
 
Computational Method for Understanding 

Complex Human Routine Behaviors 
 
 
 

CMU-HCII-18-100 
June 2018 

 
 
 

Nikola Banovic 

Human-Computer Interaction Institute 

School of Computer Science 

Carnegie Mellon University 

Pittsburgh, Pennsylvania 15213 

 

 

Thesis Committee 

Anind K. Dey (Co-chair), University of Washington 

Jennifer Mankoff (Co-chair), University of Washington 

Aniket Kittur, Carnegie Mellon University 

Eric Horvitz, Microsoft 

 
 

Submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy 
Copyright © 2018 Nikola Banovic, All Rights Reserved 

 
 
 
This work was supported partly by the Natural Sciences and Engineering Research Council of Canada 
(NSERC) (PGSD3-438429-2013), the National Science Foundation (NSF) (CCF-1029549, IIS-1217929), 
the Yahoo! Fellowship, the Center for Machine Learning and Health (CMLH) at Carnegie Mellon University, 
and the Software Engineering Institute at Carnegie Mellon University.  



 2 

 
 
  



 3 

ABSTRACT 

The ability to collect and store large amounts of human behavior traces data collected from 

various sensors on people’ personal, mobile, and wearable devices, as well as from smart 

environments, offers a new source of data to study human behavior at scale. However, 

existing Human-Computer Interaction (HCI) behavior sensemaking methodologies do not 

lend themselves to studying behaviors from such large multivariate, heterogeneous, and 

unlabeled datasets. On the other hand, computational modeling has been used to 

successfully explore and understand complex systems in other fields (e.g., climate change 

modeling). Inspired by such prior work, we treat behaviors stored in large behavior logs as 

a complex system that we capture in a computational model of human behavior. In this 

work, we focus on behaviors in the domain of human routines that people enact as 

sequences of actions they perform in specific situations, which we call behavior instances. 

Computational models then allow us to explore different kinds of behaviors by 

manipulating model variables and simulating and detecting different kinds of behaviors 

(otherwise known as “asking what-if questions”). In this thesis, we propose a probabilistic 

computational model of human routine behaviors, that can describe, reason about, and act 

in response to people’s behaviors. We ground our model in a holistic definition of human 

routines to constrain the patterns it extracts from the data to those that match routine 

behaviors. We train the model by estimating the likelihood that people will perform certain 

actions in different situations in a way that matches their demonstrated preference for those 

actions and situations in behavior logs. We leverage this computational model of routines 

to create various tools to aid stakeholders, such as domain experts and end users, in 

exploring, making sense of, and generating new insights about human behavior stored in 

large behavior logs in a principled way. 

  



 4 

ACKNOWLEDGEMENTS 

I would like to take this opportunity to thank everyone who made this long, yet rewarding, 

journey an invaluable experience. 

First and foremost, I would like to thank my family for their endless support. I would like 

to thank my wife, Annie Malhotra, who selflessly decided to come with me to Pittsburgh 

and who has endured and supported me through all my research ups and downs. During 

our time in Pittsburgh, we welcomed our son, Kabir Mihailo Banovic, who has given me 

renewed energy to complete my PhD. I would like to thank my mother, Senka Ćuruvija, 

who has sacrificed much so that I could lead a better life and attain my education. 

I would like to thank my advisors, Jennifer Mankoff and Anind Dey, who were always 

there for me and helped me stay on track even through the most difficult times. Their 

guidance, mentorship, and unconditional encouragement helped me come closer to 

becoming the academic I always wanted to be. I would like to thank my thesis committee 

members Aniket Kittur and Eric Horvitz for invaluable feedback on this dissertation. I 

would also like to thank Khai Truong, Tovi Grossman, and John Krumm for being my 

mentors and my champions, and always being available with advice when I needed it most. 

I would like to thank all of my collaborators who have contributed to this work. A special 

thank you goes to Julian Ramos and Christine Bauer for fruitful discussions about routine 

behaviors, Brian Ziebart, Scott Davidoff and Jin-Hyuk Hong for their valuable input about 

algorithms and data sets used in this work, Fanny Chevalier and Adam Perer for their 

insights about the visualizations in this work, and Afsaneh Doryab for leading the data pre-

processing efforts used in this work. I would also like to thank students who I have 

mentored over the years; in particular those whose work contributed to this dissertation: 

Tofi Buzali, Jae-Won Kim, Seo Hyun “Jenna” Choo, Christie Chang, Anqi “Angie” Wang, 

Yanfeng “Tony” Jin, Zhongmin “Angela” Xie, and Ticha Sethapakdi. This work would not 

have been possible without them. 

I would like to thank everyone at the Human-Computer Interaction Institute, and in 

particular all Ubicomp Lab and Make4All (formerly Assist Lab) past and present members 



 5 

and visitors.  It was a great pleasure working alongside you. I would like to specially thank 

Queenie Kravitz, who was always there with an encouragement or an answer when I had a 

question regarding the PhD program. I would also like to thank my cohort, Dan Tasse, 

Brandon Taylor, Tatiana Vlahovic, Jenny Olsen, Anthony Chen, Chris MacLellan, and 

Dave Gerritsen, and my CHI travel partners Michael Nebeling and Adrian de Freitas. You 

inspired me to always want to do better and your friendship brought me happiness during 

my time at Carnegie Mellon University. 

  



 6 

TABLE OF CONTENTS 

ABSTRACT.................................................................................................................... 3  

ACKNOWLEDGEMENTS ............................................................................................. 4  

TABLE OF CONTENTS ................................................................................................ 6  

1   INTRODUCTION .................................................................................................. 10  

2   BACKGROUND IN UNDERSTANDING BEHAVIORS ...................................... 14  

2.1   Exploratory Data Analysis ................................................................................... 15  

2.2   Data Mining ........................................................................................................ 16  

2.3   Information Visualization and Visual Analytics ................................................... 19  

2.4   Modeling Interaction with Information Technology ............................................. 20  

2.5   Summary ............................................................................................................. 21  

3   COMPUTATIONAL MODELING METHODOLOGY .......................................... 23  

4   OPERATIONIZABLE DEFINITION OF ROUTINES ........................................... 26  

4.1   Defining Routine Behaviors ................................................................................. 27  

4.2   Unified Routine Definition .................................................................................. 29  

4.3   Unified Routine Definition and Existing Models of Routines ............................... 30  

5   COMPUTATIONAL MODEL OF ROUTINE BEHAVIOR ................................... 32  

5.1   Model of Human Routine Behavior ..................................................................... 33  

5.2   Data Modeling and Feature Engineering .............................................................. 34  

5.3   Learning Routine Patterns from Demonstrated Behavior ...................................... 35  

5.4   Validating the Model of Human Routine Behaviors ............................................. 38  

5.4.1   Training Models of Routine Behavior............................................................ 39  

5.4.1.1   Family  Daily  Routines  Data  Set  ................................................................  40  

5.4.1.2   Aggressive  Driving  Behavior  Data  Set  ......................................................  42  

5.4.2   Quantifying Routineness of Human Behavior ................................................ 44  

5.4.3   Visual Exploration of the Model .................................................................... 45  

5.4.3.1   Study  Software  .......................................................................................  45  



 7 

5.4.3.2   Participants  .............................................................................................  47  

5.4.3.3   Method  ...................................................................................................  48  

5.4.3.4   Ground  Truth  ..........................................................................................  48  

5.4.3.5   Results  ....................................................................................................  49  

5.5   Summary ............................................................................................................. 50  

6   CAPTURING ECONOMICS OF ROUTINE BEHAVIOR ..................................... 53  

6.1   Extending Situation and Action Feature Engineering ........................................... 54  

6.1.1   Situation Features .......................................................................................... 54  

6.1.2   Action Features ............................................................................................. 56  

6.2   Representing Time ............................................................................................... 57  

6.3   Economics of Human Routine Behavior .............................................................. 59  

6.4   Summary ............................................................................................................. 61  

7   DETECTING AND GENERATING ROUTINES ................................................... 62  

7.1   Detecting Classes of People Based on Their Behavior ......................................... 63  

7.2   Detecting Behavior Instances ............................................................................... 64  

7.3   Generating Behavior Instances ............................................................................. 67  

7.4   Use Case: Predicting Cancer Patient Rehospitalization ........................................ 67  

7.4.1   Cancer Patient Behavior Dataset and Model .................................................. 68  

7.4.1.1   Participants  .............................................................................................  69  

7.4.1.2   Data  Collection  .......................................................................................  69  

7.4.1.3   Data  Pre-­‐processing  ................................................................................  70  

7.4.1.4   Model  Training  .......................................................................................  73  

7.4.2   Predicting Rehospitalization .......................................................................... 73  

7.4.3   Method .......................................................................................................... 74  

7.4.4   Results .......................................................................................................... 75  

7.4.5   Discussion ..................................................................................................... 78  

7.5   Use Case: Detecting Aggressive Driving Behaviors ............................................. 79  

7.5.1   Naturalistic Driving Behavior Dataset and Model .......................................... 81  

7.5.2   Classifying Driving Behavior Instances ......................................................... 82  



 8 

7.5.3   Generating Driving Behavior Instances ......................................................... 83  

7.5.4   Preliminary Detection Validation .................................................................. 84  

7.5.5   Domain Expert Evaluation of Driving Detection and Generation ................... 85  

7.5.5.1   Results  ....................................................................................................  86  

7.5.5.2   Discussion  ...............................................................................................  87  

7.6   Summary ............................................................................................................. 88  

8   ROUTINE MODELS AS SENSEMAKING TOOLS .............................................. 89  

8.1   Identifying Salient Patterns of Routine Behavior.................................................. 90  

8.2   Use Case: Differentiating Aggressive Driving Behaviors ..................................... 90  

8.2.1   Driving Behaviors Animation System ........................................................... 91  

8.2.2   Driving Animation Evaluation ....................................................................... 91  

8.2.3   Acting in Response to People’s Behaviors ..................................................... 92  

8.2.3.1   Method  ...................................................................................................  93  

8.2.3.2   Measures  ................................................................................................  94  

8.2.3.3   Results  ....................................................................................................  94  

8.2.3.4   Discussion  ...............................................................................................  96  

8.2.4   Summary ....................................................................................................... 98  

8.3   Generating and Validating Hypotheses about Routines ........................................ 98  

8.3.1   Design of Behavior Dashboard .................................................................... 101  

8.3.1.1   Data  Organization  .................................................................................  103  

8.3.1.2   Visual  Representation  of  Behaviors  .......................................................  103  

8.3.1.3   Interactions  with  Behaviors  ..................................................................  107  

8.3.2   Use Case: Understanding Behaviors that Leads to Rehospitalization ........... 111  

8.3.2.1   Behavior  Analysis  and  Results  ...............................................................  111  

8.3.2.2   Discussion  .............................................................................................  117  

8.4   Summary ........................................................................................................... 118  

9   CONCLUSION AND FUTURE WORK............................................................... 120  

9.1   Mixed-initiative Computational Modeling ......................................................... 123  

9.2   Understanding Capabilities and Limitations of AI .............................................. 125  



 9 

9.3   Human-data Supported Interfaces ...................................................................... 126  

9.4   Summary ........................................................................................................... 128  

10   APPENDIX ....................................................................................................... 129  

10.1   MaxCausalEnt IRL Algorithm Implementation .............................................. 129  

10.2   Study Materials .............................................................................................. 139  

10.2.1   Visual Model Validation Study Questionnaire .......................................... 139  

10.2.2   Driving Instructor Detection and Simulation Validation Questionnaire..... 141  

10.2.3   Aggressive Driver Assessment Study Modified DBQ Questionnaire ........ 143  

10.3   Behavior Dashboard Design Materials ............................................................ 146  

BIBLIOGRAPHY ....................................................................................................... 148  

 

  



 10 

1   INTRODUCTION 

The amount of human behavior data collected and stored in the world every minute is 

staggering. Information Technology that enables us to collect behavior data touches on 

almost every aspect of people’s lives. For example, fitness trackers count each step we 

take, web search engines process and store each Internet search we make, social media sites 

record each personal connection we establish and each message we post, map and 

navigation applications record each place we visit. Such unprecedented ability to collect 

data is enabled by both ever-increasing use of software applications that log every user 

interaction and the proliferation of personal, mobile, and wearable devices and smart 

environments outfitted with precision sensors that can track and collect data about people 

and their environments. Such data is already used in technological advances that improve 

the quality of people’s lives, including advances in areas of traffic safety, healthcare 

diagnostics and targeted treatment, and physical assistance for elder care, to mention a few 

(Stone, et al., 2016).  

This trove of data potentially contains valuable information about people’s behaviors. 

Study of people’s behaviors in relation to Information Technology is central to the field of 

Human-Computer Interaction (HCI) and the knowledge we could generate from this new 

source of data has the potential to establish theoretical foundation for work in HCI. For 

example, understanding how people interact with Information Technology, the tasks that 

they perform, and the goals they want to accomplish helps us improve existing interactions 

and inform the design of future Information Technology. Understanding how people’s data 

is used in complex Information Technology systems could also allow us to democratize 

technology (O’Neil, 2016; Pasquale, 2015), help address further socio-economic divisions 

that technology could introduce (The Economist, 2015), and safeguard us from rogue 

technology that does not have people’s best interests in mind (Gray, Kou, Battles, Hoggatt, 

& Toombs, 2018). Thus, it is particularly important that HCI researchers have the right 

tools to explore and understand this massive amount of data about people that we generate, 

collect, and store. 



 11 

However, the traditional HCI methodologies to study human behavior do not translate well 

to exploring and understanding behaviors from large behavior logs that contain 

multivariate, heterogeneous, unlabeled data. Qualitative methods (e.g., ethnography, 

observations, and interviews) often have to integrate information from large amounts of 

data collected from many different sources (e.g., video and audio recordings), but are not 

applicable to exploring behavior logs because they deal with the kind of data that is very 

different from quantitative data contained in behavior logs. Null-hypothesis testing has 

become a popular de-facto standard for quantitative analysis in HCI. Although such 

analysis applies to data collected in both lab and field studies, it is meant for testing pre-

conceived hypotheses in classical experimental settings and not applicable to data 

exploration (Good, 1983). 

In response to growing availability of behavior logs, HCI research started incorporating 

existing Exploratory Data Analysis (EDA) (Good, 1983; Tukey, 1977), Information 

Visualization (Fekete et al., 2008), and Data Mining (Fayyad et al., 1996) and Visual 

Analytics (Keim et al., 2008) tools and techniques to explore behaviors from behavior 

traces data. Each of these methods addresses some aspects of behavior data exploration. 

For example, EDA could identify people’s general behavioral dispositions by aggregating 

data on isolated variables, Information Visualization could visualize data to uncover 

nuanced patterns made up of sequences of multivariate, heterogeneous behavior data, and 

Data Mining and Visual Analytics tools could automatically extract and visually present 

such salient patters from the data. Yet, there is still no holistic method for studying and 

understanding behaviors from data traces stored in large behavior logs. 

Here, we address the challenges of understanding behavior data from large behavior logs 

by developing a computational modeling methodology to study human behaviors from data 

stored in large behavior logs. Computational modeling expresses processes within complex 

systems mathematically to enable exploration of the system by simulation and prediction. 

Our methodology bridges the gap between data models (that can explain behaviors, but 

have been constrained to very simple behavior models) and algorithmic models (that 

disregard underlying behaviors that generated the data as unknown, but can capture 

multivariate relationships in the data very well) (Breiman, 2001). The goal of our 



 12 

computational modeling approach is to provide a principled way for exploring behaviors 

in both an aggregate and sequential manner. 

We developed a probabilistic computational model of high-level behaviors, such as 

routines, that can be used to describe, reason about, and act in response to people’s 

behaviors. This computational routine model describes behaviors and provides causal 

explanation for relationships between actions and situations in which people perform those 

actions. We automatically estimate such relationships from the data (i.e., train the model) 

using an algorithm based on the principle of Maximum Causal Entropy (Brian Ziebart, 

2010), which is a data mining algorithm grounded in statistical principles to ensure that the 

model finds explanations for behaviors that best fit the data. We use this algorithm because 

it trains models that can predict people’s behaviors (Ziebart, Maas, Dey, & Bagnell, 2008; 

Ziebart, Ratliff, & Gallagher, 2009). We leverage similar properties in the model to act in 

response to people’s behaviors (e.g., automate tasks, prescribe behaviors).  

Our computational model supports making sense of behavior data (i.e., searching for salient 

representations in the data (Russell, Stefik, Pirolli, & Card, 1993)), by identifying and 

encoding behaviors that are characteristic of a routine. We automate multiple aspects of 

the sensemaking process (Pirolli & Card, 2005) by automatically searching for 

relationships in the data (information foraging) to model (schematize) patterns of behaviors 

that form routines. The ability to generate behaviors from a model grounded in our unified 

definition of routine behavior increases intelligibility of the model and allows stakeholders 

to search for evidence that the model matches empirical behavior data. We present custom 

visualization tools to support visual exploration of automatically detected and generated 

behaviors. Our visual analytics tools allow stakeholders to form hypothesis about behaviors 

(e.g., hypothesize that aggressive drivers are more prone to speeding) and test those 

hypotheses by identifying evidence in the model to support the hypotheses. 

  



 13 

In this work, we argue the following thesis statement: 

A rich computational model of human routine behavior, that captures relationships 

between situations and actions, can be used to describe, reason about, and act in 

response to behaviors, stored as event traces in large behavior logs. We hypothesize 

that such a model can aid stakeholders in sensemaking about behavior of 

individuals and populations. We also hypothesize that such a model can automatically 

detect and extract salient patterns of behavior that characterize a routine, such as poor 

routines, and act in response to those behaviors to prescribe changes, such as 

simulating a better routine. 

We begin with a review of existing methods for studying, exploring, and understanding 

human behavior from large behavior logs, and the challenges that exist when applying the 

current methodologies to this problem (Chapter 2). We then introduce our computational 

modeling methodology, grounded in the sensemaking process (Pirolli & Card, 2005), in 

Chapter 3 and proceed to describe each step in detail in Chapters 4 through 8. In Chapter 

4, we present our unified definition of routine behaviors, a kind of behavior that is the main 

focus of this work. We then show how to estimate a computational model of human 

routines from behavior logs in Chapter 5, and how our modeling approach builds on 

existing algorithms to capture the economics of routine behavior in Chapter 6. We then 

show how to leverage computational models of routines for behavior exploration by first 

presenting automated computational techniques (Chapter 7) to identify salient patterns of 

behaviors in the data and a set of visualization tools that allow stakeholders to leverage our 

computational model as a behavior sensemaking tool (Chapter 8). We conclude with a 

future direction for computational modeling of human behavior in Chapter 9. 



 14 

2   BACKGROUND IN UNDERSTANDING BEHAVIORS 

Understanding human behaviors has become an increasingly important topic in Human-

Computer Interaction (HCI) as Information Technology is introduced into various aspects 

of people’s lives. In recent years, HCI research has moved from a focused study of people’s 

interaction with User Interfaces to a study of people’s lives surrounded by Information 

Technology anytime and anywhere. To collect, analyze, and study such behaviors, the HCI 

community has developed various methodologies, with foundations in Cognitive Science, 

Psychology, Social Sciences, and Data Sciences. Such methods are often categorized based 

on two dimensions: 1) qualitative vs. quantitative, and 2) lab vs. field. Although being one 

of the core elements of HCI, qualitative methods (see (Beyer & Holtzblatt, 1998; Gaver, 

Dunne, & Pacenti, 1999; Millen & R., 2000) for examples) do not have an application in 

the study and analysis of behavior log data. 

Thus, our focus is on quantitative methods in HCI. Quantitative lab studies offer a 

controlled setting to collect data about a behavior. Researchers commonly use such studies 

to test a hypothesis using an experimental design. Less often, they are used to explore and 

understand a behavior.  However, such studies are often contrived and lack external validity 

(i.e., they do not generalize to behaviors outside of the experimental setting). Also, due to 

short time periods of such studies, they are not appropriate for studying routine behaviors 

that span long periods of time and different contexts. Traditional quantitative field studies 

collect behavior data from natural settings and over time. However, they are resource 

intensive and do not scale up. Furthermore, they often produce knowledge about behaviors 

that is difficult to operationalize. 

In this work, we further focus on quantitative analysis of data from a special kind of field 

studies, called log studies, that collect traces of human behaviors and store them in large 

behavior logs. Such behavior logs complement data from traditional lab and field 

observational studies by offering behavior data collected in natural settings, uninfluenced 

by observers, over long period of time, and at scale (Dumais, Jeffries, Russell, Tang, & 

Teevan, 2014). Behavior log data can be collected using various server- (Google, 2017) 

and client-side (Capra, 2011) software logging tools, and from sensors in the environment 



 15 

(Koehler, Banovic, Oakley, Mankoff, & Dey, 2014) and on people’s personal or wearable 

devices (Ferreira, Kostakos, & Dey, 2015). Examples of behavior logs include web use 

logs (Adar, Teevan, & Dumais, 2008), social network logs (Starbird & Palen, 2010), 

outdoor mobility logs (Davidoff et al., 2011), mobile device usage logs (Banovic, Brant, 

Mankoff, & Dey, 2014), and even vehicle operation logs (Hong, Margines, & Dey, 2014). 

Stakeholders can then use the traces stored in behavior logs to understand complex 

behaviors. We review the most common analysis methodologies used to study and explore 

such behavior logs. 

2.1   Exploratory Data Analysis 

Explanatory methods provide support for manually searching for salient patterns in the 

data. This is often done using Exploratory Data Analysis (EDA) (Tukey, 1977), which 

offers different descriptive statistics and data visualization techniques  to manually explore 

and understand high-level patterns in behavior logs. Note that EDA methods focus on 

observational data and differ from methods for analyzing data derived in classical 

experimental setups (Good, 1983). Finding supporting evidence that describe people’s 

behavior from log data typically involves identifying meaningful variables to partition the 

data on and then comparing behaviors across the different partitions (Dumais et al., 2014). 

Finding such partitions is at the discretion of the stakeholder, but often includes variables 

that describe temporal properties in the data or characteristics of people. Temporal 

properties can reveal periodicity and recurrence of events and user characteristics allow 

stakeholders to compare behaviors across different populations. For example, Hong et al. 

(2014) partitioned data on drivers’ propensity towards aggressive behaviors to identify and 

describe the differences in high-level driving behaviors (speeding, accelerating, braking) 

between the two groups.  

However, EDA focuses on isolated events, or temporal evolution of a particular state (e.g., 

sleep vs. awake) or variable (e.g., the number of steps walked per day). Such partitions 

describe people’s general dispositions using the principle of aggregation, which often 

“does not explain behavioral variability across situations, nor does it permit prediction of 



 16 

a specific behavior in a given situation” (Ajzen, 1991). Routines are characterized by both 

specific actions people perform in different situations (Hodgson, 1997) and variability of 

those actions across situations (Feldman & Pentland, 2003). This makes it difficult to 

manually find nuanced relationships in the data. Also, due to the complexity and size of 

behavior logs, EDA methods do not guarantee that the stakeholder will be able to find 

patterns of behaviors (e.g., those that form routines) and not some other patterns in data 

that are unrelated to behaviors. Furthermore, even large behavior logs contain too few 

behavior instance examples to account for all possible transitions between different 

situations and actions. Without a statistical model that estimates the probabilities of 

transitions between situations and actions in a principled way, even if not all possible 

transitions are present in the data, each behavior instance becomes an isolated example that 

is difficult to generalize from. 

2.2   Data Mining 

Data Mining automates the process of identifying potentially useful patterns in data 

(Fayyad et al., 1996) in a way that could automatically capture salient patterns that describe 

behaviors. Such methods alleviate manual exploration of data in the information foraging 

loop that is characteristic of explanatory approaches we discussed above (Pirolli & Card, 

2005). Data Mining employs existing machine learning algorithms to detect (e.g., (Bulling, 

Blanke, & Schiele, 2014)), classify (e.g., (Hong et al., 2014)), predict (e.g., (Krumm & 

Horvitz, 2006)), and find structure of (e.g., (Baratchi, Meratnia, Havinga, Skidmore, & 

Toxopeus, 2014; Rashidi & Cook, 2010)) patterns in the data. Such methods can 

automatically act in response to patterns in the data. Stakeholders can then explore the 

results of data mining algorithms using various visual analytics tools (Keim et al., 2008). 

However, concerns remain about performing data mining using black-box algorithmic-

based models that often leverage patterns in the data that may not be representative of the 

underlying process that generated the data (Shmueli, 2010). Although this may be 

acceptable in certain prediction tasks (Kleinberg, Ludwig, Mullainathan, & Obermeyer, 

2015), there is no easy way to inspect such models to ensure that they will not make wrong 



 17 

decisions because of some fundamental misconception. For example, Google Flu Trends 

(Cook, Conrad, Fowlkes, & Mohebbi, 2011) used a model that was meant to predict the 

number of patient visits to doctors for influenza-like illness (ILI) based on patients’ Google 

search terms. The model started significantly overestimating ILI outbreaks years after its 

launch (e.g., in response to a media-induced epidemic panic (Lazer, Kennedy, King, & 

Vespignani, 2014)) because it wrongly assumed that correlation between volume of 

people’s search terms and ILI also means causation. In the case of Google Flu Trends, 

wrong predictions could lead to minor annoyance or waste of resources. However, in other 

cases, such as when an algorithm that data mines a large data set of portrait photographs to 

detect criminals based on their facial expression makes a misclassification (Wu & Zhang, 

2016), mistakes could have far more reaching negative consequences (e.g., incarceration 

of an innocent person). 

Also, such general-purpose data mining methods may not be well suited to extract behavior 

patterns. For example, such existing machine learning algorithms purposefully disregard 

variations in human behavior to focus on classifying and predicting only the most frequent 

human activity. Some variations may happen infrequently in data and are difficult to detect 

using those existing algorithms. Some specific infrequent variations may be detectable 

(e.g., detecting when parents are going to be late to pickup their children (Davidoff, Ziebart, 

Zimmerman, & Dey, 2011)). However, this requires a case-by-case approach to address 

each variation, which can be difficult to apply if all possible variations are not known a 

priori. 

Most such models require labeled examples about which behavior instances are 

characteristic of a routine and which ones are not. However, the lack of individually labeled 

behavior instances in large behavior logs makes it challenging to use those existing 

supervised machine learning algorithms to classify behavior instances into routines. For 

example, to train a supervised machine learning algorithm to classify behavior instances 

that lead parents to forget to pick up their children, Davidoff et al. (2010) had to manually 

label each behavior instance in the behavior log they collected, and confirm this 

information with the participants in their next study (Davidoff et al., 2011). This places 



 18 

significant burden on stakeholders to properly label enough data to be able to train their 

data mining algorithms. 

Unsupervised machine learning methods cluster behaviors without prior knowledge of 

labels. For example, algorithms based on Topic Models (Farrahi & Gatica-Perez, 2012) 

allow stakeholders to generate clusters of behavior instances. However, the main limitation 

of general-purpose unsupervised methods is that they offer no guarantees that the resulting 

clusters group instances based on the routine they belong to (i.e., the clusters may not 

represent routines). Unsupervised anomaly detection algorithms (e.g., (Mcfowland, 

Speakman, & Neill, 2013)) could be used to find differences between behavior instances. 

However, they detect if a behavior instance is a deviation from a routine, but not whether 

it is part of the routine. 

This highlights the major challenge with most traditional machine learning models: there 

is no easy way to inspect the model to ensure that it captures meaningful patterns of routine 

behavior. Like any other black-box predictive model, there is no easy way to inspect the 

model and ensure that it captures meaningful patterns of behavior. Stakeholders can inspect 

Generative Models (Salakhutdinov, 2009) by generating behaviors from the model and 

comparing them with empirical behavior instances in the data. However, this assumes that 

the stakeholder already understands behavior instances characteristic of a routine, which is 

what the model is supposed to automatically extract for the stakeholder in the first place. 

Unsupervised methods specifically designed to model routines from behavior logs (Eagle 

& Pentland, 2009; Farrahi & Gatica-Perez, 2012; Li, Kambhampati, & Yoon, 2009; 

Magnusson, 2000) are meant to capture patterns of routine behavior. Each offers a unique 

approach to modeling routines. For example, Eigenbehaviors (Eagle & Pentland, 2009) 

map events in the data on a discrete timeline vector and use eigen decomposition to find 

principled components of people’s behaviors (i.e., most salient combinations of behavioral 

features). Eagle & Pentland (2009) provide custom visualization of those principled 

components to inspect the model. Past research has also shown that Eigenbehaviors can be 

used to act in response to people’s behavior and predict their mobility (Sadilek & Krumm, 

2012). However, such models are based on optimization methods that minimize simple 



 19 

error functions between the patterns they extract and the data. Thus, it remains unclear 

which aspects of routines those existing data mining approaches are able to capture. 

Still, the advantage of methods that specialize in extracting routines compared to general-

purpose Machine Learning approaches is that they can be optimized to match some aspect 

of routines as identified in theory about routine behaviors. For example, T-patterns 

(Magnusson, 2000) search event-based behavior log data for multivariate events that 

reoccur at a specific time interval, which they combine to create new composite events. 

The algorithm recursively groups events to define structure of routine behaviors that is only 

described by the temporal aspects of the data. Context-Free Grammar-based models (Li et 

al., 2009) encode the hierarchical structure of routine activities. Such models can be trained 

using the Expectation-Maximization algorithm (Bishop, 2006) that maximizes 

the likelihood of making the observations from the data using the learned hierarchical 

representation of routine activities. Stakeholders can explore each model using various 

custom visualizations to check if that the models match meaningful patterns of behavior.  

2.3   Information Visualization and Visual Analytics 

Visualizing data from behavior logs is another common way for stakeholders to identify 

salient patterns in the data. Such data is often visualized on a timeline as a sequence of 

events. The simplicity of this approach makes it applicable to a variety of domains, such 

as schedule planning to show uncertainty of duration of different events (Aigner, Miksch, 

Thurnher, & Biffl, 2005), visualizing family schedules (Davidoff et al., 2010), and 

representing events related to patient treatments (Plaisant, Milash, Rose, Widoff, & 

Shneiderman, 1996). More advanced timelines enable the user to specify properties of the 

timeline (e.g., periodicity) for easier viewing. For example, Spiral Graph (Weber, Alexa, 

& Müller, 2001) aligns sequential events on a spiral timeline using a user-defined period. 

However, even advanced interactive visualizations have difficulty in visualizing behavior 

patterns that depend on multiple heterogeneous variables, especially as the number of 

variables grows. For example, parallel coordinates visualization can clearly show 

relationships between different multivariate aspects of behavior data (Clear et al., 2009), 



 20 

until the number of variables becomes too large. To address such challenges, stakeholders 

can manually highlight (Buono, Aris, Plaisant, Khella, & Shneiderman, 2005) and 

aggregate common sequences of events based on features in the data (Jin & Szekely, 2010; 

Monroe, Lan, Lee, Plaisant, & Shneiderman, 2013) until meaningful patterns emerge. The 

stakeholder is then able to judge the quality and saliency of the patterns by visual 

inspection. However, this can be painstakingly slow, making manual exploration 

challenging. The problem of underrepresented transitions present in general Exploratory 

Analysis translates to visualization as well. For example, CareFlow (Perer & Gotz, 2013), 

which visualizes paths of treatments for patients with cardio-vascular diseases, shows that 

sequences of at-risk patients often reduce to singular examples. This makes it difficult to 

estimate if such sequences should be treated as exemplars of behavior or isolated incidents 

and noise. 

Visual Analytics tools combine data mining with information visualization. As such they 

often extract salient patterns from the data before visually resenting them to the user. For 

example, stakeholders can visually explore T-patterns using Arc Diagrams (Wattenberg, 

2002) or the hierarchical structure of routine activities captured in a Context-Free 

Grammar-based model (Li et al., 2009) using DAViewer (Zhao, Chevalier, Collins, & 

Balakrishnan, 2012). However, such tools often suffer from the same underlying problems 

as the data mining methods they use. 

2.4   Modeling Interaction with Information Technology 

Behavior models provide a theoretical foundation for work in HCI. Traditionally, in HCI, 

such models focus on capturing cognitive and motor components of interactions with User 

Interfaces. For example, GOMS (Card, Moran, & Newell, 1983) is a human information 

processing model created specifically to describe and estimate cognitive performance of 

people when they interact with User Interfaces (e.g., a Graphical User Interface). GOMS 

empirically estimates times of different operators and methods that it encodes (e.g., time 

to perceive a target in a pointing task, time to invoke the motor system, time to move the 

hand to press on the target), and then uses those time of simple atomic operations to 



 21 

estimate the time it takes to accomplish a complex task via a User Interface. However, 

empirical estimates of times for each component of the model are time consuming and past 

research has hypothesized models that can predict behavior. For example, the Fitts’ Law 

(MacKenzie, 1992) predicts the time it takes to press on a target can be estimated with as 

little as two variables: distance to and size of the target. Such models can then be used to 

explain people’s low-level interactions with actual User Interfaces (e.g., typing on a mobile 

keyboard by pointing at keys (Banovic et al., 2017)). 

Such models are driven by knowledge about behavior rather than driven by an optimization 

function that tries to reduce the error between model estimated patterns and data, which are 

characteristic of data mining. This means that they are developed based on existing 

hypotheses about behaviors and empirically validated, rather than simply trained on 

behavior data without regard for the underlying behavior processes (Breiman, 2001). 

However, they are mostly restricted to simple, low-level behaviors that can be described 

using intuitive analytical solutions. Although high-level behavior models exist, when 

applied to complex, heterogeneous, multivariate behavior data (e.g., to explain how people 

adopt information technology (Venkatesh et al., 2003)), such explanatory models are often 

unable to explain most of the variance in the observed data. Such models have less 

predictive power than data-mining based models (Kleinberg et al., 2015), even in some 

cases when they closely approximate the true process that generated the data (Shmueli, 

2010). Thus, they may not be able to capture the full complexity of high-level behaviors, 

such as routines, and be used to reason about and act in response to behaviors they capture. 

2.5   Summary 

In our review of existing methodologies, we identified two kinds of quantitative data 

analysis approaches to study and explore data in large behavior logs. The first category of 

approaches (EDA, Information Visualization, and Behavior Modeling) are driven by the 

processes that generated the data, but are resource intensive and require manual work to 

identify salient patterns of behavior in the data. The difficulty in using such methods in 

amplified by the fact that today’s behavior logs contain massive amount of multivariate, 



 22 

heterogeneous, unlabeled data that is not easy to conceptualize. Even once stakeholders 

identify salient patterns of behavior and use them to understand behaviors (i.e., create a 

conceptual model of behaviors), it remains unclear how to make that knowledge 

operational so that we can create technology that can automatically reason about and act in 

response to people’ behaviors. 

The second category (Data-Mining, Visual Analytics) are algorithmic approaches that 

automatically extract salient patters from the data by optimizing an error function without 

a regard for the underlying processes that generated the data. Such powerful algorithms 

can quickly summarize large amount of data stored in behavior logs and can be used to 

automatically act in response to behaviors (e.g., classify and predict future behaviors). 

However, such methods often extract patterns that do not correspond to actual behaviors 

that are of interest to the stakeholders. They could also lead to gross misclassifications and 

wrong predictions when the correlations in the data they leverage to extract patterns do not 

have any causal relationship with people’s actual behaviors. 

