Doctoral thesis
Designing storage codes for heterogeneity:

theory and practice

Francisco Maturana
CMU-CS-23-134

September, 2023

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Rashmi Vinayak, Chair
Gregory R. Ganger
Ryan O’Donnell
Muriel Médard, Massachusetts Institute of Technology

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright © 2023 Francisco Maturana

This research was sponsored in part by the National Science Foundation under award numbers
1901410, 1943409, and 1956271, in part by a Google Faculty Research award, and in part by a
Facebook distributed systems research award. The views and conclusions contained in this document
are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Coding theory, Data storage, Distributed storage systems, Erasure

coding

Abstract

Data is at the heart of many of the services that society relies on. As a consequence,
distributed storage systems (DSSs), which store data, are a fundamental part of most
applications. Because of their essential role, these systems need to be extremely reliable. On
top of this, DSSs need to be able to scale and grow incrementally to satisfy the increasing
demand for storage. It is common for DSS deployments to be massive in size: just a
single deployment can often store Petabytes of data and manage tens of thousands of disks.
Supporting large-scale systems requires a large amount of resources (such as hardware, energy,
physical space, and personnel) and results in significant capital and operating expenditures.
For this reason, making these systems efficient is important as even small improvements can
have a large impact.

DSSs commonly use erasure coding to tolerate failures. Typically, the operator of the
DSS will choose the type of erasure code and its parameters based on the expected cluster
conditions and their target metrics. However, cluster conditions are vastly heterogeneous and
subject to significant variations across time. Current systems handle this by using extremely
conservative amounts of redundancy and by relying on unplanned interventions, both of
which are very costly. This thesis focuses on solving this problem by making DSSs more
robust, by enabling them to automatically adapt to heterogeneity and variations across time
and space.

To make progress towards our goal, we develop and use tools from both Coding Theory
and Computer Systems. Our approach goes in both directions: we model the system, identify
the fundamental theoretical questions at its heart, and apply the answers to these questions
to develop better systems.

The first part focuses on variations over time that affect the DSS. We propose convertible
codes, a theoretical framework for studying code conversion, i.e. the process of converting
already-encoded data into a different encoding. Using this framework, we derive lower
bounds on the cost of conversion for multiple metrics and propose optimal code constructions.
Additionally, we design two DSSs, named Pacemaker and Tiger, that manage data and
carefully choose when and how to convert data to guarantee a target level of reliability (in
spite of the variations in the failure rate of disks) without overwhelming the cluster.

The second part focuses on heterogeneity across different parts of the DSS. We consider the
setting of a geo-distributed storage system, where latencies between nodes vary significantly
and the cost of sending data across the wide-area network (WAN) is important. We model the
problem theoretically and study the tradeoff between storage overhead and WAN bandwidth
usage. Using this model, we propose a construction for codes that jointly minimize storage
overhead and WAN bandwidth usage. Finally, we use this theoretical framework to design
and implement a strongly-consistent geo-distributed storage system that co-optimizes its
erasure code and configuration to minimize cost.

Acknowledgements

I would like to express my deepest gratitude to my advisor and collaborator Prof.
Rashmi Vinayak: not only was her help and guidance essential for the research
in this thesis, but her kindness and cordiality also made my PhD journey very
enjoyable and gratifying. I would like to deeply thank my thesis committee for their
valuable comments, which helped shape this thesis. I would also like to thank all my
collaborators whose work is featured in this thesis, and from whom I learnt many useful
things (alphabetically): Sanjith Athlur, Mosharaf Chowdhury, Gregory R. Ganger,
Saurabh Kadekodi, Harsha V. Madhyastha, Arif Merchant, V. S. Chaitanya Mukka,
Suhas Jayaram Subramanya, Muhammed Uluyol, Juncheng Yang. In addition, I
would like to thank the many people who helped me throughout this journey: Michael
Rudow, for many useful technical discussions, reviewing many of my drafts, and being
a personal friend; Andrew Park and Wenting Zheng, for collaborating with me in a
project not included in this thesis; Austin Ramos, Timothy Kim, Dax Vandevoorde,
Shaobo Guan, Jiaan Dai, Xuren Zhou, Jiaqi Zuo, Sai Kiriti Badam, and Jiongtao
Ye, for their help in past or ongoing storage systems projects; Saransh Chopra and
Justin Zhang, for continuing my work on some of the theoretical problems presented
in this thesis; Jean-Sébastien Légaré and Andrew Warfield, for mentoring me during
my internship at Amazon; Lluis Pamies-Juarez, Mustafa Uysal, and Arif Merchant,
for mentoring me during my internship at Google and for facilitating access to some
of the data used in this thesis; Keith Smith, Tim Emami, Jason Henessey, and Peter
Macko, for mentoring me during my internship at Netapp and for facilitating access
to some of the data used in this thesis; Cristian Riveros, Domagoj Vrgo¢, and Marcelo
Arenas, for helping me get started in computer science research before starting my
PhD. I would also like to thank all the anonymous reviewers at various conferences
and journals, whose comments helped me improve the work contained in these pages.
I am thankful to all the thinkers and researchers that came before me, for sharing
their knowledge with the rest of the world and enabling me to make this research,
and for all those that will come after me (especially those that will cite my work).

