
Looking under the Hood of Stochastic

Machine Learning Algorithms

for

Jana Diesner

 Center for the Computational Analysis of Social and Organizational Systems

This report supersedes the previous report, CMU

This work was supported in part by the Army Research Lab as part of the CTA in Decisi

01-2-0009, the Army Research Institute W91WAW07C0063, and the National Science Foundation IGERT

9972762 in CASOS. Additional support was provided by CASOS and ISR at Carnegie Mellon University. The

views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied,

Institute, the National Science Foundation, or the U.S. government.

for providing the data to us, to Yifen Huang, CMU, for discussing the project with us

CMU, and Jamie Olson, CMU, for their comments on this paper

Looking under the Hood of Stochastic

Machine Learning Algorithms

for Parts of Speech Tagging

Jana Diesner Kathleen M. Carley
July 2008

CMU-ISR-07-131R

Institute for Software Research
School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Center for the Computational Analysis of Social and Organizational Systems

CASOS technical report.

his report supersedes the previous report, CMU-ISR-08-131.

This work was supported in part by the Army Research Lab as part of the CTA in Decision Making DAAD19

0009, the Army Research Institute W91WAW07C0063, and the National Science Foundation IGERT

Additional support was provided by CASOS and ISR at Carnegie Mellon University. The

views and conclusions contained in this document are those of the authors and should not be interpreted as

representing the official policies, either expressed or implied, of the Army Research Lab, the Army Research

Institute, the National Science Foundation, or the U.S. government.. We are grateful to Alex Rudnicky

to Yifen Huang, CMU, for discussing the project with us, and to Carolyn Rose

for their comments on this paper.

Center for the Computational Analysis of Social and Organizational Systems

on Making DAAD19-

0009, the Army Research Institute W91WAW07C0063, and the National Science Foundation IGERT

Additional support was provided by CASOS and ISR at Carnegie Mellon University. The

views and conclusions contained in this document are those of the authors and should not be interpreted as

of the Army Research Lab, the Army Research

o Alex Rudnicky, CMU,

, and to Carolyn Rose,

ii

Keywords: Part of Speech Tagging, Hidden Markov Models, Viterbi Algorithm, AutoMap

iii

Abstract

A variety of Natural Language Processing and Information Extraction tasks, such as question

answering and named entity recognition, can benefit from precise knowledge about a words’

syntactic category or Part of Speech (POS) (Church, 1988; Rabiner, 1989; Stolz,

Tannenbaum, & Carstensen, 1965). POS taggers are widely used to assign a single best POS

to every word in text data, with stochastic approaches achieving accuracy rates of up to 96%

to 97% (Jurafsky & Martin, 2000). When building a POS tagger, human beings needs to make

a set of choices about design decisions, some of which significantly impact the accuracy and

other performance aspects of the resulting engine. However, documentations of POS taggers

often leave these choices and decisions implicit. In this paper we provide an overview on

some of these decisions and empirically determine their impact on POS tagging accuracy. The

gained insights can be a valuable contribution for people who want to design, implement,

modify, fine-tune, integrate, or responsibly use a POS tagger. We considered the results

presented herein in building and integrating a POS tagger into AutoMap, a tool that facilitates

relation extraction from texts, as a stand-alone feature as well as an auxiliary feature for other

tasks.

iv

v

Table of Contents

1. Introduction ... 1

2. Method .. 2

3. Data ... 5

4. Experiment .. 6

4.1 Disassembling Viterbi .. 6

4.2 Handling Noise .. 8

4.3 Smoothing and Handling of Unknown Data Points... 9

4.4 Aggregating Hidden States .. 11

5. Results ... 12

5.1 Disassembling Viterbi .. 12

5.2 Handling Noise .. 13

5.3 Handling Unknowns .. 14

5.4 Aggregation of Hidden States .. 19

6. Integration of Parts of Speech Tagging into AutoMap ... 21

7. Limitations and Conclusions ... 25

vi

1

1. Introduction

Part of Speech Tagging (POST) assigns a single best part of speech (POS), such as noun,

preposition or personal pronoun, to every word in a text or text collection. What is the

knowledge about words’ lexical category useful for? First, a large variety of Natural

Language Processing (NLP) and Information Extraction (IE) tasks can benefit from accurate

knowledge about words’ lexical categories, such as:

- Stemming (conversion of terms into their morphemes) (Krovetz, 1995; Porter, 1980)

- Named Entity Extraction (identification of relevant types of information that are

referred to by a name, such as people, organizations, and locations) (Bikel, Schwartz,

& Weischedel, 1999)

- Anaphora resolution (conversion of personal pronouns into the actual entities that

those pronouns refer to) (Lappin & Leass, 1994)

- Creation of positive (thesaurus) and negative (delete list) filters (Diesner & Carley,

2004)

- Ontological text coding (classification of relevant types of information according to an

ontology or taxonomy) (Diesner & Carley, 2008)

Second, POS are often used as one feature for machine learning tasks that involve text data

(Arguello & Rose, 2006; Bikel, et al., 1999).

What is the challenge in POST? While many words can be unambiguously associated with

one tag, e.g. computer with noun, other words match multiple tags, depending on the context

that they appear in. Wind, for example, can be a noun in the context of weather, and can be a

verb that refers to coiling something. DeRose (DeRose, 1988) for example reports that in the

Brown corpus, which is part of the data set that we use in this study, over 40% of the words

are syntactically ambiguous. This example illustrates the fact that ambiguity resolution is the

key challenge in POST.

The goal with this report is two-fold: The first one is based on our observation that while

many detailed descriptions of POST algorithms exists, several design decisions that need to

be made when implementing these algorithms are left implicit in these descriptions. As we

demonstrate herein, different choices for these decisions can significantly impact the

performance of the tagger. For this project, we operationalize performance as POST accuracy.

Therefore, the first goal with this report is to describe a set of design decisions and possible

choices in detail, and determining the isolated impact of these choices on POST accuracy.

Who cares about such information? We envision the knowledge about the sensitivity of the

resulting engine and its parts to be valuable information for people who build taggers, who

integrate existing taggers into a system, or who use off-the-shelve taggers.

The second goal with this report is a practical, need-driven one: at the Center for

2

Computational Analysis of Social and Organizational Systems (CASOS) at Carnegie Mellon

University (CMU) we have developed AutoMap, a tool that facilitates the extraction of

relational data from texts (Diesner & Carley, 2004; McConville, Diesner, & Carley, 2008). A

variety of NLP and IE routines, such as those listed above, are part of that process. Therefore,

a highly accurate POS Tagger is a crucial auxiliary tool for multiple routines in AutoMap.

Furthermore, we envision high-quality tagging to serve as a helpful stand-alone feature in

AutoMap. In order to build a tagger whose design is transparent to all parties involved and is

based on informed design decisions we needed detailed knowledge about the subtleties of

POST beyond general algorithmic descriptions.

This report is structured as follows: In section two we select and describe a POST algorithm

for this project. Section three describes the dataset based on which we trained and tested

various POS taggers. Section four explains four design decisions that need to be made when

implementing a POS Tagger, and derives hypotheses on the impact of different choices for

these decisions on the resulting POST accuracy. Section five tests our hypotheses in an

empirical fashion. Section six shows how we used the gained insights in order to build a

POST tagger and integrated it into AutoMap, and highlights various uses of POST for end-

users. The paper concludes in a description of applicable limitations.

2. Method

What computational approach should be used for building a POS tagger? Taggers can be

divided into rule-based, stochastic and transformation-based systems (Manning & Schütze,

1999). For this project we focus on stochastic taggers, which exploit the power of

probabilities and machine learning techniques in order to disambiguate and tag sequences of

words (Bikel, et al., 1999; Stolz, et al., 1965). One highly successfully and widely applied

approach to statistical modeling of natural language data are Hidden Markov Models (HMM)

(Baum, 1972), which are explained in more detail in this section. In the domain of speech

recognition for instance, HMM have become the favored model (Rabiner, 1989). HMM are

also used for POST, where the most accurate systems achieve errors rates of less than four

percent (Jurafsky & Martin, 2000). Most of the existing HMM-based POS taggers are trained

with labeled data (e.g. (DeRose, 1988; Weischedel, Meter, Schwartz, Ramshaw, & Palmucci,

1993)), while a small number of taggers use unlabeled data in order to train a model based on

expectation maximization (EM) (e.g.(Kupiec, 1992). Given the performance rates that others

have achieved with HMM-based stochastic POS taggers we decided to use this approach for

building a POS tagger for AutoMap.

HMM are a probabilistic function of Markov Models (MM). In this section we first briefly

describe MM, followed by a short explanation of HMM (for details on MM and HMM see

(Baum, 1972; Church, 1988; DeRose, 1988; Rabiner, 1989; Stolz, et al., 1965)). Markov

Models (MM) model the probabilities of non-independent events in a linear sequence.

