
Doctoral thesis

Designing storage codes for heterogeneity:

theory and practice

Francisco Maturana

CMU-CS-23-134

September, 2023

Computer Science Department

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:

Rashmi Vinayak, Chair

Gregory R. Ganger

Ryan O’Donnell

Muriel Médard, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements

for the degree of Doctor of Philosophy.

Copyright © 2023 Francisco Maturana

This research was sponsored in part by the National Science Foundation under award numbers
1901410, 1943409, and 1956271, in part by a Google Faculty Research award, and in part by a
Facebook distributed systems research award. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Coding theory, Data storage, Distributed storage systems, Erasure

coding

Abstract

Data is at the heart of many of the services that society relies on. As a consequence,
distributed storage systems (DSSs), which store data, are a fundamental part of most
applications. Because of their essential role, these systems need to be extremely reliable. On
top of this, DSSs need to be able to scale and grow incrementally to satisfy the increasing
demand for storage. It is common for DSS deployments to be massive in size: just a
single deployment can often store Petabytes of data and manage tens of thousands of disks.
Supporting large-scale systems requires a large amount of resources (such as hardware, energy,
physical space, and personnel) and results in significant capital and operating expenditures.
For this reason, making these systems efficient is important as even small improvements can
have a large impact.

DSSs commonly use erasure coding to tolerate failures. Typically, the operator of the
DSS will choose the type of erasure code and its parameters based on the expected cluster
conditions and their target metrics. However, cluster conditions are vastly heterogeneous and
subject to significant variations across time. Current systems handle this by using extremely
conservative amounts of redundancy and by relying on unplanned interventions, both of
which are very costly. This thesis focuses on solving this problem by making DSSs more
robust, by enabling them to automatically adapt to heterogeneity and variations across time
and space.

To make progress towards our goal, we develop and use tools from both Coding Theory
and Computer Systems. Our approach goes in both directions: we model the system, identify
the fundamental theoretical questions at its heart, and apply the answers to these questions
to develop better systems.

The first part focuses on variations over time that affect the DSS. We propose convertible
codes, a theoretical framework for studying code conversion, i.e. the process of converting
already-encoded data into a different encoding. Using this framework, we derive lower
bounds on the cost of conversion for multiple metrics and propose optimal code constructions.
Additionally, we design two DSSs, named Pacemaker and Tiger, that manage data and
carefully choose when and how to convert data to guarantee a target level of reliability (in
spite of the variations in the failure rate of disks) without overwhelming the cluster.

The second part focuses on heterogeneity across different parts of the DSS. We consider the
setting of a geo-distributed storage system, where latencies between nodes vary significantly
and the cost of sending data across the wide-area network (WAN) is important. We model the
problem theoretically and study the tradeoff between storage overhead and WAN bandwidth
usage. Using this model, we propose a construction for codes that jointly minimize storage
overhead and WAN bandwidth usage. Finally, we use this theoretical framework to design
and implement a strongly-consistent geo-distributed storage system that co-optimizes its
erasure code and configuration to minimize cost.

Acknowledgements

I would like to express my deepest gratitude to my advisor and collaborator Prof.

Rashmi Vinayak: not only was her help and guidance essential for the research

in this thesis, but her kindness and cordiality also made my PhD journey very

enjoyable and gratifying. I would like to deeply thank my thesis committee for their

valuable comments, which helped shape this thesis. I would also like to thank all my

collaborators whose work is featured in this thesis, and from whom I learnt many useful

things (alphabetically): Sanjith Athlur, Mosharaf Chowdhury, Gregory R. Ganger,

Saurabh Kadekodi, Harsha V. Madhyastha, Arif Merchant, V. S. Chaitanya Mukka,

Suhas Jayaram Subramanya, Muhammed Uluyol, Juncheng Yang. In addition, I

would like to thank the many people who helped me throughout this journey: Michael

Rudow, for many useful technical discussions, reviewing many of my drafts, and being

a personal friend; Andrew Park and Wenting Zheng, for collaborating with me in a

project not included in this thesis; Austin Ramos, Timothy Kim, Dax Vandevoorde,

Shaobo Guan, Jiaan Dai, Xuren Zhou, Jiaqi Zuo, Sai Kiriti Badam, and Jiongtao

Ye, for their help in past or ongoing storage systems projects; Saransh Chopra and

Justin Zhang, for continuing my work on some of the theoretical problems presented

in this thesis; Jean-Sébastien Légaré and Andrew Warfield, for mentoring me during

my internship at Amazon; Lluis Pamies-Juarez, Mustafa Uysal, and Arif Merchant,

for mentoring me during my internship at Google and for facilitating access to some

of the data used in this thesis; Keith Smith, Tim Emami, Jason Henessey, and Peter

Macko, for mentoring me during my internship at Netapp and for facilitating access

to some of the data used in this thesis; Cristian Riveros, Domagoj Vrgoč, and Marcelo

Arenas, for helping me get started in computer science research before starting my

PhD. I would also like to thank all the anonymous reviewers at various conferences

and journals, whose comments helped me improve the work contained in these pages.

I am thankful to all the thinkers and researchers that came before me, for sharing

their knowledge with the rest of the world and enabling me to make this research,

and for all those that will come after me (especially those that will cite my work).

I am also thankful to the following organizations for providing the funding to

support my research: the National Science Foundation through award numbers

1901410, 1943409, and 1956271, Google through the Faculty Research award, and

Meta through the Facebook distributed systems research award.

Finally, I am deeply grateful to my family for their continued support, and to

my friends, for cheering me up and helping me keep my sanity throughout the PhD:

Gaurav Manek, Po Bhattacharyya, Jordan Barŕıa, Pablo Guarda, Francisca Espinoza,

Silvana Juri, Vicente Christian, Esteban Iglesias, Vicente Baeza, Chuli, Sebastián

Salata, Francisco Carrasco, Alberto Croquevielle, Sebastián De Vidts, David Fuller,

Carlos Brunner, Miguel Fadić, and many, many more.

Contents

Introduction 1

I Dynamic storage codes for change across time 6

1 Convertible codes framework 8

1.1 Introduction . 8

1.2 Related work, background and notation 14

1.3 A framework for studying code conversions 18

2 Access cost of convertible codes 26

2.1 Lower bounds on the access cost of convertible codes in the merge regime 27

2.2 Explicit access-optimal convertible codes in the merge regime 36

2.3 Low field-size convertible codes in the merge regime 41

2.4 Split regime . 48

2.5 General regime . 54

3 Bandwidth cost of convertible codes 65

3.1 Additional background . 66

3.2 Modeling conversion for conversion bandwidth optimization 74

3.3 Optimizing conversion bandwidth in the merge regime 79

3.4 Bandwidth-optimal convertible codes in the merge regime 84

3.5 Bandwidth savings of bandwidth-optimal convertible codes 94

– vi –

Contents

3.6 Conversion bandwidth of the split regime 96

3.7 Explicit constructions . 101

4 Locally repairable convertible codes 108

4.1 Background and related work . 109

4.2 Conversion of LRCs . 112

4.3 Conversion of global parameters . 120

5 Designing systems for code conversion 125

5.1 Pacemaker: avoiding HeART attacks in storage clusters 126

5.2 Whither disk-adaptive redundancy 130

5.3 Longitudinal production trace analyses 133

5.4 Design goals of pacemaker . 138

5.5 Design of pacemaker . 142

5.6 Implementation of pacemaker in HDFS 150

5.7 Evaluation of pacemaker . 154

5.8 Failure rate estimation in pacemaker 163

5.9 Detailed cluster evaluations of pacemaker 164

5.10 Tiger: disk-adaptive redundancy without placement restrictions . . . 166

5.11 Motivation of Tiger . 173

5.12 Eclectic Stripes and their challenges 177

5.13 Mechanisms to enable eclectic stripes 178

5.14 Design and working of Tiger . 185

5.15 Evaluation of Tiger . 193

5.16 Derivation of approximation of MTTDL of eclectic stripes 203

5.17 Related Work . 204

II Dynamic storage codes for change across space 206

6 Codes for geo-distributed storage 208

6.1 Related work and existing results . 211

– vii –

Contents

6.2 Fundamental limits on codes with arbitrary access sets 214

6.3 Storage overhead of MUC codes: lower bound and achievability . . . 220

6.4 Conclusion . 225

7 Density-aware redundancy for geo-distributed storage 226

7.1 Geo-distributed storage systems: Opportunity and challenges 232

7.2 Pudu design . 237

7.3 Density-aware redundancy . 242

7.4 Evaluation . 249

7.5 Related work . 260

III Future directions 262

8 Future directions for Part I 263

8.1 Future directions for convertible codes 263

8.2 Future directions for disk-adaptive redundancy 266

9 Future directions for Part II 267

9.1 Future directions for MUC codes . 267

9.2 Future directions for geo-distributed storage systems 268

Bibliography 269

– viii –

Introduction

Many of today’s most important and popular applications require storing ever-

increasing amounts of data. Such storage needs far surpass what can be handled by

a single machine, and thus many applications have to rely on distributed storage

systems (DSSs), which store data across large numbers of devices. Because of the

essential role they play in supporting other applications, DSSs need to be extremely

reliable: they must guarantee that data can be readily accessed when needed, and

that it will not be irrecoverably lost. Additionally, because of the constant increase in

the demand for storage, DSSs need to be able to scale and allow operators to easily

increase their capacity by adding more storage devices.

These strict requirements, and the logistical challenges attached to managing and

running the required hardware, make DSSs hard to operate. As a consequence, most

large-scale DSSs are operated by organizations that store very large amounts of data

and/or offer storage services to other organizations. Therefore, it is common for DSSs

deployments to be massive in size: just a single deployment can often store Petabytes

of data and manage tens of thousands of disks. Supporting such a large number of

disks requires specialized infrastructure capable of powering and cooling the disks

as well as the machines that read, write, process, and communicate the data stored

in them. DSSs thus consume vast amounts of resources in the form of hardware,

electricity, computational resources, network traffic, etc. Given this situation, a very

active line of research is to make these systems more efficient, as even small reductions

in resource usage can have big impacts due to the sheer scale of these systems.

One key challenge that DSSs must handle is failure tolerance. In large-scale

systems, failures are common and unavoidable events. Therefore, DSSs need to

– 1 –

Introduction

employ techniques that allow them to gracefully handle and repair failures. This

is typically expressed through two properties: durability, which is the ability to

prevent data from becoming irrecoverably lost; and availability, which is the ability to

guarantee that data can be accessed (in a reasonable amount of time). The simplest

way to provide these properties is to replicate the data across different disks that are

unlikely to fail together. However, at such large scales replication is economically

unfeasible because it doubles or triples (or more) the amount of resources needed.

A more efficient alternative to replication is erasure coding, which can achieve the

same level of failure tolerance with much lower storage overhead. On the flip side, the

use of erasure codes in storage applications brings up a variety of other considerations

which are not present with replication: e.g. encoding/decoding complexity, the repair

of failed nodes, cost of updating data, impact of stragglers on latency, etc. However,

in most cases the benefits of erasure coding in DSSs far outweigh the costs of dealing

with their complications, and for this reason it is very common nowadays for DSSs to

use erasure codes. The operator of a DSS typically chooses the type of erasure code

and its parameters according to the expected operating conditions (such as the node

failure rate, the workload, the network topology, etc.), and their target metrics (such

as durability, availability, storage overhead, etc.).

One important unresolved problem that DSSs have to face in practice is having

to adapt to the heterogeneities in the environments where they operate, and their

variations across time. Current systems handle these differences by using extremely

conservative amounts of redundancy when initially encoding the date, and by relying

on unplanned manual interventions. Both of these are very costly: the unnecessary

redundancy consumes a lot of resources and manual interventions, because they are

unplanned, disrupt the normal functioning of the system and require significant effort.

My thesis focuses on solving this problem: making DSSs more robust, by enabling

them to automatically adapt to heterogeneity and variations across time.

To make progress towards making DSSs more robust to variations, we develop

and use tools from both the Coding Theory and Computer Systems research. Our

approach goes in both directions: we model different aspects of the problem and

identify the fundamental theoretical questions at their heart, and we apply the answers

– 2 –

Introduction

to these questions to develop better systems.

In the first part (Part I), we focus on enabling DSSs to adapt to heterogeneity

across time. Data in DSSs typically lives for long periods of time, and over this period

of time the cluster environment can vary significantly. This means that the erasure

code that was used when the data was originally stored may become unsuitable due

to variations in the cluster environment. For example, the failure rate of disks varies

as they age, and the popularity of each file changes over time. DSSs can adapt to such

variations via redundancy tuning, i.e., automatically converting already-encoded data

into a different erasure code that is suitable. Despite bringing significant benefits,

redundancy tuning can be hard to adopt in practice because existing DSSs are not

designed to support it. The default approach to conversion is to read, decode, re-

encode, and write data, which is very costly. Therefore, if performed carelessly, the

work required for conversion can easily overwhelm the cluster. To bridge this gap, we

approach the problem from two complementing directions: we design erasure codes

that reduce the cost of conversion, and we design systems that manage the data and

can effectively and efficiently decide when and how to convert data.

On the theoretical side, we develop the convertible codes framework, which allows

us to precisely study the fundamental costs of converting data between two erasure

codes with different parameters. We consider two types of cost: access cost, which

measures the number of nodes that have to be read or written during conversion, and

conversion bandwidth, which measures the amount of data that needs to be transferred

between nodes during conversion. For each of these costs, we derive lower bounds on

the cost of conversion, and we construct erasure codes that can perform conversion

more efficiently than the default approach, in many cases achieving the optimal cost.

In our optimization of these costs, we first focus on the so-called maximum-distance

separable (MDS) codes, which are commonly used in practice because they achieve

the minimum storage-overhead for a given level of failure tolerance. Then, we focus

on a different class of codes known as locally repairable codes (LRCs), which are also

widely used in practice and trade off store-overhead for better repair performance

(which translates into higher availability).

On the practical side, we focus on designing DSSs that efficiently manage and

– 3 –

Introduction

convert data to guarantee a target level of reliability in spite of variation in the

failure rate of disks. A previous system called HeART [1] showed that this style of

redundancy tuning can yield savings in storage space of up to 16% compared to a

system that uses a single fixed erasure code chosen to tolerate the highest failure rate

observed. However, trace-based simulations show that the work required by HeART

can completely overwhelm a cluster for periods of days or weeks. We propose two

systems that improve upon HeART by providing similar savings in storage space but

without overwhelming the cluster. We first propose Pacemaker, which employs two

main strategies: (1) it places stripes across disks that have similar failure rates, and

(2) it proactively transitions data by observing trends in failure rates and anticipating

large transitions. While Pacemaker is effective at avoiding overwhelming the cluster,

it poses undesirable constraints on data placement. To address this, we propose Tiger,

which is able to avoid transition overload without additional placement restrictions.

To achieve this, Tiger introduces a new abstraction called eclectic stripe, which can

precisely measure the reliability of a stripe composed of devices with different failure

rates. This is enabled by a new system architecture and a set of techniques which

allow Tiger to reliably manage and transition eclectic stripes without large overheads.

In the second part (Part II), we focus on enabling DSSs to adapt to heterogeneity

across space. The setting that we consider is that of a geo-distributed storage system,

in which users in different parts of the world to read and write to a shared set of

objects. For example, this could correspond to data stored in a cloud storage system

used in a collaborative application, such as Google Docs [2], or Overleaf [3]. Two

important costs in this setting are: (1) storage overhead, and (2) wide-area network

(WAN) bandwidth. One important objective of the system is to provide good read

latency to users, which is typically achieved by placing replicas of the objects at

data sites in different locations. To reduce the storage overhead, recent work [4–6]

has proposed using Reed-Solomon codes instead. This, however, leads to high WAN

bandwidth usage, because all parities of the code have to be updated whenever a

write is made. Inspired by this problem, we pose the following question: is it possible

to design codes that minimize both storage overhead and WAN bandwidth required by

updates? To answer this question, we model the problem from a coding-theoretical

– 4 –

Introduction

perspective. A key characteristic of this problem is the heterogeneity across space:

users will typically contact the data sites that are closest to them, and some regions

are better connected than others. To capture this, we use the notion of access sets,

i.e, sets of nodes that must be able to decode the store object. Given a collection of

access sets, we derive lower bounds on storage overhead and update cost, and study

the tradeoffs between the two of them. Since WAN bandwidth tends to be more

costly than storage in practice, we focus on codes that first minimize update cost,

and then minimize storage overhead subject to that, which we term minimum update

cost (MUC) codes. We fully characterize the update cost and storage overhead of

MUC codes and provide a randomized construction. Then, we propose Pudu, a novel

strongly-consistent geo-distributed storage system. Pudu implements and integrates

the MUC framework to tailor the system’s erasure code. Using this approach, Pudu

is able to minimize the resource-cost of the system by co-optimizing both the design

of the erasure code, and the design of the consensus protocol. This allows Pudu to

achieve lower costs that were unachievable by prior systems.

The rest of this document is divided as follows. Part I focuses on heterogeneity

across time. Chapters 1 to 4 focus on convertible codes, and Chapter 5 focuses on

adapting distributed storage systems to perform erasure code changes more efficiently.

Part II focuses on heterogeneity across space: Chapter 6 focuses on the theoretical

results on codes with minimum update cost, and Chapter 7 incorporates these codes

into a strongly-consistent geo-distributed storage system. Finally, Part III discusses

future directions for the topics explored in this thesis.

– 5 –

Part I

Dynamic storage codes for change

across time

– 6 –

In the first part of the thesis, we concern ourselves with changes in storage codes

across time. In other words, we focus on studying erasure codes and distributed

storage systems that change the encoding of data throughout time. We approach this

subject from two perspectives: a coding-theoretical perspective, focused on the design

of storage codes, and a systems perspective, focused on the design of a distributed

storage system that adapts throughout time.

Chapters 1 to 4 are dedicated to convertible codes. In Chapter 1, we introduce the

code conversion problem, and propose the convertible codes framework: using this

framework, we study the access cost of the merge regime. In Chapter 2, we study the

access cost of conversion in MDS codes. In Chapter 3, we introduce the conversion

bandwidth cost metric, and study it in MDS codes. In Chapter 4, we go beyond MDS

codes, and study the conversion bandwidth of locally-repairable codes.

Chapter 5 is dedicated to the concept of disk-adaptive redundancy tuning, and

to system designs that implement it. First in Section 5.1, we propose Pacemaker, a

distributed storage system designed to automatically change the encoding of data in

response to changes in disk failure rates without overwhelming the system. Then in

Section 5.10, we propose Tiger, a distributed storage system which is also designed

to automatically adapt to changes in failure rate, but imposes fewer constraints and

is more robust than Pacemaker.

– 7 –

Chapter 1

The convertible codes framework:

enabling efficient conversion of coded

data in distributed storage

This chapter is based on work from [7], done in collaboration with K. V. Rashmi.

1.1 Introduction

Erasure codes have become an essential tool for protecting against node failures in

distributed storage systems [8–14]. Under erasure coding, a set of k data symbols

to be stored is encoded using an [n, k] code to generate n coded symbols, called a

codeword (or stripe). Each of the n symbols in a codeword is stored on a different

storage node, and the system as a whole typically contains several independent

codewords distributed across different subsets of storage nodes in the cluster.

A key factor that determines the choice of parameters n and k is the failure rate

of the storage devices. It has been shown that failure rates of storage devices in

large-scale storage systems can vary significantly over time and that changing the code

rate, by changing n and k, in response to these variations yields substantial savings

in storage space and hence the operating costs [1]. For example, in [1], the authors

show that an 11% to 44% reduction in storage space can be achieved by tailoring

– 8 –

Chapter 1. Convertible codes framework

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100

To
ta

l I
O

pe
r d

ay
 (%

)

Transition IO Num disks (right axis)

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

Figure 1.1: (From [15].) The left y-axis shows the percentage of disk IO utilized
by conversion (called “transition” in [15]) against time simulated from a trace of a
production Google cluster. The right y-axis shows the size of the cluster in number of
disks against time. Code conversions can result in big spikes in disk IO consumption
that can overwhelm the cluster for several days.

n and k to changes in observed device failure rates. Such a reduction in storage

space requirement translates to significant savings in the cost of resources and energy

consumed in large-scale storage systems. It is natural to think of potentially achieving

such a change in code rate by changing only n while keeping k fixed. However, due

to several practical system constraints, changing code rate in storage systems often

necessitates change in both the parameters n and k [1]. We refer the reader to [1] for

a more detailed discussion on the practical benefits and constraints of adapting the

erasure-code parameters to the variations in failure rates in storage systems.

Changing n and k for codewords in a storage system, from [nI , kI], to [nF , kF],

would involve converting already encoded data from one code to another. Clearly, it

is always possible to re-encode the data in a codeword according to a new code by

accessing (and decoding if necessary) all the original message symbols. However, such

an approach, which we call the default approach, requires accessing a large number

of symbols (for example, for MDS codes, the initial value of k number of symbols

need to be accessed from each codeword), reading out all the data, transferring over

the network, and re-encoding. Such conversions can generate a large amount of load

on cluster resources, which adversely affects the foreground operations of the cluster.

Figure 1.1 shows the IO load that would be caused by code conversions on a Google

cluster with multiple hundreds of thousands of disks [15]. As seen from the figure,

– 9 –

Chapter 1. Convertible codes framework

IO load from conversions can easily overwhelm the cluster for long periods of time.

Furthermore, in some cases conversions might need to be performed in an expedited

manner, for example, to avoid the risk of data loss when facing an unexpected rise in

failure rate.

High IO load is problematic for such conversions because it slows down conversion

as well as other important cluster processes, such as serving client requests. While

recent work [15] has initiated a study on systems techniques to mitigate the spikes in

the IO load caused by conversions, the total amount of work necessary for conversion

still remains considerably high and these systems techniques introduce restrictions on

other operations of the cluster such as data placement. Given that the root cause

of the problem is the high resource overhead involved in performing conversions

on the underlying code, we investigate the problem from a fundamental theoretical

perspective.

There are also several other reasons to perform code conversions in storage systems.

One may convert data that is frequently read into a code with a small k (in order to

improve the performance of reconstructions) and convert data that is infrequently

read into a code with large k (to achieve lower storage overhead). In addition, code

conversions may need to be performed to keep the total size of the encoded data

under a given threshold, or to maximize the reliability given the available storage

space.

To the best of our knowledge, the existing literature [16–19] which formally studies

the problem of changing the length and dimension of already encoded data does so

from the perspective of the so-called scaling problem. The scaling problem [16] refers

to the problem of evenly redistributing each codeword in a distributed storage system

when additional nodes are added to the system and the level of failure tolerance

(specifically, (n − k)) is kept constant. Some works [17, 19] generalize the scaling

problem to broader cases where (n− k) need not remain constant. However, even

in cases where the scaling problem could be used to perform code conversion, it has

several drawbacks that make it inefficient for conversion. For example, using the

approach of scaling to achieve conversion requires accessing every symbol in each

codeword and performing a significant amount of data movement to keep the amount

– 10 –

Chapter 1. Convertible codes framework

a b c p1 p2 d e f p1 p2

a b c d e f q1 q2

Initial codeword 1 Initial codeword 2

Final codeword

Figure 1.2: Example of code conversion: two codewords of a [5, 3] MDS code are
converted into one codeword of a [8, 6] MDS code. Unshaded boxes represent data
symbols, and shaded boxes represent parity symbols. Some of the initial symbols are
kept unchanged in the final codewords, as shown by the dashed arrows. Some initial
symbols are read and downloaded (solid arrows). The downloaded data is then used
to compute and write the remaining symbols in the final codewords.

stored in each node the same. While these costs are necessary to fulfill the goals of

the scaling problem, they are unnecessary to achieve code conversion, making this

approach inefficient. A more detailed discussion of the scaling problem and other

related work is provided in Section 1.2.1.

In this chapter, we propose a theoretical framework to model the code conversion

problem. Our approach is based on the insight that the problem of changing code

parameters in a storage system can be viewed as converting multiple codewords of

an [nI , kI] code (denoted by CI) into (potentially multiple) codewords of an [nF , kF]

code (denoted by CF)1, with desired constraints on decodability, such as both codes

satisfying the maximum distance separability (MDS) property. To address the problem

of code conversion, we then introduce a new class of codes, which we call convertible

codes, that allow for resource-efficient conversions. The general formulation of code

conversions provides a powerful framework to theoretically study convertible codes.

We now present an example to elucidate the concept of code conversion in the

1The superscripts I and F stand for initial and final respectively, representing the initial and
final state of the conversion.

– 11 –

Chapter 1. Convertible codes framework

convertible codes framework.

Example 1.1: Consider conversion from an [nI = 5, kI = 3] code CI to an [nF =

8, kF = 6] code CF . We will focus on the number of symbols read, i.e. read access

cost, and on the number symbols written, i.e. write access cost, for conversion. The

default approach to conversion is to read kI = 3 symbols from each of the two initial

codewords belonging to CI , decoding the original data, and using it to write two

symbols of the final codeword belonging to CF , while keeping the three read symbols

from each initial codeword unchanged as symbols of the final codeword. Thus, the

default approach has a read access cost of 6 and write access cost of 2.

In the convertible codes framework, this conversion is achieved by converting two

codewords of the initial code into a single codeword of the final code, as depicted in

Figure 1.2. This approach uses specially designed systematic codes CI and CF . Let

Fq be the finite field of size q = 37. Let a, b, c ∈ Fq be the data symbols of the first

initial codeword, d, e, f ∈ Fq be the data symbols of the second initial codeword. Let

p1, p2 : F3
q → Fq be the parity functions for the initial code CI , and q1, q2 : F6

q → Fq be

the parity functions for the final code CF . The parity functions are chosen as below:

p1(a, b, c) = a + b + c, p2(a, b, c) = a + 2b + 4c.

This is an example of the general construction presented in Section 2.2. The conversion

procedure keeps the data symbols from each initial codeword unchanged in the final

codeword, and then constructs the first (resp. second) parity of the final codeword as

a linear combination of the first (resp. second) parity of each initial codeword. The

final parity functions are chosen to satisfy the equation below:

q1(a, b, c, d, e, f) = p1(a, b, c) + p1(d, e, f),

q2(a, b, c, d, e, f) = p2(a, b, c) + 8p2(d, e, f).

It is straightforward to check that the initial and final codes defined by these parity

functions have the MDS property. This conversion procedure requires reading two

symbols from each initial codeword and writing two symbols, resulting in a total read

– 12 –

Chapter 1. Convertible codes framework

access cost of 4 and a write access cost of 2, a reduction of 33.3% in the read access

cost as compared to the default approach. This is also the the minimum possible

read cost, as will be shown in Section 2.1. x

We begin the exploration of convertible codes by focusing on MDS codes in

Chapters 2 and 3, and then we focus on LRCs (Locally Repairable Codes) in Chapter 4.

These two classes of codes are two of the most commonly used in distributed storage

systems, and thus are good subjects of study. Furthermore, we consider two notions

of conversion cost: 1) access cost (studied in Chapter 2), which corresponds to

the number of nodes that are read or written during conversion; and 2) conversion

bandwidth (studied in Chapter 3), which corresponds to the amount of network

bandwidth used during conversion.

To simplify our analysis of convertible codes, we divide the space of possible

parameters into subsets that we call regimes. In particular, we consider: 1) the merge

regime, which consists of conversions that merge multiple codewords into a single one

(i.e. kF = λIkI for integer λI ≥ 2); 2) the split regime, which consists of conversions

that split a single codeword into multiple ones (i.e. kI = λF kF for integer λF ≥ 2);

and 3) the general regime, where kI and kF are arbitrary.

Throughout our analysis of convertible codes, we assume the values of the pa-

rameters (nI , kI) and (nF , kF) are known and fixed. Similarly, we assume that data

undergoes a single conversion. However, in practice the value of (nF , kF) might not

be known at the time of code construction, since it depends on the future failure

rates of storage devices, or multiple conversion might be executed over the same data

at different points in time. Throughout the thesis, we also discuss and address these

problems: we show how to construct convertible codes which support conversion for

multiple possible values of (nF , kF) simultaneously, or support multiple consecutive

conversions for a sequence of parameters (n1, k1), (n2, k2), (n3, k3), . . ., and so on.

– 13 –

Chapter 1. Convertible codes framework

1.2 Related work, background and notation

In this section, we place convertible codes within the larger context of traditional

codes and more recent works on codes for distributed storage. Then, we review some

basic concepts and notation that will be used throughout this thesis.

1.2.1 Related Work

MDS erasure codes, such as Reed-Solomon codes [20], are widely used in storage

systems because they achieve the optimal tradeoff between failure tolerance and

storage overhead [21, 22]. However, the use of erasure codes in storage systems raises

a host of other aspects to optimize for. Several works in the literature have studied

these aspects and proposed codes that optimize them.

One aspect of storage codes that received considerable attention early on is the

computational overhead involved in encoding and decoding data. Array codes [23–26]

are usually designed to use XOR operations exclusively, which are faster to execute,

and aim to decrease the complexity of encoding and decoding.

Another aspect of storage codes that has received considerable attention in the

recent past is related to the resource overhead associated with repair of failed nodes.

Several approaches have been proposed to alleviate this problem. Dimakis et al. [27]

proposed a new class of codes called regenerating codes that minimize the amount of

network bandwidth consumed during repair operations. Under the regenerating codes

model [27], each symbol (i.e., node) is represented as an α-dimensional vector over a

finite field. During repair of a failed node, downloading elements of the finite field (i.e.,

“sub-symbols”) is allowed as opposed to the whole vector (i.e., one “entire” symbol).

This line of research has led to several constructions [28–47], generalizations [48–50],

and more efficient repair algorithms for Reed-Solomon codes [39, 51–57]. Several of

these constructions [31, 40, 58–60] minimize the amount of IO consumed during repairs

in addition to minimizing the network bandwidth consumption. Like regenerating

codes, convertible codes optimized for conversion bandwidth also aim to minimize IO

and network bandwidth, but for code conversion instead of repair. It has been shown

– 14 –

Chapter 1. Convertible codes framework

that meeting the lower bound on the network bandwidth required by repair when MDS

property and high rate are desired necessitates large sub-packetization [58, 60–62],

which negatively affects certain key performance metrics in storage systems [12, 13].

To overcome this issue, several works [63, 64] have proposed code constructions that

relax the requirement of meeting lower bounds on IO and bandwidth for repair

operations in order to reduce the degree of sub-packetization.

The challenge of code repair has also been addressed by another class of codes,

called locally repairable codes (LRCs) [65–81]. These codes focus on the locality

of codeword symbols during repair, that is, the number of nodes that need to be

accessed when repairing a single failure. LRCs improve repair performance, since

missing information can be recovered by accessing a small subset of symbols. LRCs

and convertible codes optimized for access cost both aim to minimize the number of

symbols that need to be accessed, albeit for different operations in storage systems.

Recent literature on storage codes has also considered the problem of redistributing

data when additional devices are added to a distributed storage system, which is

known as the scaling problem [16, 17, 19, 82–90]. The setting considered consists

of an n node distributed storage system where the data is encoded using an [n, k]

MDS code, where the n symbols of each codeword are spread across evenly on all

the n nodes in the system. Then, s new empty nodes are added to the system, and

the data (which was encoded under an [n, k] MDS code) needs to be updated to an

[n′ = n + s, k′ = k + s] MDS code. The central goal of this problem is to evenly

redistribute each codeword across all n′ nodes while reducing the total amount of

data transferred across nodes and ensuring the MDS property holds. In some cases,

it is additionally required that the ratio of data to parity in each node is the same

(e.g. [87]). Some works consider more general scaling scenarios: for example [19]

considers the case where k < k′ and n < n′, and [17] considers arbitrary n′ > k′.

The scaling problem is fundamentally different from the conversion problem that we

study in this thesis because of the need to evenly redistribute data across nodes under

scaling. Hence, some of the key constraints and limitations of the scaling problem do

not apply to code conversion. For example, scaling necessitates modifying every node

in the system (incurring a high access cost) and necessitates transfer of data not for

– 15 –

Chapter 1. Convertible codes framework

the purpose of conversion (i.e. changing n and k) but for the purpose of rebalancing

the amount of data stored by each codeword in a given node. On the other hand,

under the code conversion problem, we do not impose any requirements on data

balancing. This is because, typically, large-scale distributed storage systems balance

data across nodes at a higher level rather than at the level of each codeword [8, 11].

Several works have studied scenarios where encoded data is transformed to conform

to a different code. In [91, 92], the authors propose a two-stage encoding process,

where in the first stage data is encoded using a [n, k] MDS code, and in the second

stage (n′−n) additional parities are generated to form a codeword from a [n′, k] MDS

code. This process can be seen as a special case of convertible codes, i.e. an (n, k; n′,

k) convertible code. In [93], the authors propose a distributed storage system which

alternates between two specific erasure codes in response to variations in workload.

In [94], the authors propose a scheme for changing the parameters of an erasure code

in the context of coded matrix multiplication.

In [95], which appeared after the publication of the conference paper that this

chapter is based on [96], the authors propose a code construction for improving the

efficiency of conversion. This construction performs conversion by acting on initial

codewords that are encoded differently, i.e. a different (kI × nI) generator matrix

is used for each initial codeword. The focus of Wu et al. [95] is on a practical code

construction for a specific parameter regime and they do not investigate theoretical

modeling and fundamental limits. All the lower bounds derived in our work continue

to hold even if each codeword is encoded differently (i.e. they also apply to the setting

considered in [95]). The approach of using multiple different initial codes has the

advantage of simplifying the code construction: a final MDS code CF is chosen first,

and then the encoding of each initial codeword is chosen to fit CF . However, such

an approach has several disadvantages. First, conversion can only happen among

specific groups of initial codewords, making the conversion process more rigid as

codewords cannot be freely chosen. Second, this approach increases the overhead

of codeword management, as the system needs to keep track of the code of each

codeword. Third, it only considers one specific known value for the final parameters

(nF , kF). On the other hand, the framework of convertible codes that we propose

– 16 –

Chapter 1. Convertible codes framework

allows one to choose any set of initial codewords for conversion (since they all use the

same code), is independent of data placement, and the proposed code constructions

support access-optimal conversion for any (nF , kF) in a set of possible final parameter

values.

1.2.2 Background

In this subsection we introduce some basic definitions and notation related to linear

codes. Let Fq be a finite field of size q. An [n, k] linear code C over Fq is a k-

dimensional subspace C ⊆ Fn
q . Here, n is called the length of the code, and k is called

the dimension of the code. A generator matrix of an [n, k] linear code C over Fq is

a k × n matrix G over Fq such that the rows of G form a basis of the subspace C.

A k × n generator matrix G is said to be systematic if it has the form G = [I ♣ P],

where I is the k × k identity matrix and P is a k × (n − k) matrix. Even though

the generator matrix of a code C is not unique, we will sometimes associate a code

C to a specific generator matrix G, which will be clear from context. The encoding

of a message m ∈ Fk
q under an [n, k] code C with generator matrix G is denoted

C(m) = mT G.

Let [n] denote the set ¶1, 2, . . . , n♢ for n ≥ 1, and the empty set for n ≤ 0. A

linear code C is maximum distance separable (MDS) if the minimum distance of the

code is the maximum possible:

min-dist(C) = min
c ̸=c′ ∈ C

♣¶i ∈ [n] : ci ̸= c′
i♢♣ = n− k + 1,

where ci ∈ Fq denotes the i-th coordinate of c. Equivalently, a linear code C is MDS

if and only if every k × k submatrix of its generator matrix G is non-singular [97].

A matrix M is said to be superregular if every square submatrix of M is nonsin-

gular2. The following property is a key property that will be used in this thesis.

2This definition of superregularity is stronger than the definition introduced in [98] in the context
of convolutional codes.

– 17 –

Chapter 1. Convertible codes framework

Proposition 1.1 ([97]). Let C be an [n, k] code with generator matrix G = [I♣P]. Then

C is MDS if and only if P is superregular.

Let v ∈ Fn
q be a vector. We interpret vectors as column vectors by convention.

We denote the transpose of a vector (or matrix) as vT . Given a set of coordinates

I ⊆ [n], we denote the projection of v to the coordinates in I as v♣I ∈ F♣I♣
q . For a set

of vectors V we define projI(V) = ¶v♣I ♣ v ∈ V♢.

We use the following notation for submatrices: let M be a n × m matrix,

the submatrix of M defined by row indices ¶i1, . . . , ia♢ ⊆ [n] and column indices

¶j1, . . . , jb♢ ⊆ [m] is denoted by M [i1, . . . , ia; j1, . . . , jb]. For conciseness, we use ∗ to

denote all row or column indices, e.g., M [∗; j1, . . . , jb] denotes the submatrix composed

by columns ¶j1, . . . , jb♢, and M [i1, . . . , ia; ∗] denotes the submatrix composed by rows

¶i1, . . . , ia♢.

1.3 A framework for studying code conversions

In this section, we formally define the new framework for studying code conversions

and introduce convertible codes. While we use the notation of linear codes introduced

in Section 1.2.2, the framework introduced in this section can be applied to arbitrary

(not necessarily linear) codes. Suppose one wants to convert data that is already

encoded using an [nI , kI] initial code CI into data encoded using an [nF , kF] final code

CF where both codes are over the same field Fq. In the initial and final configurations,

the system must store the same information, but encoded differently. In order to

capture the changes in the dimension of the code during conversion, we consider

M = lcm(kI , kF) number of “message” symbols (i.e., the data to be stored) over a

finite field Fq, denoted by m ∈ FM
q . This corresponds to λI = M/kI codewords in

the initial configuration and λF = M/kF codewords in the final configuration. Let

rI = (nI − kI) and rF = (nF − kF).

Figure 1.3 shows the conversion process for general initial and final codes. We

note that this need for considering multiple codewords in order to capture the smallest

instance of the problem deviates from existing literature on the code repair (e.g., [27,

– 18 –

Chapter 1. Convertible codes framework

nI

kI rI
nI

kI rI

nF
kF rF

nF
kF rF

nF
kF rF

(λI = M/kI) initial codewords

(λF = M/kF) final codewords

c

Figure 1.3: Conversion from [nI , kI] initial code to [nF , kF] final code. Each box
denotes a symbol, and they are grouped into codewords. Dotted boxes denote retired
symbols, and cross-hatched boxes denote new symbols. The c node denotes the
location where new symbols are computed from the symbols read during conversion.
Solid arrows denote a transfer of symbols (read or write) and dashed arrows denote
unchanged symbols.

– 19 –

Chapter 1. Convertible codes framework

28, 52, 63]) and code locality (e.g., [65, 70, 80]), where a single codeword is sufficient

to capture the problem.

Since there are multiple codewords, we first specify an initial partition PI and

a final partition PF of the set [M], which map the message symbols of m to their

corresponding initial and final codewords. The initial partition PI = ¶P I
1 , . . . , P I

λI♢

is composed of λI disjoint subsets of size ♣P I
i ♣ = kI (i ∈ [λI]), and the final partition

PF = ¶P F
1 , . . . , P F

λF ♢ is composed of λF disjoint subsets of size ♣P F
j ♣ = kF (j ∈ [λF]).

In the initial (respectively, final) configuration, the data indexed by each subset

P I
i ∈ P

I (respectively, P F
j ∈ P

F) is encoded using the code CI (respectively, CF).

The codewords ¶CI(m♣P I
i
) ♣ P I

i ∈ P
I♢ are referred to as initial codewords, and the

codewords ¶CF (m♣P F
j

) ♣ P F
j ∈ P

F♢ are referred to as final codewords. The descriptions

of the initial and final partitions and codes, along with the conversion procedure,

define a convertible code. We now proceed to define conversions and convertible codes

formally.

Definition 1.1 (Code conversion): A conversion from an initial code CI to a final code

CF with initial partition PI and final partition PF is a procedure, denoted by TCI→CF ,

that for any m, takes the set of initial codewords ¶CI(m♣P I
i
) ♣ P I

i ∈ P
I♢ as input,

and outputs the corresponding set of final codewords ¶CF (m♣P F
j

) ♣ P F
j ∈ P

F♢. x

Definition 1.2 (Convertible code): An (nI , kI ; nF , kF) convertible code over Fq is

defined by: (1) a pair of codes (CI , CF) where CI is an [nI , kI] code over Fq and

CF is an [nF , kF] code over Fq; (2) a pair of partitions PI ,PF of [M = lcm(kI , kF)]

such that each subset in PI is of size kI and each subset in PF is of size kF ; and

(3) a conversion procedure TCI→CF that on input ¶CI(m♣P I
i
) ♣ P I

i ∈ P
I♢ outputs

¶CF (m♣P F
j

) ♣ P F
j ∈ P

F♢, for any m ∈ FM
q . x

Typically, additional constraints would be imposed on CI and CF , for example,

decodability constraints such as requiring both codes to be MDS.

The cost of conversion is determined by the cost of the conversion procedure

TCI→CF , as a function of the parameters (nI , kI ; nF , kF). Towards minimizing the

overhead of the conversion, our general objective is to design codes (CI , CF), partitions

– 20 –

Chapter 1. Convertible codes framework

(PI ,PF) and conversion procedure TCI→CF that satisfy Definition 1.2 and minimize the

conversion cost for given parameters (nI , kI ; nF , kF), subject to desired decodability

constraints on CI and CF .

Depending on the relative importance of various resources in the cluster, one

might be interested in optimizing the conversion with respect to various types of costs

such as symbol access, computation (CPU), communication (network bandwidth),

read/writes (disk IO), etc., or a combination of these costs. The general formulation

of code conversions above provides a powerful framework to theoretically reason about

convertible codes.

To decide whether or not a conversion procedure is efficient, we need to measure

its cost. Two kinds of cost have been consider the access cost of code conversion,

which measures the number of symbols that are affected by the conversion.

Definition 1.3 (Access cost): The read access cost of a conversion procedure is defined

as the total number of symbols read during the procedure. Similarly, the write access

cost of a conversion procedure is the total number of symbols written during the

procedure. The access cost of a conversion procedure is the sum of its read and write

access costs. The access cost of a convertible code is the access cost of its conversion

procedure. x

Definition 1.4 (Conversion bandwidth): The read conversion bandwidth of a conversion

procedure is defined as the total size of the data read from the initial codewords during

conversion. Similarly, the write conversion bandwidth of a conversion procedure is

defined as total size of the data written to the final codewords during conversion.

The conversion bandwidth of a conversion procedure is the sum of its read and

write conversion bandwidths. The conversion bandwidth of a convertible code is the

conversion bandwidth of its conversion procedure. x

Both of these costs are important in practice, but which one is more important

will depend on the specifics of the system and its workloads. Reducing access cost

makes code conversion less disruptive, reduces the its tail latency, and allows the

unaffected symbols to remain available for normal operation. Reducing conversion

– 21 –

Chapter 1. Convertible codes framework

bandwidth reduces the IO of disks and the amount of network traffic. Reducing either

access cost or conversion bandwidth will also reduce the amount of computation and

communication required in contrast to the default approach. Given the definition of

codes given above, it would seem as though both access cost and conversion bandwidth

are equivalent, however, we will show in Chapter 3 that by considering a class of

codes known as vector codes, we can explicitly minimize conversion bandwidth.

In order to understand the necessary access cost of conversion, we classify symbols

into three categories: (1) unchanged symbols, which refers to symbols in the initial

codewords that remain as is in the final codewords; (2) retired symbols, which refers

to the remaining symbols of the initial codewords that are discarded; and (3) new

symbols, which refers the symbols in the final stripes which are not unchanged (and

therefore must be written during conversion). For example, in Figure 1.3, unchanged

symbols are unshaded, retired symbols in the initial codewords are dotted, and new

symbols in the final codewords are cross-hatched.

Having unchanged symbols has many practical benefits, because when conversion is

implemented, such symbols can stay in the same location and only their corresponding

metadata needs to be updated. We introduce the following definition to capture

codes that maximize the number of such symbols.

Definition 1.5 (Stable convertible code): An (nI , kI ; nF , kF) MDS convertible code is

said to be stable if it uses the maximum number of unchanged symbols over all (nI ,

kI ; nF , kF) MDS convertible codes. x

In the following chapters, we will see that stable convertible codes play an

important role in minimizing access cost and conversion bandwidth.

The convertible codes framework defined in this work is flexible and allows for

the initial and final codes to have any parameters and be of any kind. Our goal will

be to find codes that minimize the access cost and conversion bandwidth.

Definition 1.6 (Access-optimal): A convertible code is said to be access-optimal (over

a class of codes) if and only if it attains the minimum access cost possible (in that

class of codes). x

– 22 –

Chapter 1. Convertible codes framework

Table 1.1: Notation used in this thesis.

□I Related to initial code □F Related to final code

n♢ Code length, number of symbols k♢ Code dimension, number of message symbols

λ♢ Number of codewords C♢ Code

P♢ Partition of [k♢] G♢ Generator matrix of C♢

P♢ Parity matrix of C♢ m Message

S♢
i Encoding vectors (codeword i) S♢ All initial/final encoding vectors

Ui,j Unchanged vectors (= SI
i ∩ S

F
j) Di Read access set (initial codeword i)

Ai Accessed vectors (initial codeword i) N New encoding vectors (= SF \ SI)

Definition 1.7 (Bandwidth-optimal): A convertible code is said to be bandwidth-optimal

(over a class of codes) if and only if it attains the minimum conversion bandwidth

possible (in that class of codes). x

In practice, the final parameters (nF , kF) might not be known at the time of code

construction because they might depend on future failure rates. To address this, we

also consider designing codes which have the ability to be converted to multiple final

codes of different length and dimension with optimal access cost. This way, instead

of having to decide (nF , kF) in advance, the user can specify a subset S ⊆ (N×N) of

possible values for the pair (nF , kF) and construct an initial code with the ability to

be converted to an [nF , kF] final code for any (nF , kF) ∈ S. At the time of conversion,

the user simply chooses the desired pair from S and converts. We introduce the

following definition to help describe such codes.

Definition 1.8 (Optimally convertible): A [nI , kI] MDS code CI is said to be access/

bandwidth-optimally convertible if and only if it is the initial code of an access/

bandwidth-optimal (nI , kI ; nF , kF) convertible code. x

1.3.1 Notation for linear convertible codes

In this chapter, we focus exclusively on convertible codes where CI and CF are linear.

To this end, we introduce some notation for describing and analyzing this class of

codes. Table 1.1 summarizes the most important notation used for easy reference.

– 23 –

Chapter 1. Convertible codes framework

Let ♢ ∈ ¶I, F♢. The generator matrix of C♢ is a (k♢×n♢) matrix G♢ = [g♢
1 · · · g

♢

n♦],

where g♢
j ∈ Fk♦

q (j ∈ [n♢]) denotes the j-th encoding vector of C♢. Consequently, with

a given partition P♢ = ¶P ♢
i ♢

λ♦

i=1, the j-th symbol of the i-th codeword corresponds to

(m♣P♦
i

)T g♢
j .

In order to analyse linear convertible codes, we also view each code symbol in

relation to the whole message m. Accordingly, we view the j-th symbol of the i-th

initial codeword as mT g̃♢
i,j, where the encoding vector g̃♢

i,j ∈ FM
q is defined to be equal

to g♢
j for coordinates in P ♢

i , i.e. g̃♢
i,j♣P♦

i
= g♢

j , and equal to 0 everywhere outside of

P ♢
i . Note that mT g̃♢

i,j = (m♣P♦
i

)T g♢
j for all i ∈ [λ♢] and j ∈ [n♢]. In general, we will

refer to a code symbol and its corresponding encoding vector interchangeably.

Let S♢
i = ¶g̃♢

i,j ♣ j ∈ [n♢]♢ denote the encoding vectors of codeword i ∈ [λ♢],

and let S♢ =
⋃

i∈[λ♦] S
♢
i . Define Ui,j = (SI

i ∩ S
F
j) denoting the unchanged symbols

that form part of initial codeword i and final codeword j. If λI = 1 or λF = 1,

then we omit the corresponding index from Ui,j for simplicity. Let U = (SI ∩ SF)

denote all unchanged vectors. We define the read access set of a convertible code

as a set of tuples D ∈ [λI] × [nI], where (i, j) ∈ D corresponds to the j-th symbol

of initial codeword i. Furthermore, we use Di = ¶j ♣ (i, j) ∈ D♢, ∀i ∈ [λI] to

denote the symbols read from initial codeword i. Note that the read access cost is

given by ♣D♣. Let Ai = ¶g̃I
i,j ♣ j ∈ Di♢ denote the encoding vectors of the symbols

from initial codeword i ∈ [λI] that are part of the read access set D, and define

A = ¶g̃I
i,j ♣ (i, j) ∈ D♢ as the set of all encoding vectors of the symbols in the read

access set. Finally, let N = (SF \ SI) denote the new vectors. Notice that it must

hold that N ⊆ span(A), since the new vectors are obtained as linear combinations of

the encoding vectors of the symbols in the read access set.

1.3.2 The case of kI = kF

Before diving into the study of convertible codes, we briefly study the exceptional

conversion case where kI = kF . We typically do not consider conversion with

parameters kI = kF as part of the merge or split regime because it does not have

the same behavior. However, we analyze this case here for completeness. Observe

– 24 –

Chapter 1. Convertible codes framework

that in the case where nI ≥ nF , conversion for any MDS code can be carried out

with zero access cost and conversion bandwidth by simply retiring any (nI − nF)

symbols. In the complementary case where nI < nF , it is necessary to access at least

kI symbols and write at least (nF − nI) symbols (i.e. it is not possible to beat the

default approach in terms of access cost). This is apparent from the fact that in an

[n, k] MDS code, any subset of k − 1 symbols gives no information about any one

of the remaining symbols. The minimization of conversion bandwidth in the where

nI < nF is non-trivial: it can be considered as an special case of a regenerating code

[27], and it has also been studied on previous work [92].

– 25 –

Chapter 2

Access-cost of convertible codes:

fundamental limits and optimal

constructions

This chapter is based on work from [7], done in collaboration with K. V. Rashmi; and

[99], done in collaboration with V. S. Chaitanya Mukka and K. V. Rashmi.

There are several ways in which one might measure the cost of conversion. In this

chapter, we will focus on access cost, which is measured in terms of the total number

of symbols that need to be accessed during conversion. In particular, by the end of

this chapter we will have presented:

1. lower bounds on the access cost of conversion for linear MDS codes for all valid

parameters, that is, all nI , kI , nF , kF ∈ N such that nI > kI and nF > kF .

2. explicit constructions of linear MDS convertible codes that achieve these lower

bounds, and are thus optimal in terms of access-cost.

To achieve this, we divide the problem space (the set of possible parameters) into

three regimes:

• the merge regime, where multiple codewords are combined into a single one (i.e.

kF = λIkI for an integer λI ≥ 2);

– 26 –

Chapter 2. Access cost of convertible codes

Table 2.1: Optimal access cost for different regimes, assuming rF ≤ min¶kI , kF♢.
When rF > kI or rF > kF , the optimal access cost is the same as the default approach.

Regime
Access cost
(rI < rF)

Access cost
(rI ≥ rF)

Default approach

Merge regime λIkI λIrF λIkI

Split regime λF kF (λF − 1)kF + rF λF kF

General regime lcm(kI , kF)
λIrF + (λI mod λF)

(kI −max¶kF mod kI , rF♢)
lcm(kI , kF)

• the split regime, where a single codeword is split into multiple ones (i.e. kI =

λF kF for an integer λF ≥ 2);

• the general regime, where kI and kF take arbitrary values.

We prove access-cost lower bounds and constructions for each of these cases separately.

One surprising aspect is that the lower bounds and constructions for the merge

regime and split regime are directly used in proving a lower bound and designing the

construction for the general regime. Interestingly, one of the degrees-of-freedom in

the design of convertible codes (called “partitions”, described in Chapter 1), which

is inconsequential in the split and merge regimes, turns out to be crucial in the

general regime. The proposed construction for access-optimal convertible codes for

the general regime builds on the constructions for split and merge regimes, while

separately optimizing along this additional degree-of-freedom. We summarize the

results of this chapter in Table 2.1.

2.1 Lower bounds on the access cost of convertible

codes in the merge regime

In this section, we focus on studying the merge regime. Recall, from Section 1.3, that

the merge regime corresponds to conversion where multiple codewords are combined

– 27 –

Chapter 2. Access cost of convertible codes

rI

λIkI

λIrI

kI0

rF

R
ea

d
a
cc

es
s

co
st

kI

λIkI

rF

R
ea

d
a
cc

es
s

co
st

0

Optimal

Default
approach

Figure 2.1: Comparison of the read access cost of the optimal conversion of a (nI , kI ;
nF , kF = λIkI) convertible code and the default approach for a variable value of rF

(x-axis) when rI < kI (left side) and rI ≥ kI (right side). When rF < min¶kI , rI♢,
optimal conversion achieves lower cost than the default approach, and when rF >
min¶kI , rI♢, the default approach is (trivially) optimal. The optimal write access
cost in the merge regime is always rF .

Table 2.2: Access cost savings for different example parameters.

[nI , kI]⇒ [nF , kF]
Optimal

read access
cost

Default
read access

cost

Write access
cost (either

approach)

Cost
reduction

[14, 10]⇒ [22, 20] 4 20 2 72.7%

[9, 6]⇒ [14, 12] 4 12 2 57.1%

[5, 3]⇒ [11, 9] 6 9 2 27.8%

[9, 5]⇒ [14, 10] 8 10 4 14.3%

[6, 4]⇒ [11, 8] 8 8 3 0.0%

– 28 –

Chapter 2. Access cost of convertible codes

into a single codeword (i.e. kF = λIkI for an integer λI ≥ 2). This implies that

M = kF and λF = 1.

In this section, we present lower bounds on the access cost of linear MDS convertible

codes in the merge regime. Our main result is summarized by the following theorem,

which will be proved at the end of this section.

Theorem 2.1. For all linear MDS (nI , kI ; nF , kF = λIkI) convertible codes, the read

access cost of conversion is at least λI min¶kI , rF♢ and the write access cost is at least

rF . Furthermore, if rI < rF , the read access cost of conversion is at least λIkI . ·

As we will show in Section 2.2, this lower bound is achievable and it therefore

corresponds to the optimal access cost in the merge regime. Figure 2.1 shows a plot

comparing the optimal access cost against the access cost of the default approach

for different parameter values, and Table 2.2 shows these costs for some concrete

conversion examples.

We break down the proof of this result into four steps:

1. We show that in the merge regime, all possible pairs of partitions PI and PF

partitions are equivalent up to relabeling, and hence do not need to be specified

(Lemma 2.2).

2. An upper bound on the maximum number of unchanged symbols is proved. As

described in Definition 1.5, convertible codes that meet this bound are called

stable (Lemma 2.3).

3. Lower bounds on the access cost of linear MDS convertible codes are proved

under the added restriction that the codes are stable (Lemmas 2.4 and 2.5

and Theorem 2.6).

4. The stability restriction is removed, by showing that non-stable linear MDS

convertible codes necessarily incur higher access cost, and hence it suffices to

consider only stable MDS convertible codes (Lemma 2.8 and Theorem 2.1).

In general, partitions need to be specified since they indicate how message symbols

from the initial codewords are mapped into the final codewords. However in the merge

– 29 –

Chapter 2. Access cost of convertible codes

regime, the choice of the partitions are equivalent, and hence are inconsequential as

shown below.

Lemma 2.2. For every (nI , kI ; nF , kF = λIkI) convertible code, all possible pairs of

initial and final partitions (PI ,PF) are equivalent up to relabeling of symbols.

Proof. We have that kI ♣ kF . Thus λF = (M/kF) = 1 and PF = ¶[M]♢ always holds.

Because of this, all data will be mapped to the same final codeword, regardless of

the initial partition. Therefore, for any two partitions PI and PI ′
, there exists some

permutation σ of [λIkI] such that PI ′
= ¶σ(P) ♣ P ∈ PI♢, i.e., different partitions

differ only on the way symbols are labeled.

Since one of the terms in access cost is the number of new symbols, a natural way

to reduce access cost is to maximize the number of unchanged symbols. However,

there is a limit on the number of symbols that can remain unchanged which is

characterized below.

Lemma 2.3. In an MDS (nI , kI ; nF , kF = λIkI) convertible code, there can be at most

kI unchanged symbols from each initial codeword.

Proof. By the MDS property of CI every subset of kI +1 symbols is linearly dependent.

Hence, there can be at most kI unchanged symbols from each initial codeword for CF

to be MDS. In other words, ♣Ui♣ ≤ kI for all i ∈ [λI].

This implies that there are at most λIkI unchanged symbols and at least rF new

symbols in total. Thus, the number of symbols that need to be written in a stable

code is at least rF .

Now, we focus on bounding the total number of symbols read, that is, the size

of the read access sets. The general strategy we use to obtain bounds on the size of

read access sets is to consider a specially chosen set of kF encoding vectors from the

final codeword, which by the MDS property of the final code is linearly independent.

We then use the fact that final codewords are the result of conversion to identify the

encoding vectors in each initial codeword that span the selected final encoding vectors.

The MDS property of the initial code and the fact that different initial codewords

– 30 –

Chapter 2. Access cost of convertible codes

contain different information will allow us to derive a lower bound on the number of

read symbols in each initial codeword.

Intuitively, having more new symbols means that more symbols have to be read in

order to construct them, resulting in higher access cost. With this intuition in mind,

we first focus on stable convertible codes, which minimize the number of new symbols

(Definition 1.5). We first prove lower bounds on the access cost of stable linear MDS

convertible codes, and then show that the minimum access cost of conversion in MDS

codes without this stability property can only be higher. The first lower bound on

the size of each Di (i ∈ [λI]) is given by the interaction between new symbols and

the MDS property.

Lemma 2.4. For every linear stable MDS (nI , kI ; nF , kF = λIkI) convertible code,

the read access set Di from each initial codeword i ∈ [λI] satisfies ♣Di♣ ≥ min¶kI , rF♢.

Proof. For convenience, readers can recall the notation from Table 1.1. By the MDS

property, every subset V ⊆ SF of size at most kF = λIkI is linearly independent. For

any initial codeword i ∈ [λI], take the set of all unchanged encoding vectors from

other codewords ∪ℓ̸=iUℓ, and additionally pick any subset of new encoding vectors

W ⊆ N of size ♣W♣ = min¶kI , rF♢. The following holds for set V = (∪ℓ̸=iUℓ ∪W):

V ⊆ SF and ♣V♣ = (λI − 1)kI + min¶kI , rF♢ ≤ kF .

Therefore, all the encoding vectors in V are linearly independent.

Notice that the encoding vectors in (V \W) contain no information about initial

codeword i and complete information about every other initial codeword ℓ ≠ i.

Therefore, the information about initial codeword i in each encoding vector in W

has to be linearly independent since, otherwise, V could not be linearly independent.

Formally, it must be the case that Wi = projP I
i
(W) has rank equal to min¶kI , rF♢

(recall that P I
i is the set of symbols corresponding to initial codeword i). However,

by definition, the subset Wi must be contained in the span of Ai. Therefore, the rank

of Ai is at least that of Wi, which implies that ♣Di♣ ≥ min¶kI , rF♢.

We next show that when the number of new symbols rF is greater than rI in

– 31 –

Chapter 2. Access cost of convertible codes

a MDS stable convertible code in the merge regime, then the default approach is

optimal in terms of access cost.

Lemma 2.5. For every linear stable MDS (nI , kI ; nF , kF = λIkI) convertible code,

if rI < rF then the read access set Di from each initial codeword i ∈ [λI] satisfies

♣Di♣ ≥ kI .

Proof. When rF ≥ kI , this lemma is equivalent to Lemma 2.4, so assume rI < rF <

kI . From the proof of Lemma 2.4, for every initial codeword i ∈ [λI] it holds that

♣Di♣ ≥ rF . Since rF > rI , this implies that Di must contain at least one index of an

unchanged encoding vector.

Choose a subset of at most kF = λIkI encoding vectors from SF , which must be

linearly independent by the MDS property. In this subset, include all the unchanged

encoding vectors from the other initial codewords, ∪ℓ ̸=iUℓ. Then, choose all the un-

changed encoding vectors from initial codeword i that are accessed during conversion,

W1 = (Ai ∩Ui). For the remaining vectors (if any), choose an arbitrary subset of new

encoding vectors, W2 ⊆ N, such that:

♣W2♣ = min¶kI − ♣W1♣, rF♢. (2.1)

It is easy to check that the subset V = (∪ℓ̸=iUℓ∪W1∪W2) is of size at most kF = λIkI ,

and therefore it is linearly independent. This choice of V follows from the idea that

the information contributed by W1 to the new encoding vectors is already present in

the unchanged encoding vectors, which will be at odds with the linear independence

of V .

Since the elements of W1 and W2 are the only encoding vectors in V that contain

information from initial codeword i, it must be the case that W̃ = (projP I
i
(W1) ∪

projP I
i
(W2)) has rank (♣W1♣+ ♣W2♣). Moreover, W̃ is contained in the span of Ai by

definition, so it holds that:

♣Di♣ ≥ ♣W1♣+ ♣W2♣. (2.2)

From Equation (2.1), there are two cases:

– 32 –

Chapter 2. Access cost of convertible codes

Case 1: (kI − ♣W1♣) ≤ rF . Then ♣W2♣ = (kI − ♣W1♣) and by Equation (2.2) it

holds that:

♣Di♣ ≥ (♣W1♣+ ♣W2♣) = kI . (2.3)

Case 2: (kI − ♣W1♣) > rF . Then ♣W2♣ = rF and by Equation (2.2) it holds that:

♣Di♣ ≥ ♣W1♣+ rF . (2.4)

Notice that there are only rI retired (i.e. not unchanged) encoding vectors in codeword

i. Since every accessed encoding vector is either in W1 or is a retired encoding vector,

it holds that:

♣Di♣ ≤ ♣W1♣+ rI . (2.5)

By combining Equation (2.4) and Equation (2.5), we arrive at the contradiction

rF ≤ rI , which occurs because there are not enough retired symbols in the initial

codeword i to ensure that the final code has the MDS property. Therefore, case 1

must always hold, and ♣Di♣ ≥ kI .

Combining the above results leads to the following theorem on the lower bound

of read access set size of linear stable MDS convertible codes.

Theorem 2.6. For all stable linear MDS (nI , kI ; nF , kF = λIkI) convertible codes with

read access set D, it holds that ♣D♣ ≥ λI min¶kI , rF♢. Furthermore, if rI < rF , then

♣D♣ ≥ kF .

Proof. Follows directly from Lemma 2.4 and Lemma 2.5.

We next show that this lower bound generally applies even for non-stable convert-

ible codes by proving that increasing the number of new symbols from the minimum

possible does not decrease the lower bound on the size of the read access set D.

Lemma 2.7. The lower bounds on the size of the read access set from Theorem 2.6

hold for all linear MDS (nI , kI ; nF , kF = λIkI) convertible codes.

– 33 –

Chapter 2. Access cost of convertible codes

Proof. We show that, even for non-stable convertible codes, that is, when there are

more than rF new symbols, the bounds on the read access set D from Theorem 2.6

still hold.

Case 1: rI ≥ rF . Let i ∈ [λI] be an arbitrary initial codeword. We lower bound

the size of Di by invoking the MDS property on a subset V ⊆ SF of size ♣V♣ = λIkI

that minimizes the size of the intersection ♣V ∩ Ui♣. There are exactly rF encoding

vectors in (SF \V), so the minimum size of the intersection ♣V∩Ui♣ is max¶♣Ui♣−rF , 0♢.

Clearly, the subset projP I
i
(V) has rank kI due to the MDS property. Therefore, it

holds that ♣Di♣+ max¶♣Ui♣ − rF , 0♢ ≥ kI . By reordering, the following is obtained:

♣Di♣ ≥ kI −max¶♣Ui♣ − rF , 0♢ ≥ min¶rF , kI♢,

which means that the bound on Di established in Lemma 2.4 continues to hold for

non-stable codes.

Case 2: rI < rF . Let i ∈ [λI] be an arbitrary initial codeword, letW1 = (Ai∩Ui)

be the unchanged encoding vectors that are accessed during conversion, and let

W2 = (Ui \ W1) be the unchanged encoding vectors that are not accessed during

conversion. Consider the subset V ⊆ SF of ♣V♣ = kF encoding vectors from the

final codeword such that V ⊇ W1 and the size of the intersection W3 = (V ∩W2) is

minimized. Since V may exclude at most rF encoding vectors from the final codeword,

it holds that:

♣W3♣ = max¶0, ♣W2♣ − rF♢. (2.6)

By the MDS property, V is a linearly independent set of encoding vectors of size

kF , and thus, must contain all the information to recover the contents of every initial

codeword, and in particular, initial codeword i. Since all the information in V about

codeword i is in either W3 or the accessed encoding vectors, it must hold that:

♣Di♣+ ♣W3♣ ≥ kI . (2.7)

From Equation (2.6), there are two cases:

Subcase 2.1: (♣W2♣ − rF) ≤ 0. Then ♣W3♣ = 0, and by Equation (2.7) it holds

– 34 –

Chapter 2. Access cost of convertible codes

that ♣Di♣ ≥ kI , which matches the bound of Lemma 2.5.

Subcase 2.2: (♣W2♣ − rF) > 0. Then ♣W3♣ = (♣W2♣ − rF), and by Equation (2.7)

it holds that:

♣Di♣+ ♣W2♣ − rF ≥ kI . (2.8)

The initial codeword i has (kI + rI) symbols. By the principle of inclusion-exclusion

we have that:

♣Di♣+ ♣Ui♣ − ♣W1♣ ≤ kI + rI . (2.9)

By using Equation (2.8), Equation (2.9) and the fact that ♣W2♣ = (♣Ui♣ − ♣W1♣), we

conclude that rI ≥ rF , which is a contradiction and means that subcase 2.1 always

holds in this case.

The above result, along with the fact that the lower bound in Theorem 2.6 is

achievable (as will be shown in Section 2.2), implies that all access-optimal linear

MDS convertible codes in the merge regime are stable.

Lemma 2.8. All access-optimal linear MDS (nI , kI ; nF , kF = λIkI) convertible codes

are stable.

Proof. Lemma 2.7 shows that the lower bound on the read access set D for stable

linear MDS convertible codes continues to hold in the non-stable case. Furthermore,

this bound is achievable by stable linear MDS convertible codes in the merge regime

(as will be shown in Section 2.2). The number of new blocks written during conversion

under stable MDS convertible codes is rF . On the other hand, the number of

new symbols under a non-stable convertible code is strictly greater than rF . Thus,

the overall access cost of a non-stable MDS (nI , kI ; nF , kF = λIkI) convertible code

is strictly greater than the access cost of an access-optimal (nI , kI ; nF , kF = λIkI)

convertible code.

Thus, for MDS convertible codes in the merge regime, it suffices to focus only on

stable codes. Combining all the results above, leads to the main theorem presented

at the beginning of this section.

– 35 –

Chapter 2. Access cost of convertible codes

Proof of Theorem 2.1. Follows from Theorem 2.6 and Lemmas 2.7 and 2.8, and

the fact that at least rF new symbols must be written.

Next, in Section 2.2 we show that the lower bound of Theorem 2.1 is achievable for

all parameters. Thus, Theorem 2.1 implies that it is possible to perform conversion

of MDS convertible codes in the merge regime with significantly less access cost than

the default approach if and only if rF ≤ rI and rF < kI .

2.2 Achievability: Explicit access-optimal convertible

codes in the merge regime

In this section, we present an explicit construction of access-optimal MDS convertible

codes for all parameters in the merge regime. In other words, we present a construction

that matches the access cost lower bound presented in Section 2.1. In Section 2.2.1,

we present the construction of the generator matrices for the initial and final code.

Then, in Section 2.2.2, we describe sufficient conditions for optimality and show that

this construction satisfies these conditions and thus yields access-optimal convertible

codes. Our constructions in this and the following section work over any finite field

of sufficient size (which we explicitly specify), but for the sake of illustration we use

prime fields in our examples.