The main challenge in reconciling these two approaches is the lack of a holistic method to 

modeling human routine behaviors that can automatically extract patterns of behavior from 

large behavior logs in a way that models the processes that generated the data. For example, 

for Data-Mining approaches, this would mean identifying optimization functions that 

match important aspects of the processes that generated the data. This could improve our 

confidence that the extracted patterns match actual behaviors of people. Yet, the existing 

models of behavior based on Data Mining algorithms still largely disregard theoretical 

foundation about behaviors necessary for understating human behavior.  



 23 

3   COMPUTATIONAL MODELING METHODOLOGY  

Computational Modeling mathematically encodes processes in a complex system and 

enables exploration of the system through prediction and simulation (Melnik, 2015). We 

treat people’s behaviors situated in their environments as an example of such a system. 

Although some aspects of computational models can be built using data mining techniques, 

computational modeling is different from simple data mining approaches because it insists 

on representing actual processes that generated the data. It also encodes patterns of 

behavior that allow prediction and simulation of behaviors, which is not necessarily the 

case with existing data mining techniques. 

However, it is not immediately obvious how to compute a model from large amounts of 

heterogeneous and unlabeled data stored in behavior logs. For example, behavior logs 

contain information about what people did, but not why they did it (Dumais et al., 2014). 

Even when data contains information about what people did, individual activities may not 

be clearly segmented (Hurst, Mankoff, & Hudson, 2008). Stakeholders explore and 

understand behavior logs through process of sensemaking, which Russell et al. (1993) 

define as “the process of searching for a representation and encoding data in that 

representation to answer task-specific questions.” 

We look at sensemaking about behaviors through the lens of Pirolli and Card’s (2005) 

notional model of sensemaking loop for intelligence analysis. In the information foraging 

loop (Pirolli & Card, 2005), stakeholders first search for information and relationships in 

the data to find and organize evidence that supports their reasoning about behaviors 

patterns in the data. Stakeholders then use the evidence to schematize their current 

understanding of behaviors and conceptualize it in a model of behavior. Stakeholders then 

use this conceptual model in the sensemaking loop (Pirolli & Card, 2005) to create and 

support (or disconfirm) their hypotheses about behaviors and present their findings. 

The behavior data information foraging loop reduces to identifying salient patterns in 

behavior data (representations) that describe routines. A common way to kick off this stage 

is when a stakeholder begins raw data exploration by searching for relevant features of 

situations and actions that describe behaviors of interest. For example, in case of driving 



 24 

routines, situational features could include road configuration and if the driver is in a rush 

hour or not, while action features could include how the driver operates the steering wheel 

and gas and brake pedals. This allows the stakeholders to extract knowledge about different 

possible behavior instances (e.g., how a driver operates a vehicle through a road segment, 

such as an intersection). The goal of the stakeholders is then to extract behavior instances 

that form routine variations, while at the same time rejecting deviations. It is often 

important to ensure that such variations are not also part of another competing routine (e.g., 

that a behavior is characteristic of aggressive, but not non-aggressive driving routine). This 

process involves continued iterative search for relationship between situations and actions 

that form such behavior instances. 

The sensemaking loop involves transitioning from evidence to conceptual model of 

behavior. Once there is enough evidence to support a conceptual model of a routine (e.g., 

a conceptual model of driving routines) the stakeholder can begin to generate hypothesis 

about behaviors in that model. For example, the stakeholder might hypothesize that drivers 

drive more aggressively during rush hour than during other times of the day, or that 

aggressive drivers are driving faster than non-aggressive drivers. Given different 

competing routine models (e.g., aggressive and non-aggressive driving routine) the 

stakeholder might hypothesize about differences between behaviors in those two routines. 

For example, the stakeholder might hypothesis that aggressive drivers are more likely to 

be speeding than non-aggressive drivers. The stakeholder would then search for support 

information in the conceptual model that would prove or disprove this hypothesis. 

Confirming or disconfirming hypotheses allows the stakeholder to form theories about 

behavior. In turn, any of those theories could be challenged by considering new evidence. 

Such new evidence informs the conceptual model, which completes the loop. 

We thus propose specific set of iterative steps, grounded in the sensemaking process 

(Pirolli & Card, 2005), to create a computational model from large behavior data: 

1.   Identify a research question 

2.   Clearly define the type of behaviors based on existing knowledge and theory 



 25 

3.   Deploy a field study to collect peoples’ behavior data logs from their various 

devices and environments that might help answer the question 

4.   Build a computational model that is grounded in the definition of behavior 

5.   Explore the model to perceive trends and create a conceptual model of behavior 

6.   Generate hypotheses about the behavior that help answer the research question 

7.   Search the model for examples that prove or disprove the hypothesis 

8.   Generate new insights, tune hypotheses, or adjust the research question  

9.   Present findings 

In the remaining of this document, we describe this process in detail and present various 

use case to illustrate the steps. Although identifying a research question (Step 1) and 

collecting data (Step 3) are important steps in our methodology, they are also domain 

specific and will vary from use case to use case. As such we defer discussing those steps 

until later chapters when we present our use cases. Instead, we begin describing our process 

with Step 2 in our methodology in Chapter 4, by presenting our unified definition of routine 

behaviors, which is the main focus of this work. We then discuss Step 4 in detail, and show 

how to calculate a computational model of human routines in Chapter 5, and the 

considerations we must make to ensure that the model captures economics of routine 

behavior in Chapter 6. We begin our discussion about behavior exploration in Step 5 by 

first presenting automated computational techniques (Chapter 7) that can leverage the 

model to identify salient patterns of behaviors in the data. We then present tools that help 

stakeholders leverage our computational model as a behavior sensemaking tool in steps 5 

through 9. 

   



 26 

4   OPERATIONIZABLE DEFINITION OF ROUTINES 

A definition of routines conceptualizes high-level knowledge about behaviors (i.e., 

schematizes existing knowledge about routines). Such conceptual models encode high-

level real-world processes that generate behaviors data across different routines (e.g., daily 

routine, exercising routine, driving routine) of both individuals and populations. This 

allows stakeholders to compare salient patterns they identified in the data with this 

conceptual model of routines and ensure they found patterns that are representative of a 

routine and not some other patterns in the data. This is particularly important for data 

mining methods that automate the foraging loop to create computational models of routines 

from patterns of behaviors automatically extracted from the data. Such a conceptual model 

provides constraints on computational models of routines to favor salient patterns in the 

data that match properties and structure of real world behaviors. A computational model of 

routine behaviors grounded in a definition of routines combines the power of explanatory 

models to describe behaviors with the power of predictive models to automatically find 

salient behavior patterns in the data, and even act in response to those behaviors afterwards. 

However, current definitions of routines focus on different aspect of behaviors that make 

up routines, which makes it difficult to reconcile them into a single unified definition that 

can be operationalized in a holistic computational model. We focus primarily on 

operationalizing routines of individuals, including routines of homogenous populations of 

people. Although such routines share similarities with organizational routines (see (Becker, 

2004) for a review), we only broadly explore how individuals perform in the context of 

organizational routines (i.e., the performative aspect of organizational routines (Feldman 

& Pentland, 2003)), and do not focus on operationalizing organizational routines per se. 

Also, the goal here is not to define the processes that people use to generate mental plans 

that manifest themselves as routines. Instead, we focus our analysis on physical activity in 

a given context (Kuutti, 1995). Our goal is to provide a definition of routine behaviors as 

people enact them in action. 

Focusing on how people enact their mental plans allows us to broadly include habitual 

behaviors into an operationalizable definition of routines. Habits represent people’s 



 27 

tendency to act in largely subconscious ways (Hodgson, 2009) that are different from other 

planned behaviors that require deliberation (Ajzen, 1991). Although there exist qualitative 

differences between subconscious and deliberate behaviors (Hodgson, 1997), which may 

impact the outcome of those behaviors (Kahneman, 2011), when enacted both deliberate 

routines and subconscious habits form similar patterns. Note that, although we consider 

routines that may include bad habits and other behaviors that could negatively impact 

people, we exclude a discussion on pathological behaviors, such as addiction, which 

require special consideration. 

4.1   Defining Routine Behaviors 

At the highest level, we can define routines as rules: actions Y that people perform when 

in situation X that is the cause of action Y (Hodgson, 1997). Such a definition is too high 

level and is missing many aspects that define routines, and thus does not give enough 

information to be operationalized into a computational model of routines. For example, 

Hodgson (1997) does not explicitly describe what makes up situations that influence 

people’s actions. This is likely because such features will vary across different types of 

routines (e.g., features that describe situations and actions in a daily routine are different 

from those in a driving routine. 

However, many existing routine definitions include essential features of routine behaviors. 

For example, some existing definitions consider routine only those actions that repeat on a 

specific time interval (Brdiczka, Su, & Begole, 2010; Casarrubea et al., 2015). Other such 

commonly considered routine defining features include spatial context (Feldman, 2000), 

and social influences (Hodgson, 2009). However, it is more likely that different routines 

are defined by combinations of multiple different features of situations and actions. 

One such influence that few existing definitions of routines explicitly consider are people’s 

goals, which provide motivation to act. For example, Pentland & Rueter (1994) loosely 

define routine behaviors of individuals that are part of an organization as “means to an 

end;” and Hamermesh (2003) proposes that people perform routine actions to maximize 

utility, which implies an existence of a goal. However, this aspect of routines requires more 



 28 

considerations. People act with a purpose because they want to attain a goal, and they 

behave in a way that they think is appropriate to reach that goal (Taylor, 1950). Goals give 

people an intention to act (Ajzen, 1991) and given availability of requisite opportunities 

and resources (Ajzen, 1985), encoded as other situational features, can such intention result 

in an enacted behavior that we attempt to model. 

Hodgson (1997) also does not specify the granularity of situations and actions. However, 

behavioral theories, such as Activity Theory (Kuutti, 1995), often consider activities people 

perform at different levels of granularity. Picking the right granularity depends on the 

activity we want to study. Pentland & Rueter’s (1994) definition explicitly accounts for 

this by breaking down routines into different hierarchical levels made up of activities at 

different levels of granularity. Such activities are made up of sequences of actions people 

perform in different situations that are characteristic of the routine. Chaining different pairs 

of situations and actions in Hodgson’s (1997) definition can broadly encompass the 

sequential nature of routine actions in such activities (Pentland & Rueter, 1994). 

Hodgson’s (1997) definition implies that if a situation reoccurs so will the action that the 

person performs in that situation. This gives rise to the idea of recurrence of behaviors that 

characterize routines as people repeatedly perform those behaviors (Agre & Shrager, 

1990). Hodgson’s (1997) definition further implies a rigid, one-to-one mapping between 

situations and actions, which suggests that repeated behavior instances will also be 

characterized by same rigidity (Brdiczka et al., 2010). However, routines, like most other 

kinds of human behaviors, have high variability (Ajzen, 1991). Thus, a unified definition 

must consider that routines may vary from enactment to enactment (Hamermesh, 2003). 

Also, people adapt their routines over time (Ronis et al., 1989) based on feedback from 

different enactments (Feldman & Pentland, 2003). 

Thus, we identify four main properties of routine behaviors in existing work: 1) structure 

that defines the relationships and transitions between situations and actions, 2) ordering of 

situations and actions within those structures, including the inherit variability of those 

orders, 3) granularity, and 4) the motivation for acting in a routine manner. 



 29 

4.2   Unified Routine Definition 

We use the four properties of routines as a starting point to define high-level structure of 

routines and to clarify and scope down the existing routine definitions. Put together, they 

form a unified definition of routine behavior that can be operationalized into a 

computational model of routines. We, thus, propose our own unified definition of routine 

behavior: 

Routines are likely, weakly ordered, interruptible sequences of causally related 

situations and actions that a person will perform to create or reach opportunities that 

enable the person to accomplish a goal. 

Our unified definition strongly builds on Hodgson’s (1997) definition to give structure and 

ordering to routine behavior, while at the same time allowing for variability in behavior. 

We do this by introducing a probability distribution over the situation and action pairs 

(corresponding to rules in Hodgson’s (1997) definition). The probability distribution of 

situations and actions and the behavior structures they form are still characterized by causal 

relations between features of situations and actions that help describe and explain routines, 

that Hodgson’s (1997) insists on. Similarly, the probability distribution of transitions 

between situations and action implies ordering of sequences. 

However, our definition gives meaning to such ordering by explicitly stating that the order 

(and continuity) or a routine is driven by user preference given actions that are possible in 

the environment. Thus, we specifically require that situations and actions include 

information about people’s goals and opportunities to accomplish those goals. Unlike some 

other definitions, we do not attribute recurrence and repetitiveness to routines directly, but 

to features of situations in the environment (i.e., if situations repeat, so will corresponding 

actions).  

We leave the features of situations and actions unspecified because finding such features 

in the data is dependent on the domain and research question that stakeholders want to 

answer. We leave the granularity of such features unspecified for the same reasons. As 

such, our routine definition implies that situation and actions must be represented at the 



 30 

lowest level of granularity allowed by either the domain or the data used to compute a 

future model of routine behaviors. 

4.3   Unified Routine Definition and Existing Models of Routines 

The existing routine models (Eagle & Pentland, 2009; Farrahi & Gatica-Perez, 2012; Li et 

al., 2009; Magnusson, 2000) do not capture all aspects of our unified definition of routines. 

As well, none of the models clearly differentiate between situations and actions. They can 

either consider events that describe situations only (actions are implicit) or events that are 

a combination the two. This limits the ability of such models to describe and explain 

routines because they do not explicitly model the causal relationships between situations 

and actions that define and describe routines. Also, by treating situations and actions 

separately allows the stakeholders to understand their separate effects and target 

interventions at people or their environments. Each of the existing approaches focuses on 

modeling limited aspects of routine behaviors. For example, Li’s et al. ( 2009) model of 

routines exactly matches Pentland & Rueter’s (1994) definition of routines as grammars of 

behavior. However, that means that their model is only able to encode routine activity 

hierarchy (sequences of activities at different granularities), but not the causal relationships 

that define routines. 

Both T-patterns (Magnusson, 2000) and Eigenbehaviors (Eagle & Pentland, 2009) focus 

on temporal relationships between multivariate events. By considering time, they still 

implicitly model other aspects of the routines. For example, sequences of situations and 

actions can be expressed over a period of time, and recurrent situations are often periodic. 

However, this is a limited view of routines because there are clearly other forces that 

influence people’s free choice to act (Hamermesh, 2003). Although time may be correlated 

with many aspects of routine behaviors, it may not necessarily have a causal effect on 

people’s actions. For example, people will attend a scheduled weekly meeting because of 

social interactions and norms, but not simply because of a specific day of week and time 

of day (Weiss, 1996). 



 31 

From this we conclude that while these algorithms are helpful for extracting routines from 

behavior logs, they are not sufficient for providing a holistic understanding of a routine 

behavior. Thus, we propose a new model that is grounded in our unified definition of 

routine behavior. 

  



 32 

5   COMPUTATIONAL MODEL OF ROUTINE BEHAVIOR 

In this section, we present an approach to automatically extract and model routines from 

large behavior logs. Our model captures all aspects of routines as detailed by our unified 

definition of routines. We model routines as likely, weakly ordered, interruptible sequences 

of situations and actions encoded as a Markov Decision (MDP) (Puterman, 1994). 

Traditionally, an MDP consists of set of states, representing situations, a set of possible 

actions that agents can freely chose to perform in those situations, and a set of possible 

transitions into new situations resulting from those actions. After performing each action, 

the person transitions to a new situation that reflects the effects of the action and other 

factors the person has no control over on their environment. We refer to such transitions as 

world dynamics. This allows us to encode all possible behavior instances, i.e., all possible 

ordered sequences of situations and actions, and their likelihood. We learn the probabilities 

of actions and situation transitions from the data to identify and differentiate routine 

variations (likely behavior instances) from instances characteristic of deviations and other 

uncharacteristic behaviors. 

Our contribution to modeling routines is our insight that the byproducts of MaxCausalEnt 

(Ziebart, 2010), a decision-theoretic algorithm typically used to train MDP models from 

behavior logs and predict people’s activity, capture the relationship between people’ 

estimated reward function and the likelihood of an action in different situations in which 

people perform those actions. Using MaxCausalEnt (Ziebart, 2010), we can build a 

probabilistic model of routines that, unlike models that extract only the most frequent 

routines, also captures likely variations from those routines, even in infrequent situations. 

Our approach does this by modeling probability distributions over all possible 

combinations of situations and actions. Our approach supports both individual and 

population models of routines, providing the ability to identify the differences in routine 

behavior across different people and populations. 

We later show that the probabilistic nature of the model allows the stakeholders to find 

supporting evidence for their conceptual model (their understanding of routines) by: 1) 

automatically detecting which behavior instances in the data are characteristic of a routine 



 33 

(e.g., aggressive driving routine) and which ones are deviations, 2) automatically 

generating example behavior instances that are characteristic of a routine, and 3) 

automatically predicting outcomes characteristic of a routine (e.g., whether routines a 

cancer patient who has undergone a surgery will lead to rehospitalization). This also allows 

comparing routine variations across two competing routines (e.g., aggressive driving 

routine vs. non-aggressive driving routine). In later chapters, we show how the model 

automates the information foraging loop (Pirolli & Card, 2005) by automatically searching 

for salient patterns that form routine variations. Stakeholders can inspect these patters to 

understand characteristic behaviors that describe a routine to develop a conceptual model 

of a routine. Our general model helps stakeholders make sense of routine behaviors across 

different domains. 

5.1   Model of Human Routine Behavior 

We model demonstrated routine behavior using a Markov Decision Processes (MDP) 

framework (Puterman, 1994). MDP is particularly well suited for modeling human routine 

behavior because it explicitly models people’s situations, the actions that they can perform 

in those situations, and the preferences people have for different situations and actions 

(where situations with high preference imply user goals). We represent a routine model as 

a tuple (reminiscent of a Markov decision process): 

ℳ"#$ = &𝑆, 𝐴, 𝑃(𝑠-|𝑠, 𝑎), 𝑃(𝑎	
  |	
  𝑠), 𝑅(𝑠, 𝑎)3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (1) 

It consists of a set of situations 𝑆	
  (𝑠 ∈ 𝑆) representing context, and actions 𝐴	
  (𝑎 ∈ 𝐴) that 

a person can take. In addition, the model includes an action-dependent probability 

distribution for each situation transition 𝑃(𝑠-|𝑠, 𝑎), which specifies the probability of the 

next situation 𝑠- when the person performs action 𝑎 in situation 𝑠. This situation transition 

probability distribution 𝑃(𝑠-|𝑠, 𝑎) models how the environment responds to the actions that 

people perform in different situations. When modeling human behavior, the transitions are 

often stochastic (each pair (𝑠, 𝑎) can transition to many transition situations 𝑠- with 

different probabilities). However, if people have full control over the environment, they 

can also be deterministic (i.e., for each pair (𝑠, 𝑎) there is exactly one transition situation 



 34 

𝑠- with probability 1.0). Finally, there is a reward function 𝑅(𝑠, 𝑎) → ℝ that the person 

incurs when performing action 𝑎 in situation 𝑠, which represents the utility that people get 

from performing different actions in different contexts. 

People’s behavior is then defined by sequences of actions they perform as they go from 

situation to situation until reaching some goal situation. In an MDP framework, such 

behavior is defined by a deterministic policy (𝜋:	
  𝑆 → 𝐴), which specifies actions people 

take in different situations. Traditionally, the MDP is “solved” using algorithms, such as 

value iteration (Bellman, 1957), to find an optimal policy (with the highest expected 

cumulative reward). However, our goal is to find the expected frequencies of different 

situations and the probability distribution of actions given situations &𝑃(𝑎|𝑠)3 instead—

information necessary to identify people’s routines and variations. 

5.2   Data Modeling and Feature Engineering 

Data in behavior logs often consists of sequences of sensor readings, which we convert into 

sequences of discrete events represented by situation-action pairs. Unlike most of the 

existing routine models, we specifically differentiate which changes to environment we 

can attribute to situations (i.e., context) and which ones to actions that people can perform 

in those situations. This explicit separation also helps us capture effects of the environment 

on people’ behaviors. From the raw data, stakeholders can define: 1) a set of situations 𝑆 

defined by a set of features ℱ;<  which represent context, 2) a set of actions 𝐴 defined by a 

list of binary features ℱ=<  which represent activities that the people can perform. At any 

discrete event step, the situation features contain values of all the contextual sensor 

readings at that event, and actions contain feature values describing the activity the people 

performed at that event. For example, when modeling driving behaviors, speed sensor 

reading could be used to express the current discretized speed of the vehicle in the current 

situation, while throttle sensor could describe how much the driver presses on the gas pedal 

to maintain or change that speed. We automatically convert raw data from behavior logs 

into behavior instances that we can use to train our routine model. 



 35 

Our current modeling approach considers discrete categorical features that uniquely 

describe situations and actions that we need to study. Each feature in our model is a binary 

feature that can be true or false (1 or 0). Thus, both situations and actions can be represented 

using vectors ℱ;<  and ℱ=<  of such binary features. Consider a simple example behavior 

model that captures users’ interaction with a mobile device screen that can be off or on. In 

our model this would result in a situation with two binary features which can be 1 or 0: one 

to indicate if the screen is on and another to indicate if the screen is off. It is important to 

note that even though these two features are mutually exclusive, we still need to represent 

both as either 1 or 0. This is because, in our MDP model, we assume a parametric reward 

function that is linear in ℱ>,?, given unknown weight parameters 𝜃: 

𝑅(𝑠, 𝑎) = 𝜃A ∙ ℱ;<,=<	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (2) 

This associates each feature with a weight that signifies the preference for that feature (e.g., 

how much the user prefers to have the screen on vs. how much the user prefers to have the 

screen off). Each time the person performs an action in a current situation the person incurs 

the reward based on Equation 2. The final reward associated with performing any behavior 

instance is thus equal to the sum of all rewards for each situation-action pair in the 

sequence. We assume that people behave in a way where preferred sequences will result in 

lager reward than others. When trying to recover this reward from data, we assume that 

frequently “visited” features are the preferred ones. 

5.3   Learning Routine Patterns from Demonstrated Behavior 

In this section, we explore how the MaxCausalEnt algorithm (Ziebart, 2010), an algorithm 

typically used to predict human behavior (Ziebart, et al., 2008; Ziebart et al., 2009), can be 

applied in a novel way to extract routine behavior patterns that match our definition of 

human routine behavior and relevant economic considerations from observed behavior 

data. MaxCausalEnt algorithm (Ziebart, 2010) makes its predictions by computing a policy 

(𝜋:	
  𝑆 → 𝐴) that best predicts the action people take in different situations. Our main 

contribution is our insight that in the process of computing this policy, MaxCausalEnt 

algorithm (Ziebart, 2010) computes two other functions that express how likely it is that a 



 36 

situation and action are part of a routine: 1) the expected frequency of situations (𝐷;), and 

2) probability distribution of actions given situations &𝑃(𝑎|𝑠)3. We now describe how we 

compute these two functions and how they relate to routines. 

Inverse Reinforcement Learning (IRL) (Ng & Russell, 2000) approaches, which 

MaxCausalEnt (Ziebart, 2010) is based on, assume that people assign a utility function 

(modeled as the reward functions 𝑅(𝑠, 𝑎)), which they use to decide which action to 

perform in different demonstrated situations. Each situation and action combination in our 

MDP model is expressed by a feature vector ℱ>,?. For example, in an MDP that models 

daily commute routines, situations can have features that describe all possible locations 

that a person can be at, and actions can have features that describe if the person is staying 

at or leaving the current location. As is common for IRL algorithms (Ng & Russell, 2000; 

Ziebart, Bagnell, & Dey, 2013), we assume a parametric reward function we defined in 

Equation 2. 

We begin the process of recovering the expected situation frequencies (𝐷;) and probability 

distribution of actions given situations (𝑃(𝑎|𝑠)) by trying to learn the person’s reward 

functions 𝑅(𝑠, 𝑎) from demonstrated behavior. This problem reduces to matching the 

model feature function expectations (𝐸P(>,?)	
  [ℱ(𝑆, 𝐴)]) with demonstrated feature 

expectations (𝐸$(>,?)[ℱ(𝑆, 𝐴)]) (Abbeel & Ng, 2004). Intuitively, this means that the 

model will have the same preference for different situations and actions as the people 

whose behaviors we are modeling. To match the expected counts of different features, we 

use MaxCausalEnt IRL (Ziebart, 2010), which learns the parameters of the MDP model to 

match the actual behavior of the person. Unlike other routine modeling approaches 

described earlier, MaxCausalEnt explicitly models the causal relationships between 

situations and actions, and keeps track of the probability distribution of different actions 

that people can perform in those situations.  

To compute the unknown parameters 𝜃, MaxCausalEnt (Ziebart, 2010) considers the 

causal relationships between all the different features of the situations and the actions. The 

Markovian property of MDP, which assumes that the actions a person performs only 

depend on the information encoded by the previous situation, makes computing the causal 

~ 

~ 

 



 37 

relationships between situations and actions computationally feasible. MaxCausalEnt 

(Ziebart, 2010) extends the Principle of Maximum Entropy (Jaynes, 1955) to cases where 

information about probability distribution is sequentially revealed, as is the case with 

behavior logs. This principle ensures that the estimated probability distribution of actions 

given situations &𝑃(𝑎|𝑠)3 is the one that best fits the situation and action combinations 

from the sequences in the behavior logs. 

MaxCausalEnt IRL maximizes the causal entropy (𝐻(𝑨A ∥ 𝑺A)) of the probability 

distribution of actions given situations &𝑃(𝐴N|𝑆N)3: 

argmax
$&𝐴NT𝑆N3

𝐻(𝑨A ∥ 𝑺A)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (3)	
  

such that: 

𝐸P(>,?)	
  [ℱ(𝑆, 𝐴)] 	
  = 	
  𝐸$V(S,A)[ℱ(𝑆, 𝐴)]	
  

∀Z<,[< 	
  𝑃(𝐴N|𝑆N) ≥ 0 

∀Z<,[< 	
  ^𝑃(𝐴N|𝑆N) = 1 

The first constraint in the above equation ensures that the feature counts calculated using 

the estimated probability distribution of actions given situations (𝑃(𝐴N|𝑆N)) matches the 

observed counts of features in the data, and the other two ensure that 𝑃(𝐴N|𝑆N) is an actual 

probability distribution. 

Using the action-based cost-to-go (𝑄), which represents the expected value of performing 

action 𝑎N in situation 𝑠N, and situation-based value (𝑉) notation, which represents the 

expected value of being in situation 𝑠N, the procedure for MDP MaxCausalEnt IRL 

(Ziebart, 2010) reduces to: 

𝑄a
;bcN 	
  (𝑎N, 𝑠N) 	
  = 	
  ^𝑃(𝑠Nde|𝑠N, 𝑎N) ∙ 𝑉a

;bcN(𝑠Nde)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (4)
;<gh

	
  

𝑉a
;bcN(𝑠N) = softmax

=<
𝑄a
;bcN(𝑎N, 𝑠N) + 𝜃A ∙ ℱ;<,=<	
  



 38 

Note that this is similar, but not the same as stochastic value iteration (Bellman, 1957), 

which would model optimal and not observed behavior. The probability distribution of 

actions given situations is then given by: 

𝑃(𝑎N|𝑠N) = 𝑒op
qrs<	
  (=<,;<)tup

qrs<(;<)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (5) 

The probability distribution of actions given situations 𝑃(𝑎|𝑠) and the situation transition 

probability distribution 𝑃(𝑠-|𝑠, 𝑎) are used in a forward pass to calculate the expected 

situation frequencies (𝐷;). This optimization problem can then be solved using a gradient 

ascent algorithm. Ziebart ( 2010) provides proofs of these claims and detailed pseudocode 

for the algorithm above. 

5.4   Validating the Model of Human Routine Behaviors  

In this section, we show how stakeholders can evaluate the quality of behavior patterns 

extracted using our model on two example data sets. We show how stakeholders can ensure 

that the routine actions we extract are predictive of most behaviors in the data; i.e., that the 

algorithm is sufficiently predictive for modeling routines. Accuracy of this prediction task 

also quantifies the variability of the routines in the model, where high accuracy suggests 

low variability. It also shows that the extracted routines generalize to situations and actions 

that are not present in the training data. Then, we show how stakeholders can make sure 

that the routines extracted using our approach are meaningful. 

During the evaluation process, stakeholders may want to answer specific questions about 

a routine behavior captured in the model. We express this knowledge in three research 

question that stakeholders may want to answer: 

1.   What is the full complexity of routine behavior? (RQBeh): To make sense of 

routines, it is critical to discern all aspects of routine behavior from the model. This 

includes finding relationships between different features of situations and actions, 

and learning which features describe opportunities people seek to accomplish their 

goals (both modeled as features that people have a demonstrated preference for). 



 39 

2.   What are variations that are characteristic of a routine? (RQVar): Routines are 

characterized by routine variations—behavior instances that are characteristic of 

that routine. Therefore, stakeholders must be able to differentiate such variations 

from deviations and other uncharacteristic behaviors. 

3.   How do routines compare across individuals and populations? (RQComp):  An 

important part of understanding a particular routine is the ability compare the 

routine within and between individuals and populations. For example, to 

understand routines of aggressive drivers, it is important to compare it against 

routines of non-aggressive drivers. 

Part of the modeling process involves making sure that a routine model extracted 

meaningful routines from behavior logs. Stakeholders can do this by searching for evidence 

and relationships in the patters of behaviors captured in the model. Using two different 

existing human activity data sets, we evaluate the ability of stakeholders to make sense of 

different types of routines extracted using our approach from diverse types of behavior 

logs: people’s daily schedules and commutes (Davidoff et al., 2010) and activities that 

describe how people operate a vehicle (Hong et al., 2014). We show that the extracted 

routine patterns are at least as predictive of behaviors in the two behavior logs as the 

baseline we establish with existing algorithms. Next, we recruited domain experts who 

work with human activity and routine data to verify that patterns extracted using our 

approach are meaningful and match the ground truth reported in previous work (Davidoff 

et al., 2010; Hong et al., 2014). For this task, we developed a visual analytics tool that 

enables domain experts to visually explore and compare the routines extracted using our 

approach. 

5.4.1   Training Models of Routine Behavior 

We illustrate our routine modeling approach on two previously collected data sets from the 

literature that contain logs of demonstrated human behavior. The first data set contains 

daily commute routines of all family members from three two-parent families with children 

from a mid-sized city in North America (Davidoff et al., 2010). The data set was used to 

predict the times the parents are likely to forget to pickup their children (Davidoff et al., 

2011). The other data set contains driving routine behavior of aggressive and non-



 40 

aggressive drivers as they drive on their daily routes (Hong et al., 2014). The data set was 

used to classify aggressive and non-aggressive drivers.  

We picked these two data sets to show the generalizability of our approach to different 

types of routines. The two data sets contain routine tasks people perform daily, but that are 

very different in nature. The family daily routine data set incorporates the traditional spatio-

temporal aspect of routines most of the existing work focuses on. The driving data set 

contains situational routines that are driven by other types of context (e.g., the surrounding 

traffic, the current position of the car in the intersection). 

The two data sets also differ in granularity of the tasks. The commute routines happen over 

a longer period of time and the granularity of the task is very coarse with few actions that 

people can perform in different contexts (e.g., stay at the current place or leave and go to 

another place). The daily routines are therefore defined by the situations the people are in. 

The aggressive driving data set contains fine-grained actions, which often occur in parallel, 

that people perform to control the vehicle (e.g., control the gas and brake pedals and the 

steering wheel). Driving routines are therefore primarily defined by the drivers’ actions in 

different driving situations. The driving data set also showcases the ability of our approach 

to capture population models (e.g., aggressive drivers vs. non-aggressive drivers) and 

enable comparison of routines across different populations. 

5.4.1.1   Family Daily Routines Data Set 

Situations when one of the parents is unable to pickup or drop-off a child create stress for 

both parents and children (Davidoff et al., 2010). To better understand the circumstances 

under which these situations arise, it is important to identify when the parents are 

responsible for picking up and dropping off their children (RQBeh), when variations occur 

and how parents handle deviations from such routine situations (RQVar). This requires 

finding and understanding how the parents organize their daily routines around those 

pickups and drop-offs (RQComp). 

This data contains location sampling (latitude and longitude) at one-minute intervals for 

every family member (including children) in three families from a mid-sized city in North 

America (Davidoff et al., 2010). Location information was manually labeled based on 



 41 

information from bi-weekly interviews with participants. Participants also provided 

information about their actual daily routines during those interviews. 

We converted the location logs into sequences of situations and actions representing each 

individual’s daily commute for each day in the data set. Situation features included the day 

of the week, hour of the day, participant’s current place, and whether the participant stayed 

at the location from the previous hour, arrived at the location during the current hour, or 

left the location during the hour (Table 1). Action features included the participant’s current 

activity that could be performed in those situations (Table 2). Participants could stay for 

another hour, leave the location, and once they have left a location go to another location. 

The data contained a total of 149 days. 

We modeled the situation transition probabilities (𝑃(𝑠-|𝑠, 𝑎)) as a stochastic MDP to model 

the environment’s influence on arrival time to a destination. The participants could stay or 

leave a place with 100% probability. Once the participants leave their current location, 

their arrival time at their destination depends on their desired arrival time and the 

environment (e.g., traffic, travel distance). To model the influence of the external variables, 

we empirically estimate the probability that participants have arrived at another place 

within an hour or not. The median number of situations and actions per family were 14,113 

and 85 respectively, for all combinations of possible features. 

Table 1. Situation features capturing the different contexts of a daily commute. 

Feature   Description  
Day   Day  of  week  {M,  T,  W,  Th,  F,  Sa,  Su}  
Time   Time  of  day  in  increments  of  1  hour  {0-­23}  
Location   Current  location  
Activity   Activity  in  the  past  hour  

{STAYED  AT,  ARRIVED  AT,  TRAVELING  FROM}  

 

Table 2. Action features representing actions that people can perform when at a location. 

Feature   Description  
Activity   Activity  people  can  perform  in  current  context  

{STAY  AT,  TRAVEL  TO}  
Location   The  current  location  to  stay  at  or  next  location  to  go  to  



 42 

5.4.1.2   Aggressive Driving Behavior Data Set 

Drivers that routinely engage in aggressive driving behavior present a hazard to other 

people in traffic (AAA, 2009). To understand aggressive driving routines, it is important 

to explore the types of contexts aggressive drivers are likely to prefer (e.g., turn types, car 

speed, acceleration) and the driving actions they apply in those contexts (e.g., throttle and 

braking level, turning) (RQBeh). Aggressive drivers might also be prone to dangerous 

driving behavior that does not occur frequently (e.g., rushing to clear intersections during 

rush hour (Shinar & Compton, 2004)). Such behavior might manifest itself as different 

routine variations (RQVar). 

It is also important to compare the routines of aggressive drivers with non-aggressive 

drivers to understand how aggressive drivers can improve their routine (RQComp). To 

understand those differences, it is not enough to compare the situations both groups of 

drivers find themselves in, but also the actions that drivers perform in those situations. This 

is because both aggressive and non-aggressive drivers can attain similar driving contexts, 

but the quality of the execution of driving actions may differ. For example, both types of 

drivers might stop at a stop sign on time, but aggressive drivers might have to brake harder 

or make more other unsafe maneuvers than non-aggressive drivers. 

