method is a clientId that a client received from the request method. It returns true if the operation
for the client has completed.

The third method is optional, and is implemented in the case that an operation returns a result.
Again, the pattern of the method name is based on the name of the synchronous port:

1 How SORASCS deals with files in a distributed web services environment is discussed later in this document.

7

get<operation>Results. This method passes in the clientId that was returned to the client when it
made a request.

It is possible for a service to provide numerous operations, although this is not common. For
example, if the graph visualize service also provided an operation to return the number of nodes
of a certain type in a graph, the service might provide the following methods:

int numberOfNodes (String graphFile, String nodeType, Properties additionalProperties)
String submitNumberOfNodesRequest (String graphFile, String nodeType, Properties additonalProperties)
int getNumberOfNodesResults(String clientId)

Notice that the method isDone is required only once by the web service. The universally unique
id will also distinguish which operation is being checked for completion.

3.1.3 Operation Parameterization
Each service provides a port to get further description the operations that the service provides.
This is different to the web services description, typically embodied in a WSDL, which merely
provides the API to the web service. The description provides further information about the
required parameters, and also what optional parameters the operation understands. An additional
intent of this description is that clients can construct user interfaces, or forms, for users to
parameterize the services. For example, the portal uses this information to dynamically construct
HTML forms for calling a service; the workflow tool uses it for constructing a UI for
parameterizing services.
The method that implements this port is:

String getParametersForMethod (String operation)

Consider the operation visualizeGraph from above. The XML description for an instance of this
operation may look like:

 <parameters operation="visualizeGraph">
 <parameter name="graphFile" type="file" filetype="xml" required="true">
 <prompt text="DynetML file" />
 </parameter>
 <parameter name="algorithm" type="choice" mode="property" key="algorithm" default="none">
 <prompt text="Algorithm">
 <description>The algorithm to use in visualizing the graph.</description>
 </prompt>
 <options>
 <option name="None" value="none"/>
 <option name="Newman" value="newman"/>
 <option name="Sphere of Influence" value="soi"/>
 </options>
 </parameter>
 </parameters>

The schema for this XML is provided in Appendix I. In this case, the first parameter graphFile,
which is required, is intended to be a reference to an XML file, and is required. This is the
description of the first parameter to the visualizeGraph methods. The second parameter element is
an example of a parameter that can be passed in the Properties argument, as indicated by the

8

mode=”property” attribute. This parameter is a choice, the default being one, the options being
described in the options section. The key attribute specifies the key that will be used. Given this
specification, it is possible to pass a «key, value» pair of «”algorithm”,”newman”» or
«”algorithm”,”none”». Other kinds of properties are described in the schema, and include integer,
string, and boolean.

The figure below shows an example of how this XML is used to generate a form in the User
Interface. The developer will likely not see this, but it is useful to understand the context of what
the user interface may look like. Also note that in addition to generating an HTML form, the
XML could be used to generate a Java interface, or translated to JSON for use in other UIs.

When the user fills in the values in the UI, the values are eventually passed to the operation of a
thin service as Java values. The figure below illustrates how this works. The value
/output/graph.xml is passed as the input parameter to the operation. The value “Newman”
selected from the drop down list is passed to the operation in the parameters parameter of the
operation, with the key “algorithm” and the value “newman”.

Figure 2. A User Interface Generated from the parameter XML Specification.

9

Figure 3. Translating parameter specification to code objects.

3.1.4 Categorization
SORASCS currently provides the following categories of services, based on a range of common
services within the CASOS toolset.

Category Description
Extraction boolean extract (String output, Properties…)

Extracts information from various resources and result in
text files in SORASCS (e.g., extracting from Mail,
News, Web, ...). The output parameter specifies where in
SORASCS the results should go. Information about the
source of the extraction is passed in as Properties.

Conversion boolean convert (String input, String output, Properties…)

Converts between one format and another. The input
parameter specifies the input to be converted, the output
specifies where the output should go.

Transformation boolean transform (String input, String output, Properties…)

Performs some transformation of data in SORASCS. The
original intent of this category was to transform text from
one form to another (for example, by changing its case),

10

but it is now used more generally than that (for example,
to transform text into a network).