2.2.1 Explicit construction of generator matrices

Recall that, in the merge regime, kF = λIkI , for an integer λI ≥ 2, while nI > kI

and nF > kF are arbitrary. Also, recall that rI = (nI − kI) and rF = (nF − kF).

Notice that when rI < rF or kI ≤ rF , constructing an access-optimal convertible

code is trivial, since the default approach to conversion is optimal. Thus, assume

rF ≤ min¶rI , kI♢.

Let Fq be a finite field of size q = pD, where p is any prime (in particular, we

can have p = 2, i.e. a binary field) and the degree D is determined by a function of

the convertible code parameters (discussed later in this subsection). The degree D

– 36 –

Chapter 2. Access cost of convertible codes

required by this construction is O((max¶nI , nF♢)3), that is, the field size requirement

is exponential in the length of the code. Let θ be a primitive element of Fq. Let

GI = [I♣PI] and GF = [I♣PF] be systematic generator matrices of CI and CF over Fq,

where PI is a kI × rI matrix and PF is a kF × rF matrix.

Define entry (i, j) of PI ∈ FkI×rI

q as θ(i−1)(j−1), where (i, j) ranges over [kI]× [rI].

Entry (i, j) of PF ∈ FkF ×rF

q is defined identically as θ(i−1)(j−1), where (i, j) ranges

over [kF]× [rF]. That is, PI and PF are as follows:

PI =




1 1 1 · · · 1

1 θ θ2 · · · θ(rI−1)

1 θ2 θ4 · · · θ2(rI−1)

...
...

...
. . .

...

1 θ(kI−1) θ2(kI−1) · · · θ(kI−1)(rI−1)




,

PF =




1 1 1 · · · 1

1 θ θ2 · · · θ(rF −1)

1 θ2 θ4 · · · θ2(rF −1)

...
...

...
. . .

...

1 θ(kF −1) θ2(kF −1) · · · θ(kF −1)(rF −1)




.

Notice that this construction is stable, because it is access-optimal (recall from

Lemma 2.8). The unchanged symbols of the initial code are exactly the systematic

symbols.

2.2.2 Proof of optimality

Recall from Proposition 1.1, that if the constructed code is to be MDS, then both

PI and PF need to be superregular (every square submatrix of them is invertible).

In addtion, to be access-optimal during conversion in the non-trivial case, the new

symbols (corresponding to the columns of PF) have to be such that they can be

generated by accessing rF symbols from the initial codewords (corresponding to

columns of GI).

– 37 –

Chapter 2. Access cost of convertible codes

During conversion, the encoding vectors of symbols from the initial codewords

are represented as λIkI-dimensional vectors, where each initial codeword occupies a

disjoint subset of kI coordinates. To capture this property, we introduce the following

definition.

Definition 2.1 (t-column block-constructible): We will say that an n×m1 matrix

M1 is t-column constructible from an n ×m2 matrix M2 if and only if there exists

a subset S ⊆ cols(M2) of size t, such that the m1 columns of M1 are in the span of

S. We say that a λn×m1 matrix M1 is t-column block-constructible from an n×m2

matrix M2 if and only if for every i ∈ [λI], the submatrix M1[(i− 1)n + 1, . . . , in; ∗]

is t-column constructible from M2. x

Theorem 2.9. A systematic (nI , kI ; nF , kF = λIkI) convertible code with kI × rI

initial parity generator matrix PI and kF × rF final parity generator matrix PF is

MDS and access-optimal, if the following two conditions hold: (1) if rI ≥ rF then PF

is rF -column block-constructible from PI , and (2) PI , PF are superregular.

Proof. Follows from Proposition 1.1 and the fact that PF must be generated by

accessing just rF symbols from each initial codeword (Lemma 2.4).

Thus, we can reduce the problem of proving the optimality of a systematic MDS

convertible code in the merge regime to that of showing that matrices PI and PF

satisfy the two properties mentioned in Theorem 2.9.

We first show that the construction specified in Section 2.2.1 satisfies condition

(1) of Theorem 2.9.

Lemma 2.10. Let PI , PF be as defined in Section 2.2.1. Then PF is rF -column

block-constructible from PI .

Proof. Consider the first rF columns of PI , which we denote as PI
rF = PI [∗; 1, . . . , rF].

– 38 –

Chapter 2. Access cost of convertible codes

Notice that PF can be written as the following block matrix:

PF =




PI
rF

PI
rF diag(1, θkI

, θ2kI

, . . . , θ(rF −1)kI

)

PI
rF diag(1, θ2kI

, θ2·2kI

, . . . , θ(rF −1)2kI

)
...

PI
rF diag(1, θ(λI−1)kI

, . . . , θ(rF −1)(λI−1)kI

)




,

where diag(a1, a2, . . . , an) is the n×n diagonal matrix with (a1, . . . , an) as the diagonal

elements. From this representation, it is clear that PF can be constructed from the

the first rF columns of PI .

It only remains to show that the construction in Section 2.2.1 satisfies condition

(2) of Theorem 2.9, that is, that PI and PF are superregular.

Lemma 2.11. Let PI , PF be as defined in Section 2.2.1. Then PI and PF are

superregular, for sufficiently large field size.

Proof. Let R be a t × t submatrix of PI or PF , determined by the row indices

i1 < i2 < · · · < it and the column indices j1 < j2 < · · · < jt, and denote entry (i, j)

of R as R[i, j]. The determinant of R is defined by the Leibniz formula:

det(R) =
∑

σ∈Perm(t)

sgn(σ)
t∏

l=1

R[l, σ(l)]

=
∑

σ∈Perm(t)

sgn(σ)θEσ

(2.10)

where Eσ =
t∑

l=1

(il − 1)(jσ(l) − 1),

Perm(t) is the set of all permutations on t elements, and sgn(σ) ∈ ¶−1, 1♢ is the sign

of permutation σ. Clearly, det(R) defines a univariate polynomial fR ∈ Fp[θ]. We

will now show that deg(fR) =
∑t

l=1(il − 1)(jl − 1) by showing that there is a unique

permutation σ∗ ∈ Perm(t) for which Eσ∗ achieves this value, and that this is the

– 39 –

Chapter 2. Access cost of convertible codes

maximum over all permutations in Perm(t). This means that fR has a leading term

of degree Eσ∗ .

To prove this statement, we show that any permutation σ ∈ Perm(t)\¶σ∗♢ can

be modified into a permutation σ′ such that Eσ′ > Eσ. Specifically, we show that

σ∗ = σid, the identity permutation. Consider σ ∈ Perm(t)\¶σid♢: let a be the smallest

index such that σ(a) ̸= a, let b = σ−1(a), and let c = σ(a). Let σ′ be such that

σ′(a) = a, σ′(b) = c, and σ′(d) = σ(d) for d ∈ [t]\¶a, b♢. In other words, σ′ is the

result of “swapping” the images of a and b in σ. Notice that a < b and a < c. Then,

we have that:

Eσ′ − Eσ = (ia − 1)(ja − 1) + (ib − 1)(jc − 1)− (ia − 1)(jc − 1)− (ib − 1)(ja − 1)

= (ib − ia)(jc − ja) > 0

The last inequality comes from the fact that a < b implies ia < ib and a < c implies

ja < jc. Therefore, deg(fR) = maxσ∈Perm(t) Eσ = Eσid
.

Let E∗(λI , kI , rI , rF) be the maximum degree of fR over all submatrices R of PI

or PF . Then, E∗(λI , kI , rI , rF) corresponds to the diagonal with the largest elements

in PI or PF . In PF this is the diagonal of the square submatrix formed by the bottom

rF rows. In PI it can be either the diagonal of the square submatrix formed by the

bottom rI rows, or by the right kI columns. Thus, we have that:

E∗(λI , kI , rI , rF) = max¶E1, E2, E3♢

– 40 –

Chapter 2. Access cost of convertible codes

where E1 =
rF −1∑

i=0

i(λIkI − rF + i)

= rF (rF − 1)(3λIkI − rF − 1)/6,

E2 =
rI−1∑

i=0

i(kI − rI + i)

= rI(rI − 1)(3kI − rI − 1)/6,

E3 =
kI−1∑

i=0

i(rI − kI + i)

= kI(kI − 1)(3rI − kI − 1)/6.

Recall that we defined the field size as q = pD for any prime p. We set D =

(E∗(λI , kI , rI , rF) + 1). Then, if det(R) = 0 for some submatrix R, θ is a root of fR,

which is a contradiction since θ is a primitive element and the minimal polynomial of

θ over Fp has degree D > deg(fR) [97].

Combining the above results leads to the following key result on the achievability

of the lower bounds on access cost derived in Section 2.1.

Theorem 2.12. The explicit construction provided in Section 2.2.1 yields access-

optimal linear MDS convertible codes for all parameter values in the merge regime.

Proof. Follows from Theorem 2.9, Lemma 2.10, and Lemma 2.11.

The construction presented in this section is practical only for small values of the

parameters since the required field size grows exponentially with the lengths of the

initial and final codes. In Section 2.3 we present practical low-field-size constructions.

2.3 Low field-size convertible codes in the merge

regime based on superregular Hankel arrays

In this section we present alternative constructions for (nI , kI ; nF , kF = λIkI) convert-

ible code that require a significantly lower (polynomial) field size than the construction

– 41 –

Chapter 2. Access cost of convertible codes

presented in Section 2.2. We start by explaining the key ideas behind these construc-

tions and present two examples that represent two extremes of a tradeoff between

field size and coverage of parameter values. In Section 2.3.1, we describe the general

construction, which includes codes at the two extremes of the tradeoff and a sequence

of constructions in between. In Section 2.3.2, we show that the proposed code con-

struction can support access-optimal conversion even when parameters of the final

code are a priori unknown.

The key idea behind our constructions is to take the matrices PI and PF as

cleverly-chosen submatrices from a specially constructed triangular array of the

following form:

Tm :

b1 b2 b3 · · · bm−1 bm

b2 b3 · · · · · · bm

b3
...

... ...
...

...
...

bm−1 bm

bm

(2.11)

with the property that every submatrix of Tm is superregular (the submatrix must lie

completely within the triangular array). Here, (1) (b1, . . . , bm) are (not necessarily

distinct) elements from Fq, and (2) m is at most the field size q. The array Tm

has Hankel form, that is, Tm[i, j] = Tm[i − 1, j + 1], for all i ∈ [2, m], j ∈ [m − 1].

We denote Tm a superregular Hankel array. Such an array can be constructed by

employing the algorithm proposed in [100] (where the algorithm was employed to

generate generalized Cauchy matrices to construct generalized Reed-Solomon codes).

We construct the initial and final codes by taking submatrices PI and PF from

superregular Hankel arrays in a special manner. This guarantees that PI and PF

are superregular. In addition, we exploit the Hankel form of the array by carefully

choosing the submatrices that form PI and PF to ensure that PF is rF -column

block-constructible from PI . Given the way we construct these matrices and the

properties of Tm, all the initial and final codes presented in this section turn out to be

inside a well-studied class of codes known as (punctured) generalized doubly-extended

– 42 –

Chapter 2. Access cost of convertible codes

1 3 4 3 10 10 5 9 6 5 10

3 4 3 10 10 5 9 6 5 10

4 3 10 10 5 9 6 5 10

3 10 10 5 9 6 5 10

10 10 5 9 6 5 10

10 5 9 6 5 10

5 9 6 5 10

9 6 5 10

6 5 10

5 10

10

T11 :

P
I
∈ F

5×4

11

P
F
∈ F

10×2

11

(a) Hankel-I construction.

12 12 1 9 1 5 11 9 10 6 9 2

12 1 9 1 5 11 9 10 6 9 2

1 9 1 5 11 9 10 6 9 2

9 1 5 11 9 10 6 9 2

1 5 11 9 10 6 9 2

5 11 9 10 6 9 2

11 9 10 6 9 2

9 10 6 9 2
. . .

T12 :

P
I
∈ F

4×3

13

P
F
∈ F

8×2

13

(b) Hankel-II construction.

Figure 2.2: Examples of constructions based on Hankel arrays: (a) Hankel-I construc-
tion parity generator matrices for systematic (9, 5; 12, 10) convertible code. Notice how
matrix PF corresponds to the vertical concatenation of the first two columns and the
last two columns of matrix PI . (b) Hankel-II construction parity generator matrices
for systematic (7, 4; 10, 8) convertible code. Notice how matrix PF corresponds to
the vertical concatenation of the first and second column of PI , and the second and
third column of PI .

Reed-Solomon codes [100].

The above idea yields a sequence of constructions with a tradeoff between the field

size and the maximum value of rF supported. We first present two examples that

correspond to the extreme ends of this tradeoff, which we call Hankel-I and Hankel-II.

Construction Hankel-I, shown in Example 2.1, can be applied whenever rF ≤ ⌊rI/λI⌋,

and requires a field size of q ≥ (max¶nI , nF♢ − 1). Construction Hankel-II, shown in

Example 2.2, can be applied whenever rF ≤ (rI − λI + 1), and requires a field size of

q ≥ kIrI .

Throughout this section we will assume that λI ≤ rI ≤ kI . The ideas presented

here are still applicable when rI > kI , but the constructions and analysis change in

minor ways.

Example 2.1 (Hankel-I): Consider the parameters (9, 5; 12, 10) and the field F11

(any finite field of size at least 11 suffices, but we choose a prime field for ease of

– 43 –

Chapter 2. Access cost of convertible codes

explanation). Notice that these parameters satisfy:

rF = 2 ≤

⌊
rI

λI

⌋
= 2, and

q = 11 ≥ max¶nI , nF♢ − 1 = 11.

First, construct a superregular Hankel array of size nF − 1 = 11, T11, employing

the algorithm in [100]. Then, divide the rI = 4 initial parities into λI = 2 groups:

encoding vectors of parities in the same group will correspond to contiguous columns

of T11. The submatrix PI ∈ F5×4
11 is formed from the top kI = 5 rows and columns

1, 2, kI + 1 = 6 and kI + 2 = 7 of T11, as shown in Figure 2.2a. The submatrix

PF ∈ F10×2
11 is formed from the top kI = 10 rows and columns 1, 2 of T11, as shown

in Figure 2.2a. Checking that these matrices are superregular follows from the

superregularity of T11. It is straightforward to check that both these matrices are

superregular, which follows from the the superregularity of T11. Furthermore, notice

that the chosen parity matrices have the following structure:

PI = p1 p2 p3 p4





, PF =

p1 p2

p3 p4






.

From this structure, it is clear that PF is 2-column block-constructible from PI .

Therefore, PI and PF satisfy the sufficient conditions of Theorem 2.9, and define an

access-optimal convertible code. x

Example 2.2 (Hankel-II): Consider parameters (7, 4; 10, 8) and field F13 (any finite

field of size at least 12 suffices, but we choose a prime field for ease of explanation).

Notice that these parameters satisfy:

rF = 2 ≤ rI − λI + 1 = 2 and q = 13 ≥ kIrI = 12

First, construct a superregular Hankel array of size kIrI = 12, T12, by choosing q = 13

– 44 –

Chapter 2. Access cost of convertible codes

PI =




b1 · · · bt · · · b(i−1)kI+1 · · · b(i−1)kI+t · · · b(s−1)kI+1 · · · b(s−1)kI+t

b2 · · · bt+1 · · · b(i−1)kI+2 · · · b(i−1)kI+t+1 · · · b(s−1)kI+2 · · · b(s−1)kI+t+1
...

...
... · · ·

...
...

... · · ·
...

...
...

bkI · · · bkI+t−1 · · · bikI · · · bikI+t−1 · · · bskI · · · bskI+t−1




PF =




b1 · · · bt · · · b(i−1)kI+1 · · · b(i−1)kI+t · · · b(s−λI)kI+1 · · · b(s−λI)kI+t

b2 · · · bt+1 · · · b(i−1)kI+2 · · · b(i−1)kI+t+1 · · · b(s−λI)kI+2 · · · b(s−λI)kI+t+1
...

...
... · · ·

...
...

... · · ·
...

...
...

bλIkI · · · bλIkI+t−1 · · · b(i+λI−1)kI · · · b(i+λI−1)kI+t−1 · · · bskI · · · bskI+t−1




.

Figure 2.3: Generator matrix for initial and final parities in Hankels construction.
The vertical bars separate groups of columns. In matrix PI , the index i ranges from
1 to s. In matrix PF , the index i ranges from 1 to (s− λI + 1).

as the field size, and employing the algorithm in [100]. The submatrix PI ∈ F4×3
13

is formed by the top kI = 4 rows and columns ¶1, (kI + 1) = 5, (2kI + 1) = 9♢ of

T12, as shown in Figure 2.2b. The submatrix PF ∈ F8×2
13 is formed by the top kF = 8

rows and columns ¶1, (kI + 1) = 5♢ of T12, as shown in Figure 2.2b. It is easy to

check that PI and PF are superregular, which follows from the superregularity of T12.

Furthermore, notice that the chosen parity matrices have the following structure:

PI = p1 p2 p3





, PF =

p1 p2

p2 p3






.

It is easy to see that PF is 2-column block-constructible from PI . Therefore, PI

and PF satisfy the sufficient conditions of Theorem 2.9, and define an access-optimal

convertible code. x

– 45 –

Chapter 2. Access cost of convertible codes

2.3.1 General Hankel-array-based construction of convertible

codes

In this subsection, we present a sequence of Hankel-array-based constructions of

access-optimal MDS convertible codes. This sequence of constructions presents a

tradeoff between field size and the range of rF supported. To index the sequence we

use s ∈ ¶λI , λI + 1, . . . , rI♢ which corresponds to the number of groups into which

the initial parity encoding vectors are divided. Given parameters ¶kI , rI , λI♢ and a

field Fq, construction Hankels (s ∈ ¶λI , λI + 1, . . . , rI♢) supports:

rF ≤ (s− λI + 1)

⌊
rI

s

⌋
+ max¶(rI mod s)− λI + 1, 0♢,

requiring q ≥ max¶skI +

⌊
rI

s

⌋
− 1, nI − 1♢.

Therefore, Hankel-I, from Example 2.1 corresponds to HankelλI and Hankel-II

from Example 2.2 corresponds to HankelrI .

Construction of Hankels

Assume, for the sake of simplicity, that kI ≥ rI , s ♣ rI and let t = (rI/s). Now we

describe how to construct PI and PF over a field Fq whenever:

rF ≤ (s− λI + 1)t and q ≥ skI + t− 1.

Without loss of generality, we consider rF = (s − λI + 1)t (lesser values of rF can

be obtained by puncturing the final code, i.e., eliminating some of the final parities).

Let Tm be as in Equation (2.11), with m = (skI + t− 1). Divide the rI initial parity

encoding vectors into s disjoint sets (S1, S2, . . . , Ss) of size t each. We associate each

set Si (i ∈ [s]) with a set of column indices col(Si) = ¶(i − 1)kI + 1, (i − 1)kI +

2, . . . , (i− 1)kI + t♢ of Tm. Matrix PI is the submatrix formed by the top kI rows

and the columns indexed by the set (col(S1) ∪ · · · ∪ col(Ss)) of Tm. Matrix PF is

the submatrix formed by the top λIkI rows and the columns indexed by the set

– 46 –

Chapter 2. Access cost of convertible codes

(col(S1) ∪ · · · ∪ col(Ss−λI+1)) of Tm. The resulting matrices PI and PF are shown

in Figure 2.3. In the case where s ∤ rI , we form an additional set Ss+1 with the

remaining (rI mod s) initial parity encoding vectors, and proceed as above.

Theorem 2.13. Given parameters kI , rI , λI , and a field Fq Hankels (s ∈ ¶λI , . . . , rI♢)

constructs an access-optimal (nI , kI ; nF , kF = λIkI) convertible code if:

rF ≤ (s− λI + 1)

⌊
rI

s

⌋
+ max¶(rI mod s)− λI + 1, 0♢

and q ≥ max¶skI +

⌊
rI

s

⌋
− 1, nI − 1♢.

Proof. Consider the construction Hankels described in this section, for some s ∈

¶λI , . . . , rI♢. The Hankel form of Tm and the manner in which PI and PF are

constructed guarantees that the l-th column of PF corresponds to the vertical

concatenation of columns ¶l, l + t, . . . , l + (λI − 1)t♢ of PI . Thus, PF is rF -column

block-constructible from PI . Furthermore, since PI and PF are submatrices of

Tm, they are superregular. Thus PI and PF satisfy both of the properties laid out

in Theorem 2.9 and hence the convertible code constructed by Hankels is access-

optimal.

Conversion procedure

During conversion, the kI data symbols from each of the λI initial codewords remain

unchanged, and become the kF = λIkI data symbols from the final codeword. The rF

new (parity) symbols from the final codeword are constructed by accessing symbols

from the initial codewords as detailed below. To construct the l-th new symbol

(corresponding to the l-th column of PF , l ∈ [rF]), read parity symbol (l + (i− 1)t)

from each initial codeword i ∈ [λI], and then sum the λI symbols read. The encoding

vector of the new symbol will be equal to the sum of the encoding vectors of the

symbols read. This is done for every new encoding vector l ∈ [rF].

– 47 –

Chapter 2. Access cost of convertible codes

2.3.2 Handling a priori unknown parameters

In practice, the final parameters (nF , kF) might be unknown at the time of code

construction, as they might depend on the empirically observed failure rates. Thus, it

is of interest to construct initial codes that are (nF , kF)-access-optimally convertible

for all (nF , kF) in a given set. The general construction and the Hankel-array based

constructions presented above indeed provide such a property.

Proposition 2.14. Every initial code from an (nI , kI ; nF , kF = λIkI) convertible code

constructed using the constructions in this section and Section 2.2 is also (nF ′
, kF ′

)-

access-optimally convertible for any kF ′
= λI ′

kI and nF ′
= (rF ′

+ kF ′
) with 0 ≤ rF ′

≤

rF and 2 ≤ λI ′
≤ λI .

Proof. The conversion procedure can be easily modified to take fewer initial codewords

(i.e. by treating some of the initial codewords as all-zero codewords) or construct

fewer parity symbols. Since the access cost associated with each initial codeword is

min¶kI , rI♢, and the access cost associated with every parity symbol is λI + 1, the

resulting conversion procedure has optimal access cost.

Thus, to support access-optimal conversion for all parameters (nF = λIkI +

rF , kF = λIkI) in a given finite set of values for λI and rF , it suffices to construct

an access-optimal convertible code using the largest parameter λI and rF in the set.

Then, by Proposition 2.14, the initial code will support access-optimal conversion for

all parameter values in the given set.

2.4 Split regime

The split regime of convertible codes corresponds to the case where a single initial

codeword is split into multiple final codewords. This regime is, in some sense, the

opposite of the merge regime, in which multiple initial codewords are combined into

one final codeword. Specifically, an (nI , kI ; nF , kF) convertible code is in the split

regime if kI = λF kF for an integer λF ≥ 2, with arbitrary nI and nF . Notice that in

this regime we have that M = lcm(kI , kF) = kI and λI = 1.

– 48 –

Chapter 2. Access cost of convertible codes

First, in Section 2.4.1, we show a lower bound on access cost for the split regime. In

Section 2.4.2 we show a matching upper bound on access cost by showing that for every

systematic [nI , λF kF] MDS code C there exists an access-optimal (nI , kI = λF kF ; nF ,

kF) convertible code having C as its initial code by presenting a conversion procedure

whose cost matches the lower bound.

2.4.1 Access cost lower bound for the split regime

In this subsection, we lower bound the access cost of conversion in the split regime.

This is done by first showing a lower bound on write access cost, and then showing a

lower bound on the read access cost of conversion.

The following fact simplifies the analysis of the split regime.

Proposition 2.15. For a linear MDS (nI , kI = λF kF ; nF , kF) convertible code, all

possible pairs of initial and final partitions are equivalent (up to relabeling).

Proof. There is only one possible initial partition PI = ¶[kI]♢, hence any two final

partitions can be made equivalent by relabeling symbols.

Therefore, we do not need to consider differences in partitions in our analysis of

the split regime.

Proposition 2.16. In a linear MDS (nI , kI = λF kF ; nF , kF) convertible code, there

are at most kF unchanged symbols in each of the final codewords (i.e., at least rF new

symbols per codeword). Hence, there are at most kI unchanged symbols in total.

Proof. For any final codeword i ∈ [λF], any subset V ⊆ SF
i of size at least kF + 1 is

linearly dependent due to the MDS property. Thus, V ⊆ SI contradicts the fact that

CI is MDS. Hence, each final codeword i has at most kF unchanged symbols.

Therefore, the total write access cost in the split regime is at least λF rF .

Now we focus on bounding the read access cost. The general strategy we use

to obtain bounds on read access cost is to consider a specially chosen set W of kF

symbols from a final codeword, which by the MDS property of the final code is enough

– 49 –

Chapter 2. Access cost of convertible codes

to decode all data in that codeword. We then use the fact that final codewords are

the result of conversion to identify a set V of initial symbols that contain all the

information contained in W. The MDS property of the initial code constrains the

information available in V, which allows us to derive a lower bound on its size and

thus a lower bound on the number of read symbols.

Lemma 2.17. For all linear MDS (nI , kI = λF kF ; nF , kF) convertible codes, the read

access set D satisfies ♣D♣ ≥ (λF − 1)kF + min¶rF , kF♢.

Proof. If rF ≥ kF , then all data should be decodable by accessing only new symbols

in the final codewords, and the result follows easily since all data must have been

read to create the new symbols. Therefore, assume for the rest of this proof that

rF < kF .

Suppose, for the sake of contradiction, that ♣D♣ < (λF − 1)kF + rF . Let u be a

symbol in some final codeword i ∈ [λF] which is neither read nor written. Such a

codeword and symbol exist since otherwise every symbol in the final codewords would

be accessed (for either read or write) and thus SF would be in the span of A, which

is a contradiction since rk(SF) = kI .

Let W1 be a subset of symbols of the same final codeword i such that W1 ⊆ Ni

and ♣W1♣ = rF . Such a subset exists by virtue of Proposition 2.16. Further, let

W2 ⊆ S
F
i \ (W1 ∪¶u♢) be such that ♣W2♣ = kF − rF . Clearly W =W1 ∪W2 is of size

♣W♣ = kF and can reconstruct the contents of u, by the MDS property of the final

code. In other words, u ∈ span(W).

LetW ′
2 = (W2∩Ui) be the unchanged symbols inW2. SinceW1 andW2 \W

′
2 only

have new symbols, they are both contained in span(A), thereforeW ⊆ span(A∪W ′
2).

Notice that the subset V = (A∪W ′
2) consists only of initial symbols. Furthermore, it

holds that rk(A) ≤ ♣D♣ and rk(W ′
2) ≤ ♣W2♣ = kF − rF < kF . Thus:

rk(V) ≤ rk(A) + rk(W ′
2) ≤ ♣D♣+ (kF − rF) < kI .

This implies that W is spanned by less than kI initial symbols (which do not include

u). However, by the MDS property of the initial code, any subset of less than kI

– 50 –

Chapter 2. Access cost of convertible codes

initial symbols that does not contain symbol u, has no information about u. This

causes a contradiction with the fact that u ∈ span(W) ⊆ span(V). Thus, we must

have ♣D♣ ≥ (λF − 1)kF + rF .

It is easy to show that if we only read unchanged symbols, it is not possible to do

better than the default approach. This follows from the fact that unchanged symbols

are already present in the final codewords and hence using them to create the new

symbols will contradict with the MDS property. Retired symbols, on the other hand,

do not have this drawback. Thus, intuitively, based on Lemma 2.17, one might expect

to achieve an efficient conversion by reading from the retired symbols. However, we

next show that it is not possible to achieve lower read access cost than the default

approach when rI < rF .

Lemma 2.18. For all linear MDS (nI , kI = λF kF ; nF , kF) convertible codes, if rI < rF

then the read access set D satisfies ♣D♣ ≥ λF kF .

Proof. Suppose, for the sake of contradiction, that ♣D♣ < λF kF . Let u be a symbol

in some final codeword i ∈ [λF] which is neither read nor written. Such a codeword

and symbol always exist as described in the proof of Lemma 2.17. We will choose a

subset of symbols W ⊆ SF
i of size ♣W♣ = kF . By the MDS property of the final code,

symbol u is decodable from W , i.e., u ∈ span(W). There are two cases for the choice

of W depending on the total number of accessed symbols in codeword i:

Case 1: If ♣Ni♣ + ♣Ui ∩ A♣ ≥ kF , then let W ⊆ Ni ∪ (Ui ∩ A). That is, W only

contains symbols that are read or written. It is easy to see that W ⊆ span(A).

Clearly, A contains only initial symbols, and the following holds:

rk(A) ≤ ♣D♣ < λF kF = kI .

However, this is a contradiction with the fact that u ∈ span(W), since by the MDS

property of the initial code, A contains no information about symbol u.

Case 2: If ♣Ni♣ + ♣Ui ∩ A♣ < kF , then choose W = (W1 ∪ W2), where W1 =

(Ni ∪ (Ui ∩ A)) and W2 is any subset of (SF
i \ (W1 ∪ ¶u♢)) of size ♣W2♣ = kF − ♣W1♣.

That is, W contains all the symbols of final codeword i that are read or written

– 51 –

Chapter 2. Access cost of convertible codes

(in addition to other unchanged symbols distinct from u). It is easy to see that

W1 ⊆ span(A) and thus W ⊆ span(A∪W2). Furthermore, the subset V = (A∪W2)

consists only of initial symbols.

Notice that there are at most (♣SI ♣ − ♣Ui♣) = (kI + rI − ♣Ui♣) read symbols

outside of final codeword i (i.e., in SI \ Ui). Therefore, we can bound rk(A) by

rk(A) ≤ kI + rI−♣Ui♣+ ♣Ui∩A♣. On the other hand, it is clear that rk(W2) ≤ ♣W2♣ =

kF − ♣Ni♣ − ♣Ui ∩ A♣. Combining these, we get:

rk(V) ≤ rk(A) + rk(W2)

≤ kI + rI + kF − ♣Ui♣ − ♣Ni♣

≤ kI + rI − rF

< kI .

However, this is a contradiction with the fact that u ∈ span(W) ⊆ span(V), since

by the MDS property of the initial codes, V contains no information about symbol

u.

By combining all the results in this subsection, we obtain the following lower

bound on the access cost of conversion in the split regime.

Theorem 2.19. The total access cost of any linear MDS (nI , kI = λF kF ; nF , kF)

convertible code is at least (λF − 1)kF + min¶rF , kF♢+ λF rF if rI ≥ rF , and at least

λF nF otherwise.

Proof. Follows from Proposition 2.16 and Lemmas 2.17 and 2.18.

As we show in the next subsection, this lower bound is tight since it is achievable.

2.4.2 Access-optimal convertible codes for the split regime

In this subsection we present a construction of access-optimal convertible codes in the

split regime. Under this construction, any systematic MDS code can be used as the

initial code. The final code corresponds to the projection of the initial code onto the

– 52 –

Chapter 2. Access cost of convertible codes

coordinates of any kF systematic symbols. Since our construction can be applied to

existing codes and only specifies the conversion procedure, we introduce the following

definition capturing the property of codes that can be converted efficiently.

Definition 2.2: A code CI is (nF , kF)-optimally convertible if and only if there exists

an [nF , kF] code CF (along with partitions and conversion procedure) that form an

access-optimal (nI , kI ; nF , kF) convertible code. x

The conversion procedure that leads to optimal access cost (meeting the lower

bound in Theorem 2.19) is as follows.

Conversion procedure: All the systematic symbols are used as unchanged symbols.

When rI < rF or rF ≥ kF , the conversion is trivial since one cannot do better than

the default approach. The conversion procedure for the nontrivial case proceeds as

follows. For all but one final codeword, all unchanged symbols are read ((λF − 1)kF

in total), and the new symbols are naively constructed from them. For the remaining

final codeword, rF retired symbols are read, and then the unchanged symbols from the

other final codewords are used to remove their interference from the retired symbols

to obtain rF new symbols.

Theorem 2.20. Every systematic linear MDS [nI , kI = λF kF] code CI is (nF , kF)-

optimally convertible.

Proof. If rF > min¶rI , kF♢, then the default approach achieves the bound stated in

Theorem 2.19. Thus, assume rF ≤ min¶rI , kF♢. Let GI = [I ♣ PI] be the generator

matrix of CI and assume symbols are numbered in the same order as the columns of

GI . Define CF as the code generated by the matrix formed by taking the first kF

rows of GI , and columns 1, . . . , kF and kI + 1, . . . , kI + rF . Let (i− 1)kF + 1, . . . , ikF

be the columns of the unchanged symbols corresponding to final codeword i ∈ [λF].

Consider the following conversion procedure: read the the subset of unchanged

symbols U = ¶kF + 1, . . . , λF kF♢ and the retired symbols R = ¶kI + 1, . . . , kI + rF♢.

To construct the new symbols for codeword 1, simply project the symbols of R onto

their first kF coordinates by using symbols U . To construct the new symbols for

– 53 –

Chapter 2. Access cost of convertible codes

codeword i ̸= 1, simply use then symbols in U . This conversion procedure reads a

total of ♣U ♣+ ♣R♣ = (λF − 1)kF + rF symbols and writes a total of λF rF new symbols,

which matches the bound from Theorem 2.19.

Notice that convertible codes created using the construction above are stable. We

show this property is, in fact, necessary.

Lemma 2.21. All access-optimal convertible codes for the split regime are stable.

Proof. Theorem 2.20 shows that there exist stable access-optimal codes for the split

regime. Since any unstable convertible code must incur higher write access cost and

at least as much read access cost, it cannot be access-optimal.

2.5 General regime

In this section, we will study the general regime of convertible codes with arbitrary

valid parameter values (i.e. any nI > kI and nF > kF). Recall that the choice of

partition functions was inconsequential in the split and merge regimes. In contrast, it

turns out that the choice of initial and final partitions play an important role in the

general regime. This makes the general regime significantly harder to analyze. We

deal with this complexity by reducing conversion in the general regime to generalized

versions of the split and merge conversions, and by identifying the conditions on

initial and final partitions to minimize total access cost.

In Section 2.5.1, we explore a generalization of the split regime and of the merge

regime. In Section 2.5.2, these generalizations are used to lower bound the access

cost of conversion in the general regime. In Section 2.5.3, we describe a conversion

procedure and construction for access-optimal conversion in the general regime which

utilizes ideas from the constructions for generalizations of split and merge regimes.

2.5.1 Generalized split and merge regimes

The generalized split and merge regimes are similar to the split and merge regimes,

except that the generalized variants allow for initial or final codewords of unequal

– 54 –

Chapter 2. Access cost of convertible codes

sizes. This flexibility enables the generalized split and merge regimes to be used as

building blocks in the analysis of the general regime. In these generalized variants, the

message length M is defined to be max¶kI , kF♢ (which coincides with the definition of

M in the split and merge regime), but now the sets in the initial and final partitions

need not be all of the same size.

Since the initial (or final) codewords might be of different lengths, we define them

as shortenings of a common code C.

Definition 2.3: An s-shortening of an [n, k] code C is the code C ′ formed by all the

codewords in C that have 0 in a fixed subset of s positions, with those s positions

deleted. x

Shortening a code has the effect of decreasing the length n and dimension k while

keeping (n− k) fixed. It can be shown that an s-shortening of an [n, k] MDS code

is an [n − s, k − s] MDS code. Lengthening is the inverse operation of shortening,

and has the effect of increasing length n and dimension k while keeping (n− k) fixed.

For linear codes, an s-lengthening of a code can be defined as adding s additional

columns to its parity check matrix. Similarly, it can be shown that for an [n, k] MDS

code, there exists an s-lengthening of it that is an [n + s, k + s] MDS code (assuming

a large enough field size).

Generalized split regime

In the generalized split regime, λI = 1 is fixed, λF > 1 is arbitrary, and the final

partition PF = ¶P F
1 , . . . , P F

λF ♢ is such that ♣P F
i ♣ = kF

i and
∑

i∈[λF] kF
i = kI . Let

kF
∗ = maxi∈[λF] kF

i . Then CF is a [nF , kF
∗] MDS code, and the code corresponding

to each final codeword is some fixed shortening of CF . In this case, we define

rF = nF − kF
∗ .

Definition 2.4: A (nI , kI =
∑λF

i=1 kF
i ; nF , ¶kF

i ♢
λF

i=1) convertible code for the generalized

split regime is a variant of a convertible code defined by:

1. CI and CF as [nI , kI] and [nF , kF
∗] codes, where kF

∗ = maxi∈[λF] kF
i ,

– 55 –

Chapter 2. Access cost of convertible codes

2. a partition PF = ¶P F
1 , . . . , P F

λF ♢ where ♣P F
i ♣ = kF

i , and

3. a conversion procedure such that each final codeword i, is an si-shortening of

CF where si = kF
∗ − kF

i .

x

The generalized split regime has an access cost lower bound similar to the split

regime presented in Section 2.4. We show this by showing that a more efficient

conversion procedure for the generalized split regime would imply the existence of a

conversion procedure for split regime violating Theorem 2.19.

Theorem 2.22. For all linear MDS (nI , kI =
∑λF

i=1 kF
i ; nF , ¶kF

i ♢
λF

i=1) convertible codes,

the read access set D satisfies:

♣D♣ ≥ kI −max¶kF
∗ − rF , 0♢, where kF

∗ = max
i∈[λF]

kF
i .

Proof. Suppose, for the sake of contradiction, that there exists a conversion procedure

with read access cost ♣D♣ < kI −max¶kF
∗ − rF , 0♢ for some convertible code in the

generalized split regime with codes CI and CF . We modify the initial code CI by

lengthening it to an [nI
s, kI

s] MDS code Cs, such that kI
s = λF kF

∗ and rI = nI − kI =

nI
s − kI

s . This adds
∑λF

i=1(kF
∗ − kF

i) = (kI
s − kI) extra “pseudo-symbols” to the initial

code, which we denote with W .

We then define a new conversion procedure from code Cs to code CF which uses the

conversion procedure for the generalized split regime convertible code as a subroutine,

and then simply reads all the added pseudo-symbols to construct the new symbols.

This procedure only reads the read access set D from Cs along with the (kI
s − kI)

pseudo-symbols.

Hence, the total read access is,

♣D ∪W♣ < (kI −max¶kF
∗ − rF , 0♢) + (kI

s − kI)

≤ (λF − 1)kF
∗ + min¶rF , kF

∗ ♢.

– 56 –

Chapter 2. Access cost of convertible codes

However, the codes Cs and CF with the new conversion procedure clearly form an

MDS (nI
s, kI

s = λF kF
∗ ; nF , kF

∗) convertible code. Therefore, this is in contradiction to

Theorem 2.19. Then, it must hold that ♣D♣ ≥ kI −max¶kF
∗ − rF , 0♢.

This lower bound is achievable for all pairs of initial and final parameters. Similar

to the case of the split regime, shown in Section 2.4.2, we can use any systematic

MDS codes as initial and final codes, and access all but a set of symbols of size kF
∗

(forming the largest final codeword) to perform this conversion, as described below.

Conversion procedure: All the systematic symbols are used as unchanged symbols.

When rI < rF or rF ≥ kF
∗ , the conversion is trivial since one cannot do better than

the default approach. The conversion procedure for the nontrivial case proceeds

as follows. For all but the largest final codeword, all unchanged symbols are read

(λF kF − kF
∗ in total), and the new symbols are naively constructed from them. For

the largest final codeword, the rF retired symbols are read, and then the unchanged

symbols from the other final codewords are used to remove their interference from

the retired symbols to obtain rF new symbols.

Generalized merge regime

In the generalized merge regime, the sets in the initial partition need not be all of

the same size. In this case, we fix M = kF and λF = 1, while λI > 1 is arbitrary.

The initial partition PI = ¶P I
1 , . . . , P I

λI♢ is such that ♣P I
i ♣ = kI

i and
∑

i∈[λI] kI
i = kF .

Let kI
∗ = maxi∈[λI] kI

i . Then CI is a [nI , kI
∗] MDS code, rI = nI − kI

∗, and the code

corresponding to each initial codeword is some fixed shortening of CI .

Definition 2.5: A (nI , ¶kI
i ♢

λI

i=1; nF , kF =
∑λI

i=1 kI
i) convertible code for the generalized

merge regime is a variant of a convertible code defined by:

1. CI , CF as [nI , kI
∗] and [nF , kF] codes, where kI

∗ = maxi∈[λI] kI
i

2. partition PI = ¶P I
1 , . . . , P I

λI♢ where ♣P I
i ♣ = kI

i , and

3. a conversion procedure such that each initial codeword i, is an si-shortening of

CI where si = kI
∗ − kI

i .

– 57 –

Chapter 2. Access cost of convertible codes

x

The next theorem gives a lower bound on the read access cost of a (nI , ¶kI
i ♢

λI

i=1;

nF , kF =
∑λI

i=1 kI
i) convertible code.

Theorem 2.23. For all (nI , ¶kI
i ♢

λI

i=1; nF , kF =
∑λI

i=1 kI
i) convertible code, the following

holds:

♣Di♣ ≥ min¶kI
i , rF♢ for all i ∈ [λI].

Furthermore, if rI < rF , then ♣Di♣ ≥ kI
i for all i ∈ [λI].

Proof. Follows from the proofs of Lemmas 10, 11, and 13 in [96], with some straight-

forward modifications to account for the difference in the number of symbols of each

initial codeword.

We can achieve this lower bound by shortening an access-optimal (nI , kI
∗; nF

m, kF
m)

convertible code, where kF
m = λIkI

∗ and nF
m = kF

m + rF .

2.5.2 Access cost lower bound for the general regime

In this subsection, we study the access cost lower bound for conversions in the general

regime (i.e., for all valid parameter values, nI > kI and nF > kF). As in the merge

and split regime, we show that when rI ≥ rF , significant reduction in access cost can

be achieved. However when rI < rF , one cannot do better than the default approach.

For an (nI , kI ; nF , kF) convertible code with kI ̸= kF and partitions (PI ,PF), let

ki,j = ♣P I
i ∩ P F

j ♣ for (i, j) ∈ [λI]× [λF] and let ki,∗ = maxj∈[λF] ki,j.

Lemma 2.24. For all linear MDS (nI , kI ; nF , kF) convertible codes with kI ̸= kF :

♣Di♣ ≥ kI −max¶ki,∗ − rF , 0♢ for all i ∈ [λI].

Moreover, if rI < rF then ♣Di♣ ≥ kI for all i ∈ [λI].

Proof. Let i ∈ [λI] be an initial codeword. There are two cases.

– 58 –

Chapter 2. Access cost of convertible codes

Case ki,∗ < kI: In this case, we can reduce this conversion to a conversion in the

generalized split regime by focusing on initial codeword i, and considering messages

which are zero everywhere outside of P I
i . This is equivalent to a (nI , kI ; ki,∗ + rF ,

¶ki,j♢
λF

j=1) convertible code. Then, the result follows from Theorem 2.22.

Case ki,∗ = kI : Let j = argmaxj′∈[λF] ki,j′ . In this case, we can reduce this conversion

to conversion in the generalized merge regime by focusing on final codeword j, and

considering messages which are zero everywhere outside of P F
j . This is equivalent to

a (nI , ¶ki,j♢
λI

i=1; nF , kF) convertible code. Then, the result follows from Theorem 2.23.

We prove a lower bound on the total access cost of conversion in the general

regime by using Lemma 2.24 on all initial codewords and finding a partition that

minimizes the value of the sum.

Theorem 2.25. For every linear MDS (nI , kI ; nF , kF) convertible code such that

kI ̸= kF , it holds that:

♣D♣ ≥ λIrF + (λI mod λF)(kI −max¶kF mod kI , rF♢)

if rF < min¶kI , kF♢. Furthermore, if rI < rF or rF ≥ min¶kI , kF♢, then ♣D♣ ≥M .

Proof. Clearly, it holds that ♣D♣ =
∑λI

i=1 ♣Di♣. Then, the case rI < rF follows directly

from Lemma 2.24. Otherwise, by the same lemma we have:

♣D♣ =
λI∑

i=1

♣Di♣ ≥
λI∑

i=1

kI −max¶ki,∗ − rF , 0♢. (2.12)

First, we consider the case kI > kF . Notice that in this case (λI mod λF) = λI and

(kF mod kI) = kF . If rF ≥ kF , then the result is trivial, so assume rF < kF . Since

ki,∗ ≤ kF for all i ∈ [λI], we have:

♣D♣ ≥
λI∑

i=1

kI −max¶ki,∗ − rF , 0♢ ≥ λI(kI + rF − kF),

– 59 –

Chapter 2. Access cost of convertible codes

which proves the result.

Now, we consider the case kI < kF . Assume, for now, that the right hand side of

Inequality 2.12 is minimized when:

ki,∗ =





kI , for 1 ≤ i ≤ (λI − (λI mod λF))

(kF mod kI), otherwise.
(2.13)

Then, from Inequality 2.12 we have:

♣D♣ ≥

λIkI−(λI−(λI mod λF)) max¶kI−rF , 0♢−(λI mod λF) max¶(kF mod kI)−rF , 0♢

(2.14)

If rF ≥ kI , then the result is trivial, so assume rF < kI . Then, by manipulating the

terms of Inequality 2.14, the result is obtained.

It only remains to prove that the right hand side of Inequality 2.12 is minimized

when Equation (2.13) holds.

Notice that this is equivalent to showing that s =
∑λI

i=1 max¶ki,∗ − rF , 0♢ is

maximized by the proposed assignment. To prove this, we will show that any optimal

assignment to the variables ki,j can be modified to be of the proposed form, without

decreasing the value of the objective s. Firstly, it is straightforward to check that

there exists a feasible assignment to the variables ki,j that satisfies the statement.

Suppose we have an optimal assignment for variable ki,j that is not of the proposed

form and assume, without loss of generality, that k1,∗ ≥ · · · ≥ kλI ,∗. Let 1 ≤ i ≤

(λI − (λI mod λF)) be the least such that ki,∗ < kI , and let j = argmaxj′∈[λF] ki,j′ . It

must hold that ki,∗ > max¶rF , kF mod kI♢, otherwise this assignment could not be

optimal. Notice that ki′,∗ = kI for all i′ < i and since kI ∤ (kF − ki,∗), there exists

at least one i′ > i such that ki′,j > 0. Furthermore, there exists j′ ̸= j such that

ki,j′ > 0, since ki,∗ < kI . Then, we can “swap” elements from ki,j′ with ki′,j. This

increases ki,∗ and decreases ki′,∗ by at most the same amount. Since ki,∗ > rF , this

cannot decrease the value of the objective s. We can repeat this procedure until

– 60 –

Chapter 2. Access cost of convertible codes

split procedure merge procedure read node

Initial stripes Intermediate stripes Final stripes

Figure 2.4: Conversion procedure from [6, 5] to [13, 12] (λI = 12 and λF = 5). Read
access cost is 18 compared to 60 in the default approach (70% savings).

ki,∗ = kI for all 1 ≤ i ≤ (λI − (λI mod λF)).

Notice now that for every (λI − (λI mod λF)) ≤ i ≤ λI it holds that:

ki,∗ ≤ kF mod kI (2.15)

otherwise, there must exist some j ∈ [λF] such that
∑λI

i=1 ki,j > kF . If rF <

(kF mod kI), then Inequality 2.15 must hold with equality. Otherwise, each such ki,∗

will contribute exactly rF to the objective s, so they can be modified to be of the

desired form without decreasing s.

2.5.3 Access-optimal convertible codes for the general regime

In this subsection we prove that the lower bound from Theorem 2.25 is achievable

by presenting convertible code constructions that are access-optimal in the general

regime. We first present the conversion procedure for our construction and then

describe the construction of the initial and final codes that are compatible with this

conversion procedure.

Conversion procedure

Conversion in the general regime can be achieved by combining the conversion

procedures of codes in the generalized split and merge regimes. In the case where

– 61 –

Chapter 2. Access cost of convertible codes

merge procedure split procedure read node

Initial stripes Intermediate stripes Final stripes

Figure 2.5: Conversion procedure from [13, 12] to [6, 5] (λI = 5 and λF = 12). Read
access cost is 40, compared to 60 in the default approach (33.3% savings in read
access cost).

rI < rF , we access kI symbols from each initial codeword and use the default approach.

For the case where rI ≥ rF , we present the conversion procedure by considering three

cases: kI = kF , kI < kF , and kI > kF .

Case kI = kF : Notice that nI ≥ nF since rI ≥ rF . This is a degenerate case where

any nF symbols from the initial codeword can be kept unchanged.

Case kI < kF : We will separate the symbols of initial codewords into λF disjoint

groups with the same amount of information. This requires splitting some initial

codewords into what we call intermediate codewords, which are then assigned to

different groups. We will finally merge each group to form the λF final codewords.

Specifically (see Figure 2.4):

1. Assign ⌊kF/kI⌋ initial codewords to each group (dashed boxes in Figure 2.4).

2. Use an (nI , kI ; nF , ¶kF
i ♢

λ̂F

i=1) conversion procedure to (generalized) split the

(λI mod λF) remaining initial codewords to obtain λ̂F intermediate codewords,

where λ̂F = ⌈kI/(kF mod kI)⌉, kF
i = (kF mod kI) for i ∈ [λ̂F − 1], and kF

λ̂F =

(kF mod kI) if (kF mod kI) ♣ kI and kF
λ̂F = (kI mod (kF mod kI)) otherwise.

Each intermediate codeword is assigned to a different group.

3. The conversion procedure for generalized merge is used to turn each codeword

group into a single final codeword.

– 62 –

Chapter 2. Access cost of convertible codes

The total number of symbols read during conversion is:

λIrF + (λI mod λF)(kI −max¶kF mod kI , rF♢),

which matches Theorem 2.25.

Case kI > kF : Conversion occurs in two steps (see Figure 2.5):

1. First, use an (nI , kI ; nF , ¶kF
i ♢

λ̂F

i=1) conversion procedure to (generalized) split

each initial codeword, where λ̂F = (⌈kI/kF⌉), kF
i = kF for i ∈ [λ̂F − 1] (cor-

responding to final codewords), and kF
λ̂F = kF if kF ♣ kI (corresponding to

another final codeword) and kF
λ̂F = (kF mod kI) otherwise (corresponding to

an intermediate codeword).

2. Assemble the λI(kF mod kI) remaining symbols from the intermediate code-

words into (λF mod λI) final codewords. This is done using the default approach,

since all the remaining symbols would have been already accessed in the first

step.

The total number of symbols read in this case during conversion is λI(rF +kI−kF),

which matches Theorem 2.25.

Therefore, the total access cost of conversion when rI ≥ rF and kI ̸= kF is

(λI + λF)rF + (λI mod λF)(kI −max¶kF mod kI , rF♢), while the access cost of the

default approach is λF nF .

Access-optimal construction

Since the conversion procedure in Section 2.5.3 is based on the generalized split and

merge regimes, we only need to ensure that the constructed codes can perform those

conversions with optimal access cost.

Theorem 2.26. For all kF ≤ kI , every systematic linear MDS [nI , kI] code CI is

(nF , kF)-optimally convertible. For all kF ≤ λF kI with integer λF > 2, every access-

optimal systematic linear MDS (nI , kI ; nF , kF = λF kI) convertible code is (nF , kF)

-optimally convertible.

– 63 –

Chapter 2. Access cost of convertible codes

Proof. Recall, from Section 2.5.1 that any systematic [nI , kI] code CI can be used

as the initial code of an access-optimal convertible code in the generalized split

regime (i.e., an (nI , kI =
∑λF

i=1 kF
i ; nF , ¶kF

i ♢
λF

i=1) convertible code). Since the conversion

procedure for the general regime in the case where kI > kF only uses conversions

from the generalized split regime and conversions from the generalized merge regime

that can be carried out using the default approach, it is clear that any systematic

code CI can be used. Similarly, from Section 2.5.1 we know that any [nI , kI] code CI

that is (nF , λF kI)-optimally convertible for an integer λF ≥ 2 can achieve conversion

with optimal access cost in a (nI , ¶kI
i ♢

λI

i=1; nF , kF =
∑λI

i=1 kI
i) convertible code, where

λI ≤ λF . Since the conversion procedure for the general regime in the case where

kI < kF only uses conversions from the generalized split and merge regimes, it is

clear that any (nF , λF kI)-optimally convertible code CI such that λF ≥ ⌈kF/kI⌉ can

be used.

Therefore, the constructions for the merge regime presented in [96] can be used

to construct access-optimal convertible codes in the general regime.

– 64 –

Chapter 3

Bandwidth-cost of convertible codes:

fundamental limits and optimal

constructions

This chapter is based on work from [101, 102], done in collaboration with K. V.

Rashmi.

In the preceding chapter, we measured cost in terms of the access cost of conversion,

which corresponds to the number of codeword symbols accessed during conversion.

Another important resource overhead incurred during conversion is that on the network

bandwidth, which we call conversion bandwidth. In the system, this corresponds to

the total amount of data transferred between nodes during conversion. Figure 3.1

depicts the conversion process from an [nI , kI] initial code to an [nF , kF] final code:

the total amount of data read from the nodes γR corresponds to the read conversion

bandwidth, and the total amount of data written back to the nodes γW corresponds

to the write conversion bandwidth. Access-optimal convertible codes, by virtue of

reducing the number of code symbols accessed, also reduce conversion bandwidth as

compared to the default approach. However, it is not clear, a priori, whether these

codes are also optimal with respect to conversion bandwidth.

In this chapter, we study the conversion bandwidth of code conversions. As in the

previous chapter, we will focus on MDS codes, and study the merge and split regimes.

– 65 –

Chapter 3. Bandwidth cost of convertible codes

Figure 3.1: Conversion process of codewords of an [nI , kI] initial code into codewords
of an [nF , kF] final code. In this figure, each color represents a different codeword.
Code conversion is performed by downloading data from storage nodes to a central
location, processing the data, and writing back the processed data to the nodes. The
total amount of data read is denoted by γR, and the total amount of data written is
denoted by γW .

For each of these regimes, we derive lower bounds on conversion bandwidth, and

propose constructions that are more efficient than the default approach and access-

optimal codes in terms of conversion bandwidth. Similar to access cost, conversion

bandwidth costs behave differently depending on whether rI < rF or rI ≥ rF .

However, in both cases it is possible to reduce conversion bandwidth compared to the

default approach (unlike access cost, which could only be reduced when rI ≥ rF).

To achieve these reductions in conversion bandwidth, it is necessary to use vector

codes, where each symbol is a vector of α subsymbols. This is unlike the case of

access cost, where scalar codes (each symbol is a scalar and α = 1) were sufficient for

constructing optimal codes.

In Table 3.1, we summarize the results shown in this chapter.

3.1 Additional background

In this section we introduce some additional concepts from the literature which are

used in this chapter. We then do an overview of other related work.

– 66 –

Chapter 3. Bandwidth cost of convertible codes

Table 3.1: Comparison of the read conversion bandwidth of different approaches to
the merge regime and split regime. In all cases, the write conversion bandwidth is
λF rF α. We assume that rF ≤ min¶kI , kF♢; when this condition does not hold, the
default approach is bandwidth-optimal.

Merge regime

Approach Read bandwidth (rI < rF) Read bandwidth (rI ≥ rF)

Default λIkIα λIkIα

Access optimal [96] λIkIα λIrF α

Bandwidth optimal λIkIα− λIrIα


kI

rF − 1
)

λIrF α

Split regime

Approach Read bandwidth (rI < rF) Read bandwidth (rI ≥ rF)

Default λF kF α λF kF α

Access optimal [99] λF kF α [(λF − 1)kF + rF]α

Bandwidth optimal λF kF α− rIα


kF

rF − 1
)

λF rF α (λF −1)kF +rI

(λF −1)rF +rI

– 67 –

Chapter 3. Bandwidth cost of convertible codes

3.1.1 Vector codes and puncturing

In this section we introduce the basic notation for vector codes, and generalize some

definitions to the case of vector codes. Let [i] denote the subset ¶1, 2, . . . , i♢, for

a natural number i. An [n, k, α] vector code C over a finite field Fq is an injective

mapping C : Fαk
q → Fαn

q . For a given codeword c = C(m) and i ∈ [n], define

ci = Ci(m) = (cα(i−1)+1, . . . , cαi) as the i-th symbol of c, which is a vector of length α

over Fq. We refer to elements from the base field Fq as subsymbols. A code is said to

be systematic if it always maps m to a codeword that contains all the subsymbols of

m uncoded. In a linear [n, k, α] vector code C, the encoding of message m ∈ Fkα
q is

given by the mapping m 7→ mG where G ∈ Fkα×nα
q is called the generator matrix

of C, and the columns of G are called encoding vectors. The minimum distance of a

vector code is defined as:

dist(C) := min
m̸=m′

♣¶i ∈ [n] : Ci(m) ̸= Ci(m
′)♢♣ .

An [n, k, α] vector code C is said to be maximum-distance-separable (MDS) if dist(C) =

n− k + 1 (i.e., it achieves the Singleton bound [97]). MDS codes are commonly used

in practice because they achieve the optimal tradeoff between storage overhead and

failure tolerance.

A scalar code is a vector code with α = 1. We will omit the parameter α when it

is clear from context or when α = 1. A puncturing of a vector code C is the resulting

vector code after removing a fixed subset of symbols from every codeword.

3.1.2 Convertible codes [96, 99]

We recall a few definitions and results on access-optimal convertible codes from

Chapter 2.

The access cost of a conversion procedure is the sum of the read access cost,

i.e. the total number of code symbols read, and the write access cost, i.e. the total

number of code symbols written. An access-optimal convertible code is a convertible

code whose conversion procedure has the minimum access cost over all convertible

– 68 –

Chapter 3. Bandwidth cost of convertible codes

Symbol 1 f1(m1) f1(m2) · · · f1(mα) f1(m1) f1(m1) + g2,1(m2) · · · f1(mα) + gα,1(m1, . . . , mα)

Symbol 2 f2(m1) f2(m2) · · · f2(mα) f2(m1) f2(m1) + g2,2(m2) · · · f2(mα) + gα,2(m1, . . . , mα)
.
.
.

.

.

.

.

.

.
.
.
.

.

.

.

.

.

.

.

.

.
.
.
.

.

.

.

Symbol n fn(m1) fn(m2) · · · fn(mα) fn(m1) fn(m1) + g2,n(m2) · · · f1(mα) + gα,n(m1, . . . , mα)

(a) α instances of the base code (b) Piggybacked code

Figure 3.2: Piggybacking framework [63] for constructing vector codes.

codes with given parameters (nI , kI ; nF , kF). Similarly, an [nI , kI] code is said to be

(nF , kF)-access-optimally convertible if it is the initial code of an access-optimal (nI ,

kI ; nF , kF) convertible code.

In practice, the values of nF and kF for the conversion might be unknown. Thus,

constructing convertible codes which are simultaneously (nF , kF)-access-optimally

convertible for several possible values of nF and kF is also important (as will be

discussed in Section 3.4.2).

Though the definition of convertible codes allows for any kind of initial and final

codes, this chapter focuses on MDS codes. A convertible code is said to be MDS when

both CI and CF are MDS. The access cost lower bound for linear MDS convertible

codes is summarized in Table 2.1. There are explicit constructions of access-optimal

convertible codes for all valid parameters (nI , kI ; nF , kF) (described in Chapter 2).

Notice that for the increasing-redundancy region (rI < rF), read access cost is always

M , which is the same as the default approach. In the decreasing-redundancy region

(rI ≥ rF), on the other hand, one can achieve lower access cost than the default

approach when rF < min¶kI , kF♢.

During conversion, code symbols from the initial codewords can play multiple

roles: they can become part of different final codewords, their contents might be read

or written, additional code symbols may be added and existing code symbols may

be removed. Based on their role, code symbols can be divided into three groups: (1)

unchanged symbols, which are present both in the initial and final codewords without

any modifications; (2) retired symbols, which are only present in the initial codewords

– 69 –

Chapter 3. Bandwidth cost of convertible codes

but not in the final codewords; and (3) new symbols, which are present only in the

final codewords but not in the initial codewords. Both unchanged and retired symbols

may be read during conversion, and then linear combinations of data read are written

into the new symbols.

The merge regime (Section 1.1) is a fundamental regime of convertible codes which

corresponds to conversions which merge multiple initial codewords into a single final

codeword. Thus, convertible codes in the merge regime are such that kF = λIkI for

some integer λI ≥ 2, and λF = 1. We recall two lemmas from the previous chapter

which will be useful for analyzing the merge regime in this chapter. First, Lemma 2.2,

which notes that all data gets mapped to the same final stripe. Thus, the initial

and final partition do not play an important role in the merge regime. And second,

Lemma 2.3, which states that there can be at most kI unchanged symbols in each

initial codeword. This is because having more than kI unchanged symbols in an

initial codeword would contradict the MDS property. Recall that codes which have

the maximum number of unchanged symbols are called stable (Definition 1.5).

Access-optimal convertible code for merge regime. When rI < rF , the default

approach has optimal access cost, and so constructing an access-optimal code for

this case is trivial. When rI ≥ rF and the code is in the merge regime, only rF code

symbols from each initial codeword need to be read. These symbols are then used to

compute rF new code symbols.

In Chapter 2, several constructions for access-optimal convertible codes in the

merge regime were presented. Codes built using these constructions are (1) systematic,

(2) linear, (3) during conversion only access rF parities from each initial stripe, and

(4) when constructed with a given value of λI = λ and rF = r, the initial [nI , kI] code

is (nF , kF)-access-optimally convertible for all kF = λ′kI and nF = kF + r′ such that

1 ≤ λ′ ≤ λ and 1 ≤ r′ ≤ r. In Section 3.4 we use an access-optimal convertible code

in the merge regime as part of our construction of bandwidth-optimal convertible

codes for the merge regime. Next, we give a brief summary of the general construction

presented in Section 2.2.

Consider the case where rI ≥ rF and rF < kI (otherwise, the construction

is trivial). The codes CI and CF over finite field Fq are defined via the matrices

– 70 –

Chapter 3. Bandwidth cost of convertible codes

GI =
[
IkI ♣ PI

]
and GF =

[
IkF ♣ PF

]
where:

• Ik is the k × k identity matrix,

• α1, α2, . . . , αrI are distinct elements from Fq,

• PI is the kI × rI Vandermonde matrix with evaluation points (α1, . . . , αrI),

• PF is the kF × rF Vandermonde matrix with evaluation points (α1, . . . , αrF).

(In Section 2.2, αi was chosen as θi−1 for some primitive element θ ∈ Fq.) One

important aspect of this construction is that, due to the nature of Vandermonde

matrices, the i-th column of PF is equal to the vertical concatenation of the respective

i-th columns of PI , αkI

i PI , . . . , α
(λI−1)kI

i PI . This property ensures that each final

parity can be constructed during conversion as a linear combination of one initial

parity from each initial codeword. As shown in Chapter 2, this construction satisfies

the properties (1–4) described above, and is MDS for appropriately chosen points αi

(i ∈ [rI]) and sufficiently large Fq.

Example 3.1 (Access-optimal code): Consider the parameters (nI = 7, kI = 4; nF =

11, kF = 8) over F17: the evaluation points (α1 = 1, α2 = 2, α3 = 6) yield an MDS

access-optimal code. It is easy to check that the codes defined by the following

matrices are MDS:

PI =




1 1 1

1 2 6

1 4 2

1 8 12




PF =




1 1 1

1 2 6

1 4 2

1 8 12

1 16 4

1 15 7

1 13 8

1 9 14




Now, suppose the data (a1, . . . , a4) and (a5, . . . , a8) are encoded with the initial code.

– 71 –

Chapter 3. Bandwidth cost of convertible codes

It is easy to check that the following holds:

(a1, . . . , a4)P
I + (a5, . . . , a8)P

I




1 0 0

0 16 0

0 0 4


 = (a1, . . . , a8)P

F .

x

3.1.3 Network information flow

Network information flow [103] is a class of problems that model the transmission

of information from sources to sinks in a point-to-point communication network.

Network coding [104–108] is a generalization of store-and-forward routing, where

each node in the network is allowed to combine its inputs using a code before

communicating messages to other nodes. For the purposes of this chapter, an

information flow graph is a directed acyclic graph G = (V, E), where V is the set

of nodes, E ⊆ V × V × R≥0 is the set of edges with non-negative capacities, and

(i, j, c) ∈ E represents that information can be sent noiselessly from node i to node

j at rate c. Let X1, X2, . . . , Xm be mutually independent information sources with

rates x1, x2, . . . , xm respectively. Each information source Xi is associated with a

source si ∈ V , where it is generated, and a sink ti ∈ V , where it is required. In this

chapter we mainly make use of the information max-flow bound [109] which indicates

that it is impossible to transmit Xi at a higher rate than the maximum flow from

si to ti. In other words, xi ≤ max-flow(si, ti) for all i ∈ [m] is a necessary condition

for a network coding scheme satisfying all constraints to exist. In our analysis, we

will consider si-ti-cuts of the information flow graph, which give an upper bound

on max-flow(si, ti) and thus an upper bound on xi as well. We will also utilize the

fact that two independent information sources with the same source and sink can be

considered as a single information source with rate equal to the sum of their rates.

In [27], information flow and network coding is applied to the repair problem in

distributed storage systems. The repair problem is the problem of reconstructing a

small number of failed code symbols in an erasure code (without having to decode

– 72 –

Chapter 3. Bandwidth cost of convertible codes

the full codeword). Dimakis et al. [27] use information flow to establish bounds on

the storage size and repair network-bandwidth of erasure codes. In this work we use

information flow to model the process of code conversion and establish lower bounds

on the total amount of network bandwidth used during conversion.

3.1.4 Piggybacking framework for constructing vector codes

The Piggybacking framework [63, 110] is a framework for constructing new vector

codes building on top of existing codes. The main technique behind the Piggybacking

framework is to take an existing code as a base code, create a new vector code

consisting of multiple instances of the base code (as described below), and then add

carefully designed functions of the data (called piggybacks) from one instance to the

others. These piggybacks are added in a way such that it retains the decodability

properties of the base code (such as the MDS property). The piggyback functions

are chosen to confer additional desired properties to the resulting code. In [63], the

authors showcase the Piggybacking framework by constructing codes that are efficient

in reducing bandwidth consumed in repairing codeword symbols.

More specifically, the Piggybacking framework works as follows. Consider a length

n code defined by the function f(m) = (f1(m), f2(m), . . . , fn(m)). Now, consider α

instances of this base code, each corresponding to a coordinate of the α-length vector

of each symbol in the new vector code. Let (m1, m2, . . . , mα) denote the independent

messages encoded under these α instances, as shown in Figure 3.2a. For every i

such that 2 ≤ i ≤ α, one can add to the data encoded in instance i an arbitrary

function of the data encoded by instances ¶1, . . . , (i− 1)♢. Such functions are called

piggyback functions, and the piggyback function corresponding to code symbol j ∈ [n]

of instance i ∈ ¶2, . . . , α♢ is denoted as gi,j.

The decoding of the piggybacked code proceeds as follows. Observe that instance 1

does not have any piggybacks. First, instance 1 of the base code is decoded using the

base code’s decoding procedure in order to obtain m1. Then, m1 is used to compute

and subtract any of the piggybacks ¶g2,i(m1)♢n
i=1 from instance 2 and the base code’s

decoding can then be used to recover m2. Decoding proceeds like this, using the

– 73 –

Chapter 3. Bandwidth cost of convertible codes

data decoded from previous instances in order to remove the piggybacks until all

instances have been decoded. It is clear that if an [n, k, α] vector code is constructed

from an [n, k] MDS code as the base code using the Piggybacking framework, then

the resulting vector code is also MDS. This is because any set of k symbols from the

vector code contains a set of k subsymbols from each of the α instances.

In this chapter, we use the Piggybacking framework to design a code where

piggybacks store data which helps in making the conversion process efficient.

3.2 Modeling conversion for conversion bandwidth op-

timization

In this section, we model the conversion process as an information flow problem.

