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Abstract 

A variety of Natural Language Processing and Information Extraction tasks, such as question 

answering and named entity recognition, can benefit from precise knowledge about a words’ 

syntactic category or Part of Speech (POS) (Church, 1988; Rabiner, 1989; Stolz, 

Tannenbaum, & Carstensen, 1965). POS taggers are widely used to assign a single best POS 

to every word in text data, with stochastic approaches achieving accuracy rates of up to 96% 

to 97% (Jurafsky & Martin, 2000). When building a POS tagger, human beings needs to make 

a set of choices about design decisions, some of which significantly impact the accuracy and 

other performance aspects of the resulting engine. However, documentations of POS taggers 

often leave these choices and decisions implicit. In this paper we provide an overview on 

some of these decisions and empirically determine their impact on POS tagging accuracy. The 

gained insights can be a valuable contribution for people who want to design, implement, 

modify, fine-tune, integrate, or responsibly use a POS tagger. We considered the results 

presented herein in building and integrating a POS tagger into AutoMap, a tool that facilitates 

relation extraction from texts, as a stand-alone feature as well as an auxiliary feature for other 

tasks.  
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1. Introduction 

Part of Speech Tagging (POST) assigns a single best part of speech (POS), such as noun, 

preposition or personal pronoun, to every word in a text or text collection. What is the 

knowledge about words’ lexical category useful for? First, a large variety of Natural 

Language Processing (NLP) and Information Extraction (IE) tasks can benefit from accurate 

knowledge about words’ lexical categories, such as: 

- Stemming (conversion of terms into their morphemes) (Krovetz, 1995; Porter, 1980) 

- Named Entity Extraction (identification of relevant types of information that are 

referred to by a name, such as people, organizations, and locations) (Bikel, Schwartz, 

& Weischedel, 1999) 

- Anaphora resolution (conversion of personal pronouns into the actual entities that 

those pronouns refer to) (Lappin & Leass, 1994) 

- Creation of positive (thesaurus) and negative (delete list) filters (Diesner & Carley, 

2004) 

- Ontological text coding (classification of relevant types of information according to an 

ontology or taxonomy) (Diesner & Carley, 2008)  

Second, POS are often used as one feature for machine learning tasks that involve text data 

(Arguello & Rose, 2006; Bikel, et al., 1999).  

What is the challenge in POST? While many words can be unambiguously associated with 

one tag, e.g. computer with noun, other words match multiple tags, depending on the context 

that they appear in. Wind, for example, can be a noun in the context of weather, and can be a 

verb that refers to coiling something. DeRose (DeRose, 1988) for example reports that in the 

Brown corpus, which is part of the data set that we use in this study, over 40% of the words 

are syntactically ambiguous. This example illustrates the fact that ambiguity resolution is the 

key challenge in POST.  

The goal with this report is two-fold: The first one is based on our observation that while 

many detailed descriptions of POST algorithms exists, several design decisions that need to 

be made when implementing these algorithms are left implicit in these descriptions. As we 

demonstrate herein, different choices for these decisions can significantly impact the 

performance of the tagger. For this project, we operationalize performance as POST accuracy. 

Therefore, the first goal with this report is to describe a set of design decisions and possible 

choices in detail, and determining the isolated impact of these choices on POST accuracy. 

Who cares about such information? We envision the knowledge about the sensitivity of the 

resulting engine and its parts to be valuable information for people who build taggers, who 

integrate existing taggers into a system, or who use off-the-shelve taggers.  

The second goal with this report is a practical, need-driven one: at the Center for 
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Computational Analysis of Social and Organizational Systems (CASOS) at Carnegie Mellon 

University (CMU) we have developed AutoMap, a tool that facilitates the extraction of 

relational data from texts (Diesner & Carley, 2004; McConville, Diesner, & Carley, 2008). A 

variety of NLP and IE routines, such as those listed above, are part of that process. Therefore, 

a highly accurate POS Tagger is a crucial auxiliary tool for multiple routines in AutoMap. 

Furthermore, we envision high-quality tagging to serve as a helpful stand-alone feature in 

AutoMap. In order to build a tagger whose design is transparent to all parties involved and is 

based on informed design decisions we needed detailed knowledge about the subtleties of 

POST beyond general algorithmic descriptions.   

This report is structured as follows: In section two we select and describe a POST algorithm 

for this project. Section three describes the dataset based on which we trained and tested 

various POS taggers. Section four explains four design decisions that need to be made when 

implementing a POS Tagger, and derives hypotheses on the impact of different choices for 

these decisions on the resulting POST accuracy. Section five tests our hypotheses in an 

empirical fashion. Section six shows how we used the gained insights in order to build a 

POST tagger and integrated it into AutoMap, and highlights various uses of POST for end-

users. The paper concludes in a description of applicable limitations.  

2. Method 

What computational approach should be used for building a POS tagger? Taggers can be 

divided into rule-based, stochastic and transformation-based systems (Manning & Schütze, 

1999). For this project we focus on stochastic taggers, which exploit the power of 

probabilities and machine learning techniques in order to disambiguate and tag sequences of 

words (Bikel, et al., 1999; Stolz, et al., 1965). One highly successfully and widely applied 

approach to statistical modeling of natural language data are Hidden Markov Models (HMM) 

(Baum, 1972), which are explained in more detail in this section. In the domain of speech 

recognition for instance, HMM have become the favored model (Rabiner, 1989). HMM are 

also used for POST, where the most accurate systems achieve errors rates of less than four 

percent (Jurafsky & Martin, 2000). Most of the existing HMM-based POS taggers are trained 

with labeled data (e.g. (DeRose, 1988; Weischedel, Meter, Schwartz, Ramshaw, & Palmucci, 

1993)), while a small number of taggers use unlabeled data in order to train a model based on 

expectation maximization (EM) (e.g.(Kupiec, 1992). Given the performance rates that others 

have achieved with HMM-based stochastic POS taggers we decided to use this approach for 

building a POS tagger for AutoMap.   

HMM are a probabilistic function of Markov Models (MM). In this section we first briefly 

describe MM, followed by a short explanation of HMM (for details on MM and HMM see 

(Baum, 1972; Church, 1988; DeRose, 1988; Rabiner, 1989; Stolz, et al., 1965)). Markov 

Models (MM) model the probabilities of non-independent events in a linear sequence. 

Applying this idea to natural language allows us to model language as a dynamic system in 
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which words and their underlying features are not isolated events, but do impact each other.  

MM are based on two assumptions: First, MM assume a limited horizon into the past. This 

means that given a current element in a sequence, future elements are conditionally 

independent of past elements. In other words, elements depend only on themselves and a few 

predecessors. The number of predecessors considered is called the order of the HMM. If one 

decides to look at only the most recent data point (word) from the past, then a first-order MM 

is applied. Second, MM make the time invariance assumption, meaning that probabilities are 

stationary (invariant over time). This assumption can be related to the desire for generalizable 

models that are trained on a specific data set and are later applied to new and unseen data. The 

time invariance assumption is a theoretical one only. In reality, language is a dynamic system, 

in that rules (syntax) and elements (vocabulary) emerge and vanish over time, and across 

places and people.   

Relating these two assumptions to POST enables us to exploit and computationally combine 

every word’s probability as well as its local context as given by a word’s predecessor(s). 

HMM, a probabilistic function of MM, brings these two pieces of information together by 

computing the probability of tag sequence P(tag1-end) that maximizes the likelihood of the 

product of word probability P(wordi|tagj) and tag sequence probability P(tagj| previous n 

tagsj-N). Applying HMM to POST means aiming to find the most likely sequence of POS in a 

given sequence, typically a sentence, for all sequence (sentences) in a text or corpus (Baum, 

1972; DeRose, 1988; Stolz, et al., 1965) 

In practical POST applications, the true sequence of POS that underlies an observed sequence, 

e.g. a sentence, is unknown, thus forming the hidden states. A POS tagger aims to find the 

sequence of hidden states that most likely has generated the observed sequence. This task is 

referred to as decoding, which means that given a set of observations x (words in a sentence) 

and a model µ (the result of supervised learning) we want to reveal the underlying Markov 

chain of tags that is linked to the observed states. Model µ consists of three parameters:  

1. Initial state probabilities π. This is a vector that quantifies the probability of the tag of 
the first hidden state in a sentence. Why is that needed? When POST is performed on 
the sentence level (the classical approach), the first word in the sequence has no 
predecessor. In order to decode this token, it is typically assumed that the most 
frequently observed tag for this token across the data set is the most likely tag for this 
token.  