I am also thankful to the following organizations for providing the funding to

support my research: the National Science Foundation through award numbers
1901410, 1943409, and 1956271, Google through the Faculty Research award, and
Meta through the Facebook distributed systems research award.

Finally, I am deeply grateful to my family for their continued support, and to
my friends, for cheering me up and helping me keep my sanity throughout the PhD:
Gaurav Manek, Po Bhattacharyya, Jordan Barria, Pablo Guarda, Francisca Espinoza,
Silvana Juri, Vicente Christian, Esteban Iglesias, Vicente Baeza, Chuli, Sebastian
Salata, Francisco Carrasco, Alberto Croquevielle, Sebastian De Vidts, David Fuller,

Carlos Brunner, Miguel Fadi¢, and many, many more.

Contents

Introduction 1

I Dynamic storage codes for change across time 6

1 Convertible codes framework

2

1.1 Introduction 8
1.2 Related work, background and notation 14
1.3 A framework for studying code conversions 18
Access cost of convertible codes 26
2.1 Lower bounds on the access cost of convertible codes in the merge regime 27
2.2 Explicit access-optimal convertible codes in the merge regime 36
2.3 Low field-size convertible codes in the merge regime 41
24 Split regime L 48
2.5 General regime 54
Bandwidth cost of convertible codes 65
3.1 Additional background L oL 66
3.2 Modeling conversion for conversion bandwidth optimization. 74
3.3 Optimizing conversion bandwidth in the merge regime 79
3.4 Bandwidth-optimal convertible codes in the merge regime 84
3.5 Bandwidth savings of bandwidth-optimal convertible codes 94

Contents

3.6 Conversion bandwidth of the split regime 96
3.7 Explicit constructions Lo L oo 101
4 Locally repairable convertible codes 108
4.1 Background and related worko 109
4.2 Conversion of LRCs 112
4.3 Conversion of global parameters 120
5 Designing systems for code conversion 125
5.1 Pacemaker: avoiding HeART attacks in storage clusters 126
5.2 Whither disk-adaptive redundancy 130
5.3 Longitudinal production trace analyses 133
5.4 Design goals of PACEMAKER oo 138
5.5 Design of PACEMAKER o v i vt i it i 142
5.6 Implementation of PACEMAKER in HDFS 150
5.7 Evaluation of PACEMAKER 154
5.8 Failure rate estimation in PACEMAKER 163
5.9 Detailed cluster evaluations of PACEMAKER 164
5.10 Tiger: disk-adaptive redundancy without placement restrictions . . . 166
5.11 Motivation of Tiger L 173
5.12 Eclectic Stripes and their challenges 177
5.13 Mechanisms to enable eclectic stripes 178
5.14 Design and working of Tiger 185
5.15 Evaluation of Tiger 193
5.16 Derivation of approximation of MTTDL of eclectic stripes 203
5.17 Related Worko 204
IT Dynamic storage codes for change across space 206
6 Codes for geo-distributed storage 208
6.1 Related work and existing results 211

— vii —

Contents

6.2 Fundamental limits on codes with arbitrary access sets

6.3 Storage overhead of MUC codes: lower bound and achievability

6.4 Conclusion

7 Density-aware redundancy for geo-distributed storage

7.1 Geo-distributed storage systems: Opportunity and challenges
7.2 Pududesign

7.3 Density-aware redundancy

7.4 Evaluation
7.5 Related work

IIT Future directions

8 Future directions for Part 1

8.1 Future directions for convertible codes

8.2 Future directions for disk-adaptive redundancy

9 Future directions for Part II

9.1 Future directions for MUC codes

9.2 Future directions for geo-distributed storage systems

Bibliography

— viii —

. 220

225

226
232
237
242
249
260

262

263
263
266

267
267
268

269

Introduction

Many of today’s most important and popular applications require storing ever-
increasing amounts of data. Such storage needs far surpass what can be handled by
a single machine, and thus many applications have to rely on distributed storage
systems (DSSs), which store data across large numbers of devices. Because of the
essential role they play in supporting other applications, DSSs need to be extremely
reliable: they must guarantee that data can be readily accessed when needed, and
that it will not be irrecoverably lost. Additionally, because of the constant increase in
the demand for storage, DSSs need to be able to scale and allow operators to easily
increase their capacity by adding more storage devices.