Applying this idea to natural language allows us to model language as a dynamic system in

3

which words and their underlying features are not isolated events, but do impact each other.

MM are based on two assumptions: First, MM assume a limited horizon into the past. This

means that given a current element in a sequence, future elements are conditionally

independent of past elements. In other words, elements depend only on themselves and a few

predecessors. The number of predecessors considered is called the order of the HMM. If one

decides to look at only the most recent data point (word) from the past, then a first-order MM

is applied. Second, MM make the time invariance assumption, meaning that probabilities are

stationary (invariant over time). This assumption can be related to the desire for generalizable

models that are trained on a specific data set and are later applied to new and unseen data. The

time invariance assumption is a theoretical one only. In reality, language is a dynamic system,

in that rules (syntax) and elements (vocabulary) emerge and vanish over time, and across

places and people.

Relating these two assumptions to POST enables us to exploit and computationally combine

every word’s probability as well as its local context as given by a word’s predecessor(s).

HMM, a probabilistic function of MM, brings these two pieces of information together by

computing the probability of tag sequence P(tag1-end) that maximizes the likelihood of the

product of word probability P(wordi|tagj) and tag sequence probability P(tagj| previous n

tagsj-N). Applying HMM to POST means aiming to find the most likely sequence of POS in a

given sequence, typically a sentence, for all sequence (sentences) in a text or corpus (Baum,

1972; DeRose, 1988; Stolz, et al., 1965)

In practical POST applications, the true sequence of POS that underlies an observed sequence,

e.g. a sentence, is unknown, thus forming the hidden states. A POS tagger aims to find the

sequence of hidden states that most likely has generated the observed sequence. This task is

referred to as decoding, which means that given a set of observations x (words in a sentence)

and a model µ (the result of supervised learning) we want to reveal the underlying Markov

chain of tags that is linked to the observed states. Model µ consists of three parameters:

1. Initial state probabilities π. This is a vector that quantifies the probability of the tag of
the first hidden state in a sentence. Why is that needed? When POST is performed on
the sentence level (the classical approach), the first word in the sequence has no
predecessor. In order to decode this token, it is typically assumed that the most
frequently observed tag for this token across the data set is the most likely tag for this
token.

2. State transition probabilities aij, stored in a transition matrix, quantify the likelihood of
observing a certain hidden state given the previous hidden state.

3. State emission probabilities bij, stored in a confusion or emission matrix, specify the
probabilities of observing a particular state (word) while the HMM is in a certain
hideen state (tag).

When training a POS tagger in a supervised fashion, the parameters of model µ are computed

from the training data. Therefore, the process of estimating parameters during model training

is a visible Markov process, because the surface pattern (word sequence) and underlying

4

states (POS sequence) can be fully observed. In contrast to that, applying the trained model to

tag new and unseen data truly represents a hidden MM, because the tag sequence is hidden

underneath the surface pattern and will be revealed using previously gathered empiric

evidence (model µ).

The vast majority of HMM practical applications deploy first-order models. This seems

counterintuitive if one believes that higher-order MM could lead to more accurate predictions

than lower order models, because state sequences might depend not only on one (first-order

HMM), but multiple predecessors (e.g. in Department of Labor). A time horizon of greater

than one, however, results in less and sparser training data due to the lack of local histories for

the beginning of sequences (Manning & Schütze, 1999). This translates into a serious

disadvantage if sentences in the training data are rather short, or if comas are used as

delimiters instead of sentence marks. Because a shift from a first-order HMM to a second-

order HMM reduces the amount of training data available and therefore also the numerical

stability of the constructed model we decided to work with a first-order HMM. While the

limited horizon assumption enables us to account for the fact that the words in a sentence may

depend on each other, especially in the case of meaningful bigrams such as human rights, it

excludes the consideration of long-range dependencies (Diesner & Carley, 2008). Long-range

dependencies are not meaningful N-grams whose elements co-occur next to each other, but

elements that interact without being collocated, such as personal pronouns that refer back to a

social entity mentioned earlier in the text. This limitation has been shown to be a serious

weakness if relevant data points are sparsely scattered across the data. Since in POST training

data every word has a tag, this limitation does not apply to POST.

Different algorithms for implementing a HMM exist. A widely used one in the NLP domain is

the Viterbi algorithm (Viterbi in the following) (Viterbi, 1967). The solution that a POS

tagger will suggest is contained in the search space of the applied algorithm or technique. A

search space describes and confines the room of possible solutions. For Viterbi, the search

space can be represented as a trellis. A trellis is a field composed of a chain of tokens (chain

length depends on the number of tokens per sequence) and a related matrix of all hidden states

that were empirically observed during model construction by the probabilistic connections

(transitions) between the hidden states. The chain of observed states and the matrix of hidden

state transitions are probabilistically connected via the empirically observed emission

probabilities for a word by the full set of tags. Viterbi’s basic idea and main advantage are the

reduction of the complexity of examining every full path through a trellis (all possible

combinations of tag transitions and word emissions in a sequence) by recursively finding

partial probabilities δ for the most likely path from one state to the next throughout each

sequence. Viterbi requires three steps for searching and identifying one complete and the most

probable route through the trellis:

5

Viterbi Algorithm, Goal:

Finding the sequence of hidden states that generates the maximum partial probability (t) jδ of

possible state combination while moving through the trellis:

) | j = X O, P(X, max = (t) t
X

j µδ

where

j… index of potential state

t…index in the sequence of observations

X = X1 … Xt-1 …sequence of (hidden) states

O = O1 … O t-1 …sequence of observations

The following steps will be executed in order to achieve the goal:

1. Initialization Nj1, = (1) j ≤≤πδ j

2. Induction Nj1 ,b a (t) max = 1)(t otijij
Ni1

≤≤+
≤≤

jj δδ

Store backtrace Nj1 ,b a max arg = 1)+(t otijij

Ni1

≤≤
≤≤

jj δψ

where (t) jψ = storage of node of incoming arc to most probable

path

3. Termination and path (most likely tag sequence) readout (by backtracking)

1)(T max arg ˆ i

Ni1

1 +=
≤≤

+ δTX

1)+(t ˆ
1 ˆ += TXtX ψ

1)(T max)ˆ(i
Ni1

+=
≤≤

δXP

In summary, the supervised, sequential, stochastic machine learning technique described

herein constructs a model µ that for each sequence of (x,y), where x are the words in a

sentence and y the corresponding POS tags, predicts a POS sequence y = µ(x) for any

sequence of x, including new and unseen text data. Note that machine learners are systems

that improve their performance (here, POS tagging accuracy) with experience (here,

observing token-tag tuples along sentences). Since HMM estimate a joint probability (the one

of words and tags) they are a member of the family of generative models (Dietterich, 2002).

The tag sequence that results from applying model µ to new data may not necessarily be the

correct one, but it will be the most likely one given the model and the data. It is for this reason

that informed design and implementation of a tagger and careful preparation of the learning

and validation data are key to success.

3. Data

The data set used for training and validation in this project is the tagged version of the Penn

Treebank 3 (PTB) corpus (Mitchell, Santorini, & Marcinkiewicz, 1993). The PTB collection

6

contains 2,499 texts from differenet sources such as over three years of news coverage from

the Wall Street Journal (1989-1992) and a tagged version of the Brown corpus (1961). Every

word in the corpus is annotated with at least one out of 36 possible tags (see the Appendix for

a list of tags and their meaning). The PTB data is stored in 500 data files, which are organized

in 15 folders.

In cases where the human coders who annotated the PTB texts with POS were uncertain about

the best POS for a word, e.g. when a word was syntactically ambiguous, multiple tags were

assigned in a non-standardized order (Klein & Manning, 2002). For example, England-

born/NNP/VBN means that England-born might be a singular proper noun as well as past-

participle verb. There is a total of 121 such cases of tag indeterminacy in PTB. We performed

several qualitative checks (human reasoning about the best out of the offered tags) on

randomly drawn instances of this issue from PTB, which convinced us of the random order of

multiple tags per word.

4. Experiment

We conducted a series of experiments in order to identify the impact of several independent

variables, which we explain in detail this section, on the dependent variable of interest: the

accuracy of tagging new data by using the constructed model. What can the outcome of this

exercise be useful for? First, we envision creators and users of HMM implementations to use

this knowledge in order to build or responsibly apply such systems. Second, we need such

detailed information in order to construct the best POST model for AutoMap (for machine

learning problems, the best model is typically the most concise one that generalizes with

highest accuracy to new data).