This data set contains driving data from 22 licensed drivers (11 male and 11 female; ages 

between 21 and 34) from a mid-sized city in North America (Hong et al., 2014). 

Participants were asked to drive their own cars on their usual daily driving routes over a 

period of 3 weeks. Their cars were instrumented with a sensing platform consisting of an 

Android-based smartphone, On-board Diagnostic tool (OBD2), and an inertial 

measurement unit (IMU) mounted to the steering wheel of the car. Ground truth about 

participants’ driving styles (aggressive vs. non-aggressive) was established using their self-

reported driving violations and responses to the driver behavior questionnaire (Hong et al., 

2014). The driving data collected in the study included: car location traces (latitude and 

longitude), speed, acceleration, engine RPM, throttle position, and steering wheel rotation. 

Sensor data was recorded every 500 milliseconds. 



 43 

We use a subset of this data focused on intersections (where instances of aggressive driving 

are likely to occur (Shinar & Compton, 2004)). We used location traces of the participants’ 

driving routines to manually label intersections and the position of the vehicle in those 

intersections. One of the limitations of this data set is that there is no information about 

other vehicles and traffic signs and signals that represent the environment. We then split 

the intersection instances into sequences of sensor readings that start 2 seconds before the 

car enters the intersection, and end 2 seconds after the car exits the intersection. This 

resulted in a total of 49,690 intersections from a total of 542 hours of driving data from 

1,017 trips. 

To model situations we combined the driver’s goals (e.g., make a right turn), the 

environment (e.g., position in intersection), and the current state of the vehicle (e.g., current 

speed) into features of the situations (Table 3). Actions in our model represent how the 

driver operates the vehicle by steering the wheel, and depressing the gas (throttle) and brake 

pedals. We aggregate the driver’s actions between different stages of the intersection and 

represent the median throttle and braking level, and note any spikes in both throttle and 

Table 3. Situation features capturing the different contexts the driver can be in. 

Feature   Description  
Goals  

Maneuver   The  type  of  maneuver  at  the  intersection  
{STRAIGHT,  RIGHT  TURN,  LEFT  TURN,  U-­TURN}  

Environment  
Position   Current  position  of  the  car  in  the  intersection  

{APPROACHING,  ENTERING,  EXITING,  AFTER}  
Rush  hour   Whether  the  trip  is  during  rush  hour  or  not  

{TRUE,  FALSE}  
Vehicle  

Speed   Current  speed  of  the  vehicle  (5-­bin  discretized)  
Throttle     Current  throttle  position  (5-­bin  discretized)  
Acceleration   Current  positive/negative  acceleration  (9-­bin  discretized)  
Wheel  Position   Current  steering  wheel  position  

{STRAIGHT,  TURNING,  RETURNING}  
Turn   Current  turn  vehicle  is  involved  in  

{STRAIGHT,  SMOOTH,  ADJUSTED}  

Table 4. Action features representing actions that drivers can perform between stages of the 

intersection. 

Feature   Description  
Pedal   Median  throttle  (gas  and  brake  pedal)  position  

(10-­bin  discretized)  
Throttle  Spike   Sudden  increases  in  throttle  

{NONE,  SUDDEN,  INTERMITTENT}  
Brake  Spike   Sudden  braking  

{NONE,  SUDDEN,  INTERMITTENT}  
Turn  style   Type  of  turn  driver  performed  in  intersection  

{STRAIGHT,  SMOOTH,  ADJUSTED}  



 44 

braking. We consider the movement of the steering wheel to estimate whether the driver 

turned in one smooth action, or if the turn required one or more adjustments. Table 4 shows 

action features in our model. We identified 7,272 different situations and 446 different 

actions in the data set. 

5.4.2   Quantifying Routineness of Human Behavior 

Although we are not interested in the predictive power of the MaxCausalEnt IRL per se, 

we use the task of predicting the next action given a situation to evaluate our model’s ability 

to extract routine. Using 10-fold cross validation for each person in each dataset, we 

compare the performance of this algorithm for extracting routine behavior with a Zero-R 

algorithm, which always predicts the overall most frequent action, and a first-order Markov 

Model algorithm, which always predicts the most frequent action for each situation. We 

chose these baselines because they explicitly establish the frequency of actions in the 

training set. Matching or exceeding these baselines means that the algorithm has correctly 

identified frequent routine actions and that the predictive power of the algorithm is 

sufficiently high to model routines. 

The mean accuracy of the MaxCausalEnt on the family daily routines dataset was 0.81 

(SD=0.09), compared to first-order Markov Model mean accuracy of 0.66 (SD=0.07) and 

ZeroR mean accuracy of 0.51 (SD=0.09). MaxCausalEnt algorithm likely outperformed 

the first-order Markov Model because of its ability to better generalize from training data. 

The accuracy of MaxCausalEnt algorithm also suggests low variability of routines in 

people’s daily schedules. 

The mean accuracy of the MaxCausalEnt on individual models of driving routines was 

0.54 (SD=0.05) compared to first-order Markov Model mean accuracy of 0.58 (SD=0.06) 

and ZeroR mean accuracy of 0.33 (SD=0.06). MaxCausalEnt algorithm and the first-order 

Markov Model had similar accuracies likely because in each fold the training set was 

representative of the testing set. However, decision-theoretic guarantees of MaxCausalEnt 

that ensure it makes the least number of assumptions to fit the observed data make it less 

likely to overfit the training data in general. Relatively low accuracy of both MaxCausalEnt 



 45 

and the first-order Markov Model on this data set suggests a lot of variability in the driving 

routines. 

5.4.3   Visual Exploration of the Model 

We now show that the routine patterns extracted using our approach match the actual 

routines of people. To do this, we recruited domain experts who work with machine 

learning and data mining in the domain of human behavior, and asked them to identify the 

routines and variations extracted using our approach. We then confirmed that those patterns 

matched the ground truth behaviors established in the existing work (Davidoff, 2010; Hong 

et al., 2014). This allowed us to verify that the patterns extracted using our approach are 

meaningful and represent the actual routines. 

5.4.3.1   Study Software 

To make the routine behavior models created using our approach accessible to participants 

and allow them to investigate the extracted routine patterns, we developed a simple 

visualization tool. To maintain a level of familiarity, we base our visual encoding of routine 

behavior elements on a traditional visual representation of an MDP as a graph (Figure 1). 

Our MDP graph contains nodes representing situations (as circles) and actions (as squares), 

directed edges from situation nodes to action nodes (indicating possible actions people can 

perform in those situations), and directed edges from actions to situations (indicating 

situation transitions for any given situation and action combination). 

To enable participants to see changes in features of situations and actions, we encode 

situation features and action features as a series of color-coded circular marks arranged in 

a spiral shape within the nodes. Each feature has a dedicated hue. Feature values that are 

present in the node are represented by a dark shade, and feature values not present in a light 

shade of that color. A dark boundary serves as a separator between features. More details, 

in text are always available simply by moving the cursor over a node (Figure 1.C). 

To show frequent behaviors in the model, we visually represent the probability of different 

graph elements using line thickness. Thickness of the outside line of the situation and action 

nodes encodes the frequency of that situation in a behavior sequence (𝐷;), where thicker 



 46 

lines indicate situations that are likely to be part of a routine. Similarly, the thickness of the 

edges encodes the probability of that edge. Thickness of edges from situations to actions is 

given by the probability distribution of actions given situations (𝑃(𝑎|𝑠)), and represents 

the influence of each situation on the choice of actions. The thickness of edges from actions 

to situations is given by the probability of transition (𝑃(𝑠-|𝑠, 𝑎)). 

To layout the nodes, we sort the initial situations from the demonstrated sequences by their 

frequency (𝐷;) in descending order. We then use a version of the depth-first search 

algorithm, starting from the initial situation nodes, that traverses nodes by first iterating 

over edges in order from highest to lowest probabilities 𝑃(𝑎|𝑠) and 𝑃(𝑠-|𝑠, 𝑎). Situation 

nodes are never duplicated (i.e., there is exactly one node in the layout for each situation 

in the model), whereas action nodes are duplicated for each situation. 

When the participant selects a data set and population, the tool provides the initial layout 

of routines extracted using our algorithm. This shows the most important information about 

the extracted routines. However, to further analyze the routine behavior, the participant 

must be able to explore the details of routine variations filtered out as aggregate nodes 

(Figure 1.B.3). For example, the participant might want to find which of the parents’ 

routines include locations where they pickup and drop off their children. 

Aggregated items contain valuable information about potential routine variations. For 

example, a child might go to her grandparents or their friend’s house on Wednesdays after 

school; two variations on the same routine that occur with similar probability. To show all 

possible variations in an aggregate, the participant can click on the aggregate to expand its 

content. To mark an aggregated node as a variation of interest, the researcher can pin that 

aggregated node by clicking on it, thus removing it from all of its aggregate parents. When 

the researcher holds Alt-key and clicks on an aggregated node, this pins all the nodes on 

the most likely sequence of situations and actions, determined by the probabilities of edges 

between the two. The pinned sequence, starting from the clicked node to the sequence end 

node, represents a routine variation. Pinned nodes are identified by a gray glow effect. All 

nodes that are part of the extracted routine are automatically pinned, and all other nodes 



 47 

are unpinned. Clicking on a pinned node unpins it, which returns the node into the 

aggregate. 

To determine whether or not to pin the node, the researcher can review the features of 

individual and aggregate nodes by hovering over them. In addition to showing the details 

of individual nodes in the details panel (Figure 1.C), hovering over nodes shows 

relationships between different elements of the routine. Hovering over any node highlights 

the most likely routine path from an initial situation to the collecting node that contains the 

hovered over node (Figure 1.B.1). This makes it easier to understand the routine situations 

and actions in the area of interest. 

5.4.3.2   Participants 

To verify the routines, we have recruited 8 researchers (5 male and 3 female) that have had 

experience with machine learning and data mining, or have worked in the domain of 

 

Figure 1. Study software user interface showing the main routine and one likely variation of non-

aggressive drivers extracted using our approach: A) overview panel, B) the main display area 

containing subgraphs representing automatically extracted routine sequences of situations (circles) 

and actions (squares), B.1) the user is hovering over a node to highlight extracted routine (nodes 

highlighted in purple and dark gray edges), B.2) an action that starts a variation from the main routine 

B.3) aggregate items representing possible extracted variations, and C) details panel showing 

information about visual elements on demand. 



 48 

activity recognition and human routine modeling. The participants included Ph.D. students, 

Postdoctoral fellows, Research Scientists, and Professors working or visiting at our local 

University. All participants had experience with machine learning, 2 with data mining, 4 

with activity recognition, and 1 worked specifically on modeling human routine behavior. 

The participants were compensated $25 for taking part in the study. 

5.4.3.3   Method 

When participants arrived at our lab, we briefed them on the purpose of the study and they 

signed a consent form. They then filled out a short questionnaire asking them about their 

occupation and experience with relevant research topics. We then demonstrated the visual 

tool to the participants and allowed them to practice using it for approximately 20 minutes. 

Participants had to complete two tasks: 1) identify daily routine for a randomly chosen 

person and weekday from the daily routines data set, and 2) identify the differences 

between routines of non-aggressive and aggressive drivers from the driving data set. The 

first task took approximately 20 minutes, and the second task about an hour. Total study 

time was approximately between one and a half and two hours. 

For the two tasks, we asked participants to identify routines and differences between the 

routines without presenting them with the ground truth. We did this to avoid biasing the 

participants towards trying to match the routines presented in the tool with what we might 

have told them is the correct answer. We then compared their answers with the ground 

truth from the previous literature to verify that the tool extracted the right and meaningful 

routine. Because the main purpose of the study was to validate the extracted routines and 

not evaluate the usability of the tool, participants could ask clarifying questions about the 

tool and the user interface at any point during the tasks. 

5.4.3.4   Ground Truth 

In the first task, we used the family daily commute routines model to understand the 

patterns of pickups and drop-offs. We compare the findings of our participants with the 

ground truth and discussion provided by Davidoff et al. (2010). In this data set, the ground 

truth represents self-reported daily commute routines for all family members in all families 

that took part in the study. Family members reported their location and the time they usually 



 49 

arrive and leave that location. Davidoff et al. (2010) then manually annotated and 

confirmed the routines in the raw sensor data. 

In the second task, we used the driving routines of aggressive and non-aggressive drivers 

that Hong et al. (2014) identified in their data set. Hong et al. (2014) used their intuition 

and expert knowledge of driving behaviors to separately compare the distributions of each 

sensor stream in the raw data to gain insight about aggressive driving styles. They found 

that aggressive drivers drive faster than non-aggressive drivers, and that they experience 

higher acceleration than non-aggressive driver (i.e., they are more likely to press hard on 

the gas and brake pedals). Additionally, they found more variability in the behavior of 

aggressive drivers than non-aggressive drivers. 

5.4.3.5   Results 

Our results show that our approach extracts meaningful patterns of routine behavior. The 

participants were able to point out the patterns that form the high-level routines present in 

the ground truth for both tasks (RQBeh). For the daily routines task, this means that they 

successfully listed the locations and times of the routines of people in the daily routine data 

set. However, two participants identified two separate patterns where the locations and 

times reported as part of the main daily routine did not correspond to the ground truth. 

After careful examination, we found that the participants wrongfully identified the actions 

as part of the routines because the events were part of infrequent routine variations that the 

people in the original study did not report in the ground truth. The algorithm correctly 

assigned low probabilities to those actions, but the participants did not notice this. This is 

likely an issue with the visualization rather than the algorithm itself, and is something that 

can be addressed with more training with the tool. 

In addition to simply pointing to patterns that represented correct routines, participants also 

generated some insights for themselves. For example, all six participants that were 

presented with a parent’s daily routine that contained a child pickup or drop-off specifically 

pointed out this activity. Also, three participants, that had a case where the parent drops off 

the child as part of his or her routine, but does not also pick the child up, correctly explained 



 50 

that the other parent was likely responsible for the pickup, without seeing the other parent’s 

routines. 

In the driving data set, participants pointed to the patterns that form the main routines 

(RQBeh) and variations in driving behavior (RQVar) of both aggressive and non-aggressive 

drivers. All participants pointed to patterns that show that aggressive drivers are more 

likely to drive faster through intersections than non-aggressive drivers. Five participants 

showed the patterns of routine variations where aggressive drivers are likely to increase 

their throttle just before entering and leaving intersections. Participants pointed those out 

as the main differences between the two populations (RQCom). Two participants also 

pointed to the probabilities of routine variation patterns extracted using our approach that 

suggest that aggressive drivers are less consistent in their behavior than non-aggressive 

drivers. Participants likely drew their conclusions from the model, but might also have a 

preconceived notion that acceleration and speed are correlated with aggressive driving. 

However, even if our participants had preconceived notions, they could verify and 

document them using our model. 

Although evaluation of the visualization tool was not our main goal, 2 participants 

mentioned that such a tool would help them explore and understand human routines. One 

participant, who studies routine behaviors, pointed out that the organization of routine 

patterns and variations helped him clarify his understanding of what constitutes routines 

and how they manifest themselves in people’s activity. 

5.5   Summary 

In this section, we presented a novel approach for modeling human routine behavior from 

behavior logs that explicitly models all aspects of routines as defined by our unified 

definition of routine behavior.  This model automatically conceptualizes behaviors from 

data in behavior logs into a computational model of routines. Stakeholders could use this 

model to explore and understand routine behaviors. The ability to automatically detect and 

generate behavior instances automates a fundamental task in the behavior sensemaking 

process: finding evidence to support that the model captures patterns in the data that 



 51 

represent behaviors and not some other patterns in the data. In the next two sections, we 

show how a computational model of routine behaviors supports the sensemaking process. 

We showed how our models trained using MaxCausalEnt algorithm (Brian Ziebart, 2010) 

can extract patterns of routine behavior from demonstrated behavior logs. This is a novel 

application of an algorithm that was designed to predict human behavior. In our evaluation 

of the algorithm we found that its ability to predict routines from the two example data sets 

was sufficient for modeling routines. The ability of MaxCausalEnt algorithm to generalize 

from small sample sizes enabled it to beat the baseline in the daily routine data set. The 

performance of the algorithm was comparable with the first-order Markov Model in the 

aggressive driving data set. This is likely because the training data happened to match the 

testing data well. However, this is not safe to assume in general case, and MaxCausalEnt’s 

decision-theoretic guarantee that it will not overfit the observed data make it a better choice 

for modeling routines than the first-order Markov Model. 

Our visualization tool helps domain experts validate the ability of our approach to extract 

meaningful routines. The participants were able to explore situations, actions, and the 

relationships between the two, to correctly identify routine behaviors (RQBeh) and explore 

routine variations in the data (RQVar). Their findings matched the previous research. They 

pointed to different relationships that establish the differences between routines of the two 

driver populations (RQComp). Although we carefully designed our tool, our goal was not 

to formally evaluate its usability. We did not notice any usability issues that prevented 

participants from learning the elements of the model. We found that the participants knew 

how to progress towards understanding the routines. 

Our results imply that domain experts can use the patterns extracted using our approach to 

more quickly identify major aspects of routines by visually inspecting them, even after 

only short amount of training, compared to previous work. For example, Davidoff et al. 

(2011) performed tedious manual labeling of routine and routine variation patterns in the 

raw data based on feedback from the participants before presenting the patterns on a 

timeline. Hong et al. (2014) performed Exploratory Data Analysis in which used their 

intuition and expert knowledge of driving behaviors to separately compare the distributions 



 52 

of each sensor stream in the raw data to gain insight about aggressive driving styles. Our 

participants had to only explore the patterns extracted using our approach. 

The knowledge that the researchers gain about routine behaviors through exploring our 

models can inform the design of interventions that help people improve their routines. For 

example, the knowledge that aggressive drivers are likely to use higher throttles can inform 

the design of in-car systems that monitor the throttle and make the driver more aware of 

this aggressive behavior through subtle ambient notifications. Another advantage of our 

approach is the underlying MDP-based model, which can be used to power human-data 

supported interfaces that automatically classify current behaviors and prescribe new 

actions that improve existing routines. 

  



 53 

6   CAPTURING ECONOMICS OF ROUTINE BEHAVIOR 

In this section, we modify the basic MDP framework and its reward function representation 

to capture the specific economics that drive people’s behavior and their choice of actions 

in different situations. In Chapter 5, we used simple behaviors that allowed us to encode 

the structure of routine behaviors by specifying strict world dynamics. This allowed us to 

express the ordering and continuity of possible behavior instances in our routine model as 

features of the environment. In our driving examples the order of situations is fully defined 

by the position of the vehicle in the intersection and no deviations from this pre-set order 

that would disrupt the continuity of behavior were present in the model. However, many 

existing domains that are of interest to the HCI community contain behaviors where 

ordering and continuity is not well understood and needs to be estimated from the data. 

Here we detail our method for choosing and expressing different features of situations and 

actions that allow us to encode this broader category of behaviors in an MDP according to 

our definition of routines. Note that because we model people’s enacted behaviors, our 

approach may differ from other domains in which the goal of using an MDP is to find the 

optimal behavior of an agent, such as a robot. Instead, we model underlying motivations 

that people have for exhibiting actions that open up opportunities that allow them to reach 

certain desired, goal situations. In our method, the choice of possible actions that people 

perform and the order of those actions is driven by a desire to accumulate reward. Thus, 

behavior instances that allow people to accomplish a goal (i.e., reach a goal state) will 

accumulate more reward than other competing behavior instances that do not. We employ 

two basic principles in economics, opportunity cost and diminishing returns, to provide 

reasons behind order and alternation between competing behavior instances and routine 

variations they form. We assume that people choose between competing actions that they 

can perform, and thus competing sequences of behaviors, by considering the opportunity 

cost of another competing routine variation in light of diminishing returns of reaching and 

remaining in a goal situation. 

As with other computational models that are used to study a complex system, we pick and 

engineer features based on hypotheses about what influences behaviors and various 



 54 

outcomes. For example, clinicians have hypothesized that lack of activity is correlated with 

rehospitalization of patients who have undergone surgery to remove cancer (Low et al., 

2018) To build a computational model that helps clinicians study whether the lack of 

mobility leads to rehospitalization requires including both the outcome feature 

(rehospitalized or not) and a feature that expresses patients’ activity levels. However, 

historically pain and nausea have been identified as one of the main predictors of 

rehospitalization and should therefore be included in the model to avoid confounds. 

Although there is no “one-size-fits-all” approach to modeling routines across domains, in 

the following section, we discuss what feature engineering is required to ensure that we 

can capture different aspects of behaviors in our definition of routines. In later chapters we 

will detail domain-specific considerations for various routine behaviors across different 

domains. 

6.1   Extending Situation and Action Feature Engineering 

Here we build on our basic definition of situation and action features from Chapter 5 and 

extend it to account for economics of human behavior. Although MaxCausalEnt IRL 

(Ziebart, 2010) estimates the probability of behaviors using a reward function, it is 

dependent on feature engineering to ensure that the reward function can express the actual 

economics of behavior. In our previous chapters, we showed that such considerations are 

not as important when the economics of behavior (e.g., ordering and continuity of routine 

variations) are fully implied by world dynamics. However, often world dynamics do not 

fully capture the ordering and continuity of routine variations. We show how to engineer 

features in a way that allows us to apply reward function from Equation 2 to the problem 

of modeling broader categories of routine behaviors. 

6.1.1   Situation Features 

As we have seen in earlier chapters, situation features allow us to define all possible states 

of the environment in which behaviors are situated. As such, situation features broadly 

define the context, or information that is relevant to the current behavior (Dey, 2001). 

Whether a feature is relevant or not depends on hypotheses that the computational model 



 55 

is meant to explore and is thus domain specific. We consider two main categories of 

situation features that generalize across domains: 1) dynamic, which are features that can 

actively be changed by people’s actions or other factors in the environment, and that 

represent situation features that people actively seek or avoid, and 2) static, which represent 

features that could be used to identify and explore behaviors of different populations or 

individuals, but that people are indifferent to, unaware off, or that cannot be influenced 

explicitly by people’s actions or the environment. 

Dynamic situation features allow us to study how the environment in which behavior is 

situated changes throughout duration of a behavior instance. Most common dynamic 

situation features capture the current state of the environment. For example, in the case of 

mobile device usage routines, those could represent the current state of the screen, battery 

charge level, and foreground application. However, due to the nature of MDP, which 

assumes that any action and subsequent transition to a new situation only depends on the 

current situation, often we need to include historical information into the current situation. 

Sometimes this historic information is implied by the environment we are modeling. In our 

mobile device routine example, we only need to include information that the screen is 

unlocked for the user to be able to start an application because the system implies that the 

screen is on. However, we may want to include information about applications that the user 

has interacted with since unlocking the screen because this information is not implicit. As 

we will see later in this chapter, such historic information can help us capture other 

economics of behavior drive weak ordering of situations and actions in a behavior instance. 

Static features, such as demographic information (e.g., age, gender), help us explore 

potential differences in behaviors between individuals or populations. For example, to 

study differences in how users of different ages interact with their mobile devices would 

require modeling situation feature that indicates users’ age group. In the course of 

interacting with a mobile device we expect that a user’s age group will be fixed and thus 

their preference for their age group is irrelevant in terms of estimating their goal situations 

and how they generate opportunities to reach those situations. However, as we will see in 

the later sections, such features can effectively split the model into distinct sub-models of 

behaviors based on static features. This is similar to training multiple models for each value 



 56 

of a static feature. However, this may be impractical as the number of features that we want 

to split models on grows (e.g., adding a static feature that indicates if a user has a secure 

lockscreen or not to our previous example), in which case they are best included in a single 

model. 

We also define a special kind of static situation features that we refer to as behavior labels. 

Such static features are derived from their dynamic counterparts to label behaviors that 

have a special quality. To illustrate this kind of feature, consider an example model that 

captures routine behaviors of patients who have undergone surgery to remove cancer. In 

this model, patients actively avoid being rehospitalized and thus avoid any situations with 

a dynamic feature that indicates that they are currently rehospitalized. To contrast the 

behaviors of patients who have been rehospitalized and those that have not we can add a 

special behavior label situation feature that splits the original model into two sub-models: 

1) those who have been rehospitalized in the course of data collection, and 2) those that 

have not been rehospitalized in the course of data collection. Such a feature would ensure 

that there is no crossover between behaviors of the two populations of patients. 

6.1.2   Action Features 

Actions represent people’s atomic behaviors (i.e., behaviors that can be enacted at the same 

time) that they freely choose given what is possible in the current situation. Take for 

example plugging a mobile device to charge when a power outlet is available. This is a free 

choice action that users may perform in response to low battery charge level. In this simple 

illustration, we can model plugging device into power outlet as an action feature, whereas 

battery level is a situation feature. Action features could be explicit (e.g., plug the device 

into power outlet) or implicit (e.g., leave device plugged in). In our example, subsequent 

changes to battery charge level are a result of the device being plugged in (the effect of the 

environment) and do not require an explicit action from the user, but instead require an 

implicit action feature that says that the user is not actively trying to unplug the device. 

Like situations, each action is uniquely defined by the combination of its features. To 

expand our previous example, we could add an action feature that indicates that the user 

wants to turn the screen on. Atomic actions could also be represented using combinations 



 57 

of features as long as they can be performed as on atomic action. For example, a feature 

that indicates that the mobile user is glancing at the mobile lockscreen application could 

coincide with a feature that indicates that the user wants to unlock the phone using the 

lockscreen application. However, an action with two features that indicate that the user is 

interacting with both the lockscreen application and another game application at the same 

time may not be possible. 

The reward function considers peoples’ preference for different action features because 

people develop preference for certain repetitive, well-practiced actions over time, even if 

that action is not ideal for the current situation. Thus, by including action features in the 

reward function calculation, we express how people weigh preference for certain actions 

vs. preference for certain situations that are potential outcomes of those actions. 

6.2   Representing Time 

Time is often defined as progression of events in past, present, and future. As such it plays 

an important role when modeling human behavior as a sequence of events expressed as 

situation-action pairs. Properties of routines, such as event duration, ordering, repetition, 

and frequency are all expressed in relation to time. People also often use time to plan and 

schedule their behaviors. Therefore, it is no surprise that some existing models explicitly 

capture relationships between events in time: their duration, time between two events, and 

frequency of co-occurrence (Magnusson, 2000). However, existing MDP frameworks 

make it difficult to explicitly model time progression in the model and often treat it as an 

external factor. 

Here, we argue that time is external to behavior and thus can still be effectively represented 

using an MDP. First, the definition of time assumes existence and ordering of events and 

not the other way around. Second, the correlation between time and events often does not 

explain behavior. For example, two people will meet at a certain time, not because of a 

particular time of day, but because they scheduled an event at that time (i.e., the explanation 

of the behavior is existence of an agreement between the two people and their desire to 

reach a goal situation when they are both at the same place at the same time). 



 58 

Although we have shown how our model allows us to express discrete time as a situational 

feature (e.g., time of day when modeling daily commute routines in Chapter 5), we often 

model it as an external factor to the model without a need to include it as a feature of a 

situation or action. In our model, each situation-action pair represents contextual 

information at some discrete point in time and action that a person performed at that time 

without explicitly labeling what that time is. We refer to this atomic (smallest possible time 

duration of an event in the model) time as a time tick. Choice of duration of a time tick 

depends on data, domain, and intended use of the model to explain behaviors. For example, 

each time tick could be as small as the collected behavior data allows it: if data contains 

patients’ daily self-reported symptoms once a day, then the model should treat each time 

tick as one day. In certain domains, such as modeling mobile device usage routines, the 

smallest duration of an event is expressed in seconds which would be an appropriate 

duration of a time tick. Alternatively, each time tick in a model could have a different, 

arbitrary duration if it is driven by another factor. For example, when modeling driving 

routines, a time tick could occur when a vehicle changes position in an intersection where 

the actual time duration between two points can vary based on the intersection size and 

speed of the vehicle. 

We can use time as an external factor to express any relevant time-based relation between 

events. For example, in our model, we relate each situation-action pair in a behavior 

instance to a time tick which allows us to explore the order and continuity of behavior 

instances. The duration of any event is the number of time ticks during which a feature or 

a group of features that defines that has not changed multiplied by the duration of the 

atomic duration of the time tick (if one is available). We can use similar approach to express 

time duration between events. Also, two events co-occur at the same time if the features 

relevant to those events happen approximately on the same time tick. Similarly, we are able 

to evaluate behavior after any arbitrary time duration. For example, if we want to know 

what a mobile user would do a minute after turning on the screen, we can simply “fast 

forward” sixty one-second-long time ticks into the future from the current time tick and 

look at the resulting situation. 



 59 

6.3   Economics of Human Routine Behavior 

When we use dynamic situation features and action features in our model, we assume that 

at any time tick a person chooses an action from a subset of possible actions in the current 

situation. Thus, the choice of action is driven by people’s preference for certain features of 

situations and actions. According to our definition of routine behavior, people choose 

actions that will allow them to create opportunities that enable them to reach their goals. 

However, a simple MDP with only positive rewards, as is the case in our model, implies 

that a person could collect infinite rewards by spending infinitely many time ticks in a 

cyclic routine variation if world dynamics allow it. Although the influence of world 

dynamics (i.e., other external processes that people have no control over) may temporarily 

disrupt people from settling in such an equilibrium cycle, a simple MDP may allow them 

to choose a sequence of actions to settle back into such a cycle. Therefore, a simple MDP 

does not consider the opportunity cost of picking another routine variation and diminishing 

returns of collecting a reward from same features over and over again. 

To ensure the model considers the opportunity cost (the loss of reward from alternative 

routine variations), we assume that behavior instances are finite and that there is a known 

upper bound on the number of time ticks any behavior instance can last. In MDP 

terminology, we refer to this type of problem as a finite horizon problem. This means that 

a person can only accumulate a finite amount of reward in a finite number of steps and thus 

has to choose actions that maximize such finite reward. Defining what constitutes a finite 

behavior instance is domain specific, but it is possible even in domains in which a behavior 

seemingly repeats forever. Our iterative learning algorithm with a finite horizon computes 

this opportunity cost with our feature engineering. 

However, opportunity cost only allows us to capture the economics of choosing one routine 

variation over another, but not how people choose to interrupt an equilibrium state. For 

example, in a model of mobile usage routines, users may invoke their most preferred 

application and use only that application for the duration of the mobile session. However, 

this is not representative of behaviors that we can observe where users invoke an 

application, use it for a duration of time, and then switch to another application. The last 



 60 

example illustrates the concept of diminishing returns where the preference of using an 

application reduces as the person uses it. Past research (Ziebart et al., 2009) has explored 

ways to model diminishing returns within the deterministic policy MDP framework by 

reducing the reward of being in a situation and performing an action for each time tick the 

agent whose behavior the MDP models stays in the same situation. However, in our model 

we are interested in stochastic policy 𝑃(𝑎|𝑠)	
  that captures the inherent uncertainty in 

human behavior. 

Incidentally, our dynamic situation features and action features engineering together with 

a stochastic policy already accounts for diminishing returns. To illustrate this, consider a 

simple example light-switch model that has only two situation features that represent light 

on and light off, and three action features that represent three possible actions to “turn light 

on”, “keep light on”, and “turn light off”. In this example model world dynamics are 

deterministic (e.g., when light is on and the user turns it off, it will result in the “light off” 

situation with probability 1.0). Now suppose a situation when the light is already on and 

the user prefers light on over light off. In this case, a deterministic policy would predict 

that the user will always choose “keep light on”. Now suppose that the estimated reward 

results in a stochastic policy where when the user is in the light on situation, the possible 

actions “keep light on” and “turn light off” have probabilities 𝑃(𝑘𝑒𝑒𝑝	
  𝑜𝑛|𝑙𝑖𝑔ℎ𝑡	
  𝑜𝑛) = 0.9 

and 𝑃(𝑡𝑢𝑟𝑛	
  𝑜𝑓𝑓|𝑙𝑖𝑔ℎ𝑡	
  𝑜𝑛) = 0.1. Sampling from this stochastic policy, we see that the 

probability that the light will be off in the future increases. For example, after one time tick 

the expected probability that the light is on is	
  𝑃(𝑙𝑖𝑔ℎ𝑡	
  𝑜𝑛) = 0.9, but after two time ticks 

it reduces to 𝑃(𝑙𝑖𝑔ℎ𝑡	
  𝑜𝑛) = 0.81 and is approximately 𝑃(𝑙𝑖𝑔ℎ𝑡	
  𝑜𝑛) = 0.001 after 60 time 

ticks. This shows the diminishing returns of keeping the light on despite the user preferring 

it over light off. Our algorithm computes a stochastic policy as a function of a reward 

function estimated from enacted behavior instances in the data. 

The last economic consideration is the order of situation-action pairs in a behavior instance, 

which is driven by external processes in the environment and people’s preference. To 

model the processes in the environment, it is often enough to encode such ordering in the 

world dynamic (i.e., transitions between situations). For example, in the case of modeling 

routines of drivers as they navigate an intersection, the order of situations is driven by 



 61 

different positions of the vehicle in the intersection. In this example, we can assume that 

the vehicle will approach the intersection, enter the intersection, exit the intersection and 

then drive away. The order of these situations is implied by the world dynamics, which 

prevent any other order of vehicle positions in the intersection. However, modeling 

people’s preference for order of action requires us to consider the economics of their 

behavior. 

Using historical dynamic situation features allow us to model the preference that people 

place on reaching a specific opportunity to accomplish a goal or accomplishing a goal. At 

the same time, the number of time ticks that the feature is present (i.e., the count of that 

historic feature in a behavior instance) indicates where in the sequence the event (or 

situation with a particular historic feature) occurred. For example, historic features with 

high counts indicate that people are more likely to be prefer them in the beginning of the 

sequence and those with lower counts towards the end of the sequence. 

6.4   Summary 

In this chapter, we took a closer look at the optimization function used in MaxCausalEnt 

IRL (Ziebart, 2010) and identified a list of considerations necessary to capture the 

economics of routine behavior. Without such considerations, MaxCausalEnt IRL (Ziebart, 

2010) would suffer from the same challenges as most existing Data Mining algorithms 

because there would be no easy way to establish that the patterns of behavior extracted 

using the algorithms match the actual processes that generated the data. The main 

considerations that we addressed were ordering and continuity. We have also shown how 

these two important considerations can be used to introduce the concept of time as an 

external factor that drives the progression of events in the model. 

  



 62 

7   DETECTING AND GENERATING ROUTINES 

Studying behavior instances that are characteristic of a routine and showing how they differ 

from deviations establishes a body of evidence to allow stakeholders to build a conceptual 

understanding of behaviors. However, data traces contain both instances of routine 

variations and deviations. Manually exploring and differentiating all routine variations in 

a model to separate them from deviations is tedious. Without an ability to automatically 

detect and generate routine behavior instances, stakeholders face significant obstacles in 

making sense of people’s routines. 

To help stakeholders identify behaviors that are characteristic of a routine, we perform two 

detection tasks: 1) automatically detect classes of people based on their routine behaviors, 

and 2) automatically detect behavior instances are more characteristic of one routine (such 

as aggressive driving) than another (non-aggressive driving). When labeled data is 

available, both of those tasks can be performed using supervised Machine Learning 

methods (Bishop, 2006). However, as discussed before, such algorithmic methods may not 

base their classification, detection, and prediction on actual behaviors that generated the 

behavior traces. 