These strict requirements, and the logistical challenges attached to managing and
running the required hardware, make DSSs hard to operate. As a consequence, most
large-scale DSSs are operated by organizations that store very large amounts of data
and/or offer storage services to other organizations. Therefore, it is common for DSSs
deployments to be massive in size: just a single deployment can often store Petabytes
of data and manage tens of thousands of disks. Supporting such a large number of
disks requires specialized infrastructure capable of powering and cooling the disks
as well as the machines that read, write, process, and communicate the data stored
in them. DSSs thus consume vast amounts of resources in the form of hardware,
electricity, computational resources, network traffic, etc. Given this situation, a very
active line of research is to make these systems more efficient, as even small reductions
in resource usage can have big impacts due to the sheer scale of these systems.

One key challenge that DSSs must handle is failure tolerance. In large-scale

systems, failures are common and unavoidable events. Therefore, DSSs need to

-1 -

Introduction

employ techniques that allow them to gracefully handle and repair failures. This
is typically expressed through two properties: durability, which is the ability to
prevent data from becoming irrecoverably lost; and availability, which is the ability to
guarantee that data can be accessed (in a reasonable amount of time). The simplest
way to provide these properties is to replicate the data across different disks that are
unlikely to fail together. However, at such large scales replication is economically
unfeasible because it doubles or triples (or more) the amount of resources needed.

A more efficient alternative to replication is erasure coding, which can achieve the
same level of failure tolerance with much lower storage overhead. On the flip side, the
use of erasure codes in storage applications brings up a variety of other considerations
which are not present with replication: e.g. encoding/decoding complexity, the repair
of failed nodes, cost of updating data, impact of stragglers on latency, etc. However,
in most cases the benefits of erasure coding in DSSs far outweigh the costs of dealing
with their complications, and for this reason it is very common nowadays for DSSs to
use erasure codes. The operator of a DSS typically chooses the type of erasure code
and its parameters according to the expected operating conditions (such as the node
failure rate, the workload, the network topology, etc.), and their target metrics (such
as durability, availability, storage overhead, etc.).

One important unresolved problem that DSSs have to face in practice is having
to adapt to the heterogeneities in the environments where they operate, and their
variations across time. Current systems handle these differences by using extremely
conservative amounts of redundancy when initially encoding the date, and by relying
on unplanned manual interventions. Both of these are very costly: the unnecessary
redundancy consumes a lot of resources and manual interventions, because they are
unplanned, disrupt the normal functioning of the system and require significant effort.
My thesis focuses on solving this problem: making DSSs more robust, by enabling
them to automatically adapt to heterogeneity and variations across time.

To make progress towards making DSSs more robust to variations, we develop
and use tools from both the Coding Theory and Computer Systems research. Our
approach goes in both directions: we model different aspects of the problem and

identify the fundamental theoretical questions at their heart, and we apply the answers

-2 —

Introduction

to these questions to develop better systems.

In the first part (Part I), we focus on enabling DSSs to adapt to heterogeneity
across time. Data in DSSs typically lives for long periods of time, and over this period
of time the cluster environment can vary significantly. This means that the erasure
code that was used when the data was originally stored may become unsuitable due
to variations in the cluster environment. For example, the failure rate of disks varies
as they age, and the popularity of each file changes over time. DSSs can adapt to such
variations via redundancy tuning, i.e., automatically converting already-encoded data
into a different erasure code that is suitable. Despite bringing significant benefits,
redundancy tuning can be hard to adopt in practice because existing DSSs are not
designed to support it. The default approach to conversion is to read, decode, re-
encode, and write data, which is very costly. Therefore, if performed carelessly, the
work required for conversion can easily overwhelm the cluster. To bridge this gap, we
approach the problem from two complementing directions: we design erasure codes
that reduce the cost of conversion, and we design systems that manage the data and
can effectively and efficiently decide when and how to convert data.

On the theoretical side, we develop the convertible codes framework, which allows
us to precisely study the fundamental costs of converting data between two erasure
codes with different parameters. We consider two types of cost: access cost, which
measures the number of nodes that have to be read or written during conversion, and
conversion bandwidth, which measures the amount of data that needs to be transferred
between nodes during conversion. For each of these costs, we derive lower bounds on
the cost of conversion, and we construct erasure codes that can perform conversion
more efficiently than the default approach, in many cases achieving the optimal cost.
In our optimization of these costs, we first focus on the so-called mazimum-distance
separable (MDS) codes, which are commonly used in practice because they achieve
the minimum storage-overhead for a given level of failure tolerance. Then, we focus
on a different class of codes known as locally repairable codes (LRCs), which are also
widely used in practice and trade off store-overhead for better repair performance
(which translates into higher availability).