2. State transition probabilities aij, stored in a transition matrix, quantify the likelihood of 
observing a certain hidden state given the previous hidden state.  

3. State emission probabilities bij, stored in a confusion or emission matrix, specify the 
probabilities of observing a particular state (word) while the HMM is in a certain 
hideen state (tag).  

When training a POS tagger in a supervised fashion, the parameters of model µ are computed 

from the training data. Therefore, the process of estimating parameters during model training 

is a visible Markov process, because the surface pattern (word sequence) and underlying 
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states (POS sequence) can be fully observed. In contrast to that, applying the trained model to 

tag new and unseen data truly represents a hidden MM, because the tag sequence is hidden 

underneath the surface pattern and will be revealed using previously gathered empiric 

evidence (model µ).  

The vast majority of HMM practical applications deploy first-order models. This seems 

counterintuitive if one believes that higher-order MM could lead to more accurate predictions 

than lower order models, because state sequences might depend not only on one (first-order 

HMM), but multiple predecessors (e.g. in Department of Labor). A time horizon of greater 

than one, however, results in less and sparser training data due to the lack of local histories for 

the beginning of sequences (Manning & Schütze, 1999). This translates into a serious 

disadvantage if sentences in the training data are rather short, or if comas are used as 

delimiters instead of sentence marks. Because a shift from a first-order HMM to a second-

order HMM reduces the amount of training data available and therefore also the numerical 

stability of the constructed model we decided to work with a first-order HMM. While the 

limited horizon assumption enables us to account for the fact that the words in a sentence may 

depend on each other, especially in the case of meaningful bigrams such as human rights, it 

excludes the consideration of long-range dependencies (Diesner & Carley, 2008). Long-range 

dependencies are not meaningful N-grams whose elements co-occur next to each other, but 

elements that interact without being collocated, such as personal pronouns that refer back to a 

social entity mentioned earlier in the text. This limitation has been shown to be a serious 

weakness if relevant data points are sparsely scattered across the data. Since in POST training 

data every word has a tag, this limitation does not apply to POST.  

Different algorithms for implementing a HMM exist. A widely used one in the NLP domain is 

the Viterbi algorithm (Viterbi in the following) (Viterbi, 1967). The solution that a POS 

tagger will suggest is contained in the search space of the applied algorithm or technique. A 

search space describes and confines the room of possible solutions. For Viterbi, the search 

space can be represented as a trellis. A trellis is a field composed of a chain of tokens (chain 

length depends on the number of tokens per sequence) and a related matrix of all hidden states 

that were empirically observed during model construction by the probabilistic connections 

(transitions) between the hidden states. The chain of observed states and the matrix of hidden 

state transitions are probabilistically connected via the empirically observed emission 

probabilities for a word by the full set of tags. Viterbi’s basic idea and main advantage are the 

reduction of the complexity of examining every full path through a trellis (all possible 

combinations of tag transitions and word emissions in a sequence) by recursively finding 

partial probabilities δ for the most likely path from one state to the next throughout each 

sequence. Viterbi requires three steps for searching and identifying one complete and the most 

probable route through the trellis:  
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Viterbi Algorithm, Goal:  

Finding the sequence of hidden states that generates the maximum partial probability (t) jδ  of 

possible state combination while moving through the trellis: 

) | j =  X O, P(X, max  = (t) t
X

j µδ  

where  

j… index of potential state 

t…index in the sequence of observations 

X = X1 … Xt-1 …sequence of (hidden) states 

O = O1 … O t-1 …sequence of observations 

The following steps will be executed in order to achieve the goal: 

1. Initialization  Nj1,  = (1)   j ≤≤πδ j   

2. Induction   Nj1 ,b a (t) max  = 1)(t otijij
Ni1

≤≤+
≤≤

jj δδ  

Store backtrace  Nj1 ,b a  max arg  = 1)+(t  otijij

Ni1

≤≤
≤≤

jj δψ  

where (t)  jψ = storage of node of incoming arc to most probable 

path 

3. Termination and path (most likely tag sequence) readout (by backtracking) 

1)(T max arg  ˆ  i

Ni1

1 +=
≤≤

+ δTX  

1)+(t   ˆ
1 ˆ += TXtX ψ  

1)(T max )ˆ(   i
Ni1

+=
≤≤

δXP  

In summary, the supervised, sequential, stochastic machine learning technique described 

herein constructs a model µ that for each sequence of (x,y), where x are the words in a 

sentence and y the corresponding POS tags, predicts a POS sequence y = µ(x) for any 

sequence of x, including new and unseen text data. Note that machine learners are systems 

that improve their performance (here, POS tagging accuracy) with experience (here, 

observing token-tag tuples along sentences). Since HMM estimate a joint probability (the one 

of words and tags) they are a member of the family of generative models (Dietterich, 2002). 

The tag sequence that results from applying model µ to new data may not necessarily be the 

correct one, but it will be the most likely one given the model and the data. It is for this reason 

that informed design and implementation of a tagger and careful preparation of the learning 

and validation data are key to success.   

3. Data  

The data set used for training and validation in this project is the tagged version of the Penn 

Treebank 3 (PTB) corpus (Mitchell, Santorini, & Marcinkiewicz, 1993). The PTB collection 
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contains 2,499 texts from differenet sources such as over three years of news coverage from 

the Wall Street Journal (1989-1992) and a tagged version of the Brown corpus (1961). Every 

word in the corpus is annotated with at least one out of 36 possible tags (see the Appendix for 

a list of tags and their meaning). The PTB data is stored in 500 data files, which are organized 

in 15 folders.  

In cases where the human coders who annotated the PTB texts with POS were uncertain about 

the best POS for a word, e.g. when a word was syntactically ambiguous, multiple tags were 

assigned in a non-standardized order (Klein & Manning, 2002). For example, England-

born/NNP/VBN means that England-born might be a singular proper noun as well as past-

participle verb. There is a total of 121 such cases of tag indeterminacy in PTB. We performed 

several qualitative checks (human reasoning about the best out of the offered tags) on 

randomly drawn instances of this issue from PTB, which convinced us of the random order of 

multiple tags per word.  

4. Experiment 

We conducted a series of experiments in order to identify the impact of several independent 

variables, which we explain in detail this section, on the dependent variable of interest: the 

accuracy of tagging new data by using the constructed model. What can the outcome of this 

exercise be useful for? First, we envision creators and users of HMM implementations to use 

this knowledge in order to build or responsibly apply such systems. Second, we need such 

detailed information in order to construct the best POST model for AutoMap (for machine 

learning problems, the best model is typically the most concise one that generalizes with 

highest accuracy to new data).  

4.1 Disassembling Viterbi  

Section 2 described the different computational steps that are involved in the Viterbi 

algorithm. How much accuracy gain can be attributed to each of these steps? In order to 

answer this question we isolated each step and ran experiments in order to quantify the partial 

accuracy gain that the following steps accounts for:  

1. Probabilities of words in isolation  

2. Emission and Transition Probabilities 

3. Partial probabilities δ and back pointers ψ 

4. Backtracing 

Step 1 enables us to isolate and measure the accuracy achieved by using emission 

probabilities only. This procedure disregards the impact the POS of the proceeding word on 

the subsequent word’s POS, thus not making use of a words’ historical context (a “zero-order 

HMM”). As a result, the tag that has been observed most frequently for the word under 

consideration during training will be selected. This step resembles the initialization stage as 
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well as the computation of the initial state probabilities as described in section 2. In HMM and 

Viterbi, probabilities of words in isolation are used for tagging the first word in every 

sentence as well as for one-word sentences. We refer to this approach as the Unigram Model 

(UM in the following), and use UM as our baseline performance measure.  