4.1 Disassembling Viterbi

Section 2 described the different computational steps that are involved in the Viterbi

algorithm. How much accuracy gain can be attributed to each of these steps? In order to

answer this question we isolated each step and ran experiments in order to quantify the partial

accuracy gain that the following steps accounts for:

1. Probabilities of words in isolation

2. Emission and Transition Probabilities

3. Partial probabilities δ and back pointers ψ

4. Backtracing

Step 1 enables us to isolate and measure the accuracy achieved by using emission

probabilities only. This procedure disregards the impact the POS of the proceeding word on

the subsequent word’s POS, thus not making use of a words’ historical context (a “zero-order

HMM”). As a result, the tag that has been observed most frequently for the word under

consideration during training will be selected. This step resembles the initialization stage as

7

well as the computation of the initial state probabilities as described in section 2. In HMM and

Viterbi, probabilities of words in isolation are used for tagging the first word in every

sentence as well as for one-word sentences. We refer to this approach as the Unigram Model

(UM in the following), and use UM as our baseline performance measure.

Step 2 represents a regular HMM (HMM in the following). That is the product of emission (of

a word by a tag) probabilities and transition (from POS to POS) probabilities as computed

during the induction stage of Viterbi. The difference in accuracy rates between step 1 and 2

allows us to isolate and quantify the impact of transition probabilities on tagging accuracy.

HMM perform local search. This means that the model decides on the most likely tag for each

token (by choosing the POS that maximized the product of the possible transition and

emission probabilities between the current and preceding words and their POS) prior to

moving on to the next word.

Step 3 is the heart of Viterbi. It combines partial probabilities as computed in step 2 with a

forward search for the best (a complete and the most probable) path through the trellis. At

each step while moving through the sequence for which the hidden states need to be

determined the algorithm computes partial probabilities. These partial probabilities are the

product of the emission probability of the potential state, the highest transition probability

from the previous possible states, and the partial probability of the previous state that

generated the highest transition probability. Hence this algorithm considers the emissions,

transitions and the globally optimal sequences of hidden states that are determined while

moving through each step in the trellis. In the following we refer to this step as VitF (Viterbi

Forward). The difference in accuracy between steps 2 and 3 represents the difference between

global search and local forward search.

Step 4 not only computes all possible forward paths through a trellis (as done in step 3) from

start to end, but after completing the forward search, it also a) determines the final partial

probability of the last state, which represents the optimal solution from global forward search,

and b) then backtraces the most probable path through the trellis from the last to the first

token. In the following we refer to this step as VitB (Viterbi with backtracing). The difference

between step 3 and 4 is the difference between global forward search and global forward/

backward search

In summary, the difference between steps 1 and 2 versus steps 3 and 4 represents the

difference between a globally versus locally maximized solution. An actual implementation of

the Viterbi algorithm requires all four steps. Each of these steps and in the order as outlined

here includes the previous step(s), thereby adding to Viterbi’s time and space complexity with

every step. This increase in computational complexity is because each step, in the presented

order, increases the amount of information or empiric evidence that is comprised in the

process of making a decision about the best tag sequence. Based on the information provided

in this section we derive the following hypothesis:

Hypothesis 1: POST accuracy increases from step to step, so that:

8

- accuracy with HMM is higher than with UM

- accuracy with VitF is higher than with HMM

- accuracy with VitB is higher than with VitF.

4.2 Handling Noise

Typically, text data includes various types of noise in varying quantity. What precisely

qualifies as noise and how much of it will be normalized or eliminated depends on the goal,

resources, and researcher. For this project, tagged tokens are not considered as noise if and

only if they are composed of an arbitrarily long sequence of any of the following:

- Characters from a or A to z or Z (regular words)

- Numbers from 0 to 9 (numbers)

- Sentence markers (digits and end of sentences)

- Ampersands (used e.g. in corporation names such as John Wiley & Sons)

- Dollar symbols (mainly used to denote monetary values)

- Hyphens (often used to denote genitive markers)

- Dashes (often used in compound words such as long-term)

All tagged tokens that are or comprise any symbol not listed above are considered as noise

herein. The set of noise terms for this project contains for example tokens whose tag resemble

the token (e.g. :/:), or most (99.84%) tokens that are tagged as symbol (SYM). Commas are

part of the SYM set. Only 0.01% of the tokens tagged as list markers (LS) qualified as noise,

while most list markers are actual words or numbers.

Figure 1: Excerpt from PTB Data Table 1: Impact of Noise Definition on Transitions

Publication/NN

and/CC

distribution/NN

:/:

Volume/NN 1/CD

(/((/(

A[fj]/SYM

)/) of/IN

the/DT seventh/JJ edition/NN

Transitions before

symbol removal

Transitions after

symbol removal

NN - CC

CC - NN

NN - :

: - NN

NN – CD

CD – (

(- (

(- SYM

SYM – IN

IN – DT

DT – JJ

JJ - NN

NN - CC

CC – NN

NN – NN

NN – CD

CD - IN

IN – DT

DT – JJ

JJ - NN

9

For other projects, the tokens and tags that we consider as noise terms might be valuable

signals. For data that is stored as coma separated values, for instance, commas would serve as

the sequence delimiter. Figure 1 shows an excerpt from a POS-tagged PTB data file in that we

printed the tagged elements that we consider as noise in red and bold font. Any word-tag tuple

in which one or both elements qualify as noise can be removed prior to learning and model

evaluation or not. Table 1 shows the transition probabilities for the example given in Figure 1

with and without performing symbol removal. The transitions that both versions differ in are

printed in bold and red font. This example shows that when noise is not removed, more and a

higher variety of tag transitions will be learned.

Why could determining the impact of noise removing on POST accuracy matter? For practical

POST applications, people are typically not interested in predicting tags for symbols, but only

for what is typically considered as content. From a computational as well as practical

standpoint, decoding noise requires computational resources, which one might not want to

spend. Moreover, including noise into learning and evaluation might dilute the numerical

stability of emission and transition probabilities of non-noisy tags, thus decreasing accuracy.

Based on the information provided in this section we derive the following hypothesis:

Hypothesis 2: Data cleaning prior to learning and evaluation causes an increase in POST

accuracy over learning and evaluating with noisy data for all for algorithms.

4.3 Smoothing and Handling of Unknown Data Points

Any HMM implementation requires cautious handling of small numbers and zero

probabilities at various points: first, multiplying and propagating partial probabilities in the

induction stage can lead to number underflows. Since UM and HMM disregard partial

probabilities, this issue only applies to Viterbi. This problem can be avoided by using the

natural log of transition and emission probabilities, and converting the respective

multiplications into summations.

Second, words and state sequences that have not been observed in the training data, but do

occur in the evaluation data, will cause:

- Zero probability in the induction step of Viterbi. As a result, an entire vertical column

in the trellis (all δ for step i) would have zero probabilities, so that the propagation of

any path would break.

- Accuracy loss for UM, HMM, VitF, and VitB during model evaluation. This is

because tokens that did not occur in the training data but are observed in the

evaluation or any other new data will have zero probability of being emitted by any

tag, as well as a zero probability of being involved in any tag transition. Typically, the

unknown tag is initially assigned to these words. Practically, unknown never matches

the best tag for a word, and therefore increases the tagging error rate. Depending on

the algorithm used, unknowns account for up to 28% of all tokens when a model

trained on one portion of PTB data and is applied to another portion of PTB (detail on

10

that in section 4.4). Accuracy loss due to not handling unknowns cannot be solved by

increasing the amount of training data used, but even models trained on humongous

training sets are likely to encounter new words when being applied to unseen data. The

issue represents the downside of the time-invariance assumption made for MM:

language is a continuously changing system with words emerging and vanishing

across time and places, e.g. in the cases of new names of people, places, or products.

We empirically test the impact of handling unknowns on POST accuracy. The following

unknown handling strategy is used: Zero probabilities for emissions are prevented by adding

tokens newly encountered during evaluation to the emission matrix, tagging them as

”UNKNOWN”, and assigning a minimum probability to them. This intervention prevents the

multiplication by zero in the development of the trellis. Zero probabilities for transitions that

involve the UNKNOWN tag (P(t|t=UNKNOWN, P(t=UNKNOWN| t))) and that have not

been observed a priori are caught by assigning a minimum probability to them as well.