We utilize this model primarily for deriving lower bounds on the total amount

of information that needs to be transferred during conversion. Since our focus is

on modeling the conversion process, we consider a single value for each of the final

parameters nF and kF . This model continues to be valid for each individual conversion,

even when the final parameters might take multiple values.

In the previous chapter (Chapter 2) we considered only scalar codes, where each

code symbol corresponds to a scalar from a finite field Fq. Considering scalar codes

is sufficient when optimizing for access cost, which was the focus in that chapter,

since the access cost is measured at the granularity of code symbols. However, when

optimizing conversion bandwidth, vector codes can perform better than scalar codes

since they allow partial download from a node. This allows conversion procedures

to only download a fraction of a code symbol and thus only incur the conversion

bandwidth associated with the size of that fraction. This can potentially lead to

significant reduction in the total conversion bandwidth. For this reason, we consider

the initial code CI as an [nI , kI , α] MDS code and the final code CF as an [nF , kF , α]

MDS code, where α ≥ 1 is considered as a free parameter chosen to minimize

conversion bandwidth. This move to vector codes is inspired by the work of Dimakis

et al. [27] on regenerating codes, who showed the benefit of vector codes in reducing

– 74 –

Chapter 3. Bandwidth cost of convertible codes

U1,∗ UλI ,∗

U∗,1 U∗,λF

R1 RλI

N1 NλF

s1 sλI

t1 tλF

Initial
codewords

Final
codewords

c

α α

β(x)

α
α

α α

Figure 3.3: Information flow graph of conversion in the general case. Unchanged,
retired, and new nodes are shown in different colors. Notice that each unchanged
node in this figure is drawn twice: once in the initial codewords and once in the final
codewords. These correspond to exactly the same node, but are drawn twice for
clarity. Some representative edges are labeled with their capacities.

network bandwidth in the context of the repair problem. For MDS convertible

codes, message size will be B = Mα = lcm(kI , kF)α, which we interpret as a vector

m ∈ FMα
q composed of M symbols made up of α subsymbols each. We will denote

the number of subsymbols downloaded from node s during conversion as β(s) ≤ α

and extend this notation to sets of nodes as β(S) =
∑

s∈S β(s).

Consider an (nI , kI ; nF , kF) MDS convertible code with initial partition PI =

¶P I
1 , . . . , P I

λI♢ and final partition PF = ¶P F
1 , . . . , P F

λF ♢. We model conversion using

an information flow graph as the one shown in Figure 3.3 where message symbols are

generated at source nodes, and sinks represent the decoding constraints of the final

code. Symbols of message m are modeled as information sources X1, X2, . . . , XM

of rate α (over Fq) each. For each initial codeword i ∈ [λI], we include one source

node si, where the information sources corresponding to the message symbols in P I
i

are generated. Each code symbol of initial codeword i is modeled as a node with

an incoming edge from si. A coordinator node c models the central location where

the contents of new symbols are computed, and it has incoming edges from all nodes

in the initial codewords. During conversion, some of the initial code symbols will

– 75 –

Chapter 3. Bandwidth cost of convertible codes

S

t1

s1 sλI

c �

(a)

S

t1

s1 sλI

c �

(b)

Figure 3.4: Information flow graph of conversion in the merge regime with two
different cuts (used in proofs). For clarity, each unchanged node is drawn twice: once
in the initial codewords and once in the final codeword. These two instances are
connected by a dashed arrow. Marked edges denote a graph cut.

remain unchanged, some will be retired, and some new code symbols will be added.

Thus, we also include the nodes corresponding to unchanged symbols in the final

codewords (that is, every unchanged node is shown twice in Figure 3.3). Note that

the unchanged nodes in the initial codewords and the unchanged nodes in the final

codewords are identical, and thus do not add any conversion bandwidth. For each

new symbol we add a node that connects to the coordinator node. From this point,

we will refer to code symbols and their corresponding nodes interchangeably. For

each final codeword j ∈ [λF], we add a sink tj which connects to some subset of nodes

from final codeword j, and recovers the information sources corresponding to the

message symbols in P F
j .

Thus, the information flow graph for a convertible code comprises the following

nodes:

• unchanged nodes Ui,j = ¶ui,j,1, . . . , ui,j,♣Ui,j ♣♢ for all i ∈ [λI], j ∈ [λF], which are

present both in the initial and final codewords;

• retired nodes Ri = ¶vi,1, . . . , vi,♣Ri♣♢ for i ∈ [λI], which are only present in the

initial codewords;

• new nodes Nj = ¶wj,1, . . . , wj,♣Nj ♣♢ for j ∈ [λF], which are only present in the

– 76 –

Chapter 3. Bandwidth cost of convertible codes

final codewords;

• source nodes si for i ∈ [λI], representing the data to be encoded;

• sink nodes tj for j ∈ [λF], representing the data decoded; and

• a coordinator node c.

In the information flow graph, information source Xl is generated at node si if and

only if l ∈ P I
i , and recovered at node tl if and only if l ∈ P F

j .

Throughout this chapter, we use the disjoint union symbol ⊔ when appropriate

to emphasize that the two sets in the union are disjoint. To simplify the notation,

when ∗ is used as an index, it denotes the disjoint union of the indexed set over the

range of that index, e.g. U∗,j =
⊔λI

i=1 Ui,j.

The information flow graph must be such that the following conditions hold: (1)

the number of nodes per initial codeword is nI , i.e., ♣Ui,∗♣+ ♣Ri♣ = nI for all i ∈ [λI];

and (2) the number of nodes per final codeword is nF , i.e., ♣U∗,j♣+ ♣Nj♣ = nF for all

j ∈ [λF]. Additionally, the information flow graph contains the following set of edges

E, where a directed edge from node u to v with capacity δ is represented with the

triple (u, v, δ):

• ¶(si, x, α) : x ∈ Ui,∗⊔Ri♢ ⊂ E for each i ∈ [λI], where the capacity corresponds

to the size of the data stored on each node;

• ¶(x, c, β(x)) : x ∈ Ui,∗ ⊔ Ri♢ ⊂ E for each i ∈ [λI], where the capacity

corresponds to the amount of data downloaded from node x;

• ¶(c, y, α) : y ∈ Nj♢ ⊂ E for each j ∈ [λF], where the capacity corresponds to

the size of the data stored on each new node;

• ¶(y, tj, α) : y ∈ Vj♢ ⊂ E for Vj ⊆ U∗,j ⊔Nj such that ♣Vj♣ = kF , for all j ∈ [λF],

where the capacity corresponds to the size of the data stored on each node.

The sinks tj represent the decoding constraints of the final code, and each choice

of set Vj will represent a different choice of kF code symbols for decoding the final

– 77 –

Chapter 3. Bandwidth cost of convertible codes

codeword. A necessary condition for a conversion procedure is to satisfy all sinks tj for

all possible V1, . . . , VλF . The sets Ui,j,Ri,Nj and the capacities β(x) are determined

by the conversion procedure of the convertible code. Figure 3.3 shows the information

flow graph of an arbitrary convertible code.

Definition 3.1 (Conversion bandwidth): The read conversion bandwidth γR is the total

amount of data transferred from the initial nodes to the coordinator node c. The write

conversion bandwidth γW is the total amount of data transferred from the coordinator

node c to the new nodes. The (total) conversion bandwidth γ is the sum of the read

conversion bandwidth and the write conversion bandwidth. Formally:

γR := β(U∗,∗ ⊔R∗) , γW := ♣N∗♣α, γ := γR + γW . (3.1)

x

Once the structure of the graph is set and fixed, information flow analysis gives

lower bounds on the capacities β(x). Therefore, a part of our objective in designing

convertible codes is to set Ui,j,Ri,Nj so as to minimize the lower bound on γ.

Notice that the conversion process, as defined above, is not a single-source multi-

cast problem; therefore, the information max-flow bound is not guaranteed to be

achievable. Nonetheless, information flow can be applied to obtain a lower bound

(Section 3.3), which we show is achievable by providing a construction (Section 3.4).

Remark 3.1: In practice, conversion bandwidth can sometimes be further reduced

by placing the coordinator node along with a new node and/or a retired node in the

same server. One can even first split the coordinator node into several coordinator

nodes, each processing data which is not used in conjunction with data processed

by other coordinator nodes, and then place them in the same server as a new node

and/or a retired node. Such “optimizations” do not fundamentally alter our result,

and hence are left out in order to make the exposition clear. x

– 78 –

Chapter 3. Bandwidth cost of convertible codes

3.3 Optimizing conversion bandwidth in the merge

regime

In this section, we use the information flow model presented in Section 3.2 to derive

a lower bound on the conversion bandwidth for MDS codes in the merge regime.

Recall from Section 3.1.2, that convertible codes in the merge regime are those where

kF = λIkI for some integer λI ≥ 2, i.e., this regime corresponds to conversions where

multiple initial codewords are merged into a single final codeword. As in the previous

section, our analysis focuses on a single conversion, and thus a single value for the

final parameters nF and kF . However, our analysis only depends on the conversion

process itself; therefore, the bound on the bandwidth still applies even if we consider

multiple conversions.

Consider an (nI , kI ; nF , λIkI) convertible code in the merge regime, for some

integer λI ≥ 2. Note that for all convertible codes in the merge regime, it holds that

the number of final codewords is λF = 1. Since all initial and final partitions (PI ,PF)

are equivalent up to relabeling in this regime (by Lemma 2.2), we can omit them

from our analysis. Note also that all information sources are recovered at the same

sink node, t1. Thus, we may treat each source node si as having a single information

source Xi of rate αkI (i ∈ [λI]). For each source node and each sink node pair, we can

invoke the information max-flow bound (Section 3.1.3) to derive an inequality. For

conversion to be possible, the variable-capacity edges must take on values such that

all these inequalities are simultaneously satisfied. Figure 3.4a shows the information

flow graph for a convertible code in the merge regime.

First, we derive a general lower bound on conversion bandwidth in the merge

regime by considering a simple cut in the information flow graph. Intuitively, this

lower bound emerges from the fact that new nodes need to have a certain amount

of information from each initial codeword in order to fulfill the MDS property of

the final code. This lower bound depends on the number of unchanged nodes and

achieves its minimum when the number of unchanged nodes is maximized. Recall

from Section 3.1.2 that convertible codes with maximum number of unchanged nodes

– 79 –

Chapter 3. Bandwidth cost of convertible codes

are called stable convertible codes. Thus, the derived lower bound is minimized for

stable convertible codes.

Lemma 3.2. Consider an MDS (nI , kI ; nF , λIkI) convertible code. Then:

γR ≥ λIα min¶rF , kI♢ and γW ≥ rF α,

where equality is only possible for stable codes.

Proof. We prove this inequality via an information flow argument. Let i ∈ [λI] and

consider the information source generated at source si. Let S ⊆ Ui,1 be a subset

of unchanged nodes from initial codeword i of size r̃i = min¶rF , ♣Ui,1♣♢. Consider a

sink t1 that connects to nodes U∗,1 \ S. We choose the graph cut defined by nodes

¶si♢ ⊔ Ui,1 ⊔Ri (see Figure 3.4a, which depicts the cut for i = λI). This cut yields

the following inequality:

kIα ≤ max¶♣Ui,1♣ − rF , 0♢α + β(Ui,1 ⊔Ri)

⇐⇒ β(Ui,1 ⊔Ri) ≥ (kI + rF −max¶♣Ui,1♣, rF♢)α

This inequality must hold for every i ∈ [λI] simultaneously; otherwise, it would be

impossible for the sink to recover the full data. By summing this inequality over all

sources i ∈ [λI] and using the definition of γ (Equation (3.1)), we obtain:

γ ≥
λI∑

i=1

(kI + rF −max¶♣Ui,1♣, rF♢)α + ♣N1♣α

By Lemma 2.3, ♣Ui,1♣ ≤ kI . Therefore, it is clear that the right hand side achieves its

minimum if and only if ♣Ui,1♣ = kI for all i ∈ [λI] (i.e. the code is stable). Lemma 2.3

also implies that γW ≥ rF α, proving the lemma.

Remark 3.3: Note that the conversion bandwidth lower bound described in Lemma 3.2

coincides with the access-cost lower bound described in Table 2.1 when rI ≥ rF . This

follows by recalling that each node corresponds to an α-length vector, and for scalar

codes α = 1. x

– 80 –

Chapter 3. Bandwidth cost of convertible codes

In particular, this implies that convertible codes in the merge regime which

are access-optimal and have rI ≥ rF are also bandwidth-optimal (i.e. those in the

decreasing-redundancy region). However, as we will show next, this property fails to

hold when rI < rF (that is, increasing-redundancy region).

We next derive a lower bound on conversion bandwidth which is tighter than

Lemma 3.2 when rI < rF . Nevertheless, it allows for less conversion bandwidth usage

than the access-optimal codes.

Intuitively, the data downloaded from retired nodes during conversion will be

“more useful” than the data downloaded from unchanged nodes, since unchanged

nodes already form part of the final codeword. At the same time, it is better to have

the maximum amount of unchanged nodes per initial codeword (kI) because this

minimizes the number of new nodes that need to be constructed. However, this leads

to fewer retired nodes per initial codeword (rI). If the number of retired nodes per

initial codeword is less than the number of new nodes (rI < rF), then conversion

procedures are forced to download data from unchanged nodes. This is because one

needs to download at least rF α from each initial codeword (by Lemma 3.2). Since

data from unchanged nodes is “less useful”, more data needs to be downloaded in

order to construct the new nodes.

As in the case of Lemma 3.2, this lower bound depends on the number of unchanged

nodes in each initial codeword, and achieves its minimum in the case of stable

convertible codes.

Lemma 3.4. Consider an MDS (nI , kI ; nF , λIkI) convertible code, with parameters

such that rI < rF ≤ kI . Then γR ≥ λIα

rI + kI


1− rI

rF

))
and γW ≥ rF α, where

equality is only possible for stable codes.

Proof. We prove this via an information flow argument. Let i ∈ [λI] and consider

the information source generated at source si. Let S ⊆ Ui,1 be a subset of size

r̃i = min¶rF , ♣Ui,1♣♢. Consider a sink t1 that connects to the nodes in U∗,1 \ S. Now,

we choose a different cut from the one considered in Lemma 3.2, which allows to

derive a tighter bound when rI < rF . We choose the graph cut defined by nodes

¶si♢ ⊔ S ⊔Ri (see Figure 3.4b, which depicts the cut when i = λI). This yields the

– 81 –

Chapter 3. Bandwidth cost of convertible codes

following inequality:

kIα ≤ (♣Ui,1♣ − r̃i)α + β(S) + β(Ri) .

This inequality must hold for all possible S ⊆ Ui,1 simultaneously; otherwise, there

would exist at least one sink incapable of recovering the full data, which violates the

MDS property. By rearranging this inequality and summing over all possible choices

of subset S, we obtain the following inequality:


♣Ui,1♣

r̃i


(kI + r̃i − ♣Ui,1♣)α ≤


♣Ui,1♣ − 1

r̃i − 1


β(Ui,1) +


♣Ui,1♣

r̃i


β(Ri)

⇐⇒ ♣Ui,1♣(k
I + r̃i − ♣Ui,1♣)α ≤ r̃iβ(Ui,1) + ♣Ui,1♣β(Ri) . (3.2)

Then, our strategy to obtain a lower bound is to find the minimum value for conversion

bandwidth γ which satisfies Inequality (3.2) for all i ∈ [λI], which can be formulated

as the following optimization problem:

minimize γ =
∑

i∈λI [β(Ui,1) + β(Ri)] + ♣N1♣α

subject to Inequality (3.2), for all i ∈ [λI]

0 ≤ β(x) ≤ α, for all x ∈ U∗,1 ⊔R∗.

(3.3)

Intuitively, this linear program shows that it is preferable to download more data

from retired nodes (β(Ri)) than unchanged nodes (β(Ui,1)), since both have the same

impact on γ but the contribution of β(Ri) towards satisfying Inequality (3.2) is

greater than or equal to that of β(Ui,1), because r̃i ≤ ♣Ui,1♣ by definition. Thus to

obtain an optimal solution we first set β(Ri) = min¶kI + r̃i − ♣Ui,1♣, ♣Ri♣♢α to the

maximum needed for all i ∈ [λI], and then set:

∑

x∈Ui,1

β(x) =
max¶r̃i − rI , 0♢♣Ui,1♣α

r̃i

, for all i ∈ [λI]

to satisfy the constraints. It is straightforward to check that this solution satisfies the

KKT (Karush-Kuhn-Tucker) conditions, and thus is an optimal solution to Linear

– 82 –

Chapter 3. Bandwidth cost of convertible codes

program 3.3. By replacing these terms back into γ and simplifying we obtain the

optimal objective value:

γ∗ =
λI∑

i=1


kI −min¶rI , r̃i♢


♣Ui,1♣

r̃i

− 1

]
α + ♣N1♣α

It is easy to show that the right hand side achieves its minimum if and only if

♣Ui,1♣ = kI for all i ∈ [λI] (i.e., the code is stable). This gives the following lower

bound for conversion bandwidth:

γ ≥ λIα


rI + kI


1−

rI

rF


+ rF α.

Since we must write at least rF parities, γW ≥ rF α, which proves the lemma.

By combining Lemmas 3.2 and 3.4 we obtain the following general lower bound

on conversion bandwidth of MDS convertible codes in the merge regime.

Theorem 3.5. For any MDS (nI , kI ; nF , λIkI) convertible code:

γR ≥





λIα min¶kI , rF♢, if rI ≥ rF or kI ≤ rF ,

λIα

rI + kI


1− rI

rF

))
, otherwise.

γW ≥ rF α.

where equality can only be achieved by stable convertible codes.

Proof. Follows from Lemmas 3.2 and 3.4.

In Section 3.4, we show that the lower bound of Theorem 3.5 is indeed achievable

for all parameter values in the merge regime, and thus it is tight. We will refer to

convertible codes that meet this bound with equality as bandwidth-optimal.

Remark 3.6: Observe that the model above allows for nonuniform data download

during conversion, that is, it allows the amount of data downloaded from each node

during conversion to be different. If instead one were to assume uniform download,

– 83 –

Chapter 3. Bandwidth cost of convertible codes

i.e. β(x) = β(y) for all x, y ∈ U∗,∗ ⊔ R∗, then a higher lower bound for conversion

bandwidth γ is obtained (mainly due to Inequality (3.2) in the proof of Lemma 3.4).

Since the lower bound of Theorem 3.5 is achievable, this implies that assuming

uniform download necessarily leads to a suboptimal solution. x

Remark 3.7: The case where kI = kF can be analyzed using the same techniques

used in this section. In this case, λI = 1. There are some differences compared to the

case of the merge regime: for example, in this case the number of unchanged nodes

can be at most min¶nI , nF♢ (in contrast to the λIkI maximum of the merge regime).

So, conversion bandwidth in the case where nI ≥ nF is zero, since we can simply keep

nF nodes unchanged. In the case where nI < nF , the same analysis from Lemma 3.4

is followed, but the larger number of unchanged nodes will lead to a slightly different

inequality. Thus, in the case of kI = kF the lower bound on conversion bandwidth is:

γ ≥





0, if nI ≥ nF

α

kI + rI

) 
1− rI

rF

)
+ (rF − rI)α, otherwise.

Readers familiar with regenerating codes might notice that the above lower bound

is equivalent to the lower bound on the repair bandwidth [27, 36] when (rF − rI)

symbols of an [kI +rF , kI] MDS code are to be repaired with the help of the remaining

(kI + rI) symbols. Note that this setting imposes a relaxed requirement of repairing

only a specific subset of symbols as compared to regenerating codes which require

optimal repair of all nodes. Yet, the lower bound remains the same. This is not

surprising though, since it has been shown [29] that the regenerating codes lower

bound for MDS codes applies even for repair of only a single specific symbol. x

3.4 Explicit construction of bandwidth-optimal MDS

convertible codes in the merge regime

In this section, we present an explicit construction for bandwidth-optimal convertible

codes in the merge regime. Our construction employs the Piggybacking framework [63].

– 84 –

Chapter 3. Bandwidth cost of convertible codes

Recall from Section 3.1.4 that the Piggybacking framework is a framework for

constructing vector codes using an existing code as a base code and adding specially

designed functions called piggybacks which impart additional properties to the

resulting code. We use an access-optimal convertible code to construct the base

code and design the piggybacks to help achieve minimum conversion bandwidth.

First, in Section 3.4.1, we describe our construction of bandwidth-optimal convertible

codes in the case where we only consider fixed unique values for the final parameters

nF and kF = λIkI . Then, in Section 3.4.2, we show that initial codes built with

this construction are not only (nF , kF)-bandwidth-optimally convertible, but also

simultaneously bandwidth-optimally convertible for multiple other values of the

pair (nF , kF). Additionally, we present a construction which given any finite set of

possible final parameter values (nF , kF), constructs an initial [nI , kI] code which is

simultaneously (nF , kF)-bandwidth-optimally convertible for every (nF , kF) in that

set.

3.4.1 Bandwidth-optimal MDS convertible codes for fixed final

parameters

The case where rF ≥ kI is trivial, since the default approach to conversion is

bandwidth-optimal in this case. Therefore, in the rest of this section, we only consider

rF < kI . Moreover, in the case where rI ≥ rF (decreasing-redundancy region),

access-optimal convertible codes (for which explicit constructions are known) are also

bandwidth-optimal. Therefore, we focus on the case rI < rF (increasing-redundancy

region).

We start by describing the base code used in our construction, followed by the

design of piggybacks, and then describe the conversion procedure along with the

role of piggybacks during conversion. To help illustrate the construction, we keep a

running example showing each step.

Base code for piggybacking. As the base code for our construction, we use a

punctured initial code of an access-optimal (kI + rF , kI ; nF , kF) convertible code. Any

– 85 –

Chapter 3. Bandwidth cost of convertible codes

access-optimal convertible code can be used. However, as mentioned in Section 3.1.2,

we assume that this convertible code is: (1) systematic, (2) linear, and (3) only

requires accessing the first rF parities from each initial codeword during access-

optimal conversion. We refer to the [kI + rF , kI] initial code of this access-optimal

convertible code as CI ′
, to its [nF , kF] final code as CF ′

. Let CI ′′
be the punctured

version of CI ′
where the last (rF − rI) parity symbols are punctured.

Example 3.2: Suppose we want to construct a bandwidth-optimal (5, 4; 10, 8) con-

vertible code over a finite field Fq (assume that q is sufficiently large). As a base code,

we use a punctured access-optimal (6, 4; 10, 8) convertible code. For this example, we

use the code presented in Example 3.1 and puncture the last parity. Thus, CI ′
is a

[6, 4] code, CF ′
is a [10, 8] code, and CI ′′

is a [5, 4] code. x

Piggyback design. Now, we describe how to construct the [nI , kI , α] initial vector

code CI and the [nF , kF , α] final vector code CF that make up the bandwidth-optimal

(nI , kI ; nF , λIkI) convertible code.

The first step is to choose the value of α. Let us reexamine the lower bound

derived in Theorem 3.5 for rI < rF < kI , which is rewritten below in a different form.

γ ≥ λI


rIα + kI


1−

rI

rF


α


+ rF α.

We can see that one way to achieve this lower bound would be to download exactly

β1 = α subsymbols from each of the rI retired nodes in the λI initial codewords, and

to download β2 = (1− rI/rF) α subsymbols from each of the kI unchanged nodes in

the λI initial stripes. Thus, we choose α = rF , which is the smallest value that makes

β1 and β2 integers, thus making:

β1 = rF and β2 = (rF − rI).

The next step is to design the piggybacks. We first provide the intuition behind

the design. Recall from above that we can download β2 = (rF − rI) subsymbols

from each unchanged node and all the α subsymbols from each retired node. Hence,

– 86 –

Chapter 3. Bandwidth cost of convertible codes

we can utilize up to β2 = (rF − rI) coordinates from each of the rI parity nodes

for piggybacking. Given that there are precisely (rF − rI) punctured symbols and

α instances of CI ′′
, we can store piggybacks corresponding to rI instances of each

of these punctured symbols. During conversion, these punctured symbols can be

reconstructed and used for constructing the new nodes.

Consider a message m ∈ FλIkIα
q split into λIα submessages m

(s)
j ∈ FkI

q , representing

the data encoded by instance j ∈ [α] of the base code in initial codeword s ∈ [λI].

Recall that CI ′′
is systematic by construction. Therefore, the submessage m

(s)
j will

correspond to the contents of the j-th coordinate of the kI systematic nodes in initial

codeword s. Let cI
i,j(s) denote the contents of the j-th coordinate of parity symbol i

in initial codeword s under code CI , and cF
i,j let denote the same for the single final

codeword encoded under CF . These are constructed as follows:

cI
i,j(s) =





m
(s)
j pI

i , for

s ∈ [λI],

i ∈ [rI],

1 ≤ j ≤ rI

m
(s)
j pI

i + m
(s)
i pI

j , for

s ∈ [λI],

i ∈ [rI],

rI < j ≤ rF

cF
i,j = [m

(1)
j · · ·m

(λI)
j]pF

i , for i ∈ [rF], j ∈ [rF],

where pI
i corresponds to the encoding vector of the i-th parity of CI ′

and pF
i corre-

sponds to the encoding vector of the i-th parity of CF ′
. By using the access-optimal

conversion procedure from the base code, we can compute cF
i,j = [m

(1)
j · · ·m

(λI)
j]pF

i

from ¶m(s)
j pI

i : s ∈ [λI]♢ for all i ∈ [rF] and j ∈ [rF]. Notice that each initial

codeword is independent and encoded in the same way (as required).

This piggybacking design, that of using parity code subsymbols of the base code

as piggybacks, is inspired by one of the piggybacking designs proposed in [63], where

it is used for efficiently reconstructing failed (parity) code symbols.

Example 3.2 (continued): Let pI
1, pI

2 ∈ F4×1
q be the encoding vectors for the parities of

– 87 –

Chapter 3. Bandwidth cost of convertible codes

initial codeword 1 (CI)

a1 b1

...
...

a4 b4

a(1)pI
1 b(1)pI

1 + a(1)pI
2

initial codeword 2 (CI)

a5 b5

...
...

a8 b8

a(2)pI
1 b(2)pI

1 + a(2)pI
2

final codeword (CF)

a1 b1

...
...

a4 b4

a5 b5

...
...

a8 b8

apF
1 bpF

1

apF
2 bpF

2

Figure 3.5: Example of a bandwidth-optimal (5, 4; 10, 8) convertible code. Each block
in this diagram represents a codeword, where each column corresponds to a distinct
coordinate of the α-length vector (α = 2 in this case), and each row corresponds
to a node. The shaded rows correspond to retired nodes for the first two blocks
(initial codewords), and new nodes for the third block (final codeword). For the
initial codewords, text color is used emphasize the piggybacks. In the final codeword,
text color is used to denote the base code subsymbol that is constructed from the
piggybacks.

– 88 –

Chapter 3. Bandwidth cost of convertible codes

CI ′
, and pF

1 , pF
2 ∈ F8×1

q be the encoding vector for the parities of CF ′
. Since α = rF = 2,

we construct a [5, 4, 2] initial vector code CI and a [10, 8, 2] final vector code CF . Let

a = (a1, . . . , a8) and b = (b1, . . . , b8). Figure 3.5 shows the resulting piggybacked codes

encoding submessages a(1) = (a1, . . . , a4), a(2) = (a5, . . . , a8), b(1) = (b1, . . . , b4), b(2) =

(b5, . . . , b8) ∈ F1×4
q . Recall from Example 3.1, that a(1)pI

i + α4
i a

(2)pI
i = apF

i for

i ∈ ¶1, 2♢ (and equivalently for b). x

Conversion procedure. Conversion proceeds as follows:

1. Download D = ¶m(s)
j : s ∈ [λI] and rI < j ≤ rF♢, C1 = ¶cI

i,j(s) : s ∈ [λI], i ∈

[rI], and 1 ≤ j ≤ rI♢, and C2 = ¶cI
i,j(s) : s ∈ [λI], i ∈ [rI], and rI < j ≤ rF♢.

2. Recover the piggybacks C3 = ¶m(s)
j pI

i : s ∈ [λI], rI < i ≤ rF , and 1 ≤ j ≤ rI♢

by computing m
(s)
i pI

j from D and obtaining m
(s)
j pI

i = cI
j,i(s)−m

(s)
i pI

j using C2.

3. Compute the remaining base code symbols from the punctured symbols C4 =

¶m(s)
i pI

j : s ∈ [λI], rI < i ≤ rF , and rI < j ≤ rF♢ using D.

4. Compute the parity nodes of the final codeword specified by the subsymbols

C5 = ¶cF
i,j : i ∈ [rF], j ∈ [rF]♢. This is done by using the conversion procedure

from the access-optimal convertible code used as base code to compute C5 from

C1, C2, C3, and C4.

This procedure requires downloading β1 subsymbols from each retired node and

β2 subsymbols from each unchanged node. Thus, the read conversion bandwidth is:

γR = λI

rIβ1 + kIβ2

)

= λI


rIα + kI


1−

rI

rF


α


.

Additionally, rF α write conversion bandwidth is required for the new nodes.

γW = rF α

Since γ = γR + γW , this matches Theorem 3.5.

– 89 –

Chapter 3. Bandwidth cost of convertible codes

Example 3.2 (continued): During conversion, only 12 subsymbols need to be down-

loaded: b(1), b(2) and all the parity symbols from both codewords. From these

subsymbols, we can recover the piggyback terms a(1)pI
2 and a(2)pI

2, and then compute

b(1)pI
2 and b(2)pI

2 in order to reconstruct the second parity symbol of CI ′
. Finally, we

use a(i)pI
1, b(i)pI

1, a(i)pI
2, b(i)pI

2 for i ∈ ¶1, 2♢ with the conversion procedure from the

access-optimal convertible code to compute the base code symbols a pF
1 , a pF

2 , b pF
1

and b pF
2 of the new nodes.

The default approach would require one to download 16 subsymbols in total

from the initial nodes. Both approaches require downloading 4 subsymbols in total

from the coordinator node to the new nodes. Thus, the proposed construction leads

to 20% reduction in conversion bandwidth as compared to the default approach of

reencoding. x

3.4.2 Convertible codes with bandwidth-optimal conversion for

multiple final parameters

In practice, the final parameters nF , kF might depend on observations made after the

initial encoding of the data and hence they may be unknown at code construction

time. In particular, for a (nI , kI ; nF , λIkI) convertible code in the merge regime this

means that the values of λI and rF = (nF − kF) are unknown.

To ameliorate this problem, we now present convertible codes which support

bandwidth-optimal conversion simultaneously for multiple possible values of the final

parameters. Recall property (4) of the access-optimal base code which we reviewed

in Section 3.1.2: when constructed with a given value of λI = λ and rF = r, the

initial [nI , kI] code is (nF , kF)-access-optimally convertible for all kF = λ′kI and

nF = kF + r′ such that 1 ≤ λ′ ≤ λ and 1 ≤ r′ ≤ r.

Supporting multiple values of λI

The construction from Section 3.4 with a particular value of λI = λ, intrinsically

supports bandwidth-optimal conversion for any λI = λ′ < λ. This is a consequence

– 90 –

Chapter 3. Bandwidth cost of convertible codes

of property (4) above, and can be done easily by considering one or multiple of the

initial codewords as consisting of zeroes only, and ignoring them during conversion.

From Theorem 3.5, it is easy to see that this modified conversion procedure achieves

the optimal conversion bandwidth for the new parameter λI = λ′.

Supporting multiple values of rF

We break this scenario into two cases:

Case 1 (supporting rF ≤ rI): due to property (4) above, the base code used in

the construction from Section 3.4 supports access-optimal conversion for any value of

rF = r such that r ≤ rI . Using this property, one can achieve bandwidth optimality

for any r ≤ rI by simply using the access-optimal conversion on each of the α instances

of the base code independently. The only difference is that some of the instances

might have piggybacks, which can be simply ignored. The final code might still have

these piggybacks, however they will still satisfy the property that the piggybacks in

instance i (2 ≤ i ≤ α) only depend on data from instances ¶1, . . . , (i − 1)♢. Thus,

the final code will have the MDS property and the desired parameters.

Case 2 (supporting rF > rI): for supporting multiple values of rF ∈ ¶r1, r2, . . . ,

rs♢ such that ri > rI (i ∈ [s]), we start with an access-optimal convertible code

having rF = maxi ri. Then we repeat the piggybacking step of the construction (see

Section 3.4.1) for each ri, using the resulting code from step i (with the punctured

symbols from CI ′
added back) as a base code for step (i + 1). Therefore, the resulting

code will have α =
∏s

i=1 ri. Since the piggybacking step will preserve the MDS

property of its base code, and the initial code used in the first piggyback step is MDS,

it is clear that the initial code resulting from the last piggybacking step will also

be MDS. Conversion for one of the supported rF = ri is performed as described in

Section 3.4.1 on each of the additional instances created by steps (i + 1), . . . , s (i.e.
∏s

i′=(i+1) ri′ in total). As before, some of these instances after conversion will have

piggybacks, which can be simply ignored, as the resulting code will continue to have

the property that piggybacks from a given instance only depend on data from earlier

instances.

– 91 –

Chapter 3. Bandwidth cost of convertible codes

initial codeword i (CI)

a4i−3 b4i−3 c4i−3 d4i−3 e4i−3 f4i−3
...

...
...

...
...

...

a4i b4i c4i d4i e4i f4i

a(i)pI
1 b(i)pI

1 + a(i)pI
2 c(i)pI

1 + a(i)pI
2 d(i)pI

1 + c(i)pI
2 e(i)pI

1 + a(i)pI
3 f (i)pI

1 + e(i)pI
2

+ b(i)pI
2 + b(i)pI

3

final codeword (rF = 2)

a1 b1 c1 d1 e1 f1
...

...
...

...
...

...

a8 b8 c8 d8 e8 f8

apF
1 bpF

1 cpF
1 + a(1)pI

2 + a(2)pI
2 dpF

1 epF
1 + a(1)pI

3 + a(2)pI
3 fpF

1

apF
2 bpF

2 cpF
2 dpF

2 epF
2 fpF

2

final codeword (rF = 3)

a1 b1 c1 d1 e1 f1
...

...
...

...
...

...

a8 b8 c8 d8 e8 f8

apF
1 bpF

1 + a(1)pI
2 + a(2)pI

2 cpF
1 dpF

1 epF
1 fpF

1

apF
2 bpF

2 cpF
2 dpF

2 epF
2 fpF

2

apF
3 bpF

3 cpF
3 dpF

3 epF
3 fpF

3

Figure 3.6: Example of a [5, 4] MDS code that supports bandwidth-optimal conversion
to multiple final codes. This code supports bandwidth-optimal conversion to a [8+r, 8]
MDS code for r = 1, 2, 3. Piggybacks from the first round (r = 2) are colored orange
and piggybacks from the second round (r = 3) are colored magenta. In the possible
final codewords, text color is used to show base code symbols which are directly
computed from the corresponding piggybacks, or to denote leftover piggybacks that
were not used during conversion.

– 92 –

Chapter 3. Bandwidth cost of convertible codes

Example 3.3 (bandwidth-optimal conversion for multiple final parameters): In this

example, we will extend the (5, 4; 10, 8) convertible code from Example 3.2 (rF = 2)

to construct a code which additionally supports bandwidth-optimal conversion to

an [11, 8] MDS code (rF = 3). Figure 3.6 shows initial codeword i ∈ ¶1, 2♢ of

the new initial vector code, which has α = 2 · 3 = 6. Here a(1) = (a1, . . . , a4),

a(2) = (a5, . . . , a8) ∈ F1×4
q , a = (a1, . . . , a8) ∈ F1×8

q , and similarly for b, . . . , f . The

vectors pI
i ∈ F4×1

q are the encoding vectors of the initial code CI ′
and pF

i ∈ F8×1
q are

encoding vectors of the final code CF ′
(i ∈ ¶1, 2, 3♢). Since the maximum supported

rF is 3, we start with an access-optimal (7, 4; 11, 8) convertible code. Thus, CI ′
is

a [7, 4] code, CF ′
is a [11, 8] code, and CI ′′

is a [5, 4] code. In the first round of

piggybacking we consider rF = 2, which yields the code shown in Example 3.2. In the

second round of piggybacking we consider rF = 3 and piggyback the code resulting

from the first round, which yields the code shown in Figure 3.6. Conversion for rF = 1

proceeds by simply downloading the contents of the single parity node and using the

access-optimal conversion procedure. Conversion for rF = 2 proceeds by treating this

code as three instances of the code from Example 3.2 and performing conversion for

each one independently. Conversion for rF = 3 proceeds by treating this code as a

vector code with α = 3 and base field Fq2 (i.e. each element is a vector over Fq of

length 2). x

Remark 3.8 (Field size requirement): The field size requirement for Fq of the construc-

tions presented in this section is given by the field size requirement of the base code

used. The currently lowest known field size requirement for an explicit construction

of systematic linear access-optimal convertible codes in the merge regime is given

by [96]. For typical parameters, this requirement is roughly q ≥ Ω(2λI(nI)3
). When

rF ≤ rI−λI +1, this can be significantly reduced to q ≥ kIrI . And when rF ≤ ⌊rI/λI⌋,

this can be further reduced to q ≥ max¶nI , nF♢. x

– 93 –

Chapter 3. Bandwidth cost of convertible codes

0.0 0.2 0.4 0.6 0.8 1.0
r F

0.0

0.2

0.4

0.6

0.8

1.0

 (r
el

at
iv

e
sa

vi
ng

s i
n

co
nv

er
sio

n
ba

nd
wi

dt
h)

r I = 0.1
r I = 0.3
r I = 0.5
r I 1

Figure 3.7: Achievable savings in conversion bandwidth by bandwidth-optimal
convertible codes in comparison to the default approach to conversion. Here r̃I = rI/kI

and r̃F = rF /kI are the initial and final redundancies, divided by the initial code
dimension. Each curve shows the relative savings for a fixed value of r̃I , as r̃F varies.
Solid lines indicate bandwidth-optimal convertible codes, and dashed lines indicate
access-optimal convertible codes. Notice that each curve overlaps with the red curve
(r̃I ≥ 1) in the range r̃F ∈ (0, r̃I].

3.5 Bandwidth savings of bandwidth-optimal convert-

ible codes

In this section, we show the amount of savings in bandwidth that can be obtained

by using bandwidth-optimal convertible codes in the merge regime, relative to the

default approach to conversion. We present the amount of savings in terms of two

ratios:

r̃I = (rI/kI) and r̃F = (rF/kI),

i.e. the initial and final amount of “redundancy” relative to the initial dimension of

the code. For simplicity, we only consider the read conversion bandwidth (data sent

from initial nodes to the coordinator node), since the write conversion bandwidth

(data sent from the coordinator node to the new nodes) is fixed for stable convertible

codes (specifically, it is equal to αrF). Thus, the conversion bandwidth of the default

approach is always λIkIα. Figure 3.7 shows the relative savings, i.e. the ratio between

– 94 –

Chapter 3. Bandwidth cost of convertible codes

the conversion bandwidth of optimal conversion and the conversion bandwidth of the

default approach, for fixed values of r̃I ∈ (0,∞) and varying r̃F ∈ (0,∞).

Each curve shown in Figure 3.7 can be divided into three regions, depending on

the value of r̃F :

• Region 0 < r̃F ≤ r̃I and r̃F < 1: these conditions imply that rF ≤ rI , so by

Lemma 3.2 the conversion bandwidth is λIrF α, and the relative savings are:

ρ = 1−
λIrF α

λIkIα
= 1− r̃F .

This region corresponds to the decreasing-redundancy region, and in this region

access-optimal convertible codes are also bandwidth-optimal. This region of

the curve is linear, and the amount of savings is not affected by r̃I .

• Region r̃I < r̃F < 1: this implies that rI ≤ rF ≤ kI , and by Lemma 3.4 the

conversion bandwidth is λIα(rI + kI(1− rI/rF)), and the relative savings are:

ρ = 1−
λIα


rI + kI


1− rI

rF

))

λIkIα
= r̃I

(
1

r̃F
− 1

)
.

This corresponds to the increasing-redundancy region, where access-optimal

convertible codes provide no conversion bandwidth savings. Thus bandwidth-

optimal convertible codes provide substantial savings in conversion bandwidth

in this regime, compared to access-optimal convertible codes.

• Region r̃F ≥ 1: this implies that rF ≥ kI and by Lemma 3.2 a conversion

bandwidth of λIkIα is required. Thus no savings in conversion bandwidth are

possible in this region.

Thus, bandwidth-optimal convertible codes allow for savings in conversion band-

width on a much broader region relative to access-optimal convertible codes.

– 95 –

Chapter 3. Bandwidth cost of convertible codes

0.0 0.2 0.4 0.6 0.8 1.0 1.2

rF/rI

0.0

0.2

0.4

0.6

0.8

1.0
R

e
la

ti
ve

re
a
d

c
o
s
t

(γ
R
/
λ
F
k
F
α

)

Conversion bandwidth (λF
= 2, rI/kI = 0.4)

Inf. flow bound (Thm 4)

Conj. bound (Thm 7)

Access optimal

Construction (kF = 5)

0.0 0.5 1.0 1.5 2.0 2.5 3.0

rF/rI

0.0

0.2

0.4

0.6

0.8

1.0

R
e
la

ti
ve

re
a
d

c
o
s
t

(γ
R
/
λ
F
k
F
α

)

Conversion bandwidth (λF
= 3, rI/kI = 0.1)

Inf. flow bound (Thm 4)

Conj. bound (Thm 7)

Access optimal

Construction (kF = 10)

Figure 3.8: Read-conversion-bandwidth relative to the default approach (split regime).
In each plot, the value of the parameters λF and the ratio rI/kI are fixed, and the
value of the ratio rF /rI ranges in (0, (λF rI/kI)−1]. By choosing this parametrization,
the plotted curves are independent of the value of kF . For illustration, markers are
added on the points that can be achieved by the construction of Section 3.7 when kF

takes the given example value.

3.6 Conversion bandwidth of the split regime

In this section we analyze the conversion bandwidth required by MDS convertible

codes in the split regime, i.e., the case where kI = λF kF for some integer λF ≥ 2.

In order to obtain a lower bound on the conversion bandwidth, we model split

conversion as an information flow problem. In this model, we represent the flow

of information during conversion as a DAG with edges with variable capacity that

represent the transfer of data between nodes. Our objective is to set the capacity

of edges in a way that minimizes the conversion bandwidth, while ensuring that the

flow conditions necessary for conversion are met.

One challenge is that, as we will show, the bound we obtain through information

flow is not achievable in general.1 This bound is not achievable in general because

retired symbols contain data that is associated with more than one final codeword.

Thus, in order to make use of these symbols during conversion, we must also download

enough data from unchanged symbols to remove the “interference” from other final

codewords. To this end, we introduce a conjecture and derive from it a lower bound

which, as we show in Section 3.7, is achievable.

1Split conversion corresponds to a multi-source multicast problem. In this case (unlike the
single-source case) the information flow bound is not necessarily tight with respect to coding [109].

– 96 –

Chapter 3. Bandwidth cost of convertible codes

U1
UλF

U1 UλF

R1

N1 NλF

s

t1 tλF

t

c

α

β2β1

α
α

α α

Figure 3.9: Information flow graph of split conversion. For clarity, each unchanged
symbol is drawn twice, in order to show the initial configuration of the system in the
top row of nodes, and the final configuration in the bottom row of nodes. The edges
with a red mark depict a graph cut.

3.6.1 Information flow

We model the conversion process using the graph (see Figure 3.9) composed by the

following nodes:

• source s, representing the whole data m ∈ FαkI

q ;

• the set Ui for i ∈ [λF], representing the unchanged symbols of final codeword i;

• the set R representing retired symbols;

• the set Ni for i ∈ [λF], representing the new symbols of final codeword i;

• data collectors ti for i ∈ [λF] that represent the decoders for each final codeword;

• a central node c that computes the new symbols;

• a sink t collecting the data for all final codewords (i.e. m).

Let (u, v, x) denote and edge from node u to node v with capacity x ≥ 0. Nodes are

connected by the following edges:

– 97 –

Chapter 3. Bandwidth cost of convertible codes

• ¶(s, x, α) ♣ x ∈
⋃

i Ui ∪R♢, representing the data stored in the initial symbols;

• ¶(x, c, β1) ♣ x ∈
⋃

i Ui♢ representing the data downloaded from unchanged

symbols;

• ¶(x, c, β2) ♣ x ∈ R♢, representing the data downloaded from retired symbols;

• ¶(c, x, α) ♣ x ∈
⋃

iNi♢, representing the data written to the new symbols;

• ¶(x, ti, α) ♣ x ∈ Vi♢ for Vj ⊆
⋃

i(Ui ∪ Ni) such that ♣Vj♣ = kF for j ∈ [λF],

representing decoding of final codeword i;

• ¶(ti, t, αkF) ♣ i ∈ [λF]♢, representing the collection of all the decoded data.

In this chapter, we focus on stable codes (see Chapter 1). Therefore, we have that

♣Ui♣ = kF , ♣R♣ = rI , and ♣Ni♣ = rF (i ∈ [λF]). The total conversion bandwidth γ will

be given by the total size of the information communicated between nodes during

conversion, which corresponds to the following equation:

γ := γR + γW ,

where γR := λF kF β1 + rIβ2 and γW := λF rF α.
(3.4)

We refer to γR as the read conversion bandwidth and to γW as the write conversion

bandwidth. Our objective is to set (β1, β2) to minimize γ while ensuring an information

flow of size αkI (the size of the data m) is feasible. Since γW is constant with respect

to (β1, β2), our analysis will focus on γR.

Note that our model assumes a uniform amount of data downloaded from un-

changed symbols and retired symbols. This is without loss of generality, since any

stable convertible code with non-uniform downloads, can be made uniform by repeat-

ing the code a sufficient number of times and rotating the assignment of symbols to

nodes with each repetition.

Our first lemma expresses the constraint which arises from considering the cut

shown in Figure 3.9.

– 98 –

Chapter 3. Bandwidth cost of convertible codes

Lemma 3.9. For all stable MDS (nI , kI = λF kF ; nF , kF) convertible code:

λF min¶rF , kF♢α ≤ λF min¶rF , kF♢β1 + rIβ2. (3.5)

Proof. For each j ∈ [λF], consider a sink tj that connects to all symbols in a

final codeword but a set Sj ⊆ Uj of size min¶kF , rF♢. Consider the cut defined by

¶s♢ ∪
⋃λF

j=1 Sj ∪R. This cut yields (3.5) after simplification.

Using (3.4), we can show that when rF ≥ kF , no savings in conversion bandwidth

are possible over the default approach.

Corollary 3.10. When rF ≥ kF , we have γR ≥ λF kF α.

In other words, the default approach has optimal conversion bandwidth when

rF ≥ kF . For this reason, we will only focus on the case rF < kF .

To obtain a lower bound on γ, we will minimize it subject to (3.5) with β1 and β2

as variables.

Lemma 3.11. Assume rF < kF . Then, the value of γ is minimized subject to (3.5)

when:

β1 = max

{
1−

rI

λF rF
, 0

}
α, β2 = min

{
1,

λF rF

rI

}
α.

Proof. As intuition, note that β2 offers the better “bang for the buck” for satisfying

(3.5), because each unit of β2 contributes rI costing rI , while each unit of β1 contributes

λF rF costing λF kF . Thus, in order to satisfy (3.5), it is better to increase β2 first,

and then increase β1 if necessary. This approach leads to the proposed solution. It is

straightforward to check that this solution satisfies the Karush-Kuhn-Tucker (KKT)

conditions, and is thus an optimal solution.

By replacing into (3.4), we obtain the following lower bound.

Theorem 3.12. For all stable MDS (nI , kI = λF kF ; nF , kF) convertible code:

γR ≥





λFkF α− rIα max
{

kF

rF − 1, 0
}

if rI ≤ λFrF ,

λF min¶rF , kF♢α otherwise.

– 99 –

Chapter 3. Bandwidth cost of convertible codes

Proof. Follows from Lemma 3.11 and case analysis.

This bound shows that there is potential for conversion bandwidth savings when

kF > rF , because the bound is strictly lower than the default approach (λF kF α) in

this region. Unfortunately, this bound is not always achievable, as we see next.

For example, suppose we have have a stable convertible code with kF > rF ,

rI = λF rF and that we set β1 = 0 and β2 = α. This assignment satisfies Theorem 3.12

(and it is easy to check that it leads to a feasible flow in Figure 3.9). However, as

shown by previous work on access cost of conversion [99], it is not possible to perform

conversion in this case by accessing fewer than (λF −1)kF +rF symbols. Furthermore,

it can be shown that any assignment that makes β1 > 0 necessarily leads to a higher

conversion bandwidth than the lower bound of Theorem 3.12. The fundamental

problem in this case is that to create new symbols for a particular final codeword we

need to remove the interference from all other final codewords. This is not possible if

the conversion procedure does not access a sufficient number of symbols.

For this reason, we introduce the following conjecture, which lower bounds the

amount of data that needs to be downloaded from unchanged symbols based on the

above intuition.

Conjecture 3.13. In the information flow model presented in this section, for all

stable MDS (nI , kI = λF kF ; nF , kF) convertible code we must have:

λF β1 ≥ (λF − 1)β2. (3.6)

?

We incorporate this constraint into the minimization of γ and obtain a different

solution, which limits the amount of data downloaded from retired symbols when

rI > rF .

Lemma 3.14. Assume rF < kF . Then, the minimum value of γ subject to (3.5) and

(3.6) is achieved by Lemma 3.11 when rI < rF , and otherwise by:

β1 =
(λF − 1)rF α

(λF − 1)rF + rI
, β2 =

λF rF α

(λF − 1)rF + rI
.

– 100 –

Chapter 3. Bandwidth cost of convertible codes

Proof. As in the case of Lemma 3.11, it is intuitively better to increase β2 rather

than β1. However, (3.6) gives an upper bound on β2 in terms of β1. Therefore, we set

β2 = min
{
α, λF

λF −1
β1

}
. We then replace β2 in (3.5) and set β1 in order to satisfy the

inequality. When rI < rF , one can check that (3.6) is not tight, and thus we obtain

the same values that Lemma 3.11. Otherwise, we obtain the stated values of β1 and

β2. It is straightforward to check that this solution satisfies the KKT conditions, and

is thus an optimal solution.

By replacing back into (3.4), we obtain the following lower bound based on

Conjecture 3.13.

Theorem 3.15. If Conjecture 3.13 holds, then for all (nI , kI = λF kF ; nF , kF) con-

vertible code with rI ≥ rF and rF ≤ kF :

γR ≥ λF rF α
(λF − 1)kF + rI

(λF − 1)rF + rI
.

Proof. Follows from Lemma 3.14.

As we shall see in Section 3.7, the proposed constructions achieve the combination

of the lower bounds of Theorem 3.12 and Theorem 3.15. Thus, we finish this section by

comparing the conversion bandwidth of our approach with that of the default approach

and existing convertible codes optimized for access cost [99]. Since in all approaches

the write conversion bandwidth is equal (λF rF α), we focus on the read conversion

bandwidth. Table 3.1 includes the expressions for the read conversion bandwidth of

different approaches. Figure 3.8 plots the lower bounds on read conversion bandwidth

relative to the default approach for some example parameters. These results show that

our approach can achieve significant savings in conversion bandwidth with respect to

the default approach and access-optimal convertible codes.

3.7 Explicit constructions

In this section, we present constructions for convertible codes in the split regime

that optimize for conversion bandwidth. The constructions employ the Piggybacking

– 101 –

Chapter 3. Bandwidth cost of convertible codes

framework [63].

Theorem 3.16. The constructions presented in this section achieve the optimal

conversion bandwidth when rI ≤ rF . Furthermore, they achieve the optimal conversion

bandwidth when rI > rF if Conjecture 3.13 is true.

Proof. Follows directly from the design and description of the constructions below.

These construction require less conversion bandwidth than the default approach

and the access optimal approach (regardless of Conjecture 3.13) as long as rF < kF

(Corollary 3.10). We begin by describing the base code used in both constructions,

and then present the piggybacking constructions for the cases rI > rF and rI ≤ rF ,

respectively.

3.7.1 The base code

We utilize an [nI , kI] systematic code with a Vandermonde matrix with evaluation

points (ξ1, . . . , ξrI) as the parity matrix. A code of this form is guaranteed to be MDS

when choosing ξt (t ∈ [rI]) and field size as specified by the general construction in

[96]. Nonetheless, in practice it is often possible to search for ξt that generate an MDS

code over a given finite field. Let ht := (h
(t)
1 , . . . , h

(t)
kI)T = (1, ξt, . . . , ξkI−1

t)T be parity

encoding vector t ∈ [rI] of the base code. In our construction, we use the property

that (h
(t)
1 , . . . , h

(t)
kF) = ξ

−(i−1)kF

t (h
(t)
(i−1)kF +1, . . . , h

(t)
ikF) for all t ∈ [rI] and i ∈ [λF].

3.7.2 Piggybacking construction (case rI > rF)

We now describe the construction (assuming rF < kF). Recall that during conversion,

we download β1 from each unchanged symbol, and β2 from each retired symbol,

which are set as discussed in Section 3.6. If we set the set the size of each symbol as

α := ((λF − 1)rF + rI), then β1 := (λF − 1)rF and β2 := λF rF . For simplicity, we

– 102 –

Chapter 3. Bandwidth cost of convertible codes

kF

rF

kF

rF

kF

kF

kF

rF

rI − rF

rF rF rF rI
−

rF

λF kF

data

λF rF

In
it

ia
l

sy
m

b
ol

s

F
in

al
sy

m
b

ol
s

Subsymbols

Subsymbols

kF

rF

rF rF rF rI
−

rF

λF rF

A1 B1 C1 D1

A2 B2C2 D2

A3B3 C3 D3

A1 B1 C1 D1

A2 B2 C2 D2

A3 B3 C3 D3
P1

Q1

P2

Q2

P3

Q3

P1

Q
1

T

P2

Q
2

T

P3

Q
3

T

Figure 3.10: Diagram of convertible code construction in the split regime when
rI > rF and λF = 3.

divide α into blocks: for a given ℓ ∈ [α] we define (ℓ1, ℓ2) as follows.

(ℓ1, ℓ2) :=





⌈
ℓ

rF

⌉
, (ℓ− 1 mod rF) + 1

)
if ℓ ≤ λF rF ,

(λF + 1, ℓ− λF rF) otherwise.

To describe the encoding vectors of our code, we decompose each encoding vector

of the base code into λF vectors of length kF , corresponding to the data associated

with each final codeword. Then, we represent each of these vector in the αkI-

dimensional space corresponding to the whole data m (by filling the additional

dimensions with zeros). Specifically, we define p
(i)
t,ℓ ∈ FαkI

q as the column vector such

that mp
(i)
t,ℓ corresponds to the encoding of the data under the base code for parity

t ∈ [rI], final codeword i ∈ [λF], and instance ℓ ∈ [α]. We achieve this by setting

p
(i)
t,ℓ [(i− 1)kF α + (j − 1)α + ℓ] := ht[(i− 1)kF + j] for j ∈ [kF] and 0 everywhere else.

We specify how to construct qI
t,ℓ ∈ FαkI

q , which is the encoding vector for instance

ℓ ∈ [α] of parity t ∈ [rI] of the initial codeword, and q
F (i)
t,ℓ ∈ FαkI

q which is the

encoding vector for instance ℓ ∈ [α] of parity t ∈ [rF] of final codeword i ∈ [λF]. The

– 103 –

Chapter 3. Bandwidth cost of convertible codes

construction is designed so that the final codewords are all encoded under the same

final code. Figure 3.10 shows a diagram for this construction. The construction has

three important elements:

1. Permutation: In the initial code, the first λF blocks of the data symbols

associated with final codeword i are circularly shifted to the right i− 1 times

(denoted with letters A-C). This reordering is logical (no data is moved) and

used for describing the code only.

2. Projection: For parities 1 through rF (P blocks), we use the base code without

modification to encode each data column. During conversion, we download

blocks ¶2, . . . , λF♢ from each data symbol (blocks B and C) and subtract their

interference from the corresponding parity symbols to obtain the first block of

each final codeword (P) blocks).

3. Piggybacks: For parities (rF + 1) through rI (Q blocks), we use the base code

and add piggybacks to block ℓ1 ∈ [λF] that contain the subsymbols of block

(λF + 1) of final codeword ℓ1 (transposed). During conversion, we recover the

piggybacks by using the downloaded data (blocks B and C). Note that the

piggybacks will still have extra data remaining from the unaccessed block (A).

However, the final code can still be sequentially decoded (the same way that

codes in the piggyback framework are decoded).

The remaining parity subsymbols are generated from the accessed data blocks (B and

C). Finally, parity symbol t ∈ [rF] in final codeword i ∈ [λF] is scaled by ξ
−(i−1)kF

t

to ensure that all final codewords are encoded by the same final code (as described

in Section 3.7.1). Let
−→
ℓ (i) := ((ℓ1 − i mod λF)kF + ℓ2) be the instance index after

permutation. Then, the encoding vectors for the initial and final codes are defined as:

qI
t,ℓ :=





∑λF

i=1 p
(i)

t,
−→
ℓ (i)

if t ≤ rF, ℓ1 ≤ λF,

∑λF

i=1 p
(i)

t,
−→
ℓ (i)

+ p
(ℓ1)
ℓ2,(λF −1)rF+t if t > rF, ℓ1 ≤ λF,

∑λF

i=1 p
(i)
t,ℓ otherwise.

– 104 –

Chapter 3. Bandwidth cost of convertible codes

q
F (i)
t,ℓ :=





ξ
−(i−1)kF

t p
(i)
t,ℓ if ℓ1 ≤ λF ,

ξ
−(i−1)kF

t (p
(i)
t,ℓ + p

(i)
rF +ℓ2,t) otherwise.

piggyback

scaling factor extra data

Notice that during conversion we only need to download β1 = (λF − 1)rF sub-

symbols from each unchanged symbol and β2 = λF rF subsymbols from each retired

symbol, out of the α = ((λF − 1)rF + rI) subsymbols in each symbol. Therefore, this

construction achieves the conversion bandwidth bound of Theorem 3.15. Furthermore,

the constructed code is MDS because it uses the piggyback framework and the base

code is MDS.

3.7.3 Piggybacking construction (case rI ≤ rF)

The construction in the case when rI ≤ rF is similar. In this case, we set α := λF rF ,

and β1 := (λF rF − rI) and β2 := λF rF . We divide each symbol evenly into λF blocks

of rF columns. Thus, for a given ℓ ∈ [α] we define (ℓ1, ℓ2) as follows.

ℓ1 :=

⌈
ℓ

rF

⌉
,

ℓ2 := (ℓ− 1 mod rF) + 1.

Now we describe the construction. Figure 3.11 shows a diagram for this construc-

tion.

1. Permutation: In the initial code, the λF blocks of the data symbols associated

with final codeword i are circularly shifted to the right i − 1 times (denoted

with letters A-C). This reordering is logical (no data is moved) and used for

describing the code only.

2. Projection: For the first rI columns of each block, we use the base code without

modification to encode each data column. During conversion, we download

the data in the first rI columns of blocks ¶2, . . . , λF♢ from each data symbol

(blocks B and C) and subtract their interference from the corresponding parity

– 105 –

Chapter 3. Bandwidth cost of convertible codes

kF

rI

rF − rI

kF

rI

rF − rI

kF

kF

kF

rI

rI rF
−

rI

rF rF

λF kF

data

In
it

ia
l

sy
m

b
ol

s

F
in

al
sy

m
b

ol
s

Subsymbols
Subsymbols

kF

rI

rF − rI

rI rF
−

rI

rF rF

A1 B1 C1

A2 B2C2

A3B3 C3

A1 B1 C1

A2 B2 C2

A3 B3 C3
P1 Q

1
A

’1

P2 Q
2

A
’2

P3 Q
3

A
’3

P1
Q1T

A
’1

P2
Q2T

A
’2

P3
Q3T

A
’3

Figure 3.11: Diagram of convertible code construction in the split regime when
rI ≤ rF and λF = 3.

symbols to obtain the first rI columns of the first block of parities 1 through rI

in each final codeword (P) blocks).

3. Piggybacks: For columns (rI + 1) through rF of each block (Q blocks), we use

the base code and add piggybacks that contain the subsymbols of the first rI

columns of the first block of parities (rI +1) through rF in each final codeword ℓ1

(transposed). During conversion, we download all the data in the corresponding

columns (blocks A’, B and C) and recover the piggybacks.

The remaining parity subsymbols are generated from the accessed data blocks (A’,

B, and C). Finally, parity symbol t ∈ [rF] is scaled by ξ
−(i−1)kF

t . Let
−→
ℓ (i) and p

(i)
t,ℓ

be defined as before (in the case rI > rF). Then, the encoding vectors for the initial

and final codes are defined as:

– 106 –

Chapter 3. Bandwidth cost of convertible codes

qI
t,ℓ :=





∑λF

i=1 p
(i)

t,
−→
ℓ (i)

if ℓ2 ≤ rI,

∑λF

i=1 p
(i)

t,
−→
ℓ (i)

+ p
(ℓ1)
ℓ2,t otherwise.

q
F (i)
t,ℓ := ξ

−(i−1)kF

t p
(i)
t,ℓ

piggyback

scaling factor

Notice that during conversion we only need to download β1 = (λF rF −rI) subsymbols

from each unchanged symbol and β2 = λF rF subsymbols from each retired symbol,

out of the α = λF rF subsymbols in each symbol. Therefore, this construction achieves

the conversion bandwidth bound of Theorem 3.15. Furthermore, the constructed

code is MDS because it uses the piggyback framework and the base code is MDS.

– 107 –

Chapter 4

Locally repairable convertible codes

This chapter is based on work from [111], done in collaboration with K. V. Rashmi.

The previous two chapters of this thesis focus on conversion of maximum-distance-

separable (MDS) codes from length nI and dimension kI to nF and kF , respectively.

Recently, there has been increased interest in wide codes, i.e. codes with large k, as

they can achieve lower storage overhead given a target level of failure tolerance. One

important drawback of wide codes is that even if a single node becomes unavailable,

one must incur high resource-costs to repair it. For example, in the case of an

MDS code, one must read k different nodes and reconstruct the original data to

repair a node. In practice, repair operations are common enough that those costs

negatively affect the performance of the cluster [12, 13, 112]. Locally repairable codes

(LRCs) [70, 113] mitigate this problem by encoding data in a way that allows nodes

to be repaired by accessing r ≪ k nodes only.

kI = 18

gI = 2

rI = 3

ℓI = 1

L

L

L

L

L

L

G G

kF = 18

gF = 2

rF = 9

ℓF = 2

L

L

L

L

G G

Figure 4.1: Example of LRC conversion. Empty boxes are message symbols. L and
G are local and global parities respectively.

– 108 –

Chapter 4. Locally repairable convertible codes

To change the optimal repair properties over time, we study the code conversion

problem for LRCs (see Figure 4.1). This chapter focuses on codes with (r, ℓ) data

locality, where k data nodes are divided into groups of size r, each with ℓ local parities

that are a function of those r data nodes only. In addition, the code has g global

parities which are a function of all k data nodes. We focus on LRCs with optimal

distance [65]. As the cost of conversions, we consider conversion bandwidth, defined

as the total amount of data communicated between nodes during conversion. Our

contribution is a new construction technique for LRCs with efficient conversion. This

technique can be applied to different types of conversions: in this chapter we focus

on global conversions, which only change k and g. Even though it is possible to

do this type of conversion with existing constructions for MDS codes [101, 102],

the constructions presented in this chapter are able to further reduce conversion

bandwidth by using both local and global parities. E.g., our construction achieves the

conversion of (k, g, r, ℓ) from (40, 2, 10, 2) to (20, 3, 10, 2) with 17.89% less conversion

bandwidth than existing constructions [102].

4.1 Background and related work

Let [i] := ¶1, . . . , i♢. Let v[i,j] denote entries i through j of a vector v. A linear

[n, k, d, α] vector code C over finite field F is a linear subspace of Fαn of dimension

αk. We refer to each coordinate (an element of F) as a symbol. A codeword c ∈ C is

divided into n nodes ci := (ci,j)
α
j=1 (i ∈ [n]). The minimum distance of C is d, and it

is defined as the minimum Hamming distance over Fα between distinct codewords

in C. The code C is said to be MDS if d = n − k + 1 (in which case d is omitted).

Data m ∈ Fαk is encoded via a αk × αn generator matrix G as c = mG. As an

abuse of notation, we denote the encoding of m under C as C(m). Code C is said

to be systematic if ci = mi := (mi,j)
α
j=1 for i ∈ [k]. The support of a code symbol is

the set of data symbols corresponding to the non-zero indices in its generator matrix

column; the support of a node is the union of the supports of its symbols.

A systematic code C is said to have (r, ℓ) data locality if for each data node ci there

– 109 –

Chapter 4. Locally repairable convertible codes

exists a set of indices Γ(i) containing i such that ♣Γ(i)♣ ≤ r + ℓ and the restriction of

C to Γ(i) has minimum distance at least ℓ + 1. Prior work [114] has shown that a

code with (r, ℓ) data locality satisfies:

d ≤ n− k + 1− ℓ

⌈
k

r

⌉
− 1


. (4.1)

In this chapter, we consider codes defined by parameters (k, g, r, ℓ), denoting a

[n, k, d, α] vector code with n := k +
⌈

kℓ
r

⌉
+g, having (r, ℓ) data locality, and minimum

distance d satisfying (4.1) with equality (i.e. optimal distance); we assume r ♣ k and

treat α as a free variable. The constructions that we present are systematic codes

with the following structure: the code has m := k
r

disjoint local groups each with r

data nodes and ℓ local parity nodes, and g additional global parity nodes.

4.1.1 Systematic Vandermonde code

A systematic Vandermonde code is an [n, k, d, α=1] code defined by a generator matrix

that is the concatenation of a k × k identity matrix and a k × (n− k) Vandermonde

matrix with evaluation points (ξi)
n−k
i=1 . If the field is large enough, choosing ξi := θi−1,

where θ is a primitive element, guarantees the MDS property (construction in [7,

§V]). Column i of a Vandermonde matrix has the following property: consider a

subvector and scale it by a power of ξi; this is equivalent to shifting the subvector by

i entries. In particular, let k := λt, and h(i) := (ξj−1
i)k

j=1 be the i-th encoding vector;

then h
(i)
[(m−1)t+1,mt] = ξ

(m−1)t
i h

(i)
[1,t] for all i ∈ [n− k] and m ∈ [λ].

4.1.2 Basic pyramid code [113]

One method for constructing a code with (r, ℓ) data locality and optimal distance is

to start with a [k + ℓ + g, k, α] MDS systematic linear code C. Then, the generator

matrix column of local parity j ∈ [ℓ] in local group i ∈ [k
r
] is constructed by taking the

column of parity j in C, and setting all the entries outside of rows ¶(j−1)r+1, . . . , jr♢

to 0.

– 110 –

Chapter 4. Locally repairable convertible codes

4.1.3 Piggybacking framework [63]

The piggybacking framework constructs an [n, k, d, α] vector code, by using α instances

of an [n, k, d] base code and adding special functions (called piggybacks) to certain

symbols. I.e. symbol ci,j is the encoding of (mi,j)
k
i=1 under the base code, plus an

specially designed piggyback. We refer to the non-piggyback part of a symbol as

the base. A piggybacked code must have a decoding order for the instances of the

base code given by a permutation σ : [α] → [α]. To satisfy σ, the piggybacking

functions used in instance i can only use data from instance j if σ(i) > σ(j). Thus,

when decoding by the order σ, the already-decoded instances are used to remove

piggybacks, and the bodies are decoded with the base code. The utility of piggybacks

is that they can store useful information which can be retrieved by subtracting the

base.