Step 2 represents a regular HMM (HMM in the following). That is the product of emission (of 

a word by a tag) probabilities and transition (from POS to POS) probabilities as computed 

during the induction stage of Viterbi. The difference in accuracy rates between step 1 and 2 

allows us to isolate and quantify the impact of transition probabilities on tagging accuracy. 

HMM perform local search. This means that the model decides on the most likely tag for each 

token (by choosing the POS that maximized the product of the possible transition and 

emission probabilities between the current and preceding words and their POS) prior to 

moving on to the next word.  

Step 3 is the heart of Viterbi. It combines partial probabilities as computed in step 2 with a 

forward search for the best (a complete and the most probable) path through the trellis. At 

each step while moving through the sequence for which the hidden states need to be 

determined the algorithm computes partial probabilities. These partial probabilities are the 

product of the emission probability of the potential state, the highest transition probability 

from the previous possible states, and the partial probability of the previous state that 

generated the highest transition probability. Hence this algorithm considers the emissions, 

transitions and the globally optimal sequences of hidden states that are determined while 

moving through each step in the trellis. In the following we refer to this step as VitF (Viterbi 

Forward). The difference in accuracy between steps 2 and 3 represents the difference between 

global search and local forward search.   

Step 4 not only computes all possible forward paths through a trellis (as done in step 3) from 

start to end, but after completing the forward search, it also a) determines the final partial 

probability of the last state, which represents the optimal solution from global forward search, 

and b) then backtraces the most probable path through the trellis from the last to the first 

token. In the following we refer to this step as VitB (Viterbi with backtracing). The difference 

between step 3 and 4 is the difference between global forward search and global forward/ 

backward search 

In summary, the difference between steps 1 and 2 versus steps 3 and 4 represents the 

difference between a globally versus locally maximized solution. An actual implementation of 

the Viterbi algorithm requires all four steps. Each of these steps and in the order as outlined 

here includes the previous step(s), thereby adding to Viterbi’s time and space complexity with 

every step. This increase in computational complexity is because each step, in the presented 

order, increases the amount of information or empiric evidence that is comprised in the 

process of making a decision about the best tag sequence. Based on the information provided 

in this section we derive the following hypothesis: 

Hypothesis 1: POST accuracy increases from step to step, so that: 
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- accuracy with HMM is higher than with UM 

- accuracy with VitF is higher than with HMM 

- accuracy with VitB is higher than with VitF. 

4.2 Handling Noise  

Typically, text data includes various types of noise in varying quantity. What precisely 

qualifies as noise and how much of it will be normalized or eliminated depends on the goal, 

resources, and researcher. For this project, tagged tokens are not considered as noise if and 

only if they are composed of an arbitrarily long sequence of any of the following: 

- Characters from a or A to z or Z (regular words) 

- Numbers from 0 to 9 (numbers) 

- Sentence markers (digits and end of sentences) 

- Ampersands (used e.g. in corporation names such as John Wiley & Sons)  

- Dollar symbols (mainly used to denote monetary values) 

- Hyphens (often used to denote genitive markers) 

- Dashes (often used in compound words such as long-term)  

All tagged tokens that are or comprise any symbol not listed above are considered as noise 

herein. The set of noise terms for this project contains for example tokens whose tag resemble 

the token (e.g. :/:), or most (99.84%) tokens that are tagged as symbol (SYM). Commas are 

part of the SYM set. Only 0.01% of the tokens tagged as list markers (LS) qualified as noise, 

while most list markers are actual words or numbers.  

Figure 1: Excerpt from PTB Data   Table 1: Impact of Noise Definition on Transitions 

Publication/NN 

and/CC  

distribution/NN 

:/:  

Volume/NN 1/CD 

(/( (/(  

A[fj]/SYM  

)/) of/IN  

the/DT seventh/JJ edition/NN 

 

 

 

 

 

 
 

Transitions before 

symbol removal 

Transitions after  

symbol removal 

NN - CC 

CC - NN 

NN - : 

: - NN 

NN – CD 

CD – ( 

( - ( 

( - SYM 

SYM – IN 

IN – DT 

DT – JJ 

JJ - NN     

NN - CC 

CC – NN 

NN – NN 

NN – CD 

CD - IN 

IN – DT 

DT – JJ 

JJ - NN     
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For other projects, the tokens and tags that we consider as noise terms might be valuable 

signals. For data that is stored as coma separated values, for instance, commas would serve as 

the sequence delimiter. Figure 1 shows an excerpt from a POS-tagged PTB data file in that we 

printed the tagged elements that we consider as noise in red and bold font. Any word-tag tuple 

in which one or both elements qualify as noise can be removed prior to learning and model 

evaluation or not. Table 1 shows the transition probabilities for the example given in Figure 1 

with and without performing symbol removal. The transitions that both versions differ in are 

printed in bold and red font. This example shows that when noise is not removed, more and a 

higher variety of tag transitions will be learned. 

Why could determining the impact of noise removing on POST accuracy matter? For practical 

POST applications, people are typically not interested in predicting tags for symbols, but only 

for what is typically considered as content. From a computational as well as practical 

standpoint, decoding noise requires computational resources, which one might not want to 

spend. Moreover, including noise into learning and evaluation might dilute the numerical 

stability of emission and transition probabilities of non-noisy tags, thus decreasing accuracy. 

Based on the information provided in this section we derive the following hypothesis: 

Hypothesis 2: Data cleaning prior to learning and evaluation causes an increase in POST 

accuracy over learning and evaluating with noisy data for all for algorithms.    

4.3 Smoothing and Handling of Unknown Data Points 

Any HMM implementation requires cautious handling of small numbers and zero 

probabilities at various points: first, multiplying and propagating partial probabilities in the 

induction stage can lead to number underflows. Since UM and HMM disregard partial 

probabilities, this issue only applies to Viterbi. This problem can be avoided by using the 

natural log of transition and emission probabilities, and converting the respective 

multiplications into summations.  

Second, words and state sequences that have not been observed in the training data, but do 

occur in the evaluation data, will cause:  

- Zero probability in the induction step of Viterbi. As a result, an entire vertical column 

in the trellis (all δ for step i) would have zero probabilities, so that the propagation of 

any path would break.   

- Accuracy loss for UM, HMM, VitF, and VitB during model evaluation. This is 

because tokens that did not occur in the training data but are observed in the 

evaluation or any other new data will have zero probability of being emitted by any 

tag, as well as a zero probability of being involved in any tag transition. Typically, the 

unknown tag is initially assigned to these words. Practically, unknown never matches 

the best tag for a word, and therefore increases the tagging error rate. Depending on 

the algorithm used, unknowns account for up to 28% of all tokens when a model 

trained on one portion of PTB data and is applied to another portion of PTB (detail on 
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that in section 4.4). Accuracy loss due to not handling unknowns cannot be solved by 

increasing the amount of training data used, but even models trained on humongous 

training sets are likely to encounter new words when being applied to unseen data. The 

issue represents the downside of the time-invariance assumption made for MM: 

language is a continuously changing system with words emerging and vanishing 

across time and places, e.g. in the cases of new names of people, places, or products. 

We empirically test the impact of handling unknowns on POST accuracy. The following 

unknown handling strategy is used: Zero probabilities for emissions are prevented by adding 

tokens newly encountered during evaluation to the emission matrix, tagging them as 

”UNKNOWN”, and assigning a minimum probability to them. This intervention prevents the 

multiplication by zero in the development of the trellis. Zero probabilities for transitions that 

involve the UNKNOWN tag (P(t|t=UNKNOWN, P(t=UNKNOWN| t))) and that have not 

been observed a priori are caught by assigning a minimum probability to them as well. 