Also, when labels are not available (which is often the case when classifying individual 

behavior instances) they would require labeling each instance individually as belonging to 

one routine model or another. Semi-supervised approaches (Chapelle, Scholkopf, & Zien, 

2009) require labels for a portion of the training data, but labeling even a subset of data is 

challenging when knowledge about what constitutes a variation of a particular routine is 

not available beforehand. Automated anomaly detection algorithms (e.g., (Buthpitiya, Dey, 

& Griss, 2014)), which do not require any manual labeling, focus on deviations from some 

normal or expected behavior; i.e., they can be used to classify which behavior instances are 

not routine. However, they do not classify whether a behavior is a variation of one routine 

vs. another. Other unsupervised methods can cluster behavior instances (e.g., (Farrahi & 

Gatica-Perez, 2012)), but they offer no guarantees that the behavior instance clusters they 

generate map onto routines. 

 



 63 

 

 

Our routine model computes the probability of true labels of all variations and deviations 

in a routine model. This lets us apply probability axioms to automatically detect and 

generate characteristic behaviors for that model. To address manual labeling challenges, 

we train our routine models using weakly labeled data, which is an alternative to fully 

labeled datasets. Weak labels do not necessarily place every instance into the correct class 

(Ivanov, 2001; Mann & Mccallum, 2010). Instead of labeling each behavior instance 

individually, we label all instances at once based on the known routine of the person that 

exhibited those behaviors. For example, if a driver has had traffic violations due to 

aggressive driving, we would label all of the driver’s behavior instances as aggressive. We 

train a population model using instances for each unique routine label (e.g., one model for 

aggressive and one for non-aggressive driving). We then classify new instances into one 

model or the other, given knowledge about the probabilities that each instance will occur. 

We use the same model probabilities to sample (generate) behavior instances. 

7.1   Detecting Classes of People Based on Their Behavior 

Here we show how to classify people based on their behaviors when routine labels are 

available. For example, given a routine model of patients who have undergone a surgery 

to remove cancer and a label that indicates which of the patients in the model has been 

readmitted, we can automatically detect if future patients will also be rehospitalized based 

on their routine behavior over time. To do so, we add a label feature to each situation that 

indicates a person’s membership in a sub-population of people defined by their routine or 

outcomes (e.g., readmitted or not). 

Suppose f is a label feature, and 𝑠ℱ is the current situation defined by the full set of features 

and  𝑠ℱtc is the current situation defined by a set of features that does not include the label 

feature. Then the probability of that feature given observation about all other features that 

we can observe and that define the current situation the person is in 𝑃&𝑓T𝑠ℱtc3 is given by: 



 64 

 

𝑃&𝑓T𝑠ℱtc3 =
𝑃(𝑠ℱtc|𝑓) ∙ 𝑃(𝑓)

𝑃(𝑠ℱtc)
	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (6) 

In Equation 6, 𝑃(𝑠ℱ|𝑓) is the probability that the current situation occurs given label f, 

𝑃(𝑓) is the prior probability of the label, and 𝑃(𝑠ℱ) is the probability of the situation 

regardless of the label. We can then use Equation 6 to update the probability of the label 

feature for each situation in the behavior instance in order starting with the prior that 

expresses our initial belief about the probability of the feature. 

To compute the probabilities in Equation 6, we use our computational model which 

estimates the expected counts for each situation in our model. For each situation in a 

behavior instance we use the total expected count to compute the expected counts for each 

label feature value. We then use the expected counts to compute the respective probabilities 

in Equation 6. At each time step in the behavior instance we compute the probability of the 

label feature (e.g., outcome) using the previous time tick evaluation as a prior. We then use 

the probability of label feature value give current situation observation (𝑃&𝑓T𝑠ℱtc3) using 

the following classifier: 

ℎ&𝑠ℱtc3 = 𝐼&𝑃&𝑓T𝑠ℱtc3 > 1/|𝒇|3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (7) 

The classifier above uses an indicator function I to classify if feature f is true for any 

observed features of situation (𝑠ℱtc) in a behavior instance, if the probability of the 

situation in the behavior instance (𝑃&𝑓T𝑠ℱtc3) is greater than the probability of other 

possible label values (1/|𝒇|).  

7.2   Detecting Behavior Instances 

Here we show how to automatically detect behavior instances that are characteristic of a 

routine. This often involves considering two competing routine and finding behavior 

instances that are characteristic of one routine, but not the other. For example, to detect 

behavior instances that negatively impact people, we need to show that they are variations 



 65 

of routines that negatively impact people. To show that a behavior instance could have a 

positive impact, we need to show that it is a variation of a good routine.  

Because we weakly label behavior instances per-person based on their routines, and not 

per-instance, we must ensure that only variations of a given routine model are detected and 

not variations of another opposite routine. This is similar to existing weak labeling 

approaches (e.g., (Mann & Mccallum, 2010)), except that it requires no prior labels for any 

behavior instances. We estimate the probabilities of people being in different situations and 

the conditional probability of actions they perform in those situations (even for situation 

and action pairs not present in the training data). 

To classify a behavior instance, we need to calculate the probability that it belongs to a 

particular routine. Let 𝑏 be a behavior instance and let 𝑀 be a routine model. The 

probability that behavior instance 𝑏 belongs to routine model 𝑀 is given by 𝑃(𝑀	
  |	
  𝑏). Also, 

we say that behavior instance 𝑏 does not belong to routine 𝑀 (i.e., 𝑏 is a deviation from 

the routine) if for some level 0 < 𝛼 < 1: 

𝑃(𝑀	
  |	
  𝑏) < 	
  𝛼	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (8) 

Then, behavior instance 𝑏 is more likely to belong to routine model 𝑀 than some other 

routine model 𝑀-, if: 

𝑃(𝑀-	
  |	
  𝑏) < 𝑃(𝑀	
  |	
  𝑏)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (9) 

Given two routine models 𝑀 and 𝑀- (e.g., one that negatively impacts people and the other 

that impacts them positively), we can say that behavior instance 𝑖 is in routine 𝑀, but not 

in routine 𝑀-, if for some level 0 < 𝛼 < 1: 

𝑃(𝑀-	
  |	
  𝑏) 	
  < 	
  𝛼	
   ≤ 	
  𝑃(𝑀	
  |	
  𝑏)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (10) 

Intuitively, Equation 10 means that, if we have evidence that 𝑏 is a deviation from 𝑀-, but 

cannot show evidence that it is also a deviation from 𝑀, then 𝑏 is classified as 𝑀. Thus, 𝛼 

represents the probability that a behavior instance is a deviation. Increasing the value of 𝛼 

increases our chance of false positives (classifying 𝑏 as 𝑀, when it is not a variation of 𝑀), 



 66 

while decreasing 𝛼 increases the chances of false negatives (not classifying 𝑏 as 𝑀, when 

𝑏 is a variation of 𝑀). Note that Equation 10 implies that Equation 9 also holds. 

To classify the behavior instances requires an indicator function that, given a behavior 

instance 𝑏, results in 1 when the instance is in routine 𝑀, and 0 when it is not. We define 

the following indicator function as our classifier: 

ℎ(𝑏) = 𝐼(𝑃(𝑀-	
  |	
  𝑏) < 𝛼) ∙ 𝐼&𝛼 ≤ 𝑃(𝑀	
  |	
  𝑏)3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (11) 

Note that existing supervised machine learning algorithms (Bishop, 2006) would require 

per-instance labels to calculate 𝑃(𝑀	
  |	
  𝑏) for each routine. We instead calculate the 

probability that behavior instance 𝑏 belongs to routine 𝑀 using Bayes rule: 

𝑃(𝑀	
  |	
  𝑏) = 	
  
𝑃(𝑏	
  |	
  𝑀) ∙ 𝑃(𝑀)

𝑃(𝑏) 	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (12) 

where 𝑃(𝑏	
  |	
  𝑀) is the probability of the instance given that it belongs to the routine 𝑀, 

𝑃(𝑀) is the probability that the routine of the person whose behavior we are classifying is 

𝑀, and 𝑃(𝑏) is the probability that people, regardless of their routine, would perform 

behavior instance 𝑏. 

Assuming two models of opposing routines 𝑀 and 𝑀- with probabilities of all possible 

behavior instances in the model, by law of total probability, Equation 12 becomes: 

𝑃(𝑀	
  |	
  𝑏) = 	
  
𝑃(𝑏	
  |	
  𝑀) ∙ 𝑃(𝑀)

𝑃(𝑏	
  |	
  𝑀) ∙ 𝑃(𝑀) + 𝑃(𝑏	
  |	
  𝑀-) ∙ 𝑃(𝑀-)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (13) 

We define behavior instance 𝑏 as a finite, ordered sequence of situations and actions 

{𝑠e, 𝑎e, 𝑠�, 𝑎�,… , 𝑠�, 𝑎�}, where in each situation 𝑠� in the sequence, the person performs 

action 𝑎� which results in a new situation 𝑠�de. Then, assuming that each situation depends 

only on the previous situation and action, we calculate the probability of the behavior 

instance using: 

𝑃(𝑏|𝑀) = 𝑝(𝑠�) ∙�𝑝(𝑎�|𝑠�) ∙ 𝑝(𝑠�de|𝑠�, 𝑎�)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (14)
�

 



 67 

where the probability of the initial situation 𝑠� (𝑝(𝑠�)) and the conditional probability of 

actions given situations (𝑝(𝑎�|𝑠�)) are specific to routine model 𝑀. 

7.3   Generating Behavior Instances 

We enable the model to automatically generate behavior instances that are variations of a 

routine. Traditionally, having an MDP model allows us to find the sequence of situations 

and actions that maximizes expected reward based on a reward function (Bellman, 1957). 

In our case, this is the most probable behavior instance starting from a given situation. 

However, generating only the most probable instances hides the inherent uncertainty and 

variance in human behavior. 

Instead, we sample behavior instances using the probability distributions in a routine 

model. We start by sampling an initial situation 𝑠� from the probability distribution of 

situations (𝑃(𝑠)). We then sample the next action from the probability distribution of 

actions given situation 𝑠� (𝑃(𝑎|𝑠�)), which gives us an action 𝑎�. We then sample the next 

situation in the sequence using transition probabilities 𝑃(𝑠|𝑠�, 𝑎�) and get a situation 𝑠e. 

We repeat this process for situation 𝑠e and so on until we encounter a stopping situation or 

reach a maximum behavior instance length. 

This procedure allows us to sample from a subset of initial situations constrained on the 

values of the features of those situations (𝑃(𝑠|𝒇>)). For example, for driving, we could 

sample situations when a driver is approaching a four-stop intersection. This conditional 

probability distribution can easily be computed from situation frequencies (𝐷;) from a 

routine model. This allows us to generate behavior instances characteristic of a routine for 

specific situations. We show how to simulate behaviors from a model in one of the next 

two use cases. 

7.4   Use Case: Predicting Cancer Patient Rehospitalization 

Currently, after patients are discharged from the hospital following a surgery to remove 

gastrointestinal cancer, they see clinicians only for infrequent follow ups or when their 



 68 

symptoms worsen significantly, following which they are rehospitalized. This leaves 

clinicians with little insight about patients’ behaviors between when they are discharged 

from the hospital after surgery and when they are readmitted to the hospital. Here, we 

illustrate behavior classification and prediction on a real-world example in the domain of 

health informatics, and how it could help clinicians predict behaviors of patients with 

gastrointestinal cancer that lead to rehospitalization after surgery. Identifying differences 

in routines of cancer patients who have been and have not been rehospitalized could inform 

interventions that help improve patients’ health and wellbeing.  

Current commodity mobile and wearable devices, such as smartphones and fitness trackers, 

offer continuous sensing of patients’ behaviors even when they are not in the clinicians’ 

office. Such devices are more affordable than medical grade sensing technologies and are 

already available to a large number of adults in the United States. This kind of tracking 

would allow clinicians to study routine behaviors of patients that could help identify new 

automated interventions and treatments. However, enrolling this population of patients in 

such data collection studies is challenging because of their general poor health and because 

they are few compared to the general population. Also, collecting objective and subjective 

behavior trace data from this population is challenging both due to recruiting and 

compliance issues. As such, behavior instances resulting from such data collection field 

studies often have limited number of examples. We address this challenge by modeling 

routines of cancer patients using our probabilistic model of routine behavior that can 

generalize from training examples to estimate probabilities of related, but unseen behavior 

transitions. 

7.4.1   Cancer Patient Behavior Dataset and Model 

Here we describe our steps to build a computational model of cancer patient routines to 

answer the following research question: can mobility among cancer patients who have 

undergone a surgery to remove gastrointestinal cancer reduce the risk of rehospitalization? 

This research question is driven by recent findings that lack of mobility is correlated with 

rehospitalization (Low et al., 2018). Our goal was to collect data and build a model to 

explore this correlation in more detail by looking at behavior instances of patients and 

routine variations that are characteristic of patients who have been rehospitalized and try 



 69 

to find evidence that mobility reduces risk of rehospitalization—one of the viable 

interventions for this patient population. 

7.4.1.1   Participants 

We recruited 60 patients (28 female and 32 male; median age 66, min age 39, max age 81), 

who were scheduled for a surgery to remove gastrointestinal cancer, in our data collection 

study. Fifty-one participants completed the study. Four participants were removed from the 

study because they were ineligible due to their condition (e.g., did not end up in surgery), 

four participants withdrew from the study (e.g., because of worsening health conditions, 

time commitment), and one participant passed away before completing the study. Of the 

participants who have completed the study, 22 were female and 29 male, all having ages 

between 39 and 81 (median=64). 

All participants started data collection no more than a month and no less than a week before 

their scheduled surgery. All participants that have completed the study stayed in it for at 

least 30 days from the day they were discharged from the hospital following their surgery. 

At the end of the study, 14 participants were rehospitalized (27.45%) within 30 days of 

being discharged from hospital following their surgery. 

7.4.1.2   Data Collection 

We gave each participant an Android smartphone device and a Fitbit activity tracker. 

Participants who have had a compatible Android smartphone device were allowed to use 

their own device. We collected data using the Aware framework (Ferreira et al., 2015). 

Collected data included GPS location traces, step counts, sleep, and subjective symptoms 

that participants entered once a day using an Experience Sampling Method (ESM). 

Participants received an ESM survey every day that asked them to rate their symptoms 

(pain, fatigue, concentration, sadness, anxiety, shortness of breath, numbness, nausea, and 

diarrhea) on a scale from 0 to 10 (where 0 is no symptoms and 10 is the worse symptom 

they have ever experienced). We have excluded all other sensors from the phones (e.g., 

screen usage, application usage) because most patients did not use the smartphone as their 

primary mobile device. We have manually recorded the dates for each state in the surgery 

process (pre-surgery, surgery, recovery, discharge, and rehospitalized). 



 70 

7.4.1.3   Data Pre-processing 

We extracted features from a subset of raw sensor data streams and aggregated them for 

each day. Table 5 and Table 6 summarize situation and action features we used to train our 

model. 

Our decision to perform our analysis on a day-by-day basis was guided by having ESM 

data collected daily. We thus picked a time tick to be a day. We then modeled our situations 

and actions for each day the participant spent in the study. We first differentiated the current 

stage of the study the patient is in. We identify 6 distinct stages that drive the world 

dynamics: pre-surgery, in surgery, recovery, discharged, not admitted following the 

surgery, and admitted following the surgery. Although our focus was on patients’ behaviors 

following a discharge from the hospital, we included earlier stages as well to account for 

any symptoms or behaviors that lead up to later discharge stage. Our goal was to identify 

behaviors that lead to patients transitioning from not admitted to admitted stage. 

Our primary focus was on patients’ mobility, which was inspired by prior work (Low et 

al., 2018) that established a correlation between patient activity (or lack thereof) and 

rehospitalization. We hypothesized that patients who stay at home most of the time will 

also remain stationary or in bed most of the time and lack physical activity. Following Low 

et al. (2018), we explore physical activity (step counts) as a predictor rehospitalization, but 

also consider mobility outside of patients’ homes and the time they spend in bed. 

We extracted significant locations (locations at which people spend time) from GPS 

position traces. When then identified the patient’s home and hospital locations based on 

time and date and their stay patterns. We calculated the percentage of time they spend away 

from home, they spend performing physical activity, and they spend in bed for each day. 

We extracted physical activity and sleep features from a Fitbit fitness tracker. We used 

minute-by-minute tracking to identify active bouts, defined as at least 10 steps in a given 

minute) and differentiate them from stationary behavior (less than 10 steps in a given 

minute). We then use the active bouts total time to calculate the percentage of time spent 

performing physical activity. Similarly, we calculated the time patients spent in bed. 



 71 

We then discretized the percentages in three bins ranging from “low” to “high”. We also 

included a special bin for days when no data was collected (e.g., due to data collection 

failure, due to empty smartphone battery). The bin boundaries for time spent away from 

home were no time away from home for “low”, up to and including 10% for “medium”, 

and more than 10% of the time for “high”. The physical activity bin boundaries 

approximately corresponded to 10 to 720 steps for Low, 721 to 1,440 for Medium, and 

1,441 and more for High. Note that the average American takes between 5,000 and 7,000 

steps a day with 10,000 steps a day being the recommended target for individuals to gain 

health benefits from their activity. However, we picked these bins from the data because 

our population of patients are unable to perform physical activity at the level of healthy 

individuals. For sleep, we set the boundary to up to 5 hours in bed per day for “low”, up to 

10 hours for “medium”, and more than 10 hours for “high” percentage of time spent in bed. 

We also added additional features to account for any confounding variables (i.e., variables 

that could also have an effect on rehospitalization). We included patient age and gender to 

account for effects of demographics on rehospitalization. For example, we hypothesized 

that older patients may be more likely to be rehospitalized due to their age. We discretized 

patient age into 3 bins (younger than 60, 60 to 69, and 70 and older). We chose the bin 

boundaries by selecting 5 years around the median age on both sides. We used binary 

gender at birth to account for any medical differences between the two sexes. We also 

included two main symptoms historically associated with rehospitalization ((Low et al., 

2018)): pain and nausea. We left all the other self-reported symptoms out of the model on 

this iteration for simplicity. 

We also captured different stages the patients were in. Those included pre-operation days, 

day in the operating room (OR), post operation recovery days in hospital, discharge day, 

and post-discharge stage split into not-admitted and readmitted stages. In addition to these 

stage features, we also included features that indicate if the patient is currently in hospital, 

whether they requested home health care assistance, and if they had contact with a clinician 

(e.g., form personal care physician, surgical oncology clinicians, or have visited the 

emergency department (ED)). 



 72 

We converted each patient’s data into one training behavior instance per participant, 

starting from the day they joined the study to 30 days after they have been discharged from 

the hospital. We labeled each behavior instance based on if the patient has been 

rehospitalized or not. We then use training behavior instances to train a model. We 

identified 1,280 different situations and 117 different actions in the behavior log. The final 

model resulted in 69,120 possible situations and 128 possible actions, with 84,123,648 

possible world dynamic transitions.  

Table 5. Situation features capturing the different contexts the patients can be in. 

Feature   Description  
Outcome  label  

Readmitted   Whether  this  patient  was  readmitted  or  not.  
{TRUE,  FALSE}  

Demographics  
Gender   Gender  of  patient  at  birth  {FEMALE,  MALE}  
Age   Age  of  the  patient  at  surgery  

{younger  than  60,  60-­69,  70  and  older}  
Stages  

Stage   Current  stage  in  the  study  the  patient  is  in  
{PRE-­SURGERY,  SURGERY,  RECOVERY,  
DISCHARGE,  NOT  AMIDTTED,  READMITTED}  

In  Hospital   Current  hospitalization  state  
{TRUE,  FALSE}  

Home  Care  
Requested  

If  home  care  was  requested  at  discharge  
{TRUE,  FALSE}  

Clinician  Visit   If  patient  had  a  clinician  visit  or  not  
{TRUE,  FALSE}  

Subjective  Symptoms  
Pain  Level   Dominant  pain  level  for  the  day  

{NOT  RECORDED,  VERY  BAD,  BAD,  GOOD}  
Nausea  Level   Dominant  nausea  level  for  the  day  

{NOT  RECORDED,  VERY  BAD,  BAD,  GOOD}  
Mobility  

Yesterday’s  
Away  From  
Home  

Patient’s  macro-­level  mobility  the  previous  day  
{NOT  RECORDED,  LOW,  MEDIUM,  HIGH}  

Yesterday’s  
Activity  Bouts  

Patient’s  micro-­level  mobility  (physical  activity)  the  
previous  day  
{NOT  RECORDED,  LOW,  MEDIUM,  HIGH  }  

Yesterday’s  In  
Bed  

Patient’s  time  spent  in  bed  the  previous  day  
{NOT  RECORDED,  LOW,  MEDIUM,  HIGH  }  

Table 6. Action features representing patient’s mobility. 

Feature   Description  
Survey   Patient’s  response  to  the  symptoms  survey  

{NOT  RECORDED,  RECORDED}  
Away  From  
Home  

Patient’s  current  macro-­level  mobility  
{NOT  RECORDED,  LOW,  MEDIUM,  HIGH}  

Activity  Bouts   Patient’s  current  micro-­level  mobility  (physical  activity)  
{NOT  RECORDED,    LOW,  MEDIUM,  HIGH}  

In  Bed   Patient’s  time  spent  in  bed  {NOT  RECORDED,  LOW,  
MEDIUM,  HIGH}  



 73 

7.4.1.4   Model Training 

We begin our model training by estimating the world dynamics. Unlike our previous use 

cases where people’s actions influence world dynamics almost exclusively, in case of 

modeling behaviors of cancer patients, it is the medical procedures and processes that drive 

the transitions between different stages as the patient moves from surgery to recovery, to 

being discharged from hospital after surgery. For example, patients who participated in our 

data collection study joined the study at different times in their pre-surgery stage. Thus, we 

use the behavior instances data and the frequency of transition between stages to estimate 

the probability that a transition to the next stage will occur. 

The other aspect of transitions that we need to model are patients’ symptoms. Such 

symptoms may be driven by other external factors in the environment in addition to 

patients’ behavior. For example, very bad pain and nausea could be a result of surgery 

complications that we have no data about. Continued bad symptoms could be the result of 

patients’ current state. Thus, we build our model of world dynamics by estimating the 

probability of transitions for each symptom in our model based on situation and action data 

from the previous day (including information about patients’ demographics). We estimate 

the probability distribution of each symptom using the maximum entropy classifier 

(Bishop, 2006). Similarly, patients’ symptoms are the main predictors of rehospitalization. 

We use the same approach to estimate the probability that a patient will be rehospitalized 

on the next time tick. We then combine the probability estimations for each individual 

symptom and rehospitalization predictions to estimate the probability of transitions into 

new situations. 

Once we estimate the world dynamics, we can apply the MaxCausalEnt IRL algorithm 

(Ziebart, 2010) to estimate the probability distribution of peoples’ actions given those 

world dynamics. Our hypothesis is that participants will choose behaviors, given their 

abilities, that will allow them to avoid being rehospitalized. 

7.4.2   Predicting Rehospitalization 

One of the use cases is leveraging the computational model of routines to predict patients 

that are at risk of rehospitalization before they are rehospitalized when exploring their 



 74 

behavior instances. Clinicians could do this by loading patients’ behavior instances into 

the data track and using the model to predict rehospitalization. This prediction could also 

be used to automate interventions and treatments that prevent rehospitalization (e.g., 

detecting patients at risk and then contacting them to assess their health). Being able to 

predict rehospitalization before it happens also shows the ability of the model to properly 

capture world dynamics and how people behave given those dynamics. 

To predict rehospitalization, we use a modified Equation 6 to predict the probability of 

rehospitalization feature R is true: 

𝑃(𝑅 = 𝑇𝑟𝑢𝑒|𝑠ℱt�) =
𝑃(𝑠ℱt�|𝑅 = 𝑇𝑟𝑢𝑒) ∙ 𝑃(𝑅 = 𝑇𝑟𝑢𝑒)

𝑃(𝑠ℱt�|𝑅 = 𝑇𝑟𝑢𝑒) ∙ 𝑃(𝑅 = 𝑇𝑟𝑢𝑒)+ 	
  𝑃(𝑠ℱt�|𝑅 = 𝐹𝑎𝑙𝑠𝑒) ∙ 𝑃(𝑅 = 𝐹𝑎𝑙𝑠𝑒)	
  	
  (15) 

We then use probability computed in Equation 15 in a classifier (based on the classifier 

from Equation 7) that automatically predicts is a patient will be rehospitalized each day: 

ℎ(𝑠ℱt�) = 𝐼(𝑃(𝑅 = 𝑇𝑟𝑢𝑒|𝑠ℱt�) > 0.5)	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (16) 

7.4.3   Method 

We evaluate the ability of the model to predict if a patient will be rehospitalized for each 

day after they have been discharged. Although our algorithm computes probability of risk 

of rehospitalization for each day since patients enter the study, we decided to only make 

predictions using our classifier in Equation 16 for each day after discharge because 

automated risk assessment is valuable when clinicians cannot closely monitor patients 

(unlike when they are in hospital) and to compare more directly to clinical readmission 

predictors that predict at time of discharge. 

To estimate the accuracy of the model, we performed 10-fold cross validation. We split 

patients into 10 folds and then for each fold, trained the model on the remaining 9 folds 

(i.e., estimated both world dynamics, probability distribution of actions given situations on 

the training data, and the likelihood of each situation), and predicted rehospitalization of 

the patients in the remaining fold for each day after they have been discharged until: 1) 

they have been classified as at risk, 2) they have been rehospitalized (at which point we 



 75 

already know the label and it is pointless to do further prediction), or 3) they end their 

participation in the study. 

We compare our algorithms with three baselines: the majority rule-based algorithm, and  

two clinical readmission predictors (HOSPITAL score and LACE index (Robinson & 

Hudali, 2017)). The majority rule predicts no patient will ever be rehospitalized until they 

show up at the hospital and it is too late to prevent rehospitalization (current status quo). 

However, this is not a desired approach because it does not allow clinicians to administer 

treatments that could prevent rehospitalization. Clinical research has developed the 

HOSPITAL score and LACE index (Robinson & Hudali, 2017) to predict patients at risk 

of readmission based on patients’ medical tests (e.g., hemoglobin levels) and the length of 

stay at the hospital during recovery. Because gastrointestinal cancer is often aggressive, we 

hypothesize that the two clinical baselines will estimate that the majority of patients will 

be rehospitalized (including a lot of false positives). However, this is not a feasible 

approach because it requires that clinicians check on almost every patient every day, which 

would waste resources on patients that will not be rehospitalized in the future. 

7.4.4   Results 

In this section, we compare the results of our algorithm compared to the baselines. Figure 

2 shows the accuracy of our model prediction compared to the majority rule-based 

algorithm and two predictors based on HOSPITAL score and LACE index (Robinson & 

Hudali, 2017). Our results show that after 30 days, our algorithm was able to correctly 

perform early detection of rehospitalization for 12 out of the 14 rehospitalized patients, 

across different folds. 

Our algorithm had a lower accuracy than the majority rule-based baseline, but also had a 

higher accuracy than the clinical baselines (Figure 2). The accuracy of the clinical baselines 

is low because they overestimate the risk of rehospitalization more than our behavior-based 

algorithm. Unlike the baselines that only make one prediction at the date of the discharge, 

our algorithm tracks behavior changes over time. This allows it to detect patients after they 

have been discharged, but before they have been readmitted, which increases the accuracy 



 76 

as more time passes. However, this ability also leads to a decrease in accuracy towards the 

end of the study once our algorithm starts to predict more false positives. 

Despite the high accuracy of the majority rule-based algorithm, it also never predicts that 

patients will be rehospitalized before they are because it always predicts that no patient 

will ever be readmitted. This means that it is useless for early rehospitalization detection. 

Figure 3 illustrates this using the recall measure, or the probability that we can detect a 

 

Figure 2. Accuracy of our algorithm compared to two rule-based predictors. 

 

Figure 3. Recall of our algorithm compared to two rule-based predictors. 



 77 

patient that will be rehospitalized, and shows that the majority rule-based algorithm can 

never perform early detection. It also shows that, on average, our algorithm has the same 

recall as the LACE-based predictor, but a slightly lower recall than the HOSPITAL-based 

predictor.  

Although the HOSPITAL score and LACE index (Robinson & Hudali, 2017) identified a 

large number of patients that will be rehospitalized (Figure 3), they will also produce a lot 

of false positives (i.e., patients that will be detected, but that will not actually be 

rehospitalized), which would waste hospital resources. Figure 4 shows that our algorithm 

has higher precision than any other predictor in our experiment. Precision is the probability 

that a patient we detect will be rehospitalized, and thus higher precision means our 

algorithm identifies fewer false positives (identifying patients that will not be 

rehospitalized) than the baselines, which could save clinician resources. The precision of 

our algorithm dips slightly after day 27, when it adds a false positive to prediction due to 

the patient’s worsening symptoms (Figure 4). However, our error analysis shows that the 

patient was later rehospitalized after the 30 day milestone, which suggests that the 

algorithm still correctly detected a patient at risk. 

 

Figure 4. Precision of our algorithm compared to rule-based predictors. 



 78 

7.4.5   Discussion 

Our results show that patients’ behaviors prior to being discharged from the hospital are a 

good predictor of rehospitalization. Our algorithm identified each of the 12 true positives 

before they were even discharged from the hospital after surgery. This is similar to how 

existing clinical predictors assess patients at the time of discharge (Robinson & Hudali, 

2017). Our algorithm identified as many true positives as the LACE index and one less 

than the HOSPITAL score, but without any medical test data. Although the HOSPITAL 

score and LACE index (Robinson & Hudali, 2017) are readily available to patients, our 

model and prediction algorithm is complementary to the two and we expect that the recall 

of our approach could be improved by including the HOSPITAL and LACE scores into the 

model. 

The main advantage of our algorithm  is that it predicted less false positive than the two 

clinical baselines (Robinson & Hudali, 2017). Since it predicted less false positives, our 

algorithm had a higher accuracy than the two clinical baselines. Unlike the majority rule-

based algorithm (that predicts no rehospitalizations), which had a higher accuracy than our 

algorithm, our algorithm is able to predict rehospitalization before it happens. The ability 

to predict with less false positives reduces the number of potential clinician follow ups with 

patients who are not actually at risk. 

Unlike the existing clinical predictors that only assess risk at the time of discharge, our 

algorithm assesses patients’ behavior over time. For example, our algorithm can start 

assessing patient risk even before their surgery and help them prepare and improve their 

behavior prior to their surgery. Similarly, our algorithm offers an opportunity to introduce 

interventions for at-risk patients even before they are discharged from the hospital; which 

is earlier than the HOSPITAL score and LACE index are computed (Robinson & Hudali, 

2017). Although not as valuable to clinicians as a risk assessment tool at that time because 

they have medical equipment at their disposal while patients are in the hospital, our 

algorithm enables automated interventions that can coach patients to improve their 

behaviors. 



 79 

Our algorithm also detected an increase in the risk of patients within the first 30 days since 

they have been discharged. Thus, our approach allows clinicians to monitor patients only 

when their condition deteriorates according to the algorithm and stop using clinical 

resources to closely monitor patients when their conditions improve according to the 

algorithm. Although our data set did not contain any true positives that our classifiers can 

detect after discharge, the algorithm detected more false positives after day 27 (decrease in 

precision in Figure 4). Our further error analysis showed that the false positive was a patient 

who was later rehospitalized after the 30 days mark. Such information would still be 

valuable to clinicians who continue to treat patients even after the 30 day milestone. 

It is difficult to explore which features contribute to prediction in timeseries event data 

using traditional feature exploration approaches (e.g., feature selection, model feature 

weight comparison). Instead, we leverage our model as a computational modeling tool that 

enables tracking changes in probability of feature values and probability of 

rehospitalization over time. Our model analysis suggested that the probability of 

readmission significantly increases each day patients spend in the hospital recovering after 

surgery (features also used to compute HOSPITAL score and LACE index (Robinson & 

Hudali, 2017)). We also found that high pain and nausea were predictive of 

rehospitalization. This is likely because such symptoms usually prompt patients to seek 

clinical help. Later, in Chapter 8, Section 3, we present a detailed discussion about how 

different features contribute and which ones are predictive of rehospitalization. 

7.5   Use Case: Detecting Aggressive Driving Behaviors 

The previous section introduced a use case study that showed how to classify behaviors 

using a supervised method when behavior labels are present (e.g., rehospitalized vs. not). 

However, such labels are not always available, especially when classifying individual 

behavior instances. Here we show illustrate how to classify behavior instances when no 

individual behavior instance labels are present. 

Helping drivers who routinely engage in aggressive driving behaviors (and thus present a 

hazard to other people in traffic (AAA, 2009)) understand differences between aggressive 



 80 

and non-aggressive driving behaviors could improve traffic safety. Technology that can 

automatically detect aggressive driving instances and coach drivers by simulating what 

non-aggressive driver would do in the same situation could help drivers improve. For 

example, a system could try to calm the driver to avoid immediate future aggressive 

behaviors. It could wait until after the trip is over and show the driver a better, non-

aggressive way to drive on the same portion of the trip where the driver drove aggressively. 

If the driver continues to drive aggressively, the system could suggest that the driver take 

corrective driving classes with a list of particular instances to work on. However, such 

technology requires labeling driving behavior instances, which is difficult because drivers 

may be prone to aggressive driving behavior in some situations, but not in others (e.g., 

rushing yellow lights during rush hour (Shinar & Compton, 2004)). High-level 

characteristics of aggressive routines (e.g., speeding) can be detected with lengthy manual 

observations (Shinar & Compton, 2004)). However, high-level observations may not 

capture nuances of driving behaviors required to label driving instances to train 

classification algorithms. Thus, we detect and generate aggressive and non-aggressive 

driving behavior using weakly labeled data. 

We test external validity and show a real-life application of our work in a series of user 

studies. We show how our work supports technology that helps people identify instances 

of aggressive and non-aggressive driving through use of animation (Figure 5). We train our 

driving routine models on a naturalistic driving dataset of 13 aggressive and 13 non-

aggressive drivers, labeled based on their driving history (Hong et al., 2014). Through our 

own analysis and with help from driving instructors, we show that our algorithm accurately 

detects aggressive behaviors and generates meaningful non-aggressive alternatives. In 

another user study, we show that our approach helps raise drivers’ awareness of their own 

aggressive behaviors. Our algorithm identifies problematic behaviors and suggests ways to 

improve those behaviors, and thus informs computer-supported coaching technology. 

Here we describe how to apply our behavior detection and generation algorithms in the 

domain of driving routines. We show how stakeholders can leverage the two models of 

driving routines, and the ability of the model to automatically detect and generate 

characteristic behaviors. To assist different stakeholders in this task, we built a domain-



 81 

specific driving animation tool. This tool is different from the earlier visual analytics tool 

in that it supports stakeholders who may not understand concepts associated with that tool, 

such as driving instructors (domain experts) and drivers (end users). 