4.1.4 Other related work

Codes designed to have small localities were first proposed in [113, 115], and a

bound on the minimum distance of LRCs was proved in [65]. LRCs have been the

subject of a wide range of works [66, 68–71, 73–81, 112–114, 116], which has proposed

constructions, bounds on field size, and stronger recoverability properties than optimal

distance (such as maximum recoverability).

The general problem of code conversion was introduced in [7]. Several works [7,

91, 92, 99, 101, 102] have proposed constructions for code conversion. The results

in these works consider two types of cost (access cost and conversion bandwidth)

and focus on constructions and lower bounds for code conversions in which both the

initial and final codes are MDS.

To the best of our knowledge, the idea of converting between different LRCs was

first considered in [93] (called up/downcoding). Xia et al. [93] propose a conversion

procedure for converting between two specific LRCs with different r parameter (and

constant ℓ = 1, k, g). This conversion procedure can be viewed as reducing the number

of nodes read during conversion (i.e. access cost [7]). In this chapter, we focus on

reducing conversion bandwidth instead. Minimization of conversion bandwidth for

– 111 –

Chapter 4. Locally repairable convertible codes

MDS codes was studied in [101, 102].

Recently, [90, 117–119] studied LRC conversion (also called scaling) in a clustered

setting, where code symbols are placed in clusters with the goal of reducing inter-

cluster communication and satisfying some fault-tolerance constraints. The present

chapter is, to the best of our knowledge, the first one to focus on LRC conversion

bandwidth (i.e. inter-node communication).

4.2 Conversion of LRCs

We study the LRC conversion from initial parameters (kI , gI , rI , ℓI) to final param-

eters (kF , gF , rF , ℓF). Conversion is carried by a converter which reads data from

nodes, computes new symbols, and writes them. Cost is measured as conversion

bandwidth [101]: the total amount of data communicated to and from the converter.

We focus on reducing read conversion bandwidth (i.e. number of symbols read), since

the number of symbols written is fixed. We denote read conversion bandwidth as γ,

and normalize it as γ̃ := γ/α. Codes must satisfy:

P1) the initial [nI , kI , σid, α] code has (rI , ℓI) data locality and optimal distance σid,

P2) the final [nF , kF , dF , α] code has (rF , ℓF) data locality and optimal distance dF ,

P3) there is a conversion procedure from initial code to final code that is efficient in

conversion bandwidth.

As in the code conversion literature [7], k is changed by considering M :=

lcm(kI , kF) data nodes evenly divided among λI := M
kI codewords in the initial code

and λF := M
kF codewords in the final code. Our approach is to construct a code

with the piggybacking framework and using the piggybacks to reduce conversion

bandwidth. As the base code, we use a basic pyramid code derived from a systematic

Vandermonde code, which guarantees optimal distance. Our constructions combine a

small number of techniques, which simplifies their description and analysis. We start

by presenting two running examples used throughout the chapter to illustrate our

techniques. Details will be made clear as we explain our construction approach.

– 112 –

Chapter 4. Locally repairable convertible codes

a10 b10 c10

a11 b11 c11

a12 b12 c12

p[4,6] · a[10,12]p[4,6] ·b[10,12]
p[4,6] · c[10,12] +
t[4,6] · a[10,12]

q[1,12] · a[1,12]q[1,12] ·b[1,12]q[1,12] · c[1,12]

t[1,12] · a[1,12] t[1,12] · b[1,12] t[1,12] · c[1,12]

a7 b7 c7

a8 b8 c8

a9 b9 c9

p[1,3] · a[7,9] p[1,3] · b[7,9]
p[1,3] · c[7,9] +
t[1,3] · a[7,9]

a4 b4 c4

a5 b5 c5

a6 b6 c6

p[4,6] · a[4,6] p[4,6] · b[4,6]
p[4,6] · c[4,6] +
t[4,6] · a[4,6]

q[1,6] · a[1,6] q[1,6] · b[1,6]
q[1,6] · c[1,6] +
t[1,6] · b[1,6]

a10 b10 c10

a11 b11 c11

a12 b12 c12

p[4,6] · a[10,12]p[4,6] ·b[10,12]
p[4,6] · c[10,12] +
t[4,6] · a[10,12]

q[1,6] · a[7,12] q[1,6] · b[7,12]
q[1,6] · c[7,12] +
t[1,6] · b[7,12]

a4 b4 c4

a5 b5 c5

a6 b6 c6

p[4,6] · a[4,6] p[4,6] · b[4,6]
p[4,6] · c[4,6] +
t[4,6] · a[4,6]

a1 b1 c1

a2 b2 c2

a3 b3 c3

p[1,3] · a[1,3] p[1,3] · b[1,3]
p[1,3] · c[1,3] +
t[1,3] · a[1,3]

Initial codeword 1

a7 b7 c7

a8 b8 c8

a9 b9 c9

p[1,3] · a[7,9] p[1,3] · b[7,9]
p[1,3] · c[7,9] +
t[1,3] · a[7,9]

Initial codeword 2
a1 b1 c1

a2 b2 c2

a3 b3 c3

p[1,3] · a[1,3] p[1,3] · b[1,3]
p[1,3] · c[1,3] +
t[1,3] · a[1,3]

Final codeword

Figure 4.2: (Example 4.1) Example of global merge conversion with parameters
kI = 6, kF = 12, gI = 1, gF = 2, r = 3, ℓ = 1.

a4 b4 c4 d4

a5 b5 c5 d5

a6 b6 c6 d6

p[4,6] · a[4,6]
p[4,6] · b[4,6] +
q[4,6] · c[4,6]

p[4,6] · c[4,6] p[4,6] · d[4,6]

b10 a10 c10 d10

b11 a11 c11 d11

b12 a12 c12 d12

p[4,6] · b[10,12] +
q[4,6] · c[10,12]

p[4,6] · a[10,12]p[4,6] · c[10,12]p[4,6] ·d[10,12]

q[1,6] · a[1,6] +
q[7,12] · b[7,12]

q[1,6] · b[1,6] +
q[7,12] · a[7,12]

q[1,12] · c[1,12]q[1,12] ·d[1,12]

t[1,6] · a[1,6] +

t[7,12] · b[7,12] +

q[1,6] · d[1,6]

t[1,6] · b[1,6] +
t[7,12] · a[7,12] +

ν(q[1,6] · d[7,12])
t[1,12] · c[1,12] t[1,12] · d[1,12]

a4 b4 c4 d4

a5 b5 c5 d5

a6 b6 c6 d6

p[4,6] · a[4,6]
p[4,6] · b[4,6] +
q[4,6] · c[4,6]

p[4,6] · c[4,6] p[4,6] · d[4,6]

q[1,6] · a[1,6] q[1,6] · b[1,6] q[1,6] · c[1,6]
q[1,6] · d[1,6] +
t[1,6] · a[1,6]

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

p[1,3] · a[1,3]
p[1,3] · b[1,3] +
q[1,3] · c[1,3]

p[1,3] · c[1,3] p[1,3] · d[1,3]

Initial codeword

b7 a7 c7 d7

b8 a8 c8 d8

b9 a9 c9 d9

p[1,3] · b[7,9] +
q[1,3] · c[7,9]

p[1,3] · a[7,9] p[1,3] · c[7,9] p[1,3] · d[7,9]

a1 b1 c1 d1

a2 b2 c2 d2

a3 b3 c3 d3

p[1,3] · a[1,3]
p[1,3] · b[1,3] +
q[1,3] · c[1,3]

p[1,3] · c[1,3] p[1,3] · d[1,3]

Final codeword 1

Figure 4.3: (Example 4.2) Example of global split conversion with parameters
kI = 12, kF = 6, gI = 2, gF = 1, r = 3, ℓ = 1. In the code, ν := ξ6

3 . For compactness,
only one final codeword is shown; the other final codeword has the same encoding.

– 113 –

Chapter 4. Locally repairable convertible codes

Example 4.1: Figure 4.2 shows an example of conversion from (kI=6, gI=1, rI=3,

ℓI=1) to (kF =12, gF =2, rF =3, ℓF =1). We refer to this type of conversion as a global

merge conversion. In the example, data corresponds to (a, b, c), and the encoding

vectors of the base code are p (local parity) and (q, t) (global parities). The non-gray

symbols in the initial codewords are read and used in generating the colored symbols

in the final codeword (where colors denote techniques that will be described later).

Conversion uses the property of Vandermonde codes that, e.g, p[4,6] = ξ3
1p[1,3]. The

decoding order in the initial and final codes is (1, 2, 3). By using this construction,

conversion requires γ̃ = 71
3
, compared to 12 (default approach) or 8 (MDS code

in [101]). x

Example 4.2: Figure 4.3 shows conversion from (kI=12, gI=2, rI=3, ℓI=1) to (kF =6,

gF =1, rF =3, ℓF =1). We refer to this type of conversion as a global split conversion.

As in the previous example, data corresponds to (a, b, c, d), encoding vectors are p

(local parity) and (q, t) (global parities), and non-gray symbols in the initial codeword

are read and used in generating the non-gray symbols in the final codewords. The

decoding order is (3, 4, 1, 2) in the initial code, and (3, 1, 4, 2) in the final code.

Conversion requires γ̃ = 5, compared to 12 (default approach) or 51
3

(MDS code

in [102]). x

These examples show that it is possible to reduce conversion bandwidth compared

to other approaches. Now, we describe our general approach in detail.

4.2.1 Base code

Let k̃ := max¶kI , kF♢ and g̃ := max¶ℓI +gI , ℓF +gF♢. First, we construct a systematic

Vandermonde MDS code C (Section 4.1.1) of length k̃ + g̃ and dimension k̃. Then,

we shorten and puncture C by removing the last k̃ − kI rows, the last k̃ − kI data

columns, and the last g̃− ℓI − gI parity columns from the generator matrix to obtain

C Ĩ . Finally, we derive the initial base code as a basic pyramid code (Section 4.1.2) of

C Ĩ (and likewise for the final base code).

– 114 –

Chapter 4. Locally repairable convertible codes

4.2.2 Conversion techniques

For ease of exposition, we first present the techniques that will be used in designing

conversion-bandwidth efficient codes:

Direct computation (DC). A final parity symbol is computed from the data

symbols in its support. E.g., this is used in Example 4.1 to compute q[1,12] · c[1,12]

from c.

Projection (Pr). A final parity symbol with support S ′ is computed from an

initial parity symbol with support S ⊋ S ′ and data symbols in S \ S ′. E.g., used in

Example 4.2 to compute q[1,6] · a[1,6] from (q[1,6] · a[1,6] + q[7,12] · b[7,12]) and b.

Piggybacks (Pb). A final parity symbol for instance j ∈ [α] is stored as a piggyback

on an initial parity symbol of instance i ∈ [α] such that σ(i) > σ(j). The piggyback

is recovered by computing and subtracting the base of the initial parity using the

data in instance i. E.g., this is used in Example 4.1 to compute t[1,12] · b[1,12] from

(q[1,6] · c[1,6] + t[1,6] · b[1,6]), (q[1,6] · c[7,12] + t[1,6] · b[7,12]), and c.

Projected piggybacks (PP). A final parity symbol for instance j ∈ [α] is stored

as a piggyback on an initial parity symbol of instance i ∈ [α] with σ(i) > σ(j). The

base of the initial parity symbol (with support S) is projected using the data in

a subset S ′ ⊊ S; the remaining part (with support S \ S ′) becomes a piggyback

in the final parity symbol. In the final code, i and j are swapped in the decoding

order. E.g., this is used in Example 4.2 to compute (q[1,6] · d[1,6] + t[1,6] · a[1,6]) from

(t[1,6] · a[1,6] + t[7,12] · b[7,12] + q[1,6] · d[1,6]) and b.

Linear combination (LC). A final parity symbol with support T is computed as

a linear combination of symbols with support Si such that T =
⋃

i Si. The linear

combination is determined by the base code. E.g., this is used in Example 4.1 to

compute q[1,12] · a[1,12] from q[1,6] · a[1,6] and q[1,6] · a[7,12].

Instance reassignment (IR). During conversion, the data symbols associated to

data node i ∈ [k] are reassigned to instances via some permutation πi : [α] → [α].

That is, data in the final code is interpreted as m′
i = (mi,πi(j))

α
j=1 for i ∈ [k]. This

reassignment affects the supports of parities, but it does not modify data nodes. E.g.,

this is used in Example 4.2 to exchange a and b during conversion in some nodes.

– 115 –

Chapter 4. Locally repairable convertible codes

Merge
parity

Split
parity

Unchanged
parity

B
-B

lo
ck

A
-B

lo
ck

R
eg

ula
r

B
lo

ck
R

em
ain

der

B
lo

ck

1 2 3 4 1

2 3

4

1 2 3 1

2
3

Figure 4.4: Parity designs. Data is shown with a dashed box; parities with a solid
box. Parities have one special block (B-block then A-block), a regular block, and a
remainder block. Numbers indicate how initial parity symbols are used in the final
parities.

We denote linear combination of multiple piggybacks as Pb+LC, e.g., as used in

the piggybacks of local parities in both examples. In diagrams, we denote the use of

IR with letters, and use the following colors to distinguish the other techniques:

DC Pr Pb PP LC Pb+LC

4.2.3 General strategy

As the output of conversion, the converter constructs new parity nodes, called target

parities. Target parities are grouped into s sets, such that parity nodes that have

the same support are in the same set. Data nodes are divided into s disjoint batches

of equal size, corresponding to the supports of the s sets of target parities. In other

words, target parities in set i are in the span of batch i (i ∈ [s]). E.g., in Example 4.1,

there is single target parity and s=1 set., while in Example 4.2 there are two final

parities (one in each final codeword) and thus s=2 sets.

The α instances are divided into s blocks of size B, plus a remainder block of size

R (i.e. α := sB + R), where s, B, and R are positive integers set depending on the

– 116 –

Chapter 4. Locally repairable convertible codes

type of conversion. E.g., in Example 4.1, B=3 and R=0, while in Example 4.2 B=1

and R=2.

We refer to block i ∈ [s] of nodes in batch i as a special block, and to blocks

j ≠ i ∈ [s] as regular blocks. Special blocks are divided into two sub-blocks: an

accessed sub-block (A-block) of size E and an unaccessed sub-block (B-block) of size

B − E. In initial parity nodes, block i ∈ [s] is special if its support and the data in

batch i (i.e. data in a special block i) have a non-empty intersection; otherwise, the

block is regular. Notice that for each i ∈ [s], there is a single batch whose nodes have

block i as special. In particular, when s = 1, all nodes have a single special block,

and no regular blocks. E.g., in Example 4.1, each node has a single block (special)

and E=1. In Example 4.2, each node has one regular, special, and remainder block;

the special block corresponds to b and E=0.

4.2.4 Design of parities and conversion

We describe three types of parity design: merge parities, split parities, and unchanged

parities (see Figure 4.4). In each design, we describe the techniques associated which

each symbol.

During conversion, for each batch, the converter downloads all symbols in regular

blocks and A-blocks of data nodes (i.e. B-blocks and remainder blocks are not read).

In addition, the converter downloads symbols from initial parities and uses them as

specified by the parity type. To ensure the final code has optimal distance, each initial

parity symbol is used in constructing at most one final parity symbol (which avoids

linear dependencies that reduce distance). Thus, we assign at most one technique

to each initial parity symbol. In addition, piggybacks in local parities must be a

function of data in their local group, and piggybacks in global parities must be a

functions of the data in their codeword.

In all parity types, A-blocks and regular blocks are designed the same way: these

blocks use Pb or Pb+LC. For symbols in these blocks, all data in their supports is

read during conversion, and so piggybacks in them can be recovered. Piggybacks in

A-blocks are chosen as parity symbols of instances in the corresponding B-blocks;

– 117 –

Chapter 4. Locally repairable convertible codes

piggybacks from regular blocks are chosen as parity symbols of instances in the

remainder block. Target parity symbols that are a function of data in A-blocks or

regular blocks use DC.

Merge parities: This design is used for parities whose support is a strict subset

of the support of a target parity. E.g., in Example 4.1 the initial global parities are

merge parities. When σid ≥ dF , the B-block and remainder block of target parities

can be fully constructed via LC of initial parity symbols in the respective blocks.

Otherwise, we use LC to construct the B-block and remainder block of some target

parities, and use Pb or Pb+LC from A-blocks and regular blocks for other target

parities.

Split parities: This design is used for parities whose support is a strict superset of

the support of a target parity. E.g., in Example 4.2 the initial global parities are split

parities. The remainder block of split parities is unused. When σid ≥ dF , then the

B-block of target parities can be fully constructed via Pr of split parities in B-blocks.

If σid > dF , the rest of the initial parity symbols in B-blocks use PP to construct

final parity symbols in a remainder block. When σid < dF , the whole B-block of split

parities uses Pr. The rest of the final parity symbols in the B-block use Pb from

A-blocks.

Unchanged parities: Both B-blocks and remainder blocks are unused. E.g., in

both examples local parities are unchanged parities. This type of parity can be kept

in the final code.

4.2.5 Instance reassignment

In conversions where the number of codewords increases, we have to ensure that

final codewords use the same code. Otherwise, systems would need to keep extra

metadata for each codeword, which induces extra complexity and overhead. The

template described so far does not meet this requirement:we use IR to correct this.

– 118 –

Chapter 4. Locally repairable convertible codes

Let batch(i) :=
⌊

(i−1)s
kI

⌋
. For data node i, we use permutation:

πi(j) :=





((j − batch(i)B − 1) mod sB) + 1, if j ≤ sB,

j, otherwise.

Theorem 4.1. The construction template presented in this section yields codes satis-

fying properties P1–3.

Proof. By construction, the initial and final base codes satisfy P1 and P2. Therefore,

we must first show that after adding the piggybacks, the codes retain these properties.

Then, we must show that the construction template indeed describes a conversion

procedure from the initial code to the final code (P3).

For the first part, it suffices to show that there are valid decoding orders for the

initial and final code. This, and the restriction that the support of a piggyback must

be contained in the support of its node, ensure that P1 and P2 still hold. This is

because the decoding order can be used to remove piggybacks both in local decoding

and global decoding. Given the design of piggybacks, the following is always a

decoding order in the initial code: remainder block, B-blocks, A-blocks. The decoding

order in the final code is different only when projected piggybacks are used: in this

case, the projected piggybacks (which are part of the remainder block) are decoded

after the B-blocks. Notice that IR has no impact the validity of this order, as the

relative order of blocks does not matter (as long as the B-blocks are decoded before

the corresponding A-blocks).

For the second part, we note that, by construction, the amount of downloaded

symbols is sufficient for generating the target parities. Similarly, the design of initial

parities is chosen so that generated symbols have the same support as the target

parities. Therefore, we must only prove that the different techniques are capable of

producing the required final symbols:

DC) Can construct any arbitrary function of the data.

Pb) Given the support of the piggyback, the piggybacking functions are arbitrary,

and can thus construct any final symbol.

– 119 –

Chapter 4. Locally repairable convertible codes

Pr) When this technique is used, an initial parity symbol is projected onto

the space spanned by a single batch. By the properties of systematic

Vandermonde codes (Section 4.1.1) and basic pyramid codes (Section 4.1.2),

the projected symbol can be scaled to obtain the symbol of the target parity.

LC) Similar to the Pr case, the properties of the systematic Vandermonde base

code make it possible to obtain the symbols of the target parity by linear

combination.

PP) This case follows from the Pr and Pb cases. Notice that, as a consequence

of Pr, a scaling factor might be applied to the piggyback during conversion.

However, since the piggyback is arbitrary, the inverse of the scaling factor

can be pre-applied to the piggyback, in order to obtain the desired piggyback

after conversion.

Pb+LC) Follows directly from case Pb and LC.

4.3 Conversion of global parameters

In this section, we describe constructions where both k and g vary, with r and ℓ

constant. These conversions are useful to alter the durability of the code. In particular,

we explore two types: global merge conversions, which combine multiple codewords

into one; and global split conversions, which divide one codeword into multiple. In

both types, g changes arbitrarily.

One way to achieve these conversions is to ignore local parities, and use existing

constructions for MDS codes [101, 102]. The new constructions also use local parities

in conversion, and thus can reduce the conversion bandwidth compared to previous

constructions.

– 120 –

Chapter 4. Locally repairable convertible codes

4.3.1 Global merge conversion

In global merge conversions, λI ≥ 2 codewords are merged into one, i.e. kF = λIkI .

Local parities are designed as unchanged parities, and global parities as merge parities.

Theorem 4.2. The construction presented in this section achieves the following

conversion bandwidth:

γ̃ =





λIgF , if gF ≤ gI ,

λI


(kI+mIℓ)(gF −gI)
gF +ℓ

+ gI
)
, otherwise.

·

We present the proof for this theorem after describing the construction. It is

worth noting that this construction generalizes the MDS construction (ℓ = 0).

Case gF ≤ gI: Conversion is carried out using only global parities, as in the MDS

case [101].

Case gF > gI: In this construction (see Figure 4.5), we set:

s = 1, B = gF + ℓ, R = 0, E = gF − gI .

During conversion, LC is used in the global parities to construct symbols in the first

gI final global parities. The rest of the final symbols are constructed via Pb, Pb+LC,

or DC.

Proof of Theorem 4.2. In the case where gF ≤ gI , only gF global parities from each

of the λI initial codewords need to be read, and the final global parities are computed

via LC. Thus, γ = λIgF .

When gF > gI , we download the full gI parities from each of the λI initial

codewords, and E symbols from data nodes and local parities. When normalized, the

conversion bandwidth from global parities is 1 from each of the λIgI global parities,

and gF −gI

gF +ℓ
from each of the λIkI data nodes and λImIℓ local parity nodes.

– 121 –

Chapter 4. Locally repairable convertible codes

B−EEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
ℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓ

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr
ℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓℓ

gI

m groups

gF

λIm groups

In
it

ia
l

co
d

e
w

o
rd

s

F
in

a
l

co
d

e
w

o
rd

λI codewords

Figure 4.5: Global merge conversion (r = kI

2
, λI = 2, and gI < gF).

4.3.2 Global split conversion

In global split conversions, a single initial codeword is split into λF ≥ 2, i.e. kI = λF kF .

Local parities are designed as unchanged parities, and global parities as split parities.

Theorem 4.3. The construction presented in this section achieves the following

conversion bandwidth:

γ̃ =





λF gF (λF −1)(kF +mF ℓ)+gI

(λF −1)gF +gI+ℓ(λF −1)
, if gF ≤ gI ,

λF gF ((kF +mF ℓ)(λF gF −gI)+gIgF)
λF gF (gF +ℓ)−gIℓ

, otherwise.

·

We present the proof for this theorem after describing the construction. It is

worth noting that this construction generalizes the MDS construction (ℓ = 0).

Case gI ≥ gF : Variables are set as follows (see Figure 4.6):

s = λF , B = gF , R = ℓ(λF − 1) + gI − gF , E = 0.

The first gF global parities use Pr to construct symbols in the final global parities;

the remaining initial global parities use PP to construct symbols in remainder blocks.

Local parities use Pb+LC to construct symbols from remainder blocks.

– 122 –

Chapter 4. Locally repairable convertible codes

gI

gF

m
λF groups

λF codewords

In
it

ia
l

co
d

e
w

o
rd

F
in

a
l

co
d

e
w

o
rd

s

B B B R

r

ℓ

A B C

r

ℓ

C A B

r

ℓ

B C A

r

ℓ

A B C

Figure 4.6: Global split conversion (r = kI

9
, λF = 3, and gI > gF).

Case gI < gF : We set the construction variables as follows:

s = λF , B = (gF)2, R = λF ℓgF − ℓgI , E = gF (gF − gI).

During conversion, initial global parities use Pr to construct symbols for the B-blocks

of the first gI global parities in each final codeword. The rest of the symbols are

constructed via Pb and Pb+LC from the A-blocks. The remainder block of final

global parities is constructed via Pb+LC on local parities.

Proof of Theorem 4.3. In the case where gF ≤ gI , we download sB symbols from

each global parity node, and (s− 1)B + E from each data and local parity. The size

of each node is α = sB + R. In terms of conversion bandwidth, this is

sB

sB + R
=

λF gF

(λF − 1)(ℓ + gF) + gI

– 123 –

Chapter 4. Locally repairable convertible codes

from each of the gI global parities, and

(s− 1)B + E

sB + R
=

(λF − 1)gF

(λF − 1)(ℓ + gF) + gI

from each of the λF kF data nodes, and each of the λF mF ℓ local parities. With some

arithmetic manipulation, this yields the amount in the theorem.

In the case where gF > gI , we download sB from each global parity node, and

(s− 1)B + E from data and local parity nodes. The size of each node is α = sB + R.

In terms of conversion bandwidth, this is

sB

sB + R
=

λF (gF)2

λF gF (gF + ℓ)− gIℓ

from each of the gI global parities, and

(s− 1)B + E

sB + R
=

(λF − 1)λF (gF)2 + gF (gF − gI)

λF gF (gF + ℓ)− gIℓ

from each of the λF kF data nodes, and each of the λF mF ℓ local parities. With some

arithmetic manipulation, this yields the amount in the theorem.

– 124 –

Chapter 5

Designing distributed storage systems

for code conversion

This chapter is based on work from [15], done in collaboration with Saurabh Kadekodi,

Suhas Jayaram Subramanya, Juncheng Yang, K. V. Rashmi, and Gregory R. Ganger;

and [120], done in collaboration with Saurabh Kadekodi, Sanjith Athlur, Arif Merchant,

K. V. Rashmi and Gregory R. Ganger.

So far, our work in this thesis has concentrated on designing erasure codes to make

code conversion more efficient. However, the design of a fully-fledged distributed

storage system encompasses much more than the erasure codes. Commonly used

distributed storage systems (such as HDFS [11]) are not designed with code conversion

in mind: it needs to be manually performed by the user, and it can only be performed

by reading, re-encoding, and rewriting the data. In this chapter, we propose two

novel designs for distributed storage systems which automatically adapt to changes

in disk failure rates using code conversion. By adapting in this way, these systems

are able to achieve lower storage overhead than a classical distributed storage system

without compromising reliability.

The first system of this kind to be proposed was HeART (Heterogeneity-Aware

Redundancy Tuner) [1]. The main feature of HeART is its ability to automatically

detect changes in device failure rates and re-encode data based on that. However, the

main disadvantage of HeART is that the work that results from re-encoding the data

– 125 –

Chapter 5. Designing systems for code conversion

(i.e. reading, re-computing parities, and writing them) can overwhelm the cluster for

long periods of time.

The first system that we propose, Pacemaker, solves this challenge by dividing

disks into groups with similar failure rates, and then placing data strictly within

groups. By doing this, Pacemaker can monitor the failure rate trends of disks and

proactively re-encode data so as to avoid large bursts of IO usage. However, in real

systems, data placement is already very constrained by a lot of factors. Thus, it is not

ideal to have additional placement constraints imposed by the system. The second

system that we propose, Tiger, does not impose any additional constraints on data

placement. Instead, it uses more advanced reliability models that take failure rate

heterogeneity into account. This allows Tiger to monitor the reliability of data on a

finer grain. This fine-grain monitoring, coupled with the diversity that results from

unconstrained placement, naturally results into more gradual re-encodings without

large bursts of work.

5.1 Pacemaker: avoiding HeART attacks in storage

clusters

Distributed storage systems use data redundancy to protect data in the face of disk

failures [8, 121, 122]. While it provides resilience, redundancy imposes significant

cost overhead. Most large-scale systems today erasure code most of the data stored,

instead of replicating, which helps to reduce the space overhead well below 100% [10,

112, 121, 123–125]. Despite this, space overhead remains a key concern in large-scale

systems since it directly translates to an increase in the number of disks and the

associated increase in capital, operating and energy costs [10, 112, 121, 125].

Storage clusters are made up of disks from a mix of makes/models acquired

over time, and different makes/models have highly varying failure rates [1, 126, 127].

Despite that, storage clusters employ a “one-size-fits-all-disks” approach to choosing

redundancy levels, without considering failure rate differences among disks. Hence,

space overhead is often inflated by overly conservative redundancy levels, chosen to

– 126 –

Chapter 5. Designing systems for code conversion

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100
To

ta
l I

O
pe

r d
ay

 (%
)

Transition IO Num disks (right axis)

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

(a) Transition IO for HeART [1] on Google Cluster1.

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
0

25

50

75

100

To
ta

l I
O

pe
r d

ay
 (%

)

Transition IO
Num disks (right axis)

Transition IO cap

50K

150K

250K

350K

Nu
m

 d
isk

s r
un

ni
ng

(b) Transition IO for pacemaker on Google Cluster1.

Figure 5.1: Fraction of total cluster IO bandwidth needed to use disk-adaptive
redundancy for a Google storage cluster’s first three years. The state-of-the-art
proposal [1] shown in (a) would require up to 100% of the cluster bandwidth for
extended periods, whereas pacemaker shown in (b) always fits its IO under a cap
(5%). The light gray region shows the disk count (right Y-axis) over time.

ensure sufficient protection for the most failure-prone disks in the cluster. Although

tempting, the overhead cannot be removed by using very “wide” codes (which

can provide high reliability with low storage overhead) for all data, due to the

prohibitive reconstruction cost induced by the most failure-prone disks (more details

in Section 5.2). An exciting alternative is to dynamically adapt redundancy choices

to observed failure rates (AFRs)1 for different disks, which recent proposals suggest

could substantially reduce the space overhead [1].

Adapting redundancy involves dynamic transitioning of redundancy schemes,

because AFRs must be learned from observation of deployed disks and because

AFRs change over time due to disk aging. Changing already encoded data from one

redundancy scheme to another, for example from an erasure code with parameters

1AFR describes the expected fraction of disks that experience failure in a typical year.

– 127 –

Chapter 5. Designing systems for code conversion

k1-of-n1 to k2-of-n2 (where k-of-n denotes k data chunks and n − k parity chunks;

more details in Section 5.2), can be exorbitantly IO intensive. Existing designs for

disk-adaptive redundancy are rendered unusable by overwhelming bursts of urgent

transition IO when applied to real-world storage clusters. Indeed, as illustrated in

Figure 5.1a, our analyses of production traces show extended periods of needing

100% of the cluster’s IO bandwidth for transitions. We refer to this as the transition

overload problem. At its core, transition overload occurs whenever an observed AFR

increase for a subset of disks requires too much urgent transition IO in order to

keep data safe. Existing designs for disk-adaptive redundancy perform redundancy

transitions as a reaction to AFR changes. Since prior designs are reactive, for an

increase in AFR, the data is already under-protected by the time the transition

to increase redundancy is issued. And it will continue to be under-protected until

that transition completes. For example, around 2019-09 in Figure 5.1a, data was

under-protected for over a month, even though the entire cluster’s IO bandwidth was

used solely for redundancy transitions. Simple rate-limiting to reduce urgent bursts

of IO would only exacerbate this problem causing data-reliability goals to be violated

for even longer.

To understand the causes of transition overload and inform solutions, we analyse

multi-year deployment and failure logs for over 5.3 million disks from Google, NetApp

and Backblaze. Two common transition overload patterns are observed. First,

sometimes disks are added in tens or hundreds over time, which we call trickle

deployments. A statistically confident AFR observation requires thousands of disks.

Thus, by the time it is known that AFR for a specific make/model and age is too high

for the redundancy used, the oldest thousands of that make/model will be past that

age. At that point, all of those disks need immediate transition. Second, sometimes

disks are added in batches of many thousands, which we call step deployments. Steps

have sufficient disks for statistically confident AFR estimation. However, when a step

reaches an age where the AFR is too high for the redundancy used, all disks of the

step need immediate transition.

In this chapter we introduce pacemaker, a new disk-adaptive redundancy orches-

tration system that exploits insights from the aforementioned analyses to eliminate

– 128 –

Chapter 5. Designing systems for code conversion

the transition overload problem. pacemaker proactively organizes data layouts to

enable efficient transitions for each deployment pattern, reducing total transition

IO by over 90%. Indeed, by virtue of its reduced total transition IO, pacemaker

can afford to use extra transitions to reap increased space-savings. pacemaker also

proactively initiates anticipated transitions sufficiently in advance that the resulting

transition IO can be rate-limited without placing data at risk. Figure 5.1b provides

a peek into the final result: pacemaker achieves disk-adaptive redundancy with

substantially less total transition IO and never exceeds a specified transition IO cap

(5% in the graph).

We evaluate pacemaker using logs containing all disk deployment, failure, and

decommissioning events from four production storage clusters: three 160K–450K-disk

Google clusters and a ≈110K-disk cluster used for the Backblaze Internet backup

service [128]. On all four clusters, pacemaker provides disk-adaptive redundancy

while using less than 0.4% of cluster IO bandwidth for transitions on average, and

never exceeding the specified rate limit (e.g., 5%) on IO bandwidth. Yet, despite its

proactive approach, pacemaker loses less than 3% of the space-savings as compared

to to an idealized system with perfectly-timed and instant transitions. Specifically,

pacemaker provides 14–20% average space-savings compared to a one-size-fits-all-

disks approach, without ever failing to meet the target data reliability and with no

transition overload. We note that this is substantial savings for large-scale systems,

where even a single-digit space-savings is worth the engineering effort. For example,

in aggregate, the four clusters would need ≈200K fewer disks.

We also implement pacemaker in HDFS, demonstrating that pacemaker’s

mechanisms fit into an existing cluster storage system with minimal changes. Comple-

menting our longitudinal evaluation using traces from large scale clusters, we report

measurements of redundancy transitions in pacemaker-enhanced HDFS via small-

scale cluster experiments. A prototype of HDFS with Pacemaker is open-sourced and

is available at https://github.com/thesys-lab/pacemaker-hdfs.git.

The first part of this chapter (Sections 5.1 to 5.9) is dedicated to pacemaker, and

it makes five primary contributions. First, it demonstrates that transition overload is a

roadblock that precludes use of previous disk-adaptive redundancy proposals. Second,

– 129 –

https://github.com/thesys-lab/pacemaker-hdfs.git

Chapter 5. Designing systems for code conversion

it presents insights into the sources of transition overload from longitudinal analyses

of deployment and failure logs for 5.3 million disks from three large organizations.

Third, it describes pacemaker’s novel techniques, designed based on insights drawn

from these analyses, for safe disk-adaptive redundancy without transition overload.

Fourth, it evaluates pacemaker’s policies for four large real-world storage clusters,

demonstrating their effectiveness for a range of deployment and disk failure patterns.

Fifth, it describes integration of and experiments with pacemaker’s techniques in

HDFS, demonstrating their feasibility, functionality, and ease of integration into a

cluster storage implementation.

5.2 Whither disk-adaptive redundancy

Cluster storage systems and data reliability. Modern storage clusters scale to

huge capacities by combining up to hundreds of thousands of storage devices into

a single storage system [8, 122, 129]. In general, there is a metadata service that

tracks data locations (and other metadata) and a large number of storage servers

that each have up to tens of disks. Data is partitioned into chunks that are spread

across storage servers/devices. Although hot/warm data is now often stored on Flash

SSDs, cost considerations lead to the majority of data continuing to be stored on

mechanical disks (HDDs) for the foreseeable future [130–132]. For the rest of the

chapter, any reference to a “device” or “disk” implies HDDs.

Disk failures are common and storage clusters use data redundancy to protect

against irrecoverable data loss in the face of disk failures [8, 10, 12, 112, 125, 127, 128].

For hot data, often replication is used for performance benefits. But, for most bulk

and colder data, cost considerations have led to the use of erasure coding schemes.

Under a k-of-n coding scheme, each set of k data chunks are coupled with n-k “parity

chunks” to form a “stripe”. A k-of-n scheme provides tolerance for up to (n − k)

failures with a space overhead of n
k
. Thus, erasure coding achieves substantially lower

space overhead for tolerating a given number of failures. Schemes like 6-of-9 and

10-of-14 are commonly used in real-world deployments [12, 112, 121, 125]. Under

– 130 –

Chapter 5. Designing systems for code conversion

erasure coding, additional work is involved in recovering from a device failure. To

reconstruct a lost chunk, k remaining chunks from the stripe must be read.

The redundancy scheme selection problem. The reliability of data stored

redundantly is often quantified as mean-time-to-data-loss (MTTDL) [133], which

essentially captures the average time until more than the tolerated number of chunks

are lost. MTTDL is calculated using the disks’ AFR and its mean-time-to-repair

(MTTR).

Large clusters are built over time, and hence usually consist of a mix of disks

belonging to multiple makes/models depending on which options were most cost

effective at each time. AFR values vary significantly between makes/models and

disks of different ages [1, 126, 127, 134]. Since disks have different AFRs, computing

MTTDL of a candidate redundancy scheme for a large-scale storage cluster is often

difficult.

The MTTDL equations can still be used to guide decisions, as long as a sufficiently

high AFR value is used. For example, if the highest AFR value possible for any

deployed make/model at any age is used, the computed MTTDL will be a lower

bound. So long as the lower bound on MTTDL meets the target MTTDL, the data

is adequately reliable. Unfortunately, the range of possible AFR values in a large

storage cluster is generally quite large (over an order of magnitude) [1, 126, 127, 135].

Since the overall average is closer to the lower end of the AFR range, the highest

AFR value is a conservative over-estimate for most disks. The resulting MTTDLs are

thus loose lower bounds, prompting decision-makers to use a one-size-fits-all scheme

with excessive redundancy leading to wasted space.

Using wide schemes with large number of parities (e.g., 30-of-36) can achieve the

desired MTTDL while keeping the storage overhead low enough to make disk-adaptive

redundancy appear not worth the effort. But, while this might seem like a panacea,

wide schemes in high-AFR regimes cause significant increase in failure reconstruction

IO traffic. The failure reconstruction IO is derived by multiplying the AFR with

the number of data chunks in each stripe. Thus, if either of these quantities are

excessively high, or both are moderately high, it can lead to overwhelmingly high

failure reconstruction IO. In addition, wide schemes also result in higher tail latencies

– 131 –

Chapter 5. Designing systems for code conversion

for individual disk reconstructions because of having to read from many more disks.

Combined, these reasons prevent use of wide schemes for all data all the time from

being a viable solution for most systems.

Disk-adaptive redundancy. Since the problem arises from using a single AFR

value, a promising alternative is to adapt redundancy for subsets of disks with similar

AFRs. A recent proposal, heterogeneity-aware redundancy tuner (HeART) [1], sug-

gests treating subsets of deployed disks with different AFR characteristics differently.

Specifically, HeART adapts redundancy of each disk by observing its failure rate

on-the-fly2 depending on its make/model and its current age. It is well known that

AFR of disks follow a “bathtub” shape with three distinct phases of life: AFR is

high in “infancy” (1-3 months), low and stable during its “useful life” (3-5 years),

and high during the “wearout” (a few months before decommissioning). HeART uses

a default (one-size-fits-all) redundancy scheme for each new disk’s infancy. It then

dynamically changes the redundancy to a scheme adapted to the observed useful life

AFR for that disk’s make/model, and then dynamically changes back to the default

scheme at the end of useful life. The per-make/model useful life redundancy schemes

typically have much lower space overhead than the default scheme. This suggests the

ability to maintain target MTTDL with many fewer disks (i.e., lower cost).

Although exciting, the design of HeART overlooks a crucial element: the IO cost

associated with changing the redundancy schemes. Changing already encoded data

under one erasure code to another can be exorbitantly IO intensive. Indeed, our

evaluation of HeART on real-world storage cluster logs reveal extended periods where

data safety is at risk and where 100% cluster IO bandwidth is consumed for scheme

changes. We call this problem transition overload.

An enticing solution that might appear to mitigate transition overload is to adapt

redundancy schemes only by removing parities in low-AFR regimes and adding parities

in high-AFR regimes. While this solution eliminates transition IO when reducing

the level of redundancy, it does only marginally better when redundancy needs to

be increased, because new parity creation cannot avoid reading all data chunks from

2Although it may be tempting to use AFR values taken from manufacturer’s specifications, several
studies have shown that failure rates observed in practice often do not match those [127, 134, 135].

– 132 –

Chapter 5. Designing systems for code conversion

each stripe. What makes this worse is that transitions that increase redundancy are

time-critical, since delaying them would miss the MTTDL target and leave the data

under-protected. Moreover, addition/removal of a parity chunk massively changes

the stripe’s MTTDL compared to addition/removal of a data chunk. For example, a

6-of-9 MTTDL is 10000× higher than 6-of-8 MTTDL, but is only 1.5× higher than

7-of-10 MTTDL. AFR changes would almost never be large enough to safely remove

a parity, given default schemes like 6-of-9, eliminating almost all potential benefits of

disk-adaptive redundancy.

This chapter analyzes disk deployment and failure data from large-scale production

clusters to discover sources of transition overload and informs the design of a solution.

It then describes and evaluates pacemaker, which realizes the dream of safe disk-

adaptive redundancy without transition overload.

5.3 Longitudinal production trace analyses

This section presents an analysis of multi-year disk reliability logs and deployment

characteristics of 5.3 million HDDs, covering over 60 makes/models from real-world

environments. Key insights presented here shed light on the sources of transition

overload and challenges/opportunities for a robust disk-adaptive redundancy solution.

The data. Our largest dataset comes from NetApp and contains information

about disks deployed in filers (file servers). Each filer reports the health of each

disk periodically (typically once a fortnight) using their AutoSupport [136] system.

We analyzed the data for a subset of their deployed disks, which included over 50

makes/models and over 4.3 million disks total. As observed in previous studies [1,

127, 134], we observe well over an order of magnitude difference between the highest

and lowest useful-life AFRs (see Figure 5.2a).

Our other datasets come from large storage clusters deployed at Google and the

Backblaze Internet backup service. Although the basic disk characteristics (e.g.,

AFR heterogeneity and its behavior discussed below) are similar to the NetApp

dataset, these datasets also capture the evolution and behavior in our target context

– 133 –

Chapter 5. Designing systems for code conversion

10 1

101

A
F
R

 (
%

)
[0, 3) [3, 4) [4, 5) [5, 6)

Age of oldest disk (years)

(a) Spread of make/model AFRs

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5

Age (years)

0

2

4

A
F
R

 (
%

)

(b) AFR distribution over disk life

1 2 3 4 5 1 2 3 4 5 1 2 3 4 5 Age

Number of useful life phases

0

1000

2000

d
a
y
s

2 3 4
Tolerance: AFR ratio (max / min)

(c) Approximate useful-life length

Figure 5.2: (a) AFR spread for over 50 makes/models from NetApp binned by the
age of the oldest disk. Each box corresponds to a unique make/model, and at least
10000 disks of each make/model were observed (outlier AFR values omitted). (b)
Distribution of AFR calculated over consecutive non-overlapping six-month periods
for NetApp disks, showing the gradual rise of AFR with age (outliers omitted). (c)
Approximation of useful life length for NetApp disks for 1-5 consecutive phases of
useful life and three different tolerance levels.

– 134 –

Chapter 5. Designing systems for code conversion

(large-scale storage clusters), and thus are also used in the evaluation detailed in

(Section 5.7). The particular Google clusters were selected based on their longitudinal

data availability, but were not otherwise screened for favorability.

For each cluster, the multi-year log records (daily) all disk deployment, failure,

and decommissioning events from birth of the cluster until the date of the log

snapshot. Google Cluster1’s disk population over three years included ≈350K disks

of 7 makes/models. Google Cluster2’s population over 2.5 years included ≈450K

disks of 4 makes/models. Google Cluster3’s population over 3 years included ≈160K

disks of 3 makes/models. The Backblaze cluster’s population since 2013 included

≈110K disks of 7 makes/models.

5.3.1 Causes of transition overload

Disk deployment patterns. We observe disk deployments occurring in two distinct

patterns, which we label trickle and step. Trickle-deployed disks are added to a

cluster frequently (weekly or even daily) over time by the tens and hundreds. For

example, the slow rise in disk count seen between 2018-01 and 2018-07 in Figure 5.1

represents a series of trickle-deployments. In contrast, a step-deployment introduces

many thousands of disks into the cluster “at once” (over a span of a few days),

followed by potentially months of no new step-deployments. The sharp rises in disk

count around 2017-12 and 2019-11 in Figure 5.1 represent step-deployments.

A given cluster may be entirely trickle-deployed (like the Backblaze cluster),

entirely step-deployed (like Google Cluster2), or a mix of the two (like Google

Cluster1 and Cluster3). Disks of a step are typically of the same make/model.

Learning AFR curves online. Disk-adaptive redundancy involves learning

the AFR curve for each make/model by observing failures among deployed disks of

that make/model. Because AFR is a statistical measure, the larger the population of

disks observed at a given age, the lower is the uncertainty in the calculated AFR at

that age. We have found that a few thousand disks need to be observed to obtain

sufficiently accurate AFR measurements.

Transition overload for trickle-deployed disks. Since trickle-deployed disks

– 135 –

Chapter 5. Designing systems for code conversion

are deployed in tiny batches over time, several months can pass before the required

number of disks of a new make/model are past any given age. Thus, by the time the

required number of disks can be observed at the age that is eventually identified as

having too-high an AFR and requiring increased redundancy, data on the older disks

will have been left under-protected for months. And, the thousands of already-older

disks need to be immediately transitioned to a stronger redundancy scheme, together

with the newest disks to reach that age. This results in transition overload.

Transition overload for step-deployed disks. Assuming that they are of the

same make/model, a batch of step-deployed disks will have the same age and AFR,

and indeed represent a large enough population for confident learning of the AFR

curve as they age. But, this means that all of those disks will reach AFR values

together, as they age. So, when their AFR rises to the point where the redundancy

must be increased to keep data safe, all of the disks must transition together to

the new safer redundancy scheme. Worse, if they are the first disks of the given

make/model deployed in the cluster, which is often true in the clusters studied, then

the system adapting the redundancy will learn of the need only when the age in

question is reached. At that point, all data stored on the entire batch of disks is

unsafe and needs immediate transitioning. This results in transition overload.

5.3.2 Informing a solution

Analyzing the disk logs has exposed a number of observations that provide hope and

guide the design of pacemaker. The AFR curves we observed deviate substantially

from the canonical representation where infancy and wearout periods are identically

looking and have high AFR values, and AFR in useful life is flat and low throughout.

AFRs rise gradually over time with no clear wearout. AFR curves generally

exhibit neither a flat useful life phase nor a sudden transition to so-called wearout.

Rather, in general, it was observed that AFR curves rise gradually as a function of disk

age. Figure 5.2b shows the gradual rise in AFR over six month periods of disk lifetimes.

Each box represents the AFR of disks whose age corresponds to the six-month period

denoted along the X-axis. AFR curves for individual makes/models (e.g., Figures 5.5b

– 136 –

Chapter 5. Designing systems for code conversion

and 5.5c) are consistent with this aggregate illustration. Importantly, none of the

over 60 makes/models from Google, Backblaze and NetApp displayed sudden onset

of wearout.

Gradual increases in AFR, rather than sudden onset of wearout, suggests that one

could anticipate a step-deployed batch of disks approaching an AFR threshold. This

is one foundation on which pacemaker’s proactive transitioning approach rests.

Useful life could have multiple phases. Given the gradual rise of AFRs, useful

life can be decomposed into multiple, piece-wise constant phases. Figure 5.2c shows

an approximation of the length of useful life when multiple phases are considered.

Each box in the figure represents the distribution over different make/models of the

approximate length of useful life. Useful life is approximated by considering the

longest period of time which can be decomposed into multiple consecutive phases

(number of phases indicated by the bottom X-axis) such that the ratio between the

maximum and minimum AFR in each phase is under a given tolerance level (indicated

by the top X-axis). The last box indicates the distribution over make/models of the

age of the oldest disk, which is an upper bound to the length of useful life. As shown

by Figure 5.2c, the length of useful life can be significantly extended (for all tolerance

levels) by considering more than one phase. Furthermore, the data show that a small

number of phases suffice in practice, as the approximate length of useful life changes

by little when considering four or more phases.

Infancy often short-lived. Disks may go through (potentially) multiple rounds

of so-called “burn-in” testing. The first tests may happen at the manufacturer’s site.

There may be additional burn-in tests done at the deployment site allowing most of

the infant mortality to be captured before the disk is deployed in production. For

the NetApp and Google disks, we see the AFR drop sharply and plateau by 20 days

for most of the makes/models. In contrast, the Backblaze disks display a slightly

longer and higher AFR during infancy, which can be directly attributed to their less

aggressive on-site burn-in.

pacemaker’s design is heavily influenced from these learnings, as will be explained

in the next section.

– 137 –

Chapter 5. Designing systems for code conversion

5.4 Design goals of pacemaker

pacemaker is an IO efficient redundancy orchestrator for storage clusters that support

disk-adaptive redundancy. Before going into the design goals for pacemaker, we

first chronicle a disk’s lifecycle, introducing the terminology that will be used in the

rest of the chapter (defined in Table 5.1).

Disk lifecycle under pacemaker. Throughout its life, each disk under pace-

maker simultaneously belongs to a Dgroup and an Rgroup. There are as many

Dgroups in a cluster as there are unique disk makes/models. Rgroups on the other

hand are a function of redundancy schemes and placement restrictions. Each Rgroup

has an associated redundancy scheme, and its data (encoded stripes) must reside

completely within that Rgroup’s disks. Multiple Rgroups can use the same redun-

dancy scheme, but no stripe may span across Rgroups. The Dgroup of a disk never

changes, but a disk may transition through multiple Rgroups during its lifetime. At

the time of deployment (or “birth”), the disk belongs to Rgroup0, and is termed

as an unspecialized disk. Disks in Rgroup0 use the default redundancy scheme, i.e.

the conservative one-scheme-fits-all scheme used in storage clusters that do not have

disk-adaptive redundancy. The redundancy scheme employed for a disk (and hence

its Rgroup) changes via transitions. The first transition any disk undergoes is an RDn

transition. A RDn transition changes the disk’s Rgroup to one with lower redundancy,

i.e. more optimized for space. Whenever the disk departs from Rgroup0, it is termed

as a specialized disk. Disks depart from Rgroup0 at the end of their infancy. Since

infancy is short-lived (Section 5.3.2), pacemaker only considers one RDn transition

for each disk.

The first RDn transition occurs at the start of the disk’s useful life, and marks the

start of its specialization period. As explained in Section 5.3.2, a disk may experience

multiple useful life phases. pacemaker performs a transition at the start of each

useful life phase. After the first (and only) RDn transition, each subsequent transition

is an RUp transition. An RUp transition changes the disk’s Rgroup to one with higher

redundancy, i.e. less optimized for space, but the disk is still considered a specialized

disk unless the Rgroup that the disk is being RUp transitioned to is Rgroup0. The

– 138 –

Chapter 5. Designing systems for code conversion

Term Definition

Dgroup Group of disks of the same make/model.
Transition The act of changing the redundancy scheme.
RDn transition Transition to a lower level of redundancy.
RUp transition Transition to a higher level of redundancy.
peak-IO-cap IO bandwidth cap for transitions.
Rgroup Group of disks using the same redundancy

with placement restricted to the group of disks.
Rgroup0 Rgroup using the default one-scheme-fits-all

redundancy used in storage clusters today.
Unspecialized disks Disks that are a part of Rgroup0.
Specialized disks Disks that are not part of Rgroup0.
Canary disks First few thousand disks of a trickle-deployed

Dgroup used to learn AFR curve.
Tolerated-AFR Max AFR for which redundancy scheme meets

reliability constraint.
Threshold-AFR The AFR threshold crossing which triggers

an RUp transition for step-deployed disks.

Table 5.1: Definitions of pacemaker’s terms.

space-savings (and thus cost-savings) associated with disk-adaptive redundancy are

proportional to the fraction of life the disks remain specialized for.

Key decisions. To adapt redundancy throughout a disk’s lifecycle as chronicled

above, three key decisions related to transitions must be made

1. When should the disks transition?

2. Which Rgroup should the disks transition to?

3. How should the disks transition?

Constraints. The above decisions need to be taken such that a set of constraints

are met. An obvious constraint, central to any storage system, is that of data

reliability. The reliability constraint mandates that all data must always meet a

predefined target MTTDL. Another important constraint is the failure reconstruction

IO constraint. This constraint bounds the IO spent on data reconstruction of failed

disks, which as explained in Section 5.2 is proportional to AFR and scheme width.

– 139 –

Chapter 5. Designing systems for code conversion

This is why wide schemes cannot be used for all disks all the time, but they can be

used for low-AFR regimes of disk lifetimes (as discussed in Section 5.2).

Existing approaches to disk-adaptive redundancy make their decisions on the basis

of only these constraints [1], but fail to consider the equally important IO caused by

redundancy transitions. Ignoring this causes the transition overload problem, which

proves to be a show-stopper for disk-adaptive redundancy systems. pacemaker

treats transition IO as a first class citizen by taking it into account for each of its

three key decisions. As such, pacemaker enforces carefully designed constraints on

transition IO as well.

Designing IO constraints on transitions. Apart from serving foreground

IO requests, a storage cluster performs numerous background tasks like scrubbing

and load balancing [137–139]. Redundancy management is also a background task.

In current storage clusters, redundancy management tasks predominantly consist of

performing data redundancy (e.g. replicating or encoding data) and reconstructing

data of failed or otherwise unavailable disks. Disk-adaptive redundancy systems add

redundancy transitions to the list of IO-intensive background tasks.

There are two goals for background tasks: Goal 1: they are not too much work,

and Goal 2: they interfere as little as possible with foreground IO. pacemaker

applies two IO constraints on background transition tasks to achieve these goals: (1)

average-IO constraint and (2) peak-IO constraint. The average-IO constraint achieves

Goal 1 by allowing storage administrators to specify a cap on the fraction of the IO

bandwidth of a disk that can be used for transitions over its lifetime. For example, if

a disk can transition in 1 day using 100% of its IO bandwidth, then an average-IO

constraint of 1% would mean that the disk will transition at most once every 100

days. The peak-IO constraint achieves Goal 2 by allowing storage administrators to

specify the peak rate (defined as the peak-IO-cap) at which transitions can occur so as

to limit their interference with foreground traffic. Continuing the previous example,

if the peak-IO-cap is set at 5%, the disk that would have taken 1 day to transition at

100% IO bandwidth would now take at least 20 days. The average-IO constraint and

the peak-IO-cap can be configured based on how busy the cluster is. For example, a

cluster designed for data archival would have a lower foreground traffic, compared

– 140 –

Chapter 5. Designing systems for code conversion

P

P P

P

PACEMAKER
Proactive-

transition-initiator

Rgroup-planner

FS Metadata
service

Disk health
monitoring service

Change point
detector

AFR curve learner

Transition-executor

new Rgroup,
disks

de
pl

oy
m

en
t,

co
nf

ig
 d

at
a

new AFR,
old AFR

di
sk

 fa
ilu

re
s

failure data

IO

pl
ac

em
en

t c
ha

ng
es

PA
C

EM
A

K
ER

 M
et

ad
at

a disks

rate limit, IO
Rate-limiter

Figure 5.3: pacemaker architecture.

to a cluster designed for serving ads or recommendations. Thus, low-traffic clusters

can set a higher peak-IO-cap resulting in faster transitions and potentially increased

space-savings.

Design goals. The key design goals are to answer the three questions related to

transitions such that the space-savings are maximized and the following constraints

are met: (1) reliability constraint on all data all the time, (2) failure reconstruction

IO constraint on all disks all the time, (3) peak-IO constraint on all disks all the time,

and (4) average-IO constraint on all disks over time.

– 141 –

Chapter 5. Designing systems for code conversion

5.5 Design of pacemaker

Figure 5.3 shows the high level architecture of pacemaker and how it interacts

with some other components of a storage cluster. The three main components

of pacemaker correspond to the three key decisions that the system makes as

discussed in Section 5.4. The first main component of pacemaker is the proactive-

transition-initiator (Section 5.5.1), which determines when to transition disks

using the AFR curves and the disk deployment information. The information of

the transitioning disks and their observed AFR is passed to the Rgroup-planner

(Section 5.5.2), which chooses the Rgroup to which the disks should transition. The

Rgroup-planner passes the information of the transitioning disks and the target Rgroup

to the transition-executor (Section 5.5.3). The transition-executor addresses how

to transition the disks to the planned Rgroup in the most IO-efficient way.

Additionally, pacemaker also maintains its own metadata and a simple rate-

limiter . pacemaker metadata interacts with all of pacemaker’s components

and also the storage cluster’s metadata service. It maintains various configuration

settings of a pacemaker installation along with the disk deployment information

that guides transition decisions. The rate-limiter rate-limits the IO load generated

by any transition as per administrator specified limits. Other cluster components

external-to-pacemaker that inform it are the AFR curve learner and the change

point detector. As is evident from their names, these components learn the AFR

curve3 of each Dgroup and identify change points for redundancy transitions. The

AFR curve learner receives failure data from the disk health monitoring service, which

monitors the disk fleet and maintains their vitals.

5.5.1 Proactive-transition-initiator

Proactive-transition-initiator’s role is to determine when to transition the disks. Below

we explain pacemaker’s methodology for making this decision for the two types of

transitions (RDn and RUp) and the two types of deployments (step and trickle).

3The AFR estimation methodology employed is detailed in Section 5.8.

– 142 –

Chapter 5. Designing systems for code conversion

Deciding when to RDn a disk

Recall that a disk’s first transition is an RDn transition. As soon as proactive-

transition-initiator observes (in a statistically accurate manner) that the AFR has

decreased sufficiently, and is stable, it performs an RDn transition from the default

scheme (i.e., from Rgroup0) employed in infancy to a more space-efficient scheme.

This is the only RDn transition in a disk’s lifetime.

Deciding when to RUp a disk

RUp transitions are performed either when there are too few disks in any Rgroup

such that data placement is heavily restricted (which we term purging an Rgroup),

or when there is a rise in AFR such that the reliability constraint is (going to be)

violated. Purging an Rgroup involves RUp transitioning all of its disks to an Rgroup

with higher redundancy. This transition isn’t an imminent threat to reliability, and

therefore can be done in a relaxed manner without violating the reliability constraint

as explained in Section 5.5.3.

However, most RUp transitions in a storage cluster are done in response to a rise

in AFR. These are challenging with respect to meeting IO constraints due to the

associated risk of violating the reliability constraints whenever the AFR rises beyond

the AFR tolerated by the redundancy scheme (termed tolerated-AFR).

In order to be able to safely rate-limit the IO load due to RUp transitions,

pacemaker takes a proactive approach. The key is in determining when to initiate a

proactive RUp transition such that the transition can be completed before the AFR

crosses the tolerated-AFR, while adhering to the IO and the reliability constraints

without compromising much on space-savings. To do so, the proactive-transition-

initiator assumes that its transitions will proceed as per the peak-IO constraint, which

is ensured by the transition-executor. pacemaker’s methodology for determining

when to initiate a proactive RUp transition is tailored differently for trickle versus for

step deployments, since they raise different challenges.

Trickle deployments. For trickle-deployed disks, pacemaker considers two

category of disks: (1) first disks to be deployed from any particular trickle-deployed

– 143 –

Chapter 5. Designing systems for code conversion

Dgroup, and (2) disks from that Dgroup that are deployed later.

pacemaker labels the first C deployed disks of a Dgroup as canary disks, where

C is a configurable, high enough number of disks to yield statistically significant

AFR observations. For example, based on our disk analyses, we observe that C in

low thousands (e.g., 3000) is sufficient. The canary disks of any Dgroup are the first

to undergo the various phases of life for that Dgroup, and these observations are

used to learn the AFR curve for that Dgroup. The AFR value for the Dgroup at

any particular age is not known (with statistical confidence) until all canary disks go

past that age. Furthermore, due to the trickle nature of the deployment, the canary

disks would themselves have been deployed over weeks if not months. Thus, AFR for

the canary disks can be ascertained only in retrospect. pacemaker never changes

the redundancy of the canary disks to avoid them from ever violating the reliability

constraint. This does not significantly reduce space-savings, since C is expected to

be small relative to the total number of disks of a Dgroup (usually in the tens of

thousands).

The disks that are deployed later in any particular Dgroup are easier to handle,

since the Dgroup’s AFR curve would have been learned by observing the canaries.

Thus, the date at which a disk among the later-deployed disks needs to RUp to meet

the reliability constraints is known in advance by the proactive-transition-initiator,

which it uses to issue proactive RUp transitions.

Step deployments. Recall that in a step deployment, most disks of a Dgroup

may be deployed within a few days. So, canaries are not a good solution, as they

would provide little-to-no advance warning about how the AFR curve’s rises would

affect most disks.

pacemaker’s approach to handling step-deployments is based on two properties:

(1) Step-deployments have a large number of disks deployed together, leading to

a statistically accurate AFR estimation; (2) AFR curves based on a large set of

disks tend to exhibit gradual, rather than sudden, AFR increases as the disk ages

(Section 5.3.2). pacemaker leverages these two properties to employ a simple early

warning methodology to predict a forthcoming need to RUp transition a step well in

advance. Specifically, pacemaker sets a threshold, termed threshold-AFR, which

– 144 –

Chapter 5. Designing systems for code conversion

is a (configurable) fraction of the tolerated-AFR of the current redundancy scheme

employed. For step-deployments, when the observed AFR crosses the threshold-AFR,

the proactive-transition-initiator initiates a proactive RUp transition.

5.5.2 Rgroup-planner

The Rgroup-planner’s role is to determine which Rgroup should disks transition to.

This involves making two interdependent choices: (1) the redundancy scheme to

transition into, (2) whether or not to create a new Rgroup.

Choice of the redundancy scheme. At a high level, the Rgroup-planner first

uses a set of selection criteria to arrive at a set of viable schemes. It further narrows

down the choices by filtering out the schemes that are not worth transitioning to

when the transition IO and IO constraints are accounted for.

Selection criteria for viable schemes. Each viable redundancy scheme has to

satisfy the following criteria in addition to the reliability constraint: each scheme (1)

must satisfy the minimum number of simultaneous failures per stripe (i.e., n− k);

(2) must not exceed the maximum allowed stripe dimension (k); (3) must have its

expected failure reconstruction IO (AFR × k × disk-capacity) be no higher than

was assumed possible for Rgroup0 (since disks in Rgroup0 are expected to have the

highest AFR); (4) must have a recovery time in case of failure (MTTR) that does not

exceed the maximum MTTR (set by the administrator when selecting the default

redundancy scheme for Rgroup0).

Determining if a scheme is worth transitioning to. Whether the IO cost of

transitioning to a scheme is worth it or not and what space-savings can be achieved

by that transition is a function of the number of days disks will remain in that scheme

(also known as disk-days). This, in turn, depends on (1) when the disks enter the new

scheme, and (2) how soon disks will require another transition out of that scheme.

The time it takes for the disks to enter the new scheme is determined by the

transition IO and the rate-limit. When the disks will transition out of the target

Rgroup is dependent on the future and can only be estimated. For this estimation,

the Rgroup-planner needs to estimate the number of days the AFR curve will remain

– 145 –

Chapter 5. Designing systems for code conversion

below the threshold that forces a transition out. This needs different strategies for

the two deployment patterns (trickle and step).

Recall that pacemaker knows the AFR curve for trickle-deployed disks (from

the canaries) in advance. Recall that step-deployed disks have the property that the

AFR curve learned from them is statistically robust and tends to exhibit gradual, as

opposed to sudden AFR increases. The Rgroup-planner leverages these properties to

estimate the future AFR behavior based on the recent past. Specifically, it takes the

slope of the AFR curve in the recent past4 and uses that to project the AFR curve

rise in the future.

The number of disk-days in a scheme for it to be worth transitioning to is dictated

by the IO constraints. For example, let us consider a disk running under pacemaker

that requires a transition, and pacemaker is configured with an average-IO constraint

of 1% and a peak-IO-cap of 5%. Suppose the disk requires 1 day to complete its

transition at 100% IO bandwidth. With the current settings, pacemaker will only

consider an Rgroup worthy of transitioning to (assuming it is allowed to use all

5% of its IO bandwidth) if at least 80 disk-days are spent after the disk entirely

transitions to it (since transitioning to it would take up to 20 days at the allowed 5%

IO bandwidth).

From among the viable schemes that are worth transitioning to based on the

IO constraints, the Rgroup-planner chooses the one that provides the highest space-

savings.

Decision on Rgroup creation. Rgroups cannot be created arbitrarily. This is

because every Rgroup adds placement restrictions, since all chunks of a stripe have to

be stored on disks belonging to the same Rgroup. Therefore, Rgroup-planner creates

a new Rgroup only when (1) the resulting placement pool created by the new Rgroup

is large enough to overcome traditional placement restrictions such as “no two chunks

on the same rack5”, and (2) the space-savings achievable by the chosen redundancy

scheme is sufficiently greater than using an existing (less-space-efficient) Rgroup.

4pacemaker uses a 60 day (configurable) sliding window with an Epanechnikov kernel, which
gives more weight to AFR changes in the recent past [140].

5Inter-cluster fault tolerance remains orthogonal to and unaffected by pacemaker.

– 146 –

Chapter 5. Designing systems for code conversion

The disk deployment pattern also affects Rgroup formation. While the rules for

whether to form an Rgroup remain the same for trickle and step-deployed disks,

mixing disks deployed differently impacts the transitioning techniques that can be

used for eventually transitioning disks out of that Rgroup. This in turn affects

how the IO constraints are enforced. Specifically, for trickle deployments, creating

an Rgroup for each set of transitioning disks would lead to too many small-sized

Rgroups. So, for trickle-deployments, the Rgroup-planner creates a new Rgroup for a

redundancy scheme if and only if one does not exist already. Creating Rgroups this

way will also ensure that enough disks (thousands) will go into it to satisfy placement

restrictions. Mixing disks from different trickle-deployments in the same Rgroup

does not impact the IO constraints, because pacemaker optimizes the transition

mechanism for few disks transitioning at a time, as is explained in Section 5.5.3. For

step-deployments, due to the large fraction of disks that undergo transition together,

having disks from multiple steps, or mixing trickle-deployed disks within the same

Rgroup, creates adverse interactions (discussed in Section 5.5.3). Hence, the Rgroup-

planner creates a new Rgroup for each step-deployment, even if there already exists

one or more Rgroups that employ the chosen scheme. Each such Rgroup will contain

many thousands of disks to overcome traditional placement restrictions. Per-step

Rgroups also extend to the Rgroup with default redundancy schemes, implying a

per-step Rgroup0. Despite having clusters with disk populations as high as 450K

disks, pacemaker’s restrained Rgroup creation led to no cluster ever having more

than 10 Rgroups.

Rules for purging an Rgroup. An Rgroup may be purged for having too few

disks. This can happen when too many of its constituent disks transition to other

Rgroups, or they fail, or they are decommissioned leading to difficulty in fulfilling

placement restrictions. If the Rgroup to be purged is made up of trickle-deployed disks,

the Rgroup-planner will choose to RUp transition disks to an existing Rgroup with

higher redundancy while meeting the IO constraints. For step-deployments, purging

implies RUp transitioning disks into the more-failure-tolerant RGroup (RGroup0)

that may include trickle-deployed disks.

– 147 –

Chapter 5. Designing systems for code conversion

5.5.3 Transition-executor

The transition-executor’s role is to determine how to transition the disks. This involves

choosing (1) the most IO-efficient technique to execute that transition, and (2) how

to rate-limit the transition at hand. Once the transition technique is chosen, the

transition-executor executes the transition via the rate-limiter as shown in Figure 5.3.

Selecting the transition technique. Suppose the data needs to be convention-

ally re-encoded from a kcur-of-ncur scheme to a knew-of-nnew scheme. The IO cost of

conventional re-encoding involves reading–re-encoding–writing all the stripes whose

chunks reside on each transitioning disk. This amounts to a read IO of kcur×disk-

capacity (assuming almost-full disks), and a write IO of kcur×disk-capacity×nnew

knew
for

a total IO > 2× kcur×disk-capacity for each disk.

In addition to conventional re-encoding, pacemaker supports two new approaches

to changing the redundancy scheme for disks and selects the most efficient option for

any given transition. The best option depends on the fraction of the Rgroup being

transitioned at once.