List-based
Transformation boolean transform(String input, String output, String list, Properties…)

Performs some transformation of data in SORASCS that
relies on a list. For example, deleting text from the input
requires a delete list.

Reports String report (String graphFile, Properties…)

Generates a report based on the network passed in as the
first parameter. All reports accept the following
parameters:
 "outDir": The location in the clients server directory
to put results. Omitting this will cause results to be
placed in the user's top user directory.
"format" The format the results will be in.
Accepted values are:
"html" HTML will be generated
"text" Text will be generated
"csv" Comma separated files will be generated
“powerpoint” Powerpoint will be generated
The default behavior is that HTML will be generated
"mode" The return mode. Accepted values are:
"link" A link to the index page for the report
"zip" A zip file is returned containing all contents of
the report.
 The default is "link"

Merge boolean merge (String input, String output, Properties…)

Merges data. The data is contained in the input parameter
(which may refer either to a directory containing files to
merge, or a comma separated list of files – as specified in
the XML description of the operation). The output
specifies where to put the merged data.

GraphVisualization String visualizeGraph(String graphFile, Properties…)

Visualizes graphs. The graphFile is a reference to the
network to be visualized. The return string is a reference
to the URL containing the visualized image.

All follow same interface scheme: required parameters are passed as service parameters, optional
parameters passed as properties in last parameter; they have both synchronous/asynchronous
interaction patterns.

11

3.2 Tool Integration
This section runs through an example of integrating a thin client into SORASCS. The example
we will use is integrating an existing component that takes an internet chat log and produces a
list of names of participants in the chat. Chat logs are text files that contain lines like:
[00:03:17] <kevglass> awesome, just generated some quests based on
[00:03:23]

heroquest
<kevglass>

[00:04:33] <kappaOne> cool
 now playing levels I've not seen before :)

The service will take these lines and produce a file containing just the names:
kevglass
kappaOne

How it does this is not important for integration. For integration, it is sufficient to know that this
component has a main method that takes two arguments: 1. A file on the machine where the
component is running that contains the chat log, and 2. The location and name of the resulting
file that will contain the list of names.

It is possible to implement from scratch the service that implements the client side interface
directly. However, doing this, the developer will need to write code for managing file
distribution, any user validation, threading, etc. Instead, SORASCS provides a number of
abstract classes that handle this additional plumbing as part of the SORASCS framework, and
instead can write a method that simply calls the component to do the transformation.

To implement the service, the developer must write the following, not necessarily in the order
described:

1. The XML describing the parameters for this operation;
2. A Java interface extending one of the Java interfaces for one of the predefined categories

in SORASCS;
3. An implementation of one of the abstract SORASCS framework classes for one of the

predefined categories;

We will cover each of these steps in detail. Let’s decide that this component will be a
transformation kind of service, because it is transforming one kind of file (chat logs) into another
(a list of names).

3.2.1 Java Web Service Interface
The SORASCS framework uses Apache CXF as the means for providing web service interfaces
of Java classes. Apache CXF provides a means of automatically transforming an annotated Java
interface to a standard Web Services Description Language (WSDL) file that is the W3C
standard for web services. Each service requires a corresponding interface. Because we are
providing a transformation service, and this is provided by SORASCS, the definition of this
interface is very straightforward:

package edu.cmu.casos.sorascs.example;

import javax.jws.WebService;
import edu.cmu.casos.sorascs.services.ISimpleTransformation;

@WebService()
public interface IRCNamer extends ISimpleTransformation {}

12

We will assume that all our classes will be in the edu.cmu.casos.sorascs.example package, though
developers are free to place this anywhere. The service is called IRCNamer, and the interface is
intended to be a web service. The class is therefore annotated with the javax.jws.WebService
annotation, which will name the service IRCNamer by default. Because the service is a
transformation service the interface extends edu.cmu.casos.sorascs.services.ISimpleTransformation, which is
a SORASCS framework interface. That interface provides the methods and annotations to define
the client facing interface for a transformation service.