7.5.1   Naturalistic Driving Behavior Dataset and Model 

We use the same dataset used in the previous section and originally collected by Hong et 

al. (2014). Earlier we showed that this data can be used to train meaningful driving routine 

models of how non-aggressive and aggressive drivers drive through intersections. Here, 

we extend the original data set and the way we modeled driving behaviors earlier. We use 

the Open Street Map API to mark each intersection in the data with speed limits, 

intersection types (e.g., t-intersection), and traffic signs and signals. This allows us to detect 

more nuanced behaviors than in our domain experts study. For example, with this addition 

we can detect if a driver has properly stopped at a stop sign or not, whereas in the old 

dataset this was not possible. Lack of information about other vehicles that may impact the 

driver’s behavior remains a limitation. 

We divide intersections into four stages (approaching, entering, exiting, and leaving the 

intersection). Sequences of these stages are the behavior instances in our model. Position 

information, along with the type of maneuver and details of the vehicle, such as its current 

speed, make up the situation features (Table 7).  Actions represent how the driver operates 

the vehicle by depressing the gas (throttle) and brake pedals. Because we model driving 

through an intersection in stages, we aggregate the driver’s actions between different 

intersection stages to represent the changes in throttle and braking levels (Table 8). 

We then weakly label instances into aggressive and non-aggressive routines using the same 

per-person labels from Hong et al. (2014), which they assigned based on drivers’ self-

reported driving violations and their answers to the driver behavior questionnaire from 

(Reason et al., 1990). We build two models, one for each label, and estimate the 

probabilities of all possible behavior instances in each model. To model how a vehicle 

moves in response to driver actions, we empirically estimated the situation-action 

transitions (𝑃(𝑠-|𝑠, 𝑎)) from the training data by counting the frequency of transitions 

between features that describe the vehicle situation. We identified 20,312 different 



 82 

situations and 43 different actions in the dataset. The final model had 234,967 different 

situations, 47 different actions, and 5,371,338 possible transitions. 

7.5.2   Classifying Driving Behavior Instances 

The model trained on behavior instances of all aggressive drivers in our training data allows 

us to compute the probability of situations (𝑃(𝑠	
  |𝐴	
  𝑔𝑔)) and probability of actions given 

situations (𝑃(𝑎	
  |	
  𝑠, 𝐴𝑔𝑔)). Similarly, the other model, trained on all non-aggressive 

drivers, allows us to compute 𝑃(𝑠	
  |	
  𝑁𝑜𝑛𝐴𝑔𝑔) and 𝑃(𝑎	
  |	
  𝑠, 𝑁𝑜𝑛𝐴𝑔𝑔). 

To classify a new behavior instance 𝑏 as either aggressive or not, we use an indicator 

function which is 1 when 𝑏 is a variation of the aggressive routine, and 0 otherwise: 

ℎ(𝑏) = 𝐼(𝑃(𝑁𝑜𝑛𝐴𝑔𝑔	
  |	
  𝑏) < 𝛼) ∙ 𝐼&𝛼 ≤ 𝑃(𝐴𝑔𝑔	
  |	
  𝑏)3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (17) 

Similarly, we classify 𝑏 as either non-aggressive or not using an indicator function which 

is 1 when the behavior instance 𝑏 is in the non-aggressive routine, and 0 otherwise: 

ℎ(𝑏) = 𝐼(𝑃(𝐴𝑔𝑔	
  |	
  𝑏) < 𝛼) ∙ 𝐼&𝛼 ≤ 𝑃(𝑁𝑜𝑛𝐴𝑔𝑔	
  |	
  𝑏)3	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  	
  (18) 

Table 7. Situation features capturing the different contexts the driver can be in. 

Feature   Description  
Goals  

Maneuver   The  type  of  maneuver  at  the  intersection  
{STRAIGHT,  RIGHT  TURN,  LEFT  TURN}  

Environment  
Position   Current  position  of  the  vehicle  in  the  intersection  

{APPROACHING,  ENTERING,  EXITING,  AFTER}  
Rush  hour   Whether  the  trip  is  during  rush  hour  or  not  

{TRUE,  FALSE}  
Intersection   Intersection  layout  including  road  types  in  each  direction  

(40  discrete  values)  
Traffic  signs   Traffic  signal  layout  

{STOP,  STOP  OPPOSITE,  ALL  STOP,  LIGHT  SIGNAL}  
Maximum  Speed   The  maximum  speed  in  each  position  of  the  intersection.  

{25,  35,  45}  
Vehicle  

Speed   Current  vehicle  speed  (5-­bin  discretized  +  stopped)  
Throttle     Current  throttle  position  (3-­bin  discretized)  
Acceleration   Current  positive/negative  acceleration  (5-­bin  discretized)  

Table 8. Action features representing actions that drivers can perform between stages of the 

intersection. 

Feature   Description  
Pedal   Aggregated  gas  and  brake  pedal  operation  between  

intersection  positions  (47  discrete  values)  



 83 

Given the two classifiers and two different 𝛼 (one for each classifier), we can classify 

behavior instances as strictly aggressive, strictly non-aggressive, or neither. Later in our 

validation section, we use different values for 𝛼 to test the impact of this parameter on our 

classification. We estimate the prior probability of an aggressive driver 𝑃(𝐴𝑔𝑔) = 0.5 

because the number of behavior instances in the training set is balanced between people 

with the two driving routines. 

7.5.3   Generating Driving Behavior Instances 

We start sampling driving behavior instances from our driving routine models by 

conditioning initial situations (a driver approaching an intersection) on features that 

describe the environment and driver goals (see Table 7). We sample the initial situation 

from the conditional probability distribution 𝑃(𝑠|𝒇>), where 𝒇> is a set of situation features 

values. Note that conditioning the probability of the initial situation on features that include 

the state of the vehicle (e.g., speed) also allows us to explore how a non-aggressive driver 

would recover from a particular aggressive situation. 

Generating behavior instances for specific driving situations allows us to explore “what-

if” scenarios for the two driver populations, even if our training data does not contain those 

exact scenarios. For example, suppose we detect that a driver aggressively approached a t-

intersection with traffic lights. To learn how a non-aggressive driver would behave in that 

scenario, we sample behaviors from our non-aggressive model starting with an initial 

situation in the same intersection. We can then use the generated non-aggressive instance 

to show the driver how to improve. 

Table 9. The mean percentage of behavior instances classified as aggressive, non-aggressive, or 

neither across different 𝜶 levels. 

 

𝜶 =0.1   𝜶 =0.25   𝜶 =0.45   𝜶 =0.5 

Agg Neither Nonagg Agg Neither Nonagg Agg Neither Nonagg Agg Neither Nonagg 

aggressive 0% 99.99% 0.01% 2.02% 92.34% 5.64% 41.82% 26.25% 31.92% 56.23% 0% 43.77% 

non-

aggressive 
0% 99.77% 0.23% 1.08% 91.91% 7.01% 38.45% 23.78% 37.76% 50.35% 0% 49.65% 



 84 

7.5.4   Preliminary Detection Validation 

Validating our algorithms is hard because we train them with no ground truth about which 

instances are aggressive and which are non-aggressive. We could not compare our 

algorithms with supervised machine learning algorithms or compute metrics that are 

helpful for evaluating supervised machine learning algorithms (e.g., accuracy and ROC 

curves) because both require per-instance labels. Instead, we used leave-one-out validation 

to avoid training and testing on the same data, and manually checked if a subset of 

detected/generated instances were variations of the two models. 

We used our driving animation tool to manually inspect behavior instances that we detected 

using our algorithm. For each driver in the dataset, we withheld the data from that driver, 

and trained the models on the remaining drivers. We then used the driver data we withheld 

to classify all driving behavior instances from that driver using the two indicator functions 

(Equations 17 & 18). We sorted classified behavior instances by their frequency in the data 

and the probability that they belong to one of the routine models, and inspected the most 

frequent behavior instances. 

Our results show that our algorithm on average found more aggressive driving instances 

among the aggressive drivers and more non-aggressive instances for the non-aggressive 

drivers across 𝛼 levels. Table 9 shows mean percentages of classified behavior instances 

for different 𝛼 levels. 

In a majority of detected aggressive instances, the drivers drove over the speed limit. In the 

most aggressive instances, drivers were exceeding the speed limit by 20 MPH. In most of 

these situations, the drivers were going straight through intersections with stops signs for 

traffic coming from the left or right. The drivers were likely expecting other drivers to 

respect their signs. However, at high speeds they may not be able to react in time if a 

vehicle turns in front of them. 

The majority of actions in the detected aggressive behavior instances involved drivers 

pressing hard on gas and brakes, matching summary statistics from Hong et al. (2014). 

Aggressive driving instances also included pressing the pedals softly. Further analysis 



 85 

showed that the drivers were already in situations that were indicative of aggressive driving 

when they performed those actions. Although the drivers had made an attempt to correct 

their behavior, it was already too late. 

Drivers in automatically detected non-aggressive behaviors observed the traffic law (e.g., 

maintained the speed limit). The most likely non-aggressive instances included an easily 

identifiable pattern where the driver would brake softly when approaching an intersection 

and then applying gas softly to increase the speed to clear the intersection. Non-aggressive 

driving instances were equally likely to occur in and out of rush hour. This is in contrast 

with about 70% of aggressive driving instances that occurred during rush hour. 

Our algorithm also detected nuanced differences between the aggressive and non-

aggressive instances. For example, it detected a common driving behavior instance where 

the driver goes through an intersection with traffic lights at a constant speed matching the 

speed limit of 35 MPH as aggressive with high probability (pAgg=0.6892). A generated non-

aggressive behavior for the same scenario shows that non-aggressive drivers are likely to 

slow down slightly as they approach the intersection and then increase their speed after 

clearing the intersection (pNonAgg=0.7458). This shows that our algorithm can detect 

behaviors that may not be obvious, but that are characteristic of a particular routine. 

7.5.5   Domain Expert Evaluation of Driving Detection and Generation  

Two licensed driving instructors volunteered to evaluate our algorithms and ensure that 

they accurately detect and generate meaningful driving behaviors. The two instructors (1 

male and 1 female) arrived at our lab and signed a consent form. One of them had over 10 

years of experience as a driving instructor, and the other had over 30 years of experience 

as a driver safety instructor and driver license examiner. They were compensated with $35. 

The evaluation consisted of two tasks. The instructors first each rated 55 different randomly 

selected driving behavior instances from our training data set. Instructors rated each 

instance as: 1) aggressive, 2) non-aggressive, or 3) neither. The instructors then rated 

another 30 random automatically detected aggressive driving instances and 30 

corresponding generated non-aggressive instances. They also rated if each generated 

instance was a good non-aggressive alternative to the aggressive behavior or not. In both 



 86 

tasks, the first 5 behavior instances were used as warm up and to explain the tasks to the 

instructors. We asked the instructors to think aloud in both tasks as they were rating the 

instances. 

We compared probabilities that behavior instances belong to the aggressive routine model 

(PAgg) between different ratings using the Kruskal-Wallis test. We did a pairwise 

comparison using Mann-Whitney’s U test with Bonferroni correction. We hypothesize that 

the aggressive probabilities will be highest for behavior instances that the instructors rated 

as aggressive, followed by those rated as neither and non-aggressive. We use our results to 

identify a reasonable 𝛼 for our classifiers to be used in future driving systems. 

7.5.5.1   Results 

As expected, we found differences in PAgg between different instructor ratings (χ2(2)=6.73, 

p=.0346). The median PAgg=62.40% of instances rated as aggressive was higher than PAgg 

of behavior instances rated as non-aggressive (median=48.14%; p=.0360, r=.31). The 

difference between PAgg of instances rated aggressive and instances rated as neither 

(median=50.69%) was only marginally statistically significant (p=.0940, r=.34). Our tests 

did not find a statistically significant difference between PAgg of instances rated as non-

aggressive and neither (p>.9999, r=.02). 

Over 75% of instances rated as aggressive had PAgg greater than 50.32%. Over 75% of 

instances rated as neither and non-aggressive had PAgg lower than 59.75% and 57.28% 

respectively. To detect as many aggressive instances, while limiting false positives, we set 

aggressive classifier 𝛼?�� to 1-0.55=0.45. Because more than 75% of instances rated as 

neither had PAgg greater than 38.98%, we set a more cautious non-aggressive instance 

classifier 𝛼�b�?��  to 0.35.	
  

The instructors rated 72.5% of automatically detected aggressive instances as aggressive, 

5% as non-aggressive, and 22.5% as neither in the second task. They rated 85% of the 

corresponding automatically generated non-aggressive instances as non-aggressive, 5% as 

aggressive, and 10% as neither. They confirmed that all generated instances that they rated 



 87 

as non-aggressive were appropriate alternatives for the automatically detected aggressive 

instances. 

7.5.5.2   Discussion 

Our classifier detected aggressive driving instances that match known characteristics of 

aggressive driving behavior (e.g., speeding (Shinar & Compton, 2004)), hard acceleration 

and braking (Hong et al., 2014)). The two driving instructors also confirmed that in most 

cases our algorithms detected and generated non-aggressive driving behavior instances that 

are safe enough to suggest to drivers as alternatives to aggressive driving behaviors. 

However, in some cases, the instructors could not properly rate the instances due to the 

lack of information about the environment (e.g., other vehicles in traffic, pedestrians).  

The lack of such information made it difficult for the instructors to rate if a behavior was 

aggressive or non-aggressive, and they had to mark such instances as neither. Lacking this 

information, they had to assume that the driver is responding to the environment in a 

reasonable way. For example, when the animation shows the vehicle going straight through 

an intersection with traffic lights, they assumed the light was green; when the animation 

showed the vehicle stop in the middle of the intersection before proceeding they had to 

assume that this was because another vehicle was blocking the driver’s way. 

Our validation also yielded some surprising findings. For example, we found that drivers 

labeled as non-aggressive may still frequently engage in aggressive behaviors. Thus, high-

level classification techniques that target aggressive drivers (e.g., driving assessment 

questionnaires (Reason et al., 1990)) may miss important behaviors that could help other 

people improve their driving, too. This also means that sampling from the non-aggressive 

driving model may in some cases result in an aggressive behavior instance. To ensure that 

our system never suggests aggressive driving behavior to the user, we only present 

generated instances that we classify as characteristic of a non-aggressive driving routine. 

We reviewed instances where the instructors disagreed with our automatic classification, 

and found that our classifiers are more sensitive to individual driver actions. For example, 

the instructors did not rate instances in which the driver drives straight through an 



 88 

intersection at the speed limit as aggressive. However, our preliminary evaluation showed 

that such behavior has a better non-aggressive alternative. 

This shows that our detection algorithm is able to point to new information about what is 

characteristic of aggressive driving. This does not mean that all driving instances we detect 

as characteristic of aggressive routine are necessarily endangering the driver and others in 

traffic. It means that drivers that do exhibit such behaviors may be at higher risk of causing 

intentional traffic violations because they routinely engage in aggressive driving behaviors. 

7.6   Summary 

In this chapter, we showed that our model can be used to automatically detect and generate 

salient patterns of behavior from large behavior logs. This is an extension to the existing 

MaxCausalEnt IRL (Ziebart, 2010) algorithm that has been used to predict behaviors. The 

results of our evaluation show that our algorithm can be used to classify quality of routines 

at the behavior instance level as opposed to coarse classification at the level of the person 

(e.g., classifying that a driver is aggressive vs. that an instance of driving through an 

intersection is aggressive). This is important because it gives us an ability to identify poor 

behaviors even among population of people whose overall routines may hide such 

behaviors (e.g., drivers who only sometimes engage in aggressive behaviors). In later 

chapters, we will illustrate the value of automatically detecting and generating behaviors 

as evidence to aid stakeholders in building a conceptual model of differences between 

routines in the sensemaking process.  



 89 

8   ROUTINE MODELS AS SENSEMAKING TOOLS 

Once stakeholders identify salient patters of behaviors that make up routine variations and 

deviations in a computational model of routine behaviors, they can move on to exploring 

and understanding the routine captured in the model. We show how such routine models 

help in two important stages of the sensemaking loop: 1) to identify salient behavior 

instances characteristic of a routine in the foraging loop, and 2) to generate and test 

hypotheses about routines in the sensemaking loop. We illustrate this on two different use 

cases: 1) in a driving domain in which we developed a specialized animation tool that helps 

 

Figure 5. Driving behavior detection and generation tool user interface. The main animation region 

(A) shows a scenario in which a vehicle travels straight through an intersection. The simplified 

intersection consists of a main road with 25 miles per hour speed limit and a residential street with 

stop signs for opposing traffic. The current scenario depicts an automatically detected aggressive 

driving behavior (speeding transparent vehicle) and an automatically generated non-aggressive 

behavior (opaque vehicle, which drives within the posted speed limit). Dials (A1) show the vehicles’ 

speed, and gas and brake pedal positions. The user can: B1) select a driver and a trip to review, B2) 

replay current driver behavior, B3 & B5) load previous and next driving behavior in the current trip, 

and B4) play or replay an automatically generated non-aggressive behavior for the given driving 

scenario. 



 90 

driving instructors and drivers to automatically identify and contracts behaviors that are 

characteristic of aggressive and non-aggressive driving routine, and 2) in a health 

informatics domain in which we developed a specialized visual analytics tool that utilizes 

a model of patient routines to allow clinicians to verify their hypotheses about which 

behaviors lead to rehospitalization of patients who have undergone a surgery to remove 

cancer. 

8.1   Identifying Salient Patterns of Routine Behavior 

One of the main steps in building a conceptual model of a routine is to identify behavior 

instances that are characteristic of that particular routine and to contrast it against another 

competing routine. For example, to understand what makes a driver aggressive requires 

identifying different variations on the driving routine that are more likely to be exhibited 

by aggressive drivers than non-aggressive drivers. Automatically detecting salient patterns 

of behavior helps identify reduce the cost of searching for such behavior instances in the 

behavior logs. However, automating this step is often challenging because behavior 

instances are not labeled based on the routine they are characteristic off. In this section, we 

show the ability of our model, trained on weakly labeled behavior instances, to 

automatically characterize routine behaviors and help various stakeholders to 

conceptualize the differences between competing routines. 

8.2   Use Case: Differentiating Aggressive Driving Behaviors 

Helping drivers understand the difference between aggressive and non-aggressive driving 

behaviors and identifying specific instances when they are behaving aggressively and 

showing them how they could improve, could help them become safer in traffic. However, 

it is often difficult for drivers to identify these kinds of behaviors on their own. Here we 

show how to leverage our computational model of driving routines to help drivers 

automatically detect when they are driving aggressively and coaching them by simulating 

what non-aggressive drivers would do in the same situation.  



 91 

8.2.1   Driving Behaviors Animation System 

We implemented our driving behavior animation system for Android touchscreen tablets. 

The client mobile application is powered by a server-side routine modeling service. The 

client downloads driving behavior instances from the server and plays them to the user. 

The client user interface (Figure 5) features an animation area (Figure 5.A), which depicts 

a vehicle in an intersection reminiscent of illustrations found in driving study books. Each 

intersection depicts a situation with an intersection type (four-way intersection or t-

intersection), intersecting road types (main roads or residential roads), and traffic signs 

(speed limits, stop signs, and traffic lights). Our data does not contain information about 

traffic light’s current light color and instead only shows that the intersection is controlled 

by traffic lights. The roads and the vehicle depict average road and sedan vehicle sizes in 

North America. 

Vehicle animation shows how an actual vehicle may have moved through an intersection. 

We implemented a simple 2D physics engine to compute the speed and acceleration of the 

vehicle as it drives through different intersection positions. The maneuver feature guides 

the trajectory of the vehicle. The action pedal feature modifies speed in between two 

consecutive positions in the intersection to illustrate how drivers’ actions affect the 

movement of the vehicle.  

The user can review trips from a particular driver (Figure 5.B1), and load all intersections 

from a trip or a subset of intersections where the driver drove either aggressively or non-

aggressively. The user can then replay the current driver’s behavior instance (Figure 5.B2), 

or switch between previous and next behavior instances in the subset (Figure 5.B3 and B5). 

For any instances, the user can generate and animate how a non-aggressive driver would 

drive through the same intersection (Figure 5.B4).  

8.2.2   Driving Animation Evaluation 

Our tool shows simplified driving maneuvers in abstracted intersections. To ensure that 

general users can interpret the animations correctly, we conducted a pilot study with 12 

participants (6 male and 6 female), who were ages between 19 and 35 (median=21), and 



 92 

had between 0 and 13 years of driving experience (median=3). They were compensated 

$10. We lost two participants’ data due to technical issues. 

Participants arrived at our lab and signed a consent form before we briefed them about the 

study. They reviewed 25 randomly selected driving behaviors from our training set, and 

compared them with randomly generated behaviors from our model. For each actual and 

generated instance, we asked them to write a paragraph describing what the driver did in 

the intersection, and another paragraph about what the driver did differently between the 

two. The first five scenarios were warm ups to ensure the task was understood. 

Two researchers independently coded participant responses and rated them as: 1) incorrect, 

if the answer did not match the driving behavior in the scenario; 2) partially correct, if the 

answer had most, but not all relevant information about the scenario; and 3) correct; if the 

answer had relevant information about the scenario and the driving behavior without 

mistakes. Each researcher rated 600 descriptions and they perfectly agreed on 83.86% of 

them (Cohen’s kappa=0.54). For each rating, we computed the average score rounded 

down towards the lower of the two scores. 

The participants accurately described the scenarios. They correctly described 85% of 

driving instances, partially correctly described 13%, and incorrectly described 2% of the 

instances. They correctly compared 79% of instances, partially compared 15.5%, and 

incorrectly compared 5.5% driving instances. To increase the users’ accuracy and to reduce 

the time and effort to compare behaviors, we modified our application interface to show a 

ghost vehicle (Figure 5) when the user (re)played generated behaviors. 

8.2.3   Acting in Response to People’s Behaviors  

We now illustrate how we leverage driving routine models to raise people’s awareness and 

help them understand their driving behaviors. We could generate behaviors from both 

aggressive and non-aggressive models to help drivers understand how these routines differ 

in frequent driving situations. However, our approach is uniquely positioned to detect 

actual drivers’ aggressive behaviors to help them reflect on differences between their 

behavior and generated non-aggressive driving behavior in the same situations. 



 93 

We conducted a user study in which participants drove on a predefined route and reviewed 

their driving behaviors using our tool. We hypothesize that showing participants their 

aggressive behaviors and non-aggressive alternatives will change their rating of their 

driving expertise and quality. Out tool is not meant to motivate or lead to behavior 

change—we assume that the drivers are already motivated to improve (e.g., to pass a court 

ordered driving test). 

8.2.3.1   Method 

We recruited 20 participants (12 male, 8 female), ages between 19 and 72 (median=25). 

Participants had valid driver’s licenses, and had between 1 and 55 years of driving 

experience (median=7). They arrived at our lab and signed a consent form. We briefed 

them on the study, and then installed an OBD2 sensor and a smartphone (to collect data 

from OBD2) into their vehicles. Participants then drove on a predefined route in a mid-

sized city in North America. The route reflected different kinds of driving situations in 24 

intersections. Participants drove five laps (total 120 intersections) to ensure that they had 

the time to fall into their driving routine. They drove alone to minimize the effect of a user 

study on their normal driving behaviors. 

After returning to our lab, we uploaded their driving data into our modeling system. The 

upload procedure converted OBD2 data into behavior instances, and automatically 

detected aggressive driving instances using our model now trained on all aggressive drivers 

from our extended data set. 

Participants then completed a pre-test questionnaire, in which they rated their driving 

expertise and quality on 6-point Likert scales, where expertise ranged from very 

inexperienced to very experienced, and quality ranged from very aggressive to very non-

aggressive. We also modified the standard driver behavior questionnaire (DBQ) (Reason 

et al., 1990) to include only 15 violation and accidental violation questions relevant to our 

study. Participants answered how frequently they engaged in driving behaviors in each of 

15 questions, and how that makes them feel about their driving expertise and quality on the 

same 6-point Likert scales. 



 94 

We then randomly split participants into two groups: 1) baseline, in which participants 

used our modified driving animation tool to review all of their driving instances, and 2) 

tool, in which participants reviewed their automatically detected aggressive driving 

instances, and compared them with corresponding automatically generated non-aggressive 

driving instances. We ensured that both conditions had the same proportion of males (n=6) 

and females (n=4). We explained to participants how to use the tool and told them that they 

can review the behaviors for as long as they want.  

After they finished using the tool, participants answered the same questionnaire again. We 

compared their pre- and post-test answers to understand the effects of our tool on their 

awareness and understanding of their aggressive driving behaviors. Afterwards, 

participants commented on the tool. The study lasted about two hours and participants got 

$35. 

8.2.3.2   Measures 

We measured the change between participants’ answers in pre- and post-tests. We 

computed the change in overall driving expertise (ΔE) and quality (ΔQ), median change in 

frequency of behaviors in our modified DBQ (ΔDBQ), and median change in expertise (Δe) 

and quality (Δq) over all DBQ questions. We compared the differences between the changes 

in the two groups using Mann-Whitney’s U test. 

8.2.3.3   Results 

Most participants in the two conditions did not change their answers about overall driving 

expertise (both conditions median ΔE=0) and quality (both conditions median ΔQ=0). Our 

tests could not find a significant difference between the two conditions for ΔE (U=47, 

Z=0.26, p=.9288, r=.06) and ΔQ (U=46, Z=0.34, p=.8727, r=.08). Thus, participants may 

be unlikely to change their overall driving expertise and quality rating after reviewing only 

a few of their behaviors. 

However, they did change their perception of specific driving behaviors in our modified 

DBQ. Participants in the baseline condition reduced their frequency of intentional and 

accidental aggressive violations (median ΔDBQ=-1.0) compared to participants in the tool 



 95 

condition who slightly increased the frequency (median ΔDBQ=0, 75th percentile ΔDBQ=1; 

U=23, Z=2.1808, p=.0259, r=.49). 

Also, as we hypothesized, participants in the tool condition changed their answers about 

their driving quality towards aggressive behaviors (median Δq=-1.0), while participants in 

the baseline condition changed towards non-aggressive (median Δq=1.0; U=82, Z=2.65, 

p=.0128, r=.59). Participants in the baseline condition changed their answers about their 

expertise towards the inexperienced end of the scale (median Δe=1.0), but the tool condition 

participants mostly did not (median Δe=0). Our test could not find a significant difference 

(U=49, Z=0.08, p=.9682, r=.02).  

The only difference between the two conditions was the participants’ exposure to 

automatically detected aggressive and generated non-aggressive instances. The percentage 

of detected aggressive instances was similar across the two conditions. Thus, we conclude 

that exposure to the detected and generated behaviors raised participants’ awareness about 

their specific driving behaviors. 

Lack of information about other vehicles and pedestrians affected participants’ ability to 

understand aggressive instances. For example, in response to slowing down for a vehicle 

in front, P11 (tool) said: “I did not agree that the scenarios flagged as aggressive were 

aggressive, especially the ones where I was moving significantly more slowly than the 

‘non-aggressive’ scenario.” However, slowly tailing a vehicle in an intersection could 

result in the driver’s vehicle blocking the intersection if the lane in front fills up. The 

generated behavior may account for the gap that the non-aggressive drivers keep between 

vehicles in such situations. 

Participants also at times disagreed when our detected instance challenged their notions of 

aggressive driving. For example, P6 (tool) commented: “Most of the time the tool 

suggested I drive slower when I was already driving under the actual legal speed limit, 

which was weird.” However, our non-aggressive driving routine model favors softly 

pressing on the gas and lower acceleration, which resulted in a slower speed than the 

participant’s in those situations. 



 96 

In other cases, generated non-aggressive instances helped participants understand why the 

system made its decisions. For example, P16 (tool) said: “I didn’t think that going through 

an intersection at the speed limit is aggressive, but then I saw the non-aggressive option 

that showed I should slow down a bit when approaching the intersection and then speed 

up after I passed it. And I thought: ‘Oh, that does make sense!’” Although participants 

may disagree that a particular instance of their behavior is aggressive, they learned of a 

better way to drive through the intersection. 

Drivers are not fully aggressive or fully non-aggressive, but show aggressive and non-

aggressive behaviors in different situations. Drivers using the tool had both an increase in 

their self-assessed aggressive driving quality and frequency. Our tool raised awareness of 

more aggressive driving behaviors than status quo (no coaching in pre-test) and a baseline 

condition (unguided review). Our tool can coach drivers to identify aggressive driving 

behaviors and contrast them with non-aggressive behaviors. 

8.2.3.4   Discussion 

We automatically detect and generate behaviors using probabilities that people with a 

certain routine will perform sequences of actions in a given situation. We calculate the 

probabilities in a principled way that ensures that the model best fit training data from large 

behavior logs. Without our contribution, we would have to perform tedious manual 

exploration of the existing models to understand specific differences between variations of 

different routines. 

Our work is based on a real-life example where the lack of labeled behavior instances 

impedes technology that could help people improve their lives. The challenge of labeling 

individual behavior instances is not limited to driving and spans number of other domains. 

For example, our approach can simplify labeling daily routines of parents who are likely 

to forget to pick up their children. Here, the weak, per-parent labels indicate if they have 

forgotten their children in the past or not. Our approach offers a generalizable solution to 

classify and generate behavior instances in different domains, because it is based on 

probability axioms and a proven model of routine behavior.  



 97 

We showed the ability of our algorithms to automatically detect and generate driving 

behavior instances using weakly labeled data. Our approach can detect behavior instances 

that can negatively impact people and those that can have a positive impact on them. An 

important by-product of our approach is that it can also be used to detect behavior instances 

that are not characteristic of any particular routine (e.g., behavior instances that are 

frequently exhibited by both aggressive and non-aggressive drivers). We refer to such 

behavior instances as aproblematic, and hypothesize that behavior change technologies 

could use such instances as a stepping stone towards better behavior. 

We found that people who have demonstrated a certain routine do not always behave in 

ways that are characteristic of that routine. We found that aggressive drivers often drive in 

a way that is not necessarily aggressive. Also, some drivers who generally drive non-

aggressively will at times exhibit aggressive behaviors. The existing screening techniques 

(e.g., driving assessment questionnaires (Reason, Manstead, Stradling, Baxter, & 

Campbell, 2011)) would miss an opportunity to help such drivers improve. 

Our use case illustrates how automatically detecting and generating driving behaviors can 

help driving instructors evaluate other peoples’ driving behaviors and help drivers reflect 

on and understand their own driving behaviors. However, we have also identified a 

common theme during our validation that both kinds of users are quick to trust obvious 

behaviors that may match their preconceived notions about aggressive driving. On the other 

hand, they were slow to accept other more nuanced behaviors that may be characteristic of 

a particular routine. Although validating their preconceived notions confirms our 

algorithms are correct in most cases, we would ideally like to provide a tool that helps 

generate new knowledge. 

The users need to be able to trust the tool before they can accept new knowledge that it 

suggests. To increase user trust, our tool should include complete information about the 

environment and show that it observes the environment in a correct way. Showing that the 

algorithm detects behaviors that matter could also increase trust. For example, the tool 

could animate what could go wrong when the driver engages in less obvious aggressive 

behaviors (e.g., show that drivers that slowly tail other vehicles can get stuck in 



 98 

intersections).  Building trust in new knowledge that the tool generates is fundamental to 

behavior change, which is hard to do if we cannot persuade people that their behavior could 

negatively impact them. 

8.2.4   Summary 

In this section, we showed that visualizing automatically detected classes of behaviors and 

contrasting them with automatically simulated behaviors from another competing routine 

through animation can help stakeholders understand the differences between routines. Our 

user study showed an example of how such exploration of data helps stakeholders to reflect 

on and build better conceptual models of those behaviors. This kind of exploration through 

classification and simulation is the key contribution of our computational modeling 

methodology. Our study has shown that without automated detection it is difficult for 

stakeholders to identify patterns that are characteristic of a behavior. However, evaluation 

of our early prototypes showed that even the ability to automatically detect behaviors may 

not be enough to explain the behaviors. It is only after we implemented a feature that 

contrasted the aggressive and non-aggressive alternatives that participants managed to 

clearly ascertain what makes a certain behavior characteristic of one routine and not the 

other. 

8.3   Generating and Validating Hypotheses about Routines 

Computational models enable stakeholders to explore a complex system by simulating 

what would happen in the system in response to changing conditions. In the domain of 

behavior modeling, simulation allows stakeholders to “play out” hypothetical behavior 

instances based on their conceptual model of behavior and verify that their hypothesis 

matches the simulation. This in turn enriches stakeholders’ conceptual model of a routine 

and allows them to reason about and act in response to behaviors they have studied. For 

example, a clinician studying behaviors of patients who have undergone a surgery to 

remove a cancer may hypothesize that lack of mobility is correlated with high rates of 

rehospitalization of patients within the first 30 days from their surgery. Being able to 

explore what happens to various groups of patients after they have been discharged from 



 99 

the hospital could help clinicians confirm their hypothesis and in turn inform the design of 

information technology-based interventions that try to motivate sedentary patients to move 

more and avoid negative outcomes of their treatment. 

However, it is difficult to explore large computational models of routines, which often 

contain millions of possible transitions between situations and trillions of possible behavior 

instances, without a visualization tool that allows the stakeholders to explore the model. 

Although existing MDP visualization tools can visualize behavior instances resulting from 

an MDP model, they focus on visualizing deterministic policies and not stochastic policies, 

which are prevalent in behavior modeling. One way to visualize and explore such 

stochastic policies is through simulation. For example, in the previous chapter, we 

illustrated the value of behavior simulation by automatically generating non-aggressive 

driving behaviors to contrast them with aggressive behaviors and help driving instructors 

and drivers explore and understand the differences between the two. However, our 

illustration is limited in that it does not allow the user to specify which aspects of behavior 

to explore. Instead, exploration is driven by automatically detected poor routines. However, 

stakeholders may want to freely explore other aspects of behavior. Another challenge of 

our previous illustration is that it is domain specific. This means that for each domain we 

study, we would have to create a specialized simulation environment, which is resource 

and time consuming. 



 100 

To support stakeholders in their sensemaking process (Pirolli & Card, 2005), we present a 

visual analytics tool, called Behavior Dashboard (Figure 6), which allows stakeholders to 

validate their hypothesis about sequences of behaviors that are characteristic of a routine 

and present their findings visually. Behavior Dashboard is a direct extension of the 

visualization tool in Figure 1, which we used to validate that our computational model 

extracts meaningful patterns of behavior by showing overall most salient behavior 

instances that define routine variations in the data. We changed the visual representation 

of behavior instances and added an ability to query different aspects of the model and to 

simulate behaviors in specific situations, an ability important for exploring computational 

models. 

We designed and implemented a preliminary prototype of Behavior Dashboard to help 

stakeholders enrich their conceptual model of a routine behavior by visually inspecting 

overview of behaviors captured in the model, followed by querying and simulating routine 

variations from specific parts of the model, and exploring details of actual behavior 

 

Figure 6. Behavior Dashboard is a computational modeling visual analytics tool that leverages our 

model of human routine behavior to compute routine variations and deviations from the data, and 

then present those results in an interactive visualization. 



 101 

instances. Because it is based on a probabilistic computational model of routines, our tool 

allows the stakeholders to explore nuanced aspects of routine variations and behavior 

instances than what is possible with simple aggregation statistics. 