Initially, we chose a minimum probability that equaled the smallest empirically observed

probability in the learning data set. This solution resembles the Adding One strategy (Church,

1988), which in addition to linear interpolation is a frequently applied smoothing technique in

tagging (Kupiec, 1992). Later on we realized that in some cases our minimum probability

equaled empirically observed probabilities. In cases of ties between any tag and the unknown

tag, our engine makes a random choice, which can give an empirically observed small

probability (EP) the same weight as the artificially assigned minimum probability (AP). In

order to weight EPs higher than APs we decided to first find the smallest EP in the data,

dividing it by 100 (we ran multiple tests in order to find an appropriate value), and using the

resulting value as the AP. We found that for handling emission probabilities involving

unknowns this strategy leads to major, positive changes in accuracy rates, especially for VitF

and VitB. For taking care of transitions that comprise the unknown tag, this strategy does not

lead to significant changes in POST accurate rates, but it does suppress the detection of

unknowns to a degree where they become unlikely to ever be selected. However, in some

cases we want to maintain the unknown tag in order to be able to send it to a post-processor,

which we explain more detail in section 5.3. It is for this reason that we choose to weight EP

deterministically higher than APs only for emissions, but not for transitions.

After zero probabilities for emission and transition have been converted to minimum

probabilities lower than EPs, words tagged as UNKNOWN are passed to a post-processor,

which applies a set of rules in order to tag unknowns as an actual POS. The best-performing

unknown-word resolution techniques in tagging use information about the word’s spelling

(DeRose, 1988; Viterbi, 1967). We built upon this idea. The construction of the post-

processor is described in section 5.3.. Based on the assumption that an actual tag is more

likely to be the best tag for a word than the unknown tag, we derive the following hypothesis:

Hypothesis 3: Post-processing of unknown words causes an increase in POST accuracy

for all four algorithms.

11

4.4 Aggregating Hidden States

PTB uses a set of 48 unique tags. 36 of them are regular POS. The other 12 are symbols

(#,$,.,,,:,(,),",',",',"). The Appendix lists the regular POS along with the total frequency of their

occurrence in PTB. Section 4.2. explained how we handle the symbols. For many real-world

applications, the 36 tag classes are too detailed. When analyzing newspaper articles for

instance, people often are interested in identifying text terms that refer to the who, what,

where, when, why and how of what a report. In that case, the set of singular and plural proper

nouns might be a useful starting point for identifying instances of who (one or multiple

people) and where (locations), the union of verbs might help to retrieve the set of words that

indicate an action (what), and several categories that represent non-content bearing words

with respect to the task at hand might be excluded from further consideration. PTB divides for

instance verbs into six subgroups (base form verbs, present participle or gerund verbs, present

tense not 3rd person singular verbs, present tense 3rd person singular verbs, past participle

verbs, past tense verbs), which for some applications we might want to aggregated into one

verb group. Also, for certain purposes, the union of all prepositions, conjunctions,

determiners, possessive pronouns, particles, adverbs, and interjections could be collected into

one group that represents irrelevant terms. For this project, we aggregated the regular POS

from the PTB tag set into twelve categories as shown in Table 2.

Table 2: Aggregation of PTB Categories

Aggregated Tag Meaning Number of

Categories in PTB

Instances in PTB

IRR Irrelevant term 16 409,103

NOUN Noun 2 217,309

VERB Verb 6 166,259

ADJ Adjective 3 81,243

AGENTLOC Agent 1 62,020

ANA Anaphora 1 47,303

SYM Noise 8 36,232

NUM Number 1 15,178

MODAL Modal verb 1 14,115

POS Genetive marker 1 5,247

ORG Organization 1 1,958

FW Foreign Word 1 803

The consolidated set comprises personal singular nouns (AGENTLOC), personal plural nouns

(ORG), verbs (VERB), modal verbs (MODAL), nouns (NOUN), adjectives (ADJ), personal

pronouns (ANA), genitive markers (POS), non-content bearing words (IRR), symbols

(NOISE), numbers (NUM), and foreign words (FW). Seven of the aggregated categories map

to only one PTB category, while the other categories are represented by up to 16 different

PTB categories. The rows in Table 2 are sorted by decreasing frequency of the cumulative

occurrence of each category in PTB (last column in Table 2) in order to illustrate the fact that

the number of words per tag category varies widely (for details see Appendix).

12

Our aggregation is one possible solution. For other text sets, domains, or projects, other

consolidations might be more appropriate. Based on the assumption that accuracy increases as

the pool of choices from which the classifier needs to pick one best POS decreases, we derive

the following hypothesis:

Hypothesis 4: Aggregation of POST categories causes an increase in POST accuracy for

all four algorithms.

5. Results

The impact of each variable or routine described in section 4 on POST accuracy was tested

empirically by performing ten-fold cross validations per variable and averaging the results. In

order to enable ten-fold cross validations we randomly split the corpus (500 files, about one

million words) into ten folds of equal size (50 files per fold). For each run within a set of ten

runs, nine folds are used for training and generating model µ. From the one left-out fold all

tags are removed, and µ is applied to this fold in order to tag the data. The assigned tags are

then compared to the original labeling of this fold, and every deviation from an original tag is

recorded as an error. This procedure is repeated nine more times such that each fold is used

once for evaluation and nine times for training, but is never used for training and evaluation at

the same time. The results reported in this section were computed by averaging the error rates

of ten consecutive runs.

Since the ten folds remain the same across all tests, we performed two-sided paired t-tests in

order to determine the statistical significance of the measured difference between any two

variables (using a confidence interval of 95%). From an experimental design perspective, the

variables that we tested can be considered as independent ones, and their impact on the

dependent variable can be tested in isolation. In practical applications of the designed system,

these variables interact, and these interdependencies are desired.

Typically, taggers are evaluated with the Gold Standard test, and by comparing the results to a

Unigram Baseline test or another benchmark. (Jurafsky & Martin, 2000). The Gold Standard

measures performance by identifying the portion of tags that the tagger and a human-labeled

validation set agree upon. We use this test for model evaluation. We also use the Unigram

Baseline test, which is the same as the performance of the UM model. This model was

described in section 2. The highest published accuracy rates for POS taggers that were built

by using the PTB are 96% to 97% (Jurafsky & Martin, 2000).

5.1 Disassembling Viterbi

How much partial accuracy can be attributed to the different steps involved in Viterbi? Our

findings as shown in Table 3 and 4 indicate that on average, the baseline model (UM) tags

86.83% of the words in the evaluation set correctly. Upgrading from UM to HMM leads to a

significant accuracy increase of 5.15% (all significance tests in this paper are based on two-

sided, paired t-tests with a 95% confidence interval). This means that considering transitions

13

among hidden states improves predictive power substantially. Further enhancing the

implementation to VitF and thereby switching from a locally to a globally maximized

solution, results in a much smaller accuracy gain 0.29%. VitB, which out of the algorithms

tested exploits the most empiric evidence, achieves another significant 1.02% increase in

accuracy; confirming that backtracing does improve Viterbi. The standard deviations (0.36%

at the most), which decrease by algorithm, suggest that the results are fairly robust across

different portions of the data set.

Table 3: Accuracy per Algorithm

UM HMM VitF VitB

Average 86.83% 91.98% 92.27% 93.29%

Min 86.41% 91.68% 91.95% 93.02%

Max 87.46% 92.38% 92.67% 93.68%

Std Dev 0.36% 0.24% 0.23% 0.23%

Table 4: Difference between algorithms

From To Difference Significance

UM HMM 5.15% 0.00**

HMM VitF 0.29% 0.00**

VitF VitB 1.02% 0.00**

Overall, our empiric results confirm our first hypothesis, which assumed that switching to an

algorithm that exploits more evidence than the previous one (UM to HMM, HMM to VitF,

VitF to VitB) leads to increased accuracy rates. Also, our findings confirm the previously

made observation that the baseline algorithm (UM), which only considers emission

probabilities, is a powerful prediction method (Atwell, 1987). Furthermore, we can confirm

our assumption that global search outperform local search. However, the difference between

HMM and VitF is fairly small (0.29%), and smaller than all other differences between

upgrades in algorithms. One possible explanation for this observation is the following chain

of thought: HMM weight transition and emission probabilities about equally strong, while

both versions of Viterbi weight transitions higher than emissions. VitF enables very small and

occasionally meaningless transition probabilities – an effect that VitB partially corrects. The

fact that VitF outperforms HMM only slightly suggests that once transitions between hidden

states are considered, one needs to go the extra mile of searching a directed web of

probabilistic connections among underlying states back and forth in order to achieve a

substantial gain from global search over local search. Searching through the space of possible

solutions not only forward, but forward and backward, has a greater (in our case more than

three times greater) impact than considering connections amongst underlying patterns at all.

5.2 Handling Noise

Is it worthwhile cleaning the data from symbols that do not need to be predicted for practical

POS applications? For generating the results shown on the previous page we did not remove

14

any symbols. These numbers will now serve as our control case. Disregarding any tokens that

contains any element that is not a letter, number, ampersand, dollar symbol, hyphen, or dash

for neither learning nor evaluating leads to significant decreases in accuracy for all

algorithms, ranging from about a half to more than one percent (Table 5).