3.2.2 Providing the Operation
Each supported category in SORASCS has a corresponding abstract Java class, that provides
support for:

1. Localizing any file arguments. This interacts with the SORASCS Data Service to
download any files required from a user’s SORASCS workspace to the local file system
and uploading the files back to the SORASCS workspace when done.

2. Handling the mapping of the developer provider operation to the client side interface. This
allows the developer to implement the algorithm for their service only once.

3. Handling threading and client correlation of requests to responses for the asynchronous
client side port.

4. Managing user validation.

The intent of the SORASCS framework is to have the developer implement the lease amount of
code to implement the operation, and have the SORASCS framework handle as much of the
plumbing as possible. To this end, the developer need only provide two things to extend the
SORASCS framework:

1. The implementation of the operation; and
2. The WorkerThread that will be used for buffering asynchronous operations.

Implementations of this abstract class provide the mapping between the client-side interface and
the actual implementation of the operation.

The actual operation is implemented in SORASCS as an object. This operation must extend
IOperation, and encapsulates the parameters required by the operation and passed in from the
service. SORASCS provides abstract classes for each of category of service that provides getters
and setters for the parameters, and requires the developer to only implement the doOperation
method in the subclass.

The code below provides the implementation for the IRCNamer:

package edu.cmu.casos.sorascs.example;

import edu.cmu.casos.sorascs.SORASCSException;
import edu.cmu.casos.sorascs.services.AbstractTransformationService;
import edu.cmu.casos.sorascs.services.TransformOperation;
import edu.cmu.casos.sorascs.util.WorkerThread;

public class IRCNamerImpl extends AbstractTransformationService implements IRCNamer {

 // The thread to handle asynchronous requests.
 // This needs to be static because CXF creates a new instance of

13

 // the class per service invocation, and we want only one thread
 // for all instances of the operation.
 static WorkerThread worker = new WorkerThread ("IRC Namer");

 @Override
 public WorkerThread getServiceThread() {
 return worker;
 }

 // Return the operation of implementing the guts of the code
 @Override
 protected TransformOperation buildOperation() {
 return new TransformOperation() {
 @Override
 public Boolean doOperation() throws SORASCSException {
 try {
 edu.cmu.casos.sorascs.example.thirdparty.IRCNamer.
 main(new String [] {getInputParameter(), getOutputParameter()});
 } catch (Exception e) {
 throw new SORASCSException (e.getMessage (), e);
 }
 return true;
 }
 };
 }
}

The AbstractTransformationService class requires the developer to implement two methods:

TransformOperation buildOperation ()
WorkerThread getWorkerThread ()

The method buildOperation returns an instance of the corresponding TransformOperation class (because
we are implementing a Transformation service, it is required that the operation be a subclass of
TransformOperation). TransformOperation provides the following methods that are useful for the developer
(in addition to doOperation, which the developer must implement):

public Properties getProperties ()
public String getInputParameter ()
public String getOutputParameter ()

Each of the getter methods above is how the operation gains access to the web service
parameters. Each SORASCS operation class provides getters for the parameters of the
corresponding category’s operation. In the implementation code above, we create an anonymous
TransformOperation class that provides the doOperation method. This method access the input and
output parameter through the appropriate getters and passes it through to the actual
implementation of IRCNamer, in the third party class.

When a call is made to the service’s operation, the SORASCS framework does the following:

1. Calls buildOperation to construct the operation object

14

2. Sets the properties object of the operation object to the properties passed in to the call
3. Sets the input and output parameters passed in as parameters to the call. The input and

output files are transferred to the location of the service, if necessary.
4. Places the operation on a queue to be processed
5. When the operation is dequeued by the worker thread, then doOperation is called.

The figure below provides a summary of the classes and interfaces that are involved in
integrating a thin client. Above the dashed line are the classes and interfaces defined by the
SORASCS framework. The integrator must supply the classes and interfaces below the dashed
line.

Figure 4. Class hierarchy for SORASCS Framework and Tool Integrator code.