On the practical side, we focus on designing DSSs that efficiently manage and

-3 -

Introduction

convert data to guarantee a target level of reliability in spite of variation in the
failure rate of disks. A previous system called HeART [1] showed that this style of
redundancy tuning can yield savings in storage space of up to 16% compared to a
system that uses a single fixed erasure code chosen to tolerate the highest failure rate
observed. However, trace-based simulations show that the work required by HeART
can completely overwhelm a cluster for periods of days or weeks. We propose two
systems that improve upon HeART by providing similar savings in storage space but
without overwhelming the cluster. We first propose Pacemaker, which employs two
main strategies: (1) it places stripes across disks that have similar failure rates, and
(2) it proactively transitions data by observing trends in failure rates and anticipating
large transitions. While Pacemaker is effective at avoiding overwhelming the cluster,
it poses undesirable constraints on data placement. To address this, we propose Tiger,
which is able to avoid transition overload without additional placement restrictions.
To achieve this, Tiger introduces a new abstraction called eclectic stripe, which can
precisely measure the reliability of a stripe composed of devices with different failure
rates. This is enabled by a new system architecture and a set of techniques which
allow Tiger to reliably manage and transition eclectic stripes without large overheads.

In the second part (Part II), we focus on enabling DSSs to adapt to heterogeneity
across space. The setting that we consider is that of a geo-distributed storage system,
in which users in different parts of the world to read and write to a shared set of
objects. For example, this could correspond to data stored in a cloud storage system
used in a collaborative application, such as Google Docs [2], or Overleaf [3]. Two
important costs in this setting are: (1) storage overhead, and (2) wide-area network
(WAN) bandwidth. One important objective of the system is to provide good read
latency to users, which is typically achieved by placing replicas of the objects at
data sites in different locations. To reduce the storage overhead, recent work [4—(]
has proposed using Reed-Solomon codes instead. This, however, leads to high WAN
bandwidth usage, because all parities of the code have to be updated whenever a
write is made. Inspired by this problem, we pose the following question: s it possible
to design codes that minimize both storage overhead and WAN bandwidth required by

updates? To answer this question, we model the problem from a coding-theoretical

— 4 —

Introduction

perspective. A key characteristic of this problem is the heterogeneity across space:
users will typically contact the data sites that are closest to them, and some regions
are better connected than others. To capture this, we use the notion of access sets,
i.e, sets of nodes that must be able to decode the store object. Given a collection of
access sets, we derive lower bounds on storage overhead and update cost, and study
the tradeoffs between the two of them. Since WAN bandwidth tends to be more
costly than storage in practice, we focus on codes that first minimize update cost,
and then minimize storage overhead subject to that, which we term minimum update
cost (MUC) codes. We fully characterize the update cost and storage overhead of
MUC codes and provide a randomized construction. Then, we propose Pudu, a novel
strongly-consistent geo-distributed storage system. Pudu implements and integrates
the MUC framework to tailor the system’s erasure code. Using this approach, Pudu
is able to minimize the resource-cost of the system by co-optimizing both the design
of the erasure code, and the design of the consensus protocol. This allows Pudu to
achieve lower costs that were unachievable by prior systems.

The rest of this document is divided as follows. Part I focuses on heterogeneity
across time. Chapters 1 to 4 focus on convertible codes, and Chapter 5 focuses on
adapting distributed storage systems to perform erasure code changes more efficiently.
Part II focuses on heterogeneity across space: Chapter 6 focuses on the theoretical
results on codes with minimum update cost, and Chapter 7 incorporates these codes
into a strongly-consistent geo-distributed storage system. Finally, Part I1I discusses

future directions for the topics explored in this thesis.

Part |

Dynamic storage codes for change

across time

In the first part of the thesis, we concern ourselves with changes in storage codes
across time. In other words, we focus on studying erasure codes and distributed
storage systems that change the encoding of data throughout time. We approach this
subject from two perspectives: a coding-theoretical perspective, focused on the design
of storage codes, and a systems perspective, focused on the design of a distributed
storage system that adapts throughout time.

Chapters 1 to 4 are dedicated to convertible codes. In Chapter 1, we introduce the
code conversion problem, and propose the convertible codes framework: using this
framework, we study the access cost of the merge regime. In Chapter 2, we study the
access cost of conversion in MDS codes. In Chapter 3, we introduce the conversion
bandwidth cost metric, and study it in MDS codes. In Chapter 4, we go beyond MDS
codes, and study the conversion bandwidth of locally-repairable codes.

Chapter 5 is dedicated to the concept of disk-adaptive redundancy tuning, and
to system designs that implement it. First in Section 5.1, we propose Pacemaker, a
distributed storage system designed to automatically change the encoding of data in
response to changes in disk failure rates without overwhelming the system. Then in
Section 5.10, we propose Tiger, a distributed storage system which is also designed
to automatically adapt to changes in failure rate, but imposes fewer constraints and

is more robust than Pacemaker.