Table 5: Impact of Handling Noise on Accuracy

Dataset Measure UM HMM VitF VitB

Clean Average 85.72% 91.43% 91.62% 92.61%

Min 85.33% 91.05% 91.29% 92.19%

Max 86.38% 91.84% 91.98% 92.99%

Std Dev 0.38% 0.25% 0.23% 0.25%

Noisy Average 86.83% 91.98% 92.27% 93.29%

Noisy to Clean Difference in Average -1.11% -0.55% -0.65% -0.68%

Significance of Difference 0.00** 0.00** 0.00** 0.00**

The results show that keeping noise in the data consistently and significantly improves

accuracy rates. This observation falsifies our second hypothesis, which stated that cleaning

data prior to learning and evaluation causes an increase in POST accuracy over learning and

evaluating with noisy data. Why did we observe the opposite? Looking further into the data

revealed that most of the noise signals are not ambiguous. A comma, for instance, is hardly

ever tagged as anything other than comma. Due to the resulting strong and unambiguous

emission probability for noise symbols, we predict noise with very high accuracy.

What does that imply for modeling? Accuracy rates significantly benefit from data that

contains certain entity classes that occur frequently and that are easier to predict than other

categories because they are less ambiguous (not much to anyone’s surprise). For boosting

tagging accuracy, keeping noise in the data is beneficial. However, as true for any machine

learning application, special attention needs to be paid to cross-validating a model with new

data prior to making generalizations. In order to build POST models that do not overfit to the

prediction of noise by overly adjusting themselves to this idiosyncrasy, noise needs to be

removed from the data prior to model training. One might argue that real data are likely to

contain the sort of noise that was eliminated for this project. That is true. However, not

removing noise prior to learning reduced the empiric evidence that can be gathered on

transitions of tags other than noise, while more information is learned about the transitions

between noise tags and tags of interest. As a result, the numeric stability of transitions among

relevant tags is decreased, and the predictive capability of the model for applications where

correct tagging of content is favored over tagging noise is reduced.

5.3 Handling Unknowns

Applying a POS tagger to new data can result in two types of errors: misclassification of

words that the model has prior knowledge about (algorithmic failure), and failure to find the

right class label for a word that has not been observed by the model during training (failure in

handling unknowns). Some of the newly encountered words will be correctly resolved by the

15

algorithm by exploiting transition probabilities, while others will still be misclassified. In

order to figure out if it is worthwhile to resolve unknowns after evaluating the model and

prior to outputting the results we first need to understand the distribution of the two error

types introduced in this section across the algorithms that we test herein.

Table 6: Error Types per Algorithm (clean data)

Error Type UM HMM VitF VitB

Unknowns 28.3% 6.1% 9.6% 1.7%

Algorithmic 71.7% 93.9% 90.4% 98.3%

Table 6 shows that for all algorithms, the vast majority of errors are due to algorithmic

failures. The baseline model with about three out of ten errors being due to unknowns has by

far the greatest potential for benefitting from unknown resolution. For HMM and VitF, an

accuracy increase of up to 6.1% and 9.6%, respectively, is theoretically possible by

associating unknowns with the right tag. For VitB we cannot expect a major accuracy

improvement from unknown handling – the algorithm accomplishes most of the unknown

handling by itself; the remaining errors due to unknowns might be data artifacts. This insight

suggests that the more an automated solution exploits empiric evidence, the less it can be

further improved by man-made post-processing strategies. For machinery that makes

decisions on its own by strongly relying on its computational power and by trying to resolve

uncertainties rather than admitting them, careful and well-informed engine construction is

crucial since posteriori interventions cannot further improve performance. For UM, HMM and

VitF, all of which exploit less empiric evidence than VitB does, a combination of an initial

automated solution with hand-crafted heuristics has a potential for outperforming fully-

automated approaches. Only such algorithms that are declare more uncertainties allow for

posterior interventions. It is the engineer in the first place who determines how much

uncertainly shall be disclosed by the engine (as for instance described in section 2, where we

reason about the minimum probability for transitions and missions for the case of unknowns).

We applied the following data-driven procedure for developing post-processing rules: First,

we collected all errors made by all four algorithms throughout the ten cross-fold validation on

clean data. From these data we parsed out all cases in which any of the algorithms assigned

“unknown” to a word after trying to solve it algorithmically. We found that neither HMM,

VitF nor VitB made any mistake on unknowns that UM did not also make. Therefore we

further worked only with the set of unknowns detected by UM. Next, we removed any

duplicates of unknown errors (cases where unknown was assigned to the same tag-token more

than once). This procedure reduced the set of unknown error by 14,105 to 29,418. We split

the remaining unique unknown errors up by true tag class (true according to PTB); seeing that

unknowns occurred in any but the POS and PDT class. Next, we examined the words in each

class for frequent regularities per class, e.g. by analyzing patterns in endings, spelling and

capitalization. Table 7 provides details on this process.

16

Table 7: Developing heuristics for handling unknowns

Based on the insights gained in the last step we formalized and implemented the following set

of mainly orthographic rules:

1. Words containing a digit are tagged as numbers (CD).

2. Capitalized words are tagged as proper singular nouns (NNP).

3. Words ending with -ant, -able, -al, -ory, -ent, -ful, -ian, -ible, -ic, -ish, -less, -oid, or -

ous are tagged as adjectives (JJ).

4. Words ending with –s are tagged as common plural nouns (NNS).

True Tag How often classified

as unknown

Rule

NNP 7429 often capitalized

NN 6390 no obvious rule, second most frequent class

JJ 5194 often dashes and/ or one out of a fixed set of endings

NNS 3522 often ends with -s

CD 1175 often contain digit(s)

VBG 1118 often ends with -ing

VBN 893 often ends with -ed

RB 832 often ends with -ly

VB 704 often ends with -e, but rule more often true for VBN, also often ends with -ize

VBD 508 often ends with -ed, but rule more often true for VBN

VBZ 475 often ends with -s, but rule more often true for NNS

NNPS 399 often capitalized and ends with -s, but rule more often true for NNP

FW 350 no obvious rule

VBP 107 no obvious rule

UH 94 no obvious rule

JJS 86 often ends with -est

JJR 56 often ends with -ier or -er

IN 42 no obvious rule

MD 21 no obvious rule

PRP 21 no obvious rule

RBR 12 often ends with -er, but rule more often true for JJR

DT 7 no obvious rule

WRB 7 often starts with wh-

PRP$ 6 no obvious rule

LS 5 often contain digit(s), more often true for CD

WP 5 often starts with wh-

CC 3 no obvious rule

EX 1 no obvious rule

RBS 1 no obvious rule

RP 1 no obvious rule

SYM 1 no obvious rule

TO 1 no obvious rule

WDT 1 often starts with wh-

WP$ 1 often starts with wh-

17

5. Words ending with -ing are tagged as present participle or gerund verbs (VBG).

6. Words ending with –ed are tagged as past participle verbs (VBN).

7. Words ending with –ly are tagged as adverbs (RB).

8. Words ending with –ize are tagged as verbs (VB).

9. Words ending with -est are tagged as adjective, superlative (JJS).

10. Words ending with -er are tagged as adjective, comparative (JJR).

11. All remaining unknowns are labeled as singular or mass noun (NN).

Next we tested the impact of these rules in the order as they are presented above on resolving

unknowns. The results are shown in Tables 8 and 9. When a rule get’s applied, three

outcomes are possible:

- Unknowns are resolved correctly (column named Success in Table 8).

- Unknowns that truly belong into a different target class get assigned to the class

that the rule predicts (false positives, shown in the second last column in Table 8).

- Unknowns that truly belong in the target class that the rule predicts are not

resolved since the rule does not apply to them (false negatives, last column in

Table 8).

After evaluating a rule (let’s call this rule A) we kept rule A applied for evaluating the

subsequent rule (let’s call this rule B) if and only if A caused more correct tag resolutions than

false positives. The following exceptions apply:

- We dropped the rule that words ending with -er are tagged as comparative adjectives.

This rule correctly resolved all of the remaining seven comparative adjectives, but also

converted 42 tags that belonged into other tag classes into comparative adjectives. The

rule therefore overall was more damaging than helpful.

- Converting words ending with –ed caused slightly more misclassifications than correct

resolutions. However, this rule reaches into the past tense verb class, and since we

plan on aggregating all different verb classes into one general verb class later on we

decided to keep this rule.

Finally, we examined the set of remaining false negatives per class for possible further rules.

This process taught us that other rules which we identified would cause more false positives

than correct resolutions, or that the generalizability of a rule per class was too low to cause a

significant improvement. We assume the final set of rules to be not just corpus-specific, but of

general applicability for POST.