The SORASCS-provided interfaces and classes are:
ISimpleTransformation: Defines the web service interface for a transform operation. This is the

interface seen by clients to the service.
Abstract TransformationService: Defines an implementation of the ISimpleTransformation interface,

implementing the bridging code between the web service interface and the
integrator-supplied operation. It defines two abstract methods: buildOperation, which
will be called to get the integrator’s operation object, and getWorkerThread, which
returns the thread that will be used for managing asynchronous operations.

Operation: defines a base level Operation interface that all operations will realize.
AbstractOperation: provides implementations of some Operation methods for setting and getting

the properties of the operation.
TransformOperation: provides a means for setting and getting the input and output parameter

for an operation. This operation also handles data transfer.

The table below provides a summary of the SORASCS framework classes that need to be
implemented for each of the currently supported service categories

15

Category Extend Web
Service Interface

Extend Abstract
Implementation Class Extend Operation

Extraction IExtractor* AbstractExtractorService ExtractionOperation
Conversion IConverter AbstractConversionServi

ce
ConversionOperatio
n

Transformati
on

ISimpleTransform
ation

AbstractTransformationS
ervice TransformOperation

List-based
Transformati
on

IListBasedTransfo
rmation

AbstractListTransformatio
nService

ListTransformationO
peration

Reports IReport AbstractReportService ReportOperation
Merge IMerge AbstractMergeService MergeOperation
GraphVisuali
zation

IGraphVisualizatio
n

AbstractGraphVisualizati
onService

GraphVisualizationO
peration

*All classes and interfaces are in the package edu.cmu.casos.sorascs.services, in the sorascs.jar file.

3.2.3 Parameterization

The XML describing the parameters for this operation are fairly straightforward. The input and
output will both be a text file. While it is certainly possible for the developer to define their own
way for returning the XML, the SORASCS framework provides a default behavior that will be
sufficient for most cases. The XML needs to be placed in a file that will be placed in a certain
location, and the file needs to be named using the following convention:

<ServiceName>_<operation>Param.xml

Let us call our service IRCNamer. Because it is also a transformation service, the XML file name
should be called: IRCNamer_transformParam.xml. Furthermore, the XML file should be placed
in the directory edu/cmu/casos/sorascs/example directory in the bundle for the service. The XML
file for the IRCNamer service will contain:

 <parameters>
 <parameter name="inputFile" type="file" filetype="txt" required='true'>
 <prompt text="IRC Chat Log File"/>
 </parameter>
 <parameter name="outputFile" type="file" required='true'>
 <prompt text="Resulting file"/>
 </parameter>
 </parameters>

3.2.4 Bundling and Deployment

16

After the service has been implemented, it must be bundled up into a WAR file and deployed on
a web server. The WAR file (or Web ARchive file) is a bundle that contains the following
things:

1. The classes associated with the service implementation
2. All the JAR libraries necessary for the service to run (this includes sorascs.jar and the

Apache CXF jars)
3. A web.xml that describes how the package should be deployed
4. A beans.xml that points Apache CXF to the service implementation object

The picture below illustrates what the file system should look like for your example. The files
that need to be changed are: src/, beans.xml, and build.xml. The other files will be the same as
those that are included with the IRC example.

src/: The src/ directory contains the Java source files for the service, as well as the
parameter XML file.

beans.xml: Will be changed to point to the class implementing the service. The lines
below will need to be in the beans.xml. The implementor attribute should point to the
service implementation (not the interface). The address is where CXF will publish the
service, relative to the server. The pattern used is
http://server/<warname>/examples/IRCNamer.

<jaxws:endpoint
 id="IRCNamer"
 implementor="edu.cmu.casos.sorascs.example.IRCNamerImpl"
 address="/examples/IRCNamer" />

build.xml: Will be changed to appropriately named the WAR file.

The build file defines a number of targets:

clean: remove any files that were generated as part of the build process
build: build the Java class files (i.e., compile the source)
deploy: builds the war file, and deploys it on the server by copying it to the server
location
undeploy: removes the war file (and it’s expanded directory) from the server location

4 Integrating Thick Services

Unlike thin clients, Thick Clients in SORASCS are characterized as having a rich user interface
and intensive user interaction. The kinds of thick clients can range from complete tools (such as
ORA or PowerPoint) to component tools (such as using the ORA visualizer). Being that they are
user interface intensive, it is not possible to run them on a server: user interfaces need to be
brought up on the client.