Initially, we chose a minimum probability that equaled the smallest empirically observed 

probability in the learning data set. This solution resembles the Adding One strategy (Church, 

1988), which in addition to linear interpolation is a frequently applied smoothing technique in 

tagging (Kupiec, 1992). Later on we realized that in some cases our minimum probability 

equaled empirically observed probabilities. In cases of ties between any tag and the unknown 

tag, our engine makes a random choice, which can give an empirically observed small 

probability (EP) the same weight as the artificially assigned minimum probability (AP). In 

order to weight EPs higher than APs we decided to first find the smallest EP in the data, 

dividing it by 100 (we ran multiple tests in order to find an appropriate value), and using the 

resulting value as the AP. We found that for handling emission probabilities involving 

unknowns this strategy leads to major, positive changes in accuracy rates, especially for VitF 

and VitB. For taking care of transitions that comprise the unknown tag, this strategy does not 

lead to significant changes in POST accurate rates, but it does suppress the detection of 

unknowns to a degree where they become unlikely to ever be selected. However, in some 

cases we want to maintain the unknown tag in order to be able to send it to a post-processor, 

which we explain more detail in section 5.3. It is for this reason that we choose to weight EP 

deterministically higher than APs only for emissions, but not for transitions.      

After zero probabilities for emission and transition have been converted to minimum 

probabilities lower than EPs, words tagged as UNKNOWN are passed to a post-processor, 

which applies a set of rules in order to tag unknowns as an actual POS. The best-performing 

unknown-word resolution techniques in tagging use information about the word’s spelling 

(DeRose, 1988; Viterbi, 1967). We built upon this idea. The construction of the post-

processor is described in section 5.3.. Based on the assumption that an actual tag is more 

likely to be the best tag for a word than the unknown tag, we derive the following hypothesis: 

Hypothesis 3: Post-processing of unknown words causes an increase in POST accuracy 

for all four algorithms.  



11 

 

4.4 Aggregating Hidden States  

PTB uses a set of 48 unique tags. 36 of them are regular POS. The other 12 are symbols 

(#,$,.,,,:,(,),",',",',"). The Appendix lists the regular POS along with the total frequency of their 

occurrence in PTB. Section 4.2. explained how we handle the symbols. For many real-world 

applications, the 36 tag classes are too detailed. When analyzing newspaper articles for 

instance, people often are interested in identifying text terms that refer to the who, what, 

where, when, why and how of what a report. In that case, the set of singular and plural proper 

nouns might be a useful starting point for identifying instances of who (one or multiple 

people) and where (locations), the union of verbs might help to retrieve the set of words that 

indicate an action (what), and several categories that represent non-content bearing words 

with respect to the task at hand might be excluded from further consideration. PTB divides for 

instance verbs into six subgroups (base form verbs, present participle or gerund verbs, present 

tense not 3rd person singular verbs, present tense 3rd person singular verbs, past participle 

verbs, past tense verbs), which for some applications we might want to aggregated into one 

verb group. Also, for certain purposes, the union of all prepositions, conjunctions, 

determiners, possessive pronouns, particles, adverbs, and interjections could be collected into 

one group that represents irrelevant terms. For this project, we aggregated the regular POS 

from the PTB tag set into twelve categories as shown in Table 2.  

Table 2: Aggregation of PTB Categories 
 

Aggregated Tag Meaning Number of 

Categories in PTB

Instances in PTB

IRR Irrelevant term 16 409,103

NOUN Noun 2 217,309

VERB Verb 6 166,259

ADJ Adjective 3 81,243

AGENTLOC Agent 1 62,020

ANA Anaphora 1 47,303

SYM Noise 8 36,232

NUM Number 1 15,178

MODAL Modal verb 1 14,115

POS Genetive marker 1 5,247

ORG Organization 1 1,958

FW Foreign Word 1 803  
 

The consolidated set comprises personal singular nouns (AGENTLOC), personal plural nouns 

(ORG), verbs (VERB), modal verbs (MODAL), nouns (NOUN), adjectives (ADJ), personal 

pronouns (ANA), genitive markers (POS), non-content bearing words (IRR), symbols 

(NOISE), numbers (NUM), and foreign words (FW). Seven of the aggregated categories map 

to only one PTB category, while the other categories are represented by up to 16 different 

PTB categories. The rows in Table 2 are sorted by decreasing frequency of the cumulative 

occurrence of each category in PTB (last column in Table 2) in order to illustrate the fact that 

the number of words per tag category varies widely (for details see Appendix).  
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Our aggregation is one possible solution. For other text sets, domains, or projects, other 

consolidations might be more appropriate. Based on the assumption that accuracy increases as 

the pool of choices from which the classifier needs to pick one best POS decreases, we derive 

the following hypothesis: 

Hypothesis 4: Aggregation of POST categories causes an increase in POST accuracy for 

all four algorithms. 

5. Results 

The impact of each variable or routine described in section 4 on POST accuracy was tested 

empirically by performing ten-fold cross validations per variable and averaging the results. In 

order to enable ten-fold cross validations we randomly split the corpus (500 files, about one 

million words) into ten folds of equal size (50 files per fold). For each run within a set of ten 

runs, nine folds are used for training and generating model µ. From the one left-out fold all 

tags are removed, and µ is applied to this fold in order to tag the data. The assigned tags are 

then compared to the original labeling of this fold, and every deviation from an original tag is 

recorded as an error. This procedure is repeated nine more times such that each fold is used 

once for evaluation and nine times for training, but is never used for training and evaluation at 

the same time. The results reported in this section were computed by averaging the error rates 

of ten consecutive runs.  

Since the ten folds remain the same across all tests, we performed two-sided paired t-tests in 

order to determine the statistical significance of the measured difference between any two 

variables (using a confidence interval of 95%). From an experimental design perspective, the 

variables that we tested can be considered as independent ones, and their impact on the 

dependent variable can be tested in isolation. In practical applications of the designed system, 

these variables interact, and these interdependencies are desired. 

Typically, taggers are evaluated with the Gold Standard test, and by comparing the results to a 

Unigram Baseline test or another benchmark. (Jurafsky & Martin, 2000). The Gold Standard 

measures performance by identifying the portion of tags that the tagger and a human-labeled 

validation set agree upon. We use this test for model evaluation. We also use the Unigram 

Baseline test, which is the same as the performance of the UM model. This model was 

described in section 2. The highest published accuracy rates for POS taggers that were built 

by using the PTB are 96% to 97% (Jurafsky & Martin, 2000).  

5.1 Disassembling Viterbi  

How much partial accuracy can be attributed to the different steps involved in Viterbi? Our 

findings as shown in Table 3 and 4 indicate that on average, the baseline model (UM) tags 

86.83% of the words in the evaluation set correctly. Upgrading from UM to HMM leads to a 

significant accuracy increase of 5.15% (all significance tests in this paper are based on two-

sided, paired t-tests with a 95% confidence interval). This means that considering transitions 
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among hidden states improves predictive power substantially. Further enhancing the 

implementation to VitF and thereby switching from a locally to a globally maximized 

solution, results in a much smaller accuracy gain 0.29%. VitB, which out of the algorithms 

tested exploits the most empiric evidence, achieves another significant 1.02% increase in 

accuracy; confirming that backtracing does improve Viterbi. The standard deviations (0.36% 

at the most), which decrease by algorithm, suggest that the results are fairly robust across 

different portions of the data set.  

Table 3: Accuracy per Algorithm 

UM HMM VitF VitB

Average 86.83% 91.98% 92.27% 93.29%

Min 86.41% 91.68% 91.95% 93.02%

Max 87.46% 92.38% 92.67% 93.68%

Std Dev 0.36% 0.24% 0.23% 0.23%  
 

Table 4: Difference between algorithms 

From To Difference Significance

UM HMM 5.15% 0.00**

HMM VitF 0.29% 0.00**

VitF VitB 1.02% 0.00**  
 

Overall, our empiric results confirm our first hypothesis, which assumed that switching to an 

algorithm that exploits more evidence than the previous one (UM to HMM, HMM to VitF, 

VitF to VitB) leads to increased accuracy rates. Also, our findings confirm the previously 

made observation that the baseline algorithm (UM), which only considers emission 

probabilities, is a powerful prediction method (Atwell, 1987). Furthermore, we can confirm 

our assumption that global search outperform local search. However, the difference between 

HMM and VitF is fairly small (0.29%), and smaller than all other differences between 

upgrades in algorithms. One possible explanation for this observation is the following chain 

of thought: HMM weight transition and emission probabilities about equally strong, while 

both versions of Viterbi weight transitions higher than emissions. VitF enables very small and 

occasionally meaningless transition probabilities – an effect that VitB partially corrects. The 

fact that VitF outperforms HMM only slightly suggests that once transitions between hidden 

states are considered, one needs to go the extra mile of searching a directed web of 

probabilistic connections among underlying states back and forth in order to achieve a 

substantial gain from global search over local search. Searching through the space of possible 

solutions not only forward, but forward and backward, has a greater (in our case more than 

three times greater) impact than considering connections amongst underlying patterns at all.  