Type 1 (Transition by emptying disks). If a small percentage of an Rgroup’s disks

are being transitioned, it is more efficient to retain the contents of the transitioning

disks in that Rgroup rather than re-encoding. Under this technique, the data

stored on transitioning disks are simply moved (copied) to other disks within the

current Rgroup. This involves reading and writing (elsewhere) the contents of the

transitioning disks. Thus, the IO of transitioning via Type 1 is at most 2×disk-

capacity, independent of scheme parameters, and therefore at least kcur× cheaper

than conventional re-encoding.

Type 1 can be employed whenever there is sufficient free space available to move

the contents of the transitioning disks into other disks in the current Rgroup. Once

the transitioning disks are empty, they can be removed from the current Rgroup and

added to the new Rgroup as “new” (empty) disks.

Type 2 (Bulk transition by recalculating parities). If a large fraction of disks in

an Rgroup need to transition together, it is more efficient to transition the entire

Rgroup rather than only the disks that need a transition at that time. Most cluster

– 148 –

Chapter 5. Designing systems for code conversion

storage systems use systematic codes6 [121, 141–143], wherein transitioning an entire

Rgroup involves only calculating and storing new parities and deleting the old parities.

Specifically, the data chunks have to be only read for computing the new parities,

but they do not have to be re-written. In contrast, if only a part of the disks are

transitioned, some fraction of the data chunks also need to be re-written. Thus, the IO

cost for transitioning via Type 2 involves a read IO of kcur

ncur
×disk-capacity, and a write

IO of only the new parities, which amounts to a total IO of nnew−knew

knew
× kcur

ncur
×disk-

capacity for each disk in the Rgroup. This is at most 2× kcur

ncur
×disk-capacity, which

makes it at least ncur× cheaper than conventional re-encoding.

Selecting the most efficient approach for a transition. For any given transition, the

transition-executor selects the most IO-efficient of all the viable approaches. Almost

always, trickle-deployed disks use Type 1 because they transition a-few-at-a-time,

and step-deployed disks use Type 2 because Rgroup-planner maintains each step in a

separate Rgroup.

Choosing how to rate limit a transition. Irrespective of the transitioning

techniques, the transition-executor has to resolve the competing concerns of maximiz-

ing space-savings and minimizing risk of data loss via fast transitions, and minimizing

foreground work interference by slowing down transitions so as to not overwhelm the

foreground IO. Arbitrarily slowing down a transition to minimize interference is only

possible when the transition is not in response to a rise in AFR. This is because a

rising AFR hints at the data being under-protected if not transitioned to a higher

redundancy soon. In pacemaker, a transition without an AFR rise occurs either

when disks are being RDn transitioned at the end of infancy, or when they are being

RUp transitioned because the Rgroup they belong to is being purged. For all the

other RUp transitions, pacemaker carefully chooses how to rate limit the transition.

Determining how much bandwidth to allow for a given transition could be difficult,

given that other transitions may be in-progress already or may be initiated at any

time (we do observe concurrent transitions in our evaluations). So, to ensure that

the aggregate IO of all ongoing transitions conforms to the peak-IO-cap cluster-wide,

6In systematic codes, the data chunks are stored in unencoded form. This helps to avoid having
to decode for normal (i.e., non-degraded-mode) reads.

– 149 –

Chapter 5. Designing systems for code conversion

pacemaker limits each transition to the peak-IO-cap within its Rgroup. For trickle-

deployed disks, which share Rgroups, the rate of transition initiations is consistently

a small percentage of the shared Rgroup, allowing disk emptying to proceed at well

below the peak-IO-cap. For step-deployed disks, this is easy for pacemaker, since a

step only makes one transition at a time and its IO is fully contained in its separate

Rgroup. The transition-executor’s approach to managing peak-IO on a per-Rgroup

basis is also why the proactive-transition-initiator can safely assume a rate-limit of

the peak-IO-cap without consulting the transition-executor. If there is a sudden AFR

increase that puts data at risk, pacemaker is designed to ignore its IO constraints

to continue meeting the reliability constraint—this safety valve was never needed for

any cluster evaluated.

After finalizing the transitioning technique, the transition-executor performs the

necessary IO for transitioning disks (read, writes, parity recalculation, etc.). We find

that the components required for the transition-executor are already present and

adequately modular in existing distributed storage systems. In Section 5.6, we show

how we implement pacemaker in HDFS with minimal effort.

Note that this design is for the common case where storage clusters are designed

for a single dedicated storage service. Multiple distinct distributed storage services

independently using the same underlying devices would need to coordinate their use

of bandwidth (for their non-transition related load as well) in some way, which is

outside the scope of this work.

5.6 Implementation of pacemaker in HDFS

We have implemented a prototype of pacemaker for the Hadoop distributed

file system (HDFS) [122]. HDFS is a popular open source distributed file sys-

tem, widely employed in the industry for storing large volumes of data. We use

HDFS v3.2.0, which natively supports erasure coding. The prototype of HDFS with

Pacemaker is open-sourced and is available at https://github.com/thesys-lab/

pacemaker-hdfs.git.

– 150 –

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git

Chapter 5. Designing systems for code conversion

Figure 5.4: pacemaker-enhanced HDFS architecture.

Background on HDFS architecture. HDFS has a central metadata server

called Namenode (NN, akin to the master node) and a collection of servers containing

the data stored in the file system, called Datanodes (DN, akin to worker nodes).

Clients interact with the NN only to perform operations on file metadata (containing

a collection of the DNs that store the file data). Clients directly request the data

from the DNs. Each DN stores data on its local drives using a local file system.

Realizing Rgroups in HDFS. This design makes a simplifying assumption that

all disks belonging to a DN are of the same Dgroup and are deployed together (this

could be relaxed easily). Under this simplifying assumption, conceptually, an Rgroup

would consist of a set of DNs that need to be managed independent of other such

sets of DNs as shown in Figure 5.4.

The NN maintains a DatanodeManager (DNMgr), which is a gateway for the NN

to interact with the DNs. The DNMgr maintains a list of the DNs, along with their

usage statistics. The DNMgr also contains a HeartBeatManager (HrtBtMgr) which

handles the periodic keepalive heartbeats from DNs. A natural mechanism to realize

Rgroups in HDFS is to have one DNMgr per Rgroup. Note that the sets of DNs

belonging to the different DNMgrs are mutually exclusive. Implementing Rgroups

with multiple DNMgrs has several advantages.

Right level of control and view of the system. Since the DNMgr resides below the

– 151 –

Chapter 5. Designing systems for code conversion

block layer, when the data needs to be moved for redundancy adaptations, the logical

view of the file remains unaffected. Only the mapping from HDFS blocks to DNs

gets updated in the inode. The statistics maintained by the DNMgr can be used to

balance load across Rgroups.

Minimizing changes to the HDFS architecture and maximizing re-purposing of

existing HDFS mechanisms. This design obviates the need to change HDFS’s block

placement policy, since it is implemented at the DNMgr level. Block placement policies

are notoriously hard to get right. Moreover, block placement decisions are affected by

fault domains and network topologies, both of which are orthogonal to pacemaker’s

goals, and thus best left untouched. Likewise, the code for reconstruction of data

from a failed DN need not be touched, since all of the reads (to reconstruct each

lost chunk) and writes (to store it somewhere else) will occur within the set of nodes

managed by its DNMgr. Existing mechanisms for adding / decommissioning nodes

managed by the DNMgr can be re-purposed to implement pacemaker’s Type 1

transitions (described below).

Cost of maintaining multiple DNMgrs is small. Each DNMgr maintains two

threads: a HrtBtMgr and a DNAdminMgr. The former tracks and handles heartbeats

from each DN, and the latter monitors the DNs for performing decommissioning and

maintenance. The number of DNMgr threads in the NN will increase from two to

2× the number of Rgroups. Fortunately, even for large clusters, we observe that the

number of Rgroups would not exceed the low tens (Section 5.7.4). The NN is usually

a high-end server compared to the DNs, and an additional tens of threads shouldn’t

affect performance.

Rgroup transitions in HDFS. An important part of pacemaker function-

ality is transitioning DNs between Rgroups. Recall from Section 5.5.3 that one of

pacemaker’s preferred way of transitioning disks across Rgroups is by emptying

the disks. In HDFS, the planned removal of a DN from a HDFS cluster is called

decommissioning. pacemaker re-uses decommissioning to remove a DN from the

set of DNs managed by one DNMgr and then adds it to the set managed by another,

effectively transitioning a DN from one Rgroup to another.

pacemaker does not change the file manipulation API or client access paths. But,

– 152 –

Chapter 5. Designing systems for code conversion

G-1eA

G-2eA

G-2eB

G-1eB

G-3eC

G-6eB

(a) Redundancy management IO due to pacemaker over its 2.5+ year lifetime broken
down by IO type. This identical to Figure 5.1b with the left Y axis only going to 20% to
show the detailed IO activity happening in the cluster.

G-1eA G-1eB

(b) G-1 (step) AFR curve.

G-2eA G-2eB

(c) G-2 (trickle) AFR curve.

G-1eA

G-2eA

G-2eB

G-1eB

G-3eC

G-6eB

Space-savings

6-of-9

30-of-33

6-of-9

10-of-13

11-of-14

(d) Space-savings due to pacemaker. Each colored region represents the fraction of cluster
capacity that is using a particular redundancy scheme. 6-of-9 is the default redundancy
scheme (Rgroup0’s).

Figure 5.5: Detailed IO analysis and space savings achieved by pacemaker-enabled
adaptive redundancy on Google Cluster1.

– 153 –

Chapter 5. Designing systems for code conversion

there is one corner-case related to transitions when file reads can be affected internally.

To read a file, a client queries the NN for the inode and caches it. Subsequently,

the reads are performed directly from the client to the DN. If the DN transitions to

another Rgroup while the file is still being read, the HDFS client may find that that

DN no longer has the requested data. But, because this design uses existing HDFS

decommissioning for transitions, the client software knows to react by re-requesting

the updated inode from the NN and resuming the read.

5.7 Evaluation of pacemaker

pacemaker-enabled disk-adaptive redundancy using is evaluated on production logs

from four large-scale real-world storage clusters, each with hundreds of thousands of

disks. We also experiment with a proof-of-concept HDFS implementation on a smaller

sized cluster. This evaluation has four primary takeaways: (1) pacemaker eliminates

transition overload, never using more than 5% of cluster IO bandwidth (0.2–0.4% on

average) and always meets target MTTDL, in stark contrast to prior work approaches

that do not account for transition IO load; (2) pacemaker provides more than 97%

of idealized-potential space-savings, despite being proactive, reducing disk capacity

needed by 14–20% compared to one-size-fits-all; (3) pacemaker’s behavior is not

overly sensitive across a range of values for its configurable parameters; (4) pace-

maker copes well with the real-world AFR characteristics explained in Section 5.3.2.

For example, it successfully combines the “multiple useful life phases” observation

with efficient transitioning schemes. This evaluation also shows pacemaker in action

by measuring disk-adaptive redundancy in pacemaker-enhanced HDFS.

Evaluation methodology. pacemaker is simulated chronologically for each

of the four cluster logs described in Section 5.3: three clusters from Google and

one from Backblaze. For each simulated date, the simulator changes the cluster

composition according to the disk additions, failures and decommissioning events in

the log. pacemaker is provided the log information, as though it were being captured

live in the cluster. IO bandwidth needed for each day’s redundancy management is

– 154 –

Chapter 5. Designing systems for code conversion

computed as the sum of IO for failure reconstruction and transition IO requested by

pacemaker, and is reported as a fraction of the configured cluster IO bandwidth

(100MB/sec per disk, by default).

pacemaker was configured to use a peak-IO-cap of 5%, an average-IO constraint

of 1% and a threshold-AFR of 75% of the tolerated-AFR, except for the sensitivity

studies in Section 5.7.3. For comparison, we also simulate (1) an idealized disk-

adaptive redundancy system in which transitions are instantaneous (requiring no IO)

and (2) the prior state-of-the-art approach (HeART) for disk-adaptive redundancy.

For all cases, Rgroup0 uses 6-of-9, representing a one-size-fits-all scheme reported in

prior literature [121]. The required target MTTDL is then back-calculated using the

6-of-9 default and an assumed tolerated-AFR of 16% for Rgroup0. These configuration

defaults were set by consulting storage administrators of clusters we evaluated.

5.7.1 pacemaker on Google Cluster1 in-depth

Figure 5.5a shows the IO generated by pacemaker (and disk count) over the ≈3-year

lifetime of Google Cluster1. Over time, the cluster grew to over 350K disks comprising

of disks from 7 makes/models (Dgroups) via a mix of trickle and step deployments.

Figures 5.5b and 5.5c show AFR curves of 2 of the 7 Dgroups7 (obfuscated as G-1

and G-2 for confidentiality) along with how pacemaker adapted to them at each

age. G-1 disks are trickle-deployed whereas G-2 disks are step-deployed. The other

5 Dgroups are omitted due to lack of space. Figure 5.5d shows the corresponding

space-savings (the white space above the colors).

All disks enter the cluster as unspecialized disks, i.e. Rgroup0 (dark gray region

in the Figure 5.5a and left gray region of Figures 5.5b and 5.5c). Once a Dgroup’s

AFR reduces sufficiently, pacemaker RDn transitions them to a specialized Rgroup

(light gray area in Figure 5.5a). Over their lifetime, disks may transition through

multiple RUp transitions over the multiple useful life phases. Each transition requires

IO, which is captured in blue in Figure 5.5a. For example, the sudden drop in the

unspecialized disks, and the blue area around 2018-04 captures the Type 2 transitions

7The rest of the Dgroups’ AFR curves are shown in Figure 5.9 in Section 5.9.

– 155 –

Chapter 5. Designing systems for code conversion

30-of-33

6-of-9 6-of-9

10-of-13

HeART

Pacemaker

Space-savings

C
a

p
a

c
it

y
(%

)
IO

 /
 d

a
y

 (
%

)
IO

 /
 d

a
y

 (
%

)

N
u

m
 d

is
k

s
N

u
m

 d
is

k
s

(a) Google Cluster2

HeART

6-of-9

Pacemaker

30-of-33

IO
 /
 d

a
y

 (
%

)

15-of-18

C
a
p
a
c
it
y
(%
)

6-of-9

10-of-13Space-savings

IO
 /
 d

a
y

 (
%

)

N
u

m
 d

is
k

s
N

u
m

 d
is

k
s

(b) Google Cluster3

HeART

Pacemaker

Space-savings

C
a

p
a

c
it

y
(%

)
IO

 /
 d

a
y

 (
%

)
IO

 /
 d

a
y

 (
%

)

30-of-33

6-of-9
6-of-9

13-of-16

27-of-30 15-of-18

N
u

m
 d

is
k

s
N

u
m

 d
is

k
s

(c) Backblaze

Figure 5.6: Top two rows show the IO overhead comparison between prior adaptive
redundancy system (HeART) and pacemaker on two Google clusters and one
Backblaze cluster. pacemaker successfully bounds all IO under 5% (visible as tiny
blue regions in middle graphs, for e.g. around 2017 in (a)). The bottom row shows
the 14–20% average space-savings achieved by pacemaker across the three clusters.
The AFR curves of all three clusters are shown in Figures 5.10 to 5.12 in Section 5.9.

– 156 –

Chapter 5. Designing systems for code conversion

caused when over 100K disks RDn transition from Rgroup0 to a specialized Rgroup.

The light gray region in Figure 5.5a corresponds to the time over which space-savings

are obtained, which can be seen in Figure 5.5d.

Many transitions with no transition overload. pacemaker successfully

bounds all redundancy management IO comfortably under the configured peak-IO-cap

throughout the cluster’s lifetime. This can be seen via an imaginary horizontal line at

5% (the configured peak-IO-cap) that none of the blue regions goes above. Recall that

pacemaker rate-limits the IO within each Rgroup to ensure simultaneous transitions

do not violate the cluster’s IO cap. Events G-1eA and G-2eA are examples of

events where both G-1 and G-2 disks (making up almost 100% of the cluster at that

time) request transitions at the same time. Despite that, the IO remains bounded

below 5%. G-3eC and G-6eB also show huge disk populations of G-3 and G-6

Dgroups (AFRs not shown) requesting almost simultaneous RUp transitions, but

pacemaker’s design ensures that the peak-IO constraint is never violated. This is

in sharp contrast with HeART’s frequent transition overload, shown in Figure 5.1a.

Disks experience multiple useful life phases. G-1, G-3, G-6 and G-7 disks

experience two phases of useful life each. In Figure 5.5a, events G-1eA and G-1eB

mark the two transitions of G-1 disks through its multiple useful lives as shown in

Figure 5.5b. In the absence of multiple useful life phases, pacemaker would have

RUp transitioned G-1 disks to Rgroup0 in 2019-05, eliminating space-savings for the

remainder of their time in the cluster. Section 5.7.3 quantifies the benefit of multiple

useful life phases for all four clusters.

MTTDL always at or above target. Along with the AFR curves, Figures 5.5b

and 5.5c also show the upper bound on the AFR for which the reliability constraint

is met (top of the gray region). pacemaker sufficiently protects all disks throughout

their life for all Dgroups across evaluated clusters.

Substantial space-savings. pacemaker provides 14% average space-savings

(Figure 5.5d) over the cluster lifetime to date. Except for 2017-01 to 2017-05 and

2017-11 to 2018-03, which correspond to infancy periods for large batches of new

empty disks added to the cluster, the entire cluster achieves ≈20% space-savings. Note

that the apparent reduction in space-savings from 2017-11 to 2018-03 isn’t actually

– 157 –

Chapter 5. Designing systems for code conversion

reduced space in absolute terms. Since Figure 5.5d shows relative space-savings,

the over 100K disks deployed around 2017-11, and their infancy period makes the

space-savings appear reduced relative to the size of the cluster.

5.7.2 pacemaker on the other three clusters

Figure 5.6 compares the transition IO incurred by pacemaker to that for HeART [1]

for Google Cluster2, Google Cluster3 and Backblaze, along with the corresponding

space-savings achieved by pacemaker. While clusters using HeART would suffer

transition overload, the same clusters under pacemaker always had all their transition

IO under the peak-IO-cap of 5%. In fact, on average, only 0.21–0.32% percent of the

cluster IO bandwidth was used for transitions. The average space-savings for the

three clusters are 14–20%.

Google Cluster2. Figure 5.6a shows the transition overload and space-savings

in Google Cluster2 and the corresponding space-savings. All Dgroups in Google

Cluster2 are step-deployed. Thus, it is not surprising that Figure 5.7c shows that over

98% of the transitions in Cluster2 were Type 2 transitions (bulk parity recalculation).

Cluster2’s disk population exceeds 450K disks. Even at such large scales, pacemaker

obtains average space-savings of almost 17% and peak space-savings of over 25%.

This translates to needing 100K fewer disks.

Google Cluster3. Google Cluster3 (Figure 5.6b) is not as large as Cluster1 or

Cluster2. At its peak, Cluster3 has a disk population of approximately 200K disks.

But, it achieves the highest average space-savings (20%) among clusters evaluated.

Like Cluster2, Cluster3 is also mostly step-deployed.

Backblaze Cluster. Backblaze (Figure 5.6c) is a completely trickle-deployed

cluster. The dark grey region across the bottom of Figure 5.6c’s pacemaker plot

shows the persistent presence of canary disks throughout the cluster’s lifetime. Unlike

the Google clusters, the transition IO of Backblaze does not produce bursts of

transition IO that lasts for weeks. Instead, since trickle-deployed disks transition

a-few-at-a-time, we see transition work appearing continuously throughout the cluster

lifetime of over 6 years. The rise in the transition IO spikes in 2019, for HeART, is

– 158 –

Chapter 5. Designing systems for code conversion

1.5% 2.5% 3.5% 5% 7.5%
Pacemaker's peak-IO-cap

0

25

50

75

100

%
 o

pt
im

al
 sa

vi
ng

s

(G
oo

gl
e

Cl
us

te
r1

)

(G
oo

gl
e

Cl
us

te
r1

)

(G
oo

gl
e

Cl
us

te
r1

)

97
.9

98
.4(G

oo
gl

e
Cl

us
te

r2
)

(G
oo

gl
e

Cl
us

te
r2

)

98
.6

98
.7

98
.7

97 98
.1

98
.4

98
.6

98
.8

97
.5

97
.6

97
.6

97
.6

97
.6

Google Cluster1 Google Cluster2 Google Cluster3 Backblaze

(a) pacemaker’s sensitivity to the peak-IO constraint.

GoogleC1
GoogleC2

GoogleC3
Backblaze

0.0

0.5

1.0

1.5

Op
tim

ize
d

di
sk

-d
ay

s

1.
1x

1.
28

x

1.
33

x

1.
03

x

(b) Multiple useful life phases

GoogleC1
GoogleC2

GoogleC3
Backblaze

0

20

40

60

80

100

Tr
an

sit
io

n
ty

pe
 sp

lit

Type 1 Type 2

(c) Transition type distribution

Figure 5.7: (a) shows pacemaker’s sensitivity to the peak IO bandwidth constraint.
(b) shows the advantage of multiple useful life phases and (c) shows the contribution
of the two transitioning techniques when pacemaker was simulated on the four
production clusters.

– 159 –

Chapter 5. Designing systems for code conversion

because of large capacity 12TB disks replacing 4TB disks. Unsurprisingly, under

pacemaker, most of the transitions are done using Type 1 (transitioning by emptying

disks) as shown in Figure 5.7c. The average space-savings obtained on Backblaze are

14%.

5.7.3 Sensitivity analyses and ablation studies

Sensitivity to IO constraints. The peak-IO constraint governs Figure 5.7a, which

shows the percentages of optimal space-savings achieved with pacemaker for peak-

IO-cap settings between 1.5% and 7.5%. A peak-IO-cap of up to 7.5% is used in order

to compare with the IO percentage spent for existing background IO activity, such as

scrubbing. By scrubbing all data once every 15 days [137], the scrubber uses around

7% IO bandwidth, and is a background work IO level tolerated by today’s clusters.

The Y-axis captures how close the space-savings are for the different peak-IO-

caps compared to “Optimal savings”, i.e. an idealized system with infinitely fast

transitions. pacemaker’s default peak-IO-cap (5%) achieves over 97% of the optimal

space-savings for each of the four clusters. For peak-IO constraint set to ≤2.5%, some

RUp transitions in Google Cluster1 and Cluster2 become too aggressively rate-limited

causing a subsequent AFR rise to violate the peak-IO constraints. We indicate this

as a failure, and show it as “∅”. The same situation happens for Google Cluster1 at

3.5%.

Sensitivity to threshold-AFR. The threshold-AFR determines when proactive

RUp transitions of step-deployed disks are initiated. Conceptually, the threshold-AFR

governs how risk-averse the admin wants to be. Lowering the threshold would trigger

an RUp transition when disks are farther away from the tolerated-AFR (more risk-

averse), and vice-versa. We evaluated pacemaker for threshold-AFRs of 60%, 75%

and 90% of the respective Rgroups’ tolerated-AFRs. We found that pacemaker’s

space-savings is not very sensitive to threshold-AFR, with space-savings only 2%

lower at 60% than at 90%. Data remained safe at each of these settings, but would

become unsafe with higher values.

Contribution of multiple useful life phases. Figure 5.7b compares the

– 160 –

Chapter 5. Designing systems for code conversion

increased number of disk-days spent in specialized Rgroups because of considering

multiple useful life phases. In the best case, Google Cluster2 spent 33% more disk-days

in specialized redundancy, increasing overall space-savings from 16% to 19%. Note

that in large-scale storage clusters, even 1% space-savings are considered substantial

as it represents thousands of disks.

Contribution of transition types. By proactively keeping step-deployed disks

in distinct Rgroups and using specialized transitioning schemes whenever possible,

instead of using simple re-encoding for all transitions, pacemaker reduces total

transition IO by 92–96% for the four clusters. Figure 5.7c shows what percentage of

transitions were done via Type 1 (disk emptying) vs. Type 2 (bulk parity recalculation).

As expected, Google clusters rely more on Type 2 transitions, because most disks

are step-deployed. In contrast, the Backblaze cluster is entirely trickle-deployed and

hence mostly uses Type 1 transitions. The small percentage of Type 2 transitions in

Backblaze occur when Rgroups are purged.

5.7.4 Evaluating HDFS + pacemaker

This section describes basic experiments with the pacemaker-enabled HDFS, fo-

cusing on its functioning and operation. Note that pacemaker is designed for

longitudinal disk deployments over several years, a scenario that cannot be repro-

duced identically in laboratory settings. Hence, these HDFS experiments are aimed

to display that integrating pacemaker with an existing storage system is straight-

forward, rather than on the long-term aspects like overall space-savings or transition

IO behavior over cluster lifetime as evaluated via simulation above.

The HDFS experiments run on a PRObE Emulab cluster [144]. Each machine

has a Dual-Core AMD Opteron Processor, 16GB RAM, and Gigabit Ethernet. We

use a 21-node cluster running HDFS 3.2.0 with one NN and 20 DNs. Each DN has a

10GB partition on a 10000 RPM HDD for a total cluster size of 200GB. We statically

define the cluster to be made up of two Rgroups of ten DNs each, one using the 6-of-9

erasure coding scheme and the other using a 7-of-10 scheme. DFS-perf [145], a popular

open-source HDFS benchmark is used, after populating the cluster to 60% full. Each

– 161 –

Chapter 5. Designing systems for code conversion

0 200 400 600 800
Time (sec)

0

1000

2000

Th
ro

ug
hp

ut
 (M

B/
se

c)

St
op

 D
N

Failure
Baseline Failure

0 200 400 600 800
Time (sec)

Be
gi

n
tra

ns
iti

on

En
d

of
 tr

an
sit

io
n

Relaxed Rgroup Transition
Baseline Relaxed Rgroup Transition

Figure 5.8: DFS-perf reported throughput for baseline, with one DN failure and one
Rgroup transition.

DFS-perf client sequentially reads one file over and over again (size=768MB), for

a total read size of about 1.75TB over 40 iterations. We use 60 DFS-perf clients,

running on 20 nodes separate from the HDFS cluster.

We focus on the behavior of a DN as it transitions between Rgroups, compared

with baseline HDFS performance (where all DNs are healthy) and its behavior while

recovering from a failed DN. Figure 5.8 shows the client throughput after the setup

phase, followed by a noticeable drop in client throughput when a DN fails (emuated

by stopping the DN). This is caused by the reconstruction IO that recreates the

data from the failed node. Read latency exhibits similar behavior (not shown due to

space). Eventually, throughput settles at about 5% lower than prior to failure, since

now there are 19 DNs.

Figure 5.8 also shows client throughput when a node is RDn transitioned from

6-of-9 to 7-of-10. There is minor interference during the transition, which can be

attributed to the data movement that HDFS performs as a part of decommissioning.

The transition requires less work than failed node reconstruction, yet takes longer

to complete because pacemaker limits the transition IO. Eventually, even though

20 DNs are running, the throughput is lower by ≈5% (one DN’s throughput). This

happens because pacemaker empties the DN before it moves into the new Rgroup,

and load-balancing data to newly added DNs happens over a longer time-frame.

Experiments with RUp transition showed similar results.

– 162 –

Chapter 5. Designing systems for code conversion

5.8 Failure rate estimation in pacemaker

This section describes how we calculate failure rates for each Dgroup based on the

disks’ age using empirical data. In the storage device reliability literature, the failure

rate over a period of time is typically expressed in terms of Annualized Failure Rate

(AFR), and calculated as:

AFR (%) =
d

E
× 100, (5.1)

where d is the number of observed disk failures, and E is the sum of the exposure

time of each disk, measured in years. The exposure time of a disk is the amount of

time it was in operation (i.e., deployed and had not failed nor been retired) during

the period in consideration, and it is typically measured at the granularity of days.

If the time to failure is exponentially distributed, then Equation (5.1) corresponds

to the maximum likelihood estimate for the rate parameter of the exponential distri-

bution. Due to the memoryless property of this distribution, such a formula would

be appropriate only if we assume that failure rate is constant with respect to time or

device age. Thus, Equation (5.1) may be useful for estimating AFR over long and

stable periods of time, but makes it hard to reason about changes in AFR over time.

Therefore, in this work, we estimate AFR using the following approach.

Assume that the lifetime (time from deployment to failure) of each disk is an

i.i.d. discrete random variable T with cumulative density function F and probability

mass function f . The failure rate (also known as hazard rate) [146] of this distribution

is given by:

h(t) = f(t)/(1− F (t)). (5.2)

The cumulative hazard defined as H(t) =
∑t

i=0 h(i) is commonly estimated using the

Nelson-Aalen estimator:

Ĥ(t) =
t∑

i=0

di

ai

for t ∈ ¶0, . . . , m♢, (5.3)

where di is the number of disks that failed during their i-th day, ai is the number of

disks that were in operation at the start of their i-th day, and m is the age in days of

– 163 –

Chapter 5. Designing systems for code conversion

the oldest observed disk drive. An estimate for the failure rate can be obtained by

applying the so-called kernel method [147]:

ĥ(t) =
m∑

i=0

di

ai

K(t− i), for t ∈ ¶0, . . . , m♢, (5.4)

where K(·) is a kernel function. In practice, Equation (5.4) can be considered as a

smoothing over the increments of Equation (5.3). For our calculations, we utilized an

Epanechnikov kernel [140] with a bandwidth of 30 days (the Epanechnikov kernel is

frequently used in practice due to its good theoretical properties).

A big advantage of this approach is that it is nonparametric, meaning that it

does not assume that the lifetime T follows any particular distribution. This allows

pacemaker to adapt and work effectively with a wide arrange of storage devices

with vastly different failure rate behaviors.

5.9 Detailed cluster evaluations of pacemaker

This section shows the remaining Dgroups of Google Cluster1 (Figure 5.9) and

provides a similar deep-dive of pacemaker on Google Cluster2, Google Cluster3 and

the Backblaze cluster along with the AFR curves of all Dgroups of those clusters.

Dgroups of Google Cluster1. Recall from Section 5.7 that Google Cluster1

is made up of seven Dgroups. G-1 and G-2 AFR curves are shown in Figures 5.5b

and 5.5c respectively. Here we show the four of the file remaining Dgroups, viz. G-3,

G-5, G-6 and G-7 in Figures 5.9a to 5.9e. G-3 and G-7 disks are trickle-deployed

similar to G-2 disks, whereas the other disks are step-deployed.

Google Cluster2. Figure 5.10a shows the pacemaker-generated IO for redun-

dancy management. Figure 5.10b shows the corresponding space savings. Finally

Figures 5.10c to 5.10f shows the AFRs of the four Dgroups that make up Cluster2.

All Dgroups in Google Cluster2 are step-deployed. Thus, it is not surprising that

Figure 5.7c shows that over 98% of the transitions in Cluster2 were performed by

bulk parity recalculation. This is the largest cluster pacemaker was simulated on.

– 164 –

Chapter 5. Designing systems for code conversion

2018-02
2018-08

2019-02
2019-08

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(a) G-6 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(b) G-4 (trickle) AFR curve

2019-08
2019-11

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(c) G-8 (step) AFR curve

2018-02
2018-08

2019-02
2019-08

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(d) G-5 (step) AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(e) G-3 (trickle) AFR curve

Figure 5.9: Detailed IO analysis and space savings achieved by pacemaker-enabled
adaptive redundancy on Google Cluster1.

– 165 –

Chapter 5. Designing systems for code conversion

Cluster2’s disk population exceeds 450K disks. Even at such large scales, pacemaker

is able to obtain average space savings of almost 17% and peak space savings of

over 25%. This translates to needing 100K fewer disks, essentially saving millions of

dollars.

Google Cluster3. Google Cluster3 is not as large as Cluster1 or Cluster2. At its

peak, Cluster3 has a disk population of approximately 200K disks. But, it achieves

the highest average space savings (20%) compared to all other clusters. Figure 5.11a

shows the pacemaker-generated IO, Figure 5.11b shows the space savings and

Figures 5.11c to 5.11e shows the AFR curves of its three Dgroups. Like Cluster2,

Cluster3 is also mostly step-deployed.

Backblaze Cluster. Backblaze is a completely trickle-deployed cluster. Fig-

ure 5.12a shows the pacemaker-generated IO. Unlike Google clusters, the transition

IO of Backblaze does not produce large regions of transition workload. Instead, since

trickle-deployed disks transition a-few-at-a-time, we see transition work appearing

continuously throughout the cluster lifetime of over 6 years. Unsurprisingly, most of

the transitions are done by emptying disks (Type 1; refer to Figure 5.7c). In terms of

sensitivity, the Backblaze cluster is the most insensitive to the peak-IO constraint

since always requires much lower transition bandwidth per day.

5.10 Tiger: disk-adaptive redundancy without addi-

tional placement restrictions

As we have shown in this chapter, the conventional approach of using a single erasure

code across the cluster uses excessive redundancy (wasting capacity, and thus money

and energy) to guarantee data safety, given that different disks have different failure

rates. Instead, adapting the redundancy scheme selection to the observed failure (as

done by Pacemaker) reduces the space overhead of redundancy by up to 20%.

The design of Pacemaker, however, faces several significant adoption hurdles. At

its core, this design is based on rigidly partitioning a storage cluster into subclusters

of disks (called redundancy groups or Rgroups) that have similar failure rates, so

– 166 –

Chapter 5. Designing systems for code conversion

2017-07 2017-10 2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10
0

5

10

15

20

To
ta

l I
O

pe
r d

ay
 (%

) Transitioning (RDn or RUp) IO
Reconstruction IO
Decommissioning IO

Unspecialized disks (right axis)
Specialized disks (right axis)

0

100K

200K

300K

400K

Nu
m

 d
isk

s r
un

ni
ng

(a) Google Cluster2 redundancy management IO due to pacemaker over its 2+ year
lifetime broken down by IO type.

30-of-33

6-of-9

10-of-13

6-of-9

(b) Google Cluster2 space savings achieved by pacemaker.

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(c) G-6 (step) AFR
curve

2017-08
2018-02

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(d) G-1 (step) AFR
curve

2018-02
2018-08

2019-02
2019-08

0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(e) G-5 (step) AFR
curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(f) G-3 (step) AFR
curve

Figure 5.10: Detailed IO analysis and space savings achieved by pacemaker-enabled
adaptive redundancy on Google Cluster2.

– 167 –

Chapter 5. Designing systems for code conversion

2016-09 2017-01 2017-05 2017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09
0

5

10

15

20

To
ta

l I
O

pe
r d

ay
 (%

) Transitioning (RDn or RUp) IO
Reconstruction IO
Decommissioning IO

Unspecialized disks (right axis)
Specialized disks (right axis)

0

50K

100K

150K

200K

Nu
m

 d
isk

s r
un

ni
ng

(a) Google Cluster3 redundancy management IO due to pacemaker

over its 3 year lifetime broken down by IO type.

6-of-9
6-of-9

15-of-18
10-of-13

30-of-33

(b) Google Cluster3 space savings achieved by pacemaker.

2016-08
2017-02

2017-08
2018-02

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(c) G-2 (step) AFR
curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(d) G-4 (step) AFR
curve

2016-08
2017-02

2017-08
2018-02

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of first step
Threshold-AFR
Tolerated-AFR region

(e) G-1 (step) AFR
curve

Figure 5.11: Detailed IO analysis and space savings achieved by pacemaker-enabled
adaptive redundancy on Google Cluster3.

– 168 –

Chapter 5. Designing systems for code conversion

2014 2015 2016 2017 2018 2019
0

5

10

15

20
To

ta
l I

O
pe

r d
ay

 (%
) Transitioning (RDn or RUp) IO

Reconstruction IO
Decommissioning IO

Unspecialized disks (right axis)
Specialized disks (right axis)

0

50K

100K

Nu
m

 d
isk

s r
un

ni
ng

(a) Backblaze redundancy management IO due to pacemaker over its 6+ year lifetime
broken down by IO type.

6-of-9 6-of-9

13-of-16 30-of-33

27-of-30
15-of-18

(b) Backblaze space savings achieved by pacemaker.

2013-08
2014-08

2015-08
2016-08

2017-08
2018-08

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(c) H-4A (trickle)
AFR curve

2014-08
2015-08

2016-08
2017-08

2018-08
2019-08

0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(d) H-4B (trickle)
AFR curve

2018-08
2019-02

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(e) H-12E (trickle)
AFR curve

2013-08
2014-08

2015-08
2016-08

2017-08
2018-08

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(f) S-4 (trickle) AFR
curve

2016-08
2017-08

2018-08
2019-08

0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(g) S-8C (trickle)
AFR curve

2017-08
2018-08

2019-08
0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(h) S-8E (trickle)
AFR curve

2018-08
2019-08

0

5

10

15

AF
R

(%
)

AFR of canaries
Threshold-AFR
Tolerated-AFR region

(i) S-12E (trickle)
AFR curve

Figure 5.12: Detailed IO analysis and space savings achieved by pacemaker-enabled
adaptive redundancy on the Backblaze cluster.

– 169 –

Chapter 5. Designing systems for code conversion

(a) Conventional cluster
storage

(b) Pacemaker
(subcluster-based) (c) Tiger

Figure 5.13: Stripe placements and configurations in different erasure coding systems:
Disks of same color have similar annualized failure rates (AFRs), with red being
least reliable (highest AFR), then blue, then green. Rectangles represent stripes
with shorter stripes having higher redundancy. Conventional one-scheme-fits all
designs (Figure 5.13a) impose no placement restrictions, but make no distinction of
disk AFRs and therefore overprotect much of the data—all stripes use the widest
redundancy scheme, shown as 2-wide for illustration. Pacemaker (Figure 5.13b) and
Tiger (Figure 5.13c) tailor redundancy based on disk AFRs, resulting in different
stripe widths in the illustration, and thereby reduce storage overhead. Pacemaker
does this with rigid AFR-based subcluster boundaries, whereas Tiger requires no
such boundaries.

– 170 –

Chapter 5. Designing systems for code conversion

they can use a subcluster-wide redundancy scheme tailored to meet the required

data reliability target (e.g., Figure 5.13b). Key adoption hurdles include: (1) Since

each stripe must be entirely within a single Rgroup, this subcluster-based design can

interfere with other data placement considerations, such as enhancing risk-diversity

by spreading data across fault domains and different makes/models/batches of disks.

Indeed, many of the Rgroups consist of a single make/model. (2) To provide reasonable

degrees of performance and reconstruction speed scalability, subclusters must be

sizable, making these designs only suitable for very large storage clusters. (3) When

failure rates rise for a given make/model, as it ages, the redundancy scheme for

an entire Rgroup (potentially 100s of PBs) may need to change to maintain target

data reliability levels—all at once. The Pacemaker design [15] proposes to predict

such changes and start them early, but they need to predict a month or more in

advance to avoid reliability problems given the huge amount of data being transitioned,

which is inherently a risky proposition. (4) The subcluster-based designs assume full

adoption of disk-adaptive redundancy, not allowing for selective adoption for some

data corpuses but not for others.

In the remainder of this chapter, we present Tiger, a disk-adaptive redundancy

system that eliminates the placement constraints posed by subcluster-based disk-

adaptive redundancy designs while providing equal or greater benefits. Tiger’s core

new abstraction is the eclectic stripe, in which disks of different AFRs can be used to

store a stripe that has redundancy tailored to the set of AFRs for those disks. In

terms of placement flexibility, eclectic stripes are identical to stripes in conventional

(non-disk-adaptive redundancy) designs. But, unlike conventional stripes, eclectic

stripes do not conservatively assume the worst-case AFR for all disks. Instead, with

eclectic stripes, the redundancy scheme is dynamically set for each stripe based on

the AFRs of the chosen disks (e.g., Figure 5.13c). Tiger’s eclectic stripe approach

avoids all the adoption hurdles discussed above, while simultaneously increasing

the effectiveness (higher space-savings) and robustness (lower burstiness of urgent

transition IO) of disk-adaptive redundancy.

Efficiently incorporating the proposed new abstraction of eclectic stripes is chal-

lenging due to multiple reasons. Tiger introduces several new design elements

– 171 –

Chapter 5. Designing systems for code conversion

to overcome these challenges. First, calculating the exact reliability in terms of

mean-time-to-data-loss (MTTDL) of a stripe can be prohibitively expensive, since

accounting for different failure rates can lead to an exponential number of states

in the traditional Markov chain reliability model. To address this, we provide a

novel approximation technique that speeds up MTTDL calculation by 2-4 orders

of magnitude while always preserving accuracy of over 95%, and on average over

99.5%. Second, while disks for a stripe can be chosen based on pre-existing placement

policies, the chosen disks may not form an adequately-reliable stripe for a planned

redundancy scheme, since the reliability is dependent on the chosen disks’ AFRs.

Tiger uses an AFR-aware stripe-width-reduction policy to quickly achieve sufficient

reliability. Third, disk AFRs change over time [1], which can require changing the

redundancy schemes of some eclectic stripes. Keeping track of AFRs for each stripe

and triggering the redundancy schemes can significantly increase the overhead for

metadata and background operations. Tiger introduces an eclectic volume abstraction

to reduce metadata overhead and make identification of required changes efficient.

It also introduces policies to reduce transition IO: the IO involved with enacting

changes to stripe redundancy schemes.

Evaluating the feasibility and efficacy of eclectic stripes requires analysis of long-

term effects on huge storage clusters. We evaluate Tiger using the same logs as used

to evaluate Pacemaker, enabling an apples-to-apples comparison. These logs contain

all disk-deployment, failure, and decommissioning events from four production storage

clusters: three 160K–450K-disk Google clusters and a ≈110K-disk cluster used for

the Backblaze Internet backup service [128]. Simulation driven by production logs

allows us to analyze reliability, space usage, and redundancy maintenance traffic for

multiple clusters each with over 100K disks and over multiple years, which would be

infeasible otherwise as part of a research setup. For all four clusters, Tiger provides

equal or better space-savings than Pacemaker, while requiring at most 0.5% of daily

IO bandwidth for transition IO. More importantly, the transition IO is both less

bursty, in terms of when it is needed, and less urgent, in terms of how unsafe an

unsafe stripe might be if the scheme transition were delayed. For instance, in response

to a tiny rise in AFR (< 0.25%) for disks of a given make/model, Pacemaker would

– 172 –

Chapter 5. Designing systems for code conversion

need 196% of the total IO bandwidth from each of those disks in order to make

the data safe—to avoid stealing more than 5% of IO bandwidth for transition IO,

Pacemaker would have to know to start 40 days in advance—but Tiger would need

<1.6% even for a 1% AFR increase because of the diversity of its eclectic stripes. And,

most importantly, Tiger exhibits significantly better risk-diversity, stemming from

removing placement constraints and allowing differently-reliable disks (and hence

disks of different makes/models) to belong to the same stripe. For example, even

with random selection of disks for each stripe, most of Tiger’s eclectic stripes span

most of a cluster’s make/models; Pacemaker’s strict Rgroup boundaries disallow use

of more than one make/model for most stripes.

Contributions. In the rest of this chapter, we make four main contributions.

First, we introduce eclectic stripes as a tool for realizing disk-adaptive redundancy

without the placement restrictions posed by prior designs. Second, we present a

reliability model and its approximation to efficiently calculate the MTTDL of eclectic

stripes. A surprising outcome is that a homogeneous stripe with the same scheme and

average disk AFR as an eclectic stripe is less reliable! Third, we present the design and

architecture of Tiger, the first disk-adaptive redundancy system for supporting and

efficiently managing eclectic stripes. Fourth, we evaluate Tiger and compare it to the

state-of-the-art, using logs from four large real-world storage clusters, demonstrating

its effectiveness in realizing disk-adaptive redundancy without prior designs’ adoption

challenges and with greater space-savings and lower risk.

5.11 Motivation of Tiger

In this section, we describe the problems with existing disk-adaptive redundancy

systems, which is the motivation for this system.

As shown by prior work [126, 127], disk AFRs are highly correlated with their

vintage, and can vary dramatically over their life. Disk-adaptive redundancy cap-

italizes on differences in disk AFRs and dynamically tailors data redundancy to

observed disk failure rates [148]. Disk-adaptive redundancy systems take into account

– 173 –

Chapter 5. Designing systems for code conversion

various constraints including the reconstruction costs when making the decision of

a target stripe width to adapt to. Specifically, wide schemes are used only when a

stripe’s average AFR is low enough to keep the reconstruction cost contained below a

configured limit. More generally, wide stripes provide cost savings in terms of smaller

storage overhead at the cost of higher reconstruction costs and higher degraded mode

reads. We know from conversing with architects of large-scale storage clusters that

the cost of the excess byte footprint matters more than the cost of excess IO required

in the context of redundancy, given existing workloads. This is especially so since, in

general, large-scale capacity-tier storage cluster workloads tend to be cold (have low

IO/s per byte). Additionally, cold data experiences fewer reads, and therefore has

very few costly degraded mode reads. Backblaze is an example where, for archival

data that has low IO access rates, administrators have publicly confirmed use of wide

redundancy schemes such as 17-of-20 [149]. By using more space-efficient redundancy

schemes during low AFR regimes, disk-adaptive redundancy can provide substantial

space-savings (> 20%) in clusters with over 100K disks.

There are two disk-adaptive redundancy systems that have been proposed prior

to Tiger: HeART [1] and Pacemaker, which we presented earlier in this chapter. In

HeART, the authors propose a tool to statistically learn the AFRs of different disk

groups and identify change-points for safe redundancy transitions. By transitioning

to an encoding scheme with minimum storage overhead that still meets the target

MTTDL, HeART was able to obtain≈ 20% space-savings when tailoring erasure codes,

and ≈ 33% space-savings when tailoring replication. Although lucrative, HeART

overlooked an important practical hurdle in performing disk-adaptive redundancy:

transition overload, i.e. the IO overhead of performing redundancy transitions. Crip-

pling transition overload when thousands of disks require simultaneous redundancy

transitions forms the basis for Pacemaker. The gist of Pacemaker is to convert urgent

redundancy transitions into schedulable ones by making conservative predictions of

the rise in AFR and proactively issuing redundancy transitions. This allows the

transition overload to be spread out over time, such that it can be completed within

tolerable IO limits without compromising data safety.

– 174 –

Chapter 5. Designing systems for code conversion

(a) Placement constraints (b) Risk-diversity

Figure 5.14: Figure 5.14a shows Pacemaker’s placement constraints by highlighting
the fraction of the disk fleet that is viable for different schemes exercised on four
production clusters. Figure 5.14b shows the risk-diversity obtained by the same
clusters on particular dates in their lifetime. A risk-diversity of 100% implies at least
one chunk stored on every possible make/model, whereas a 0% risk-diversity implies
that the particular scheme was not feasible in the cluster. Pacemaker performs poorly
in both placement constraints and risk-diversity.

5.11.1 Existing designs are impractical

Despite remarkable space-savings and low IO costs, existing disk-adaptive redundancy

systems remain impractical in real-world settings.

Placement restrictions. The primary hurdle stems from the placement restric-

tions posed by reliance on redundancy groups (Rgroups). Recall that an Rgroup

is a set of disks with similar AFRs, such that they can use the same redundancy

scheme. Prior systems redundancy management techniques rigidly partition the

cluster’s disks into Rgroups, and every stripe must be stored entirely within a single

Rgroup. Figure 5.14a shows the percentage of disks that are rendered infeasible for

various redundancy schemes Pacemaker can employ on a particular day in four large

storage clusters. More than 30% of the disks are deemed infeasible for space-efficient

schemes beyond 22-of-25, because their AFRs are not low enough for those disks

to participate in an Rgroup for which schemes beyond 22-of-25 can meet the target

MTTDL. Furthermore, in order to maintain proper redundancy, stripes are typically

constrained to span across different racks, servers, power lines, etc. Adding another

placement constraint may be close to impossible.

– 175 –

Chapter 5. Designing systems for code conversion

Lower risk-diversity. Due to high correlation of AFRs and makes/models/

batches [126, 127], and in order to enable efficient transitioning mechanisms, many

Rgroups contain disks from just one make/model. This is undesirable from a risk-

diversity perspective. Figure 5.14b shows the fraction of makes/models that are

covered for the same stripe configurations in the same four clusters described above.

Higher risk-diversity is valuable for mitigating consequences of bulk failure situa-

tions (e.g., from rapid degradation due to manufacturing defects), especially in a

disk-adaptive redundancy system where redundancy is tuned rather than regularly

excessive.

Reliance on AFR prediction. With lower risk-diversity, Pacemaker’s Rgroups

are already susceptible to data loss due to bulk failures in a single make/model

(uncommon, but not impossible). Furthermore, Pacemaker’s IO cost reduction is

highly dependent on being able to accurately predict an AFR rise well in advance.

Currently AFR is calculated only on the basis of age. Prior work has highlighted

that it is dependent on various factors such as vintage, temperature, vibration,

etc. [126, 127, 150, 151]. This makes an already difficult task of accurate AFR

prediction even harder.

All-or-nothing. Current disk-adaptive redundancy designs depend on forming

Rgroups, and work efficiently if entire Rgroups perform redundancy transitions

together (for step-deployed disks). This implies that the entire cluster must commit

to performing disk-adaptive redundancy for all of their data stored on all disks. Such

a restriction makes disk-adaptive redundancy unusable without a major overhaul of

the architecture of the existing storage cluster.

The key takeaway is that additional data placement restrictions create adoption-

blocking limitations and risks. In order have have both placement flexibility and

disk-adaptivity, we need a new approach that includes the ability to reason about

and tune the reliability of stripes that span disks with different AFRs. We achieve

this via eclectic stripes.

– 176 –

Chapter 5. Designing systems for code conversion

5.12 Eclectic Stripes and their challenges

Eclectic stripes are central to Tiger’s approach of providing disk-adaptive redundancy

without placement restrictions. An eclectic stripe is an EC stripe placed on a collection

of disks that can have different failure rates. The reliability model of conventional EC

stripes forces them to be allocated on disks having (or worse, assumed to be having)

the same failure rate. In terms of composition an eclectic stripe is no different than

what a conventional EC stripe would be. Specifically, the same disks that make up a

conventional stripe can also make up an eclectic stripe, just that eclectic stripes are

cognizant of the AFR differences of the underlying disks and can accurately reason

about the resulting reliability. A disk-adaptive redundancy system that supports

eclectic stripes has to overcome several challenges.

1. Ensure efficient creation of sufficiently reliable eclectic stripes. Taking

AFR differences of all disks in a stripe into account makes exact MTTDL calculation

of eclectic stripes prohibitively expensive (see Section 5.13.1). Since stripe creation is

a critical-path operation, it is imperative that a disk-adaptive redundancy system

supporting eclectic stripes reasons about its reliability in an efficient and accurate

manner.

2. Ensure efficient management of eclectic stripes. All underlying disks

of an eclectic stripe will not experience an AFR rise or fall together. A system

supporting eclectic stripes must efficiently identify which stripes need to change their

redundancy in response to changing AFRs.

3. Support unchanged placement policies. While tweaking the placement

policies might provide additional optimizations, a system that supports eclectic stripes

must support existing placement policies without any change.

4. Retain key benefits of disk-adaptive redundancy. Dynamic redundancy

adaptation at a low transition IO cost; continuously providing adequate reliability;

providing space-savings by using more space-efficient redundancy schemes in low-AFR

regimes are the key benefits of disk-adaptive redundancy. Any proposed disk-adaptive

redundancy system should strive to maintain these benefits.

5. Ensure an adoption-friendly design. Apart from placement restrictions,

– 177 –

Chapter 5. Designing systems for code conversion

existing disk-adaptive redundancy system designs require that the entire cluster

commits entirely to perform disk-adaptive redundancy, or it cannot gain any of

its benefits. Moreover, only the very large-scale storage clusters can use existing

disk-adaptive redundancy designs, whereas the small and medium sized clusters

are outside their scope. High emphasis on usability and showcasing a way for easy

adoption of disk-adaptive redundancy in existing storage clusters of all shapes and

sizes is an important design challenge.

5.13 Mechanisms to enable eclectic stripes

In this section, we address the two main challenges of eclectic stripes: their reliability

and their management.

5.13.1 Interpreting reliability of eclectic stripes

We first shed light on key takeaways from our study of the reliability of eclectic stripes

and then provide the detailed theory and the associated analysis.

Calculating MTTDL of eclectic stripes is efficient and accurate. The

exact calculation of the MTTDL of an eclectic stripe is computationally expensive. We

provide a novel approximation that provides the MTTDL with over 99.5% accuracy

(on average), and always provides over 95% accuracy in our tests. In practice, a

difference of 5% in MTTDL typically translates into a difference of around 0.1% AFR

for a homogeneous stripe, which is negligible. The exact MTTDL calculation and the

approximation are detailed in Section 5.13.1.

Eclectic stripes are more reliable than homogeneous stripes. When

comparing the MTTDL of an eclectic stripe with a homogeneous stripe having the

same EC scheme and same avg. AFR, the MTTDL of the eclectic stripe is always

higher than the MTTDL of the corresponding homogeneous stripe for typical system

parameters (Section 5.13.2, Figure 5.16).

Eclectic stripes are robust to AFR changes of individual disks. The

MTTDL of the eclectic stripes does not react abruptly to the increase in AFR of a

– 178 –

Chapter 5. Designing systems for code conversion

Figure 5.15: Left: Classic Markov chain model for the MTTDL of a 2-of-4 homoge-
neous stripe. Right: Markov chain model for the MTTDL of a 2-of-4 eclectic stripe.

few disks. Compared to the conventional approach of treating stripes as homogeneous

with AFR equal to the maximum AFR in the stripe, MTTDL of eclectic stripes react

very gradually to AFR changes.

Eclectic stripes are more robust to AFR misestimations. Due to the

nature of empirical data, any system that measures AFR has to estimate it. Since the

AFRs of different disk make/models are estimated independently, it is unlikely that

there will be simultaneous underestimation of the AFR of every disk in an eclectic

stripe, and hence the impact of estimation errors is smaller (Figure 5.17) and may

even cancel each other out. Furthermore, disk-adaptive redundancy systems are made

even more robust against misprediction by the use of confidence intervals. Thus,

eclectic stripes are more robust to AFR misestimations compared to homogeneous

stripes.

Exact MTTDL calculation is costly

Using a Markov chain model to calculate the MTTDL of storage systems is a classic

approach [133]. A generalization of this approach helps us take into account disks

with different failure rates. Consider an EC stripe of a k-of-n scheme, placed over

n disks with failure rates λi(i ∈ [n]) and a disk repair rate of µ. The state of the

system is given by an n-length vector s = (s0, . . . , sn) with si = 1 if disk i has failed,

and si = 0 otherwise (i ∈ [n]). The state space is given by states (si)
n
i=1 such that the

total number of failure
∑n

i=0 si is at most the number of parities n− k, and a data

– 179 –

Chapter 5. Designing systems for code conversion

loss state labeled DL. Therefore, the total number of states is 1 +
∑n−k

i=0


n
i

)
. The

rate of transition from state s to s′ is defined as:

• λi if si = 0, s′
i = 1, and sj = s′

j for i ̸= j (ith disk fails),

• µ if si = 1, s′
i = 0, and sj = s′

j for i ̸= j (ith disk repaired),

•
∑n

i=1(1− si)λi if
∑n

i=1 si = n− k and s′ = DL (any disk fails when n− k disks

have failed and are not repaired).

The MTTDL is defined as the mean time to state DL from the initial state 0 =

(0, . . . , 0).

Given the values of n, k, (λi)
n
i=1, and µ, one can compute the MTTDL by using

the standard approach of solving a system of equations. However, this approach is

not tractable, due to the exponential explosion on the number of states with respect

to n − k (see Figure 5.15 to compare conventional Markov chain with that of an

eclectic stripe). For example, the Markov chain of a 10-of-14 eclectic stripe has 1472

states, compared to 6 states in the case of a 10-of-14 homogeneous stripe. Reasoning

about this model can be hard too, since it is not directly clear how disk AFRs affect

MTTDL. Furthermore, this approach tends to be numerically unstable, which makes

obtaining precise MTTDLs hard. We find that computing a single MTTDL using

this approach with realistic parameters can take up to several seconds using the

Mathematica 12 software [152] on a desktop PC. This is too slow in practice, because

not only do we need to compute the MTTDL when creating new stripes, but we also

need to periodically compute the MTTDL of every stripe in the system (typically

billions) as device AFRs change. The next section describes an efficient approximation

that makes the MTTDL calculation of eclectic stripes computationally tractable and

highly accurate.

Efficient and accurate MTTDL approximation

In order to compute and better understand the MTTDL of eclectic stripes, we

propose an approximation formula, building on the approach presented in [153] for

– 180 –

Chapter 5. Designing systems for code conversion

7
6

8
6

9
6

15
14

16
14

17
14

31
30

32
30

33
30

7
6

8
6

9
6

15
14

16
14

17
14

31
30

32
30

33
30

Encoding scheme (nk)

7.75

8.00

8.25

8.50

8.75

9.00

AF
R

of
 e

qu
iv

al
en

t
ho

m
og

en
eo

us
 st

rip
e

(%
)

High variance (2 16% AFR) Low variance (5 13% AFR)

Average AFR of
each eclectic stripe

Figure 5.16: Reliability of eclectic stripes compared to homogeneous stripes. For
each scheme, we sample 1000 eclectic stripes and for each stripe we compute its
MTTDL ρ and then compute the AFR λ of a homogeneous stripe with the same
scheme and MTTDL equal to ρ. The boxes show the distribution of λ over the 1000
stripes. The AFR of the first n− 1 disks in a eclectic stripe are sampled uniformly
at random from the range 2–16% (high variance) or 5–13% (low variance), and the
AFR of the last disk in a stripe is chosen to ensure that the average AFR of the
disks in each stripe is fixed at 9%. E.g. the median 6-of-9 eclectic stripe from the
high-variance group is as reliable as a 6-of-9 homogeneous stripe with AFR 8.5%,
despite having an average AFR of 9%.

– 181 –

Chapter 5. Designing systems for code conversion

homogeneous stripes. This approximation is extremely good when µ ≫ maxi λi,

which is true for modern cluster storage systems.

The main idea behind this approximation is to note that (in the steady state)

disk i will be available a fraction Ai = µ/(µ + λi) of the time, and that the system

will reach the DL state when exactly k − 1 of the disks are available. Therefore, the

MTTDL can be approximated with the following formula (see Section 5.16 for the

full derivation):

MTTDL ≈ (µ(n− k + 1) PBin(k − 1; n, (Ai)
n
i=1))

−1 , (5.5)

where PBin(k; n, (pi)
n
i=1) is the probability of obtaining exactly k heads when flipping

n biased coins with probability of heads pi for coin i. PBin is known as the Poisson-

binomial distribution, and it can be efficiently evaluated [154, 155].

We tested this approximation against the Markov chain approach over all values

of 6 ≤ k ≤ 30, 1 ≤ n− k ≤ 3, and AFRs of 1–16%. The relative difference between

the two output MTTDLs never exceeded 5% and was less than 0.5% on average8. As

a benefit, the approximation is 2–4 orders of magnitude faster to evaluate (in the

order of milliseconds), more numerically stable, significantly simpler to implement,

and gives direct insight into how the parameters affect MTTDL.

5.13.2 Understanding MTTDL of eclectic stripes

The main difference between the reliability of an eclectic stripe and a homogeneous

stripe is given by the Poisson-binomial factor in Equation (5.5), which becomes

Binomial when all probabilities are equal. Notice that the difference between Ai in

Equation (5.5) will be small because µ≫ maxi λi, and therefore the corresponding

Poisson-Binomial distribution will not deviate too much from a Binomial distribution

8The median relative difference between the exact and approximated eclectic stripe MTTDL was
0.1%, the 90th percentile error was 0.5%, and the 95th percentile error was 0.7%.

– 182 –

Chapter 5. Designing systems for code conversion

5 10 15 20 25 30
AFR of single disk (%)

15.0

15.1

15.2

15.3

15.4

15.5

lo
g1

0(
M

TT
DL

 in
 d

ay
s) Homogeneous stripe with avg AFR

Eclectic stripe

Figure 5.17: Reliability of a 6-of-9 eclectic stripe when the AFR of a single disk
varies. The eclectic stripe is composed of 8 devices with AFR 9%, and one device
whose AFR varies from 1% to 30% (x axis). The dashed line denotes the MTTDL of
a 6-of-9 homogeneous stripe with the same average AFR as the eclectic stripe. The
solid line denotes the MTTDL of the eclectic stripe. Reliability of the eclectic stripe
is always above the corresponding homogeneous stripe.

with trial success probability A =
∑n

i=1 Ai/n [156]. Furthermore, we have:

n∑

i=1

Ai

n
=

1

n

n∑

i=1

1

1 + λi/µ
≈

1

n

n∑

i=1


1−

λi

µ


= 1−

∑n
i=1 λi/n

µ
,

where we use the approximation 1/(1 + x) ≈ 1− x for small x. This means that the

reliability of an eclectic stripe will tend to be close to the reliability of a homogeneous

stripe with AFR equal to the average AFR of the eclectic stripe.

To measure how close the MTTDL of an eclectic stripe will be to that of a

homogeneous stripe with the same scheme and average AFR, we conduct two numerical

experiments. Figure 5.16 compares eclectic stripes against homogeneous stripes that

have the same MTTDL, across different schemes and AFR ranges. In this experiment,

instead of directly showing an MTTDL ρ (which is hard to interpret) in the y-axis,

we show the AFR λ of a homogeneous stripe that has MTTDL equal to ρ (under

the relevant scheme). The results show that eclectic stripes are more reliable than

homogeneous stripes with the same scheme and average AFR. In other words, for

a homogeneous stripe composed of disks with AFR λ to match the reliability of an

– 183 –

Chapter 5. Designing systems for code conversion

eclectic stripe with AFRs (λi)
n
i=1, the disks in the homogeneous stripe have to be

more reliable on average, i.e., λ <
∑n

i=1 λi/n. The difference, however, becomes small

when the ratio n/k is small, or the range of AFRs is small. Figure 5.17 shows the

reliability of an eclectic stripe when the AFR of a single disk in the eclectic stripe

varies in the range 1–30%. This experiment shows that eclectic stripes provide a

dampening effect against AFR rises of a small number of devices in two ways: (1)

a small number of devices have a smaller impact on the average AFR of the stripe

(slope of the dashed line), and (2) the convex shape of the curve shows that the

eclectic stripe is even more reliable than a homogeneous stripe with the same scheme

and average AFR.

Checking if a stripe is safe: Typically, a minimum level of reliability is set in

the cluster by setting a MTTDL threshold that all stripes must satisfy in order to be

deemed safe. Given the results presented in this section, we now describe a simple

method to determine whether a stripe is safe. We define the critical AFR of a k-of-n

scheme and MTTDL threshold θ as the highest AFR that disks in a homogeneous

k-of-n stripe can attain while still having an MTTDL of at least θ. The critical

AFRs for the different schemes that are used in a system can be precomputed and

stored. Then, a simple andx efficient way of checking whether an eclectic stripe under

some scheme is safe is to check whether the average AFR in the stripe is less than

the critical AFR for that scheme. Since an eclectic stripe is at least as reliable as

a homogeneous stripe with the same scheme and average AFR, if the stripe passes

this check, then we can be certain that the stripe is safe. If the stripe does not pass

the check, then it may be unsafe, which can determined by computing its MTTDL.

This test can help greatly reduce the amount of work needed in checking whether

stripes are still safe, and it also provides a simple way of understanding the reliability

of eclectic stripes.

5.13.3 Eclectic Volumes

Disk AFR changes may trigger redundancy transitions. Prior designs performed

disk-adaptive redundancy at the disk level. Thus, if a disk’s AFR changed, either all

– 184 –

Chapter 5. Designing systems for code conversion

or none of the stripes on that disk required a redundancy transition. With eclectic

stripes, each disk may store chunks of stripes with different reliabilities. An AFR

change might only require redundancy transitions for a subset of those stripes. With

millions of eclectic stripe chunks being stored on each disk, a linear search through

all of them for each AFR change is impractical.

An eclectic volume is a collection of eclectic stripes that use the same EC scheme

and are stored on the same set of disks. A disk can contain multiple volume fragments

identified by their globally unique volume ID. Each disk maintains a map of stripe ID

to eclectic volume ID. Since each eclectic volume spans the exact same disks, whenever

a disk’s AFR changes, Tiger only needs to check whether the EC scheme used for

each of the disk’s constituent volumes still meets the required MTTDL target. There

is no need to check the reliability of each of the individual eclectic stripes within

a volume since they are all identically reliable. The details of how Tiger manages

eclectic volumes is described in Section 5.14.3.

Eclectic volumes prove to be efficient only if they represent a large number of

eclectic stripes. Therefore, in Tiger the default size of an eclectic volume is set to 1

TeraByte (TB). This way, even though Tiger performs reliability monitoring at the

volume granularity it ensures that each eclectic stripe is always sufficiently reliable.

5.14 Design and working of Tiger

Tiger is a practical disk-adaptive redundancy system designed to overcome the

challenges described in Section 5.12. Figure 5.18 shows the architectural components

of Tiger (colored boxes) and how they interact with existing cluster storage system

components and common disk-adaptive redundancy components.

5.14.1 Data flow in Tiger

We overview Tiger by explaining the lifecycle of eclectic stripes. An eclectic stripe

is created via the Eclectic Stripe Allocator (ESAllocator), which identifies a set

of disks and the corresponding scheme on which this data is to be stored. The

– 185 –

Chapter 5. Designing systems for code conversion

Figure 5.18: Architecture of Tiger. The blue boxes correspond to Tiger’s compo-
nents. The gray boxes correspond to existing components in cluster storage system
architecture and components present in existing disk-adaptive redundancy systems.

– 186 –

Chapter 5. Designing systems for code conversion

ESAllocator uses the existing and unmodified data placement policy to obtain a

set of disks. That placement policy uses whatever knowledge designers choose (e.g.,

available freespace, load balance, and fault domain constraints) in selecting the set of

disks. The ESAllocator then queries the Eclectic Stripe Manager’s MTTDL Engine

(ESMTTDLEngine) with the AFRs of the chosen disks, and a stripe configuration,

to verify that the planned stripe’s MTTDL meets the required target MTTDL. If it

does not, the ESAllocator boosts the MTTDL by changing the stripe configuration

until an appropriately safe redundancy scheme is found. Section 5.14.2 details this

process.

Once created, the ESAllocator passes the stripe to the Eclectic Volume Manager

(EVManager, see Section 5.14.3) to either add the stripe to an existing volume, or

create a new volume which will contain the new stripe. The Eclectic Volume Health

Inspector (EVHInspector) continuously monitors the reliability of the eclectic volume

by querying the change point detector, which identifies significant AFR changes in

the data from the AFR curve learner. The AFR curve learner, change point detector

and the rate limiter can be reused without change from any existing disk-adaptive

redundancy system9. In reaction to a significant AFR change (rise or fall), the

EVHInspector alerts the EVManager, which fetches the eclectic stripe metadata from

the EVDirectory and provides both the AFR change and the metadata to the Eclectic

Stripe Reorganizer (ESReorganizer; see Section 5.14.2). The ESReorganizer includes

techniques to efficiently perform redundancy transitions. If eclectic stripes must

change, the ESReorganizer consults the ESAllocator in forming them. Non-urgent

redundancy transitions (when the target MTTDL is not at risk of being violated) are

throttled by the rate limiter in order to not overwhelm the storage cluster.

Tiger’s stripe-by-stripe disk-adaptive redundancy approach enables incremental

adoption by allowing data to be stored either as an eclectic stripe or a homogeneous

stripe. This is in contrast to subcluster-based designs that are all-or-nothing.

9Tiger reuses the Ruptures change-point detection library [157, 158], the AFR curve-learner and
the rate-limiter from HeART [1] and Pacemaker [15].

– 187 –

Chapter 5. Designing systems for code conversion

5.14.2 The Eclectic Stripe Manager

The Eclectic Stripe Manager (ESManager) handles construction, maintenance and

reorganization of eclectic stripes.