Thick clients are integrated into SORASCS so that they can be

17

• Included as part of a SORASCS workflow
• Can be invoked as a web service by other tools

Furthermore, many users have been trained in using existing tools, and are accustomed to their
user interfaces. In order to accomplish integration of thick clients in SORASCS, SORASCS must
be able to communicate with client machines to launch and direct applications. Because this
opens up the client to communication with the outside network, we have been careful to give the
users full control over what is available and not available on their machines. We do this by:

• The user must have tools that are used as thick clients installed on their machine
already. SORASCS will not install programs on client machines.

• The user has complete control over what programs can be directed by SORASCS.
Programs must be explicitly registered by users with SORASCS

• SORASCS provides a dashboard showing what programs SORASCS has launched,
and what files on the local machine they are working on

The SORASCS client, once installed on the client machine, acts as a web application server that
provides client-based services to SORASCS. The SORASCS client uses the same technology as
SORASCS (apache, CXF), rather than a hand-crafted application server, to enable the full range
of security and protection available from a modern web server.

4.1 Kinds of Thick Integration
Thick clients can be installed with SORASCS in a number of ways, depending on the granularity
of the tools and integration with SORASCS. Tools can be launched from SORASCS, and passed
data to open on launch. Alternatively, if the tool can be directed, then thick clients can be
registered as component-level services. For example, the ORA tool for managing meta networks
can be launched to open meta networks, in which case the user is free to manipulate the networks
in the manner they are used to, or a Graph Visualization service could be registered on the client
that launches the ORA visualize on the client.

The SORASCS Data Service will transfer files between SORASCS and the client.

4.2 User Installation: SORASCS Client-side Server
SORASCS requires the installation of a Client-side server on a user’s machine. This client
manages the calls from SORASCS to the Thick Clients installed on the user’s machine, and
provides a dashboard for informing the user of SORASCS’ activity on the client machine. In the
future, it is likely that the dashboard will be used for workflows requiring user interaction.

18

The figure above shows a schematic of what runs on the client machine.

Client Registry: The client registry contains information about services that can be run on the
client machine. Tool integrators are responsible for defining this information; users are
responsible for registering the tools they want to enable SORASCS to execute on their
machines.

Launch Handler: This component is responsible for starting processes on the client
machines.

Local Data: Data that tools need from SORASCS are managed by the local data component.
It is responsible for synchronizing data with SORASCS. When a request is made to
execute a tool by SORASCS, the Launch Handler invokes this component to ensure that
up-to-date files are located on the client machine. After the tool is completed, this
component is responsible for synchronizing files back to SORASCS.

Dashboard: The dashboard is responsible for informing the client of any tools that
SORASCS has launched and the files they are working on.

4.3 Developer Integration
This section of the document describes how a developer of a tool will integrate the tool as a thick
client with SORASCS. SORASCS strives to keep this simple. To integrate a thick client as a
program that SORASCS can launch, a developer must simply provide an XML file describing
the parameters for integration with SORASCS and provide this file as part of the installation of
their tool. For example, let’s say that ORA will be installed in C:\Program Files\ORA\ on the client
machine, and the executable program will be C:\Program Files\ORA\ORA.exe. The developer will
provide a file sorascs_ora_thick_client_params.xml that will specify the parameters. The XML in this file
will be the same format as the XML for the thin clients, except that parameters will have the
mode=”parameter” attribute set. Parameter mode parameters will be passed on the command line in

Client
Registry

Local
Data

SO
RA

SC
S

W
eb

 S
er

vic
e L

ay
er

Programs
installed by
users

Launch
Handler

Da
sh

bo
ar

d
Figure 5. Components running on SORASCS Client

machine.