5.2 Handling Noise 

Is it worthwhile cleaning the data from symbols that do not need to be predicted for practical 

POS applications? For generating the results shown on the previous page we did not remove 
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any symbols. These numbers will now serve as our control case. Disregarding any tokens that 

contains any element that is not a letter, number, ampersand, dollar symbol, hyphen, or dash 

for neither learning nor evaluating leads to significant decreases in accuracy for all 

algorithms, ranging from about a half to more than one percent (Table 5).  

Table 5: Impact of Handling Noise on Accuracy 

Dataset Measure UM HMM VitF VitB

Clean Average 85.72% 91.43% 91.62% 92.61%

Min 85.33% 91.05% 91.29% 92.19%

Max 86.38% 91.84% 91.98% 92.99%

Std Dev 0.38% 0.25% 0.23% 0.25%

Noisy Average 86.83% 91.98% 92.27% 93.29%

Noisy to Clean Difference in Average -1.11% -0.55% -0.65% -0.68%

Significance of Difference 0.00** 0.00** 0.00** 0.00**  
 

The results show that keeping noise in the data consistently and significantly improves 

accuracy rates. This observation falsifies our second hypothesis, which stated that cleaning 

data prior to learning and evaluation causes an increase in POST accuracy over learning and 

evaluating with noisy data. Why did we observe the opposite? Looking further into the data 

revealed that most of the noise signals are not ambiguous. A comma, for instance, is hardly 

ever tagged as anything other than comma. Due to the resulting strong and unambiguous 

emission probability for noise symbols, we predict noise with very high accuracy.  

What does that imply for modeling? Accuracy rates significantly benefit from data that 

contains certain entity classes that occur frequently and that are easier to predict than other 

categories because they are less ambiguous (not much to anyone’s surprise). For boosting 

tagging accuracy, keeping noise in the data is beneficial. However, as true for any machine 

learning application, special attention needs to be paid to cross-validating a model with new 

data prior to making generalizations. In order to build POST models that do not overfit to the 

prediction of noise by overly adjusting themselves to this idiosyncrasy, noise needs to be 

removed from the data prior to model training. One might argue that real data are likely to 

contain the sort of noise that was eliminated for this project. That is true. However, not 

removing noise prior to learning reduced the empiric evidence that can be gathered on 

transitions of tags other than noise, while more information is learned about the transitions 

between noise tags and tags of interest. As a result, the numeric stability of transitions among 

relevant tags is decreased, and the predictive capability of the model for applications where 

correct tagging of content is favored over tagging noise is reduced. 

5.3 Handling Unknowns  

Applying a POS tagger to new data can result in two types of errors: misclassification of 

words that the model has prior knowledge about (algorithmic failure), and failure to find the 

right class label for a word that has not been observed by the model during training (failure in 

handling unknowns). Some of the newly encountered words will be correctly resolved by the 
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algorithm by exploiting transition probabilities, while others will still be misclassified. In 

order to figure out if it is worthwhile to resolve unknowns after evaluating the model and 

prior to outputting the results we first need to understand the distribution of the two error 

types introduced in this section across the algorithms that we test herein.  

Table 6: Error Types per Algorithm (clean data) 

Error Type UM HMM VitF VitB

Unknowns 28.3% 6.1% 9.6% 1.7%

Algorithmic 71.7% 93.9% 90.4% 98.3%  

Table 6 shows that for all algorithms, the vast majority of errors are due to algorithmic 

failures. The baseline model with about three out of ten errors being due to unknowns has by 

far the greatest potential for benefitting from unknown resolution. For HMM and VitF, an 

accuracy increase of up to 6.1% and 9.6%, respectively, is theoretically possible by 

associating unknowns with the right tag. For VitB we cannot expect a major accuracy 

improvement from unknown handling – the algorithm accomplishes most of the unknown 

handling by itself; the remaining errors due to unknowns might be data artifacts. This insight 

suggests that the more an automated solution exploits empiric evidence, the less it can be 

further improved by man-made post-processing strategies. For machinery that makes 

decisions on its own by strongly relying on its computational power and by trying to resolve 

uncertainties rather than admitting them, careful and well-informed engine construction is 

crucial since posteriori interventions cannot further improve performance. For UM, HMM and 

VitF, all of which exploit less empiric evidence than VitB does, a combination of an initial 

automated solution with hand-crafted heuristics has a potential for outperforming fully-

automated approaches. Only such algorithms that are declare more uncertainties allow for 

posterior interventions. It is the engineer in the first place who determines how much 

uncertainly shall be disclosed by the engine (as for instance described in section 2, where we 

reason about the minimum probability for transitions and missions for the case of unknowns).  

We applied the following data-driven procedure for developing post-processing rules: First, 

we collected all errors made by all four algorithms throughout the ten cross-fold validation on 

clean data. From these data we parsed out all cases in which any of the algorithms assigned 

“unknown” to a word after trying to solve it algorithmically. We found that neither HMM, 

VitF nor VitB made any mistake on unknowns that UM did not also make. Therefore we 

further worked only with the set of unknowns detected by UM. Next, we removed any 

duplicates of unknown errors (cases where unknown was assigned to the same tag-token more 

than once). This procedure reduced the set of unknown error by 14,105 to 29,418. We split 

the remaining unique unknown errors up by true tag class (true according to PTB); seeing that 

unknowns occurred in any but the POS and PDT class. Next, we examined the words in each 

class for frequent regularities per class, e.g. by analyzing patterns in endings, spelling and 

capitalization. Table 7 provides details on this process.  
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Table 7: Developing heuristics for handling unknowns 

 
 

Based on the insights gained in the last step we formalized and implemented the following set 

of mainly orthographic rules:  

1. Words containing a digit are tagged as numbers (CD). 

2. Capitalized words are tagged as proper singular nouns (NNP). 

3. Words ending with -ant, -able, -al, -ory, -ent, -ful, -ian, -ible, -ic, -ish, -less, -oid, or -

ous are tagged as adjectives (JJ). 

4. Words ending with –s are tagged as common plural nouns (NNS).  

True Tag How often classified 

as unknown

Rule

NNP 7429 often capitalized

NN 6390 no obvious rule, second most frequent class

JJ 5194 often dashes and/ or one out of a fixed set of endings

NNS 3522 often ends with -s

CD 1175 often contain digit(s)

VBG 1118 often ends with -ing

VBN 893 often ends with -ed

RB 832 often ends with -ly

VB 704 often ends with -e, but rule more often true for VBN, also often ends with -ize

VBD 508 often ends with -ed, but rule more often true for VBN

VBZ 475 often ends with -s, but rule more often true for NNS

NNPS 399 often capitalized and ends with -s, but rule more often true for NNP

FW 350 no obvious rule

VBP 107 no obvious rule

UH 94 no obvious rule

JJS 86 often ends with -est

JJR 56 often ends with -ier or -er

IN 42 no obvious rule

MD 21 no obvious rule

PRP 21 no obvious rule

RBR 12 often ends with -er, but rule more often true for JJR

DT 7 no obvious rule

WRB 7 often starts with wh-

PRP$ 6 no obvious rule

LS 5 often contain digit(s), more often true for CD

WP 5 often starts with wh-

CC 3 no obvious rule

EX 1 no obvious rule

RBS 1 no obvious rule

RP 1 no obvious rule

SYM 1 no obvious rule

TO 1 no obvious rule

WDT 1 often starts with wh-

WP$ 1 often starts with wh-
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5. Words ending with -ing are tagged as present participle or gerund verbs (VBG).  