Chapter 1

The convertible codes framework:
enabling efficient conversion of coded

data in distributed storage

This chapter is based on work from [7], done in collaboration with K. V. Rashmi.

1.1 Introduction

Erasure codes have become an essential tool for protecting against node failures in
distributed storage systems [8-14]. Under erasure coding, a set of k data symbols
to be stored is encoded using an [n, k| code to generate n coded symbols, called a
codeword (or stripe). Each of the n symbols in a codeword is stored on a different
storage node, and the system as a whole typically contains several independent
codewords distributed across different subsets of storage nodes in the cluster.

A key factor that determines the choice of parameters n and k is the failure rate
of the storage devices. It has been shown that failure rates of storage devices in
large-scale storage systems can vary significantly over time and that changing the code
rate, by changing n and k, in response to these variations yields substantial savings
in storage space and hence the operating costs [1]. For example, in [1], the authors

show that an 11% to 44% reduction in storage space can be achieved by tailoring

— 8 —

Chapter 1. Convertible codes framework

=
o
o

S o
g B [ffansition IO Num disks (right axis) 1350K .S
> I c
o 75 c
o 250K 2
g 50 g
o 1150K 5
— 25} c
..g 1 150K >
= 0 =z

* T T
2017-06 2018-01 2018-06 2019-01 2019-06 2019-12

Figure 1.1: (From [15].) The left y-axis shows the percentage of disk 1O utilized
by conversion (called “transition” in [15]) against time simulated from a trace of a
production Google cluster. The right y-axis shows the size of the cluster in number of
disks against time. Code conversions can result in big spikes in disk IO consumption
that can overwhelm the cluster for several days.

n and k to changes in observed device failure rates. Such a reduction in storage
space requirement translates to significant savings in the cost of resources and energy
consumed in large-scale storage systems. It is natural to think of potentially achieving
such a change in code rate by changing only n while keeping k fixed. However, due
to several practical system constraints, changing code rate in storage systems often
necessitates change in both the parameters n and k [1]. We refer the reader to [1] for
a more detailed discussion on the practical benefits and constraints of adapting the
erasure-code parameters to the variations in failure rates in storage systems.
Changing n and k for codewords in a storage system, from [n!, k7], to [n* k],
would involve converting already encoded data from one code to another. Clearly, it
is always possible to re-encode the data in a codeword according to a new code by
accessing (and decoding if necessary) all the original message symbols. However, such
an approach, which we call the default approach, requires accessing a large number
of symbols (for example, for MDS codes, the initial value of £ number of symbols
need to be accessed from each codeword), reading out all the data, transferring over
the network, and re-encoding. Such conversions can generate a large amount of load
on cluster resources, which adversely affects the foreground operations of the cluster.
Figure 1.1 shows the IO load that would be caused by code conversions on a Google

cluster with multiple hundreds of thousands of disks [15]. As seen from the figure,

-9 —

Chapter 1. Convertible codes framework

IO load from conversions can easily overwhelm the cluster for long periods of time.
Furthermore, in some cases conversions might need to be performed in an expedited
manner, for example, to avoid the risk of data loss when facing an unexpected rise in
failure rate.

High IO load is problematic for such conversions because it slows down conversion
as well as other important cluster processes, such as serving client requests. While
recent work [15] has initiated a study on systems techniques to mitigate the spikes in
the 10 load caused by conversions, the total amount of work necessary for conversion
still remains considerably high and these systems techniques introduce restrictions on
other operations of the cluster such as data placement. Given that the root cause
of the problem is the high resource overhead involved in performing conversions
on the underlying code, we investigate the problem from a fundamental theoretical
perspective.

There are also several other reasons to perform code conversions in storage systems.
One may convert data that is frequently read into a code with a small k (in order to
improve the performance of reconstructions) and convert data that is infrequently
read into a code with large k (to achieve lower storage overhead). In addition, code
conversions may need to be performed to keep the total size of the encoded data
under a given threshold, or to maximize the reliability given the available storage
space.

To the best of our knowledge, the existing literature [16-19] which formally studies
the problem of changing the length and dimension of already encoded data does so
from the perspective of the so-called scaling problem. The scaling problem [16] refers
to the problem of evenly redistributing each codeword in a distributed storage system
when additional nodes are added to the system and the level of failure tolerance
(specifically, (n — k)) is kept constant. Some works [17, 19] generalize the scaling
problem to broader cases where (n — k) need not remain constant. However, even
in cases where the scaling problem could be used to perform code conversion, it has
several drawbacks that make it inefficient for conversion. For example, using the
approach of scaling to achieve conversion requires accessing every symbol in each

codeword and performing a significant amount of data movement to keep the amount

Chapter 1. Convertible codes framework

Initial codeword 1 Initial codeword 2
N [E

7 <

Loy,
vV YV
La][][c][d][e][]/an a2
Final codeword

Figure 1.2: Example of code conversion: two codewords of a [5,3] MDS code are
converted into one codeword of a [8,6] MDS code. Unshaded boxes represent data
symbols, and shaded boxes represent parity symbols. Some of the initial symbols are
kept unchanged in the final codewords, as shown by the dashed arrows. Some initial
symbols are read and downloaded (solid arrows). The downloaded data is then used
to compute and write the remaining symbols in the final codewords.