19

the order that they are specified in XML. Imagine that ORA had the following command line
options:
ORA.exe [/report=<report>|/visualize] file.xml
Where <report> could be “Intelligence” or “Content”. The developer would specify the XML for
parameterization as:

<parameters>
 <parameter name="report" type="choice" mode="parameter" key="param" default="">
 <prompt text="Tell ORA to:">
 <description>Optionally select an operation for ORA to do</description>
 </prompt>
 <options>
 <option name="Just open the file" value=""/>
 <option name="Generate Key Entity Report" value="/report=intelligence"/>
 <option name="Generate Content Analysis" value="/report=content"/>
 <option name="Display the network" value="/visualize"/>
 </options>
 </parameter>
 <parameter name="input" type="file" filetype="xml" mode="parameter" key="input">
 <prompt text="Dynetml File"/>
 </parameter>
 </parameters>

4.4 SORASCS User Registration

If a program provides the parameters in the XML as above, the user must still explicitly register
the program on their machine as one that can be called by SORASCS. This is done by the user
(or local administrator) through the SORASCS dashboard. The user must select the “Programs”
button on the dashboard, which brings up a list of the currently registered Thick Services.

Figure 6. Registering a new Thick Service.

20

The user must then select the Add button, which allows them to add a program, first by giving it
a name, and then by selecting the location of the executable for the program on their local
machine.

21

5 References
[1] Tsvetovat, M., Reminga, J., and Carley, K.M. (2003). DyNetML: Interchange Format for

Rich Social Network Data. NAACSOS Conference 2003, Day 2, Electronic Publication,
Pittsburgh, PA.

[2] Carley, K.M., Reminga, J., Storrick, J., and DeReno, M. (2009). ORA User’s Guide 2009.
Carnegie Mellon University, School of Computer Science, Institute for Software Research,
Technical Report CMU-ISR-09-115.

[3] Garlan D.K., Carley K.M., Schmerl B., Bigrigg M.W. and Celiku O. 2009. Using Service-
Oriented Architectures for Socio-Cultural Analysis in Proceedings of the 21st International
Conference on Software Engineering and Knowledge Engineering (SEKE2009), 2009 July 1-
3; Boston, MA.

[4] Carley, K.M., Columbus, D., DeReno, M., Bigrigg, M.W., Diesner, J., and Kunkel, F.
(2009). AutoMap User’s Guide 2009. Carnegie Mellon University, School of Computer
Science, Institute for Software Research, Technical Report CMU-ISR-09-114.

[5] Whorf, B. “Language, Thought, and Action” in Twenty Questions: An Introduction to
Philosophy

[6] Berlin, B. and Kay, P.

. Bowie, Lee, Michaels, and Solomon (eds.), HBT, 1908.

Basic Color Terms: Their Universality and Evolution

, University of
California Press, 1991.

6 Appendix
6.1 Parameter Schema Definition

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://www.w3.org/2001/XMLSchema"
targetNamespace="http://www.example.org/SORASCSParameters"
 xmlns:tns="http://www.sorascs.casos.cs.cmu.edu/SORASCSParameters"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 elementFormDefault="qualified">

 <element name="service">
 <complexType>
 <sequence>
 <element name="mainOperation" type="string"/>
 <element name="parameters" type="tns:ParametersList"/>
 <element name="results" type="tns:ResultsList"/>
 </sequence>
 <attribute name="service" type="string"/>
 </complexType>
 </element>

 <complexType name="ParametersList">
 <sequence>
 <choice maxOccurs="unbounded" minOccurs="0">
 <element name="parameterGroup" type="tns:ParameterGroup"/>
 <element name="parameter" type="tns:Parameter"/>

22

 <element name="prompt" type="tns:Prompt"/>
 <element name="pagemap" type="tns:PageMap"/>
 </choice>
 </sequence>
 </complexType>

 <complexType name="PageMap">
 <sequence>
 <element name="pagejump" type="tns:PageJump"/>
 </sequence>
 </complexType>

 <complexType name="PageJump">
 <attribute name="page" type="integer" use="required"/>
 <attribute name="next" type="integer" use="required"/>
 <attribute name="param" type="string"/>
 <attribute name="value" type="string"/>

 </complexType>

 <complexType name="ResultsList">
 <sequence>
 <element name="result" type="tns:Result" maxOccurs="unbounded"
minOccurs="0"/>
 </sequence>
 </complexType>