Constructing eclectic stripes. In the absence of an existing eclectic volume

that has space (described later in Section 5.13.3), the ESAllocator asks the existing

data placement policy for disks to store each new eclectic stripe. Since that placement

policy is unaware of disk-adaptive redundancy, it may return a set of disks whose

AFRs produce an MTTDL that either fails to meet or far exceeds the target MTTDL.

Algorithm 1 describes the process to build a space-efficient, yet adequately reliable

eclectic stripe.

Algorithm 1

θMTTDL ← target MTTDL
nmax ← max¶n ♣ (n, k) ∈ schemes♢
(d1, . . . , dnmax)← nmax randomly sampled devices
for (n, k) ∈ schemes in order of increasing n/k do

if MTTDL(n, k, (d1, . . . , dn)) ≥ θMTTDL then return (n, k)

To give itself flexibility, ESAllocator asks the placement policy to provide a set of

disks for the maximum-width-allowed stripe (e.g., 33 for 30-of-33). The ESAllocator

then queries the ESMTTDLEngine with the provided disks and its planned scheme to

get the MTTDL value. If the MTTDL does not meet the target MTTDL, ESAllocator

discards a disk from the set and increases the redundancy of the corresponding scheme

(e.g., 29-of-32 instead of 30-of-33) to boost the stripe’s MTTDL, repeating this process

until sufficient MTTDL is achieved. This process is guaranteed to terminate, since

the least space-efficient scheme in a storage cluster must meet the target MTTDL.

Moreover, by iterating from the most space-efficient scheme allowed, the algorithm

terminates at the most space-efficient scheme for the provided disks.

Ensuring reliability amid disk failures. The reliability of each eclectic stripe

is a function of the AFRs on the disks on which it is stored. So, when a disk fails,

the reconstructed data cannot simply be placed on a randomly chosen disk, since its

AFR might be high enough to cause the eclectic stripe’s MTTDL to exceed the target.

– 188 –

Chapter 5. Designing systems for code conversion

Recall, from Section 5.13.2, that the critical AFR of an EC scheme is the highest

AFR that a homogeneous stripe of that scheme can reliably support, and a simple

way to test that an eclectic stripe is safe is to check that its average AFR is below

the critical AFR for its EC scheme. Therefore, we can ensure that reliability will

be preserved if we choose a disk that keeps the average AFR of the affected stripes

under their respective critical AFRs.

When a disk in Tiger fails, the EVManager is notified. This triggers a lookup

in the EVDirectory for eclectic stripes whose chunks need to be reconstructed. The

EVManager forwards the list of chunks to the ESReorganizer. For each stripe, the

ESReorganizer asks the ESAllocator for disks to replace the failed disks, providing

the critical AFR for the stripe. The ESAllocator returns suitable disks, if they

are found, otherwise, it allocates (one or more) new eclectic stripes and moves the

prior stripe’s data (including any reconstructed data) to the new stripes. Finding

sufficiently reliable disks to store the reconstructed data results in lower transition IO

than allocating new eclectic stripes, since the latter involves moving data of disks that

did not fail. After the reconstruction process (whether or not new eclectic stripes are

formed), ESReorganizer informs the EVManager of the changes, which then updates

the EVDirectory accordingly.

Dealing with AFR changes over time. A disk’s AFR is not constant

throughout its lifetime [148, 159–161]. In addition to building and maintaining

eclectic stripes, ESManager must also ensure that data is kept safe when a disk’s

AFR changes.

Ensuring data reliability with increasing AFRs. The EVManager monitors AFR

by querying the change point detector. Whenever the AFR rises, the EVManager

identifies any eclectic volumes whose data is at a risk of becoming under-reliable. It

alerts the ESReorganizer, with the necessary stripe metadata of such stripes, which

calls the ESAllocator with the current and previous disk AFR values and the number

of chunks that need reallocation onto safer disks.

As with failed data reconstruction, ESAllocator prefers finding suitable disk

alternates whose AFRs are less than or equal to previous AFRs values of the disks

whose AFRs rose. If ESAllocator cannot find suitable disks, new eclectic stripes are

– 189 –

Chapter 5. Designing systems for code conversion

formed and data is moved, as described previously.

Reducing data over-protection with reducing AFRs. When a disk’s AFR decreases,

there is no reliability threat to the data stored on that disk, but there may be an

opportunity to reduce redundancy and obtain space-savings.

The simplest way (that also entails no transition IO cost) of reducing a stripe’s

redundancy is by deleting excess parities10. However, deleting parities is rarely an

option for two reasons. First, most storage clusters have a minimum requirement

on the number of parities per stripe, set by the system administrator. Second,

adding/deleting a parity has a much higher impact on the MTTDL value of a stripe

than adding/deleting a data chunk—deleting even a single parity usually makes the

stripe miss the target MTTDL. When ESReorganizer receives metadata of possibly

over-redundant stripes from the EVManager, it queries the ESMTTDLEngine whether

reducing parities is feasible and, if so, enacts the change.

When deleting parities is not an option, there are two additional ways redundancy

can be reduced. First, the ESAllocator could find candidate disks with AFR higher

than the current disk’s AFR, but low enough that the mean AFR is below the stripe’s

critical AFR. This method is cost-effective, since it involves only reading and writing

those chunks that are on over-protected disks. Second, if the ESAllocator cannot

find suitable disks, it performs new stripe allocations if it can find a new eclectic

stripe with lower storage overhead. Although re-allocation has a high IO overhead

(since it involves copying data over to the new stripe), it is not urgent when lowering

redundancy and can be throttled by the rate limiter without putting any data at risk.

The eclectic stripe reorganizer (ESReorganizer). The ESReorganizer uses

several techniques to ensure adequate reliability and provide maximum space-savings.

At any given time, the ESReorganizer might be dealing with multiple eclectic

stripes seeking possible changes. ESReorganizer processes requests in priority of

maintaining reliability: failed data reconstruction, then near-risk stripes that need to

increase their redundancy, then requests of decommissioning disks to move data off of

them, and then stripes seeking a redundancy reduction. It processes eclectic stripes

10Deleting parities may not work reducing redundancy of non-MDS codes.

– 190 –

Chapter 5. Designing systems for code conversion

that are requesting reduction in redundancy in descending order of their storage

overhead.

5.14.3 The Eclectic Volume Manager

The EVManager is responsible for creating, maintaining and monitoring the health

of eclectic volumes. Recall (from Section 5.13.3) that an eclectic volume (typically in

TBs) contains hundreds-of-thousands of eclectic stripes (typically in MBs). Along

with health, the EVManager maintains usage statistics (e.g., freespace and load) for

each eclectic volume.

Constructing and populating eclectic volumes. Similar to how ESMan-

ager manages eclectic stripes, EVManager dynamically creates and destroys eclectic

volumes. The construction of the first eclectic stripe forces the creation of the first

eclectic volume on the same set of disks that are chosen by the ESAllocator. When

creating subsequent eclectic stripes, the ESAllocator first queries the EVManager

to check if there are eclectic volumes that are conducive for storing new stripes.

The EVManager does this by maintaining capacity and load-balancing metrics for

each eclectic volume. Thus, the EVManager also avoids hot-spotting within eclectic

volumes by spreading hot data evenly across multiple eclectic volumes. Once the

target eclectic volume is identified, the set of disks comprising the eclectic volume are

returned to the ESAllocator. If there is no space available, the ESAllocator gets a

new set of disks from the placement policy which causes EVManager to create a new

eclectic volume atop those disks. Tiger’s eclectic volumes operate similar to Ceph’s

placement groups [129].

The Eclectic Volume Directory. Recall from Section 5.13.3 that eclectic

volumes are simply a logical grouping of all the eclectic stripes with the same

redundancy scheme on the same set of disks. Each eclectic volume has a unique entry

in the EVDirectory and stored against the eclectic volume ID are the disks on which

the eclectic volume is stored. In addition, the EVDirectory also contains a mapping

from disk serial number to list of volume IDs whose fragments are stored on that disk.

Note that the size of this metadata is very small. With TB-sized volume fragments,

– 191 –

Chapter 5. Designing systems for code conversion

even a 100K disk storage cluster with 20TB disks will have an EVDirectory less than

100MB.

The tiny size of the EVDirectory also implies that it is unlikely to be a bottleneck.

The EVDirectory will typically be queried and updated whenever disks fail, or their

AFR increases significantly (in order to fetch the eclectic volumes IDs stored on the

affected disks). It might also be queried to fulfill an allocation request in order to get

the disks on which an eclectic volume is stored, if the eclectic-volume-to-disks mapping

is not cached. Even a cluster with 500K disks has at most a few hundred disk failures

in a day and typically not more than 10 makes/models, thus limiting the EVDirectory

updates to less than 1000 per day. Although allocations are more frequent, caching

can filter most queries for them, and their rate is also much lower than the rate of

file metadata lookups in a cluster with billions of files. And, if necessary, traditional

metadata scaling techniques can be employed to prevent EVDirectory from becoming

a bottleneck.

Reacting to failures and AFR changes. The EVHInspector continuously

polls the change point detector and the cluster metadata service to gather information

about disk failures and significant AFR changes. For all significant changes, the

EVHInspector reconfirms the MTTDL of the affected volumes by querying the

ESMTTDLEngine with the changed AFRs. Even though it is technically not a stripe,

a EVDirectory has all information required to calculate the reliability of an eclectic

volume, viz. the AFRs of the disks on which the volume resides, and the redundancy

scheme configuration. Due to its small metadata footprint, EVHInspector can check

the health of billions of stripes by checking the reliability of only thousands of eclectic

volumes.

Whenever a disk fails, or a disk’s AFR increases, the EVHInspector looks up

the EVDirectory to find the volumes affected due to this failure/AFR rise. If the

disk in question is alive, the volume manager queries the disk to obtain the stripe

IDs belonging to that volume ID. If the disk has failed, the EVHInspector queries

other disks of that particular eclectic volume and gathers the stripe IDs from them.

Note that all disks storing a particular eclectic volume have the same list of eclectic

stripe IDs in common (but they also each may have other stripes as well from

– 192 –

Chapter 5. Designing systems for code conversion

non-overlapping eclectic volumes).

The EVHInspector then forwards the list of stripe IDs to the ESReorganizer

along with the updated and previous AFR information and the action to be taken

(reconstruct data, increase redundancy or reduce redundancy). On performing the

appropriate task, the ESReorganizer communicates the metadata changes back to the

EVManager, and the EVManager subsequently reflects it in the EVDirectory. For

reconstruction and increase in redundancy, if a replacement disk is found, and has

enough capacity to accommodate all chunks of the failed disk/disks whose AFR has

increased, the eclectic volume of all constituting eclectic stripes after the operation

remains the same. For redundancy reductions, or in case of not finding a replacement

disk, or not finding one with enough capacity, the eclectic stripes depart from their

original eclectic volume (unlike Ceph’s placement groups) since they will now be

stored on potentially different subset of disks.

5.15 Evaluation of Tiger

We now evaluate how Tiger performs on real-world data, and show how it fulfills the

challenges laid out in Section 5.12. Tiger is evaluated using real-world deployment

and failure logs from four production clusters at two different organizations (Google

and Backblaze). Each cluster has a multi-year lifetime and disks from multiple

makes/models/batches. Backblaze uses trickle-deployed disks. These disks are added

to the cluster every few days in the tens or hundreds. Google Cluster 2 and Cluster

3 have step-deployed makes/models where disks are introduced into the cluster in

large batches of tens-of-thousands of disks within a very short span of time. Google

Cluster 1 is a mix of step- and trickle-deployed disks.

The highlights of our evaluation are (1) Tiger significantly lowers placement

restrictions posed by Pacemaker (existing state-of-the-art disk-adaptive redundancy

system); (2) Tiger’s eclectic stripes provide much higher risk-diversity compared to

Pacemaker; (3) Tiger is closer to the target MTTDL, and thus more efficient than

existing disk-adaptive redundancy approaches; (4) Tiger outperforms Pacemaker in

– 193 –

Chapter 5. Designing systems for code conversion

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(a) Backblaze

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(b) Google Cluster 1

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(c) Google Cluster 2

6-of-9 14-of-17
22-of-25

30-of-33
Redundancy schemes

(increasing space-efficiency)

0

50

100

Vi
ab

le
 d

isk
s (

%
)

Tiger
Pacemaker

(d) Google Cluster 3

Figure 5.19: Placement constraints posed by Tiger compared to Pacemaker by
observing the percentage of the disk fleet that is viable for the different redundancy
schemes. Tiger has lower placement constraints than Pacemaker. Tiger has over >75%
disks being viable for all four clusters for all scheme configurations. Pacemaker’s
placement constraints are more pronounced in Google clusters since they are mostly
step-deployed. This results in strict Rgroup boundaries disallowing disks from different
makes/models being a part of the same Rgroup.

space-savings while keeping the average transition IO ≤ 0.5% and peak transition IO

< 5% of cluster IO bandwidth and (5) Tiger’s eclectic stripes are less sensitive to

rising AFR and provide better data safety.

5.15.1 Tiger enables flexible data placement

We capture the flexibility in data placement by measuring the percentage of the disk

fleet that is considered viable for storing data using a particular redundancy scheme.

The viability is decided by whether the data stored on those disks will meet the

target MTTDL. The X-axis in Figure 5.19a shows the various schemes that can be

supported in each storage cluster11. For estimating Tiger’s viable disk candidates, we

perform a Monte-Carlo simulation on specific days in each of the cluster’s lifetime.

We allocate 1000 eclectic stripes by picking disks uniformly at random and check

how many of the possible schemes can use the chosen disks. For Pacemaker, we bin

the disks by AFRs to mimic Rgroups and measure the ratio of the population of the

Rgroups to the entire disk fleet.

11The narrowest scheme is set to 6-of-9 and widest is set to 30-of-33. Schemes with higher width
have lower redundancy since the number of parities are kept the same. This is based on reference to
prior work [1, 15], and also on the basis of communication with storage administrators of large-scale
cluster storage systems at various organizations.

– 194 –

Chapter 5. Designing systems for code conversion

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(a) Backblaze risk-
diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(b) Google Cluster 1
risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(c) Google Cluster 2
risk-diversity

6-of-9
14-of-17

22-of-25
30-of-33

Redundancy schemes
(increasing space-efficiency)

0

50

100

Ri
sk

 d
iv

er
sit

y
(%

)

Tiger
Pacemaker

(d) Google Cluster 3
risk-diversity

Figure 5.20: Risk-diversity achieved by Tiger over three large-scale cluster storage
systems. All three plots are average risk-diversity measurements taken over 5 days
spread equally over the lifetime of the clusters. Pacemaker due its Rgroup based
design has much lower risk-diversity compared to Tiger, more evident in Figures 5.20c
and 5.20d which are entirely step-deployed clusters.

Tiger has almost all disks available for allocation for any scheme in Google

Clusters 1 and 3 (Figures 5.19b and 5.19d), whereas in Backblaze and Google Cluster

2 (Figures 5.19a and 5.19c) at most 25% disks are deemed not viable for the widest

schemes (beyond 22-of-25). When a large fraction of disks of the cluster have a high

AFR (as is the case with Backblaze and Google Cluster 2 for the chosen dates),

formation of eclectic stripes ends up with mostly high AFR disks. In such situations,

Tiger cannot employ a very space-efficient redundancy scheme. Pacemaker’s strict

Rgroup boundaries, on the other hand, limit all disks in an Rgroup to a single scheme

that may not be very wide. Therefore, for Pacemaker, all clusters see a significant

drop in viable disks as the width increases.

5.15.2 Tiger achieves high risk-diversity

Risk-diversity of a stripe is directly proportional to the number of unique makes/

models participating in that stripe. If all makes/models in the storage cluster have

representation in the stripe, its risk-diversity is defined to be 100%. A 0% risk-diversity

implies that there were no disks in the cluster that could be used for the particular

scheme. The setup used for evaluating risk-diversity is a Monte-Carlo simulation,

where 100 stripes were allocated for each scheme configuration by choosing disks

– 195 –

Chapter 5. Designing systems for code conversion

uniformly at random. For Tiger, we measure risk-diversity by capturing the average

number of unique disk makes/models on which the chunks of an eclectic stripe are

stored for each stripe configuration. For Pacemaker, we again bin the disks by AFR

to form Rgroups, and count the unique number of makes/models within each Rgroup.

We take the average of this simulation performed on five equally spaced days in the

cluster lifetime to get an overall sense of risk-diversity of both systems.

Tiger significantly outperforms Pacemaker in providing high risk-diversity. Fig-

ure 5.20 captures the risk-diversity achieved by Tiger vs Pacemaker. Since Tiger has

no partitioning of disks, all disks of any make/model are viable for allocating any

scheme. The minimum risk-diversity achieved by Tiger is 60% across all four clusters,

that too for the narrowest scheme (6-of-9) for Backblaze (Figure 5.20a) and Google

Cluster 1 (Figure 5.20b) clusters. Both these clusters have seven makes/models, and

it is unlikely that seven out of nine chunks will be across different makes/models. As

the stripe width increases, Tiger’s risk-diversity also improves. Entirely step-deployed

clusters, Google Cluster 2 (Figure 5.20c) and Google Cluster 3 (Figure 5.20d) have

four and three makes/models respectively. Tiger achieves perfect risk-diversity for

all possible schemes in those clusters. For Pacemaker, it is more likely that clusters

where all makes/models are trickle-deployed will have a better risk-diversity because

multiple makes/models can be a part of the same Rgroup so long as their AFRs are

in the same range, for e.g. Backblaze (Figure 5.20a). Nevertheless, even clusters

with all trickle-deployed disks do not see perfect (or even good) risk-diversity since

different makes/models are deployed at different times, and they go through different

phases of life at different dates. Risk-diversity is poorer for Pacemaker in clusters

with step-deployed makes /models as seen in Figures 5.20c and 5.20d. This is because

Rgroups and steps have a 1:1 mapping and each step only contains disks of a single

make/model. The reason Pacemaker has 100% risk-diversity for 30-of-33 is because

when averaging over multiple days (5 for this experiment), all makes/models on some

date belonged to an Rgroup with the 30-of-33 redundancy scheme.

– 196 –

Chapter 5. Designing systems for code conversion

0
500

Conventional
mean AFR scheme
(Overhead=1.1)

(a)

0
250

Conventional
max AFR scheme
(Overhead=1.5)

(b)

0

2500

Fr
eq

ue
nc

y

Pacemaker
(Overhead=1.2)

(c)

13 14 15 16 17 18 19 20
log10(MTTDL in days)

0
1000 Tiger

(Overhead=1.1)(d)

Figure 5.21: Comparison of MTTDL distributions for different approaches. We
form 10000 random stripes for each approach using the AFRs from Google Cluster 1
(notice the different scales in the Y-axis). In a conventional system, a single scheme
is chosen for all stripes based on the average AFR (a) or maximum AFR (b). (c) In
Pacemaker, stripes must reside within an Rgroup, and the scheme depends on the
Rgroup. (d) In Tiger, the scheme for each stripe is chosen based on the AFRs in the
stripe. The dashed vertical line denotes the target MTTDL.

– 197 –

Chapter 5. Designing systems for code conversion

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(a) Backblaze space-
savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(b) Google Cluster 1
space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(c) Google Cluster 2
space-savings

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0

10

20

30

Sp
ac

e
sa

vi
ng

s (
%

) Tiger
Pacemaker

(d) Google Cluster 3
space-savings

Figure 5.22: Space-savings achieved by Tiger for disk-adaptive redundancy simulated
on four production clusters compared to Pacemaker over conventional one-scheme-
fits-all redundancy approaches. Figures 5.22a to 5.22d show that across all clusters
with different maximum stripe width configurations, Tiger provides up to 5% higher
average space-savings compared to Pacemaker.

5.15.3 Tiger adapts redundancy efficiently

The efficacy of disk-adaptive redundancy performed by Tiger is evaluated using

three metrics. First, we discuss the MTTDL distribution of data stored using Tiger.

Subsequently, using the same four clusters used by Pacemaker we evaluate the resulting

space-savings obtained by Tiger because of disk-adaptive redundancy, and finally we

measure the IO overhead needed to perform necessary redundancy transitions. For

fair comparison, when evaluating Tiger, we employ the same configurations (such as

the IO constraints and permitted redundancy schemes) and tools (such as the AFR

curve learner and the change-point detector) that are used in Pacemaker.

Tiger’s achieves tight reliability. Storage clusters have to ensure that all data

in the cluster always meets a specified target level of reliability typically specified as a

MTTDL value. Tiger’s target MTTDL is set as the lowest acceptable MTTDL in the

system. This is calculated using the MTTDL of the most conservative homogeneous

stripe possible (6-of-9) having the maximum possible AFR (16%). These settings are

borrowed from Pacemaker’s evaluation for a fair comparison with Tiger.

Figure 5.21 shows a comparison in the distribution of stripe MTTDL with different

approaches to redundancy selection for a specific day in Google Cluster 1. Figure 5.21a

shows conventional systems choosing the redundancy scheme based on the avg. AFR,

– 198 –

Chapter 5. Designing systems for code conversion

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n
IO

 (%
)

Tiger
Pacemaker

(a) Backblaze IO over-
head

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n
IO

 (%
)

Tiger
Pacemaker

(b) Google Cluster 1
IO overhead

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n
IO

 (%
)

Tiger
Pacemaker

(c) Google Cluster 2
IO overhead

12-of-15
18-of-21

24-of-27
30-of-33

Max allowed stripe width

0.0

0.2

0.4

0.6

Av
g.

 tr
an

sit
io

n
IO

 (%
)

Tiger
Pacemaker

(d) Google Cluster 3
IO overhead

Figure 5.23: IO overhead of redundancy scheme transitions of Tiger versus Pacemaker.
In most configurations, Tiger has a higher IO overhead compared to Pacemaker due
to Pacemaker leveraging its IO-efficient transitioning mechanisms. Despite being
higher, the average IO overhead of Tiger is still at most 0.5% of the overall cluster’s
IO bandwidth; much lower than existing background tasks such as scrubbing, that
require approximately 7% IO bandwidth [137]

which results in small storage overhead, but puts a big fraction of the stripes at risk.

Figure 5.21b shows conventional systems that choose the redundancy scheme on the

basis of max AFR. Although all stripes are sufficiently protected, the storage overhead

is the highest among all four alternatives. Figure 5.21c shows Pacemaker where the

different MTTDL clusters represent different Rgroups with different redundancy

schemes. Pacemaker achieves good reduction in storage overhead, and keeps all

stripes above the target MTTDL. In fact, some Rgroups (with higher MTTDL

values) are too over-protected and denote lost opportunities for space-savings. Finally,

Figure 5.21d shows Tiger’s MTTDL distribution. Despite all its eclectic stripes being

above the MTTDL threshold, Tiger has least storage overhead.

Tiger achieves attractive space-savings. Akin to Pacemaker, by dynamically

tailoring redundancy to disk AFRs, Tiger’s eclectic stripes can use more space-

efficient redundancy schemes to meet the required MTTDL target. Figure 5.22 shows

that Tiger achieves equal or better average space-savings compared to Pacemaker

in all four clusters. For Google Clusters 1, 2 and 3 (Figures 5.22b to 5.22d), the

highly cost-efficient redundancy transitions of Pacemaker allows a large step-deployed

make/model to spend more time in lower redundancy. This boosts Pacemaker’s

overall space-savings for these clusters and prevents Tiger from surpassing it easily.

– 199 –

Chapter 5. Designing systems for code conversion

In the Backblaze cluster (Figure 5.22a), the reason for Tiger achieving better

space-savings is because eclectic stripes allow high AFR disks to be mixed with low

AFR disks and yet use an optimized redundancy scheme. In Pacemaker, high AFR

disks cannot be mixed with other disks, resulting in lower space-savings. In the

Backblaze cluster, all the seven makes/models are trickle-deployed. This results in

a non-trivial fraction of disks constantly being in high-AFR regimes of infancy or

wearout. While Pacemaker is forced to use the default, most conservative redundancy

scheme on these disks, Tiger can use these disks for more space-efficient redundancy

schemes by combining them with other, more robust disks. As a result, Tiger is able

to achieve up to 5% higher space-savings compared to Pacemaker.

Tiger has very low IO overhead. Figure 5.23 shows the IO overhead com-

parison between Pacemaker and Tiger. Although both systems are capped at 5%

and in general require very low IO (compared to background tasks such as scrubbing

that requires ≈ 7% [137]), our evaluation shows that Tiger can achieve all its benefits

with an average IO bandwidth required for redundancy transitions of at most 0.5%.

In an absolute sense, Tiger’s low IO overhead is mainly attributed to Tiger’s efficient

redundancy transitions for an AFR rise (detailed in Section 5.14.2), where Tiger

moves the potentially risky chunk from an unsafe disk to a safe disk rather than

re-encoding it or reallocating it; both having a significantly higher IO cost.

Compared to Pacemaker, Tiger still incurs slightly higher IO overhead. This is

due to Tiger’s mechanism of coalescing space-inefficient (high-redundancy) eclectic

stripes into new space-efficient (low-redundancy) eclectic stripes in response to AFR

reduction by moving all chunks. It leads to more data movement compared to moving

just the chunks of the high-AFR disks (as is the case when AFR rises). This is a

conscious design choice made in Tiger in order to maximize space-savings for non-

urgent redundancy transitions at the expense of a minor increase in the IO overhead.

Moreover, Pacemaker’s IO-efficient redundancy transitioning mechanisms (that are

more suitable for its Rgroup-based design) further help in reducing its IO overhead.

Tiger does not experience urgent IO bursts. In order to understand the

burstiness of the IO that can be experienced by Tiger compared to Pacemaker, we

artificially increase the AFR of a make/model and measure the resulting transition

– 200 –

Chapter 5. Designing systems for code conversion

0.0 0.5 1.0
0

50

100
Tr

an
sit

io
n

IO
(%

 o
f R

gr
ou

p
IO

 B
W

)

0.14 1.6

Google cluster 1

0.0 0.5 1.0
Increase in AFR (%) of one constituent make/model

0

Google cluster 2
Disk 1

0.0 0.5 1.0

0

Google cluster 2
Disk 2
Pacemaker
Tiger

0

25

50

75

100

Tr
an

sit
io

n
IO

(%
 o

f t
ot

al
 c

lu
st

er
 IO

 B
W

)

Figure 5.24: IO cost of redundancy transitions associated with the increase of AFR
for one constituent make/model. IO cost is measured as a percentage of the total IO
bandwidth of the Rgroup for Pacemaker, whereas it is the total cluster IO bandwidth
for Tiger. It is calculated by scaling up a simulation of 1000 random stripes in each
system and measuring the number of stripes that become unsafe after the given
increase in AFR.

IO load for maintaining data reliability. Figure 5.24 shows the comparison of IO loads

experienced by Pacemaker vs Tiger for three instances of increasing AFR of a single

step-deployed make/model. Performed on three different dates in two Google clusters

(Cluster 1 and Cluster 2), we observe that Pacemaker needs orders of magnitude

higher IO bandwidth than Tiger to achieve the required transitions. In fact for

Google Cluster 2, in both instances none of Tiger’s stripes needed transitioning

despite observing a 1% rise in AFR.

We explain Pacemaker’s high IO requirement with an example. Suppose a 20TB

disk, which can perform 100MB/s needs to transition away from using a 30-of-33

scheme. Despite using Pacemaker’s optimized Type 2 transitions12, simply reading

the data to recalculate new parities would require 196% of the disk’s possible IO

bandwidth in a day (assuming 90% fullness to match Pacemaker’s setup). In a

step-deployed make/model all disks of an Rgroup transition together. In order to

spread out the resulting IO burst over time, Pacemaker relies on predicting the AFR

rise well in advance. To maintain a 5% IO cap, Pacemaker would need to know the

12In Type 2 transitions, Pacemaker re-encodes data from one scheme to another without re-writing
any data. It simply recalculates new parities, writes them and deletes the old ones.

– 201 –

Chapter 5. Designing systems for code conversion

AFR rise at least 40 days in advance. Long-term AFR predictions are both non-robust

and non-trivial.

In contrast, Tiger for the same transition does not suffer from any IO bursts.

Firstly, because of eclectic stripes, even if the disk AFR increases, only a limited

fraction of data stored on it will need a redundancy transition, since other stripes

might be residing on more robust disks and might continue to meet the target MTTDL.

Secondly, other disks over which the eclectic stripes needing an increase in redundancy

are spread need not (and probably will not) belong to the same make/model/batch.

Therefore, they will not require a simultaneous increase in redundancy and can assist

in transitioning data from the affected stripes. Thus disks in Tiger are spared from

any sudden IO bursts.

5.15.4 Challenging situations for Tiger

There are certain situations that create fundamental challenges for Tiger and other

disk-adaptive redundancy systems.

Sudden rise in AFRs mimicking bulk failures. Although Figure 5.24 shows

that Tiger is robust to AFR rises in any make/model in a cluster, there could be bulk

failure scenarios where large fraction of the disks in the cluster fail together. On such

occasions, any system (including Tiger) that depends on redundancy will suffer from

potential data loss unless the system includes cross-cluster redundancy.

A cluster with a single step-deployed make/model. Suppose a cluster had

only one make/model, deployed in a step-deployed manner (note: we have not come

across such an example for the large clusters targeted): there would be no diversity

to exploit and all disks of the cluster would undergo redundancy transitions together.

Not only would this produce bursty IO, but also will potentially result in a capacity

crunch (when increasing redundancy). Such clusters would either need to keep some

space unutilized to account for the bulk redundancy-increasing transitions, or will need

to make provisions to add more disks to the cluster before the redundancy-increasing

transitions are issued.

– 202 –

Chapter 5. Designing systems for code conversion

5.16 Derivation of approximation of MTTDL of eclec-

tic stripes

In order to approximate the MTTDL of an eclectic stripe, we will assume that the

stripe can be repaired in the data loss state and we will approximate the MTTDL as

the mean time between visits to the data loss state. In particular, we will analyze

the stripe as an alternating renewal process. Let As be the stripe availability (i.e.,

the fraction of the time that the stripe is not in the data loss state), µs be the repair

rate in the data loss state, and λs the stripe data loss rate. As described above, the

MTTDL is approximately λ−1
s . For an alternating renewal process, we have that:

As =
µs

µs + λs

⇐⇒
1

λs

=
As

µs(1− As)
(5.6)

The repair rate in the data loss state is simply the number of failed disks in that

state:

µs = (n− k + 1)µ. (5.7)

We assume that each disk in the stripe fails independently from the rest, and that

it is repaired with rate µ if it fails. Then, in steady state, disk i is available with

probability:

Ai =
µ

µ + λi

. (5.8)

Let P (j) be the probability that we find the stripe in a state where exactly j disks

are available in the stripe. Since there are no states with more than n− k + 1 failed

disks, we have that:

P (j) =
Q(j)

Q(k − 1) + · · ·+ Q(n)
, for k − 1 ≤ j ≤ n, (5.9)

where Q(j) is the probability that exactly j disks are available. Since disks are

independent, Q(j) is equal to a Poisson-binomial distribution, with probabilities

– 203 –

Chapter 5. Designing systems for code conversion

(Ai)
n
i=1. Given this, the availability of stripe is given by:

As = P (k) + · · ·+ P (n). (5.10)

Thus, we have:

1

λs

=
Q(k) + · · ·+ Q(n)

µ(n− k + 1)Q(k − 1)
≈

1

µ(n− k + 1)Q(k − 1)
. (5.11)

Where the approximation comes from the fact that Q(n) ≈ 1 because µ≫ maxi λi

and thus all Ai are close to 1.

In summary, we have that:

MTTDL ≈
1

µ(n− k + 1)Q(k − 1)
. (5.12)

5.17 Related Work

The closest related work is HeART, which we have discussed several times throughout

this chapter. Additional related work can be divided into works that study the

reliability of disks and distributed storage, and systems that manage multiple EC

schemes and transitions between them. One essential part of disk-adaptive redundancy

is the monitoring of disk AFRs, which are used by Tiger to assess the reliability of

stripes. Many works have studied the behavior of disk AFRs and their impact on

distributed storage reliability [21, 126, 127, 134, 137, 138, 162–166]. Also, multiple

works have studied the prediction of disk AFRs based on different features [151, 167–

172].

Many existing distributed storage systems allow for multiple EC schemes to coexist

in the same cluster [141, 173]. There are systems that propose choosing different EC

schemes for different data [93, 174]. The problem of transitioning data from one EC

scheme to another has been widely studied in the Coding Theory literature, with

many works studying its cost, as well as proposing special code designs that reduce

the cost of transitions [19, 63, 83, 86, 87, 89, 91–93, 95, 96, 99, 175]. Such designs

– 204 –

Chapter 5. Designing systems for code conversion

could be used with Tiger, though our evaluations indicate that transition IO is not a

significant problem.

– 205 –

Part II

Dynamic storage codes for change

across space

– 206 –

The second part of this thesis deals with changes in storage codes across space. In

particular, we focus on the challenge of designing storage codes and systems that can

adapt to differences in density across geographic regions. In Chapter 6, we design

minimum-update cost codes, a new type of storage code designed for minimizing

storage overhead and WAN bandwidth usage in geo-distributed storage systems. In

Chapter 7, we propose Pudu, a strongly-consistent geo-distributed storage system

that leverages minimum-update cost codes to reduce the resource-cost of the system.

– 207 –

Chapter 6

Irregular Array Codes with Arbitrary

Access Sets for Geo-Distributed

Storage

This chapter is based on work from [176], done in collaboration with K. V. Rashmi.

Erasure codes are commonly used in distributed storage systems to provide

resiliency against failures. In such applications, an [n, k] block code C is used to

encode a message m consisting of k symbols into a codeword c consisting of n

symbols, where symbols are taken from a finite field Fq of size q. In a scalar code,

each codeword symbol is then placed in a different node in the system. Maximum

distance separable (MDS) codes are widely used in practice, because they require the

least amount of storage for a given level of failure tolerance.

Scalar MDS codes have the property that the message m can be decoded from

any subset of k out of all n nodes. Some applications, however, require the ability

to decode the message from only a few of those subsets. In some cases, it may even

be desirable to decode the message from certain subsets of size smaller than k. An

example of such an application is geo-distributed storage systems [6, 177–180]. In

these systems, data is encoded and distributed across different servers around the

globe. Clients in diverse geographical locations then decode and update the data

by communicating with these servers. One important constraint is given by the

– 208 –

Chapter 6. Codes for geo-distributed storage

1

2

3 4

5
node 1 a b

node 2 c

node 3 a

node 4 b

node 5 c

(a) (b)

Figure 6.1: (a) Example of arbitrary access sets over five nodes and (b) an irregular
array code that satisfies them.

maximum latency facing clients when decoding data (i.e. read latency). Due to the

geo-distributed nature of this application, network latency across pairs of clients and

servers varies significantly. Thus each client is only able to communicate with a small

subset of nearby servers under a given read latency threshold. On top of this, one

wants to provide certain failure tolerance guarantees, such as ensuring that each

client can decode the data even if one of the nearby servers fails. This leads to the

requirement that clients must be able to decode data from specific subsets of nodes.

We formalize such constraints on decodability through the notion of access sets.

An access set is a subset of nodes S ⊆ ¶1, . . . , n♢ expressing the requirement that the

message m must be decodable using only symbols stored in the nodes in S. We say

that a collection of access sets S is satisfied by a code if the message m is decodable

from each of the access sets in S. Note that there can be other subsets not in S which

are also sufficient for decoding m. Our goal is to design a code satisfying the given

access sets while minimizing other cost metrics.

Existing work on codes with arbitrary access sets [181, 182] has focused on

minimizing storage overhead, i.e. the ratio between the total number of symbols in

a codeword and the number of symbols in the message it encodes. In this chapter,

we focus on an additional metric of practical importance: update cost. The update

cost of a code is the average number of symbols communicated when a single symbol

of the message is updated. In the setting of geo-distributed storage systems, these

transmissions would consume the wide-area network (WAN) bandwidth which is a

– 209 –

Chapter 6. Codes for geo-distributed storage

scarce and expensive resource in distributed systems [183]. Thus, update cost is an

important metric to minimize in geo-distributed storage systems.

When the access sets correspond to all


n
k

)
subsets of size k, it can be shown from

basic results about MDS codes that the minimum storage overhead is n/k and the

minimum update cost is (n− k + 1), both of which are simultaneously achieved by

systematic [n, k] Reed-Solomon codes (or other MDS codes).

Towards the goal of optimizing these two metrics in geo-distributed storage

systems, we ask the following question: When the required access sets are more

relaxed than all subsets of size k, is it possible to reduce update cost and storage

overhead simultaneously by tailoring the code construction to the access sets? We

answer this question in the affirmative.

Consider the following toy example.

Example 6.1: Consider n = 5 nodes and access sets S = ¶¶1, 2♢, ¶1, 5♢, ¶2, 3, 4♢, ¶3, 4,

5♢♢ (see Figure 6.1a). A code that satisfies S is a systematic [5, 2] Reed-Solomon code,

with update cost 4 and storage overhead 5/2 = 2.5. Another code that satisfies S is the

irregular array code shown on Figure 6.1b, which encodes the message m = (a, b, c).

Note that m can be fully decoded from any of the access sets in S, and that each

message symbol is present in only two different nodes. Thus, this code has update

cost 2 and storage overhead 6/3 = 2. x

In Example 6.1, it was possible to reduce storage overhead by placing data unevenly

on nodes. This kind of code is called an irregular array code, which allows for the

storage of a variable number of symbols on each node, in contrast to scalar codes

which only store a single symbol per node. Note also that in Example 6.1 the sparsity

of the access sets makes it possible to reduce update cost.

We study the problem of designing codes that satisfy the given access sets while

minimizing update cost and storage overhead. We start by presenting the problem

formally and exploring its fundamental limits (Section 6.2). We do this by first

deriving the minimum update cost achievable by an irregular array code satisfying

the given access sets (Section 6.2.1). We then focus on analyzing update cost and

storage overhead in conjunction, and demonstrate that employing irregular array

– 210 –

Chapter 6. Codes for geo-distributed storage

codes is necessary for jointly minimizing both of these metrics (Section 6.2.2). We also

show that, unlike the case where all subsets of size k are access sets, it is not always

possible to simultaneously achieve the minimum update cost and minimum storage

overhead (Section 6.2.3). Since the cost of WAN bandwidth tends to be higher than

the cost of storage [183, 184], we focus on codes with minimum update cost (termed

MUC) and minimize storage overhead subject to this constraint. We model MUC

codes using information flow graphs, and use this model to derive a lower bound on

their storage overhead (Section 6.3). Finally, we show the existence of MUC codes

meeting this lower bound through a randomized construction (Section 6.3). Overall,

the results show that it is possible to obtain significant savings in update cost and

storage overhead compared to traditional MDS codes when one adapts the design

of a code to the given access sets. This chapter also exposes a new trade-off space

between update cost and storage overhead under arbitrary access sets, which is of

significance in geo-distributed storage systems.

6.1 Related work and existing results

In this section, we summarize the related work and review existing results which will

be used in this chapter.

6.1.1 Related work

The concept of codes with arbitrary access sets has been previously studied in the

information dispersal and secret sharing literatures. Information dispersal [181, 182,

185] studies the problem of encoding and distributing a given file f among nodes in

a way that satisfies prespecified access sets. While [181, 182] study the minimum

storage overhead required by arbitrary access sets, to the best of our knowledge,

work in the information dispersal literature has not focused on update cost. Secret

sharing with general access structures [186] considers the same scenario as information

dispersal but adds a security requirement: any subset of nodes that is not an access

set leaks no information about f . Security is not among the objectives of this chapter.

– 211 –

Chapter 6. Codes for geo-distributed storage

Gonen et al. [187] consider collections of access sets which are restricted to be of the

same size k and study the field size requirement of scalar codes satisfying them.

Irregular array codes have also been used by [188–190] in a line of work called

irregular MDS array codes. In this setting, the following parameters are given as

input: the number of nodes n, the number of message symbols mi stored in node

i ∈ ¶1, . . . , n♢, and a number k such that all message symbols can be decoded from

any k nodes. The goal in these works is: 1) to determine the necessary number of

parity symbols pi stored in each node i while minimizing the total number of parity

symbols
∑n

i=1 pi, and 2) to design a code that stores mi message symbols and pi parity

symbols in node i such that the message can be decoded from any k nodes.

Several works have studied the cost of updates in storage codes via different

metrics, such as update complexity, update efficiency, and update bandwidth. Update

complexity [23, 24, 35, 191–202] is defined as the average number of codeword symbols

updated when a single message symbol is updated. In linear codes, this is related

to the fraction of non-zero entries (i.e. density) of the generator matrix. Update

efficiency [203–205] refers to the asymptotic behavior of update complexity. Update

bandwidth [190] assumes a systematic irregular array code, and is the average amount

of symbols communicated among nodes when all message symbols stored in a single

node are updated. All these metrics differ from the update cost considered in our

work, which is defined as the average number of symbols communicated when a

single message symbol is updated. Update complexity and update efficiency focus

on the number of symbols updated, whereas update cost focuses on the number of

symbols communicated (when nodes store multiple symbols, a single communicated

symbol can be used to update several symbols at a node). We focus on the number

of symbols communicated rather than updated in order to capture the usage of WAN

bandwidth in geo-distributed storage systems. Update bandwidth also focuses on the

number of symbols communicated, but is defined for systematic codes only and is

motivated by a setting where data is generated at the nodes, which is not a good fit

for our target application of geo-distributed storage systems. Several other works have

studied handling updates in storage systems in different settings, such as multiversion

coding [206] and oblivious updates [207].

– 212 –

Chapter 6. Codes for geo-distributed storage

The design of erasure codes for distributed storage systems has also been studied

by other lines of research with the goal of optimizing other metrics. For example,

regenerating codes (e.g. [27–30, 35, 37, 40, 43]) minimize the bandwidth cost of node

repair, locally repairable codes (e.g. [65, 66, 70, 71, 114]) reduce the number of nodes

that must participate in the repair of a single node, and Piggyback codes [47, 63, 208]

construct codes to reduce the amount of data read and downloaded during repair

while having a low number of symbols per node (i.e., substripes).

6.1.2 Existing results on storage overhead for arbitrary access

sets

In this subsection, we summarize results from previous works that are used in this

chapter. Naor and Roth [181] proved a lower bound on the minimum storage overhead

of a code satisfying given access sets S. Let [n] = ¶1, . . . , n♢. Each node v ∈ [n] is

modeled as a variable wv ∈ [0, 1] denoting the size of node v as a fraction of the size

of the message m. One clear restriction is that the combined size of the nodes in an

access set must be at least that of the message. Therefore, a lower bound on storage

overhead is given by the solution to the following linear program (LP).

minimize
∑

v∈[n] wv

subject to
∑

v∈S wv ≥ 1, ∀S ∈ S

wv ∈ [0, 1], ∀v ∈ [n]

(LP1)

Lemma 6.1 ([181]). LP1 gives a lower bound on the storage overhead of irregular

array codes satisfying access sets S.

Proof. Let M be a uniform random variable representing message m, and let

¶Wv♢v∈[n] be random variables representing the contents of nodes. A necessary

condition for decoding to be possible is that the message is completely determined by

the nodes in an access set, i.e., H(M ♣¶Wv♢v∈S) = 0 for all S ∈ S. Thus, for all S ∈ S

– 213 –

Chapter 6. Codes for geo-distributed storage

it holds that:

H(M) ≤ H(M, ¶Wv♢v∈S)

= H(¶Wv♢v∈S) + H(M ♣¶Wv♢v∈S)

= H(¶Wv♢v∈S) ≤
∑

v∈S H(Wv).

Moreover, H(M) = k, and clearly H(Wv) ≤ ℓv for all v ∈ [n]. This is captured by

LP1 when we introduce variables wv := ℓv/k.

Lemma 6.2 ([182]). The bound of Lemma 6.1 is achievable by using a sufficiently

long MDS code and distributing symbols according to the weights ¶wv♢v∈[n].

Proof. Let ¶w∗
v♢v∈[n] be a rational solution to LP1. The message size k is chosen

as the least common denominator of the w∗
v variables, and the number of symbols

in node v is set to ℓv = kw∗
v. Let N = k

∑
v∈[n] w∗

v be the total number of symbols.

Then, one can utilize an [N, k] MDS block code and distribute its symbols according

to the node sizes (ℓv)v∈[n] to construct an irregular array code which has minimum

storage size and satisfies the access sets S.

6.2 Fundamental limits on codes with arbitrary access

sets

An irregular array code over finite field Fq with n nodes, message of length k, and

node sizes (ℓi)i∈[n] is defined by a mapping C : Fk
q → FN

q , where N =
∑

i∈[n] ℓi is the

length of a codeword. An irregular array code is said to be linear if C is linear. Each

codeword C(m) = (c1, . . . , cN) is interpreted as an n-node array, with node i denoted

as Ci(m) = (c(ℓ<
i

+1), . . . , c(ℓ<
i

+ℓi)) where ℓ<
i =

∑i−1
j=1 ℓj. Let the symbol ∗ denote an

erasure and, for a subset S ⊆ [n], let CS(m) denote the result of erasing every symbol

in Ci(m) for i ∈ [n] \ S. We say that an irregular array code satisfies access sets

S ⊆ 2[n] if m can be decoded from CS(m), i.e., there exists a decoding function

D : (Fq ∪¶∗♢)
N → Fk

q such that D(CS(m)) = m for all m ∈ Fk
q and S ∈ S. Note that

– 214 –

Chapter 6. Codes for geo-distributed storage

if it is possible to decode m from an access set S, then it is possible to decode m from

any access set S ′ ⊇ S. Thus, we assume without loss of generality that all subsets

in S are minimal, and thus ♣S♣ ≤


n
⌊n/2⌋

)
(by Sperner’s theorem [209]). The storage

overhead of an irregular array code is defined as the ratio N/k. We define the update

cost of an irregular array code as the average number of symbols communicated to

nodes when a single symbol of the message is updated. In general, update cost is at

least the average number of nodes that are updated when a single message symbol is

updated, since at least one symbol must be communicated to each updated node. In

linear codes, both the number of symbols communicated and the number of nodes

updated are equivalent because if message symbol mi is updated to m′
i it suffices to

send symbol ∆mi = (m′
i−mi) to every updated node. Each node then scales ∆mi by

the appropriate factor and updates its symbols. Thus, for linear codes update cost is:

update-cost(C) :=

∑k
i=1 ♣¶j ∈ [n] : Cj(ei) ̸= 0♢♣

k
,

where ei ∈ Fk
q is the i-th standard basis vector. When ℓi = ℓ for all i ∈ [n] we say

that the code is a regular array code, and when ℓ = 1 we say that it is a scalar code.

Our ultimate goal is to construct codes that minimize update cost and storage

overhead while satisfying the given access sets S. We begin by studying update cost

in isolation (Section 6.2.1). Then, we study both update cost and storage overhead in

conjunction (Section 6.2.3). Along the way, we show that using irregular array codes

is necessary for minimizing these two metrics (Section 6.2.2).

6.2.1 Minimum update cost

Now, we derive a lower bound on the update cost of a code satisfying the given access

sets S. To achieve this, we model each node v ∈ [n] with a binary variable ẇv ∈ ¶0, 1♢

indicating whether the node is updated or not when updating any single arbitrarily

chosen message symbol. Observe that if a symbol of the message is updated, then

at least one node in each access set S ∈ S has to be updated, since otherwise the

output of the decoding function on this access set would remain unchanged. Thus,

– 215 –

Chapter 6. Codes for geo-distributed storage

one can compute a lower bound on the number of nodes updated by a single symbol

update and, by extension, a lower bound on update cost, through the following integer

program (IP).

minimize
∑

v∈[n] ẇv

subject to
∑

v∈S ẇv ≥ 1, ∀S ∈ S

ẇv ∈ ¶0, 1♢, ∀v ∈ [n]

(IP1)

Note that this formulation corresponds to computing a set cover of the access sets by

nodes, where a node v is said to cover access set S if v ∈ S.

Lemma 6.3. IP1 gives a lower bound on the update cost of irregular array codes

satisfying access sets S.

Proof. Let u∗ be the optimal value of IP1, and suppose there exists a message symbol

that updates fewer nodes when updated. Let U ′ be the subset of nodes updated.

Since ♣U ′♣ < u∗, there must exist at least one access set S ∈ S such that (U ′ ∩ S) = ∅.

This is a contradiction, since decoding from S would yield the same output as before

the update.

Since the above holds for every symbol in the message, u∗ is also a lower bound

on the average number of nodes changed by a single symbol update, which is in turn

a lower bound on the average number of symbols communicated, i.e., the update

cost.

We show that this bound is achievable via strategic replication.

Lemma 6.4. The bound of Lemma 6.3 is achievable.

Proof. Let ¶ẇ∗
v♢v∈[n] be the optimal solution to IP1. Consider a code that places a

full copy of the message m on each node v where ẇ∗
v = 1. Clearly, this code achieves

the minimum update cost and satisfies the access sets S.

The next theorem follows from Lemmas 6.3 and 6.4.

Theorem 6.5. The minimum update cost of an irregular array code satisfying access

sets S is given by IP1 and is achieved by strategic replication.

– 216 –

Chapter 6. Codes for geo-distributed storage

Minimum update sets or µ-sets: IP1 may have multiple optimal solutions for the

given access sets S. Each optimal solution can be interpreted as a subset of nodes U

where v ∈ U iff ẇv = 1. We call such subsets of nodes a minimum update set or µ-set,

and denote the collection of all µ-sets for the given access sets as U . Note that a code

can have minimum update cost only if every update to a message symbol updates

a number of nodes equal to the minimum update cost. Because of this, µ-sets are

important for studying codes with minimum update cost, and each message symbol

must be associated to a specific µ-set that is updated when that message symbol is

updated. As a consequence, in codes with minimum update cost, a node v depends

on a certain message symbol iff it belongs to its corresponding µ-set. For example,

in Example 6.1, one can verify that the minimum update cost is 2, and that each

message symbol updates a µ-set: a updates ¶1, 3♢, b updates ¶1, 4♢, and c updates

¶2, 5♢. Note that the size of U can be exponential in n and, like S, it is upper bounded

by


n
⌊n/2⌋

)
.

6.2.2 The necessity of irregular array codes

In this subsection, we show that considering irregular array codes (instead of tra-

ditional scalar codes) is not only important for the sake of generality, but also a

necessity for reducing both update cost and storage overhead.

Lemma 6.6. Irregular array codes are necessary for achieving the minimum storage

overhead of arbitrary access sets.

Proof. The proof proceeds by contradiction using an example. Consider Example 6.1.

Notice that any coding scheme that places the same number of symbols in each

node must place at least k/2 symbols on each node, due to decoding set ¶1, 2♢ and

Lemma 6.1. This results in an storage overhead of at least 2.5. On the other hand,

the code proposed in Example 6.1 achieves the minimum storage overhead, which

is 2 by Lemma 6.1 (consider the solution w1 = 2/3 and wv = 1/3 for v ∈ ¶2, . . . , 5♢).

This means that storing a different amount of symbols in each node is necessary for

minimizing storage overhead.

– 217 –

Chapter 6. Codes for geo-distributed storage

4 5

6

1

23
7

node 1 a b

node 2 c d

node 3 e f

node 4 a + e d + e

node 5 a +f c +f

node 6 b + e c + e

node 7 b +f d +f

(a) (b)

Figure 6.2: (a) Access sets over seven nodes defined by the Fano plane and (b) an
array code that satisfies it.

In general, irregular array codes tend to achieve better storage overhead than

scalar codes when the access sets are of different sizes, and when nodes belong to

different number of access sets. These two situations arise naturally in geo-distributed

storage systems because of the difference in density of servers in distinct regions. Note

that existing codes for arbitrary access sets with reduced storage overhead compared

to MDS codes (from the literature on information dispersal [181, 182, 185] and secret

sharing [186]) are indeed irregular array codes.

Lemma 6.7. Even for access sets where scalar codes can achieve the minimum storage

overhead, array codes are necessary for additionally minimizing the update cost.

We use the next example in the proof to this lemma.

Example 6.2: Consider n = 7 and the access sets S defined by the Fano plane, where

each subset of three nodes is in S iff they lie on the same line (see Figure 6.2a).

The minimum storage overhead for S is 7/3, by Lemma 6.1. The minimum update

cost is 3, by Theorem 6.5 (every line is a µ-set). The access sets S are satisfied by

a systematic [7, 3] Reed-Solomon code, which has the minimum storage overhead

and its update cost is 5 (higher than the minimum update cost). The access sets S

are also satisfied by the irregular array code shown in Figure 6.2b, which encodes

the message m = (a, b, c, d, e, f), and has the minimum storage overhead and the

minimum update cost. x

– 218 –

Chapter 6. Codes for geo-distributed storage

Proof of Lemma 6.7. The proof proceeds by contradiction using an example. Con-

sider Example 6.2. For these access sets, no code which places a single symbol per

node and has minimum storage overhead can achieve the minimum update cost, as

explained below. Clearly, the µ-sets associated with the message symbols must cover

all nodes, as otherwise uncovered nodes would never be updated. Thus, the code

must have k = 3, since at least three µ-sets are needed to cover every node, and there

are exactly three nodes in each access set. However, for these access sets, any triple of

µ-sets that covers all nodes must intersect at exactly one node. No code that places

a single symbol in each node can satisfy the access sets in such a triple, since two of

the nodes in it would be a function of the same message symbol, and the remaining

node would be a function of all three message symbols.

6.2.3 Tradeoff of update cost vs. storage overhead

So far, we looked at update cost and storage overhead separately, and saw how to

construct codes that achieve the minimum cost possible on each metric separately.

However, it is easy to see that while the constructions in Lemmas 6.1 and 6.4 achieve

the minimum cost with respect to one metric, they do not perform well with respect to

the other. Therefore, it is a natural question to ask whether it is possible to construct

codes that minimize both of these metrics at the same time. For some collections of

access sets, it is possible to simultaneously achieve both the minimum update cost

and minimum storage overhead. For instance, the collections of access sets discussed

in Examples 6.1 and 6.2 both have this property. As another example, the access sets

consisting of all size k subsets of [n] are satisfied by a systematic [n, k] MDS code,

which achieves the minimum update cost (n− k + 1) and minimum storage overhead

(n/k). However, as the next example shows, this is impossible for some collections of

access sets and there is a tradeoff between update cost and storage overhead.

Example 6.3: Consider n = 5 and access sets S = ¶¶i, j♢ : i ≠ j ∈ [5]♢ \ ¶¶4, 5♢♢ (see

Figure 6.3). From Lemma 6.1, it follows that the minimum storage overhead for S

is 5/2. Here, the only µ-set is U = ¶1, 2, 3♢, since any other subset of at most three

nodes leaves at least one access set uncovered. Thus the minimum update cost is 3.

– 219 –

Chapter 6. Codes for geo-distributed storage

1

2

3 4

5

Figure 6.3: Example of access sets for which minimum update cost and storage
overhead cannot be simultaneously achieved.

Any MUC code cannot place any symbols in node 4 or 5, since any update to

those nodes would require updating more nodes than the minimum. Since ¶1, 4♢,

¶2, 4♢, and ¶3, 4♢ are access sets and 4 is empty, 1, 2, and 3 each must have at least a

full copy of message m. This requires storage overhead of at least 3, which is higher

than the minimum. x

Since, in general, it is impossible to achieve the minimum cost of both metrics

simultaneously, and due to the premium in WAN bandwidth cost over storage cost,

we focus on codes with minimum update cost and then minimize the storage overhead

subject to that constraint. This approach attains one of the Pareto-optimal points in

the tradeoff.

Definition 6.1 (MUC code): An irregular array code satisfying access sets S is said

to be a minimum update cost (MUC) code if it achieves the minimum update cost

(Theorem 6.5) corresponding to S. x

6.3 Storage overhead of MUC codes: lower bound

and achievability

In this section, we focus on deriving a lower bound on the storage overhead of MUC

codes. In order to derive a lower bound on storage overhead, we model the decoding

– 220 –

Chapter 6. Codes for geo-distributed storage

X

XU1 XU2
XU♣U♣

Y1 Y2 Y3 Y4 Yn

ZS1
ZS♣S♣

message

µ-sets

nodes

access sets

kU

∞

ℓv

Figure 6.4: Information flow graph for given access sets.

process as a network information flow graph [109].

Recall from Section 6.2.1 that in MUC codes every message symbol is associated

to a µ-set U ∈ U that is updated whenever that message symbol is updated. For

given access sets S, we build an information flow graph with the following vertices:

• X, for the message m;

• ¶XU♢U∈U , for the fraction of m encoded in µ-set U ;

• ¶Yv♢v∈[n], for the contents of node v;

• ¶ZS♢S∈S, for the decoding of access set S.

The graph also contains the following directed edges:

• ¶(X, XU)♢U∈U , where (X, XU) has capacity kU ;

• ¶(XU , Yv) : v ∈ U♢U∈U , each with unlimited capacity;

• ¶(Yv, ZS) : v ∈ S♢S∈S, where (Yv, ZS) has capacity ℓv.

A necessary condition for a MUC code with parameters n, k =
∑

U∈U kU , and

(ℓi)i∈[n] to exist is that in its information flow graph the maximum flow from the

source to each sink is at least k. Therefore, the values of ¶kU♢U∈U and ¶ℓv♢v∈[n] must

– 221 –

Chapter 6. Codes for geo-distributed storage

be set in order to allow the flows while minimizing the ratio
∑

v∈[n]
ℓv/
∑

U∈U
kU , which

corresponds to the storage overhead.

In order to model the information flow graph, we introduce the following variables:

• xU ∈ [0, 1] for U ∈ U representing the fraction of message m associated with

µ-set U , i.e., xU := kU/k;

• yv ∈ [0, 1] for v ∈ [n] representing the size of node v as a fraction of the size of

the message m, i.e., yv := ℓv/k;

• zU,v,S ∈ [0, 1] representing the flow from µ-set U through node v when access

set S is used as the sink.

The following LP captures the information flow graph:

minimize
∑

v∈[n] yv

subject to:
∑

U∈U xU = 1

zU,v,S ≤ 1¶v ∈ (U ∩ S)♢, ∀U ∈ U , v ∈ [n], S ∈ S

xU =
∑

v∈[n] zU,v,S, ∀U ∈ U , S ∈ S
∑

U∈U zU,v,S ≤ yv, ∀v ∈ [n], S ∈ S

xU ∈ [0, 1], ∀U ∈ U

yv ∈ [0, 1], ∀v ∈ [n]

zU,v,S ∈ [0, 1], ∀U ∈ U , v ∈ [n], S ∈ S

(LP2)

where 1¶·♢ is equal to 1 if the condition inside the braces is true, and 0 otherwise.

Theorem 6.8. For a MUC code satisfying access sets S, LP2 gives a lower bound on

the storage overhead.

Proof. Let fS be the flow of size k from source X to sink ZS, where fS(u, v) denotes

the flow from vertex u to v. Clearly, because k =
∑

U∈U kU , it must be the case that

fS(X, XU) = kU for all U ∈ U . Similarly, due to the conservation of flow on the XU

vertices, it must hold that
∑

v∈S fS(XU , Yv) = kU . Finally, due to the conservation

– 222 –

Chapter 6. Codes for geo-distributed storage

of flow on the Yv vertices, it must hold that
∑

U∈U fS(XU , Yv) = fS(Yv, ZS) ≤ ℓv. By

defining zU,v,S := fS(XU , Yv)/k and substituting these inequalities with the relevant

variables, we obtain the constraints of LP2. A storage overhead lower bound can thus

be obtained by specifying storage overhead as the minimization objective.

Now, we show that MUC codes achieving the lower bound of Theorem 6.8 exist

over finite fields of size q > ♣S♣. The key idea is to construct a generator matrix with

carefully chosen entries set to zero in order to ensure that the code has minimum

update cost, and random entries elsewhere. When the field size is large enough, the

probability that the constructed code satisfies S is strictly greater than zero, thus

showing that such codes exist.

Theorem 6.9. MUC codes over Fq satisfying given access sets S with storage overhead

matching the lower bound of Theorem 6.8 exist for q > ♣S♣.

Proof. Consider an optimal rational solution to LP2:

¶x∗
U♢U∈U , ¶y∗

v♢v∈[n], ¶z
∗
U,v,S♢U∈U , v∈[n], S∈S.

The message size k is chosen as the least common denominator of the solution values.

The node sizes are set to ℓv = ky∗
v for v ∈ [n], and thus N =

∑
v∈[n] ky∗

v . We specify

the code by constructing a generator matrix G ∈ Fk×N
q . Let U∗ = ¶U ∈ U : x∗

U ≠ 0♢

and V ∗ = ¶v ∈ [n] : y∗
v ≠ 0♢. We index the rows of G with pairs (U, i) where U ∈ U∗

and i ∈ [kx∗
U], and the columns with pairs (v, j) where v ∈ V ∗ and j ∈ [ky∗

v]. The

entries of G are set as follows: for every U ∈ U∗ and v ∈ V ∗, the block of entries

¶((U, i), (v, j)) : i ∈ [kx∗
U], j ∈ [ky∗

v]♢ is set to independently drawn elements of Fq if

v ∈ U , and 0 otherwise. This ensures that when a message symbol associated to U is

modified, only symbols in nodes v ∈ U need to be updated, and thus the code has

minimum access cost.

Let GS (S ∈ S) be the submatrix of G obtained by selecting the columns of G

indexed by ¶(v, j) : v ∈ (S ∩ V ∗), j ∈ [ky∗
v]♢. The message m can be decoded from

S if and only if GS contains a k × k invertible submatrix G′
S. In other words, the

– 223 –

Chapter 6. Codes for geo-distributed storage

determinant of G′
S must be nonzero. The Leibniz formula for the determinant states

that:

det(G′
S) =

∑

σ∈perm(k)

sgn(σ)
M∏

i=1

(G′
S)i,σ(i), (6.1)

where perm(k) is the group of permutations over k elements and sgn(σ) is the sign

of permutation σ. Given this formula, and the fact that all nonzero entries in G′
S

are chosen independently at random, the determinant in Equation (6.1) will be

either a uniformly random element of Fq, or trivially zero (that is, every term in the

summation will be always equal to zero). If the determinant is not trivially zero, then

it is equal to zero with probability q−1. By taking the union bound over all access sets,

it holds that the probability that at least one of the matrices GS is not invertible is at

most ♣S♣q−1. Thus, as long as q > ♣S♣, there exists a satisfactory generator matrix G.

It only remains to show that for each GS there exists G′
S such that det(G′

S) is not

trivially zero. This is equivalent to showing that for all S ∈ S there exists a sequence

of k distinct column indices (j1, j2, . . . , jk) such that (GS)i,ji
is random for all i ∈ [k].

To construct this sequence, the z∗
U,v,S values can be used. Consider the set of rows

corresponding to update set U . By LP2, it must hold that:

kx∗
U =

∑

v∈S

kz∗
U,v,S.

Thus, for each U , we pick kx∗
U distinct columns by picking kz∗

U,v,S columns from each

node v that have not been picked already. Note that LP2 ensures that there always

are enough columns to pick from each node via the following constraint:

∑

U∈U

kz∗
U,v,S ≤ ky∗

v .

Since z∗
U,v,S > 0 only if v ∈ (S ∩ U), the entries corresponding to the chosen sequence

are guaranteed to be random elements of Fq.

– 224 –

Chapter 6. Codes for geo-distributed storage

6.4 Conclusion

Geo-distributed storage systems operate in highly heterogeneous environments, yet

most existing systems use erasure codes designed with homogeneity in mind, which

results in high costs. This chapter shows that it is possible to use density-aware

coding to automatically tailor the design of the erasure code to the density of datasites

and, as a consequence, significantly reduce operating costs.

– 225 –

Chapter 7

Density-aware redundancy for efficient

geo-distributed storage

This chapter is based on unpublished work (at the time of writing), done in collaboration

with Muhammed Uluyol, Mosharaf Chowdhury, Harsha V. Madhyastha, and K. V.

Rashmi.

To ensure fault-tolerance and to serve users with low latency, web services employ

geo-distributed storage systems which redundantly store data across datacenters in

different geographical locations [6, 210, 211]. Requests from users are directed to

designated nearby servers called frontends, which in turn interact with processes and

data located in other servers (called datasites) across different regions (see Figure 7.1).

Consensus protocols, such as Paxos or its variants, are used to guarantee strong

consistency among the datasites [6, 212–220].

In such a setting, it is critical to optimize resource consumption. In particular,

storage and wide-area network (WAN) bandwidth are two costly resources that add

to the high capital and operating expenses of these systems. Therefore, though geo-

distributed storage systems have traditionally replicated every data item in its entirety

across one or more datasites, due to cost considerations, erasure coding has been

gaining popularity more recently [5, 6, 219, 221]. For example, with Reed–Solomon

(RS) codes [20], every object is split into k data chunks, encoded into n code chunks,

and distributed across n datasites. Thanks to the so-called MDS property that RS

– 226 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Figure 7.1: Frontends, which are responsible for serving user requests, interact with
datasites across different regions.

codes offer, any k out of n code chunks suffice to recover the original object. The

higher the k, the lower the storage overhead (for fixed (n− k)), and the lower the

WAN bandwidth consumption. Furthermore, recent work [6] has proposed the use

of complex optimization-based techniques to reduce storage overhead by picking the

appropriate RS code parameters given fault-tolerance and latency constraints.

However, existing approaches to erasure coding in geo-distributed storage systems

[5, 6, 219] use codes in a similar way as they would be used within data centers. We

observe that this makes them severely restrictive and leaves significant headroom.

Specifically, in a global deployment, network latencies between frontends and different

datasites can vary significantly [222]. For example, for the set of servers we use in

our evaluation, we observe that the median latency between servers can vary by

more than 300ms or 40 times (Section 7.4). This leads to two deficiencies in existing

approaches.

First, the heterogeneity does not mesh well with the homogeneity of RS codes

(any frontend needing to read an object needs to connect to k datasites and any k

datasites are sufficient). A particular choice of the parameter k might be too high

for sparse regions: users connecting to frontends which have fewer datasites nearby

will incur high read/write latency due to the need to connect to k data sites that are

– 227 –

Chapter 7. Density-aware redundancy for geo-distributed storage

far apart (e.g., users in India or Australia in Figure 7.1). Yet, the same parameter k

can be too small for dense areas: the system could have reduced storage overhead

and WAN bandwidth consumption by choosing a higher value for k (e.g., users in the

North America region in Figure 7.1). We note that this problem cannot be solved

by just tuning the parameter k since an object can have accesses from both dense

and sparse regions. For example, consider the frontends and datasites as shown in

Figure 7.1. Suppose the objective is to store the object such that frontends can access

it by communicating with nearby datasites (i.e. a read quorum); the frontend should

be able to decode the object even if one of the datasites is unavailable. Figure 7.2

shows how different approaches would encode and distribute the object when using

read quorums with similar latencies. Notice how unevenly distributing data across

datasites can result in lower storage overhead (under the solution title Pudu). That

is, having datasites in dense regions store less data reduces the amount of damage

that any one failure can cause, and thus permits lower storage overhead. Moreover,

notice that code symbols can be designed to be a function of fewer object symbols

(compared to RS codes); we refer to them as sparse parities. Having sparse parities

turns out to be essential for reducing WAN bandwidth, because it reduces the amount

of data that must be communicated when the object is modified.

Second, given that it is advantageous to adapt the erasure code to the access

pattern (as discussed above), encoding needs to be different for objects with different

access patterns. For example, in Figure 7.1, an object that is accessed only from

North America will see drastically different distribution of latency to datasites as

compared to an object which is accessed both from North America and India; thus

it would need a code with entirely different data layout and parity functions. This

also means that replication can be beneficial over erasure coding for certain access

patterns.