8.3.1   Design of Behavior Dashboard 

Our main design goal for Behavior Dashboard was to enable stakeholders to explore and 

understand routine behaviors across domains. In our design process, we focused on domain 

experts who wish to study human behaviors collected in large behavior logs, although some 

of our design decisions may generalize to end-users who wish to explore their own 

behaviors (e.g., individuals in the quantify-self movement). We focus on domain experts 

with limited data analytics knowledge who seek novel tools to address the challenges of 

understanding data from large behavior logs. Our design process started with a combination 

of informal and semi-structured interviews with our primary stakeholders from various 

domains (e.g., medical, information technology security and privacy) about their current 

processes to explore data from large behavior logs. 

Based on our findings, we generated two design artifacts that helped us ground our design 

of Behavior Dashboard (see Appendix for materials): 1) a Concept Map, a diagram 

representing relationship between different concepts and artifacts that users generate in 

their sensemaking process; and 2) a Primary Persona, or an imaginary domain expert who 

encompasses actual users we have interviewed and their requirements and needs. Our 

Primary Persona is a clinician interested in studying patient behaviors from large behavior 

logs collected using commodity hardware (e.g., smartphones, fitness trackers). Thus, the 

rest of this chapter uses examples from the medical domain. 

Using these design tools, we confirmed that domain experts generally follow an iterative 

pipeline matching the sensemaking process for data analytics (Pirolli & Card, 2005): 

1.   Identify a research question 

2.   Deploy a field study to collect subjects’ behavior data logs from their various 

devices and environments that they hypothesize will help answer the question 

3.   Explore data to perceive trends and create a conceptual model of behavior 

4.   Generate hypotheses about the behavior that help answer the research question 



 102 

5.   Search data for examples that prove or disprove the hypothesis 

6.   Generate new insights, tune hypotheses, or adjust the research question  

7.   Present findings 

The primary means for analyzing data in steps 3 through 7 are various Exploratory Data 

Analysis techniques that aggregate data across group variables (e.g., grouping clinical 

outcomes, such as rehospitalized or not, based on age, gender, etc.). However, as we have 

confirmed in our findings, the main challenge domain experts face is exploring sequences 

of behaviors. Some reasons include lack of knowledge about methods and lack of 

specialized tools that would help them explore sequences of behaviors from data stored in 

large behavior logs. 

In our design of Behavior Dashboard, we also focus on steps 3 through 7, and assume that 

the domain expert users have already identified a research question and collected relevant 

behavior log data. Prior to step 3, we assume the domain experts have selected features of 

interest and converted raw data from a behavior log into behavior instances which we use 

to train a computational model to generate data structures required for the later visual 

exploration of behaviors. We also assume the routine model training followed the 

guidelines from Chapter 3. Given these requirements, we present a design and 

implementation of specialized visual representations and interactions that allow the users 

to explore complex routine behaviors.  

When designing our visual analytics tool, we ensured the tool follows the Visual-

Information Seeking mantra (Shneiderman, 2003): 1) Overview, 2) Zoom and Filter, 3) 

Details on Demand. Past research (Fekete et al., 2008) has identified this approach as one 

that offers a fast path to discovery of knowledge in Information Visualization tools. 

Throughout our design process, we continued to demo our prototypes (ranging from simple 

low fidelity sketches to fully functional high-fidelity prototype) in a form of a Cognitive 

Walkthrough (Rieman, Franzke, & Redmiles, 1995) to a stakeholder and an Information 

Visualization expert. We adjusted our prototypes based on their feedback to ensure 

usability and usefulness of Behavior Dashboard. 



 103 

8.3.1.1   Data Organization 

Behavior Dashboard organizes behavior data and the corresponding models into projects. 

Each project comes from a distinct data collection study and is associated with: 1) a training 

set of behavior instances, a repository of behavior instances from behavior logs used to 

train the computational model, 2) an optional testing sets of behavior instances, which are 

behavior instances not used to train the model, and are used to either validate the model or 

to explore new, unlabeled behaviors not available during model training, 3) and a 

computational model, which uses an MDP to capture both world dynamics and people’s 

behaviors as enacted given those world dynamics. Each model contains a set of situations. 

At the start of a session, the user selects a project from a list of available projects to begin 

exploring corresponding behaviors (Figure 7). 

8.3.1.2   Visual Representation of Behaviors 

Behavior Dashboard uses a visual language to representation different elements of our 

computational model of routines. Here, we list all elements of this language and how they 

relate to the model in Equation 1. 

 

Figure 7. List of available projects the user can choose from to start exploring behaviors using 

Behavior Dashboard. 



 104 

8.3.1.2.1   Situations and Actions 

In Behavior Dashboard, situations and actions are represented as rectangles that encode 

three distinct values (Figure 8): 1) color of the rectangle, 2) features and their values 

organized in a grid; and 3) border. Color distinguishes situations (orange) from actions 

(blue). Feature grid is organized in rows, where each row represents a feature and all or its 

possible values. For a distinct situation or action, there is always one active feature value, 

which is represented as a filled, opaque rectangle; all other inactive features use a hollow 

rectangle to represent they are inactive. Each situation and action have a border of fixed 

width, where transparency of the border indicates the probability of that situation (𝑃(𝑠)) 

or action (𝑃(𝑎	
  |	
  𝑠)) in the model, ranging from fully transparent (0) to fully opaque (1.0). 

8.3.1.2.2   Behavior Instances 

Behavior instances are represented as sequences of situation-action pairs. The smallest unit 

of a behavior sequence represents a current situation that a person might be in, the action 

the person performs in that situation, and the resulting situation (Figure 8). Behavior 

Dashboard sets the border opacity of each element to the corresponding probability from 

the model. For example, in Figure 8, the probability of the leftmost situation (s) is based 

on probability of that situation in the model (𝑃(𝑠)), the probability of the action (a) is equal 

to the probability of that action given the previous situation (𝑃(𝑠) ∙ 𝑃(𝑎|𝑠)), and the 

 

Figure 8. Behavior Dashboard represents situations (orange) and actions (blue) as a grid of feature 

values (first two from the left). Situations and action can be distinguished from other situations and 

actions by visual pattern of the feature values. The opacity of the borders around the visual items 

corresponds to probabilities of transitions from visual item to visual item (in order from left to right). 

The user can find details about situations or actions by hover over a feature value cell (far right), 

which shows details about the corresponding feature. 



 105 

probability of the resulting situation (s’) is based on the world dynamics (𝑃(𝑠) ∙ 𝑃(𝑎|𝑠) ∙

𝑃(𝑠’|𝑠, 𝑎)). 

Each situation-action pair in a behavior instance take place over a single time tick.  

Transitions occurs over two time ticks (the first situation-action pair occurs at the first and 

the resulting situation in the next). Behavior Dashboard, thus, orders situation-action pairs 

according to their time tick in a behavior instance (Figure 9). To mark time ticks, Behavior 

Dashboard draws a circle above each situation and action and marks the position of 

situation-action pairs with a number corresponding to the index of the time tick in the 

sequence. 

8.3.1.2.3   Routine Variations 

Behavior Dashboard represents routine variations (or different possible behavior instances 

characteristic of a routine) by aligning behavior instances on time ticks and aggregating 

situations and actions across all behavior instances at each time tick (Figure 10).  

At each time tick situations-action pairs are added together so that the resulting aggregated 

visual item has (Figure 11): 1) boarder with opacity representing the sum of all probabilities 

of visual items in the aggregate, and 2) for each feature, the feature values show the 

 

Figure 9. An example behavior instance taking place over four time ticks. Each time tick (t) is 

represented by a circle above a situation and marked with the index of the time tick. 

 

Figure 10. A routine variation, which combines related behavior instances by first aligning them based 

on time ticks and then aggregates situations and actions for each time tick. 



 106 

probability distribution over all feature values of individual items. In addition to providing 

information about how values change within a feature, the aggregate situations and actions 

also show relationships between different features and their values over time. 

Each routine variation is organized in its own behavior track (Figure 12), which combines 

related routine variations with a common start time tick. Behavior tracks allow for 

branching within a routine variation to explore different behavior alternatives within a 

routine. In the next section, we detail how the user interacts with these visual items to 

explore behaviors from large behavior logs. 

 

Figure 11. Aggregate situation in a routine variation. Situation detail view shows the probability 

distribution of values of a feature. 

 

Figure 12. A behavior track containing a routine variation starting at initial time tick t0 and an 

alternative routine variation branch starting at time tick t1. 



 107 

8.3.1.3   Interactions with Behaviors 

Behavior Dashboard enables a set of interactions with the visual items we described in the 

previous section that help the user to explore and understand behaviors captured in a 

computational model of routines.  

8.3.1.3.1   Behavior Overview 

The user begins behavior exploration with an overview of all behavior instances across all 

time ticks aggregated into a single aggregate situation (Figure 13). 

Detail view of the aggregate (Figure 14) shows probability distribution of feature values 

for each feature for the entire model and all of the routine variations and deviations it 

identified in the data. This view allows the user to identify features of interest based on 

their likelihood in the model. 

 

Figure 13. Starting screen of Behavior Dashboard after loading a project. The initial behavior track 

shows an overview of behaviors captured in the model as a single overview aggregate situation. 



 108 

 

8.3.1.3.2   Filtering Situations and Actions 

Behavior Dashboard enables the user to filter situations and actions based on feature value 

by clicking on a feature value of a situation or an action. This expands the node and creates 

a new sub-track within the original track (Figure 15). The user can reorder behavior tracks 

and sub-tracks by dragging them and placing them to create a new vertical order. Behavior 

Dashboard computes probability distribution of feature values of the new, expanded 

aggregate situation or action by conditioning the probabilities on the value of expanded 

feature. 

 

Figure 14. Starting overview aggregate situation. Overview combines all routine variations and 

deviations from a model across all possible time ticks into a single visual item detailing the 

probability distribution of all situation feature values in the model. 



 109 

8.3.1.3.3   Exploring Details of Data Behavior Instances 

The users can load and explore actual behavior instances from the data. These behavior 

instances could either be part of the training data set or validation instances that were not 

used to train the model and instead are used to validate the model. To load a behavior 

instance, the user specifies a data set, selects a particular participant from the data collection 

study, and then selects one or more behavior instances from that participant. The user can 

then select features that Behavior Dashboard will use the model to predict based on the 

value of other features in the behavior instance. This allows the user to validate how well 

the model predicts people’s behaviors. For any behavior track, the user can turn the time 

forward any number of ticks by pressing on the “Next Time Tick” button and selecting the 

number of ticks in the resulting pop-up dialog.  

 

Figure 15. The original overview aggregate situation expanded on a feature value. The resulting 

expanded situation is placed in the same behavior track for easy visual comparison. 



 110 

8.3.1.3.4   Exploring Hypothetical Routine Variations 

Users can “zoom” into parts of the model based on situations or actions of interest by 

querying the model and creating special query behavior tracks. The user can specify queries 

using the dialog in Figure 17. The dialog enables the user to specify situations and actions 

that will or will not be part of the variations using simple equals or not equals operators. 

Each query part can apply to only the first situation that matches the query (“not fixed”) or 

be applied to all subsequent time ticks (“fixed”). 

 

Figure 16. A behavior instance loaded from the data. The behavior track label (top) shows the source 

of behavior instance. The buttons allow the user to dismiss this behavior track, sample from the 

behavior track, or fast forward in time by selecting a number of next time ticks. The behavior instance 

in this example shows seven time ticks. The user selected to have the probability distribution of feature 

value for the feature in the first row of each situation computed from the model. White circle on top of 

the feature value cell indicates actual value in the data. 

 

Figure 17. Model query dialog. The user can specify a query that selects only specific situations and 

actions based on their feature values. 



 111 

This creates a new behavior track containing all the routine variations that match the 

specified query (Figure 18). The user can then filter routine variations by feature values 

using the expand feature, “zoom into” specific variations in the expanded tracks, and 

request details about both behavior instance that are part of the variation by using the 

sample feature and details of situations and actions by hovering over their respective 

feature values. 

8.3.2   Use Case: Understanding Behaviors that Leads to Rehospitalization 

Here we show how clinicians can use Behavior Dashboard to understand behaviors of their 

patients that lead to rehospitalization. In our scenario, we assume expert use of the system. 

Here, we illustrate various features of Behavior Dashboard and their use in the 

sensemaking process. 

8.3.2.1   Behavior Analysis and Results 

We started out analysis by visually exploring the overview visual item (Figure 15). The 

overview showed that model estimated that each participant has approximately 30% chance 

to be rehospitalized. This is slightly higher than 27.45% of patients in our study. The model 

uses statistical principle of Maximum Entropy (Jaynes, 1955) to generalize to unseen data 

and estimate these probabilities based on the information present in the data and the size 

of the data set. For example, the estimated percentage is accurate if we consider participants 

who have dropped out of the study due to worsening health. Thus, we conclude that our 

model approximates the rate of rehospitalization in our population well. 

 

Figure 18. A behavior track matching a query. Such tracks can be used to ask "what-if" questions 

from the model. 



 112 

8.3.2.1.1   Behavior Overview 

We confirmed that other demographic data follows the distributions from the data. 

However, we also noticed that there is a high probability of patients not reporting their 

symptoms (approximately 40% for pain and nausea). Similarly, the model estimated that 

67.58% days do not have recorded information about patient location, but fitness tracker 

data was missing for only 24% of days for step tracking and 44% of days for sleep tracking. 

A large portion of missing subjective symptom ratings were likely due to an inability to 

comply during hospital stays. Filtering by stage allowed us to confirm this hypothesis 

during the time patients spent in the hospital or on the day they were discharged. However, 

the missing objective location data was due to tracker failures, which prevented us from a 

more detailed analysis of macro-level mobility. 

Behavior Dashboard also estimated that patients are unlikely to rate their symptoms very 

bad (worst pain and nausea they have ever experienced in their life), which were less than 

1% for both. These are encouraging results because it means that patients did not suffer 

such severe problems very often. However, worsening symptoms are of interest to us 

because they could mean that the patient is likely to be rehospitalized. This highlights the 

importance of having our computational model that can predict symptoms even when 

symptoms data is missing (e.g., predicting missing self-reported symptoms in future User 

Interface that provide automated medical interventions). Unlike simple visualizations of 

raw behavior instances, Behavior Dashboard still allows us to explore behaviors even in 

infrequent situations because it uses the underlying computational model to generalize to 

unseen situations and estimate probability of routine behaviors in those situations, too. 

Overview of the model also gives us an opportunity to reproduce analysis similar to 

existing Exploratory Data analysis approaches. To illustrate this, take for example past 

research (Low et al., 2018) that could not find a significant effect of demographics on 

rehospitalization rates. The overview showed an estimated distribution of genders with 

43.81% female and 56.19% male. We then conditioned (expanded) the overview visual 

item on both genders and explored the readmission rates for the two genders. Our model 

computed that probability of readmission for female patients 𝑃(𝑅𝑒𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 =

𝑇𝑟𝑢𝑒	
  |	
  𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒) 	
  = 	
  25.89% and probability of readmission for male patients 



 113 

𝑃(𝑅𝑒𝑎𝑑𝑚𝑖𝑡𝑡𝑒𝑑 = 𝑇𝑟𝑢𝑒	
  |	
  𝐺𝑒𝑛𝑑𝑒𝑟 = 𝐹𝑒𝑚𝑎𝑙𝑒) 	
  = 	
  33.22%. Visually, this difference is 

small (Figure 15), which is supported by the low Bayes Factor (𝐾 = 1.28) giving more 

support for previous findings (Low et al., 2018). 

8.3.2.1.2   Effects of Self-reported Symptoms on Rehospitalization 

We then proceeded to explore the effects of symptoms and patient mobility on 

rehospitalization. Unlike the previous analysis (Low et al., 2018), here, we focus on 

behaviors over time to understand the nuances of patients’ behaviors. Because the goal of 

our analysis is to understand the behaviors of patients that lead to rehospitalization after 

they have been discharged, we used Behavior Dashboard query functionality to focus our 

further analysis only on behaviors after patients have been discharged. We queried the 

model and zoomed into the situation that represents the day the patients are discharged 

from the hospital after surgery. We then simulated behavior over the next 30 days (30 time 

ticks) using model predicted behaviors in our select situations. 

Behavior Dashboard showed that patients across genders and age groups are unlikely to 

provide symptom ratings or may experience some pain and nausea in the first week after 

being discharged.  For example, the model estimates that approximately 86% of patients 

will not enter a symptom on the day they are discharged. This is expected because patients 

may still be feeling ill shortly after surgery or may not have the time to enter symptoms 

due to moving back home. Although, the model continues to predict low compliance for 

symptom ratings (down to approximately 30% after first 7 days), it also shows that patients’ 

symptoms improve. For example, the model shows that pain stabilizes by day 7, going 

down from approximately 21.62% chance of experiencing the worst pain a day after being 

discharged down to less than 0.1% chance on day 7. This decrease in symptoms is expected 

if the patients’ recovery after being discharged is going well. 

The ability of our algorithm to predict rehospitalization in early stages is probably due to 

the poor symptoms many patients experience and report soon after being discharged. This 

is evident in both the empirical data and in our evaluation of our readmission predictor 

from Chapter 7. Behavior Dashboard shows that there is about 17% chance of being 

rehospitalized within the first 7 days which then tempers off and slowly increases by day 



 114 

30, at times by approximately only 0.1% per day. This means that some early symptoms 

are indicative of patients’ rehospitalization soon after being discharged. 

We then used Behavior Dashboard to simulate the behaviors of patients who never 

experience very bad pain and nausea (Figure 19 and Figure 20, second routine variation 

from the top), and we found that the model estimates that their rehospitalization rates 

decrease significantly, down to less than 0.01% on day thirty. Such patients are able to 

perform more physical activity and more likely to spend a reasonable amount of time in 

bed. Thus, catching these symptoms early could help clinicians prescribe interventions that 

could improve poor symptoms and prevent rehospitalization. 

8.3.2.1.3   Effects of Mobility on Rehospitalization 

Previous work has hypothesized (Low et al., 2018) that increased physical activity could 

improve patients’ symptoms and thus improve rehospitalization outcome. However, the 

most likely routine variation for rehospitalized patients was staying at home with low 

activity bouts, and low to medium time spent in bed; although many spent more than 10 

hours per day in bed. Although we expect such low activity in the first few days after being 

discharged, Behavior Dashboard showed that there is a large probability that patients will 

continue to remain sedentary each day, even as their symptoms improve. This leaves an 

opportunity to motivate patients to move more. 

Thus, we used the model to simulate changes to the readmission rates across patients, to 

motivate patients to track their steps and take approximately 720 or more steps per day; a 

small but realistic increase in physical activity level for this population (Figure 19 and 

Figure 20, third routine variation from the top). We also simulated motivating patients to 

stay in bed for no longer than 10 hours per day. Behavior Dashboard estimated that patients 

are likely to make slow progress increasing their activity in the beginning, but the 

probability of them being able to make at least 1,420 steps per day on day 30 increases 

from approximately 28% to approximately 43% if successfully motivated to move more. 

Behavior Dashboard estimates that this small change in physical behavior might not be 

predictive of readmission rates in the first 7 days (the readmission rate remains at 

approximately 17%), but that continued activity predicts reduction in probability of 



 115 

readmission by approximately 4% by day 30. Similarly, Behavior Dashboard estimated 

that motivating patients to spend less than 10 hours in bed predicts reduction in readmission 

rates by approximately 3% by day 30. 

Behavior Dashboard estimates that such an increase in physical activity may not be 

associated with improved pain and nausea symptoms, which the model predicts with or 

without increased physical activity. This indicates that it is more likely that symptoms 

affect patients’ ability to perform physical activity than other way around. We then queried 

model for behaviors of patients without very bad pain and nausea, and with medium or 

high percentage of activity bouts, and the model predicted only marginal improvement of 

the rehospitalization outcome (approximately less than 0.1% decrease compared to 

unconstrained activity bouts). 

This means that the model predicts that there will be more opportunity to provide patients 

with interventions as their symptoms improve. For example, we simulated a holistic 

approach to motivating patients to have healthier routines, where we hypothesize that we 

are able to motivate them to walk more and to spend only between 5 and 10 hours in bed. 

Behavior Dashboard estimated that, when able to do it given their symptoms, there is 

approximately 5% probability that patients with this kind of routine would be readmitted 

in the first 7 days (compared to approximately 17% probability without any intervention); 

this probability then remains constant all the way up to day 30 (Figure 19 and Figure 20, 

last routine variation). 



 116 

 

Figure 19. Our analysis of four behavior tracks showing model estimated patient current routine 

variation (top) and various hypothetical interventions in the first week after they have been discharged. 

 

Figure 20. Our analysis of four behavior tracks showing model estimated patient current routine 

variation (top) and various hypothetical interventions in the last week of the study. 



 117 

 

8.3.2.2   Discussion 

In this use case, we showed how a computational model of routines of patients who have 

undergone a surgery to remove cancer could help clinicians generate and test hypotheses 

about patients’ health. We started with a research question that seeks to answer if increased 

patient mobility could lead to more positive rehospitalization outcomes. With this research 

question in mind, we used our methodology to train a model on data collected from real 

patients. We picked the features in collaboration with their actual clinicians based on 

previous knowledge in the domain and their desire to explore how data collected from 

commodity hardware could capture people’s behaviors. We engineered the features 

according to our methodology to capture the economics of patients’ behaviors as they go 

through the surgery and subsequent recovery process. 

Earlier in Chapter 7, we showed that the model is able to predict at-risk patients before they 

are rehospitalized. We have shown that our detection algorithm can in some cases detect 

at-risk patients within the first week of them being discharged. This is in line with our 

analysis using Behavior Dashboard that has shown an increase in readmission probability 

in the first 7 days after being discharged. Such automated prediction enables future 

automated interventions that can detect at-risk patient and propose a treatment. 

One such intervention is to motivate patients to avoid remaining sedentary for long and to 

perform light physical activity, such as walking (Low et al., 2018). We showed how 

Behavior Dashboard can help clinicians validate this hypothesis that physical activity 

(when possible) could lead to better rehospitalization outcomes. Although motivating 

patients to perform light physical activity might not directly impact their symptoms (e.g., 

pain and nausea), our model estimates that motivating patients to walk and spend less time 

being sedentary is a potentially viable intervention that could lead to small improvements 

in rehospitalization outcomes. Although for an average healthy person, that kind of activity 

might not be enough to show health benefits, out computational model shows that it could 

have a positive effect on the rehospitalization outcome of cancer patients. 



 118 

Behavior Dashboard supported this by enabling us to ask the following question: what if 

we were able to motivate patients to wear their fitness tracker and walk more. We used 

Behavior Dashboard to narrow down our search to a specific part of the model (after the 

patients are discharged) and then simulated behaviors in those situations to simulate both 

current patients’ behavior and a possible intervention and estimate corresponding 

rehospitalization rates. This allowed us to explore potential interventions without actually 

running empirical studies in this early formative stage. Using knowledge generated from 

Behavior Dashboard allows clinicians to pick the most promising interventions and to only 

test those using empirical studies, which saves time and resources. 

8.4   Summary 

In this chapter, we showed how our computational modeling methodology can help 

stakeholders in the behavior sensemaking process. We showed how our methodology helps 

stakeholders explore and understand behaviors from large behavior logs in all stages of the 

sensemaking process (Pirolli & Card, 2005). Our computational modeling methodology 

automates aspects of the information foraging loop part of the sensemaking process by 

extracting salient patterns and searching for relationships in the data that describe routine 

behaviors. We have shown how to schematize this collection of evidence into an 

automatically trained computational model of routines that can later be used to generate 

and test hypotheses about behaviors in the model. 

We presented two tools that support exploration of these salient patterns and the transition 

between the foraging loop and the sensemaking loop. The driving simulation tool focused 

on helping drivers schematize information about aggressive and non-aggressive driving 

routine variations. By automatically detecting aggressive driving instances and contrasting 

them with simulated non-aggressive behaviors and visually presenting them using 

animation we helped drivers identify examples of behaviors that support their conceptual 

model of driving behavior. However, our driving simulation tool is a domain dependent 

sensemaking tool designed specifically for end-users in that one particular domain. 



 119 

We addressed this issue by building Behavior Dashboard, a general-purpose human 

behavior data computational modeling and visual analytics tool that support the routine 

sensemaking process more broadly. We illustrated how Behavior Dashboard can be used 

to visually explore, filter and search for routine variations identified using our 

computational model, generate and validate hypotheses about classes of routine behavior, 

and visual present the data in a way that tells a story about the behavior. We have illustrated 

how this process allows the stakeholders to describe, reason about, and act in response to 

people’s behaviors. 

 



 120 

9   CONCLUSION AND FUTURE WORK 

The goal of this work was to create a method for exploring and understanding complex 

human routine behaviors from large behavior logs. We focused this work on routine 

behaviors because they describe the structure of and touch on almost every aspect of 

people’s lives. As such, studying this type of purposeful behavior will be paramount for 

understanding tasks that people perform and the goals they will want to accomplish when 

interacting with future Information Technology. We illustrated our approach through use 

cases in four distinct domains: 1) daily commutes, 2) driving safety, 3) mobile device 

usage, and 4) patient treatment and care. In each of these domains, we discussed the 

potential for future, personalized Information Technology that could help improve the 

quality of people’s lives. 

Our focus on understanding behaviors differentiated our method from traditional Machine 

Learning approaches that seek to simply predict or act in response to people’ behaviors. 

Such existing methods minimize the prediction error by optimizing some loss function. 

Although such approaches are very good at modeling the data, they offer no guarantees 

that they are modeling the processes that generated the data. This is because the loss 

functions they use are not derived from processes that guide people’s behavior. 

Even existing Data Mining approaches seek to recover patterns of behavior based on 

optimization functions that might not be representative of those behaviors. As such, we 

argued that they are not well suited for our main goal—to understand the underlying 

processes that form the behaviors we want to study. Unlike the existing data mining-based 

methodologies that use algorithmic approaches to extract valuable features and salient 

patters from the data, our approach is almost exclusively hypotheses driven. We made this 

choice to ensure that every step of our methodology can be explained with theory of 

behavior we are modeling. 

Thus, in our methodology, stakeholders begin their exploration by defining the type of 

behavior they are interested in modeling (e.g., routines) and identifying features of interest 

that they believe influence behavior. We illustrated how to define behaviors in Chapter 4 

where we presented our unified definition of routines. Our definition combined properties 



 121 

of routine behavior we identified from existing work in a way that allowed us to 

operationalize it in a computational model of routines. This definition provided a grounding 

for our choice of algorithm and feature engineering considerations to train our 

computational model from data stored in large behavior logs.  

Our choice of algorithm in Chapter 5 was influenced by our routine definition and the need 

to capture goal-oriented aspects of such purposeful, yet inherently uncertain and variable 

human behavior. We chose Markov Decision Processes (MDP) (Bellman, 1957) as a data 

structure because it allowed us to encode relationships between situations and actions that 

people perform in those situations probabilistically. We leveraged Inverse Reinforcement 

Learning (Ng & Russell, 2000), which has been traditionally used to recover a policy of an 

agent from demonstrated behaviors, to estimate the probabilities of behaviors from the 

data. We specifically use MaxCausalEnt IRL algorithm  (Ziebart, 2010) because it tries to 

establish a causal relationship between situations and actions as represented in the data. In 

Chapter 6, we showed how to engineer features we use to train our model to ensure that 

the policy we recover considers economics of routine behaviors. 

The rest of this work focused on leveraging the computational model to describe, reason 

about, and act in response to behaviors, stored as event traces in large behavior logs. We 

showed that such a model can aid stakeholders in sensemaking about behavior of 

individuals and populations through understanding how behavioral features interact in the 

processes that describe people’s enacted behaviors. We grounded our methodology in the 

sensemaking process (Pirolli & Card, 2005), which splits exploration and understanding of 

such data into two loops: 1) information foraging loop, which helps stakeholders develop 

a conceptual model of behaviors, and 2) the sensemaking loop, which helps stakeholders 

explore the conceptual model to gain better understanding of routines. Together the two 

loops allow stakeholders to generate knowledge about routines.  

One of the goals of our methodology was to automate aspects of the foraging loop and 

automatically detect and extract salient patterns of behavior that characterize a routine. 

Using our computational model as a data mining tool, we reduced the cost of manually 

searching for evidence of patters of behaviors in the data (Russell et al., 1993). We 



 122 

validated this by first showing that our computational modeling approach can extract and 

identify salient and meaningful patterns of behavior characteristic of a routine (i.e., routine 

variations) in Chapter 5. Later in Chapter 7, we presented and validated an automated 

method for detecting and simulating classes of routine variations and differentiating them 

from deviations and other uncharacteristic behaviors. 

We then showed how such information can help stakeholders organize information to 

enable them to enrich their conceptual model of routine behaviors in Chapter 8. We 

designed and implemented two different routine visualization tools and showed how they 

can help both end users and domain experts to search for relationships in the routine models 

to generate and test their hypotheses about behaviors. We showed this in both a driving 

domain (where we automatically detected and simulated behavior instances characteristic 

of a driving routine) and a healthcare domain (where we automatically detected at-risk 

patients and predicted outcomes and viability of a potential treatment). 

Our interactive visual representations of routine data demonstrated the ability of our 

approach to present findings about human behaviors and give stakeholders a holistic 

picture of this type of human behavior. We have illustrated the ability of the model to 

generate behaviors also allows the stakeholders to generate hypothesis in different “what-

if” scenarios. We also showed that the model can support interfaces that can detect and 

extract salient patterns of behavior that characterize a routine, and act in response to those 

behaviors to prescribe behavior change. 

This work was in part influenced by the growing movement to make Machine Learning 

(ML) and Artificial Intelligence (AI) more usable, explainable, and interpretable. As such, 

it has broader applications in understanding capabilities and limitations of complex AI 

systems (an important aspect of usable AI), and in the field of mixed-initiative 

computational modeling, which helps domain experts build more accurate representations 

of their complex systems they want to model. Our routine behavior model’s ability to 

automatically reason about and act in response to routine behaviors also opens up 

opportunities for creating a new class of human-data supported interfaces that can 



 123 

automatically learn about people’s behaviors and use this knowledge to act in response to 

those behaviors. 

9.1   Mixed-initiative Computational Modeling 

Human experts can improve the accuracy of Machine Learning models by manually 

producing sequences of examples that explain a concept and interactively training the 

model (Cakmak & Thomaz, 2011). We have shown in our studies that different 

stakeholders often have at least a high-level conceptual model of the behaviors they study 

and the world dynamics in which the behaviors take place. We can leverage this knowledge 

to help the model learn a more accurate representation of behaviors and world dynamics 

faster. We have already shown that manually specifying situation transitions that are not 

possible or transitions that people have no control over could significantly reduce the 

training time for our computational models. For example, we have used the knowledge that 

it is not possible for a vehicle to exit an intersection and then suddenly appear before the 

same intersection again no matter what action the driver performs. It is also not possible 

for the driver to press on the brake pedal in a stopped vehicle and have the vehicle 

accelerate. Stakeholders may also know (e.g., the weather), which could help estimate the 

effects of such factors faster. 

However, the current model requires the stakeholders to manually specify what actions are 

possible in an environment and how the environment responds to people’s actions and other 

external factors that operate in and influence the environment. We can manually specify 

such world dynamics when they are known ahead of time. This is often the case when 

people’s actions fully describe situation transitions (e.g., when the model considers only 

factors that people have full control over in the environment). For example, it is easy to 

specify world dynamics in a routine model of people’s daily commutes between different 

places that are all known ahead of time because the person always ends up at the place they 

indented to go to or stay at with 100% probably. However, if we introduce more external 

factors into the model, we must also estimate the effect of those factors on the environment. 

For example, suppose the stakeholder adds information about the weather to the model to 



 124 

understand how it impacts people’s commute. It is possible for the weather to change from 

sunny to cloudy no matter what the person does (i.e., stays at the same location or leaves 

to go elsewhere). In this case, we must model both situation transition probabilities when 

the weather stays the same and when the weather changes over time. Such world dynamics 

are often not known ahead of time, and even if they were, it may be tedious to encode such 

dynamics manually when they are driven by multiple variables. 

Automatically learning possible world dynamics from the data is challenging because it 

requires a large number of training examples to accurately model its complexity. For 

example, in a model where there are |𝑆| number of situations and |𝐴| number of actions, 

we need to estimate situation transition probability distribution (𝑃(𝑠-|𝑠, 𝑎)) for 

|𝑆| × |𝐴| × |𝑆| number of transitions. This problem is compounded when modeling human 

behavior from behavior logs. In this case, transitions involving actions that represent 

deviations from a routine will be infrequent in the data (by definition). Some possible, but 

infrequent transitions will also not be well represented in the data. However, the nature of 

log studies prevents the stakeholders from asking people to go into their environment and 

perform such actions and hope they end up in situations that we have not observed. Even 

in situations when the stakeholders could contact people, asking them to perform specific 

actions might be cumbersome (e.g., if it requires time and resources), inappropriate (e.g., 

if they are unable to perform such actions), or unethical (e.g., if those actions could 

negatively impact them). 

Future work should explore different strategies to guide stakeholders to apply their 

knowledge about the world dynamics using a mixed-initiative learning approach (Suh & 

Com, 2016) to estimate situation transition probabilities for a routine model. Future 

researchers in this area should work closely with stakeholders to study their process for 

understanding behaviors from empirical data. This will inform design changes to our visual 

analytics tool. Our goal is to modify Behavior Dashboard and add an interactive component 

to it, which will allow the stakeholders to specify domain knowledge that will aid in model 

training. We will explore how to teach stakeholders to apply model training strategies in 

the information foraging loop to improve their ability to conceptualize routines and 

different intervention outcomes in the sensemaking loop. This will extend our routine 



 125 

models to estimate a more accurate representation of the world dynamics from the data. 

Such an accurate representation also helps better estimate the probability distribution of 

actions in that environment. The proposed changes to the training algorithm will result in 

models that will allow the stakeholders to generate and test more realistic hypotheses about 

the situations that people find themselves in and the actions they perform in those 

situations. This could also improve the ability of the model to detect and generate more 

realistic routine variations. 

9.2   Understanding Capabilities and Limitations of AI 

Current advances in Artificial Intelligence (AI), including reasoning, knowledge 

representation, planning, learning, and perception, are already changing many aspects of 

our lives (Stone et al., 2016). This rapid influx of Information Technology and AI into 

people’s lives is in part enabled by computational advances. For example, advances in 

computational power has brought together various Large-scale Machine Learning and 

Deep Learning methods (Jordan & Mitchell, 2015) that have revolutionize fields of 

healthcare (Shin et al., 2016), autonomous transportation (González et al., 2016), and even 

gaming (Silver et al., 2016),  to name a few. 

However, rapid advances in AI have also spawned concerns that such technology could 

have a negative impact on people’s lives, for example by increasing inequality and 

threatening democracy (O’Neil, 2016) and even presenting an existential risk (The 

Economist, 2015). Despite dismissing some of these concerns as fictional, the first report 

from the “One Hundred Year Study on Artificial Intelligence” (Stone et al., 2016) 

concludes that “it remains a deep technical challenge to ensure that the data that inform AI-

based decisions can be kept free from biases that could lead to discrimination.” 

One of the main challenges is that most of the existing successful applications use black-

box technologies, whose inner workings cannot be examined to determine that they are not 

negatively impacting people for whom they make decisions (Pasquale, 2015). Although 

much existing work has tried to address issues of interpretability and explainability of 

algorithms for ML experts (Abdul et al., 2018), little work has been done for other 



 126 

stakeholders. For example, it is easy to imagine a future in which User Experience (UX) 

designers will be able to pick existing ML models “off the shelf” and used them as a design 

material to imbed them into their future user interfaces. However, currently there is lack of 

ability for this important group of stakeholders to explore and understand capabilities and 

limitations of existing technological advances and algorithms in Machine Learning and AI 

(Yang, Banovic, & Zimmerman, 2018). 