 <complexType name="ParameterGroup">
 <sequence>
 <element name="text" type="xs:any
 </sequence>

" minOccurs="0" maxOccurs="1"/>

 <attribute name="id" type="string" use="required"/>
 <attribute name="text" type="string" use="optional"/>
 </complexType>

 <simpleType name="paramtype">
 <restriction base="string">
 <enumeration value="integer"/>
 <enumeration value="choice"/>
 <enumeration value="directory"/>
 <enumeration value="file"/>
 <enumeration value="date"/>
 <enumeration value="multichoice"/>
 <enumeration value="radiochoice"/>
 <enumeration value="boolean"/>
 <enumeration value="real"/>
 <enumeration value="string"/>
 <enumeration value="upload"/>
 <enumeration value="multiselect"/>
 </restriction>
 </simpleType>

 <simpleType name="modetype">
 <restriction base="string">
 <enumeration value="property"/>
 <enumeration value="parameter"/>
 </restriction>

23

 </simpleType>
 <simpleType name="inouttype">
 <restriction base="string">
 <enumeration value="input"/>
 <enumeration value="output"/>
 </restriction>
 </simpleType>

 <complexType name="Parameter">
 <sequence>
 <element name="prompt" type="Prompt" minOccurs="0" maxOccurs="1"/>
 <element name="options" type="Options" minOccurs="0" maxOccurs="1"/>
 <element name="range" type="Range" minOccurs="0" maxOccurs="1"/>
 <element name="store" type="Store" minOccurs="0" maxOccurs="1"/>
 </sequence>
 <attribute name="name" type="string" use="required"/>
 <attribute name="type" type="tns:paramtype
 <attribute name="mode" type="

" use="required"/>
tns:modetype

 <attribute name="key" type="string"/>
"/>

 <attribute name="required" type="boolean" default="false"/>
 <attribute name="default" type="string"/>
 <attribute name="group" type="string"/><!-- This should really be a
reference -->
 <attribute name="page" type="integer"/>
 <attribute name="filetype" type="string"/>
 <attribute name="direction" type="tns:inouttype
 </complexType>

"/>

 <complexType name="Prompt">
 <sequence>
 <element name="text" type="any" minOccurs="0" maxOccurs="1"/>
 <element name="description" type="any" minOccurs="0" maxOccurs="1"/>
 </sequence>
 <attribute name="text" type="string"/>
 <attribute name="id" type="string"/>
 <attribute name="ref" type="string"/>
 <attribute name="description" type="string"/>
 </complexType>

 <complexType name="Options">
 <sequence>
 <element name="option" type="Option" minOccurs="0" maxOccurs="1"/>
 </sequence>
 <attribute name="source" type="string"/>
 <attribute name="default" type="string"/>
 </complexType>

 <complexType name="Option">
 <attribute name="name" type="string"/>
 <attribute name="value" type="string"/>
 </complexType>

 <complexType name="Store">
 <attribute name="id" type="string"/>
 <attribute name="class" type="string"/>
 </complexType>

24

 <complexType name="Result">
 <sequence>
 <element name="prompt" type="Prompt" minOccurs="1" maxOccurs="1"/>
 </sequence>
 <attribute name="name" type="string"/>
 <attribute name="key" type="string"/>
 <attribute name="type" type="string"/>

 </complexType>

</schema>

	1 Introduction
	2 SORASCS Architecture in a Nutshell
	2.1 SORASCS Services
	2.2 Provenance
	2.3 Data
	2.4 Registry

	3 Integrating Thin Services
	3.1 SORASCS Service API
	3.1.1 Synchronous Interaction
	3.1.2 Asynchronous Interaction
	3.1.3 Operation Parameterization
	3.1.4 Categorization

	3.2 Tool Integration
	3.2.1 Java Web Service Interface
	3.2.2 Providing the Operation
	3.2.3 Parameterization
	3.2.4 Bundling and Deployment

	4 Integrating Thick Services
	4.1 Kinds of Thick Integration
	4.2 User Installation: SORASCS Client-side Server
	4.3 Developer Integration
	4.4 SORASCS User Registration

	5 References
	6 Appendix
	6.1 Parameter Schema Definition