In this chapter, we make a case for tailoring the redundancy scheme—not just the

tuning the parameters but using entirely new parity functions and data layout—to

the geographical distribution of the datasites and the access pattern profiles. We

show that one can leverage the spatial heterogeneity to significantly optimize resource

consumption and costs. We refer to this new approach to designing redundancy

– 228 –

Chapter 7. Density-aware redundancy for geo-distributed storage

in geo-distributed storage systems as density-aware redundancy. We demonstrate

the utility of density-aware redundancy by showcasing significant reduction in WAN

bandwidth usage, while continuing to meet latency SLOs and being efficient in storage

overhead.

There are several challenges to realizing density-aware redundancy. First, hand-

crafting redundancy schemes for various access pattern profiles is unrealistic. Codes

that are employed in current storage systems are all handcrafted by theoreticians using

combinatorics and algebra. However, density-aware redundancy requires designing

entirely new parity functions and data layout for new access profiles, and cannot rely

on handcrafted designs. Second, having to prove correctness of consensus for every

new design of parity functions and data layout is a showstopper. The design of the

redundancy scheme (parity functions and the data layout) and the consensus protocol

(read and write quorums) interact in complex ways. Existing works that use erasure

coding with consensus protocols are all solely based on RS codes, and hence, their

correctness has been investigated only for RS codes. Third, to leverage the benefits

of sparse parities in reducing WAN bandwidth, we must design a consensus protocol

with explicit support for operations that only modify part of an object. Existing

approaches to using erasure coding along with consensus protocols are all for RS codes

which have homogeneous parity functions and thus are not applicable when some

parity functions are dense and some are sparse. Specifically, the log management

used by consensus protocols needs to be redesigned.

We present Pudu, a geo-distributed storage system that is more resource efficient

than the state-of-the-art by employing density-aware redundancy and overcoming the

above-mentioned challenges. Pudu leverages an optimization-based theoretical frame-

work for designing redundancy schemes [176]. Since the outputs of that framework

are not guaranteed to be practical (as explained later), Pudu overcomes challenges

in arriving at practical redundancy schemes. Moreover, the design of Pudu is such

that this optimization can be performed jointly with optimizations performed for

designing the consensus protocol (i.e., read and write quorums), while keeping the

computations tractable; we refer to this module as “ECOptimizer”. This overcomes

the first challenge by automating the process of designing redundancy schemes and

– 229 –

Chapter 7. Density-aware redundancy for geo-distributed storage

thus enabling tailoring to different access profiles.

Pudu introduces a new abstraction between the optimization for consensus

design and the optimization for redundancy design. This abstraction enables Pudu

to guarantee correctness of consensus for any redundancy scheme (i.e., any parity

functions and data layout) output by ECOptimizer. This overcomes the second

challenge by negating the need to prove the correctness of consensus individually for

different access profiles. Finally, Pudu overcomes the third challenge by a new design

of log management at datasites that efficiently reconciles the update operations at

datasites both with dense and sparse parities.

In our extensive evaluation, we see that Pudu significantly improves over the

state-of-the-art. We evaluate Pudu by running it over a wide variety of application

requirements, and using several different optimization goals. In 42.37% of the inputs

we test, Pudu improves over the state-of-the-art in all of the dimensions we optimize

for. In the cases where Pudu achieves an improvement, on average, Pudu reduces

ready latency by 6.47ms (up to 28ms or 17.9%), write latency by 6.77ms (up to 36ms

or 21.7%), storage overhead by 0.14 (up to 1 or 40%), and update cost by 35.4% (up

to 72.7%).

This chapter makes four contributions. First, we identify that heterogeneity in

latencies in a global deployment presents the need for designing entirely new parity

functions and data layout for every access profiles (density-aware redundancy). Second,

we design Pudu that realizes density-aware redundancy. Pudu co-optimizes the

consensus protocol and the redundancy scheme design while keeping the computations

tractable and ensuring that the erasure code outputs are practical, uses a new

abstraction layer to ensure correctness of consensus for any design of the parity

functions and data layout, and uses a sophisticated log management to ensure

correct updates in both dense and sparse parities. Third, we implement Pudu

using a combination of Go, Python, and C. Fourth, we perform extensive evaluation

showing that Pudu is able to unlock better resource tradeoffs and achieve significant

reduction in WAN bandwidth consumption with negligible overheads. Prior works

on redundancy in storage systems are restricted to choosing between replication and

erasure coding [8, 11, 123], and choosing parameters of a particular code [1, 15, 120].

– 230 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Method storage overhead update cost

Replication 4 4
RS-based 3 5

Pudu (this chapter) 2.83 4

Figure 7.2: Example of benefits of density-aware redundancy. The rounded boxes
represent datasites (labeled as in Figure 7.1) and the boxes below represent the data
they store. The object is split into 6 symbols (labeled a–f). The blobs represent read
quorums, each corresponding to a different frontend in Figure 7.1. Each approach
must satisfy the following fault-tolerance requirement: the object must be recoverable
from any read quorum even if 1 arbitrary datasite fails. The bottom table shows the
costs of different approaches in this example.

– 231 –

Chapter 7. Density-aware redundancy for geo-distributed storage

To the best of our knowledge, Pudu is the first storage system design that tailors

redundancy by entirely changing the erasure code itself (i.e. the parity functions and

the data layout) across objects.

7.1 Geo-distributed storage systems: Opportunity and

challenges

We begin by describing the state-of-the-art tools for designing strongly-consistent

geo-distributed storage systems. In this process, we highlight some of the limitations

of these tools when it comes to accommodating spatial heterogeneity.

7.1.1 Optimizing resources in geo-distributed storage

In order to be robust and useful in practice, geo-distributed storage systems must

satisfy several criteria:

• Consistency: many applications expect reads and writes to an object to be

linearizable, i.e., all successful writes can be totally-ordered and every read obtains

the most recently successful write.

• Reliability: the system must be able to tolerate at least f arbitrary failures,

without losing data, consistency, or the ability to make progress.

• Low latency: the system must provide low read- and write-latency. These are

specified in the form of service-level objectives (SLOs), which have to be respected

in most cases, but might be violated in exceptional circumstances.

Geo-distributed storage systems require a lot of resources in order to operate and

fulfil the above criteria: two of the most important and costly ones are storage space

needed for storing objects and the WAN bandwidth used by the communication

between datasites. To make geo-distributed storage systems affordable, it is critical

to design the system so as to minimize resource consumption.

– 232 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Recent work [6] has proposed using optimization to design certain aspects of the

system (such as quorums) to minimize storage costs while meeting the given latency

SLOs. In many Paxos-based consensus protocols, instead of using majority quorums,

read and write quorums can be specifically chosen, with the restriction that every

read quorum intersect every write quorum (i.e. Flexible Paxos [220]). In addition to

this, some systems use RS codes to encode and distribute objects instead of using

replication, because RS codes require lower storage overhead [6, 219].

7.1.2 Reed-Solomon codes and their shortcomings

To encode an object of size B using a k-of-n Reed–Solomon (RS) code, the object

is first split into k data chunks of size
⌈

B
k

⌉
and then the RS code is used to encode

these k data chunks into n code chunks of the same size, which are then distributed

to servers. These code chunks have the property that any k of them is enough to

decode the original object [223]. The storage overhead of a code is the ratio between

the total size of the encoded object, and the original size of the object. The storage

overhead of a k-of-n RS code is n
k

(ignoring the rounding in chunk size). RS codes

are widely used in practice because they can tolerate erasures with significantly less

storage overhead than replication.

Next, we describe some reasons why RS codes are not well-suited for geo-distributed

storage.

Every code chunk is treated the same

In an RS code, every code chunk is of exactly the same size (⌈B
k
⌉), and every subset of

k−1 code chunks is insufficient to decode the original object. However, geo-distributed

systems typically have a lot of spatial heterogeneity: some datasites are in dense

areas close to many other datasites, while others are distant and isolated. Treating

both types of datasites the same way gives us unfavorable trade-offs between latency

and storage-overhead.

For example, consider Figure 7.2. One of the fault-tolerance requirements in this

example is that the object is still recoverable from any quorum even after any one

– 233 –

Chapter 7. Density-aware redundancy for geo-distributed storage

failure. When using RS codes, all datasites store the same amount of data. As a

consequence, it may not be convenient to use all of the datasites in dense areas (e.g.

“ca” is not used). This is because the parameter k of the RS code (and thus the size

of each code chunk) is limited by the sparse regions, where contacting k different

datasites is slower. It would be ideal to to put a smaller code chunk on datasites in

dense areas. This reduces the amount of data lost with any given datasite failure,

and thus makes it possible to achieve the same level of fault-tolerance with lower

storage-overhead.

Given the above, it is clear that the only two parameters available to RS codes, n

and k, are not enough for adapting to heterogeneous global deployments.

RS codes have uniformly dense parities

A necessary property of RS codes is that they have dense parities [223]: this means

that every parity is a function of all data chunks. This implies that any update, no

matter how small, will affect at least n− k + 1 different code chunks (i.e., all parity

chunks leaving only other data chunks). As we shall see next, this leads to high WAN

bandwidth usage.

7.1.3 Impact of redundancy on WAN bandwidth

The cost of transferring data over the WAN is relatively high compared to other

operating costs. The main way in which we can reduce WAN bandwidth usage is

by reducing the amount of object data that needs to be transferred when executing

different operations. Whenever we perform a full-write of an object, we need to

transmit an amount of data that is roughly equal to the storage-overhead (plus some

protocol overhead). For this reason, reducing storage-overhead by using RS codes

instead of replication, for example, can help reduce WAN bandwidth.

However, in low-latency collaborative applications users normally only update a

relatively small part of the object in each operation. In such cases, encoding and

transmitting the whole object is wasteful; instead, users can just send the difference

with the previous version. That is, if the user changed the object from x to x′, then it

– 234 –

Chapter 7. Density-aware redundancy for geo-distributed storage

can send ∆x = (x′ − x) (which will be mostly zeros except in the small part that was

modified). Let Enc(x) be the encoding of x. Almost all erasure codes used in practice

(including RS codes) are linear codes. Linear erasure codes satisfy the property that

Enc(x) + Enc(∆x) = Enc(x + ∆x) = Enc(x′). Therefore, datasites can update their

local code chunks with just ∆x.

When updates are taken into account, RS codes can actually increase WAN

bandwidth usage compared to replication, because RS codes require updating more

datasites.

Opportunity

Geo-distributed systems are highly heterogenous, due to the natural differences in

population-density and geography around the world. Density-aware coding is the

perfect tool for exploiting this heterogeneity. Consider the example in Figure 7.2: one

of the users finds themselves in a region that is more dense with potential datasites.

However, replication and RS codes are not flexible enough to exploit those differences,

because they place the same amount of data in each datasite, and thus have to adapt

to the regions with fewer datasites. It would be ideal if one could use a larger read

quorum in datasite-dense regions along with placing less data on each datasite, and

vice-versa in sparse regions. By doing this, density-aware redundancy reduces the

amount of storage overhead compared to other alternatives, because it reduces the

amount of data that is lost should any one datasite fail.

Another way in which heterogeneity can be exploited is in the design of parities.

As explained above, RS codes have uniformly dense parities which result in high

WAN bandwidth usage. If some of the parity functions are sparse, i.e., if they are

independent of some of the data chunks, those code chunks need not be updated

when the corresponding data chunks are updated. We term the number of code

chunks that need to be updated when a single data chunk is updated as the update

cost of the code. As seen above, the update cost of the code is a function of how

dense/sparse the parity functions of the code are. Thus, heterogeneity creates an

opportunity for reducing update cost by making parities sparser. E.g., in Figure 7.2

– 235 –

Chapter 7. Density-aware redundancy for geo-distributed storage

the parities (under Pudu) are designed to be as sparse as possible, yet still provide

fault-tolerance. Because of the reasons above, using density-aware coding to adapt to

the heterogeneity in geo-distributed systems is a promising opportunity for reducing

cost.

Challenges

While density-aware redundancy is appealing due to its potential in reducing con-

sumption of costly resources, it comes with several challenges.

Automating code design. Erasure codes currently used in practice are handcrafted

by theoreticians, and thus are specifically designed for a narrow setting, or are very

general and thus do not take advantage of the structure of the setting. Since we cannot

design an erasure code for each specific case, we must find a way to automatically

generate new erasure codes which satisfy the necessary requirements, minimize cost,

and can be used in practice.

Enabling consensus on arbitrary codes. Quorum-based consensus protocols

are well-suited to a geo-distributed setting, where each frontend accesses data from

nearby datasites. However, existing approaches across the WAN [6, 215, 224, 225]

use quorums that are identical in structure across frontends. E.g., when they are of

fixed size, all frontends use read quorums containing the same number of sites.

As we discuss in Section 7.1.3, recovering data from a variable number of data sites

can yield benefits. To realize these benefits, we need two things. First, a consensus

protocol that is agnostic to the underlying code, unlike the existing which rely on

redundancy scheme being either replication or the k-of-n RS codes. Second, we need a

mechanism to define quorums that can vary in size across frontends while maintaining

consistency and durability.

Complexity in co-optimizing. Optimizing the consensus protocol configura-

tion or the erasure code design are challenging tasks by themselves, but optimizing

both simultaneously proves to be even more complicated. Capturing all the vari-

ables, requirements, and objectives into a single integer problem is conceptually and

computationally intractable.

– 236 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Figure 7.3: High-level architecture of Pudu’s optimizer.

Generating practical erasure codes. The optimization framework that can

be employed to automate the design of the code [176], is primarily theoretical in

nature, and the construction proposed therein are not guaranteed to be practical.

In particular, the theoretical construction might require dividing the object into an

unbounded number of parts, or it might require using a finite field of size larger than

the standard GF(28). Another limitation is that prior work can only produce codes

which have the exact minimum update-cost.

Handling incremental updates efficiently. Typical write operations do not

modify the whole object. Thus, to reduce WAN bandwidth we must add explicit

support for operations that modify part of an object, and implement in a WAN-

efficient manner. To guarantee correctness, we must give special attention to the way

these operations are managed in the Paxos log.

7.2 Pudu design

Pudu is a geo-distributed key-value store that employs density-aware redundancy,

designed to overcome the challenges in Section 7.1.3. The two main components

of Pudu are (1) an optimizer, and (2) a geo-distributed key-value store. In this

section, we present a high-level overview of the design (Section 7.2.1) and how

read/write/update operations work in Pudu (Section 7.2.2). A more detailed descrip-

tion of the components and density-aware redundancy will be provided in Section 7.3.

– 237 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Figure 7.4: High-level architecture of Pudu’s distributed storage system.

7.2.1 Overview

The optimizer (shown in Figure 7.3) is run offline to generate the configuration

for consensus protocol (that is, the read and write quorums) and the redundancy

scheme (parity functions including replication and the data layout) for a given access

profile, latency SLOs, and fault tolerance targets. The geo-distributed key-value store

(shown in Figure 7.4) uses the generated configuration and erasure code to execute

the consensus protocol and operate on objects. In the following, we give a high-level

overview of these two parts and their interaction.

Pudu’s optimizer

Recall that density-aware redundancy requires designing an entirely new redundancy

schemes (parity functions and data layout) for different access profiles. Hand designing

access-pattern-specific redundancy schemes is unrealistic. Pudu overcomes this

challenge by employing an optimization-based framework for designing codes [176] to

automate the task of designing access-pattern-specific redundancy schemes. A key

novelty behind Pudu’s optimizer design is that it is capable of co-optimizing both

– 238 –

Chapter 7. Density-aware redundancy for geo-distributed storage

the consensus protocol configuration and the design of the erasure code with the goal

of reducing operating costs while meeting latency targets.

The input to the optimizer consists of: (1) the network topology: the location of

potential datasites, and statistics on the latencies between any pair of sites; (2) the

application requirements: the number of tolerable failures f , the application SLOs

(such as the maximum acceptable read/write latencies or the maximum storage-over-

head), and the optimization goals (along with their priorities); and (3) an access set:

defined as the subset of sites that will serve as frontends (applications determine the

access set based on the geographic locations of the users that operate on the object).

We refer to the combination of these inputs as a target-specification. The optimizer

considers the tradeoffs between four dimensions of interest: read latency, write latency,

storage-overhead, and update-cost. Given a target-specification, Pudu minimizes

the specified dimensions subject to the specified restrictions. We call the dimensions

that are minimized as Optimized Dimensions. For example, the target-specification

may include SLOs for the read and write latency, and may designate update-cost and

storage-overhead (in that order) as the Optimized Dimensions.

The output of the optimizer consists of: (1) the configuration of the consensus

protocol: the locations of the chosen datasites, the quorum selection, and other

protocol details; and (2) the specification of the redundancy scheme: how objects are

split, encoded, and distributed to datasites.

Optimizing the consensus protocol configuration or the redundancy scheme sepa-

rately are already complex tasks on their own. Optimizing both of them simultaneously

proves to be even more complex. In order to reduce the complexity and to keep the

optimizer tractable, Pudu’s optimizer is divided into three stages (see Figure 7.3):

the ConfigOptimizer, the ConsistencyCompiler, and the ECOptimizer.

The ConfigOptimizer chooses the configuration of the consensus protocol: the

most important of which is the quorum selection. This selection is made according

to a set of rules (specified in Section 7.3.2). We design this stage to be as flexible

as possible so as to not restrict the options for the ECOptimizer: each quorum is

allowed to be of a different size, and the rules are as general as possible while still

guaranteeing the necessary properties. The ConfigOptimizer is equipped with a

– 239 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Cost Model which allows it to guarantee that the SLOs will be satisfied, and to

predict the final costs of the Optimized Dimensions.

The ConsistencyCompiler is the interface between the ConfigOptimizer and

the ECOptimizer. It takes the quorums produced by the ConfigOptimizer and, by

applying a set of rules that ensure correctness and consistency, translates it into a set

of requirements that must be satisfied by the erasure code. These requirements are

expressed as a collection of information sets. Each information set is a subset of code

chunk indexes, expressing the requirement that a decoder must be able to recover the

object when given the code chunks indexed by the information set.

The ECOptimizer takes the information sets from the ConsistencyCompiler an

input and outputs an erasure code specification that satisfies the decoding requirement

enforced by the information sets. ECOptimizer is composed of an erasure code

designer which determines the structure of the erasure code (that is, the parity

functions and the layout of the chunks) in a way that satisfies the information sets

and minimizes the update-cost and storage-overhead. We note that replication is a

trivial form of erasure code and thus replication of chunks is also a valid output. As

discussed in Section 7.1.3, the outputs from the theoretical optimization framework

for code design [176] are not guaranteed to be practical. The framework might only

provide guarantees on existence of a code. Hence, ECOptimizer also comprises of an

erasure code constructor which is responsible for searching for an explicit, practical

representation of the erasure code that can be used efficiently in practice (explained

in detail in Section 7.3.1).

This three-stage design ensures that the consensus protocol configuration and the

erasure code can be jointly optimized in a way that is easier to analyze, produces

good results, and is computationally tractable.

Pudu’s key-value store

Pudu implements a geo-distributed key-value store. We distinguish two types of

entities: frontends, and datasites (Figure 7.4). Users interact with frontends, which

serve their requests and execute operations by communicating with datasites. Fron-

– 240 –

Chapter 7. Density-aware redundancy for geo-distributed storage

tends have an EC module and a quorum tracker. The EC module contains metadata

about the erasure code and information sets, and is responsible for encoding/decoding

objects. The quorum tracker contains all the metadata about quorums, and keeps

track of datasites responses to ensure correctness. Datasites manage data and execute

the consensus protocol. They store the coded chunks assigned to them and keep the

Paxos log of operations. In addition to the EC module and quorum tracker, datasites

have a log manager. The log manager is in charge of garbage collecting old entries

and filling missing entries that might occur during execution due to lost messages

or unavailabilities. It is possible for both a frontend and datasite to be in the same

location.

7.2.2 Operations in Pudu

Now, we describe the operations supported by Pudu, and give a brief description of

how they are executed.

Writes

A write operation sets the object associated with a key (replacing it if it already

exists). Writes occur over two phases: in phase 1, the writer asks datasites to prepare

and waits for a read quorum to promise to accept their write. In phase 2, the writer

encodes the object and sends the corresponding code chunks to each datasite; then it

waits for a write quorum to accept the write. After phase 2 completes successfully,

the write is considered committed, and the writer notifies datasites about this. The

time it takes to complete these two phases determines the write latency.

Reads

A read operation retrieves the latest committed object associated with a key. Reads

occur on a single phase: the reader contacts the datasites specified by the quorums,

which reply with the state of their log. Once a read quorum replies, the reader uses

the data in the logs to reconstruct (i.e. decode) the latest version of the object.

– 241 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Updates

An update operation modifies an existing object associated with a key. Updates

follow the same 2-phase procedure of writes. The only difference is that instead of

encoding and sending the object, the writer sends the “delta” with respect to the

previous version. That is, if the value of the object is changed from x to x′, the writer

sends ∆x = (x′ − x). Let Enc(x) be the encoding of x; linear erasure codes satisfy

the property that Enc(x) + Enc(∆x) = Enc(x + ∆x) = Enc(x′). Datasites keep ∆x

in their log; to apply it, they simply encode it as Enc(∆x) and add it (xor) to their

code chunk. This is valid since the output of ECOptimizer is always a linear code.

Notice that if the code chunks in a datasite are not a function of the nonzero entries

in ∆x, then those code chunks will be unaffected by the update. Thus, a datasite only

needs ∆x if it affects its code chunks. Thus, the writer uses the code metadata to

determine which datasites are affected by the update, and sends ∆x to those datasites

only; to other datasites it only sends the consensus protocol information.

7.3 Density-aware redundancy

In this section, we explain the design and implementation of the different parts of

Pudu in greater detail.

7.3.1 Dividing the problem into stages

We start by explaining the rationale behind our three-stage optimization design.

There are several challenges that we considered when designing Pudu’s optimizer

(Section 7.1.3).

The first challenge is guaranteeing the correctness of the system, even when the

configuration of the consensus protocol and the erasure code are unknown a priori.

To solve this challenge, we identify a very general set of rules to be followed by the

optimizer: this set of rules is strict enough to ensure correctness, but also loose

enough to leave enough room for optimization. In the erasure code, we enforce these

– 242 –

Chapter 7. Density-aware redundancy for geo-distributed storage

rules through the abstraction of information sets.

A second challenge is in performing optimization in a way that is conceptually

and computationally tractable. To solve this challenge, we divide the optimizer into

three sequential stages. This makes the procedure easier to understand and analyze,

but it also makes the problem easier to solve by dividing it into smaller parts with a

sequential dependency.

A third challenge is ensuring that the produced erasure code is practical. This

is the disadvantage of our sequential approach: the first stage does not know if its

solution will lead to a practical erasure code. To ameliorate this problem, we allow

the final stage of the optimizer to output erasure codes with slightly higher costs

when an optimal solution is not found or, in the worst case, to default to RS codes.

7.3.2 Flexible quorums for optimization

In Section 7.1, we showed that recovering data from a variable number of datasites

can yield benefits due to highly heterogeneous nature of geo-distributed systems.

Previous works depend on quorums with some regular structure. Majority (and

other fixed-size) quorums are the most common type. Other types of quorums with

regular structure exist, such as grid [220] and hierarchical quorums [226]. However,

the distribution of sites across the globe does not follow a regular structure, and thus

imposing additional requirements on quorums leads to sub-optimal solutions.

For this reason, we use an optimizer to directly construct each quorum based

on the network structure, the access set, the SLOs, and the objective we want to

achieve. We impose minimal constraints on quorums to allow the optimizer flexibility

in accomplishing the objective. As a fallback, we ensure that any subset of all but f

datasites contains a read and write quorum; this allows optimizing common scenarios

more aggressively without giving up failure-tolerance.

Design of the ConfigOptimizer

As input, the ConfigOptimizer receives a model of the network (datasites available

and latencies between each pair of datasites), the application inputs (access set, failure

– 243 –

Chapter 7. Density-aware redundancy for geo-distributed storage

tolerance, and latency or storage SLOs), and dimensions to minimize. As output, the

ConfigOptimizer produces the consensus protocol configuration. In the protocol, we

use the fast-read quorum and write delegation techniques used in prior work [6]. Thus,

the output of the ConfigOptimizer will include the set of quorums (read, write, and

fast-read) and the selection of write delegates for each frontend. We formulate the

problem as an integer program, and solve it using CPLEX [227]. For a potential

configuration, the integer program models the read and write latencies, as well as the

minimum achievable update-cost and storage-overhead. Using this, it searches for

the consensus protocol configuration that minimizes the given dimensions subject to

the given SLOs.

The program additionally ensures that the choice of quorums satisfies the following

correctness requirements (assuming we desire to tolerate at most f failures).

Q1. Every read or write quorum has size greater than f .

Q2. The intersection of any read/fast-read quorum and any write quorum is non-

empty.

Q3 (Backup quorums). Every subset of all but f datasites must contain a write

quorum and a read quorum.

7.3.3 Design of parity functions via optimization

In this section, we explain how we optimize the design of erasure codes to mini-

mize update-cost and storage-overhead. Our strategy is to adopt an erasure-coding

framework that tailors the design of the erasure code to the characteristics of each

target-specification. This type of erasure code is called Minimum-Update-Cost (MUC)

codes [176].

The MUC codes framework

The update-cost of an erasure code is defined as the expected number code chunks that

change when a randomly-chosen symbol of the data is modified. E.g., the update-cost

of t-replication is t and the update-cost of a k-of-n RS code is at least n − k + 1

– 244 –

Chapter 7. Density-aware redundancy for geo-distributed storage

(number of parities plus one data chunk). At a high-level, the MUC codes framework

takes the decodability requirements of the code (represented as information sets) as

input, and searches for an erasure code that satisfies them and minimizes update-cost

and storage-overhead.

The optimization procedure first determines the minimum update-cost achievable

for the given information sets. Then, it determines minimum storage-overhead

achievable by an erasure code that has minimum update-cost and satisfies the

information sets. After that, an erasure code with the calculated costs can be

constructed via a randomized construction (although it is not guaranteed to be a

practical erasure code). Unlike RS codes, erasure codes produced via this approach

can have code chunks of different sizes, and whose contents are arbitrary linear

combinations designed in a way that minimizes update-cost.

Design of the ECOptimizer

Our ECOptimizer takes the information sets produced by the ConsistencyCompiler

as input, and produces an erasure code that satisfies them as output. One important

abstraction used by the ECOptimizer is that of an update-set. The update-set of

a data symbol x corresponds to the subset of datasites whose code chunk depends

on x. Thus, if x were to change its value, all the code chunks in the update-set of

x would also change their value. Each update-set of a code should intersect every

information-set; otherwise, it would be possible to make an update which would not

be seen by one of the information-sets [176].

The ECOptimizer executes the following steps: (1) determine all the update-sets

below a certain size, set as the minimum update-cost plus some slack (solved as

a constraint-satisfaction problem); (2) decide how much data to assign to each

update-set, and the size of each code chunk based on a theoretical model that casts

the problem as a flow-network problem (solved as a linear program); (3) find a generic

generator matrix (where non-zero entries are indeterminates) for the erasure code

that divides the object into the least number of pieces (solved as an integer program);

and (4) construct the code by randomly instantiating the non-zero entries of the

– 245 –

Chapter 7. Density-aware redundancy for geo-distributed storage

matrix, and checking that the resulting matrix satisfies all of the information sets.

In the rare case that the ECOptimizer fails or takes too long to find a solution, we

default a solution that uses RS codes or replication.

7.3.4 Interaction between density-aware redundancy and consen-

sus

Now, we describe the stage that serves as the interface between the ConfigOptimizer

and the ECOptimizer. To achieve this, we use the information set abstraction as the

interface between the consensus protocol and the erasure code. This generalization

allows the system to accommodate any arbitrary erasure code, and it simplifies the

interaction between consensus and erasure coding.

Prior work [6, 219] shows how to achieve consensus using RS codes. We do not

think it is practical to modify consensus protocols and prove their correctness each

time a new erasure code is developed, especially since they are prone to having subtle

bugs [228]. Moreover, because our approach is to construct a specialized code for each

combination of access set and requirements, we require a mechanism for achieving

consensus using an arbitrary erasure code.

Instead of relying on the erasure code having a particular structure, Pudu’s

consensus protocol relies on information sets for correctness. This allows the consensus

protocol to ignore the inner workings of the erasure code, and to only interact with it

through information sets. This is the most general interface that can be defined, as

it perfectly captures the needs of the system (to recover the whole object) without

imposing any additional onerous constraints on the structure of the erasure code

(such as the MDS property).

Design of ConsistencyCompiler

The ConsistencyCompiler acts as the interface that couples the optimization of

the consensus protocol configuration and the optimization of the erasure code. The

objective of this stage is to derive the most generic set of decodability requirements

– 246 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Figure 7.5: Information sets for Pudu configuration in Figure 7.2, depicted as a
bipartite graph where the nodes at the top are information sets, and edges represent
set inclusion.

that must be fulfilled by an erasure code that is compatible with the configuration

calculated by the ConfigOptimizer. This is achieved by transforming the chosen

quorums into a collection of information sets via the following rules.

R1 (Availability). Removing any f datasites from a read quorum yields an information

set.

R2 (Durability). Removing any f datasites from a write quorum yields an information

set.

R3 (Readable writes). The intersection between any read quorum and write quorum

yields an information set.

R4 (Fast). Every fast-read quorum is an information set.

For example, Figure 7.5 shows the information sets for Pudu in Figure 7.2 (only

shows the minimal information sets).

Correctness

Our consensus protocol is a generalization of the protocol presented in [6]. The

consensus protocol of [6] crucially depends on the property of RS codes that any k

code chunks are sufficient to decode an object. This property is used to ensure several

basic properties of the protocol, such as availability, durability, progress, stability,

etc. At its core, the generalization we perform is conceptually simple: wherever [6]

would require k code chunks we instead require an information set. This guarantees

that, as long as the erasure code satisfies the required information sets, the consensus

– 247 –

Chapter 7. Density-aware redundancy for geo-distributed storage

protocol will have the desired properties.

Theorem 7.1. When instantiated with an erasure code and configuration produced by

its optimizer, Pudu provides the same basic corectness guarantees as Paxos.

Proof. This theorem follows from rules Q1–4, R1–4, and the fact that the produced

erasure code will satisfy the generated information sets. Essentially, the proof of

correctness presented in [6] remains valid in Pudu when replacing when replacing

every requirement of “at least k datasites” with “an information set”, because it does

not use any other properties of RS codes other than the fact that any k code chunk

always define an information set.

Consider the proof of correctness of the consensus protocol in [6, appendix A].

This consensus protocol considers the same correctness guarantees and the same

features that we consider in this work. We now describe each of the places in that

proof which depend on the MDS property of the underlying RS code, and describe

why that requirement can be changed to an information set, without loss of generality.

• “The intersection of any fast-read (phase 1a) and write (phase 2) quorums

contains at least one datasite”: this does not depend on the erasure code, but

is directly enforced by rule Q2.

• “The intersection of any read (phase 1b) and write (phase 2) quorums contains

at least k datasites”: this constraint is captured by rule Q2 and rule R3, which

requires this intersection to just be an information set instead. The only reason

this property is required is to ensure that a reader can always decode the most

recently committed value of the object upon reading from a read quorum, and

thus correctness is preserved.

• “A fast-read (phase 1a) quorum must contain at least k datasites”: this is

replaced by rule R4, which specifies that the fast-read quorum must be an

information set instead. This preserves the correctness, because readers are still

able to decode the object from a fast-read quorum when there are no failures.

• “After f nodes fail, at least one read (phase 1b) and write (phase 3) quorum

must consist of nodes that are available.”: this is directly enforced by rule Q3.

– 248 –

Chapter 7. Density-aware redundancy for geo-distributed storage

In addition, the properties of availability and durability, which in [6] are inferred

to hold because read and write quorums are chosen to be of size k + f , are directly

enforced by rules R1 and R2 in our work.

7.3.5 Log management with new parity functions

Consensus protocols manage some state (i.e. some version of the object) and a log of

operations on that state. To avoid running out of memory, consensus protocols also

have some mechanism by which to trim this log without violating correctness. With

full-object writes, trimming is relatively simple: once a full-write is committed, we

can update the state and trim all prior operations safely, because previous operations

do not directly affect the current state of the object.

However, we have to be careful when trimming updates from the log. During

normal operation, “holes” might be introduced in the operation log of datasites. This

occurs when an operation is accepted by a write quorum but, for some reason, a

datasite outside of the quorum does not learn about the operation. Correctness issues

could emerge when there are holes in the log, because a node needs all the updates

in order to update its state to the newest version. To address this, datasites include

information about their log entries in other protocol messages, and keep track of the

highest version other datasites can produce. Datasites only trim an update from the

log once they are sure that there is at least one write quorum that can reproduce the

corresponding version. If at any point a datasite falls behind and cannot fill its holes,

it can execute a read operation to get up-to-date.

7.4 Evaluation

We implemented Pudu’s optimizer using Python along with the CPLEX solver [227]

and Google’s OR-tools [229]. For Pudu’s key-value store and consensus protocol,

we implement everything in Go except for the EC module which we implement in

C. To evaluate Pudu, we test it over a variety of settings (access sets, optimization

objectives, SLOs). With our evaluation, we attempt to answer the following questions

– 249 –

Chapter 7. Density-aware redundancy for geo-distributed storage

about Pudu relative to previous systems: (1) Can Pudu achieve better tradeoffs?

(2) In which situations does Pudu yield the best improvements? (3) What are the

overheads of Pudu? The main takeaways are:

• In 42.37% of the target-specifications we evaluate, the solution generated by Pudu’s

optimizer is a Pareto-improvement over the state-of-the-art.

• On the target-specifications where Pudu produces a Pareto-improvement, on

average, Pudu reduces read latency by 6.47ms, write latency by 6.77ms, storage

overhead by 0.14, and update cost by 35.4%.

• When optimized to reduce WAN bandwidth, Pudu reduces WAN bandwidth usage

by 11.5%, with savings of up to 82.4% in some cases.

7.4.1 Evaluation Setup

Recall that Pudu has two parts: an optimizer that generates a configuration based

on an target-specification, and the distributed key-value store that runs based on

the generated configuration. We consider both parts in our evaluation. We consider

25 datasites from Azure’s global network, and form access sets by picking frontends

from them: frontends are picked at random such that no two frontends are closer

than 50ms. The Cost Model component within the ConfigOptimizer (Section 7.2)

uses collected statistics on the latency of communication between every pair of Azure

sites for predicting the latency of configurations during optimization.

Baselines. As a main point of comparison, we use the state-of-the-art geo-distributed

storage system, which also uses optimization-based consensus configuration, Pando [6].

To compare fairly, we enhance Pando with the ability to control update-cost via the

parameters n and k of the RS code (recall that for systematic RS codes update-cost

is n − k + 1), and add support for UPDATE operations. With the enhancements,

this baseline represents a strong class of baselines that employ optimization to design

consensus configurations and use parameter tuning to tailor the RS code for given

input settings. We call this class as “enhanced-SOTA”.

– 250 –

Chapter 7. Density-aware redundancy for geo-distributed storage

For Optimized Dimension, we consider four dimensions: read latency, write

latency, storage-overhead, and update-cost. When optimizing, we constrain two of

these dimensions using a set of SLOs, and minimize the remaining two dimensions in

a particular chosen order: i.e. the second dimension is minimized subject to the first

dimension attaining the minimum. We evaluate by constraining different dimensions

and using different optimization orders. E.g., we might constrain read and write

latency via SLOs, and then minimize update-cost first, and storage-overhead second.

This means that the optimizer will first minimize update-cost subject to the read and

write latency constraints and then, out of all the solutions that achieve minimum

update-cost, it will choose one that minimizes storage-overhead.

We measure WAN bandwidth consumption by running the generated solutions on

synthetic workloads with varying parameters. Each frontend and datasite is run as a

different process, and latency of between processes is simulated using the inter-site

latency statistics collected from Azure. WAN bandwidth corresponds to the number

of bytes sent over-the-wire between processes. The synthetic workload consists of a

PUT operation followed by a sequence of UPDATEs at random offsets, executed by

frontends in a round-robin fashion. The workload has three parameters: the size of

the object, the number of bytes modified in UPDATEs, and the ratio of UPDATEs

to PUTs. We sweep through these parameters to cover a broad range of workloads.

7.4.2 Pudu achieves better tradeoffs

In this section, we compare the solutions produced by Pudu and enhanced-SOTA in

terms of the four dimensions considered: read latency, write latency, storage-overhead,

and update-cost. We show that Pudu is able to produce solutions which achieve

better tradeoffs across the considered dimensions. We run two sets of experiments: in

the first set we minimize update-cost first, then one of the other three dimensions; in

the second set we first minimize one of the other three dimensions, then update-cost.

The dimension is optimized first will be referred to as the “primary objective” and the

dimension that is optimized second will be referred to as the “secondary objective”.

Below we will see that while enhanced-SOTA can come close to Pudu in update-cost

– 251 –

Chapter 7. Density-aware redundancy for geo-distributed storage

0 10 20
Read Latency
reduction (ms)

0.00
0.25
0.50
0.75
1.00

Pr
op

or
tio

n
0 10 20 30
Write latency

reduction (ms)

0.0 0.2 0.4
Storage

reduction

Figure 7.6: Reductions achieved when update-cost is minimized first.

when it is the primary objective, the choices it makes to achieve this make enhanced-

SOTA significantly worse than Pudu in the secondary objective. Nonetheless, even

when read/write latency or storage overhead is the primary objective, Pudu performs

significantly better in both the primary and secondary objectives. Pudu, due to the

flexibility offered by density-aware redundancy, can achieve the best of both worlds,

that is perform well on both the primary and the secondary objective.

Minimizing update-cost first

We find that, in nearly all cases, both systems are able to achieve the same minimum

update-cost; however, Pudu is able to perform significantly better in the other

optimization dimension. We find that Pudu achieves very small improvements in

update-cost compared to enhanced-SOTA (1.56% reduction on average across all

experiments). However, Pudu is able to perform significantly better in the secondary

objective. The reason for this is that in most cases enhanced-SOTA can adjust

n and k so that n − k is relatively low, but this hurts its ability to optimize for

other objectives. Figure 7.6 shows the cumulative distribution function (CDF) of the

reductions. We observe that Pudu is able to improve over enhanced-SOTA in many

instances: 51.9% of them when optimizing read latency (average reduction of 6.47ms

up to 28ms), 16.8% for write latency (average reduction of 6.77ms up to 33ms), and

16.7% for storage-overhead (average reduction of 0.14 up to 0.44). The range of the

– 252 –

Chapter 7. Density-aware redundancy for geo-distributed storage

0% 10% 20% 30% 40% 50% 60% 70%
update-cost reduction

0.00

0.25

0.50

0.75

1.00

Pr
op

or
tio

n

Reduction in update-cost

Read
Write
Storage

0 10 20
Read latency

reduction (ms)

0.00
0.25
0.50
0.75
1.00

Pr
op

or
tio

n

0 10 20 30
Write latency

reduction (ms)

0.0 0.5 1.0
Storage

reduction

Figure 7.7: Reductions achieved when update-cost is minimized second.

– 253 –

Chapter 7. Density-aware redundancy for geo-distributed storage

0% 20% 40% 60% 80%
WAN bandwidth savings

0.5

0.6

0.7

0.8

0.9

1.0

Pr
op

or
tio

n Updated
size

10%
1%
0.1%
0.01%

0% 20% 40% 60% 80%
WAN bandwidth savings

UPDATE:PUT
ratio

50
25
10

Figure 7.8: WAN bandwidth savings of Pudu compared to enhanced-SOTA (notice
y-axis starts at 0.5). The plot shows the CDF of the distribution of WAN bandwidth
savings over all target-specifications, divided according to the size of updates (left)
and the ratio of update operations (right).

improvements, however, is very broad: these go up to 3 in update-cost, 28ms in read

latency, 33ms in write latency, and 0.44 in storage-overhead.

Minimizing update-cost second

In this case, we find that Pudu is able to achieve improvements in both of the

optimization dimensions: Figure 7.7 shows the CDFs for these improvements. In

particular, Pudu achieves significant reduction in update-cost (Figure 7.7, top):

34.9% of the target-specifications see an improvement, with an average reduction

of 35.4%. This is because enhanced-SOTA must add many additional parities to

minimize whichever dimension is minimized first (here either read latency, write

latency, or storage overhead). This results in a high update-cost.

When it comes to the dimension that is optimized first (Figure 7.7, bottom), the

improvements in read/write latency are moderate (0.95ms and 1.68ms in average,

respectively), while the improvement in storage-overhead is more significant (0.08 in

average). This is because the flexibility of Pudu to place different amounts of data

in each datasite allows it to minimize storage-overhead much more effectively. As in

the previous set of experiments, the range is very broad, with reductions of up to 4 in

update cost, 28ms is read latency, 36ms in write latency, and 1 in storage-overhead.

– 254 –

Chapter 7. Density-aware redundancy for geo-distributed storage

7.4.3 Pudu reduces WAN bandwidth

In this subsection, we use the configurations generated in the experiments in Sec-

tion 7.4.2. In particular, we focus on the experiments that minimize storage-overhead

and update-cost (in that order), as they show the largest improvements in the dimen-

sions that affect WAN bandwidth. Figure 7.8 shows the savings in WAN bandwidth

for the generated solutions. We observe that in average WAN bandwidth is reduced

by 11.5%, with ten percent experiencing a reduction of over 42.3%. When the size

of updates is a small fraction of the object, improvements in WAN bandwidth are

smaller (Figure 7.8, top): when 10% of the object is updated in each operation,

the average reduction is 15.7%, but when 0.01% of the object is updated in each

operation, the average reduction is 5.2%. This is because messages are composed

of two parts: protocol information related to consensus, and data payloads. When

updates are small, the payload will be relatively small compared to the rest of the

message. This is further amplified by the fact that Pudu tends to generate solutions

which use more datasites, which increases the amount of protocol messages sent. We

also observe (Figure 7.8, bottom) that improvements in WAN bandwidth are bigger

when the ratio of UPDATE operations is larger: when there is 10 UPDATEs for every

PUT the average savings are 10.1%; when there is 50 UPDATEs for every PUT the

average savings are 12.7%. This is due to the fact that the improvement is mainly

driven by a reduction in update-cost.

7.4.4 Effect of constraints on savings

We further analyze the results of Section 7.4.2 to identify the cases in which Pudu is

able to provide best improvements. To measure this we analyse the avarage reduction

in the optimization dimension against different values of the constraints. Figure 7.9

shows the results when update-cost is minimized first. We find that write latency

constraints do not have a large effect, except when the constraint is very restrictive.

This is because write quorums are usually the largest, and thus will not have a very

large impact on the minimal information sets. For read latency, we observe the

biggest improvements in the middle: when the constraints are not too strict or too

– 255 –

Chapter 7. Density-aware redundancy for geo-distributed storage

250 300 350 400
Write latency constraint

0

2

4

Av
er

ag
e

re
ad

la
te

nc
y

re
du

ct
io

n

2.0 2.5 3.0 3.5
Storage constraint

Min [update cost, read latency]

2.0 2.5 3.0 3.5
Storage constraint

0
1
2

Av
er

ag
e

wr
ite

la
te

nc
y

re
du

ct
io

n

100 200
Read latency constraint

Min [update cost, write latency]

250 300 350 400
Write latency constraint

0%

2%

4%

Av
er

ag
e

st
or

ag
e

ov
er

he
ad

 re
du

ct
io

n

100 200
Read latency constraint

Min [update cost, storage overhead]

Figure 7.9: Effect of constraints on reductions achieved when update-cost is optimized
first. Average reduction in read/write latency, and storage overhead is respectively
shown in the first, second, and third rows.

– 256 –

Chapter 7. Density-aware redundancy for geo-distributed storage

(a)

250 300 350 400
Write latency constraint

0%
10%
20%

Av
er

ag
e

up
da

te
co

st
 re

du
ct

io
n

2.0 2.5 3.0 3.5
Storage constraint

Min [read latency, update cost]

2.0 2.5 3.0 3.5
Storage constraint

0%

10%

Av
er

ag
e

up
da

te
co

st
 re

du
ct

io
n

100 200
Read latency constraint

Min [write latency, update cost]

250 300 350 400
Write latency constraint

0%

20%

40%

Av
er

ag
e

up
da

te
co

st
 re

du
ct

io
n

100 200
Read latency constraint

Min [storage overhead, update cost]

(b)

250 300 350 400
Write latency constraint

0

2

4

Av
er

ag
e

re
ad

la
te

nc
y

re
du

ct
io

n

2.0 2.5 3.0 3.5
Storage constraint

Min [read latency, update cost]

2.0 2.5 3.0 3.5
Storage constraint

0
1
2

Av
er

ag
e

wr
ite

la
te

nc
y

re
du

ct
io

n

100 200
Read latency con straint

Min [write latency, update cost]

250 300 350 400
Write latency constraint

0%

5%

Av
er

ag
e

st
or

ag
e

ov
er

he
ad

 re
du

ct
io

n

100 200
Read latency constraint

Min [storage overhead, update cost]

Figure 7.10: Effect of constraints on average reduction of update-cost ((a)) and
the other three dimensions (read/write latency, storage) ((b)) when update-cost is
minimized second.

– 257 –

Chapter 7. Density-aware redundancy for geo-distributed storage

lax. When the constraint is too strict, the placement of data is very constrained and

thus will always result in a solution similar to replication. When the constraint is

too lax, quorums can be chosen to be very large, which results in very homogeneous

information sets, and thus there is not much room for density-aware redundancy to

provide benefits. Finally, the relationship with the storage constraint is more complex:

because the storage overhead of RS codes is n
k

and n and k cannot take very large

values, RS codes are not always able to use the full storage budget. This leads to bad

solutions when the storage overhead SLO is not close to a simple ratio, in which cases

Pudu can improve the solution by taking advantage of the whole storage budget.

Figure 7.10 shows the results when update-cost is minimized second, with Fig-

ure 7.10a showing the effect on update-cost and Figure 7.10b showing the effect

on the dimension that is optimized first (read/write latency or storage overhead).

In Figure 7.10a, we see that write latency does not have a large impact on the

reduction, and that the biggest improvements are for read latency constraints in the

mid-range. We also see that when the storage overhead constraint is large, Pudu

sees the largest improvements in update-cost; this is because it is hard for RS codes

to reduce update-cost when they have a large number of parities. In Figure 7.10b, we

observe a similar behaviour as with the set of experiments in Figure 7.9.

7.4.5 Effect of heterogeneity on results

As discussed through the chapter, the main advantage of Pudu is that it can adapt

to heterogeneity in latencies to reduce cost. To test this, we artificially modify the

latencies between datasites to make them more homogeneous and see how it affects

the results. Figure 7.11 shows the average reductions obtained for three trials: one

where latencies are unmodified, one where the standard deviation of latencies is scaled

by one half, and one where it is scaled by one fourth. We observe that in almost all

cases the magnitude of the improvements of Pudu reduces as the network becomes

more homogeneous.

– 258 –

Chapter 7. Density-aware redundancy for geo-distributed storage

7.4.6 Overheads of Pudu

In this section, we measure the overheads of Pudu compared to the state-of-the-art.

Metadata

Given that Pudu generates a configuration and erasure code that are more closely

tailored to each target-specification, there is an extra overhead in terms of metadata

associated to each access profile. Compared to enhanced-SOTA, Pudu needs to

explicitly specify quorums, erasure code, and information sets as metadata. On

average, Pudu requires 72.9 extra bytes, and in the worst case it requires 1649 per

access profile. This overhead is negligible since it will be amortized across all the

multiple objects that use the same access profile.

Optimizer time

Pudu’s optimizer is more complex than the optimizer used by enhanced-SOTA, and

thus it still stands to reason that it will be slower in finding solutions. We measure

the total amount of time spent solving each input in the experiments above. The

median, p90, p99 times (in seconds) for Pudu are (38, 542, 1575). On average, Pudu

takes 1.68 times longer than enhanced-SOTA. These times are acceptable in practice,

because (1) the optimizer is run offline and is not in the critical path, (2) the solutions

of the optimizer remain valid for long periods of time (and need to be re-run only in

the rare cases where latencies between sites change significantly).

Erasure coding overhead

The erasure code that is produced by the ECOptimizer of Pudu is always a linear

code, and it is implemented using the ISA-L library [230]. Given that Pudu’s EC

module is more complex than a typical RS code, we might expect worse performance.

To test this, we benchmark the EC module with the different codes generated

in previous experiments, by encoding and decoding objects of sizes from 100B to

100kB. We observe that Pudu does take more time to encode objects than an RS

– 259 –

Chapter 7. Density-aware redundancy for geo-distributed storage

Read 1st
Read 2nd

Write 1st
Write 2nd

0

1

2

3

Av
er

ag
e

la
te

nc
y

re
du

ct
io

n
(m

s)

Unmodified
Half std dev
Quarter std dev

Storage 1st

Storage 2nd
0.00

0.02

0.04

0.06

0.08

Av
er

ag
e

st
or

ag
e

ov
er

he
ad

 re
du

ct
io

n

Figure 7.11: Effect of heterogeneity in density: improvements of Pudu reduce as
the network of datasites becomes more homogeneous.

code, especially smaller objects, where the overhead of our implementation is more

noticeable. However, the time to encode/decode an object never exceeds 1ms, and

is typically much smaller than that. Given that latencies between datasites are in

tens of ms, this overhead to not significant. Moreover, the implementation has not

been optimized to reduce encoding/decoding times, and such an engineering effort

can further reduce the encoding/decoding times.

7.5 Related work

Multiple systems for geo-distributed storage have been proposed: some with weak

consistency guarantees [210, 231–233], and some with strong consistency guarantees

[177, 234–236]. Several systems have been specially designed to allow consensus with

low latency [212, 215, 237]. Some systems use replication along with special data

placement to keep cost low [211, 238].

Pando [6] optimizes the configuration of a geo-distributed storage system to reduce

cost. However, Pando only uses RS codes, and does not directly consider the impact

the WAN bandwidth in cost. Other works that have also explored the use of erasure

codes in consensus protocols are [5, 219].

Erasure codes have been applied in several other storage systems to provide

– 260 –

Chapter 7. Density-aware redundancy for geo-distributed storage

reliability at a low cost. After the influential system of RAID [21], several other

systems have used erasure coding for storing data [178, 180, 239–241]. More recently,

several works have explored the idea of adapting the parameters of an RS code to

adapt to changes in failure rates [1, 15, 120].

– 261 –

Part III

Future directions

– 262 –

Chapter 8

Future directions for Part I

In the first part of this thesis, we have focused on studying the change of storage

codes and distributed storage systems through time. In the theoretical front, we

have proposed the convertible codes framework and the conversion problem as ways

of formalizing and studying storage code changes. On the practical front, we have

proposed new distributed storage systems which are designed with storage code

changes in mind, and which are able to perform these changes in ways that are

efficient and robust.

Our work shows that the conversion problem has a lot of depth from both a

theoretical and practical point of view, and that there is a lot of potential for

improving the efficiency of production distributed storage systems and reducing their

operations costs. However, there are still many related open problems which are yet

to be explored.

8.1 Future directions for convertible codes

8.1.1 Conversion bandwidth in the general regime

The main unsolved problem in our study of linear MDS convertible codes is in deriving

lower bounds for the conversion bandwidth of the general regime, as well as optimal

constructions that match said lower bounds. For example, in the case where rI > rF

– 263 –

Chapter 8. Future directions for Part I

in the split regime (Section 3.6), the best known lower bound is not tight (and the

best known construction is only conjectured to be optimal). Compared to access cost,

conversion bandwidth lower bounds are more difficult to analyze because conversion

bandwidth is more fine-grained than access cost. This is because to minimize access

cost it suffices to consider scalar codes, whereas to minimize conversion bandwidth,

we must consider vector codes: in a scalar code, either the whole symbol is read or

not read, but in a vector code, we can read only part of a symbol. Thus, a more

detailed analysis is required in the case of conversion bandwidth. Similarly, on the

construction side, it is harder to reuse the constructions from the merge and split

regimes in the general regime, because they both require the use of vector codes, which

are more complex than scalar codes. Composing these vector code constructions,

while possible, is less straightforward than their scalar counterparts.

8.1.2 Practical general constructions

In the research presented in this thesis, we have made a special effort to devise

constructions and techniques that can be implemented in practice, considering the

technical limitations of real distributed storage systems in use today. Despite our best

efforts, however, there are still cases where our constructions are not as flexible and

easy-to-deploy as popular general-purpose storage codes (like Reed-Solomon codes).

For example, while in many cases our access-optimal constructions have a low

field-size requirement, there are some cases (chiefly, rI = rF) where the best known

construction has a very high field size (see Chapter 2). Discovering constructions

that have low-field size requirement in all cases is still an open problem and would

help convertible codes be usable in a wider array of situations.

On a similar vein, subpacketization (i.e. the length of vectors in a vector code), is

of great practical importance. Subpacketization is required for bandwidth-optimal

convertible codes (see Chapter 3), however, it is not clear if our constructions have

minimum subpacketization, or what is the tradeoff when subpacketization is limited.

– 264 –

Chapter 8. Future directions for Part I

8.1.3 Multiple/branching conversions

Although, most of our work in this thesis focuses on single code conversions, we

have discussed at several points how to support multiple subsequent conversions, or

branching conversions where the set of final parameters is unknown ahead of time.

However, our current solution to these problems in the case of conversion-bandwidth

minimization relies on composing the codes for different single conversions. This

solution results in codes with very high subpacketization, which is not practical

because high subpacketization can hurt performance. Therefore, to solve this problem

in practice, a better approach is needed (one that might not necessarily be bandwidth-

optimal, for example).

In the above, we considered the problem of multiple/branching conversions from a

coding-theoretical point of view. However, there are also many open questions when

we consider this problem from a “systems” perspective. For example: How should a

distributed storage system choose the sequence of erasure code parameters that will

be used during these multiple conversions? When and how should the system perform

the conversions? These questions are non-trivial, and would need to be solved before

implementing this into a real system.

8.1.4 Code conversions beyond MDS codes

In Chapter 4, we considered conversion between locally-recoverable codes (with

information locality). However, there is a vast array of storage codes proposed in the

Coding Theory literature, such as LRCs with all-symbol locality [65], partial-MDS or

maximally-recoverable codes [68], regenerating codes [27], and many other non-MDS

codes. Investigating conversions within or across these different classes of codes is an

important avenue for future research.

– 265 –

Chapter 8. Future directions for Part I

8.2 Future directions for disk-adaptive redundancy

8.2.1 Disk-adaptive redundancy with convertible codes

On the system front, there are also vast opportunities for future work. One important

opportunity for future work is to design a fully-featured distributed storage system

that utilizes convertible codes. The typical design of distributed storage systems used

in practice, makes the integration of convertible codes challenging. This is because

these systems typically assume a strict data layout which may not be preserved when

combining data from multiple codewords (as the convertible codes framework does).

To obtain the full benefits of convertible codes, it is necessary to modify the way

these systems deal with data layouts and the management of codewords.

8.2.2 Enhancing the reliability of disk-adaptive redundancy sys-

tems

Another avenue for future work on distributed storage systems is in improving the

monitoring of disk failure rates. For example, the disk-adaptive redundancy techniques

that we describe could be further improved by introducing machine learning algorithms

capable of predicting changes in AFRs, and incorporating those predictions into the

redundancy management. Similarly, the reliability models used for assessing the

health of the system (such as the calculation of MTTDLs) could be made more robust

to variations in AFR over time, or correlated failures, as well as more efficient to

compute.

– 266 –

Chapter 9

Future directions for Part II

In Chapter 6, we introduced MUC codes which, given an arbitrary collection of sets

that need to decode an object (access set), it minimizes update cost and then storage

overhead. Our results show that in this setting, Reed-Solomon are not optimal and

we can improve by designing a code that is tailored to the required access sets. Then,

in Chapter 7, we integrated the MUC codes framework into a strongly-consistent

geo-distributed storage system. By using this framework, we co-optimized the design

of the erasure code along with the configuration of the protocol in order to minimize

the operating cost of the system. Our work shows that the MUC codes framework is

useful in practice, and it can be used to achieve significant savings in operating cost.

9.1 Future directions for MUC codes

As future work, there are many opportunities around the design of codes with arbitrary

access sets. Compared to the classical setting where every subset of a certain size

is an access set, this setting with arbitrary access sets is relatively uncharted. Our

work focuses on only two metrics (storage overhead and update cost) and proposes

a randomized construction. There are, however, multiple other aspects that can be

considered in the design of a code (such as repair, or convertibility).

However, even for the metrics that we consider, there are still opportunities for

– 267 –

Chapter 9. Future directions for Part II

future work. The construction that we give in Chapter 6, is randomized. It would

be of interest to have a deterministic construction: such a construction could give a

better understanding of the problem and open up the opportunity to improve the

field size of the code or other practical metrics.

9.2 Future directions for geo-distributed storage sys-

tems

Our work in Chapter 7 considers a specific setting where the system is optimized to a

particular network topology and arrangement of users in different regions. However,

these aspects might change throughout time because of users being added or departing,

or because of changes in the network (which may or may not be transient). In these

cases, the optimal configuration of the system and storage code might change. Clearly,

as in the case of convertible codes, re-encoding data and redistributing data is always

possible, though it might be expensive. Therefore, a interesting future direction

could be studying how to design the system and storage code to accommodate these

changes more efficiently.

– 268 –

Bibliography

[1] Saurabh Kadekodi, K. V. Rashmi, and Gregory R. Ganger. Cluster storage

systems gotta have HeART: improving storage efficiency by exploiting disk-

reliability heterogeneity. In Arif Merchant and Hakim Weatherspoon, editors,

17th USENIX Conference on File and Storage Technologies, FAST 2019, Boston,

MA, February 25-28, 2019, pages 345–358. USENIX Association, 2019. URL

https://www.usenix.org/conference/fast19/presentation/kadekodi.

[2] Google Docs. Google Docs: Online document editor. https://www.google.

com/docs/about/, 2022. Accessed: 2022-10-03.

[3] Overleaf. Overleaf, Online LaTeX Editor. https://www.overleaf.com/, 2022.

Accessed: 2022-10-03.

[4] Shuai Mu, Kang Chen, Yongwei Wu, and Weimin Zheng. When paxos meets

erasure code: Reduce network and storage cost in state machine replication. In

Proceedings of the 23rd International Symposium on High-Performance Parallel

and Distributed Computing, HPDC ’14, page 61–72, New York, NY, USA, 2014.

Association for Computing Machinery. ISBN 9781450327497. doi: 10.1145/

2600212.2600218. URL https://doi.org/10.1145/2600212.2600218.

[5] Zizhong Wang, Tongliang Li, Haixia Wang, Airan Shao, Yunren Bai, Shangming

Cai, Zihan Xu, and Dongsheng Wang. CRaft: An erasure-coding-supported

version of raft for reducing storage cost and network cost. In 18th USENIX Con-

ference on File and Storage Technologies (FAST 20), pages 297–308, Santa Clara,

– 269 –

https://www.usenix.org/conference/fast19/presentation/kadekodi
https://www.google.com/docs/about/
https://www.google.com/docs/about/
https://www.overleaf.com/
https://doi.org/10.1145/2600212.2600218

Bibliography

CA, February 2020. USENIX Association. ISBN 978-1-939133-12-0. URL https:

//www.usenix.org/conference/fast20/presentation/wang-zizhong.

[6] Muhammed Uluyol, Anthony Huang, Ayush Goel, Mosharaf Chowdhury, and

Harsha V. Madhyastha. Near-optimal latency versus cost tradeoffs in geo-

distributed storage. In 17th USENIX Symposium on Networked Systems Design

and Implementation, NSDI 2020, Santa Clara, CA, USA, February 25-27, 2020,

pages 157–180. USENIX Association, 2020.

[7] Francisco Maturana and K. V. Rashmi. Convertible codes: enabling efficient con-

version of coded data in distributed storage. IEEE Transactions on Information

Theory, 68:4392–4407, 2022. ISSN 1557-9654. doi: 10.1109/TIT.2022.3155972.

[8] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung. The Google file

system. In Michael L. Scott and Larry L. Peterson, editors, Proceedings of

the 19th ACM Symposium on Operating Systems Principles 2003, SOSP 2003,

Bolton Landing, NY, USA, October 19-22, 2003, pages 29–43. ACM, 2003. doi:

10.1145/945445.945450.

[9] Dhruba Borthakur, Rodrigo Schmidt, Ramkumar Vadali, Scott Chen, and

Patrick Kling. HDFS RAID - Facebook (presentation), 2010. URL http:

//www.slideshare.net/ydn/hdfs-raid-facebook.

[10] Cheng Huang, Huseyin Simitci, Yikang Xu, Aaron Ogus, Brad Calder, Parik-

shit Gopalan, Jin Li, and Sergey Yekhanin. Erasure coding in Windows

Azure storage. In Gernot Heiser and Wilson C. Hsieh, editors, 2012 USENIX

Annual Technical Conference, Boston, MA, USA, June 13-15, 2012, pages 15–

26. USENIX Association, 2012. URL https://www.usenix.org/conference/

atc12/technical-sessions/presentation/huang.

[11] Apache Software Foundation. Apache Hadoop documentation: HDFS

erasure coding, 2019. URL https://hadoop.apache.org/docs/r3.0.0/

hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html. Accessed:

2019-07-23.

– 270 –

https://www.usenix.org/conference/fast20/presentation/wang-zizhong
https://www.usenix.org/conference/fast20/presentation/wang-zizhong
http://www.slideshare.net/ydn/hdfs-raid-facebook
http://www.slideshare.net/ydn/hdfs-raid-facebook
https://www.usenix.org/conference/atc12/technical-sessions/presentation/huang
https://www.usenix.org/conference/atc12/technical-sessions/presentation/huang
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

Bibliography

[12] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur,

and Kannan Ramchandran. A solution to the network challenges of data

recovery in erasure-coded distributed storage systems: A study on the Facebook

warehouse cluster. In Ajay Gulati, editor, 5th USENIX Workshop on Hot

Topics in Storage and File Systems, HotStorage’13, San Jose, CA, USA, June

27-28, 2013. USENIX Association, 2013. URL https://www.usenix.org/

conference/hotstorage13/workshop-program/presentation/rashmi.

[13] K. V. Rashmi, Nihar B. Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur,

and Kannan Ramchandran. A ”hitchhiker’s” guide to fast and efficient data re-

construction in erasure-coded data centers. In Fabián E. Bustamante, Y. Charlie

Hu, Arvind Krishnamurthy, and Sylvia Ratnasamy, editors, ACM SIGCOMM

2014 Conference, SIGCOMM’14, Chicago, IL, USA, August 17-22, 2014, pages

331–342. ACM, 2014. doi: 10.1145/2619239.2626325.

[14] Megasthenis Asteris, Dimitris Papailiopoulos, Alexandros G Dimakis, Ramku-

mar Vadali, Scott Chen, and Dhruba Borthakur. Xoring elephants: Novel

erasure codes for big data. Proceedings of the VLDB Endowment, 6(5), 2013.

[15] Saurabh Kadekodi, Francisco Maturana, Suhas Jayaram Subramanya, Juncheng

Yang, K. V. Rashmi, and Gregory R. Ganger. PACEMAKER: Avoiding HeART

attacks in storage clusters with disk-adaptive redundancy. In 14th USENIX

Symposium on Operating Systems Design and Implementation (OSDI 20), pages

369–385. USENIX Association, November 2020. ISBN 978-1-939133-19-9. URL

https://www.usenix.org/conference/osdi20/presentation/kadekodi.

[16] Jianzhong Huang, Xianhai Liang, Xiao Qin, Ping Xie, and Changsheng Xie.

Scale-RS: an efficient scaling scheme for RS-coded storage clusters. IEEE

Transactions on Parallel and Distributed Systems, 26(6):1704–1717, 2015. doi:

10.1109/TPDS.2014.2326156.

[17] Brijesh Kumar Rai. On adaptive (functional MSR code based) distributed

storage systems. In 2015 International Symposium on Network Coding, NetCod

– 271 –

https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/rashmi
https://www.usenix.org/conference/hotstorage13/workshop-program/presentation/rashmi
https://www.usenix.org/conference/osdi20/presentation/kadekodi

Bibliography

2015, Sydney, Australia, June 22-24, 2015, pages 46–50. IEEE, 2015. doi:

10.1109/NETCOD.2015.7176787.

[18] M. Sonowal and B. K. Rai. On adaptive distributed storage systems based on

functional MSR code. In Proceedings of the Signal Processing and Networking

(WiSPNET) 2017 International Conference on Wireless Communications, pages

338–343, 2017. doi: 10.1109/WiSPNET.2017.8299774.

[19] Yuchong Hu, Xiaoyang Zhang, Patrick P. C. Lee, and Pan Zhou. Generalized

optimal storage scaling via network coding. In 2018 IEEE International Sym-

posium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018,

pages 956–960. IEEE, 2018. doi: 10.1109/ISIT.2018.8437684.

[20] I. S. Reed and G. Solomon. Polynomial codes over certain finite fields. Journal

of the Society for Industrial and Applied Mathematics, 8(2):300–304, 1960. doi:

10.1137/0108018. URL https://doi.org/10.1137/0108018.

[21] David A. Patterson, Garth A. Gibson, and Randy H. Katz. A case for Redundant

Arrays of Inexpensive Disks (RAID). In Haran Boral and Per-Åke Larson,

editors, Proceedings of the 1988 ACM SIGMOD International Conference on

Management of Data, Chicago, Illinois, USA, June 1-3, 1988, pages 109–116.

ACM Press, 1988. doi: 10.1145/50202.50214.

[22] J.S. Plank. T1: Erasure codes for storage applications. Proceedings of the 4th

USENIX Conference on File and Storage Technologies, pages 1–74, 01 2005.

[23] Mario Blaum, Jim Brady, Jehoshua Bruck, and Jai Menon. EVENODD: an

efficient scheme for tolerating double disk failures in RAID architectures. IEEE

Transactions on Computers, 44(2):192–202, 1995. doi: 10.1109/12.364531.

[24] Lihao Xu and Jehoshua Bruck. X-code: MDS array codes with optimal encoding.

IEEE Transactions on Information Theory, 45(1):272–276, 1999. doi: 10.1109/

18.746809.

– 272 –

https://doi.org/10.1137/0108018

Bibliography

[25] Cheng Huang and Lihao Xu. STAR : an efficient coding scheme for correcting

triple storage node failures. IEEE Transactions on Computers, 57(7):889–901,

2008. doi: 10.1109/TC.2007.70830.

[26] James Lee Hafner. WEAVER codes: highly fault tolerant erasure codes for stor-

age systems. In Garth Gibson, editor, Proceedings of the FAST ’05 Conference

on File and Storage Technologies, December 13-16, 2005, San Francisco, Cali-

fornia, USA. USENIX, 2005. URL http://www.usenix.org/events/fast05/

tech/hafner_weaver.html.

[27] Alexandros G. Dimakis, Brighten Godfrey, Yunnan Wu, Martin J. Wainwright,

and Kannan Ramchandran. Network coding for distributed storage systems.

IEEE Transactions on Information Theory, 56(9):4539–4551, 2010. doi: 10.

1109/TIT.2010.2054295.

[28] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Optimal exact-regenerating

codes for distributed storage at the MSR and MBR points via a product-matrix

construction. IEEE Transactions on Information Theory, 57(8):5227–5239,

2011. doi: 10.1109/TIT.2011.2159049.

[29] Nihar B Shah, K. V. Rashmi, P Vijay Kumar, and Kannan Ramchandran.

Interference alignment in regenerating codes for distributed storage: Necessity

and code constructions. IEEE Transactions on Information Theory, 58(4):

2134–2158, 2011.

[30] Changho Suh and Kannan Ramchandran. Exact-repair MDS code construction

using interference alignment. IEEE Transactions on Information Theory, 57(3):

1425–1442, 2011. doi: 10.1109/TIT.2011.2105003.