6. Words ending with –ed are tagged as past participle verbs (VBN).  

7. Words ending with –ly are tagged as adverbs (RB).  

8. Words ending with –ize are tagged as verbs (VB).  

9. Words ending with -est are tagged as adjective, superlative (JJS).  

10. Words ending with -er are tagged as adjective, comparative (JJR).  

11. All remaining unknowns are labeled as singular or mass noun (NN).   

Next we tested the impact of these rules in the order as they are presented above on resolving 

unknowns. The results are shown in Tables 8 and 9. When a rule get’s applied, three 

outcomes are possible:  

- Unknowns are resolved correctly (column named Success in Table 8).  

- Unknowns that truly belong into a different target class get assigned to the class 

that the rule predicts (false positives, shown in the second last column in Table 8). 

- Unknowns that truly belong in the target class that the rule predicts are not 

resolved since the rule does not apply to them (false negatives, last column in 

Table 8). 

After evaluating a rule (let’s call this rule A) we kept rule A applied for evaluating the 

subsequent rule (let’s call this rule B) if and only if A caused more correct tag resolutions than 

false positives. The following exceptions apply: 

- We dropped the rule that words ending with -er are tagged as comparative adjectives. 

This rule correctly resolved all of the remaining seven comparative adjectives, but also 

converted 42 tags that belonged into other tag classes into comparative adjectives. The 

rule therefore overall was more damaging than helpful.      

- Converting words ending with –ed caused slightly more misclassifications than correct 

resolutions. However, this rule reaches into the past tense verb class, and since we 

plan on aggregating all different verb classes into one general verb class later on we 

decided to keep this rule.  

Finally, we examined the set of remaining false negatives per class for possible further rules. 

This process taught us that other rules which we identified would cause more false positives 

than correct resolutions, or that the generalizability of a rule per class was too low to cause a 

significant improvement. We assume the final set of rules to be not just corpus-specific, but of 

general applicability for POST.  

In general, there is no standardized procedure for performing an error analysis. It requires the 

researcher's creativity, knowledge of the problem domain, close work with the data, and 

thorough analyses in order to understand the cause and nature of the errors that occur, to 

develop possible remedies, and to control if the application of these remedies causes negative 

side effects that are more harmful than the actual remedy is beneficial. 
-  
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Table 8: Rule Evaluation (on clean data) 

ID If token is 

unknown

Then Other 

rules 

applied

Total Algorith-

mic

Unknown Tokens 

impacted 

by rule

Success Failure 

False 

Positives

Failure 

False 

Negative

1 contains digit CD 369 62.6% 37.4% 141 126 15 12

2 capitalized NNP 1 2217 29.1% 70.9% 2016 1561 455 10

3 ends with any 

of *

JJ 1,2 1550 67.9% 32.1% 546 379 167 119

4 ends with -s NNS 1-3 678 48.4% 51.6% 431 334 97 16

5 ends with -ing VBG 1-4 280 67.1% 32.9% 119 92 27 0

6 ends with -ed VBN 1-5 789 89.4% 10.6% 171 83 88 1

7 ends with -ly RB 1-5 867 93.0% 7.0% 63 60 3 1

8 ends with -ize VB 1-5,7 1247 96.5% 3.5% 5 5 0 39

9 ends with -est JJS 1-5,7,8 51 84.3% 15.7% 9 8 1 0

10 ends with -er JJR 1-5,7-9 133 94.7% 5.3% 53 7 46 0

11 remainder NN 1-5,7-9 3207 86.8% 13.2% 599 422 177 0

* -ant, -able, -a l , -ory, -ent, -ful , -ian, -ible, -i c, -i s h, -l ess , -oid, -ory, -ous

** cas es  in which the number of fa l se pos i tives  exceeds  correct resol utions  a re marked wi th gray background

Rules Impact of applying rule(s)Types of errors in detecting tag

 

Table 9: Rule Evaluation (on clean data) 

ID If token is unknown Then Other 

rules 

applied

UM HMM VitF VitB UM HMM VitF VitB

0 and nothing el se 

happens

error 4100 511 892 140 NA NA NA NA

1 contains digit CD 3959 508 889 140 0.117% 0.003% 0.003% 0.000%

2 capitalized NNP 1 1943 126 193 3 1.397% 0.154% 0.401% 0.071%

3 ends with any of 

*

JJ 1,2 1397 123 149 3 0.351% 0.003% 0.016% 0.000%

4 ends with -s NNS 1-3 966 93 101 3 0.310% 0.003% 0.013% 0.000%

5 ends with -ing VBG 1-4 847 76 84 3 0.085% 0.013% 0.013% 0.000%

6 ends with -ed VBN 1-5 676 25 29 1 0.077% 0.009% 0.014% 0.000%

7 ends with -ly RB 1-5 613 12 16 0 0.056% 0.011% 0.011% 0.001%

8 ends with -ize VB 1-5,7 608 12 16 0 0.005% 0.000% 0.000% 0.000%

9 ends with -est JJS 1-5,7,8 599 12 16 0 0.007% 0.000% 0.000% 0.000%

10 ends with -er JJR 1-5,7-9 546 9 11 0 0.006% 0.000% 0.000% 0.000%

11 remainder NN 1-5,7-9 0 0 0 0 0.385% 0.000% 0.003% 0.000%

* cases  which resul ted i n no accuracy ga in are marked with dark gray background, cas es  which res ulted in 

accuracy ga ins  greater than zero and s mal ler than 0.05% are marked with l ight gray background 

Rules Number of unknowns Change in accuracy from previous rule(s)*

Our results show that applying our hand-crafted rules leads to statistically significant accuracy 

increases for all algorithms (Table 10). This confirms our third hypothesis, which assumed 

post-processing of unknown words to cause an increase in POST accuracy for all four 

algorithms. However, the rule set is capable of resolving only a small fraction of those errors 

that are due to unknowns (10. 5% for UM, 3.4% for HMM, 4.8% for VitF, 3.7% for VitB). To 

our surprise, VitF, which exploits more empiric evidence than HMM does, benefits more 

from a hybrid strategy (initial algorithmic solution plus rule-based post-processing) than 

HMM, which admits more uncertainty than VitF. VitB, the algorithm which we thought 

maxes out on unknown handling algorithmically, can benefit from unknown handling, but 
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here, only 6 in 10,000 words would be impacted by this strategy. Even though the increase in 

accuracy due to unknown handling is smallest for VitB, this algorithm still outperforms the 

other three algorithms.   

Table 10: Impact of Unknown Handling on Tagging Accuracy 

Dataset Measure UM HMM VitF VitB

Unknown Handling Average 88.68% 91.64% 92.08% 92.67%

on Clean Data Min 88.17% 91.28% 91.76% 92.27%

Max 89.33% 91.99% 92.39% 93.02%

Std Dev 0.36% 0.23% 0.20% 0.24%

Clean Average 85.72% 91.43% 91.62% 92.61%

Clean to Unknown Difference in Average 2.96% 0.21% 0.46% 0.06%

Handling Significance of Difference 0.00** 0.00** 0.00** 0.00**  
 

In summary, data-driven derivation of post-processing rules as well as rule testing are time-

consuming processes that require the allocation of human resources. Our findings suggest that 

not investing into this strategy, but instead spending resources on building algorithms that 

handle uncertainties algorithmically in the first place, can lead to better performance than 

enhancing algorithmic solutions with hand-crafted post-processing heuristics.  

5.4 Aggregation of Hidden States 

The tests on tag aggregation were run on clean data and with unknown handled as described 

in the previous section applied. We found that consolidating the PTB tag classes (total of 36) 

into fewer (12), user-defined classes that are tailored to the end-user’s analytical needs (see 

the Appendix for aggregation details) led to the highest accuracy rates accuracy across all 

algorithms and independent variables tested herein (Table 11, Figures 2 and 3). These results 

confirm our fourth hypothesis, which stated that aggregation of POST categories causes an 

increase in POST accuracy for all four algorithms. However, it surprised us to see that the 

simplest algorithm (UM) performs as well as the most complex one (VitB). 