In general, there is no standardized procedure for performing an error analysis. It requires the

researcher's creativity, knowledge of the problem domain, close work with the data, and

thorough analyses in order to understand the cause and nature of the errors that occur, to

develop possible remedies, and to control if the application of these remedies causes negative

side effects that are more harmful than the actual remedy is beneficial.
-

18

Table 8: Rule Evaluation (on clean data)

ID If token is

unknown

Then Other

rules

applied

Total Algorith-

mic

Unknown Tokens

impacted

by rule

Success Failure

False

Positives

Failure

False

Negative

1 contains digit CD 369 62.6% 37.4% 141 126 15 12

2 capitalized NNP 1 2217 29.1% 70.9% 2016 1561 455 10

3 ends with any

of *

JJ 1,2 1550 67.9% 32.1% 546 379 167 119

4 ends with -s NNS 1-3 678 48.4% 51.6% 431 334 97 16

5 ends with -ing VBG 1-4 280 67.1% 32.9% 119 92 27 0

6 ends with -ed VBN 1-5 789 89.4% 10.6% 171 83 88 1

7 ends with -ly RB 1-5 867 93.0% 7.0% 63 60 3 1

8 ends with -ize VB 1-5,7 1247 96.5% 3.5% 5 5 0 39

9 ends with -est JJS 1-5,7,8 51 84.3% 15.7% 9 8 1 0

10 ends with -er JJR 1-5,7-9 133 94.7% 5.3% 53 7 46 0

11 remainder NN 1-5,7-9 3207 86.8% 13.2% 599 422 177 0

* -ant, -able, -a l , -ory, -ent, -ful , -ian, -ible, -i c, -i s h, -l ess , -oid, -ory, -ous

** cas es in which the number of fa l se pos i tives exceeds correct resol utions a re marked wi th gray background

Rules Impact of applying rule(s)Types of errors in detecting tag

Table 9: Rule Evaluation (on clean data)

ID If token is unknown Then Other

rules

applied

UM HMM VitF VitB UM HMM VitF VitB

0 and nothing el se

happens

error 4100 511 892 140 NA NA NA NA

1 contains digit CD 3959 508 889 140 0.117% 0.003% 0.003% 0.000%

2 capitalized NNP 1 1943 126 193 3 1.397% 0.154% 0.401% 0.071%

3 ends with any of

*

JJ 1,2 1397 123 149 3 0.351% 0.003% 0.016% 0.000%

4 ends with -s NNS 1-3 966 93 101 3 0.310% 0.003% 0.013% 0.000%

5 ends with -ing VBG 1-4 847 76 84 3 0.085% 0.013% 0.013% 0.000%

6 ends with -ed VBN 1-5 676 25 29 1 0.077% 0.009% 0.014% 0.000%

7 ends with -ly RB 1-5 613 12 16 0 0.056% 0.011% 0.011% 0.001%

8 ends with -ize VB 1-5,7 608 12 16 0 0.005% 0.000% 0.000% 0.000%

9 ends with -est JJS 1-5,7,8 599 12 16 0 0.007% 0.000% 0.000% 0.000%

10 ends with -er JJR 1-5,7-9 546 9 11 0 0.006% 0.000% 0.000% 0.000%

11 remainder NN 1-5,7-9 0 0 0 0 0.385% 0.000% 0.003% 0.000%

* cases which resul ted i n no accuracy ga in are marked with dark gray background, cas es which res ulted in

accuracy ga ins greater than zero and s mal ler than 0.05% are marked with l ight gray background

Rules Number of unknowns Change in accuracy from previous rule(s)*

Our results show that applying our hand-crafted rules leads to statistically significant accuracy

increases for all algorithms (Table 10). This confirms our third hypothesis, which assumed

post-processing of unknown words to cause an increase in POST accuracy for all four

algorithms. However, the rule set is capable of resolving only a small fraction of those errors

that are due to unknowns (10. 5% for UM, 3.4% for HMM, 4.8% for VitF, 3.7% for VitB). To

our surprise, VitF, which exploits more empiric evidence than HMM does, benefits more

from a hybrid strategy (initial algorithmic solution plus rule-based post-processing) than

HMM, which admits more uncertainty than VitF. VitB, the algorithm which we thought

maxes out on unknown handling algorithmically, can benefit from unknown handling, but

19

here, only 6 in 10,000 words would be impacted by this strategy. Even though the increase in

accuracy due to unknown handling is smallest for VitB, this algorithm still outperforms the

other three algorithms.

Table 10: Impact of Unknown Handling on Tagging Accuracy

Dataset Measure UM HMM VitF VitB

Unknown Handling Average 88.68% 91.64% 92.08% 92.67%

on Clean Data Min 88.17% 91.28% 91.76% 92.27%

Max 89.33% 91.99% 92.39% 93.02%

Std Dev 0.36% 0.23% 0.20% 0.24%

Clean Average 85.72% 91.43% 91.62% 92.61%

Clean to Unknown Difference in Average 2.96% 0.21% 0.46% 0.06%

Handling Significance of Difference 0.00** 0.00** 0.00** 0.00**

In summary, data-driven derivation of post-processing rules as well as rule testing are time-

consuming processes that require the allocation of human resources. Our findings suggest that

not investing into this strategy, but instead spending resources on building algorithms that

handle uncertainties algorithmically in the first place, can lead to better performance than

enhancing algorithmic solutions with hand-crafted post-processing heuristics.

5.4 Aggregation of Hidden States

The tests on tag aggregation were run on clean data and with unknown handled as described

in the previous section applied. We found that consolidating the PTB tag classes (total of 36)

into fewer (12), user-defined classes that are tailored to the end-user’s analytical needs (see

the Appendix for aggregation details) led to the highest accuracy rates accuracy across all

algorithms and independent variables tested herein (Table 11, Figures 2 and 3). These results

confirm our fourth hypothesis, which stated that aggregation of POST categories causes an

increase in POST accuracy for all four algorithms. However, it surprised us to see that the

simplest algorithm (UM) performs as well as the most complex one (VitB).

Table 11: Accuracy per algorithm and tested variable

UM HMM VitF VitB

Average 94.26% 93.09% 94.10% 94.26%

Min 93.95% 92.92% 93.93% 93.99%

Max 94.46% 93.45% 94.36% 94.60%

Std Dev 0.17% 0.16% 0.15% 0.19%

In summary, our results on aggregation suggest that an informed, needs-driven, and user-

defined consolidation of available choices can lead to performance improvements that

consistently across various algorithm of different complexity can have a greater positive

impact than eliminating prominent error sources such as noise and unknown data. The

technology that we developed for training a POS tagger can easily be reused in order to train a

model with a different tag set. We emphasize the design of analytical solutions that enable

20

end-users to interact with tools or human beings on the developmental side of solutions in

such a way that customer needs can be elicited and considered for the sake of performance

improvements.

Figure 2: Impact of Independent Variable on POST Accuracy

Figure 3: Impact Algorithm on POST Accuracy

85%

87%

89%

91%

93%

95%

UM HMM VitF VitB

A
cc

u
ra

cy
 r

a
te

Algorithm

Baseline Clean Data (CD)

CD + Handle Unknowns (HU) CD + HU + Aggregate Tag Classes

85%

87%

89%

91%

93%

95%

Baseline Clean Data (CD) CD + Handle

Unknowns (HU)

CD + HU +

Aggregate Tag

Classes

A
cc

u
ra

cy
 r

a
te

Variable

UM HMM VitF VitB

21

6. Integration of Parts of Speech Tagging into AutoMap

Based on the insights gained from testing the impact of various independent variables on the

accuracy of four different POST algorithms (the difference between the algorithms

themselves being one of the variables) we decided to train the following two POS tagging

models and integrate them into AutoMap:

- Both models based on Viterbi with backtracing.

- One model uses the original PTB tag set, while the other model uses the aggregated

tag set (Table 2).

- Each of the two models requires a separate post-processor that matches the respective

tag set.

We implemented and integrated these taggers into AutoMap as follows: First, we trained both

models on the full learning set (not only 90% of it), output the emission and transition

matrices as data files, and added these data to AutoMap. In AutoMap, on the Utilities tab, in

the Parts of Speech Tagging section, the user can chose and go back and forth between the

“Tag texts using PTB tag set” option and the “Tag texts using aggregated tag set” option

(Figure 5). In either case, the untagged texts will first be split into sentences by using a

sentence splitter (Piao, n.d.). Next, the initialization vector will be constructed based on the

tokens per sentence. Using the initialization vector as well as the states as represented in the

emission and transition matrices, a trellis will be built for every sentence in the data. These

trellises are used to find a complete and the most likely sequence of POS per words per

sentence. Users can use the POS tagger in the GUI or batch mode version of AutoMap in two

ways (Carley, Diesner, Reminga, & Tsvetovat, 2007):

- Stand-alone feature: When either “Tag Texts…” option is selected, AutoMap performs

POST and displays each word along with the POS that the tagger predicted for it. The

user can store the POS annotated corpus. For the sample text shown in Figure 4,

AutoMap generated the POS annotated text shown in Figures 5 and 6.