[31] Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck. On codes for optimal

rebuilding access. In 49th Annual Allerton Conference on Communication,

Control, and Computing, Allerton 2011, Allerton Park & Retreat Center, Mon-

ticello, IL, USA, 28-30 September, 2011, pages 1374–1381. IEEE, 2011. doi:

10.1109/Allerton.2011.6120327.

– 273 –

http://www.usenix.org/events/fast05/tech/hafner_weaver.html
http://www.usenix.org/events/fast05/tech/hafner_weaver.html

Bibliography

[32] Viveck R. Cadambe, Cheng Huang, Jin Li, and Sanjeev Mehrotra. Polynomial

length MDS codes with optimal repair in distributed storage. In Michael B.

Matthews, editor, Conference Record of the Forty Fifth Asilomar Conference

on Signals, Systems and Computers, ACSCC 2011, Pacific Grove, CA, USA,

November 6-9, 2011, pages 1850–1854. IEEE, 2011. doi: 10.1109/ACSSC.2011.

6190343.

[33] Nihar B Shah, K Vinayak Rashmi, P Vijay Kumar, and Kannan Ramchandran.

Distributed storage codes with repair-by-transfer and nonachievability of interior

points on the storage-bandwidth tradeoff. IEEE Transactions on Information

Theory, 58(3):1837–1852, 2011.

[34] Zhiying Wang, Itzhak Tamo, and Jehoshua Bruck. Long MDS codes for optimal

repair bandwidth. In 2012 IEEE International Symposium on Information

Theory, ISIT 2012, Cambridge, MA, USA, July 1-6, 2012, pages 1182–1186.

IEEE, 2012. doi: 10.1109/ISIT.2012.6283041.

[35] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Zigzag codes: MDS array

codes with optimal rebuilding. IEEE Transactions on Information Theory, 59

(3):1597–1616, 2013. doi: 10.1109/TIT.2012.2227110.

[36] Viveck R. Cadambe, Syed Ali Jafar, Hamed Maleki, Kannan Ramchandran,

and Changho Suh. Asymptotic interference alignment for optimal repair of

MDS codes in distributed storage. IEEE Transactions on Information Theory,

59(5):2974–2987, 2013. doi: 10.1109/TIT.2013.2237752.

[37] Dimitris S. Papailiopoulos, Alexandros G. Dimakis, and Viveck R. Cadambe.

Repair optimal erasure codes through Hadamard designs. IEEE Transactions

on Information Theory, 59(5):3021–3037, May 2013. doi: 10.1109/TIT.2013.

2241819.

[38] Birenjith Sasidharan, Gaurav Kumar Agarwal, and P. Vijay Kumar. A high-rate

MSR code with polynomial sub-packetization level. In IEEE International

– 274 –

Bibliography

Symposium on Information Theory, ISIT 2015, Hong Kong, China, June 14-19,

2015, pages 2051–2055. IEEE, 2015. doi: 10.1109/ISIT.2015.7282816.

[39] Min Ye and Alexander Barg. Explicit constructions of MDS array codes and

RS codes with optimal repair bandwidth. In IEEE International Symposium

on Information Theory, ISIT 2016, Barcelona, Spain, July 10-15, 2016, pages

1202–1206. IEEE, 2016. doi: 10.1109/ISIT.2016.7541489.

[40] Min Ye and Alexander Barg. Explicit constructions of optimal-access MDS

codes with nearly optimal sub-packetization. IEEE Transactions on Information

Theory, 63(10):6307–6317, 2017. doi: 10.1109/TIT.2017.2730863.

[41] Ankit Singh Rawat, Onur Ozan Koyluoglu, and Sriram Vishwanath. Progress

on high-rate MSR codes: enabling arbitrary number of helper nodes. In 2016

Information Theory and Applications Workshop, ITA 2016, La Jolla, CA, USA,

January 31 - February 5, 2016, pages 1–6. IEEE, 2016. doi: 10.1109/ITA.2016.

7888191.

[42] Birenjith Sasidharan, Myna Vajha, and P. Vijay Kumar. An explicit, coupled-

layer construction of a high-rate MSR code with low sub-packetization level,

small field size and d < (n − 1). In 2017 IEEE International Symposium on

Information Theory, ISIT 2017, Aachen, Germany, June 25-30, 2017, pages

2048–2052. IEEE, 2017. doi: 10.1109/ISIT.2017.8006889.

[43] Sreechakra Goparaju, Arman Fazeli, and Alexander Vardy. Minimum storage

regenerating codes for all parameters. IEEE Transactions on Information

Theory, 63(10):6318–6328, 2017. doi: 10.1109/TIT.2017.2690662.

[44] Ameera Chowdhury and Alexander Vardy. New constructions of MDS codes

with asymptotically optimal repair. In 2018 IEEE International Symposium

on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22, 2018, pages

1944–1948. IEEE, 2018. doi: 10.1109/ISIT.2018.8437590.

– 275 –

Bibliography

[45] Kaveh Mahdaviani, Ashish Khisti, and Soheil Mohajer. Bandwidth adaptive

& error resilient MBR exact repair regenerating codes. IEEE Transactions on

Information Theory, 65(5):2736–2759, 2019. doi: 10.1109/TIT.2018.2878223.

[46] Kaveh Mahdaviani, Soheil Mohajer, and Ashish Khisti. Product matrix MSR

codes with bandwidth adaptive exact repair. IEEE Transactions on Information

Theory, 64(4):3121–3135, 2018. doi: 10.1109/TIT.2018.2796599.

[47] Ankit Singh Rawat, Itzhak Tamo, Venkatesan Guruswami, and Klim Efremenko.

MDS code constructions with small sub-packetization and near-optimal repair

bandwidth. IEEE Transactions on Information Theory, 64(10):6506–6525, 2018.

doi: 10.1109/TIT.2018.2810095.

[48] Nihar B. Shah, K. V. Rashmi, and P. Vijay Kumar. A flexible class of re-

generating codes for distributed storage. In IEEE International Symposium

on Information Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA,

Proceedings, pages 1943–1947. IEEE, 2010. doi: 10.1109/ISIT.2010.5513353.

[49] Kenneth W. Shum. Cooperative regenerating codes for distributed storage

systems. In Proceedings of IEEE International Conference on Communications,

ICC 2011, Kyoto, Japan, 5-9 June, 2011, pages 1–5. IEEE, 2011. doi: 10.1109/

icc.2011.5962548.

[50] Vitaly Abdrashitov, N. Prakash, and Muriel Médard. The storage vs repair

bandwidth trade-off for multiple failures in clustered storage networks. In 2017

IEEE Information Theory Workshop, ITW 2017, Kaohsiung, Taiwan, November

6-10, 2017, pages 46–50. IEEE, 2017. doi: 10.1109/ITW.2017.8277979.

[51] Karthikeyan Shanmugam, Dimitris S. Papailiopoulos, Alexandros G. Dimakis,

and Giuseppe Caire. A repair framework for scalar MDS codes. IEEE Journal

on Selected Areas in Communications, 32(5):998–1007, 2014. doi: 10.1109/

JSAC.2014.140519.

– 276 –

Bibliography

[52] Venkatesan Guruswami and Mary Wootters. Repairing Reed-Solomon codes.

IEEE Transactions on Information Theory, 63(9):5684–5698, 2017. doi: 10.

1109/TIT.2017.2702660.

[53] Hoang Dau and Olgica Milenkovic. Optimal repair schemes for some families

of full-length Reed-Solomon codes. In 2017 IEEE International Symposium on

Information Theory, ISIT 2017, Aachen, Germany, June 25-30, 2017, pages

346–350. IEEE, 2017. doi: 10.1109/ISIT.2017.8006547.

[54] Itzhak Tamo, Min Ye, and Alexander Barg. Optimal repair of Reed-Solomon

codes: achieving the cut-set bound. In Chris Umans, editor, 58th IEEE Annual

Symposium on Foundations of Computer Science, FOCS 2017, Berkeley, CA,

USA, October 15-17, 2017, pages 216–227. IEEE Computer Society, 2017. doi:

10.1109/FOCS.2017.28.

[55] Jay Mardia, Burak Bartan, and Mary Wootters. Repairing multiple failures for

scalar MDS codes. IEEE Transactions on Information Theory, 65(5):2661–2672,

2018.

[56] Hoang Dau, Iwan M. Duursma, Han Mao Kiah, and Olgica Milenkovic. Re-

pairing Reed-Solomon codes with multiple erasures. IEEE Transactions on

Information Theory, 64(10):6567–6582, 2018. doi: 10.1109/TIT.2018.2827942.

[57] Itzhak Tamo, Min Ye, and Alexander Barg. The repair problem for Reed–

Solomon codes: Optimal repair of single and multiple erasures with almost

optimal node size. IEEE Transactions on Information Theory, 65(5):2673–2695,

2018.

[58] S. B. Balaji and P. Vijay Kumar. A tight lower bound on the sub-packetization

level of optimal-access MSR and MDS codes. In 2018 IEEE International

Symposium on Information Theory, ISIT 2018, Vail, CO, USA, June 17-22,

2018, pages 2381–2385. IEEE, 2018. doi: 10.1109/ISIT.2018.8437486.

– 277 –

Bibliography

[59] K. V. Rashmi, Preetum Nakkiran, Jingyan Wang, Nihar B Shah, and Kannan

Ramchandran. Having your cake and eating it too: Jointly optimal erasure

codes for I/O, storage, and network-bandwidth. In 13th USENIX Conference

on File and Storage Technologies (FAST 15), pages 81–94, 2015.

[60] Itzhak Tamo, Zhiying Wang, and Jehoshua Bruck. Access versus bandwidth in

codes for storage. IEEE Transactions on Information Theory, 60(4):2028–2037,

2014. doi: 10.1109/TIT.2014.2305698.

[61] Sreechakra Goparaju, Itzhak Tamo, and A. Robert Calderbank. An im-

proved sub-packetization bound for minimum storage regenerating codes.

IEEE Transactions on Information Theory, 60(5):2770–2779, 2014. doi:

10.1109/TIT.2014.2309000.

[62] Omar Alrabiah and Venkatesan Guruswami. An exponential lower bound on

the sub-packetization of MSR codes. In Moses Charikar and Edith Cohen,

editors, Proceedings of the 51st Annual ACM SIGACT Symposium on Theory of

Computing, STOC 2019, Phoenix, AZ, USA, June 23-26, 2019, pages 979–985.

ACM, 2019. doi: 10.1145/3313276.3316387.

[63] K. V. Rashmi, Nihar B. Shah, and Kannan Ramchandran. A piggybacking

design framework for read-and download-efficient distributed storage codes.

IEEE Transactions on Information Theory, 63(9):5802–5820, 2017. doi: 10.

1109/TIT.2017.2715043.

[64] Venkatesan Guruswami and Ankit Singh Rawat. MDS code constructions with

small sub-packetization and near-optimal repair bandwidth. In ACM-SIAM

Symposium on Discrete Algorithms, 2017.

[65] Parikshit Gopalan, Cheng Huang, Huseyin Simitci, and Sergey Yekhanin. On

the locality of codeword symbols. IEEE Transactions on Information Theory,

58(11):6925–6934, 2012. doi: 10.1109/TIT.2012.2208937.

– 278 –

Bibliography

[66] Ankit Singh Rawat, Onur Ozan Koyluoglu, Natalia Silberstein, and Sriram

Vishwanath. Optimal locally repairable and secure codes for distributed storage

systems. IEEE Transactions on Information Theory, 60(1):212–236, 2013. doi:

10.1109/TIT.2013.2288784.

[67] Jonathan Katz and Luca Trevisan. On the efficiency of local decoding pro-

cedures for error-correcting codes. In F. Frances Yao and Eugene M. Luks,

editors, Proceedings of the Thirty-Second Annual ACM Symposium on Theory

of Computing, May 21-23, 2000, Portland, OR, USA, pages 80–86. ACM, 2000.

doi: 10.1145/335305.335315.

[68] Mario Blaum, James Lee Hafner, and Steven Hetzler. Partial-MDS codes

and their application to RAID type of architectures. IEEE Transactions on

Information Theory, 59(7):4510–4519, 2013. doi: 10.1109/TIT.2013.2252395.

[69] Parikshit Gopalan, Cheng Huang, Bob Jenkins, and Sergey Yekhanin. Explicit

maximally recoverable codes with locality. IEEE Transactions on Information

Theory, 60(9):5245–5256, 2014. doi: 10.1109/TIT.2014.2332338.

[70] Dimitris S. Papailiopoulos and Alexandros G. Dimakis. Locally repairable

codes. IEEE Transactions on Information Theory, 60(10):5843–5855, 2014. doi:

10.1109/TIT.2014.2325570.

[71] Itzhak Tamo and Alexander Barg. A family of optimal locally recoverable

codes. IEEE Transactions on Information Theory, 60(8):4661–4676, 2014. doi:

10.1109/TIT.2014.2321280.

[72] Govinda M. Kamath, N. Prakash, V. Lalitha, and P. Vijay Kumar. Codes with

local regeneration and erasure correction. IEEE Transactions on Information

Theory, 60(8):4637–4660, 2014. doi: 10.1109/TIT.2014.2329872.

[73] Viveck R. Cadambe and Arya Mazumdar. Bounds on the size of locally

recoverable codes. IEEE Transactions on Information Theory, 61(11):5787–

5794, 2015. doi: 10.1109/TIT.2015.2477406.

– 279 –

Bibliography

[74] Itzhak Tamo, Dimitris S. Papailiopoulos, and Alexandros G. Dimakis. Optimal

locally repairable codes and connections to matroid theory. IEEE Transac-

tions on Information Theory, 62(12):6661–6671, 2016. doi: 10.1109/TIT.2016.

2555813.

[75] Itzhak Tamo, Alexander Barg, and Alexey A. Frolov. Bounds on the parameters

of locally recoverable codes. IEEE Transactions on Information Theory, 62(6):

3070–3083, 2016. doi: 10.1109/TIT.2016.2518663.

[76] Alexander Barg, Kathryn Haymaker, Everett W. Howe, Gretchen L. Matthews,

and Anthony Várilly-Alvarado. Locally recoverable codes from algebraic curves

and surfaces. In Everett W. Howe, Kristin E. Lauter, and Judy L. Walker,

editors, Algebraic Geometry for Coding Theory and Cryptography, pages 95–127,

Cham, 2017. Springer International Publishing. ISBN 978-3-319-63931-4. doi:

10.1007/978-3-319-63931-4 4.

[77] S. Luna Frank-Fischer, Venkatesan Guruswami, and Mary Wootters. Locality

via partially lifted codes. In Klaus Jansen, José D. P. Rolim, David Williamson,

and Santosh S. Vempala, editors, Approximation, Randomization, and Com-

binatorial Optimization. Algorithms and Techniques, APPROX/RANDOM

2017, August 16-18, 2017, Berkeley, CA, USA, volume 81(43) of LIPIcs,

pages 1–17. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2017. doi:

10.4230/LIPIcs.APPROX-RANDOM.2017.43.

[78] Abhishek Agarwal, Alexander Barg, Sihuang Hu, Arya Mazumdar, and Itzhak

Tamo. Combinatorial alphabet-dependent bounds for locally recoverable codes.

IEEE Transactions on Information Theory, 64(5):3481–3492, 2018. doi: 10.

1109/TIT.2018.2800042.

[79] Arya Mazumdar. Capacity of locally recoverable codes. In IEEE Information

Theory Workshop, ITW 2018, Guangzhou, China, November 25-29, 2018, pages

1–5. IEEE, 2018. doi: 10.1109/ITW.2018.8613529.

– 280 –

Bibliography

[80] Venkatesan Guruswami, Chaoping Xing, and Chen Yuan. How long can

optimal locally repairable codes be? In Approximation, Randomization, and

Combinatorial Optimization. Algorithms and Techniques (APPROX/RANDOM

2018). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik, 2018.

[81] Sivakanth Gopi, Venkatesan Guruswami, and Sergey Yekhanin. Maximally

recoverable LRCs: A field size lower bound and constructions for few heavy

parities. In Timothy M. Chan, editor, Proceedings of the Thirtieth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2019, San Diego,

California, USA, January 6-9, 2019, pages 2154–2170. SIAM, 2019. doi:

10.1137/1.9781611975482.130.

[82] Guangyan Zhang, Weimin Zheng, and Jiwu Shu. ALV: A new data redistribution

approach to RAID-5 scaling. IEEE Transactions on Computers, 59(3):345–357,

2010. doi: 10.1109/TC.2009.150.

[83] Weimin Zheng and Guangyan Zhang. Fastscale: accelerate RAID scaling by

minimizing data migration. In Gregory R. Ganger and John Wilkes, editors,

9th USENIX Conference on File and Storage Technologies, San Jose, CA,

USA, February 15-17, 2011, pages 149–161. USENIX, 2011. URL http://www.

usenix.org/events/fast11/tech/techAbstracts.html#Zheng.

[84] Chentao Wu and Xubin He. GSR: A global stripe-based redistribution approach

to accelerate RAID-5 scaling. In 41st International Conference on Parallel

Processing, ICPP 2012, Pittsburgh, PA, USA, September 10-13, 2012, pages

460–469. IEEE Computer Society, 2012. doi: 10.1109/ICPP.2012.32.

[85] Guangyan Zhang, Weimin Zheng, and Keqin Li. Rethinking RAID-5 data layout

for better scalability. IEEE Transactions on Computers, 63(11):2816–2828,

2014. doi: 10.1109/TC.2013.143.

[86] Si Wu, Yinlong Xu, Yongkun Li, and Zhijia Yang. I/O-efficient scaling schemes

for distributed storage systems with CRS codes. IEEE Transactions on Parallel

– 281 –

http://www.usenix.org/events/fast11/tech/techAbstracts.html#Zheng
http://www.usenix.org/events/fast11/tech/techAbstracts.html#Zheng

Bibliography

and Distributed Systems, 27(9):2639–2652, 2016. doi: 10.1109/TPDS.2015.

2505722.

[87] Xiaoyang Zhang, Yuchong Hu, Patrick P. C. Lee, and Pan Zhou. Toward

optimal storage scaling via network coding: from theory to practice. In 2018

IEEE Conference on Computer Communications, INFOCOM 2018, Honolulu,

HI, USA, April 16-19, 2018, pages 1808–1816. IEEE, 2018. doi: 10.1109/

INFOCOM.2018.8485961.

[88] Xiaoyang Zhang and Yuchong Hu. Efficient storage scaling for MBR and MSR

codes. IEEE Access, 8:78992–79002, 2020. doi: 10.1109/ACCESS.2020.2989822.

[89] Brijesh Kumar Rai, Vommi Dhoorjati, Lokesh Saini, and Amit K. Jha. On

adaptive distributed storage systems. In IEEE International Symposium on

Information Theory, ISIT 2015, Hong Kong, China, June 14-19, 2015, pages

1482–1486. IEEE, 2015. doi: 10.1109/ISIT.2015.7282702.

[90] Si Wu, Zhirong Shen, and Patrick P. C. Lee. On the optimal repair-scaling

trade-off in locally repairable codes. In 2020 IEEE Conference on Computer

Communications, INFOCOM 2020, Virtual Conference, July 6-9, 2020. IEEE,

2020.

[91] K. V. Rashmi, Nihar B. Shah, and P. Vijay Kumar. Enabling node repair in any

erasure code for distributed storage. In Alexander Kuleshov, Vladimir M. Bli-

novsky, and Anthony Ephremides, editors, 2011 IEEE International Symposium

on Information Theory Proceedings, ISIT 2011, St. Petersburg, Russia, July 31 -

August 5, 2011, pages 1235–1239. IEEE, 2011. doi: 10.1109/ISIT.2011.6033732.

[92] Sara Mousavi, Tianli Zhou, and Chao Tian. Delayed parity generation in MDS

storage codes. In 2018 IEEE International Symposium on Information Theory,

ISIT 2018, Vail, CO, USA, June 17-22, 2018, pages 1889–1893. IEEE, 2018.

doi: 10.1109/ISIT.2018.8437700.

– 282 –

Bibliography

[93] Mingyuan Xia, Mohit Saxena, Mario Blaum, and David Pease. A tale of

two erasure codes in HDFS. In Jiri Schindler and Erez Zadok, editors, Pro-

ceedings of the 13th USENIX Conference on File and Storage Technologies,

FAST 2015, Santa Clara, CA, USA, February 16-19, 2015, pages 213–226.

USENIX Association, 2015. URL https://www.usenix.org/conference/

fast15/technical-sessions/presentation/xia.

[94] Xian Su, Xiaomei Zhong, Xiaodi Fan, and Jun Li. Local re-encoding for

coded matrix multiplication. In IEEE International Symposium on Information

Theory, ISIT 2020, Los Angeles, California, USA, June 21-26, 2020, 2020.

[95] Si Wu, Zhirong Shen, and Patrick P. C. Lee. Enabling I/O-efficient redundancy

transitioning in erasure-coded KV stores via elastic Reed-Solomon codes. In

39th Symposium on Reliable Distributed Systems, SRDS 2020, Shanghai, China,

September 21-24, 2020, 2020.

[96] Francisco Maturana and K. V. Rashmi. Convertible codes: new class of codes

for efficient conversion of coded data in distributed storage. In Thomas Vidick,

editor, 11th Innovations in Theoretical Computer Science Conference, ITCS

2020, January 12-14, 2020, Seattle, Washington, USA, volume 151 of LIPIcs,

pages 66:1–66:26. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2020. doi:

10.4230/LIPIcs.ITCS.2020.66.

[97] Florence Jessie MacWilliams and Neil James Alexander Sloane. The theory of

error-correcting codes, volume 16. Elsevier, 1977.

[98] Heide Gluesing-Luerssen, Joachim Rosenthal, and Roxana Smarandache.

Strongly-MDS convolutional codes. IEEE Transactions on Information Theory,

52(2):584–598, 2006. doi: 10.1109/TIT.2005.862100.

[99] Francisco Maturana, V. S. Chaitanya Mukka, and K. V. Rashmi. Access-

optimal linear MDS convertible codes for all parameters. In IEEE International

Symposium on Information Theory, ISIT 2020, Los Angeles, California, USA,

June 21-26, 2020, 2020.

– 283 –

https://www.usenix.org/conference/fast15/technical-sessions/presentation/xia
https://www.usenix.org/conference/fast15/technical-sessions/presentation/xia

Bibliography

[100] Ron M. Roth and Gadiel Seroussi. On generator matrices of MDS codes. IEEE

Transactions on Information Theory, 31(6):826–830, 1985. doi: 10.1109/TIT.

1985.1057113.

[101] Francisco Maturana and K. V. Rashmi. Bandwidth cost of code conversions in

distributed storage: Fundamental limits and optimal constructions. In 2021

IEEE International Symposium on Information Theory (ISIT), pages 2334–2339,

2021. doi: 10.1109/ISIT45174.2021.9518121.

[102] Francisco Maturana and K. V. Rashmi. Bandwidth cost of code conversions

in the split regime. In 2022 IEEE International Symposium on Information

Theory (ISIT), pages 3262–3267, 2022. doi: 10.1109/ISIT50566.2022.9834604.

[103] Rudolf Ahlswede, Ning Cai, Shuo-Yen Robert Li, and Raymond W. Yeung.

Network information flow. IEEE Transactions on Information Theory, 46(4):

1204–1216, 2000. doi: 10.1109/18.850663.

[104] Shuo-Yen Robert Li, Raymond W. Yeung, and Ning Cai. Linear network

coding. IEEE Transactions on Information Theory, 49(2):371–381, 2003. doi:

10.1109/TIT.2002.807285.

[105] Ralf Koetter and Muriel Médard. An algebraic approach to network coding.

IEEE/ACM Transactions on Networking, 11(5):782–795, 2003. doi: 10.1109/

TNET.2003.818197.

[106] Tracey Ho, Muriel Médard, Ralf Koetter, David R. Karger, Michelle Effros, Jun

Shi, and Ben Leong. A random linear network coding approach to multicast.

IEEE Transactions on Information Theory, 52(10):4413–4430, 2006. doi: 10.

1109/TIT.2006.881746.

[107] Peter Sanders, Sebastian Egner, and Ludo M. G. M. Tolhuizen. Polynomial

time algorithms for network information flow. In Arnold L. Rosenberg and

Friedhelm Meyer auf der Heide, editors, SPAA 2003: Proceedings of the Fifteenth

Annual ACM Symposium on Parallelism in Algorithms and Architectures, June

– 284 –

Bibliography

7-9, 2003, San Diego, California, USA (part of FCRC 2003), pages 286–294.

ACM, 2003. doi: 10.1145/777412.777464.

[108] Sidharth Jaggi, Peter Sanders, Philip A. Chou, Michelle Effros, Sebastian

Egner, Kamal Jain, and Ludo M. G. M. Tolhuizen. Polynomial time algorithms

for multicast network code construction. IEEE Transactions on Information

Theory, 51(6):1973–1982, 2005. doi: 10.1109/TIT.2005.847712.

[109] Raymond W. Yeung. A First Course in Information Theory. Springer US,

Boston, MA, 2002. ISBN 978-1-4419-8608-5. doi: 10.1007/978-1-4419-8608-5 15.

[110] K. V. Rashmi, Nihar B. Shah, and Kannan Ramchandran. A piggybacking

design framework for read-and download-efficient distributed storage codes.

In 2013 IEEE International Symposium on Information Theory, ISIT 2013,

Istanbul, Turkey, July 7-12, 2013, pages 331–335. IEEE, 2013. doi: 10.1109/

ISIT.2013.6620242.

[111] Francisco Maturana and K. V. Rashmi. Locally repairable convertible codes:

Erasure codes for efficient repair and conversion. In 2023 IEEE International

Symposium on Information Theory, ISIT 2023, Taipei, Taiwan, June 25-30,

2023, 2023.

[112] Maheswaran Sathiamoorthy, Megasthenis Asteris, Dimitris S. Papailiopoulos,

Alexandros G. Dimakis, Ramkumar Vadali, Scott Chen, and Dhruba Borthakur.

XORing elephants: novel erasure codes for big data. Proceedings of the VLDB

Endowment, 6(5):325–336, 2013. doi: 10.14778/2535573.2488339. URL http:

//www.vldb.org/pvldb/vol6/p325-sathiamoorthy.pdf.

[113] Cheng Huang, Minghua Chen, and Jin Li. Pyramid codes: flexible schemes

to trade space for access efficiency in reliable data storage systems. ACM

Transactions on Storage, 9(1):3:1–3:28, March 2013. doi: 10.1145/2435204.

2435207.

– 285 –

http://www.vldb.org/pvldb/vol6/p325-sathiamoorthy.pdf
http://www.vldb.org/pvldb/vol6/p325-sathiamoorthy.pdf

Bibliography

[114] N. Prakash, Govinda M. Kamath, V. Lalitha, and P. Vijay Kumar. Optimal

linear codes with a local-error-correction property. In Proceedings of the 2012

IEEE International Symposium on Information Theory, ISIT 2012, Cambridge,

MA, USA, July 1-6, 2012, pages 2776–2780. IEEE, 2012. doi: 10.1109/ISIT.

2012.6284028.

[115] Junsheng Han and Luis Alfonso Lastras-Montaño. Reliable memories with

subline accesses. In IEEE International Symposium on Information Theory,

ISIT 2007, Nice, France, June 24-29, 2007, pages 2531–2535. IEEE, 2007. doi:

10.1109/ISIT.2007.4557599.

[116] Natalia Silberstein, Ankit Singh Rawat, O. Ozan Koyluoglu, and Sriram Vish-

wanath. Optimal locally repairable codes via rank-metric codes. In 2013 IEEE

International Symposium on Information Theory, pages 1819–1823, Istanbul,

Turkey, 2013. IEEE. ISBN 978-1-4799-0446-4. doi: 10.1109/ISIT.2013.6620541.

[117] Yuchong Hu, Liangfeng Cheng, Qiaori Yao, Patrick P. C. Lee, Weichun Wang,

and Wei Chen. Exploiting combined locality for wide-stripe erasure coding

in distributed storage. In Marcos K. Aguilera and Gala Yadgar, editors, 19th

USENIX Conference on File and Storage Technologies, FAST 2021, February

23-25, 2021, pages 233–248. USENIX Association, 2021. URL https://www.

usenix.org/conference/fast21/presentation/hu.

[118] Si Wu, Zhirong Shen, Patrick P. C. Lee, and Yinlong Xu. Optimal repair-scaling

trade-off in locally repairable codes: analysis and evaluation. IEEE Transactions

on Parallel and Distributed Systems, 33:56–69, 2022. ISSN 2161-9883. doi:

10.1109/TPDS.2021.3087352.

[119] Si Wu, Qingpeng Du, Patrick P. C. Lee, Yongkun Li, and Yinlong Xu. Opti-

mal data placement for stripe merging in locally repairable codes. In IEEE

INFOCOM 2022 - IEEE Conference on Computer Communications, pages

1669–1678, London, United Kingdom, 2022. IEEE. ISBN 978-1-6654-5823-8.

doi: 10.1109/INFOCOM48880.2022.9796704.

– 286 –

https://www.usenix.org/conference/fast21/presentation/hu
https://www.usenix.org/conference/fast21/presentation/hu

Bibliography

[120] Saurabh Kadekodi, Francisco Maturana, Sanjith Athlur, Arif Merchant, K. V.

Rashmi, and Gregory R. Ganger. Tiger: Disk-Adaptive redundancy without

placement restrictions. In 16th USENIX Symposium on Operating Systems

Design and Implementation (OSDI 22), pages 413–429, Carlsbad, CA, July 2022.

USENIX Association. ISBN 978-1-939133-28-1. URL https://www.usenix.

org/conference/osdi22/presentation/kadekodi.

[121] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-

Anh Truong, Luiz Barroso, Carrie Grimes, and Sean Quinlan. Availabil-

ity in globally distributed storage systems. In Remzi H. Arpaci-Dusseau

and Brad Chen, editors, 9th USENIX Symposium on Operating Systems

Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,

BC, Canada, Proceedings, pages 61–74. USENIX Association, 2010. URL

http://www.usenix.org/events/osdi10/tech/full_papers/Ford.pdf.

[122] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, Robert Chansler, et al.

The hadoop distributed file system. In IEEE/NASA Goddard Conference on

Mass Storage Systems and Technologies (MSST), 2010.

[123] Hakim Weatherspoon and John Kubiatowicz. Erasure coding vs. replica-

tion: A quantitative comparison. In Peter Druschel, M. Frans Kaashoek,

and Antony I. T. Rowstron, editors, Peer-to-Peer Systems, First Interna-

tional Workshop, IPTPS 2002, Cambridge, MA, USA, March 7-8, 2002,

Revised Papers, volume 2429 of Lecture Notes in Computer Science, pages

328–338. Springer, 2002. doi: 10.1007/3-540-45748-8\ ¶3♢¶1♢. URL https:

//doi.org/10.1007/3-540-45748-8_31.

[124] Zhe Zhang, Amey Deshpande, Xiaosong Ma, Eno Thereska, and Dushyanth

Narayanan. Does erasure coding have a role to play in my data center. Microsoft

research MSR-TR-2010, 52, 2010.

[125] K V Rashmi, Nihar B Shah, Dikang Gu, Hairong Kuang, Dhruba Borthakur,

and Kannan Ramchandran. A hitchhiker’s guide to fast and efficient data

– 287 –

https://www.usenix.org/conference/osdi22/presentation/kadekodi
https://www.usenix.org/conference/osdi22/presentation/kadekodi
http://www.usenix.org/events/osdi10/tech/full_papers/Ford.pdf
https://doi.org/10.1007/3-540-45748-8_31
https://doi.org/10.1007/3-540-45748-8_31

Bibliography

reconstruction in erasure-coded data centers. ACM Special Interest Group on

Data Communication (SIGCOMM), 2014.

[126] Ao Ma, Rachel Traylor, Fred Douglis, Mark Chamness, Guanlin Lu, Darren

Sawyer, Surendar Chandra, and Windsor Hsu. RAIDShield: characterizing,

monitoring, and proactively protecting against disk failures. ACM Transactions

on Storage (TOS), 2015.

[127] Eduardo Pinheiro, Wolf-Dietrich Weber, and Luiz André Barroso. Failure Trends

in a Large Disk Drive Population. In USENIX File and Storage Technologies

(FAST), 2007.

[128] Backblaze. Disk Reliability Dataset. https://www.backblaze.com/b2/

hard-drive-test-data.html, 2013-2018.

[129] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE Long, and Carlos

Maltzahn. Ceph: A scalable, high-performance distributed file system. In

USENIX Symposium on Operating Systems Design and Implementation (OSDI),

2006.

[130] Eric Brewer. Spinning Disks and Their Cloudy Future. https://www.usenix.

org/node/194391, 2018.

[131] Eric Brewer, Lawrence Ying, Lawrence Greenfield, Robert Cypher, and

Theodore T’so. Disks for data centers. Technical report, Google, 2016.

[132] Seagate. The Digitization of the World From Edge to Core.

https://www.seagate.com/files/www-content/our-story/trends/

files/idc-seagate-dataage-whitepaper.pdf, 2018.

[133] Garth A. Gibson. Redundant Disk Arrays: Reliable, Parallel Secondary Storage.

PhD thesis, EECS Department, University of California, Berkeley, Dec 1990.

URL http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/6373.html.

– 288 –

https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.backblaze.com/b2/hard-drive-test-data.html
https://www.usenix.org/node/194391
https://www.usenix.org/node/194391
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf
http://www.eecs.berkeley.edu/Pubs/TechRpts/1990/6373.html

Bibliography

[134] Bianca Schroeder and Garth A Gibson. Disk failures in the real world: What

does an MTTF of 1,000,000 hours mean to you? In USENIX File and Storage

Technologies (FAST), 2007.

[135] Bianca Schroeder, Raghav Lagisetty, and Arif Merchant. Flash Reliability in

Production: The Expected and the Unexpected. In USENIX File and Storage

Technologies (FAST), 2016.

[136] Larry Lancaster and Alan Rowe. Measuring real-world data availability. In

15th Systems Administration Conference (LISA 2001), 2001.

[137] Lakshmi N Bairavasundaram, Garth R Goodson, Shankar Pasupathy, and

Jiri Schindler. An analysis of latent sector errors in disk drives. In ACM

SIGMETRICS Performance Evaluation Review, 2007.

[138] Bianca Schroeder, Sotirios Damouras, and Phillipa Gill. Understanding latent

sector errors and how to protect against them. ACM Transactions on Storage

(TOS), 2010.

[139] Alina Oprea and Ari Juels. A Clean-Slate Look at Disk Scrubbing. In USENIX

File and Storage Technologies (FAST), 2010.

[140] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. Kernel smoothing

methods. In The elements of statistical learning. Springer, 2009.

[141] Apache Software Foundation. HDFS Erasure Coding. https:

//hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/

HDFSErasureCoding.html, 2017 (accessed November 5, 2020).

[142] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan, Arild Skjolsvold, Sam

McKelvie, Yikang Xu, Shashwat Srivastav, Jiesheng Wu, Huseyin Simitci, et al.

Windows azure storage: a highly available cloud storage service with strong

consistency. In ACM Symposium on Operating Systems Principles (SOSP),

2011.

– 289 –

https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html
https://hadoop.apache.org/docs/r3.0.0/hadoop-project-dist/hadoop-hdfs/HDFSErasureCoding.html

Bibliography

[143] Subramanian Muralidhar, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,

Weiwen Liu, Satadru Pan, Shiva Shankar, Viswanath Sivakumar, Linpeng Tang,

et al. f4: Facebook’s warm BLOB storage system. In USENIX Symposium on

Operating Systems Design and Implementation (OSDI), 2014.

[144] Garth Gibson, Gary Grider, Andree Jacobson, and Wyatt Lloyd. Probe: A

thousand-node experimental cluster for computer systems research. USENIX;

login, 2013.

[145] Rong Gu, Qianhao Dong, Haoyuan Li, Joseph Gonzalez, Zhao Zhang, Shuai

Wang, Yihua Huang, Scott Shenker, Ion Stoica, and Patrick PC Lee. DFS-

PERF: A scalable and unified benchmarking framework for distributed file

systems. EECS Dept., Univ. California, Berkeley, Berkeley, CA, USA, Tech.

Rep. UCB/EECS-2016-133, 2016.

[146] Kishor Trivedi. Probability and Statistics with Reliability, Queueing, and

Computer Science Applications. Wiley, 2001.

[147] Martin A. Tanner and Wing Hung Wong. The estimation of the hazard function

from randomly censored data by the kernel method. Annals of Statistics, 1983.

[148] Saurabh Kadekodi. DISK-ADAPTIVE REDUNDANCY: tailoring data redun-

dancy to disk-reliability heterogeneity in cluster storage systems. PhD thesis,

Carnegie Mellon University, 2020.

[149] Backblaze. Erasure coding used by Backblaze. https://www.backblaze.com/

blog/reed-solomon/, 2013-2018.

[150] Nosayba El-Sayed, Ioan A Stefanovici, George Amvrosiadis, Andy A Hwang, and

Bianca Schroeder. Temperature management in data centers: Why some (might)

like it hot. In Proceedings of the 12th ACM SIGMETRICS/PERFORMANCE

joint international conference on Measurement and Modeling of Computer

Systems, pages 163–174, 2012.

– 290 –

https://www.backblaze.com/blog/reed-solomon/
https://www.backblaze.com/blog/reed-solomon/

Bibliography

[151] Farzaneh Mahdisoltani, Ioan Stefanovici, and Bianca Schroeder. Proactive error

prediction to improve storage system reliability. In USENIX Annual Technical

Conference (ATC), 2017.

[152] Wolfram. Wolfram Mathematica. https://www.wolfram.com/mathematica,

2023. Accessed on: 2023-06-30.

[153] John E Angus. On computing MTBF for a k-out-of-n: G repairable system.

IEEE Transactions on Reliability, 37(3):312–313, 1988.

[154] Manuel Fernández and Stuart Williams. Closed-form expression for the Poisson-

binomial probability density function. IEEE Transactions on Aerospace and

Electronic Systems, 46(2):803–817, 2010.

[155] Yili Hong. On computing the distribution function for the Poisson binomial

distribution. Computational Statistics & Data Analysis, 59:41–51, 2013.

[156] Werner Ehm. Binomial approximation to the Poisson binomial distribution.

Statistics & Probability Letters, 11(1):7–16, 1991.

[157] Charles Truong, Laurent Oudre, and Nicolas Vayatis. A review of change point

detection methods. In arXiv:1801.00718v1 [cs.CE], 2018.

[158] Charles Truong, Laurent Oudre, and Nicolas Vayatis. ruptures: change point

detection in python. In arXiv:1801.00826v1 [cs.CE], 2018.

[159] Jon G Elerath. AFR: problems of definition, calculation and measurement in

a commercial environment. In IEEE Reliability and Maintenance Symposium

(RAMS), 2000.

[160] Jon G Elerath. Specifying reliability in the disk drive industry: No more

MTBF’s. In IEEE Reliability and Maintenance Symposium (RAMS), 2000.

[161] J. Yang and Feng-Bin Sun. A comprehensive review of hard-disk drive reliability.

In Annual Reliability and Maintainability Symposium. 1999 Proceedings (Cat.

– 291 –

Bibliography

No.99CH36283), pages 403–409, January 1999. doi: 10.1109/RAMS.1999.

744151.

[162] Jon Elerath. Hard-disk drives: The good, the bad, and the ugly. Communication

of ACM, 2009.

[163] Eric Heien, Derrick Kondo, Ana Gainaru, Dan LaPine, Bill Kramer, and Franck

Cappello. Modeling and tolerating heterogeneous failures in large parallel

systems. In ACM / IEEE High Performance Computing Networking, Storage

and Analysis (SC), 2011.

[164] Weihang Jiang, Chongfeng Hu, Yuanyuan Zhou, and Arkady Kanevsky. Are

disks the dominant contributor for storage failures?: A comprehensive study of

storage subsystem failure characteristics. ACM Transactions on Storage (TOS),

2008.

[165] Bianca Schroeder and Garth A Gibson. Understanding failures in petascale

computers. In Journal of Physics: Conference Series. IOP Publishing, 2007.

[166] Sandeep Shah and Jon G Elerath. Disk drive vintage and its effect on reliability.

In IEEE Reliability and Maintenance Symposium (RAMS), 2004.

[167] Greg Hamerly, Charles Elkan, et al. Bayesian approaches to failure prediction

for disk drives. In International Conference on Machine Learning (ICML),

2001.

[168] Joseph F Murray, Gordon F Hughes, and Kenneth Kreutz-Delgado. Hard

drive failure prediction using non-parametric statistical methods. In Springer

Artificial Neural Networks and Neural Information Processing (ICANN/CONIP,

2003.

[169] Brian D Strom, SungChang Lee, George W Tyndall, and Andrei Khurshudov.

Hard disk drive reliability modeling and failure prediction. IEEE Transactions

on Magnetics, 2007.

– 292 –

Bibliography

[170] Yu Wang, Eden WM Ma, Tommy WS Chow, and Kwok-Leung Tsui. A two-step

parametric method for failure prediction in hard disk drives. IEEE Transactions

on industrial informatics, 2014.

[171] Ying Zhao, Xiang Liu, Siqing Gan, and Weimin Zheng. Predicting disk failures

with HMM-and HSMM-based approaches. In Springer Industrial Conference

on Data Mining (ICDM), 2010.

[172] Preethi Anantharaman, Mu Qiao, and Divyesh Jadav. Large Scale Predic-

tive Analytics for Hard Disk Remaining Useful Life Estimation. In IEEE

International Conference on Big Data, 2018.

[173] erasure code ceph documentation. Erasure code Ceph Documentation. https://

docs.ceph.com/docs/master/rados/operations/erasure-code/, (accessed

September 25, 2019).

[174] Eno Thereska, Michael Abd-El-Malek, Jay J Wylie, Dushyanth Narayanan, and

Gregory R Ganger. Informed data distribution selection in a self-predicting

storage system. In IEEE International Conference on Autonomic Computing

(ICAC), 2006.

[175] Francisco Maturana and K. V. Rashmi. Bandwidth cost of code conversions

in distributed storage: Fundamental limits and optimal constructions. arXiv

preprint arXiv:2008.12707, 2020.

[176] Francisco Maturana and K. V. Rashmi. Irregular array codes with arbitrary

access sets for geo-distributed storage. In 2021 IEEE International Symposium

on Information Theory (ISIT), pages 3002–3007, 2021. doi: 10.1109/ISIT45174.

2021.9517809.

[177] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher

Frost, J. J. Furman, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser,

Peter Hochschild, Wilson C. Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi

Li, Alexander Lloyd, Sergey Melnik, David Mwaura, David Nagle, Sean Quinlan,

– 293 –

https://docs.ceph.com/docs/master/rados/operations/erasure-code/
https://docs.ceph.com/docs/master/rados/operations/erasure-code/

Bibliography

Rajesh Rao, Lindsay Rolig, Yasushi Saito, Michal Szymaniak, Christopher

Taylor, Ruth Wang, and Dale Woodford. Spanner: Google’s globally distributed

database. ACM Transactions on Computer Systems, 31(3):8:1–8:22, 2013.

[178] Muralidhar Subramanian, Wyatt Lloyd, Sabyasachi Roy, Cory Hill, Ernest Lin,

Weiwen Liu, Satadru Pan, Shiva Shankar, Sivakumar Viswanathan, Linpeng

Tang, and Sanjeev Kumar. f4: Facebook’s warm BLOB storage system. In Jason

Flinn and Hank Levy, editors, 11th USENIX Symposium on Operating Systems

Design and Implementation, OSDI ’14, Broomfield, CO, USA, October 6-8,

2014, pages 383–398. USENIX Association, 2014. URL https://www.usenix.

org/conference/osdi14/technical-sessions/presentation/muralidhar.

[179] Henry C. H. Chen, Yuchong Hu, Patrick P. C. Lee, and Yang Tang. NCCloud:

a network-coding-based storage system in a cloud-of-clouds. IEEE Transactions

on Computers, 63(1):31–44, 2014. doi: 10.1109/TC.2013.167.

[180] Yu Lin Chen, Shuai Mu, Jinyang Li, Cheng Huang, Jin Li, Aaron Ogus, and

Douglas Phillips. Giza: erasure coding objects across global data centers. In

Dilma Da Silva and Bryan Ford, editors, 2017 USENIX Annual Technical

Conference, USENIX ATC 2017, Santa Clara, CA, USA, July 12-14, 2017,

pages 539–551. USENIX Association, 2017. URL https://www.usenix.org/

conference/atc17/technical-sessions/presentation/chen-yu-lin.

[181] Moni Naor and Ron M. Roth. Optimal file sharing in distributed networks.

SIAM Journal on Computing (SICOMP), 24(1):158–183, 1995. doi: 10.1137/

S0097539792237462.

[182] Philippe Béguin and Antonella Cresti. General information dispersal algo-

rithms. Theoretical Computer Science, 209(1-2):87–105, 1998. doi: 10.1016/

S0304-3975(97)00098-4.

[183] Microsoft. Bandwidth pricing details. [Online] https://web.archive.org/

web/20210503232035/https://azure.microsoft.com/en-us/pricing/

details/bandwidth/, 2021. Accessed: 2021-05-03.

– 294 –

https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muralidhar
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/muralidhar
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-yu-lin
https://www.usenix.org/conference/atc17/technical-sessions/presentation/chen-yu-lin
https://web.archive.org/web/20210503232035/https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://web.archive.org/web/20210503232035/https://azure.microsoft.com/en-us/pricing/details/bandwidth/
https://web.archive.org/web/20210503232035/https://azure.microsoft.com/en-us/pricing/details/bandwidth/

Bibliography

[184] Microsoft. Azure storage overview pricing. [Online] https:

//web.archive.org/web/20210503231640/https://azure.microsoft.

com/en-us/pricing/details/storage/, 2021. Accessed: 2021-05-03.

[185] A. De Santis and B. Masucci. On information dispersal algorithms. In Pro-

ceedings IEEE International Symposium on Information Theory,, page 410,

Lausanne, Switzerland, 2002. IEEE. ISBN 0-7803-7501-7. doi: 10.1109/ISIT.

2002.1023682.

[186] Amos Beimel. Secret-sharing schemes: A survey. In Coding and Cryptology -

Third International Workshop, IWCC 2011, Qingdao, China, May 30-June 3,

2011. Proceedings, volume 6639 of Lecture Notes in Computer Science, pages

11–46. Springer, 2011. doi: 10.1007/978-3-642-20901-7\ 2.

[187] Mira Gonen, Ishay Haviv, Michael Langberg, and Alex Sprintson. Minimizing

the alphabet size of erasure codes with restricted decoding sets. In IEEE

International Symposium on Information Theory, ISIT 2020, Los Angeles, CA,

USA, June 21-26, 2020, pages 144–149. IEEE, 2020. doi: 10.1109/ISIT44484.

2020.9174012.

[188] Cheng Chen, Sian-Jheng Lin, and Nenghai Yu. Irregular MDS array codes with

fewer parity symbols. IEEE Communications Letters, 23(11):1909–1912, 2019.

doi: 10.1109/LCOMM.2019.2937778.

[189] Filippo Tosato and Magnus Sandell. Irregular MDS array codes. IEEE Trans-

actions on Information Theory, 60(9):5304–5314, 2014. doi: 10.1109/TIT.2014.

2336656.

[190] Zhengrui Li and Sian-Jheng Lin. Update bandwidth for distributed storage.

In IEEE International Symposium on Information Theory, ISIT 2019, Paris,

France, July 7-12, 2019, pages 1577–1581. IEEE, 2019. doi: 10.1109/ISIT.2019.

8849225.

– 295 –

https://web.archive.org/web/20210503231640/https://azure.microsoft.com/en-us/pricing/details/storage/
https://web.archive.org/web/20210503231640/https://azure.microsoft.com/en-us/pricing/details/storage/
https://web.archive.org/web/20210503231640/https://azure.microsoft.com/en-us/pricing/details/storage/

Bibliography

[191] Mario Blaum, Jehoshua Bruck, and Alexander Vardy. MDS array codes with

independent parity symbols. IEEE Transactions on Information Theory, 42(2):

529–542, 1996. doi: 10.1109/18.485722.

[192] Mario Blaum and Ron M. Roth. On lowest density MDS codes. IEEE Transac-

tions on Information Theory, 45(1):46–59, 1999. doi: 10.1109/18.746771.

[193] Jeff Hartline, Tapas Kanungo, and James Hafner. R5X0: an efficient high

distance parity-based code with optimal update complexity. IBM Research

Report, RJ 10322(A0408-005), 01 2004.

[194] Chao Jin, Hong Jiang, Dan Feng, and Lei Tian. P-Code: a new RAID-6 code

with optimal properties. In Proceedings of the 23rd international conference on

Supercomputing, 2009, Yorktown Heights, NY, USA, June 8-12, 2009, pages

360–369. ACM, 2009. doi: 10.1145/1542275.1542326.

[195] Zhijie Huang, Hong Jiang, Ke Zhou, Chong Wang, and Yuhong Zhao. XI-

Code: a family of practical lowest density MDS array codes of distance 4.

IEEE Transactions on Communications, 64(7):2707–2718, 2016. doi: 10.1109/

TCOMM.2016.2568205.

[196] Sheng Lin, Gang Wang, Douglas S. Stones, Xiaoguang Liu, and Jing Liu. T-

Code: 3-erasure longest lowest-density MDS codes. IEEE Journal on Selected

Areas in Communication, 28(2):289–296, 2010. doi: 10.1109/JSAC.2010.100218.

[197] Mingqiang Li and Jiwu Shu. On cyclic lowest density MDS array codes con-

structed using starters. In IEEE International Symposium on Information

Theory, ISIT 2010, June 13-18, 2010, Austin, Texas, USA, Proceedings, pages

1315–1319. IEEE, 2010. doi: 10.1109/ISIT.2010.5513740.

[198] Yuval Cassuto and Jehoshua Bruck. Cyclic lowest density MDS array codes.

IEEE Transactions on Information Theory, 55(4):1721–1729, 2009. doi: 10.

1109/TIT.2009.2013024.

– 296 –

Bibliography

[199] Erez Louidor and Ron M. Roth. Lowest density MDS codes over extension

alphabets. IEEE Transactions on Information Theory, 52(7):3186–3197, 2006.

doi: 10.1109/TIT.2006.876235.

[200] Zhijie Huang, Hong Jiang, Ke Zhou, Yuhong Zhao, and Chong Wang. Lowest

density MDS array codes of distance 3. IEEE Communications Letters, 19(10):

1670–1673, 2015. doi: 10.1109/LCOMM.2015.2464379.

[201] Zhijie Huang, Hong Jiang, and Nong Xiao. Efficient lowest density MDS array

codes of column distance 4. In IEEE International Symposium on Information

Theory, ISIT 2017, Aachen, Germany, June 25-30, 2017, pages 834–838. IEEE,

2017. doi: 10.1109/ISIT.2017.8006645.

[202] Min Ye and Alexander Barg. Explicit constructions of high-rate MDS array

codes with optimal repair bandwidth. IEEE Transactions on Information

Theory, 63(4):2001–2014, 2017. doi: 10.1109/TIT.2017.2661313.

[203] N. P. Anthapadmanabhan, E. Soljanin, and S. Vishwanath. Update-efficient

codes for erasure correction. In 2010 48th Annual Allerton Conference on

Communication, Control, and Computing (Allerton), pages 376–382, 2010. doi:

10.1109/ALLERTON.2010.5706931.

[204] Arya Mazumdar, Gregory W. Wornell, and Venkat Chandar. Update efficient

codes for error correction. In Proceedings of the 2012 IEEE International

Symposium on Information Theory, ISIT 2012, Cambridge, MA, USA, July

1-6, 2012, pages 1558–1562. IEEE, 2012. doi: 10.1109/ISIT.2012.6283534.

[205] Arya Mazumdar, Venkat Chandar, and Gregory W. Wornell. Update-efficiency

and local repairability limits for capacity approaching codes. IEEE Journal on

Selected Areas in Communications, 32(5):976–988, 2014. doi: 10.1109/JSAC.

2014.140517.

[206] Zhiying Wang and Viveck R. Cadambe. Multi-version coding - an information-

– 297 –

Bibliography

theoretic perspective of consistent distributed storage. IEEE Transactions on

Information Theory, 64(6):4540–4561, 2018. doi: 10.1109/TIT.2017.2725273.

[207] Preetum Nakkiran, Nihar B Shah, and KV Rashmi. Fundamental limits on

communication for oblivious updates in storage networks. In 2014 IEEE Global

Communications Conference, pages 2363–2368. IEEE, 2014.

[208] Reyna Hulett and Mary Wootters. Limitations of piggybacking codes with

low substriping. In 2017 55th Annual Allerton Conference on Communication,

Control, and Computing (Allerton), pages 1131–1138. IEEE, 2017.

[209] Stasys Jukna. Extremal Combinatorics - With Applications in Computer Science.

Texts in Theoretical Computer Science. An EATCS Series. Springer, 2011. ISBN

978-3-642-17363-9. doi: 10.1007/978-3-642-17364-6.

[210] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. An-

dersen. Stronger semantics for low-latency geo-replicated storage. In Nick

Feamster and Jeffrey C. Mogul, editors, Proceedings of the 10th USENIX

Symposium on Networked Systems Design and Implementation, NSDI 2013,

Lombard, IL, USA, April 2-5, 2013, pages 313–328. USENIX Association, 2013.

URL https://www.usenix.org/conference/nsdi13/technical-sessions/

presentation/lloyd.

[211] Zhe Wu, Michael Butkiewicz, Dorian Perkins, Ethan Katz-Bassett, and Har-

sha V. Madhyastha. SPANStore: cost-effective geo-replicated storage span-

ning multiple cloud services. In Michael Kaminsky and Mike Dahlin, editors,

ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,

Farmington, PA, USA, November 3-6, 2013, pages 292–308. ACM, 2013. doi:

10.1145/2517349.2522730.

[212] Leslie Lamport. Fast paxos. Distributed Comput., 19(2):79–103, 2006. doi:

10.1007/s00446-006-0005-x.

– 298 –

https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd
https://www.usenix.org/conference/nsdi13/technical-sessions/presentation/lloyd

Bibliography

[213] Leslie Lamport and Mike Massa. Cheap paxos. In 2004 International Conference

on Dependable Systems and Networks (DSN 2004), 28 June - 1 July 2004,

Florence, Italy, Proceedings, pages 307–314. IEEE Computer Society, 2004. doi:

10.1109/DSN.2004.1311900.

[214] Butler W. Lampson. The abcd’s of paxos. In Ajay D. Kshemkalyani and

Nir Shavit, editors, Proceedings of the Twentieth Annual ACM Symposium on

Principles of Distributed Computing, PODC 2001, Newport, Rhode Island, USA,

August 26-29, 2001, page 13. ACM, 2001. doi: 10.1145/383962.383969.

[215] Iulian Moraru, David G. Andersen, and Michael Kaminsky. There is more

consensus in egalitarian parliaments. In Michael Kaminsky and Mike Dahlin,

editors, ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP

’13, Farmington, PA, USA, November 3-6, 2013, pages 358–372. ACM, 2013.

doi: 10.1145/2517349.2517350.

[216] Faisal Nawab, Divyakant Agrawal, and Amr El Abbadi. Dpaxos: Managing

data closer to users for low-latency and mobile applications. In Gautam Das,

Christopher M. Jermaine, and Philip A. Bernstein, editors, Proceedings of the

2018 International Conference on Management of Data, SIGMOD Conference

2018, Houston, TX, USA, June 10-15, 2018, pages 1221–1236. ACM, 2018. doi:

10.1145/3183713.3196928.

[217] Leslie Lamport. Paxos made simple, fast, and byzantine. In Alain Bui and

Hacène Fouchal, editors, Procedings of the 6th International Conference on

Principles of Distributed Systems. OPODIS 2002, Reims, France, December

11-13, 2002, volume 3 of Studia Informatica Universalis, pages 7–9. Suger,

Saint-Denis, rue Catulienne, France, 2002.

[218] Robbert van Renesse and Deniz Altinbuken. Paxos made moderately complex.

ACM Comput. Surv., 47(3):42:1–42:36, 2015. doi: 10.1145/2673577.

[219] Shuai Mu, Kang Chen, Yongwei Wu, and Weimin Zheng. When paxos meets

erasure code: reduce network and storage cost in state machine replication. In

– 299 –

Bibliography

Beth Plale, Matei Ripeanu, Franck Cappello, and Dongyan Xu, editors, The

23rd International Symposium on High-Performance Parallel and Distributed

Computing, HPDC’14, Vancouver, BC, Canada - June 23 - 27, 2014, pages

61–72. ACM, 2014. doi: 10.1145/2600212.2600218.

[220] Heidi Howard, Dahlia Malkhi, and Alexander Spiegelman. Flexible paxos:

Quorum intersection revisited. In Panagiota Fatourou, Ernesto Jiménez, and

Fernando Pedone, editors, 20th International Conference on Principles of

Distributed Systems, OPODIS 2016, December 13-16, 2016, Madrid, Spain,

volume 70 of LIPIcs, pages 25:1–25:14. Schloss Dagstuhl - Leibniz-Zentrum für

Informatik, 2016. doi: 10.4230/LIPIcs.OPODIS.2016.25.

[221] Nicolas C. Nicolaou, Viveck R. Cadambe, N. Prakash, Kishori M. Konwar,

Muriel Médard, and Nancy A. Lynch. ARES: Adaptive, Reconfigurable, Erasure

coded, atomic Storage. In 39th IEEE International Conference on Distributed

Computing Systems, ICDCS 2019, Dallas, TX, USA, July 7-10, 2019, pages

2195–2205. IEEE, 2019. doi: 10.1109/ICDCS.2019.00216.

[222] Fan Lai, Mosharaf Chowdhury, and Harsha V. Madhyastha. To relay or not to

relay for inter-cloud transfers? In USENIX HotCloud, 2018.

[223] Thomas M. Cover and Joy A. Thomas. Elements of Information Theory. Wiley,

2001. ISBN 9780471062592. doi: 10.1002/0471200611.

[224] Ailidani Ailijiang, Aleksey Charapko, Murat Demirbas, and Tevfik Kosar.

WPaxos: Wide area network flexible consensus. IEEE Transactions on Parallel

and Distributed Systems, 31(1):211–223, 2019.

[225] Vitor Enes, Carlos Baquero, Tuanir França Rezende, Alexey Gotsman, Matthieu

Perrin, and Pierre Sutra. State-machine replication for planet-scale systems. In

Proceedings of the Fifteenth European Conference on Computer Systems, pages

1–15, 2020.

– 300 –

Bibliography

[226] Akhil Kumar. Hierarchical quorum consensus: A new algorithm for managing

replicated data. IEEE Trans. Computers, 40(9):996–1004, 1991. doi: 10.1109/

12.83661.

[227] IBM. IBM ILOG CPLEX optimizer. https://www.ibm.com/products/

ilog-cplex-optimization-studio/cplex-optimizer, 2023. Accessed on:

2023-06-30.

[228] Chris Hawblitzel, Jon Howell, Manos Kapritsos, Jacob R. Lorch, Bryan Parno,

Michael L. Roberts, Srinath T. V. Setty, and Brian Zill. Ironfleet: proving

safety and liveness of practical distributed systems. Commun. ACM, 60(7):

83–92, 2017. doi: 10.1145/3068608.

[229] Google AI. OR-tools: Google Optimization Tools. https://github.com/

google/or-tools, 2023. Accessed: 2023-06-30.

[230] Intel. Intel(R) Intelligent Storage Acceleration Library. https://github.com/

intel/isa-l, 2023. Accessed: 2023-06-30.

[231] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.

Don’t settle for eventual: scalable causal consistency for wide-area storage

with COPS. In Ted Wobber and Peter Druschel, editors, Proceedings of the

23rd ACM Symposium on Operating Systems Principles 2011, SOSP 2011,

Cascais, Portugal, October 23-26, 2011, pages 401–416. ACM, 2011. doi:

10.1145/2043556.2043593.

[232] Cheng Li, Daniel Porto, Allen Clement, Johannes Gehrke, Nuno M. Preguiça,

and Rodrigo Rodrigues. Making geo-replicated systems fast as possible, con-

sistent when necessary. In Chandu Thekkath and Amin Vahdat, editors,

10th USENIX Symposium on Operating Systems Design and Implementa-

tion, OSDI 2012, Hollywood, CA, USA, October 8-10, 2012, pages 265–278.

USENIX Association, 2012. URL https://www.usenix.org/conference/

osdi12/technical-sessions/presentation/li.

– 301 –

https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://www.ibm.com/products/ilog-cplex-optimization-studio/cplex-optimizer
https://github.com/google/or-tools
https://github.com/google/or-tools
https://github.com/intel/isa-l
https://github.com/intel/isa-l
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li
https://www.usenix.org/conference/osdi12/technical-sessions/presentation/li

Bibliography

[233] Douglas B. Terry, Vijayan Prabhakaran, Ramakrishna Kotla, Mahesh Balakrish-

nan, Marcos K. Aguilera, and Hussam Abu-Libdeh. Consistency-based service

level agreements for cloud storage. In Michael Kaminsky and Mike Dahlin,

editors, ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP

’13, Farmington, PA, USA, November 3-6, 2013, pages 309–324. ACM, 2013.

doi: 10.1145/2517349.2522731.

[234] Jason Baker, Chris Bond, James C. Corbett, J. J. Furman, Andrey Khorlin,

James Larson, Jean-Michel Leon, Yawei Li, Alexander Lloyd, and Vadim Yush-

prakh. Megastore: Providing scalable, highly available storage for interactive

services. In Fifth Biennial Conference on Innovative Data Systems Research,

CIDR 2011, Asilomar, CA, USA, January 9-12, 2011, Online Proceedings,

pages 223–234. www.cidrdb.org, 2011. URL http://cidrdb.org/cidr2011/

Papers/CIDR11_Paper32.pdf.

[235] Yair Sovran, Russell Power, Marcos K. Aguilera, and Jinyang Li. Transactional

storage for geo-replicated systems. In Ted Wobber and Peter Druschel, editors,

Proceedings of the 23rd ACM Symposium on Operating Systems Principles 2011,

SOSP 2011, Cascais, Portugal, October 23-26, 2011, pages 385–400. ACM,

2011. doi: 10.1145/2043556.2043592.

[236] Yang Zhang, Russell Power, Siyuan Zhou, Yair Sovran, Marcos K. Aguilera,

and Jinyang Li. Transaction chains: achieving serializability with low latency in

geo-distributed storage systems. In Michael Kaminsky and Mike Dahlin, editors,

ACM SIGOPS 24th Symposium on Operating Systems Principles, SOSP ’13,

Farmington, PA, USA, November 3-6, 2013, pages 276–291. ACM, 2013. doi:

10.1145/2517349.2522729.

[237] Yanhua Mao, Flavio Paiva Junqueira, and Keith Marzullo. Mencius: Building

efficient replicated state machine for wans. In Richard Draves and Robbert

van Renesse, editors, 8th USENIX Symposium on Operating Systems Design

and Implementation, OSDI 2008, December 8-10, 2008, San Diego, California,

– 302 –

http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf
http://cidrdb.org/cidr2011/Papers/CIDR11_Paper32.pdf

Bibliography

USA, Proceedings, pages 369–384. USENIX Association, 2008. URL http:

//www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf.

[238] Sharad Agarwal, John Dunagan, Navendu Jain, Stefan Saroiu, and Alec Wol-

man. Volley: automated data placement for geo-distributed cloud services. In

Proceedings of the 7th USENIX Symposium on Networked Systems Design and

Implementation, NSDI 2010, April 28-30, 2010, San Jose, CA, USA, pages

17–32. USENIX Association, 2010. URL http://www.usenix.org/events/

nsdi10/tech/full_papers/agarwal.pdf.

[239] John Kubiatowicz, David Bindel, Yan Chen, Steven E. Czerwinski, Patrick R.

Eaton, Dennis Geels, Ramakrishna Gummadi, Sean C. Rhea, Hakim Weath-

erspoon, Westley Weimer, Chris Wells, and Ben Y. Zhao. OceanStore: an

architecture for global-scale persistent storage. In Larry Rudolph and Anoop

Gupta, editors, ASPLOS-IX Proceedings of the 9th International Conference

on Architectural Support for Programming Languages and Operating Systems,

Cambridge, MA, USA, November 12-15, 2000, pages 190–201. ACM Press, 2000.

doi: 10.1145/356989.357007.

[240] Andreas Haeberlen, Alan Mislove, and Peter Druschel. Glacier: Highly durable,

decentralized storage despite massive correlated failures. In Amin Vahdat and

David Wetherall, editors, 2nd Symposium on Networked Systems Design and

Implementation (NSDI 2005), May 2-4, 2005, Boston, Massachusetts, USA,

Proceedings. USENIX, 2005. URL http://www.usenix.org/events/nsdi05/

tech/haeberlen.html.

[241] K. V. Rashmi, Mosharaf Chowdhury, Jack Kosaian, Ion Stoica, and Kan-

nan Ramchandran. Ec-cache: Load-balanced, low-latency cluster caching

with online erasure coding. In Kimberly Keeton and Timothy Roscoe, edi-

tors, 12th USENIX Symposium on Operating Systems Design and Implemen-

tation, OSDI 2016, Savannah, GA, USA, November 2-4, 2016, pages 401–

417. USENIX Association, 2016. URL https://www.usenix.org/conference/

osdi16/technical-sessions/presentation/rashmi.

– 303 –

http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
http://www.usenix.org/events/osdi08/tech/full_papers/mao/mao.pdf
http://www.usenix.org/events/nsdi10/tech/full_papers/agarwal.pdf
http://www.usenix.org/events/nsdi10/tech/full_papers/agarwal.pdf
http://www.usenix.org/events/nsdi05/tech/haeberlen.html
http://www.usenix.org/events/nsdi05/tech/haeberlen.html
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/rashmi
https://www.usenix.org/conference/osdi16/technical-sessions/presentation/rashmi

	Introduction
	I Dynamic storage codes for change across time
	Convertible codes framework
	Introduction
	Related work, background and notation
	A framework for studying code conversions

	Access cost of convertible codes
	Lower bounds on the access cost of convertible codes in the merge regime
	Explicit access-optimal convertible codes in the merge regime
	Low field-size convertible codes in the merge regime
	Split regime
	General regime

	Bandwidth cost of convertible codes
	Additional background
	Modeling conversion for conversion bandwidth optimization
	Optimizing conversion bandwidth in the merge regime
	Bandwidth-optimal convertible codes in the merge regime
	Bandwidth savings of bandwidth-optimal convertible codes
	Conversion bandwidth of the split regime
	Explicit constructions

	Locally repairable convertible codes
	Background and related work
	Conversion of LRCs
	Conversion of global parameters

	Designing systems for code conversion
	Pacemaker: avoiding HeART attacks in storage clusters
	Whither disk-adaptive redundancy
	Longitudinal production trace analyses
	Design goals of pacemaker
	Design of pacemaker
	Implementation of pacemaker in HDFS
	Evaluation of pacemaker
	Failure rate estimation in pacemaker
	Detailed cluster evaluations of pacemaker
	Tiger: disk-adaptive redundancy without placement restrictions
	Motivation of Tiger
	Eclectic Stripes and their challenges
	Mechanisms to enable eclectic stripes
	Design and working of Tiger
	Evaluation of Tiger
	Derivation of approximation of MTTDL of eclectic stripes
	Related Work

	II Dynamic storage codes for change across space
	Codes for geo-distributed storage
	Related work and existing results
	Fundamental limits on codes with arbitrary access sets
	Storage overhead of MUC codes: lower bound and achievability
	Conclusion

	Density-aware redundancy for geo-distributed storage
	Geo-distributed storage systems: Opportunity and challenges
	Pudu design
	Density-aware redundancy
	Evaluation
	Related work

	III Future directions
	Future directions for Part I
	Future directions for convertible codes
	Future directions for disk-adaptive redundancy

	Future directions for Part II
	Future directions for MUC codes
	Future directions for geo-distributed storage systems

	Bibliography