Table 11: Accuracy per algorithm and tested variable 

UM HMM VitF VitB

Average 94.26% 93.09% 94.10% 94.26%

Min 93.95% 92.92% 93.93% 93.99%

Max 94.46% 93.45% 94.36% 94.60%

Std Dev 0.17% 0.16% 0.15% 0.19%  
 

In summary, our results on aggregation suggest that an informed, needs-driven, and user-

defined consolidation of available choices can lead to performance improvements that 

consistently across various algorithm of different complexity can have a greater positive 

impact than eliminating prominent error sources such as noise and unknown data. The 

technology that we developed for training a POS tagger can easily be reused in order to train a 

model with a different tag set. We emphasize the design of analytical solutions that enable 
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end-users to interact with tools or human beings on the developmental side of solutions in 

such a way that customer needs can be elicited and considered for the sake of performance 

improvements.    

Figure 2: Impact of Independent Variable on POST Accuracy 

 

Figure 3: Impact Algorithm on POST Accuracy 

 
 

85%

87%

89%

91%

93%

95%

UM HMM VitF VitB

A
cc

u
ra

cy
 r

a
te

Algorithm

Baseline Clean Data (CD)

CD + Handle Unknowns (HU) CD + HU + Aggregate Tag Classes

85%

87%

89%

91%

93%

95%

Baseline Clean Data (CD) CD + Handle 

Unknowns (HU)

CD + HU + 

Aggregate Tag 

Classes

A
cc

u
ra

cy
 r

a
te

Variable

UM HMM VitF VitB



21 

 

6. Integration of Parts of Speech Tagging into AutoMap 

Based on the insights gained from testing the impact of various independent variables on the 

accuracy of four different POST algorithms (the difference between the algorithms 

themselves being one of the variables) we decided to train the following two POS tagging 

models and integrate them into AutoMap: 

- Both models based on Viterbi with backtracing.  

- One model uses the original PTB tag set, while the other model uses the aggregated 

tag set (Table 2). 

- Each of the two models requires a separate post-processor that matches the respective 

tag set.   

We implemented and integrated these taggers into AutoMap as follows: First, we trained both 

models on the full learning set (not only 90% of it), output the emission and transition 

matrices as data files, and added these data to AutoMap. In AutoMap, on the Utilities tab, in 

the Parts of Speech Tagging section, the user can chose and go back and forth between the 

“Tag texts using PTB tag set” option and the “Tag texts using aggregated tag set” option 

(Figure 5). In either case, the untagged texts will first be split into sentences by using a 

sentence splitter (Piao, n.d.). Next, the initialization vector will be constructed based on the 

tokens per sentence. Using the initialization vector as well as the states as represented in the 

emission and transition matrices, a trellis will be built for every sentence in the data. These 

trellises are used to find a complete and the most likely sequence of POS per words per 

sentence. Users can use the POS tagger in the GUI or batch mode version of AutoMap in two 

ways  (Carley, Diesner, Reminga, & Tsvetovat, 2007): 

- Stand-alone feature: When either “Tag Texts…” option is selected, AutoMap performs 

POST and displays each word along with the POS that the tagger predicted for it. The 

user can store the POS annotated corpus. For the sample text shown in Figure 4, 

AutoMap generated the POS annotated text shown in Figures 5 and 6.  

- Output a table (coma separated values format) that lists all words in a corpus in the 

first column and the respective POS that the model has identified for that word in the 

following column. If more than one POS was predicted for a word, the word-tag tuples 

will be placed in multiple rows. Tables 12 and 13 show that list for the sample text 

given in Figure 4 using the tagger trained on the full PTB tag set.  

Besides supporting a variety of NLP and IE routines, AutoMap’s main purpose is to facilitate 

content analysis as well as the extraction of one- and multi-mode networks from texts 

(Diesner & Carley, 2004, 2006; McConville, et al., 2008). When relational data is extracted 

with AutoMap, outputs can be stored as DyNetML files (DyNetML is an XML derivate 

designed for graph representation (Carley, et al., 2007). DyNetML files represent one or 

multiple graphs that comprise vertices and edges. The nodes and edges can hold attributes. 

POS are one possible node attribute. ORA (Carley, et al., 2007), a software for relational data 
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analysis, can read DyNetML files and run several reports that consider POS in the 

computation of network analytic measures. 

Figure 4: Raw text loaded into AutoMap 

Figure 5: Integration of POS Tagger based on PTB tag set into AutoMap as stand-alone feature 
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Internally, AutoMap uses POST as one out of multiple decision support features for: 

1. Named Entities Extraction, which identifies relevant types of information that are 

referred to by a name, such as people, organizations, and locations. 

2. Anaphora Resolution, which converts personal pronouns into the actual social entities 

that those pronouns refer to.  

How can end users exploit POST for text analysis projects? We envision a variety of potential 

usages: 

1. Data reduction in the sense of deleting non-content bearing words from texts: Though 

it ultimately depends on the user and application domain what the set of “non-content” 

words entails, such concepts often belong to one of categories that we aggregated in 

the IRR class. Users can output the word-POS tuple table and add the words that are 

classified as IRR to a delete list. When applying a delete list, AutoMap searches the 

Figure 6: Integration of POS Tagger based on aggregated tag set into AutoMap as stand-alone 

feature 
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texts that are currently loaded for the words specified in the delete list and removes 

any matches by either dropping them completely or inserting a placeholder at the 

position where a word was removed (this choice is made by the user). In order to 

remove noise that does not occur in word form, words being associated with the SYM 

can also be added to the delete list. 

2. Named Entity Extraction: the AGENTLOC class collects instances of individual 

agents and locations from the user’s data, and the ORG class comprises instances of 

organizations or other mentions of multiple people. Retrieving these entities and 

performing network text analysis on them in AutoMap can help people to explore the 

social and spatial network(s) represented in their data. Since POST operates on a 

word-by-word basis, identifying agents, organizations and locations that occur as N-

Table 12: POS per Word (part1) Table 13: POS per Word (part2)

Word Tag Frequency Word Tag Frequency

. . 4 needs verb 1

a irr 4 of irr 5

about irr 1 on irr 1

accuracy noun 1 one num 1

and irr 2 other adj 2

appear verb 1 performance noun 1

are verb 1 pos modal 1

aspects noun 1 precise adj 1

assign verb 1 processing verb 1

associated verb 1 resulting verb 1

be verb 1 set verb 1

beings noun 1 significantly irr 1

benefit verb 1 single adj 1

best adj 1 some irr 1

building noun 1 syntactic adj 1

can modal 2 tag noun 1

category noun 1 tagger irr 1

context noun 1 taggers verb 1

data noun 1 tags noun 1

decisions noun 1 tasks noun 1

depending verb 1 text noun 1

engine noun 1 that irr 1

every irr 1 the irr 4

extraction irr 1 they ana 1

from irr 1 to irr 3

human adj 1 unambiguously irr 1

impact noun 1 used verb 1

in irr 2 variety noun 1

information noun 1 when irr 1

knowledge noun 1 which irr 1

language noun 1 while irr 1

make verb 1 widely irr 1

many adj 1 with irr 1

match verb 1 word noun 1

multiple adj 1 words noun 3

natural adj 1
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grams (e.g. Henry Ford or Occupational Safety and Health Administration) implies 

searching the POS annotated corpus for collocations of the AGENTLOC or ORG tag.  

3. Identification of social structure: One application of AutoMap is the approximation of 

relational data that is represented in text data. AutoMap supports the extraction of two 

types of relational data: one-mode networks (all nodes are of the same type) and multi-

mode networks (nodes can be associated with different node classes). By default, all 

nodes in a one-mode network belong to the node class knowledge, while in multi-

mode networks, nodes can belong to one or multiple of the classes agent, 

organization, task/event, resource, knowledge, location, and time. Revealing and 

further analyzing relational data helps people in going beyond the identification of 

social networks and to also answer questions like: Who is located where, and what 

people or groups have access to what resources, tasks, and knowledge? Further 

analysis of multi-mode relational data (multiple node classes, such as agent and 

action) has helped people to understand the benefits or risks that a certain network 

structure implies for a socio-technical system (Carley, et al., 2007). For such projects, 

the words in the VERB class could serve as events or tasks, nouns could be screened 

for resources, and the MODAL class might serve as node or edge attributes. Instances 

of various node classes found this way could be further cross-verified or supplemented 

by using other techniques that support users in automatically finding instances of user-

defined ontology classes in texts (Bikel, et al., 1999; Diesner & Carley, 2008).  