stored in each node the same. While these costs are necessary to fulfill the goals of
the scaling problem, they are unnecessary to achieve code conversion, making this
approach inefficient. A more detailed discussion of the scaling problem and other

related work is provided in Section 1.2.1.

In this chapter, we propose a theoretical framework to model the code conversion
problem. Our approach is based on the insight that the problem of changing code
parameters in a storage system can be viewed as converting multiple codewords of
an [n!, k’] code (denoted by C’) into (potentially multiple) codewords of an [n’', k¥’
code (denoted by C*')!, with desired constraints on decodability, such as both codes
satisfying the maximum distance separability (MDS) property. To address the problem
of code conversion, we then introduce a new class of codes, which we call convertible
codes, that allow for resource-efficient conversions. The general formulation of code

conversions provides a powerful framework to theoretically study convertible codes.

We now present an example to elucidate the concept of code conversion in the

'The superscripts I and F stand for initial and final respectively, representing the initial and
final state of the conversion.

Chapter 1. Convertible codes framework

convertible codes framework.

Example 1.1: Consider conversion from an [n/ = 5,k! = 3] code C! to an [nf =

8, kI = 6] code CI". We will focus on the number of symbols read, i.e. read access
cost, and on the number symbols written, i.e. write access cost, for conversion. The
default approach to conversion is to read k! = 3 symbols from each of the two initial
codewords belonging to C’, decoding the original data, and using it to write two
symbols of the final codeword belonging to C', while keeping the three read symbols
from each initial codeword unchanged as symbols of the final codeword. Thus, the
default approach has a read access cost of 6 and write access cost of 2.

In the convertible codes framework, this conversion is achieved by converting two
codewords of the initial code into a single codeword of the final code, as depicted in
Figure 1.2. This approach uses specially designed systematic codes C' and CF. Let
[F, be the finite field of size ¢ = 37. Let a,b, c € F, be the data symbols of the first
initial codeword, d, e, f € IF, be the data symbols of the second initial codeword. Let
p1,p2 - F2 — F, be the parity functions for the initial code C*, and ¢1, g2 : F§ — F, be

the parity functions for the final code C¥'. The parity functions are chosen as below:
pi(a,b,c) =a+b+c, po(a,b,c)=a+2b+ 4dc.

This is an example of the general construction presented in Section 2.2. The conversion
procedure keeps the data symbols from each initial codeword unchanged in the final
codeword, and then constructs the first (resp. second) parity of the final codeword as
a linear combination of the first (resp. second) parity of each initial codeword. The

final parity functions are chosen to satisfy the equation below:

Q1(a7b7 C, da e:f) = pl(aa b7 C) +p1<d7 eaf)v
QQ(CL,b, C, da e?f) = p?(aa b7 C) + 8p2(d7€7 f)

It is straightforward to check that the initial and final codes defined by these parity
functions have the MDS property. This conversion procedure requires reading two

symbols from each initial codeword and writing two symbols, resulting in a total read

Chapter 1. Convertible codes framework

access cost of 4 and a write access cost of 2, a reduction of 33.3% in the read access
cost as compared to the default approach. This is also the the minimum possible

read cost, as will be shown in Section 2.1. >

We begin the exploration of convertible codes by focusing on MDS codes in
Chapters 2 and 3, and then we focus on LRCs (Locally Repairable Codes) in Chapter 4.
These two classes of codes are two of the most commonly used in distributed storage
systems, and thus are good subjects of study. Furthermore, we consider two notions
of conversion cost: 1) access cost (studied in Chapter 2), which corresponds to
the number of nodes that are read or written during conversion; and 2) conversion
bandwidth (studied in Chapter 3), which corresponds to the amount of network

bandwidth used during conversion.

To simplify our analysis of convertible codes, we divide the space of possible
parameters into subsets that we call regimes. In particular, we consider: 1) the merge
regime, which consists of conversions that merge multiple codewords into a single one
(i.e. k' = ME! for integer Al > 2); 2) the split regime, which consists of conversions
that split a single codeword into multiple ones (i.e. k' = Mk for integer A\I' > 2);

and 3) the general regime, where k' and k" are arbitrary.