Future work in HCI should therefore explore ways and create methodologies to bridge this 

gap between AI and UX design. Inspired by how designers communicate with other 

materials (e.g., bending and cutting out carboard to create new shapes), we propose a 

framework which allows exploration through interaction with existing AI black-box 

algorithms to enable stakeholders to learn about the capabilities and limitations of those 

algorithms. This will enable a future in which UX designers will be able to seamlessly 

integrate AI and ML advances into their future Information Technology designs and 

products. 

9.3   Human-data Supported Interfaces 

User interfaces that learn about people’s behaviors by observing them and interacting with 

them enable a future in which technology helps people to be productive, comfortable, 

healthy, and safe. In this future, such human-data supported interfaces will automatically 

reason about and describe common user behaviors, infer their goals, predict future user 

actions, and even coach users to improve their behaviors. In this future, a mobile phone 

interface learns from a user’s behavior to proactively clear out the user’s email inbox and 

schedule meetings. A smart home interface learns about the residents’ daily routines to 

control heating in a way that reduces their energy bill while making sure they are 

comfortable in their own home. A medical informatics user interface aids a clinician in 

understanding patient data, diagnosing a chronic condition, and finding the best treatment 

that is personalized for the patient based on the patient’s behavior. A car interface that 

detects when a user is driving aggressively coaches the driver to drive less aggressively by 

showing what a non-aggressive driver would do in the same situation.  



 127 

Human-data supported interfaces offer personalized experiences based on users’ behaviors 

by establishing a common ground with the user through observing and interacting with 

them. Such interfaces will be able to learn virtually any user behavior, thus opening up 

possibilities for user experiences that touch on every aspect of people’s lives. However, in 

the absence of technology that can automatically learn and encode knowledge about 

people’s behaviors, interface designers opt to hardcode limited knowledge, beliefs, and 

assumption about behaviors into their interfaces. User Interfaces that are not supported by 

a computational model cannot act fully autonomously and can only respond to a subset of 

predefined commands in well-defined environments to accomplish specialized tasks. 

This work illustrated capabilities of my routine model to automatically detect and describe 

classes of behavior, and act on the behaviors it detects to prescribe changes using a human-

data supported interface. We have already shown the applicability of such models to 

people’s mobility, driving routines, and behaviors of patients with chronic conditions. Our 

computational model of routines is particularly suited for such interfaces because of its 

ability to probabilistically reason about behaviors, explain reasoning decisions to the user, 

and act without making decisions with irreversible negative consequences under 

uncertainty. 

Future work should therefore study how such interfaces can leverage computational models 

to improve people’s wellbeing and help them be productive, healthy, and safe. Future work 

should further explore the capabilities of human-data supported interfaces to automatically 

detect suboptimal behaviors and generate coaching instructions, and study how such 

interfaces can help people learn and apply the guidance in other domains. For example, 

this work offers a direction for human-data supported intelligent tutoring systems that will 

help students anywhere, at any time, and at a fraction of cost of a human coach. Our 

computational models can also detect and reason about optimality of a behavior even for 

infrequent behaviors or behaviors that it has not trained on. For example, our routine model 

could be applied to detect abnormal user behaviors that may indicate a compromised 

information system. A similar approach has applications in detecting when people with 

disabilities face emergency situations in public transit. 



 128 

9.4   Summary 

In summary, this work sets foundation for modeling the human accurately across domains 

to support design, optimization, and evaluation of user interfaces to solve a variety of 

human-centered problems. It is a step towards addressing the grand challenge of 

establishing theoretical foundation for work in HCI in which computational models provide 

a quantitative method to explore and understand complex human behaviors. The ability to 

model how people interact with information technology is essential to offer people services 

in an intelligible and autonomous way. The work on exploring and understanding complex 

computational models of human behavior has direct implications on study of intelligibility 

of complex computational systems to provide tools that ensure correctness of such systems. 

This work enables a future in which User Interfaces powered by Artificial Intelligence have 

a positive impact on society through improving the quality of people’s lives. 

 

  



 129 

10  APPENDIX 

10.1  MaxCausalEnt IRL Algorithm Implementation 

import argparse 
import MySQLdb 
import numpy as np 
import tensorflow as tf 
import random 
import itertools 
 
PARSER = argparse.ArgumentParser(description=None) 
PARSER.add_argument('-s', '--study_id', default=0, type=int, help='study id') 
PARSER.add_argument('-p', '--training_population_id', default=0, type=int, help='study id') 
PARSER.add_argument('-r', '--run_id', default=0, type=int, help='run id. if -1 then new run 
will be created, otherwise existing run will be used.') 
PARSER.add_argument('-f', '--fold_id', default=0, type=int, help='fold id. if -1 then new fold 
will be created, otherwise existing fold will be used. also if not -1 then fold transitions 
used.') 
PARSER.add_argument('-t', '--compute_transitions', default=0, type=int, help='load transitions 
from database or calculate on the fly (0:database only, 1:recalculate)') 
PARSER.add_argument('-l', '--learning_rate', default=0.1, type=float, help='learning rate') 
PARSER.add_argument('-n', '--n_iters', default=200, type=int, help='number of iterations') 
PARSER.add_argument('-m', '--max_sequence', default=100, type=int, help='largest sequence 
length') 
PARSER.add_argument('-b', '--batch_size', default=100, type=int, help='number of training 
examples in each gradient batch') 
ARGS = PARSER.parse_args() 
print ARGS 
 
STUDY_ID = ARGS.study_id 
TRAINING_POPULATION_ID = ARGS.training_population_id 
RUN_ID = ARGS.run_id 
FOLD_ID = ARGS.fold_id 
COMPUTE_TRANSITIONS = ARGS.compute_transitions 
LEARNING_RATE = ARGS.learning_rate 
N_ITERS = ARGS.n_iters 
MAX_SEQUENCE_LENGTH = ARGS.max_sequence 
BATCH_SIZE = ARGS.batch_size 
 
N_STATES = 0 
N_STATE_FEATURES = 0 
N_ACTIONS = 0 
N_ACTION_FEATURES = 0 
 
TRAINING_DATA_SIZE = 0 
 
ERROR = None 
 
states = None 
actions = None 
state_transitions = None 
start_states_p = None 
end_state_indices = None 
 
 
def reduce_soft_max_condition(v_soft_prime, q_soft, rows): 
  return tf.greater(rows, tf.constant(0)) 
  
def reduce_soft_max_body(v_soft_prime, q_soft, rows): 
  global N_STATES 
   
  v_s_inf = tf.constant(np.repeat(-np.inf, N_STATES), shape=[1,N_STATES], dtype=tf.float32)  
  #v_s_zero = tf.constant(np.zeros(N_STATES), shape=[1,N_STATES], dtype=tf.float32) 
 
  q_soft_slice, q_soft_rest = tf.cond(tf.greater(rows,tf.constant(1)), lambda: tf.split(q_soft, 
[tf.constant(1), tf.constant(-1)], 0), lambda: [q_soft, tf.constant([], shape=[0,N_STATES], 
dtype=tf.float32)]) 
  q_soft_slice.set_shape([1, q_soft.get_shape()[1]]) 



 130 

    
  current_max = tf.maximum(v_soft_prime, q_soft_slice) 
  current_min = tf.minimum(v_soft_prime, q_soft_slice) 
    
  diff = current_min - current_max 
  diff_fix = tf.where(tf.is_nan(diff), v_s_inf, diff) 
    
  soft_max_update = current_max + tf.log(1+tf.exp(diff_fix)) 
  soft_max_update_fixed = tf.where(tf.is_nan(soft_max_update), v_s_inf, soft_max_update) 
   
  return [soft_max_update_fixed, q_soft_rest, rows-1] 
 
#============================================================================= 
  # Algorithm 9.1: state log partition function calculation.  
  # Require: MDP, MMDP, and terminal state reward/potential function, f(s) -> R. 
  # Ensure: state log partition functions, V_soft(s_x). 
  # Changes: phi is now an indicator function with values of 1 for final states and 0 for all 
  # other states. 
  #          This is to improve the performance for the algorithm using sparse matrices. 
  # Notes: For acyclic graphs lambda should be set to 1 and T to the length of the longest 
  # possible sequence. 
  #   
  # Input: 
  #   states - states features Tensor 
  #   actions - action features Tensor 
  #   state_transitions - |A|x|S|x|S| probability Tensor. 
  #   end_state_incides - 1x|S| sparse end state indicator. 
  #   theta - 1x(|Fs|+|Fa|) Tensor.  
  #============================================================================= 
def v_soft_condition(v_soft, q_soft, v_soft_error, v_soft_error_delta, theta, iter_n): 
  global MAX_SEQUENCE_LENGTH 
  #return tf.logical_and(iter_n < MAX_SEQUENCE_LENGTH, 
tf.greater(tf.reduce_max(v_soft_error_delta), ERROR)) 
  return iter_n < MAX_SEQUENCE_LENGTH 
   
def v_soft_body(v_soft, q_soft, v_soft_error, v_soft_error_delta, theta, iter_n): 
  global end_state_indices 
 
  # Mask for v_soft calculations. 
  v_s_zero = tf.constant(np.zeros(N_STATES), shape=[1,N_STATES], dtype=tf.float32) 
  v_s_inf = tf.constant(np.repeat(-np.inf, N_STATES), shape=[1,N_STATES], dtype=tf.float32) 
 
  idx = tf.where(tf.greater_equal(v_soft, 0)) 
   
  # Create a Tensor for each action slice. 
  q_a_soft_tensors = [] 
  for i in range(0,N_ACTIONS): 
    action = tf.sparse_slice(actions, [i,0], [1,N_ACTION_FEATURES]) 
    action_state_transitions = tf.sparse_reduce_sum_sparse(tf.sparse_slice(state_transitions, 
[i,0,0], [1,N_STATES,N_STATES]), axis=0) 
     
    tile_action = tf.sparse_concat(0,[action] * N_STATES) 
    states_action_features = tf.sparse_concat(1, [states, tile_action]) 
     
    # Set all features to 0 for state,actions pairs without a transition. This ensures reward 
is 0 for those. 
    mask = tf.sparse_reduce_sum_sparse(action_state_transitions, axis=1) 
    tile_mask = tf.sparse_transpose(tf.sparse_reshape(tf.sparse_concat(0,[mask] * 
(N_STATE_FEATURES+N_ACTION_FEATURES)), shape=[N_STATE_FEATURES+N_ACTION_FEATURES, N_STATES])) 
       
    masked_states_action_features = 
tf.multiply(tf.sparse_tensor_to_dense(states_action_features), 
tf.sparse_tensor_to_dense(tile_mask))   
                
    rewards = tf.matmul(theta, tf.transpose(masked_states_action_features), b_is_sparse=True) 
  
    from_mask = tf.sparse_reduce_sum(action_state_transitions, axis=1) 
 
    v_soft_no_inf = tf.where(tf.greater_equal(v_soft, v_s_zero), v_soft, v_s_zero) 
 
    v_s_prime = tf.transpose(tf.sparse_tensor_dense_matmul(action_state_transitions, 
tf.transpose(v_soft_no_inf))) 
     
    v_s_prime_fix = tf.where(tf.greater(v_s_prime, v_s_zero), v_s_prime, v_s_inf) 
 
    q_a_soft = rewards + v_s_prime_fix 



 131 

 
    q_a_soft_tensors.append(q_a_soft) 
   
  q_soft_prime = tf.reshape(tf.concat(tf.tuple(q_a_soft_tensors), axis=0), shape=q_soft.shape) 
   
  n_actions = tf.constant(N_ACTIONS) 
  reduce_soft_max = tf.while_loop(reduce_soft_max_condition, reduce_soft_max_body, [v_soft, 
q_soft_prime, n_actions], shape_invariants=[v_soft.get_shape(), tf.TensorShape([None, 
N_STATES]), n_actions.get_shape()]) 
  v_soft_prime = reduce_soft_max[0] 
   
  error = tf.abs(v_soft_prime - v_soft) 
  error_fixed = tf.where(tf.is_nan(error), v_s_zero, error)  
   
  error_delta = tf.abs(error_fixed - v_soft_error) 
 
  error_delta_fixed = tf.where(tf.is_nan(error_delta), v_s_zero, error_delta) 
   
  return [v_soft_prime, q_soft_prime, error_fixed, error_delta_fixed, theta, tf.add(iter_n, 
tf.constant(1, dtype=tf.int32))] 
 
#======= 
# Algorithm 9.3 Expected state frequency calculation 
# Require: MDP, M_mdp, stochastic policy, p(a_x,y|s_x)), and initial state distribution 
# P_0(s_x). 
# Ensure: state visitation frequencies, Dsx under policy p(a_x,y|s_x). 
def d_condition(d_sum, d_s, d_s_error, d_s_error_delta, state_action_policy, iter_n): 
  global MAX_SEQUENCE_LENGTH 
  return iter_n < MAX_SEQUENCE_LENGTH 
   
def d_body(d_sum, d_s, d_s_error, d_s_error_delta, state_action_policy, iter_n): 
  d_s_a_tensors = [] 
   
  for i in range(0,N_ACTIONS): 
    action_policy = tf.slice(state_action_policy, [i,0], [1,N_STATES]) 
    action_state_transitions = tf.sparse_reduce_sum_sparse(tf.sparse_slice(state_transitions, 
[i,0,0], [1,N_STATES,N_STATES]), axis=0) 
     
    d_s_a = 
tf.transpose(tf.sparse_tensor_dense_matmul(tf.sparse_transpose(action_state_transitions), 
tf.transpose(tf.multiply(d_s, action_policy)))) 
 
    d_s_a_tensors.append(d_s_a) 
     
  d_s_prime = tf.reshape(tf.reduce_sum(tf.concat(tf.tuple(d_s_a_tensors), axis=0), axis=0), 
shape=[1,N_STATES]) 
  d_sum_prime = tf.add(d_sum, d_s_prime)  
          
  error = tf.abs(d_sum_prime - d_sum) 
  error_delta = tf.abs(error - d_s_error) 
   
  return [d_sum_prime, d_s_prime, error, error_delta, state_action_policy, tf.add(iter_n, 
tf.constant(1, dtype=tf.int32))] 
 
#======= 
# Algorithm 9.3 Expected state frequency calculation 
# Require: MDP, M_mdp, stochastic policy, p(a_x,y|s_x)), and initial state distribution 
P_0(s_x). 
# Ensure: state visitation frequencies, Dsx under policy p(a_x,y|s_x). 
def gradient_descent_condition(Ef_hat, theta, theta_error, theta_error_delta, 
state_action_policy, state_transitions, d_s, iter_n): 
  global N_ITERS 
 
  return tf.logical_and(iter_n < N_ITERS, tf.greater(tf.reduce_max(theta_error_delta), ERROR)) 
   
def gradient_descent_body(Ef_hat, theta, theta_error, theta_error_delta, state_action_policy, 
state_transitions, d_s, iter_n): 
  global TRAINING_DATA_SIZE 
  global start_states_p 
  global end_state_indice 
  global N_STATES 
 
 
  empty_action_constant = tf.constant(np.repeat(0, N_ACTION_FEATURES), 
shape=[1,N_ACTION_FEATURES], dtype=tf.float32) 
  idx = tf.where(tf.not_equal(empty_action_constant, 0)) 



 132 

  empty_action = tf.SparseTensor(idx, tf.gather_nd(empty_action_constant, idx), 
empty_action_constant.get_shape()) 
   
  tile_action = tf.sparse_concat(0,[empty_action] * N_STATES) 
  states_action_features = tf.sparse_concat(1, [states, tile_action]) 
   
  rewards = tf.matmul(theta, tf.transpose(tf.sparse_tensor_to_dense(states_action_features)), 
b_is_sparse=True) 
 
  v_soft_initial = np.repeat(-np.inf, N_STATES) 
  v_soft_initial[end_state_indices] = 0.0 
  v_soft_const = tf.constant(v_soft_initial, shape=[1,N_STATES], dtype=tf.float32) 
   
  v_soft = tf.where(tf.not_equal(v_soft_const, 0), v_soft_const, rewards) 
   
  q_soft = tf.zeros(shape=[N_ACTIONS,N_STATES], dtype=tf.float32) 
  q_soft_inf = tf.constant(np.repeat(-np.inf, N_ACTIONS*N_STATES), shape=[N_ACTIONS,N_STATES], 
dtype=tf.float32) 
   
  v_soft_error = tf.ones_like(v_soft) 
   
  d_s_initial = tf.sparse_tensor_to_dense(start_states_p) 
  d_s_error = tf.ones_like(d_s_initial) 
   
  state_log_partition = tf.while_loop(v_soft_condition, v_soft_body, loop_vars=[v_soft, q_soft, 
v_soft_error, v_soft_error, theta, tf.constant(0, dtype=tf.int32)]) 
   
  v_soft_prime = state_log_partition[0] 
  q_soft_prime = state_log_partition[1] 
   
  diff = q_soft_prime - v_soft_prime 
  diff_fix = tf.where(tf.is_nan(diff), q_soft_inf, diff) 
  state_action_policy_prime = tf.exp(diff_fix) 
   
  state_visitation_frequencies = tf.while_loop(d_condition, d_body, [d_s_initial, d_s_initial, 
d_s_error, d_s_error, state_action_policy_prime, tf.constant(0, dtype=tf.int32)]) 
   
  d_s = state_visitation_frequencies[0] 
  d_s.set_shape([1,N_STATES]) 
   
  f_s = tf.transpose(tf.sparse_tensor_dense_matmul(tf.sparse_transpose(states), 
tf.transpose(d_s))) 
  f_a = tf.transpose(tf.sparse_tensor_dense_matmul(tf.sparse_transpose(actions), 
tf.matmul(state_action_policy_prime, tf.transpose(d_s)))) 
   
  f_sa = tf.concat([f_s, f_a], axis=1) 
   
  slice_n = tf.mod(iter_n, TRAINING_DATA_SIZE) 
  Ef_hat_batch = tf.reshape(tf.slice(Ef_hat, [slice_n,0], 
[1,N_STATE_FEATURES+N_ACTION_FEATURES]), shape=[1,N_STATE_FEATURES+N_ACTION_FEATURES]) 
   
  l = tf.divide(tf.cast(tf.constant(LEARNING_RATE), tf.float32),tf.cast(iter_n + 1, 
tf.float32)) 
  theta_prime = tf.reshape(tf.multiply(theta, tf.exp(tf.multiply(l, (Ef_hat_batch - f_sa)))), 
[1, N_STATE_FEATURES+N_ACTION_FEATURES]) 
   
  theta_prime_error = tf.abs(theta_prime - theta) 
   
  theta_prime_error_delta = tf.abs(theta_prime_error - theta_error) 
   
  return [Ef_hat, theta_prime, theta_prime_error, theta_prime_error_delta, 
state_action_policy_prime, state_transitions, d_s, tf.add(iter_n, tf.constant(1, 
dtype=tf.int32))] 
 
def main(): 
  global N_STATES 
  global N_STATE_FEATURES 
  global N_ACTIONS 
  global N_ACTION_FEATURES 
   
  global STUDY_ID 
  global TRAINING_DATA_SIZE 
  global TRAINING_POPULATION_ID 
   
  global ERROR 
   



 133 

  global states 
  global actions 
  global state_transitions 
  global start_states_p 
  global end_state_indices 
 
  db = MySQLdb.connect(host="archer.assist.cs.cmu.edu", user="human_routines", 
passwd="human_routines2468!", db="human_routines") 
   
  cursor = db.cursor() 
   
  population_ids = load_populations(cursor, STUDY_ID, TRAINING_POPULATION_ID) 
   
  #============================================================================= 
  # Create a run in the database. 
  #============================================================================= 
  if RUN_ID == -1: 
    cursor.execute("INSERT INTO `Run` (population_id, run_type_id) VALUES (%s, %s)", 
[population_ids[0], 1]) 
    run_id = db.insert_id() 
  else: 
    run_id = RUN_ID 
   
  if FOLD_ID == -1: 
    cursor.execute("INSERT INTO `Fold` (run_id, fold_number) VALUES (%s,1);", [run_id]) 
    fold_id = db.insert_id() 
  else: 
    fold_id = FOLD_ID 
   
  db.commit() 
   
  #============================================================================= 
  # Load data. 
  #============================================================================= 
  state_ids, states_idx, state_feature_ids, state_features_idx, states = load_states(cursor, 
STUDY_ID) 
  action_ids, actions_idx, action_feature_ids, action_features_idx, actions = 
load_actions(cursor, STUDY_ID) 
   
  N_STATES = len(state_ids) 
  N_STATE_FEATURES = len(state_feature_ids) 
  N_ACTIONS = len(action_ids) 
  N_ACTION_FEATURES = len(action_feature_ids) 
   
  state_transitions = load_state_transitions(cursor, STUDY_ID, FOLD_ID, state_ids, action_ids) 
    
  end_state_ids, end_state_indices = load_end_states(cursor, STUDY_ID, state_ids) 
  start_states_p = load_start_states(cursor, population_ids[0], state_ids) 
   
  # Load sequences. The population should represent training data population. 
  sequence_ids = load_sequences(cursor, population_ids[0]) 
   
  TRAINING_DATA_SIZE = len(sequence_ids)/BATCH_SIZE 
   
  random.shuffle(sequence_ids) 
   
  batch_state_counts, batch_action_counts = load_sequence_data(cursor, population_ids[0], 
sequence_ids, state_ids, action_ids) 
   
     
  #============================================================================= 
  # Initialize variables and placeholders used in the model. 
  #============================================================================= 
  ERROR = tf.placeholder_with_default(0.0001, shape=[], name="ERROR") 
   
  # This is what we are computing. 
  theta = tf.constant(np.random.uniform(size=(N_STATE_FEATURES+N_ACTION_FEATURES,)), 
shape=[1,N_STATE_FEATURES+N_ACTION_FEATURES], dtype=tf.float32) 
  theta_error = tf.constant(np.repeat(np.inf, N_STATE_FEATURES+N_ACTION_FEATURES), 
shape=[1,N_STATE_FEATURES+N_ACTION_FEATURES], dtype=tf.float32) 
  theta_error_delta = tf.constant(np.repeat(np.inf, N_STATE_FEATURES+N_ACTION_FEATURES), 
shape=[1,N_STATE_FEATURES+N_ACTION_FEATURES], dtype=tf.float32) 
   
  # A placeholder. We want to get this from the gradient loop. 
  state_action_policy = tf.zeros(shape=[N_ACTIONS,N_STATES], dtype=tf.float32) 
   



 134 

  Ef_states = tf.transpose(tf.sparse_tensor_dense_matmul(tf.sparse_transpose(states), 
tf.transpose(batch_state_counts))) 
  Ef_actions = tf.transpose(tf.sparse_tensor_dense_matmul(tf.sparse_transpose(actions), 
tf.transpose(batch_action_counts))) 
  Ef_hat = tf.concat([Ef_states, Ef_actions], axis=1) 
 
  d_s_placeholder = tf.zeros_like(tf.sparse_tensor_to_dense(start_states_p))  
   
  stochastic_gradient_descent = tf.while_loop(gradient_descent_condition, 
gradient_descent_body, [Ef_hat, theta, theta_error, theta_error_delta, state_action_policy, 
state_transitions, d_s_placeholder, tf.constant(0, dtype=tf.int32)]) 
 
  #============================================================================= 
  # Data loaded. Graph created. Signal run start. 
  #============================================================================= 
  cursor.execute("UPDATE `Run` SET updated_timestamp = NOW() WHERE id = %s;", [run_id]) 
  db.commit() 
   
  cursor.close() 
  db.close() 
   
  init = tf.global_variables_initializer() 
 
#   sess = tf.Session(config=tf.ConfigProto(log_device_placement=True)) 
  sess = tf.Session() 
  with sess.as_default(): 
    sess.run(init) 
    result = sess.run(stochastic_gradient_descent) 
    final_theta = result[1][0] 
    final_policy = result[4] 
    final_d_s = result[6][0] 
     
    fold_theta = [] 
    for i in range(0,len(final_theta)): 
      feature_id = -1 
      if i < N_STATE_FEATURES: 
        feature_id = state_features_idx[i] 
      elif i < N_STATE_FEATURES+N_ACTION_FEATURES: 
        feature_id = action_features_idx[i-N_STATE_FEATURES] 
      else: 
        pass 
       
      fold_theta.append((fold_id, feature_id, final_theta[i],)) 
     
    db = MySQLdb.connect(host="archer.assist.cs.cmu.edu", user="human_routines", 
passwd="human_routines2468!", db="human_routines", compress=True) 
    cursor = db.cursor() 
     
    cursor.executemany("INSERT INTO `Fold_Feature_Theta` (fold_id, feature_id, theta) VALUES 
(%s, %s, %s);", fold_theta) 
    db.commit() 
     
    cursor.execute("INSERT INTO `Policy` (fold_id, policy_type_id, algorithm_id) VALUES (%s, 1, 
1);", [fold_id]) 
    policy_id = db.insert_id() 
     
    fold_policy = [] 
    fold_policy_count = 0 
    for state_idx in range(0,N_STATES): 
      for action_idx in range(0, N_ACTIONS): 
        p = final_policy[action_idx][state_idx] 
         
        if p > 0.0: 
          state_id = states_idx[state_idx] 
          action_id = actions_idx[action_idx] 
          fold_policy.append((policy_id, state_id, action_id, p,)) 
          fold_policy_count = fold_policy_count + 1 
          if fold_policy_count == 100000: 
            cursor.executemany("INSERT INTO `State_Action_Policy` (policy_id, state_id, 
action_id, probability) VALUES (%s, %s, %s, %s);", fold_policy) 
            fold_policy = [] 
            fold_policy_count = 0 
    if fold_policy_count > 0: 
      cursor.executemany("INSERT INTO `State_Action_Policy` (policy_id, state_id, action_id, 
probability) VALUES (%s, %s, %s, %s);", fold_policy) 
     



 135 

    db.commit() 
     
    fold_d_s = [] 
    for i in range(0,len(final_d_s)): 
      fold_d_s.append((fold_id, states_idx[i], final_d_s[i],)) 
 
    cursor.executemany("INSERT INTO `Fold_State_Counts` (fold_id, state_id, expected_count) 
VALUES (%s, %s, %s);", fold_d_s) 
    db.commit() 
     
    cursor.execute("UPDATE `Run` SET updated_timestamp = NOW(), completed_timestamp = NOW() 
WHERE id = %s;", [run_id]) 
    db.commit() 
     
    cursor.close() 
    db.close() 
   
# Load study populations. 
def load_populations(cursor, study_id, population_id=None): 
  if population_id is None: 
    cursor.execute("SELECT id, population_type_id FROM Population WHERE study_id = %s;", 
[study_id]) 
  else: 
    cursor.execute("SELECT id, population_type_id FROM Population WHERE study_id = %s AND 
Population.id = %s;", [study_id, population_id]) 
     
  population_ids = [row[0] for row in cursor] 
   
  return population_ids 
   
# Initializes states matrix. 
def load_states(cursor, study_id): 
  cursor.execute("SELECT count(*), max(State.feature_count) FROM State WHERE State.study_id = 
%s ORDER BY State.id;", [study_id]) 
  state_dims = list(cursor.fetchone()) 
   
  feature_ids = {} 
  feature_idx = {} 
  i = 0 
  cursor.execute("SELECT id FROM Feature WHERE study_id = %s AND Feature.is_in_model = 1 AND 
feature_type_id = 1 ORDER BY feature_index;", [study_id]) 
  for row in cursor: 
    feature_id = row[0] 
    feature_ids[feature_id] = i 
    feature_idx[i] = feature_id 
    i += 1 
   
  state_ids = {} 
  state_idx = {} 
  i = 0 
  cursor.execute("SELECT State.id FROM State WHERE State.study_id = %s ORDER BY State.id;", 
[study_id]) 
  for row in cursor: 
    state_id = row[0] 
    state_ids[state_id] = i 
    state_idx[i] = state_id 
    i += 1 
   
  indices = [] 
  values = [] 
   
  cursor.execute("SELECT State.id, Feature.id AS feature_id, State_Feature.feature_value FROM 
State INNER JOIN State_Feature ON (State.id = State_Feature.state_id) INNER JOIN Feature ON 
(Feature.id = State_Feature.feature_id) WHERE State.study_id = %s AND Feature.is_in_model = 1 
ORDER BY State.id, feature_index;", [study_id]) 
  for row in cursor: 
    state_id = row[0] 
    feature_id = row[1] 
    feature_value = row[2] 
     
    indices.append([state_ids[state_id], feature_ids[feature_id]]) 
    values.append(feature_value) 
     
  states = tf.SparseTensor(indices=indices, values=tf.cast(values, tf.float32), 
dense_shape=state_dims) 
    



 136 

  return state_ids, state_idx, feature_ids, feature_idx, states 
 
def load_state_transitions(cursor, study_id, fold_id, state_ids, action_ids): 
  indices = [] 
  values = [] 
   
  if fold_id == -1: 
    cursor.execute("SELECT from_state_id, action_id, to_state_id, probability FROM 
State_Transition INNER JOIN State ON (State_Transition.`from_state_id` = State.id) WHERE 
State.study_id = %s ORDER BY action_id, from_state_id, to_state_id;", [study_id]) 
  else: 
    cursor.execute("SELECT from_state_id, action_id, to_state_id, probability FROM 
Fold_State_Transition WHERE fold_id = %s ORDER BY action_id, from_state_id, to_state_id;", 
[fold_id]) 
     
  for row in cursor: 
    from_state_id = row[0] 
    action_id = row[1] 
    to_state_id = row[2] 
    probability = row[3] 
     
    indices.append([action_ids[action_id], state_ids[from_state_id], state_ids[to_state_id]]) 
 
    values.append(probability) 
    
  transitions = tf.SparseTensor(indices=indices, values=tf.cast(values, tf.float32), 
dense_shape=[len(action_ids), len(state_ids), len(state_ids)]) 
   
  return transitions 
 
# Initialize action vector. 
def load_actions(cursor, study_id): 
  cursor.execute("SELECT count(*), max(Action.feature_count) FROM Action WHERE Action.study_id 
= %s ORDER BY Action.id;", [study_id]) 
  action_dims = list(cursor.fetchone()) 
   
  feature_ids = {} 
  feature_idx = {} 
  i = 0 
  cursor.execute("SELECT id FROM Feature WHERE study_id = %s AND Feature.is_in_model = 1 AND 
feature_type_id = 2 ORDER BY feature_index;", [study_id]) 
  for row in cursor: 
    feature_id = row[0] 
    feature_ids[feature_id] = i 
    feature_idx[i] = feature_id 
    i += 1 
   
  action_ids = {} 
  action_idx = {} 
  i = 0 
  cursor.execute("SELECT Action.id FROM Action WHERE Action.study_id = %s ORDER BY Action.id;", 
[study_id]) 
  for row in cursor: 
    action_id = row[0] 
    action_ids[action_id] = i 
    action_idx[i] = action_id 
    i += 1 
   
  indices = [] 
  values = [] 
   
  cursor.execute("SELECT Action.id, Feature.id AS feature_id, Action_Feature.feature_value FROM 
Action INNER JOIN Action_Feature ON (Action.id = Action_Feature.action_id) INNER JOIN Feature 
ON (Feature.id = Action_Feature.feature_id) WHERE Action.study_id = %s AND Feature.is_in_model 
= 1 ORDER BY Action.id, feature_index;", [study_id]) 
  for row in cursor: 
    action_id = row[0] 
    feature_id = row[1] 
    feature_value = row[2] 
     
    indices.append([action_ids[action_id], feature_ids[feature_id]]) 
    values.append(feature_value) 
     
  actions = tf.SparseTensor(indices=indices, values=tf.cast(values, tf.float32), 
dense_shape=action_dims) 
    



 137 

  return action_ids, action_idx, feature_ids, feature_idx, actions 
 
def load_sequences(cursor, population_id): 
  sequence_ids = [] 
  cursor.execute("SELECT Sequence.id FROM Sequence INNER JOIN Participant ON 
(Sequence.participant_id = Participant.id) INNER JOIN Participant_Population ON (Participant.id 
= Participant_Population.participant_id) INNER JOIN Population ON 
(Participant_Population.population_id = Population.id) WHERE Population.id = %s;", 
[population_id]) 
  for row in cursor: 
    sequence_ids.append(int(row[0])) 
     
  return sequence_ids 
 
# Initialize sequences. 
def load_sequence_data(cursor, population_id, sequence_ids, state_ids, action_ids): 
  global TRAINING_DATA_SIZE 
   
  if TRAINING_DATA_SIZE == 0: 
    sequence_ids_batches = np.array(sequence_ids, ndmin=2) 
    TRAINING_DATA_SIZE = 1 
  else: 
    sequence_ids_batches = np.array_split(np.array(sequence_ids), TRAINING_DATA_SIZE) 
   
  batch_state_counts = None 
  batch_action_counts = None 
     
  for sequence_id_batch in sequence_ids_batches: 
    sequence_state_counts = np.zeros(N_STATES) 
    sequence_action_counts = np.zeros(N_ACTIONS) 
     
    batch_ids_placeholder = ', '.join(itertools.repeat('%s', len(sequence_id_batch))) 
    sql = "SELECT from_state_id, action_id, count FROM Sequence_Transition INNER JOIN Sequence 
ON (Sequence.id = Sequence_Transition.sequence_id) INNER JOIN Participant ON 
(Sequence.participant_id = Participant.id) INNER JOIN Participant_Population ON (Participant.id 
= Participant_Population.participant_id) INNER JOIN Population ON 
(Participant_Population.population_id = Population.id) WHERE Population.id = %s AND sequence_id 
IN (%s) ORDER BY Sequence.participant_id, sequence_id;" % ('%s', batch_ids_placeholder)  
    cursor.execute(sql, [population_id] + sequence_id_batch.tolist()) 
    for row in cursor: 
      from_state_id = row[0] 
      action_id = row[1] 
      count = row[2] 
       
      from_state_idx = state_ids[from_state_id] 
      action_idx = action_ids[action_id] 
       
      sequence_state_counts[from_state_idx] = sequence_state_counts[from_state_idx] + count 
      sequence_action_counts[action_idx] = sequence_action_counts[action_idx] + count 
     
    # Add last sequence batch. 
    if batch_state_counts is None: 
      batch_state_counts = np.array(sequence_state_counts/len(sequence_id_batch), ndmin=2) 
    else: 
      batch_state_counts = np.append(batch_state_counts, 
np.array(sequence_state_counts/len(sequence_id_batch), ndmin=2), axis=0) 
       
    if batch_action_counts is None:   
      batch_action_counts = np.array(sequence_action_counts/len(sequence_id_batch), ndmin=2) 
    else: 
      batch_action_counts = np.append(batch_action_counts, 
np.array(sequence_action_counts/len(sequence_id_batch), ndmin=2), axis=0) 
     
  return tf.constant(batch_state_counts, dtype=tf.float32, shape=[TRAINING_DATA_SIZE, 
N_STATES]), tf.constant(batch_action_counts, dtype=tf.float32, shape=[TRAINING_DATA_SIZE, 
N_ACTIONS]) 
  
def load_start_states(cursor, population_id, state_ids): 
  indices = [] 
  values = [] 
   
  cursor.execute("SELECT start_state_id, avg(probability) AS count FROM Initial_State INNER 
JOIN Participant_Population ON (Initial_State.participant_id = 
Participant_Population.participant_id) WHERE population_id = %s GROUP BY start_state_id;", 
[population_id]) 
  for row in cursor: 



 138 

    state_id = row[0] 
    p = row[1] 
     
    indices.append([0,state_ids[state_id]]) 
    values.append(p) 
     
  start_state_probabilities =  tf.SparseTensor(indices=indices, values=tf.cast(values, 
tf.float32), dense_shape=[1,len(state_ids)]) 
   
  return start_state_probabilities 
 
def load_end_states(cursor, study_id, state_ids): 
  end_state_ids = [] 
  end_state_indices = [] 
   
  cursor.execute("SELECT state_id FROM End_State WHERE study_id =  %s ORDER BY state_id;", 
[study_id]) 
  for row in cursor: 
    state_id = row[0] 
     
    end_state_ids.append(state_id) 
    end_state_indices.append(state_ids[state_id]) 
     
  return end_state_ids, end_state_indices 
  
if __name__ == "__main__": 
  main() 

  



 139 

10.2   Study Materials 

10.2.1   Visual Model Validation Study Questionnaire 

Thank you for taking part in the study. In this study you will complete a questionnaire 
and then answer questions about two tasks related to human routine behavior. 
 