4. Identification of node attributes: One-mode network extraction has been used to reveal 

mental models of (groups of) people. Mental models are considered to represent the 

reality that people have in their minds and use to make sense of their surroundings, or 

the cognitive constructs that reflect people’s knowledge and information about a 

certain topic. Multi-mode network extraction serves the exploration of network 

configuration as described under the previous point. People are not bound to those 

categories, but can use their own ontologies or taxonomies in AutoMap (Diesner & 

Carley, 2008). Whether using the default or self-defined node classification schemata, 

and whether extracting one- or multi-mode networks, people can also extract attributes 

on nodes. The ADJ class might be an appropriate candidate for providing suggestions 

for words that qualify as node attributes.  

7. Limitations and Conclusions 

Several limitations apply to the work presented herein. First, even though the training and 

testing set (PTB corpus) contains more than a million data points, it still reflects a certain time 

period, style (journalistic writing) and range of domains (news paper articles). Applying the 

constructed POST models to data that differs in any of these dimensions is likely to result in 

accuracy rates lower than the ones reported herein. Second, we did not test MM of a higher 

order. For data sets with lengthy sentences, e.g. academic writing, or for data in that N-grams 
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of size larger than size two are crucial and occur often, using a MM of a higher order might 

further improve tagging accuracy while also increasing computational complexity. Finally, all 

algorithms tested are stochastic taggers; thus that a comparison to accuracy rates achieved 

with rule- or transformation-based systems could be valuable.  

The POS taggers that we implemented into AutoMap performed reasonably well on tagging 

texts that were unseen during training the models. What does reasonably well mean? Overall, 

our accuracy rates are a few (about three to four) percent lower than the best accuracy rates 

(96% to 97%) published for POS taggers that were built using PTB (Jurafsky & Martin, 

2000). Let us look at our accuracy rates in more detail: If the first of our tagger in AutoMap 

(trained on clean data, performing unknown handling, using full PTB tag set) was used to tag 

a 20 word sentence, it would mislabeled two to three (precisely 2.3) words when using UM, 

and one to two words when using HMM (1.7), VitF (1.6) or VitB (1.5). If we the second 

tagger (trained on clean data, performing unknown handling, using aggregated tag set), it 

would mislabel about one word in a 20-word sentence (1.1 for UM, 1.4 for HMM, 1.2 for 

VitF and VitB). Using this second tagger, the probability that all words in 20 word sentence 

would get tagged correctly is 31% for UM and VitB, 24% for HMM, and 29% for VitF.  

Besides adding a well-performing POS tagger to AutoMap, our goal with this project was to 

look under the hood of MM-based, stochastic POST in order to understand how certain 

variables impact the resulting POST accuracy. The main contribution of this report is to 

quantify and reason about the change in tagging accuracy that is due to choices about design 

decisions that human beings need to make when implementing a stochastic POS tagger. Table 

12 shows our hypotheses and respective findings (** indicate significance for a confidence 

interval of 95%). The remainder of the report summarizes our lessons learned.   

Table 12: Summary of results of hypothesis testing 

Hypothesis  UM HMM VitF VitB 

H1: POST accuracy increases from step to step, so that: 

- accuracy with HMM is higher than with UM 

- accuracy with VitF is higher than with HMM 

- accuracy with VitB is higher than with VitF. 

N.A. Yes** Yes** Yes** 

H2: Data cleaning prior to learning and evaluation causes an 

increase in POST accuracy over learning and evaluating with 

noisy data for all for algorithms.    

No** No** No** No** 

H3: Post-processing of unknown words causes an increase in 

POST accuracy for all four algorithms.  

Yes** Yes** Yes** Yes** 

H4: Aggregation of POST categories causes an increase in POST 

accuracy for all four algorithms. 

Yes** Yes** Yes** Yes** 

 

We have shown how design decisions about computational solutions for common NLP tasks, 

here POST, can significantly impact the behavior of the resulting engine. The empirical 

comparison of four POS algorithms, which all are integral parts of the Viterbi algorithm, 
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confirmed our assumption that an increase in the empirical evidence that an algorithm 

identifies and exploits causes increases in accuracy rates. Therefore, the upgrade from local 

search to global search leads to improvements in accuracy at the expense of higher 

computational complexity. This investment pays off most if the search space is traversed 

through for the best solution not only in a forward fashion, but with a bidirectional search.  

Removing noise from the training data prior to learning a model leads to significant decreases 

in accuracy rates while the amount and numerical stability of the learned probabilities for the 

tags of interest increase. We argue that the generalizability of the model benefits from the 

decision to remove noise.  

Across all algorithms tested, the majority of errors were due to algorithmic failures, while 

only a small portion of errors was caused by labeling newly encountered words after trying to 

resolve them algorithmically as unknowns. We showed that when building POS taggers, one 

can lower the ratio of unknown handling errors by developing and adding post-processing 

rules for handling new words. However, the process of constructing and testing unknown 

handling rules is fairly labor- and time intense, and can be avoided by designing algorithms 

that exploit as much empiric evidence as possible to begin with. We learned that the more an 

algorithm is designed towards admitting uncertainties rather than trying to resolve them 

algorithmically on its own, the more hybrid strategies of initial algorithmic solutions plus 

manually constructed post-processing heuristics can improve accuracy.  

Across all independent variables tested in this project we observed the strongest performance 

improvement when the tag set was aggregated and reduced to fewer categories that are 

tailored towards the user’s needs. We therefore advocate the development of models and tools 

that allow end-users to specify or participate in the consolidation of categories out of a 

predefined pool of choices according to their requirements.  

We conclude that error rates reported on POS taggers and obtained by users who work with 

such tools highly depend on choices about design decisions that have to be made when 

building a tagger. Therefore, the variables that significantly impact a tagger’s performance 

need to be identified and their effect on the tagger needs to be measured and reported so that 

everyone - developers and users - can learn about the sensitivity of the engine and responsibly 

work with such systems.   
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Appendix: PTB Tagset 

 
PTB Tag Meaning Aggregated Tag Instances in PTB

NN noun, common, s ingular or mass NOUN 161397

IN prepos i tion or conjunction, subordinating IRR 136714

DT determiner IRR 116454

JJ adjective or numera l , ordinal ADJ 76586

NNP noun, proper, s ingular AGENT 62020

NNS noun, common, plura l NOUN 55912

RB adverb IRR 52037

PRP pronoun, personal ANA 47303

VBD verb, past tense VERB 46684

CC conjunction, coordinating IRR 38097

VB verb, base form VERB 36887

VBN verb, past parti ciple VERB 29435

TO to as  prepos ition or infini ti ve marker IRR 26135

VBZ verb, present tense, 3rd person s ingular VERB 21627

VBG verb, present parti ciple or gerund VERB 17255

PRP$ pronoun, possess ive IRR 16918

CD numera l , cardina l NUM 15178

VBP verb, present tense, not 3rd person s ingular VERB 14371

MD modal  auxi l iary MODAL 14115

: : SYM 10917

'' '' SYM 9201

`` `` SYM 8838

POS genitive marker POS 5247

WDT WH-determiner IRR 4990

WP WH-pronoun IRR 4732

WRB Wh-adverb IRR 4625

JJR adjective, comparative ADJ 2914

) ) SYM 2506

( ( SYM 2477

EX exis tentia l  there IRR 2224

NNPS noun, proper, plura l ORG 1958

RBR adverb, comparative IRR 1901

JJS adjective, superlative ADJ 1743

RP parti cle IRR 1630

SYM symbol SYM 1268

UH interjection IRR 883

FW foreign word FW 803

RBS adverb, superlative IRR 784

PDT pre-determiner IRR 728

$ $ SYM 579

LS l is t i tem marker SYM 446

WP$ WH-pronoun, possess ive IRR 251