Throughout our analysis of convertible codes, we assume the values of the pa-
rameters (n’, k') and (n”, k¥') are known and fixed. Similarly, we assume that data
undergoes a single conversion. However, in practice the value of (n", k') might not
be known at the time of code construction, since it depends on the future failure
rates of storage devices, or multiple conversion might be executed over the same data
at different points in time. Throughout the thesis, we also discuss and address these
problems: we show how to construct convertible codes which support conversion for
multiple possible values of (nf, k') simultaneously, or support multiple consecutive

conversions for a sequence of parameters (nq, k1), (ng, ko), (n3, k3), . . ., and so on.

Chapter 1. Convertible codes framework

1.2 Related work, background and notation

In this section, we place convertible codes within the larger context of traditional
codes and more recent works on codes for distributed storage. Then, we review some

basic concepts and notation that will be used throughout this thesis.

1.2.1 Related Work

MDS erasure codes, such as Reed-Solomon codes [20], are widely used in storage
systems because they achieve the optimal tradeoff between failure tolerance and
storage overhead [21, 22]. However, the use of erasure codes in storage systems raises
a host of other aspects to optimize for. Several works in the literature have studied
these aspects and proposed codes that optimize them.

One aspect of storage codes that received considerable attention early on is the
computational overhead involved in encoding and decoding data. Array codes [23-26]
are usually designed to use XOR operations exclusively, which are faster to execute,
and aim to decrease the complexity of encoding and decoding.

Another aspect of storage codes that has received considerable attention in the
recent past is related to the resource overhead associated with repair of failed nodes.
Several approaches have been proposed to alleviate this problem. Dimakis et al. [27]
proposed a new class of codes called regenerating codes that minimize the amount of
network bandwidth consumed during repair operations. Under the regenerating codes
model [27], each symbol (i.e., node) is represented as an a-dimensional vector over a
finite field. During repair of a failed node, downloading elements of the finite field (i.e.,
“sub-symbols”) is allowed as opposed to the whole vector (i.e., one “entire” symbol).
This line of research has led to several constructions [28-47], generalizations [48-50],
and more efficient repair algorithms for Reed-Solomon codes [39, 51-57]. Several of
these constructions [31, 40, 58-60] minimize the amount of IO consumed during repairs
in addition to minimizing the network bandwidth consumption. Like regenerating
codes, convertible codes optimized for conversion bandwidth also aim to minimize 10

and network bandwidth, but for code conversion instead of repair. It has been shown

Chapter 1. Convertible codes framework

that meeting the lower bound on the network bandwidth required by repair when MDS
property and high rate are desired necessitates large sub-packetization [58, 60-62],
which negatively affects certain key performance metrics in storage systems [12, 13].
To overcome this issue, several works [63, 64] have proposed code constructions that
relax the requirement of meeting lower bounds on IO and bandwidth for repair
operations in order to reduce the degree of sub-packetization.

The challenge of code repair has also been addressed by another class of codes,
called locally repairable codes (LRCs) [65-81]. These codes focus on the locality
of codeword symbols during repair, that is, the number of nodes that need to be
accessed when repairing a single failure. LRCs improve repair performance, since
missing information can be recovered by accessing a small subset of symbols. LRCs
and convertible codes optimized for access cost both aim to minimize the number of
symbols that need to be accessed, albeit for different operations in storage systems.

Recent literature on storage codes has also considered the problem of redistributing
data when additional devices are added to a distributed storage system, which is
known as the scaling problem [16, 17, 19, 82-90]. The setting considered consists
of an n node distributed storage system where the data is encoded using an [n, k]
MDS code, where the n symbols of each codeword are spread across evenly on all
the n nodes in the system. Then, s new empty nodes are added to the system, and
the data (which was encoded under an [n, k] MDS code) needs to be updated to an
[=n+ sk =k+s] MDS code. The central goal of this problem is to evenly
redistribute each codeword across all n’ nodes while reducing the total amount of
data transferred across nodes and ensuring the MDS property holds. In some cases,
it is additionally required that the ratio of data to parity in each node is the same
(e.g. [87]). Some works consider more general scaling scenarios: for example [19]
considers the case where k < k' and n < n’, and [17] considers arbitrary n' > k'.
The scaling problem is fundamentally different from the conversion problem that we
study in this thesis because of the need to evenly redistribute data across nodes under
scaling. Hence, some of the key constraints and limitations of the scaling problem do
not apply to code conversion. For example, scaling necessitates modifying every node

in the system (incurring a high access cost) and necessitates transfer of data not for

Chapter 1. Convertible codes framework

the purpose of conversion (i.e. changing n and k) but for the purpose of rebalancing
the amount of data stored by each codeword in a given node. On the other hand,
under the code conversion problem, we do not impose any requirements on data
balancing. This is because, typically, large-scale distributed storage systems balance
data across nodes at a higher level rather than at the level of each codeword [8, 11].