- Output a table (coma separated values format) that lists all words in a corpus in the

first column and the respective POS that the model has identified for that word in the

following column. If more than one POS was predicted for a word, the word-tag tuples

will be placed in multiple rows. Tables 12 and 13 show that list for the sample text

given in Figure 4 using the tagger trained on the full PTB tag set.

Besides supporting a variety of NLP and IE routines, AutoMap’s main purpose is to facilitate

content analysis as well as the extraction of one- and multi-mode networks from texts

(Diesner & Carley, 2004, 2006; McConville, et al., 2008). When relational data is extracted

with AutoMap, outputs can be stored as DyNetML files (DyNetML is an XML derivate

designed for graph representation (Carley, et al., 2007). DyNetML files represent one or

multiple graphs that comprise vertices and edges. The nodes and edges can hold attributes.

POS are one possible node attribute. ORA (Carley, et al., 2007), a software for relational data

22

analysis, can read DyNetML files and run several reports that consider POS in the

computation of network analytic measures.

Figure 4: Raw text loaded into AutoMap

Figure 5: Integration of POS Tagger based on PTB tag set into AutoMap as stand-alone feature

23

Internally, AutoMap uses POST as one out of multiple decision support features for:

1. Named Entities Extraction, which identifies relevant types of information that are

referred to by a name, such as people, organizations, and locations.

2. Anaphora Resolution, which converts personal pronouns into the actual social entities

that those pronouns refer to.

How can end users exploit POST for text analysis projects? We envision a variety of potential

usages:

1. Data reduction in the sense of deleting non-content bearing words from texts: Though

it ultimately depends on the user and application domain what the set of “non-content”

words entails, such concepts often belong to one of categories that we aggregated in

the IRR class. Users can output the word-POS tuple table and add the words that are

classified as IRR to a delete list. When applying a delete list, AutoMap searches the

Figure 6: Integration of POS Tagger based on aggregated tag set into AutoMap as stand-alone

feature

24

texts that are currently loaded for the words specified in the delete list and removes

any matches by either dropping them completely or inserting a placeholder at the

position where a word was removed (this choice is made by the user). In order to

remove noise that does not occur in word form, words being associated with the SYM

can also be added to the delete list.

2. Named Entity Extraction: the AGENTLOC class collects instances of individual

agents and locations from the user’s data, and the ORG class comprises instances of

organizations or other mentions of multiple people. Retrieving these entities and

performing network text analysis on them in AutoMap can help people to explore the

social and spatial network(s) represented in their data. Since POST operates on a

word-by-word basis, identifying agents, organizations and locations that occur as N-

Table 12: POS per Word (part1) Table 13: POS per Word (part2)

Word Tag Frequency Word Tag Frequency

. . 4 needs verb 1

a irr 4 of irr 5

about irr 1 on irr 1

accuracy noun 1 one num 1

and irr 2 other adj 2

appear verb 1 performance noun 1

are verb 1 pos modal 1

aspects noun 1 precise adj 1

assign verb 1 processing verb 1

associated verb 1 resulting verb 1

be verb 1 set verb 1

beings noun 1 significantly irr 1

benefit verb 1 single adj 1

best adj 1 some irr 1

building noun 1 syntactic adj 1

can modal 2 tag noun 1

category noun 1 tagger irr 1

context noun 1 taggers verb 1

data noun 1 tags noun 1

decisions noun 1 tasks noun 1

depending verb 1 text noun 1

engine noun 1 that irr 1

every irr 1 the irr 4

extraction irr 1 they ana 1

from irr 1 to irr 3

human adj 1 unambiguously irr 1

impact noun 1 used verb 1

in irr 2 variety noun 1

information noun 1 when irr 1

knowledge noun 1 which irr 1

language noun 1 while irr 1

make verb 1 widely irr 1

many adj 1 with irr 1

match verb 1 word noun 1

multiple adj 1 words noun 3

natural adj 1

25

grams (e.g. Henry Ford or Occupational Safety and Health Administration) implies

searching the POS annotated corpus for collocations of the AGENTLOC or ORG tag.

3. Identification of social structure: One application of AutoMap is the approximation of

relational data that is represented in text data. AutoMap supports the extraction of two

types of relational data: one-mode networks (all nodes are of the same type) and multi-

mode networks (nodes can be associated with different node classes). By default, all

nodes in a one-mode network belong to the node class knowledge, while in multi-

mode networks, nodes can belong to one or multiple of the classes agent,

organization, task/event, resource, knowledge, location, and time. Revealing and

further analyzing relational data helps people in going beyond the identification of

social networks and to also answer questions like: Who is located where, and what

people or groups have access to what resources, tasks, and knowledge? Further

analysis of multi-mode relational data (multiple node classes, such as agent and

action) has helped people to understand the benefits or risks that a certain network

structure implies for a socio-technical system (Carley, et al., 2007). For such projects,

the words in the VERB class could serve as events or tasks, nouns could be screened

for resources, and the MODAL class might serve as node or edge attributes. Instances

of various node classes found this way could be further cross-verified or supplemented

by using other techniques that support users in automatically finding instances of user-

defined ontology classes in texts (Bikel, et al., 1999; Diesner & Carley, 2008).

4. Identification of node attributes: One-mode network extraction has been used to reveal

mental models of (groups of) people. Mental models are considered to represent the

reality that people have in their minds and use to make sense of their surroundings, or

the cognitive constructs that reflect people’s knowledge and information about a

certain topic. Multi-mode network extraction serves the exploration of network

configuration as described under the previous point. People are not bound to those

categories, but can use their own ontologies or taxonomies in AutoMap (Diesner &

Carley, 2008). Whether using the default or self-defined node classification schemata,

and whether extracting one- or multi-mode networks, people can also extract attributes

on nodes. The ADJ class might be an appropriate candidate for providing suggestions

for words that qualify as node attributes.

7. Limitations and Conclusions

Several limitations apply to the work presented herein. First, even though the training and

testing set (PTB corpus) contains more than a million data points, it still reflects a certain time

period, style (journalistic writing) and range of domains (news paper articles). Applying the

constructed POST models to data that differs in any of these dimensions is likely to result in

accuracy rates lower than the ones reported herein. Second, we did not test MM of a higher

order. For data sets with lengthy sentences, e.g. academic writing, or for data in that N-grams

26

of size larger than size two are crucial and occur often, using a MM of a higher order might

further improve tagging accuracy while also increasing computational complexity. Finally, all

algorithms tested are stochastic taggers; thus that a comparison to accuracy rates achieved

with rule- or transformation-based systems could be valuable.

The POS taggers that we implemented into AutoMap performed reasonably well on tagging

texts that were unseen during training the models. What does reasonably well mean? Overall,

our accuracy rates are a few (about three to four) percent lower than the best accuracy rates

(96% to 97%) published for POS taggers that were built using PTB (Jurafsky & Martin,

2000). Let us look at our accuracy rates in more detail: If the first of our tagger in AutoMap

(trained on clean data, performing unknown handling, using full PTB tag set) was used to tag

a 20 word sentence, it would mislabeled two to three (precisely 2.3) words when using UM,

and one to two words when using HMM (1.7), VitF (1.6) or VitB (1.5). If we the second

tagger (trained on clean data, performing unknown handling, using aggregated tag set), it

would mislabel about one word in a 20-word sentence (1.1 for UM, 1.4 for HMM, 1.2 for

VitF and VitB). Using this second tagger, the probability that all words in 20 word sentence

would get tagged correctly is 31% for UM and VitB, 24% for HMM, and 29% for VitF.

Besides adding a well-performing POS tagger to AutoMap, our goal with this project was to

look under the hood of MM-based, stochastic POST in order to understand how certain

variables impact the resulting POST accuracy. The main contribution of this report is to

quantify and reason about the change in tagging accuracy that is due to choices about design

decisions that human beings need to make when implementing a stochastic POS tagger. Table

12 shows our hypotheses and respective findings (** indicate significance for a confidence

interval of 95%). The remainder of the report summarizes our lessons learned.

Table 12: Summary of results of hypothesis testing

Hypothesis UM HMM VitF VitB

H1: POST accuracy increases from step to step, so that:

- accuracy with HMM is higher than with UM

- accuracy with VitF is higher than with HMM

- accuracy with VitB is higher than with VitF.

N.A. Yes** Yes** Yes**

H2: Data cleaning prior to learning and evaluation causes an

increase in POST accuracy over learning and evaluating with

noisy data for all for algorithms.