Please answer the following: 
Participant #:  
Age: 
Occupation: 
Experience with (place X next to the ones you have experience with): 
Machine Learning 
Data Mining 
Activity Recognition 
Human Routine Behavior 
Other relevant (please specify): 
 
Thank you. Please move on to the next page. 
 
Task 1 
In this task you will explore driving routine behavior of two populations of drivers: non-
aggressive and aggressive drivers. You will explore their driving behavior when 
navigating intersections in 4 stages: 1) approaching intersection, 2) just before entering 
intersection, 3) leaving intersection, and 4) driving away from the intersection. 
 
Please answer the following questions in order: 
 
Please describe the driving routine of non-aggressive drivers when going straight 
through an intersection. Please describe at least one deviation from the main routine. 
Note that there might be more than one routine that describes this behavior. 
 
 
Please describe the driving routine of aggressive drivers when going straight through an 
intersection. Please describe at least one deviation from the main routine. Note that there 
might be more than one routine that describes this behavior. 
 
 
 
Based on your findings, please describe the differences between the routines of non-
aggressive drivers and aggressive drivers. 
 
 
 
Task 2 
In this task you will identify a person’s daily routine for a given day. 



 140 

 
1. Please describe the person’s routine for WEDNESDAYS. 
 
2. Please describe this person’s likely deviation on MONDAY. 
 
 
 
Thank you for your time! Please let us know if you have any last comments. 
  



 141 

 

10.2.2   Driving Instructor Detection and Simulation Validation Questionnaire 

This is a two-page excerpt from Driving Instructor Detection and Simulation Questionnaire 

illustrating the questions instructors answered in the study. 

 

DriveCap: Naturalistic Driver Data (Driving Instructors)
* Required

1. Participant # *

2. Date *
 
Example: December 15, 2012

3. Time *

 
Example: 8:30 AM

4. Driver code

Biographical Information
Please tell us about yourself.

5. Age *

6. Gender *

7. How long have you been driving? *

8. How long have you been a driving instructor? *

Driving Animations Task 1
In this task you will review a series of driving scenarios. You will be asked if each scenario represents 
aggressive driving or non­aggressive driving.

Warm­up Scenarios
You will complete 5 warm­up scenarios. Please complete questions about the following scenarios. After 
each scenario click continue to move to the next scenario.

Scenario 1
Please use the tablet to explore the scenario and answer the questions below. You can replay the 
scenario as many times as you want.



 142 

 

  

9. Is the driver aggressive, neutral, or non­aggressive? *
Mark only one oval.

1 2 3

Aggressive Non­aggressive

Scenario 2
Please use the tablet to explore the scenario and answer the questions below. You can replay the 
scenario as many times as you want.

10. Is the driver aggressive, neutral, or non­aggressive? *
Mark only one oval.

1 2 3

Aggressive Non­aggressive

Scenario 3
Please use the tablet to explore the scenario and answer the questions below. You can replay the 
scenario as many times as you want.

11. Is the driver aggressive, neutral, or non­aggressive? *
Mark only one oval.

1 2 3

Aggressive Non­aggressive

Scenario 4
Please use the tablet to explore the scenario and answer the questions below. You can replay the 
scenario as many times as you want.

12. Is the driver aggressive, neutral, or non­aggressive? *
Mark only one oval.

1 2 3

Aggressive Non­aggressive

Scenario 5
Please use the tablet to explore the scenario and answer the questions below. You can replay the 
scenario as many times as you want.

13. Is the driver aggressive, neutral, or non­aggressive? *
Mark only one oval.

1 2 3

Aggressive Non­aggressive



 143 

10.2.3   Aggressive Driver Assessment Study Modified DBQ Questionnaire 

This is a three-page excerpt from Driver Assessment study DBQ illustrating the questions 

participants answered in the study. 

 

DriveCap: Naturalistic Driving (Drivers)
* Required

1. Participant # *

2. Condition *
Mark only one oval.

 All data without non­aggressive simulation (Baseline)

 Aggressive data with non­aggressive simulation

3. Date *
 
Example: December 15, 2012

4. Time *

 
Example: 8:30 AM

Biographical Information
Please tell us about yourself.

5. Age *

6. Gender *

7. How long have you been driving? *

8. How often do you drive each week? *

9. How long is your average daily trip (e.g., to
work)? *

Your Driving Behaviors
Please answer the following questions about your driving expertise and quality.



 144 

 

10. How would you rate your driving expertise? *
Mark only one oval.

1 2 3 4 5 6

Very inexperienced Very experienced

11. How would you rate your driving quality? *
Mark only one oval.

1 2 3 4 5 6

Very aggressive Very non­aggressive

Driving Behaviors
In the following section, please rate how often you do the driving behaviors below, and what you think 
about that behavior in terms of driving expertise and quality.

Driving Behaviors

12. How often do you check the speedometer and discover that the car is unknowingly traveling

faster than the legal limit? *

Mark only one oval.

 Never

 Hardly ever

 Occasionally

 Quite often

 Frequently

 Nearly all the time

13. How would you rate your driving expertise in regards to this behavior and frequency? *
Mark only one oval.

1 2 3 4 5 6

Very inexperienced Very experienced

14. How would you rate your driving quality in regards to this behavior and frequency? *
Mark only one oval.

1 2 3 4 5 6

Very aggressive Very non­aggressive

Driving Behaviors



 145 

  

15. How often do you become impatient with a slow driver in the outer lane and overtakes on the

inside? *

Mark only one oval.

 Never

 Hardly ever

 Occasionally

 Quite often

 Frequently

 Nearly all the time

16. How would you rate your driving expertise in regards to this behavior and frequency? *
Mark only one oval.

1 2 3 4 5 6

Very inexperienced Very experienced

17. How would you rate your driving quality in regards to this behavior and frequency? *
Mark only one oval.

1 2 3 4 5 6

Very aggressive Very non­aggressive

Driving Behaviors

18. How often do you drive especially close or "flash" the car in front as a signal for that driver to
go faster or get out of the way? *

Mark only one oval.

 Never

 Hardly ever

 Occasionally

 Quite often

 Frequently

 Nearly all the time

19. How would you rate your driving expertise in regards to this behavior and frequency? *
Mark only one oval.

1 2 3 4 5 6

Very inexperienced Very experienced



 146 

10.3  Behavior Dashboard Design Materials 

 

Figure 21. Concept Map showing concepts we have identified during our design process that have 

influenced our design decisions in creating Behavior Dashboard. 



 147 

 

Figure 22. A primary persona we identified through our design process. This imaginary user allows us 

to consider user needs and requirements of actual people we design Behavior Dashboard for. 

  



 148 

BIBLIOGRAPHY 

AAAFoundation.org, Foundation for Traffic Safety, & AAAFoundation.org. (2009). 
Aggressive Driving: Research Update. American Automobile Association 
Foundation. Retrieved from 
https://scholar.google.com/scholar?q=Aggressive+driving%3A+Research+update&
btnG=&hl=en&as_sdt=0%2C39 

Abdul, A., Vermeulen, J., Wang, D., Lim, B. Y., & Kankanhalli, M. (2018). Trends and 
Trajectories for Explainable, Accountable and Intelligible Systems: An HCI Research 
Agenda. Proceedings of the 2018 CHI Conference on Human Factors in Computing 
Systems - CHI ’18, 1–18. http://doi.org/10.1145/3173574.3174156 

Adar, E., Teevan, J., & Dumais, S. T. (2008). Large scale analysis of web revisitation 
patterns. Proceeding of the Twenty-Sixth Annual CHI Conference on Human Factors 
in Computing Systems - CHI ’08, 1197. http://doi.org/10.1145/1357054.1357241 

Agre, P. E., & Shrager, J. (1990). Routine Evolution as the Microgenetic Basis of Skill 
Acquistion. In Twelfth Annual Conference of the Cognitive Science Society (p. 
694701). Retrieved from http://www.citeulike.org/group/4917/article/2623697 

Aigner, W., Miksch, S., Thurnher, B., & Biffl, S. (2005). PlanningLines: Novel glyphs for 
representing temporal uncertainties and their evaluation. In Proceedings of the 
International Conference on Information Visualisation (Vol. 2005, pp. 457–463). 
http://doi.org/10.1109/IV.2005.97 

Ajzen, I. (1985). From intentions to actions: A theory of planned behavior. Action Control. 
Retrieved from http://link.springer.com/chapter/10.1007/978-3-642-69746-3_2 

Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human 
Decision Processes, 50(2), 179–211. http://doi.org/10.1016/0749-5978(91)90020-T 

Banovic, N., Brant, C., Mankoff, J., & Dey, A. K. (2014). ProactiveTasks  : the Short of 
Mobile Device Use Sessions. Proceedings of the 16th International Conference on 
Human-Computer Interaction with Mobile Devices & Services - MobileHCI ’14, 243–
252. http://doi.org/10.1145/2628363.2628380 

Banovic, N., Rao, V., Saravanan, A., Dey, A. K., & Mankoff, J. (2017). Quantifying 
Aversion to Costly Typing Errors in Expert Mobile Text Entry. In Proceedings of the 
2017 CHI Conference on Human Factors in Computing Systems (CHI ’17). 

Baratchi, M., Meratnia, N., Havinga, P. J. M., Skidmore, A. K., & Toxopeus, B. a. K. G. 
(2014). A hierarchical hidden semi-Markov model for modeling mobility data. 
Proceedings of the 2014 ACM International Joint Conference on Pervasive and 
Ubiquitous Computing - UbiComp ’14 Adjunct, 401–412. 
http://doi.org/10.1145/2632048.2636068 



 149 

Becker, M. C. (2004). Organizational routines: A review of the literature. Industrial and 
Corporate Change, 13(4), 643–677. http://doi.org/10.1093/icc/dth026 

Bellman, R. (1957). A Markovian decision process. Journal Of Mathematics And 
Mechanics. http://doi.org/10.1007/BF02935461 

Beyer, H., & Holtzblatt, K. (1998). Contextual design  : defining customer-centered 
systems. Morgan Kaufmann. Retrieved from 
https://dl.acm.org/citation.cfm?id=2821566 

Bishop, C. (2006). Pattern recognition. Machine Learning. Retrieved from 
http://www.academia.edu/download/30428242/bg0137.pdf 

Brdiczka, O., Su, N., & Begole, J. (2010). Temporal task footprinting: identifying routine 
tasks by their temporal patterns. Of the 15th International Conference on  …. 
Retrieved from http://dl.acm.org/citation.cfm?id=1720011 

Breiman, L. (2001). Statistical Modeling: The Two Cultures (with comments and a 
rejoinder by the author). Statistical Science, 16(3), 199–231. 
http://doi.org/10.1214/ss/1009213726 

Bulling, A., Blanke, U., & Schiele, B. (2014). A tutorial on human activity recognition 
using body-worn inertial sensors. ACM Computing Surveys (CSUR), 1(June), 1–33. 
http://doi.org/http://dx.doi.org/10.1145/2499621 

Buono, P., Aris, A., Plaisant, C., Khella, A., & Shneiderman, B. (2005). Interactive Pattern 
Search in Time Series. In Proceedings of the Conference on Visualization and Data 
Analysis (VDA 2005) (Vol. 5669, pp. 175–186). http://doi.org/10.1117/12.587537 

Buthpitiya, S., Dey, A., & Griss, M. (2014). Soft authentication with low-cost signatures. 
Pervasive Computing And. Retrieved from 
http://ieeexplore.ieee.org/abstract/document/6813958/ 

Cakmak, M., & Thomaz, A. (2011). Mixed-initiative active learning. Retrieved from 
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.352.2122 

Capra, R. (2011). HCI browser: A tool for administration and data collection for studies of 
web search behaviors. In Lecture Notes in Computer Science (including subseries 
Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 
6770 LNCS, pp. 259–268). http://doi.org/10.1007/978-3-642-21708-1_30 

Card, S. K., Moran, T. P., & Newell, A. (1983). The Psychology of HCI. Lawrence Erlbaum 
Associates Inc. Publishers. of {HCI}. 

Casarrubea, M., Jonsson, G. K., Faulisi, F., Sorbera, F., Di Giovanni, G., Benigno, A., & 
Crescimanno, G. (2015). T-pattern analysis for the study of temporal structure of 
animal and human behavior: A comprehensive review. Journal of Neuroscience 
Methods, 239, 34–46. http://doi.org/10.1016/j.jneumeth.2014.09.024 



 150 

Chapelle, O., Scholkopf, B., & Zien, A. (2009). Semi-Supervised Learning. IEEE 
Transactions on Neural Networks, 20(3), 542. 
http://doi.org/10.1109/TNN.2009.2015974 

Clear, A. K., Shannon, R., Holland, T., Quigley, A., Dobson, S., & Nixon, P. (2009). 
Situvis: A visual tool for modeling a user’s behaviour patterns in a pervasive 
environment. In Lecture Notes in Computer Science (including subseries Lecture 
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (Vol. 5538 
LNCS, pp. 327–341). http://doi.org/10.1007/978-3-642-01516-8_22 

Cook, S., Conrad, C., Fowlkes, A. L., & Mohebbi, M. H. (2011). Assessing Google Flu 
trends performance in the United States during the 2009 influenza virus A (H1N1) 
pandemic. PLoS ONE, 6(8), e23610. http://doi.org/10.1371/journal.pone.0023610 

Davidoff, S. (2010). Routine as resource for the design of learning systems. Proceedings 
of the 12th ACM International Conference …, (May). Retrieved from 
http://dl.acm.org/citation.cfm?id=1864486 

Davidoff, S., Ziebart, B. D., Zimmerman, J., & Dey, A. K. (2011). Learning Patterns of 
Pick-ups and Drop-offs to Support Busy Family Coordination. The ACM CHI 
Conference on Human Factors, 1175–1184. http://doi.org/10.1145/1978942.1979119 

Davidoff, S., Zimmerman, J., & Dey, A. K. (2010). How routine learners can support 
family coordination. Proceedings of the 28th International Conference on Human 
Factors in Computing Systems - CHI ’10, 4, 2461. 
http://doi.org/10.1145/1753326.1753699 

Dey, A. (2001). Understanding and using context. Personal and Ubiquitous Computing. 
Retrieved from http://link.springer.com/article/10.1007/s007790170019 

Dumais, S., Jeffries, R., Russell, D. M., Tang, D., & Teevan, J. (2014). Understanding User 
Behavior Through Log Data and Analysis. In Ways of Knowing in HCI (pp. 349–372). 
http://doi.org/10.1007/978-1-4939-0378-8_14 

Eagle, N., & Pentland, A. S. (2009). Eigenbehaviors: identifying structure in routine. 
Behavioral Ecology and Sociobiology, 63(7), 1057–1066. 
http://doi.org/10.1007/s00265-009-0739-0 

Farrahi, K., & Gatica-Perez, D. (2012). Extracting mobile behavioral patterns with the 
distant N-gram topic model. In Proceedings - International Symposium on Wearable 
Computers, ISWC (pp. 1–8). http://doi.org/10.1109/ISWC.2012.20 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From Data Mining to Knowledge 
Discovery in Databases. AI Magazine, 17(3), 37. 
http://doi.org/10.1609/aimag.v17i3.1230 

Fekete, J.-D., Wijk, J. J. Van, Stasko, J. T., & North, C. (2008). The Value of Information 
Visualization. Information Visualization, 4950(2), 1–18. http://doi.org/10.1007/978-



 151 

3-540-70956-5_1 

Feldman, M. S. (2000). Organizational Routines as a Source of Continuous Change. 
Organization Science, 11(6), 611–629. http://doi.org/10.1287/orsc.11.6.611.12529 

Feldman, M. S., & Pentland, B. T. (2003). Reconceptualizing Organizational Routines as 
a Source of Flexibility and Change. Administrative Science Quarterly, 48(1), 94–118. 
http://doi.org/10.2307/3556620 

Ferreira, D., Kostakos, V., & Dey, A. K. (2015). AWARE: Mobile Context Instrumentation 
Framework. Frontiers in ICT, 2(April), 1–9. http://doi.org/10.3389/fict.2015.00006 

Gaver, B., Dunne, T., & Pacenti, E. (1999). Design: Cultural probes. Interactions, 6(1), 
21–29. http://doi.org/10.1145/291224.291235 

González, D., Pérez, J., Milanés, V., & Nashashibi, F. (2016). A Review of Motion 
Planning Techniques for Automated Vehicles. IEEE Transactions on Intelligent 
Transportation Systems, 17(4), 1135–1145. 
http://doi.org/10.1109/TITS.2015.2498841 

Good, I. J. (1983). The Philosophy of Exploratory Data Analysis. Philosophy of Science, 
50(2), 283–295. http://doi.org/10.1086/289110 

Google. (2017). Google Analytics. Retrieved April 10, 2017, from 
http://www.google.com/ analytics/ 

Gray, C., Kou, Y., Battles, B., Hoggatt, J., & Toombs, A. (2018). The Dark (Patterns) Side 
of UX Design. Chi’2018, (April), 1–14. http://doi.org/10.1145/3173574.3174108 

Hamermesh, D. S. (2003). Routine. NBER Working Paper Series, (9440). Retrieved from 
http://www.sciencedirect.com/science/article/pii/S0014292104000182 

Hodgson, G. M. (1997). The ubiquity of habit and rules. Cambridge Journal of Economics, 
21(6), 663–683. 

Hodgson, G. M. (2009). Choice, habit and evolution. Journal of Evolutionary Economics, 
20(1), 1–18. http://doi.org/10.1007/s00191-009-0134-z 

Hong, J.-H., Margines, B., & Dey, A. K. (2014). A smartphone-based sensing platform to 
model aggressive driving behaviors. Proceedings of the 32nd Annual ACM 
Conference on Human Factors in Computing Systems - CHI ’14, 4047–4056. 
http://doi.org/10.1145/2556288.2557321 

Hurst, A., Mankoff, J., & Hudson, S. E. (2008). Understanding pointing problems in real 
world computing environments. Proceedings of the 10th International ACM 
SIGACCESS Conference on Computers and Accessibility, (1), 43–50. 
http://doi.org/10.1145/1414471.1414481 



 152 

Ivanov, Y. (2001). Expectation maximization for weakly labeled data. MACHINE 
LEARNING- …. Retrieved from 
http://alumni.media.mit.edu/~yivanov/Papers/ICML01/icml2001.pdf.gz 

Jaynes, E. T. (1955). Information Theory and Statistical Mechanics. Physical Review. 
http://doi.org/10.1103/PhysRev.108.171 

Jin, J., & Szekely, P. (2010). Interactive querying of temporal data using a comic strip 
metaphor. In VAST 10 - IEEE Conference on Visual Analytics Science and Technology 
2010, Proceedings (pp. 163–170). http://doi.org/10.1109/VAST.2010.5652890 

Jordan, M. I., & Mitchell, T. M. (2015, July 17). Machine learning: Trends, perspectives, 
and prospects. Science. American Association for the Advancement of Science. 
http://doi.org/10.1126/science.aaa8415 

Kahneman, D. (2011). Thinking, fast and slow. Retrieved from 
https://books.google.com/books?hl=en&lr=&id=SHvzzuCnuv8C&oi=fnd&pg=PP2
&dq=Thinking,+Fast+and+Slow&ots=NRxfPG2gIF&sig=XabIk-
qqShDTUWZ_4S_1Bzx2kB8 

Keim, D., Andrienko, G., Fekete, J. D., Görg, C., Kohlhammer, J., & Melançon, G. (2008). 
Visual analytics: Definition, process, and challenges. In Lecture Notes in Computer 
Science (including subseries Lecture Notes in Artificial Intelligence and Lecture 
Notes in Bioinformatics) (Vol. 4950 LNCS, pp. 154–175). http://doi.org/10.1007/978-
3-540-70956-5_7 

Kleinberg, J., Ludwig, J., Mullainathan, S., & Obermeyer, Z. (2015). Prediction Policy 
Problems. American Economic Review: Papers & Proceedings, 105(5), 491–495. 
http://doi.org/10.1257/aer.p20151023 

Koehler, C., Banovic, N., Oakley, I., Mankoff, J., & Dey, A. K. (2014). Indoor-ALPS: An 
adaptive indoor location prediction system. UbiComp 2014 - Proceedings of the 2014 
ACM International Joint Conference on Pervasive and Ubiquitous Computing, 171–
181. http://doi.org/10.1145/2632048.2632069 

Krumm, J., & Horvitz, E. (2006). Predestination: Inferring destinations from partial 
trajectories. In UbiComp’06 (pp. 243–260). http://doi.org/10.1007/11853565_15 

Kuutti, K. (1995). Activity Theory as a potential framework for human- computer 
interaction research. Context and Consciousness: Activity Theory and Human-
Computer Interaction, 17–44. http://doi.org/citeulike-article-id:634717 

Lazer, D., Kennedy, R., King, G., & Vespignani, A. (2014). 29113Ad5-B65E-4E09-8445-
E5Dd6C792C5a, 343(March), 1203–1205. 

Li, N., Kambhampati, S., & Yoon, S. (2009). Learning Probabilistic Hierarchical Task 
Networks to Capture User Preferences. IJCAI. Retrieved from 
http://www.aaai.org/ocs/index.php/IJCAI/IJCAI-09/paper/download/417/874 



 153 

Low, C. A., Bovbjerg, D. H., Ahrendt, S., Haroon Choudry, M., Holtzman, M., Jones, H. 
L., … Bartlett, D. L. (2018). Fitbit step counts during inpatient recovery from cancer 
surgery as a predictor of readmission. In Annals of Behavioral Medicine (Vol. 52, pp. 
88–92). Oxford University Press. http://doi.org/10.1093/abm/kax022 

MacKenzie, I. S. (1992). Fitts’ law as a research and design tool in human-computer 
interaction. Human-Computer Interaction, 7(1), 48. 
http://doi.org/10.1207/s15327051hci0701_3 

Magnusson, M. S. (2000). Discovering hidden time patterns in behavior: T-patterns and 
their detection. Behavior Research Methods, Instruments, & Computers  : A Journal 
of the Psychonomic Society, Inc, 32(1), 93–110. http://doi.org/10.3758/Bf03200792 

Mann, G. S. G., & Mccallum, A. (2010). Generalized Expectation Criteria for Semi-
Supervised Learning with Weakly Labeled Data. JMLR, 11, 955–984. Retrieved from 
http://www.jmlr.org/papers/v11/mann10a.html 

Mcfowland Iii, E., Speakman, S., & Neill, D. B. (2013). Fast Generalized Subset Scan for 
Anomalous Pattern Detection. Journal of Machine Learning Research, 14, 1533–
1561. Retrieved from 
http://www.jmlr.org/papers/volume14/mcfowland13a/mcfowland13a.pdf 

Melnik, R. (2015). Mathematical and Computational Modeling: With Applications in 
Natural and Social Sciences, Engineering, and the Arts. Retrieved from 
https://www.wiley.com/en-
us/Mathematical+and+Computational+Modeling%3A+With+Applications+in+Natu
ral+and+Social+Sciences%2C+Engineering%2C+and+the+Arts-p-9781118853986 

Millen, D. R., & R., D. (2000). Rapid ethnography. In Proceedings of the conference on 
Designing interactive systems processes, practices, methods, and techniques - DIS 
’00 (pp. 280–286). New York, New York, USA: ACM Press. 
http://doi.org/10.1145/347642.347763 

Monroe, M., Lan, R., Lee, H., Plaisant, C., & Shneiderman, B. (2013). Temporal event 
sequence simplification. IEEE Transactions on Visualization and Computer 
Graphics, 19(12), 2227–2236. http://doi.org/10.1109/TVCG.2013.200 

Ng, A., & Russell, S. (2000). Algorithms for inverse reinforcement learning. Proceedings 
of the Seventeenth International Conference on Machine Learning, 663–670. 
http://doi.org/10.2460/ajvr.67.2.323 

O’Neil, C. (2016). Weapons of Math Destruction: How Big Data Increases Inequality and 
Threatens Democracy. Retrieved from 
http://www.amazon.com/dp/B019B6VCLO/ref=wl_it_dp_o_pC_nS_ttl?_encoding=
UTF8&colid=ZK884WM2L344&coliid=I29DOBU158QJKB 

Pasquale, F. (2015). The Black Box Society: The Secret Algorithms That Control Money 
and Information. Retrieved from http://www.worldcat.org/title/black-box-society-



 154 

the-secret-algorithms-that-control-money-and-information/oclc/880831105 

Pentland, B. T., & Rueter, H. H. (1994). Organizational Routines as Grammars of Action. 
Administrative Science Quarterly, 39(3), 484–510. http://doi.org/10.2307/2393300 

Perer, A., & Gotz, D. (2013). Data-driven exploration of care plans for patients. In CHI ’13 
Extended Abstracts on Human Factors in Computing Systems on - CHI EA ’13 (p. 
439). New York, New York, USA: ACM Press. 
http://doi.org/10.1145/2468356.2468434 

Peter Stone, Rodney Brooks, Erik Brynjolfsson, Ryan Calo, Oren Etzioni, Greg Hager, 
Julia Hirschberg, Shivaram Kalyanakrishnan, Ece Kamar, Sarit Kraus, Kevin Leyton-
Brown, David Parkes, William Press, AnnaLee Saxenian, Julie Shah, Milind Tambe,  
and A. T. (2016). Artificial Intelligence and Life in 2030. One Hundred Year Study 
on Artificial Intelligence: Report of the 2015-2016 Study Panel, 52. Retrieved from 
https://ai100.stanford.edu/sites/default/files/ai100report10032016fnl_singles.pdf 

Pirolli, P., & Card, S. (2005). The sensemaking process and leverage points for analyst 
technology as identified through cognitive task analysis. Proceedings of International 
Conference On. Retrieved from https://www.e-
education.psu.edu/geog885/sites/www.e-
education.psu.edu.geog885/files/geog885q/file/Lesson_02/Sense_Making_206_Cam
era_Ready_Paper.pdf 

Plaisant, C., Milash, B., Rose, A., Widoff, S., & Shneiderman, B. (1996). LifeLines: 
visualizing personal histories. Proceedings of the {SIGCHI} Conference on Human 
Factors in Computing Systems: Common Ground. 
http://doi.org/10.1145/238386.238493 

Puterman, M. (1994). Markov decision processes  : discrete stochastic dynamic 
programming. Retrieved from 
https://books.google.com/books?hl=en&lr=&id=VvBjBAAAQBAJ&oi=fnd&pg=P
T9&dq=Markov+decision+processes:+discrete+stochastic+dynamic+programming
&ots=rqoxuPO1TO&sig=Bghho2REoV3uYPrRxExhXhwgpu0 

Rashidi, P., & Cook, D. J. (2010). Mining and monitoring patterns of daily routines for 
assisted living in real world settings. Proceedings of the ACM International 
Conference on Health Informatics - IHI ’10, 336. 
http://doi.org/10.1145/1882992.1883040 

Reason, J., Manstead, A., Stradling, S., Baxter, J., & Campbell, K. (2011). Errors and 
violations on the roads: a real distinction? Ergonomics, 33(10–11), 1315–1332. 
http://doi.org/10.1080/00140139008925335 

Rieman, J., Franzke, M., & Redmiles, D. (1995). Usability Evaluation with the Cognitive 
Walkthrough. Conference Companion on Human Factors in Computing Systems, 
387–388. http://doi.org/10.1145/223355.223735 



 155 

Robinson, R., & Hudali, T. (2017). The HOSPITAL score and LACE index as predictors 
of 30 day readmission in a retrospective study at a university-affiliated community 
hospital. PeerJ, 5, e3137. http://doi.org/10.7717/peerj.3137 

Ronis, David L., J., Yates, F., & Kirscht, J. P. (1989). Attitudes, decisions, and habits as 
determinants of repeated behavior. In Attitude Structure and Function (pp. 213–239). 
Retrieved from 
https://books.google.com/books?hl=en&lr=&id=fiOvSm50Z7kC&oi=fnd&pg=PA2
13&dq=Attitudes,+decisions,+and+habits+as+determinants+of+repeated+behavior
&ots=5s28663OSH&sig=jvsi6ldExKczO138vwu2krnGG8k 

Russell, D. M., Stefik, M. J., Pirolli, P., & Card, S. K. (1993). The cost structure of 
sensemaking. Proceedings of the SIGCHI Conference on Human Factors in 
Computing Systems - CHI ’93, 269–276. http://doi.org/10.1145/169059.169209 

Sadilek, A., & Krumm, J. (2012). Far Out: Predicting Long-Term Human Mobility. 26th 
AAAI Conference on Artificial Intelligence, 814–820. http://doi.org/10.1.1.224.6709 

Salakhutdinov, R. (2009). Learning Deep Generative Models. University of Toronto, 
Toronto, Ont., Canada, 2(1), 1–84. http://doi.org/10.1146/annurev-statistics-010814-
020120 

Shin, H. C., Roth, H. R., Gao, M., Lu, L., Xu, Z., Nogues, I., … Summers, R. M. (2016). 
Deep Convolutional Neural Networks for Computer-Aided Detection: CNN 
Architectures, Dataset Characteristics and Transfer Learning. IEEE Transactions on 
Medical Imaging, 35(5), 1285–1298. http://doi.org/10.1109/TMI.2016.2528162 

Shinar, D., & Compton, R. (2004). Aggressive driving: An observational study of driver, 
vehicle, and situational variables. Accident Analysis and Prevention, 36(3), 429–437. 
http://doi.org/10.1016/S0001-4575(03)00037-X 

Shmueli, G. (2010). To explain or to predict? Statistical Science, 25, 289–310. 
http://doi.org/10.1214/10-STS330 

Shneiderman, B. (2003). The Eyes Have It: A Task by Data Type Taxonomy for 
Information Visualizations. In The Craft of Information Visualization (pp. 364–371). 
http://doi.org/10.1016/B978-155860915-0/50046-9 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., van den Driessche, G., … 
Hassabis, D. (2016). Mastering the game of Go with deep neural networks and tree 
search. Nature, 529(7587), 484–489. http://doi.org/10.1038/nature16961 

Starbird, K., & Palen, L. (2010). Pass it on?: Retweeting in mass emergency. Proceedings 
of the 7th International ISCRAM Conference, (December 2004), 1–10. 
http://doi.org/10.1111/j.1556-4029.2009.01231.x 

Suh, J., & Com, S. M. (2016). The Label Complexity of Mixed-Initiative Classifier 
Training. In ICML. Retrieved from 



 156 

http://www.jmlr.org/proceedings/papers/v48/suh16.pdf 

Taylor, R. (1950). Purposeful and non-purposeful behavior: A rejoinder. Philosophy of 
Science. Retrieved from 
http://www.journals.uchicago.edu/doi/pdfplus/10.1086/287108 

The Economist. (2015). Artificial intelligence - Rise of the machines. 
http://doi.org/10.1126/science.349.6245.248 

Tukey, J. (1977). Exploratory data analysis. Addison-Wesley Series in Behavioral Science: 
Retrieved from http://adsabs.harvard.edu/abs/1977eda..book.....T 

Viswanath Venkatesh , Michael G . Morris , Gordon B . Davis, F. D. . D., Venkatesh, V., 
Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information 
technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. 
http://doi.org/10.2307/30036540 

Wattenberg, M. (2002). Arc diagrams: Visualizing structure in strings. In Proceedings - 
IEEE Symposium on Information Visualization, INFO VIS (Vol. 2002–Janua, pp. 
110–116). http://doi.org/10.1109/INFVIS.2002.1173155 

Weber, M., Alexa, M., & Müller, W. (2001). Visualizing time-series on spirals. Infovis, 7. 
http://doi.org/10.1109/INFVIS.2001.963273 

Weiss, Y. (1996). Synchronization of work schedules. International Economic Review, 
37(1), 157–179. Retrieved from http://www.jstor.org/stable/2527251 

Wu, X., & Zhang, X. (2016). Automated Inference on Criminality using Face Images. 
ArXiv:1611.04135. Retrieved from http://arxiv.org/abs/1611.04135 

Yang, Q., Banovic, N., & Zimmerman, J. (2018). Mapping Machine Learning Advances 
from HCI Research to Reveal Starting Places for Design Innovation. In Proceedings 
of the 2018 CHI Conference on Human Factors in Computing Systems  - CHI ’18 (pp. 
1–11). New York, New York, USA: ACM Press. 
http://doi.org/10.1145/3173574.3173704 

Zhao, J., Chevalier, F., Collins, C., & Balakrishnan, R. (2012). Facilitating Discourse 
Analysis with Interactive Visualization. IEEE Transactions On, 18(12), 2639–2648. 
Retrieved from http://ieeexplore.ieee.org/abstract/document/6327270/ 

Ziebart, B. (2010). Modeling Purposeful Adaptive Behavior with the Principle of Maximum 
Causal Entropy. Thesis. Retrieved from http://repository.cmu.edu/dissertations/17/ 

Ziebart, B. D., Bagnell, J. A., & Dey, A. K. (2013). The principle of maximum causal 
entropy for estimating interacting processes. IEEE Transactions on Information 
Theory, 59(4), 1966–1980. http://doi.org/10.1109/TIT.2012.2234824 

Ziebart, B. D., Maas, A. L., Bagnell, J. A., & Behavior, O. C. (2008). Navigate Like A 



 157 

Cabbie  : Probablistic Reasoning from Observed Context-Aware Behavior Navigate 
Like a Cabbie  : Probabilistic Reasoning from. 

Ziebart, B. D., Maas, A. L., Dey, A. K., & Bagnell, J. A. (2008). Navigate like a cabbie: 
Probabilistic reasoning from observed context-aware behavior. In 10th international 
conference on ubiquitous computing (pp. 322–331). 
http://doi.org/10.1145/1409635.1409678 

Ziebart, B., Ratliff, N., & Gallagher, G. (2009). Planning-based prediction for pedestrians. 
Intelligent Robots and …. Retrieved from 
http://ieeexplore.ieee.org/abstract/document/5354147/ 

 