No** No** No** No**

H3: Post-processing of unknown words causes an increase in

POST accuracy for all four algorithms.

Yes** Yes** Yes** Yes**

H4: Aggregation of POST categories causes an increase in POST

accuracy for all four algorithms.

Yes** Yes** Yes** Yes**

We have shown how design decisions about computational solutions for common NLP tasks,

here POST, can significantly impact the behavior of the resulting engine. The empirical

comparison of four POS algorithms, which all are integral parts of the Viterbi algorithm,

27

confirmed our assumption that an increase in the empirical evidence that an algorithm

identifies and exploits causes increases in accuracy rates. Therefore, the upgrade from local

search to global search leads to improvements in accuracy at the expense of higher

computational complexity. This investment pays off most if the search space is traversed

through for the best solution not only in a forward fashion, but with a bidirectional search.

Removing noise from the training data prior to learning a model leads to significant decreases

in accuracy rates while the amount and numerical stability of the learned probabilities for the

tags of interest increase. We argue that the generalizability of the model benefits from the

decision to remove noise.

Across all algorithms tested, the majority of errors were due to algorithmic failures, while

only a small portion of errors was caused by labeling newly encountered words after trying to

resolve them algorithmically as unknowns. We showed that when building POS taggers, one

can lower the ratio of unknown handling errors by developing and adding post-processing

rules for handling new words. However, the process of constructing and testing unknown

handling rules is fairly labor- and time intense, and can be avoided by designing algorithms

that exploit as much empiric evidence as possible to begin with. We learned that the more an

algorithm is designed towards admitting uncertainties rather than trying to resolve them

algorithmically on its own, the more hybrid strategies of initial algorithmic solutions plus

manually constructed post-processing heuristics can improve accuracy.

Across all independent variables tested in this project we observed the strongest performance

improvement when the tag set was aggregated and reduced to fewer categories that are

tailored towards the user’s needs. We therefore advocate the development of models and tools

that allow end-users to specify or participate in the consolidation of categories out of a

predefined pool of choices according to their requirements.

We conclude that error rates reported on POS taggers and obtained by users who work with

such tools highly depend on choices about design decisions that have to be made when

building a tagger. Therefore, the variables that significantly impact a tagger’s performance

need to be identified and their effect on the tagger needs to be measured and reported so that

everyone - developers and users - can learn about the sensitivity of the engine and responsibly

work with such systems.

References

Arguello, J., & Rose, C. P. (2006). Museli: A Multi-source Evidence Integration Approach to Topic Segmentation

of Spontaneous Dialogue. Proceedings of the North American Chapter of the Association for

Computational Linguistics (short paper).

Atwell, E. (1987). Constituent-likelihood grammar. In R. Garside, G. Sampson & G. Leech (Eds.), The

computational analysis of English: a corpus-based approach. London: Longman.

Baum, L. (1972). An inequality and associated maximization technique in statistical estimation for probabilistic

functions of a Markov process. Inequalities, 3, 1-8.

28

Bikel, D., M. , Schwartz, R., & Weischedel, R., M. (1999). An Algorithm that Learns What‘s in a Name, Machine

Learning (Vol. 34, pp. 211-231): Kluwer Academic Publishers.

Carley, K. M., Diesner, J., Reminga, J., & Tsvetovat, M. (2007). Toward an interoperable dynamic network

analysis toolkit. Decision Support Systems. Special Issue Cyberinfrastructure for Homeland Security,

43(4), 1324-1347.

Church, K. (1988). A Stochastic Parts Program and Noun Phrase Parser for Unrestricted Text. Paper presented at

the 2nd Conference on Applied Natural Language Processing, Austin, TX.

DeRose, S. (1988). Grammatical category disambiguation by statistical optimization. Computational Linguistics,

14, 31-39.

Diesner, J., & Carley, K. M. (2004). AutoMap1.2 - Extract, analyze, represent, and compare mental models from

texts: Carnegie Mellon University, School of Computer Science, Institute for Software Research

International, Technical Report.

Diesner, J., & Carley, K. M. (2006). Revealing Social Structure from Texts: Meta-Matrix Text Analysis as a novel

method for Network Text Analysis. In V. K. Narayanan & D. J. Armstrong (Eds.), Causal Mapping for

Information Systems and Technology Research: Approaches, Advances, and Illustrations (pp. 81-108).

Harrisburg, PA: Idea Group Publishing.

Diesner, J., & Carley, K. M. (2008). Conditional Random Fields for Entity Extraction and Ontological Text Coding.

Journal of Computational and Mathematical Organization Theory, 14, 248 - 262.

Dietterich, T. G. (2002). Machine Learning for Sequential Data: A Review. Paper presented at the Joint IAPR

International Workshops SSPR 2002 and SPR 2002, August 6-9, 2002, Windsor, Ontario, Canada.

Jurafsky, D., & Martin, J. H. (2000). Speech and Language Processing: An Introduction to Natural Language

Processing, Computational Linguistics, and Speech Recognition: Prentice Hall PTR.

Klein, D., & Manning, C. D. (2002). Conditional structure versus conditional Estimation in NLP models. Paper

presented at the 2002 Conference on Empirical Methods in Natural Language Processing (EMNLP-02),

Philadelphia, USA.

Krovetz, B. (1995). Word sense disambiguation for large text databases. University of Massachusetts, Amherst.

Kupiec, J. (1992). Robust part-of-speech tagging using a hidden Markov model. Computer Speech and

Language, 6, 225-242.

Lappin, S., & Leass, H. J. (1994). An algorithm for pronominal anaphora resolution. Comput. Linguist., 20(4),

535-561.

Manning, C., & Schütze, H. (1999). Foundations of Statistical Natural Language Processing. Cambridge, MA: MIT

Press.

McConville, E., Diesner, J., & Carley, K. M. (2008). Software demonstration of AutoMap. Paper presented at the

XXVIII Sunbelt Social Network Conference.

Mitchell, P. M., Santorini, B., & Marcinkiewicz, M. A. (1993). Building a Large Annotated Corpus of English: The

Penn Treebank. Computational Linguistics, 19(2), 313-330.

Piao, S. S. (n.d.). English sentence breaker. http://text0.mib.man.ac.uk:8080/scottpiao/sent_detector.

Porter, M. F. (1980). An algorithm for suffix stripping. Program, 14(3), 130−137.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition.

Proc. IEEE 77, 2, 257-285.

Stolz, W. S., Tannenbaum, P. H., & Carstensen, F. V. (1965). Stochastic Approach to the Grammatical Coding of

English. Communications of the ACM, 8, 399–405.

Viterbi, A. J. (1967). Error bounds for convolutional codes and asymptotically optimal decoding algorithm. IEEE

Transactions on Information Theory, 13, 260-269.

Weischedel, R., Meter, M., Schwartz, R., Ramshaw, L., & Palmucci, J. (1993). Coping with ambiguity and

unknown words through probabilistic models. Computational Linguistics, 19(2), 359-382.

29

Appendix: PTB Tagset

PTB Tag Meaning Aggregated Tag Instances in PTB

NN noun, common, s ingular or mass NOUN 161397

IN prepos i tion or conjunction, subordinating IRR 136714

DT determiner IRR 116454

JJ adjective or numera l , ordinal ADJ 76586

NNP noun, proper, s ingular AGENT 62020

NNS noun, common, plura l NOUN 55912

RB adverb IRR 52037

PRP pronoun, personal ANA 47303

VBD verb, past tense VERB 46684

CC conjunction, coordinating IRR 38097

VB verb, base form VERB 36887

VBN verb, past parti ciple VERB 29435

TO to as prepos ition or infini ti ve marker IRR 26135

VBZ verb, present tense, 3rd person s ingular VERB 21627

VBG verb, present parti ciple or gerund VERB 17255

PRP$ pronoun, possess ive IRR 16918

CD numera l , cardina l NUM 15178

VBP verb, present tense, not 3rd person s ingular VERB 14371

MD modal auxi l iary MODAL 14115

: : SYM 10917

'' '' SYM 9201

`` `` SYM 8838

POS genitive marker POS 5247

WDT WH-determiner IRR 4990

WP WH-pronoun IRR 4732

WRB Wh-adverb IRR 4625

JJR adjective, comparative ADJ 2914

)) SYM 2506

((SYM 2477

EX exis tentia l there IRR 2224

NNPS noun, proper, plura l ORG 1958

RBR adverb, comparative IRR 1901

JJS adjective, superlative ADJ 1743

RP parti cle IRR 1630

SYM symbol SYM 1268

UH interjection IRR 883

FW foreign word FW 803

RBS adverb, superlative IRR 784

PDT pre-determiner IRR 728

$ $ SYM 579

LS l is t i tem marker SYM 446

WP$ WH-pronoun, possess ive IRR 251