Several works have studied scenarios where encoded data is transformed to conform
to a different code. In [91, 92], the authors propose a two-stage encoding process,
where in the first stage data is encoded using a [n, k] MDS code, and in the second
stage (n’ —n) additional parities are generated to form a codeword from a [n’, k] MDS
code. This process can be seen as a special case of convertible codes, i.e. an (n, k;n’,
k) convertible code. In [93], the authors propose a distributed storage system which
alternates between two specific erasure codes in response to variations in workload.
In [94], the authors propose a scheme for changing the parameters of an erasure code
in the context of coded matrix multiplication.

In [95], which appeared after the publication of the conference paper that this
chapter is based on [96], the authors propose a code construction for improving the
efficiency of conversion. This construction performs conversion by acting on initial
codewords that are encoded differently, i.e. a different (k! x n!) generator matrix
is used for each initial codeword. The focus of Wu et al. [95] is on a practical code
construction for a specific parameter regime and they do not investigate theoretical
modeling and fundamental limits. All the lower bounds derived in our work continue
to hold even if each codeword is encoded differently (i.e. they also apply to the setting
considered in [95]). The approach of using multiple different initial codes has the
advantage of simplifying the code construction: a final MDS code C is chosen first,
and then the encoding of each initial codeword is chosen to fit CI. However, such
an approach has several disadvantages. First, conversion can only happen among
specific groups of initial codewords, making the conversion process more rigid as
codewords cannot be freely chosen. Second, this approach increases the overhead
of codeword management, as the system needs to keep track of the code of each
codeword. Third, it only considers one specific known value for the final parameters

(nf',k¥). On the other hand, the framework of convertible codes that we propose

Chapter 1. Convertible codes framework

allows one to choose any set of initial codewords for conversion (since they all use the
same code), is independent of data placement, and the proposed code constructions
support access-optimal conversion for any (n”’, k™) in a set of possible final parameter

values.

1.2.2 Background

In this subsection we introduce some basic definitions and notation related to linear
codes. Let F, be a finite field of size q. An [n, k] linear code C over F, is a k-
dimensional subspace C C Fy. Here, n is called the length of the code, and £ is called
the dimension of the code. A generator matriz of an [n, k| linear code C over F, is
a k x n matrix G over IF, such that the rows of G form a basis of the subspace C.
A k x n generator matrix G is said to be systematic if it has the form G = [I | P],
where I is the k x k identity matrix and P is a k x (n — k) matrix. Even though
the generator matrix of a code C is not unique, we will sometimes associate a code
C to a specific generator matrix G, which will be clear from context. The encoding
of a message m € F} under an [n, k] code C with generator matrix G is denoted
C(m) = m”G.

Let [n] denote the set {1,2,...,n} for n > 1, and the empty set for n < 0. A
linear code C is maximum distance separable (MDS) if the minimum distance of the
code is the maximum possible:

min-dist(C) = C;rclligc Hien]:ci#c} =n—k+1,
where ¢; € F, denotes the i-th coordinate of c¢. Equivalently, a linear code C is MDS
if and only if every k x k submatrix of its generator matrix G is non-singular [97].
A matrix M is said to be superreqular if every square submatrix of M is nonsin-

gular’. The following property is a key property that will be used in this thesis.

2This definition of superregularity is stronger than the definition introduced in [98] in the context
of convolutional codes.

Chapter 1. Convertible codes framework

Proposition 1.1 ([97]). Let C be an [n, k] code with generator matric G = [I|P]. Then
C is MDS if and only if P is superreqular.

Let v € F) be a vector. We interpret vectors as column vectors by convention.
We denote the transpose of a vector (or matrix) as v. Given a set of coordinates

‘qI'. For a set

Z C [n], we denote the projection of v to the coordinates in Z as v|r € F
of vectors V we define proj; (V) = {v|z | v € V}.

We use the following notation for submatrices: let M be a n x m matrix,
the submatrix of M defined by row indices {iy,...,i,} C [n] and column indices
{j1,---,Jp} € [m] is denoted by M[i1, ..., 44;J1,---,js]. For conciseness, we use * to
denote all row or column indices, e.g., M[x; ji, . .., js] denotes the submatrix composed

by columns {ji,...,jp}, and M[iy,. .., i,;*] denotes the submatrix composed by rows

(iy . via)

1.3 A framework for studying code conversions

In this section, we formally define the new framework for studying code conversions
and introduce convertible codes. While we use the notation of linear codes introduced
in Section 1.2.2, the framework introduced in this section can be applied to arbitrary
(not necessarily linear) codes. Suppose one wants to convert data that is already
encoded using an [n!, k!] initial code C! into data encoded using an [n’', k] final code
CF where both codes are over the same field F,. In the initial and final configurations,
the system must store the same information, but encoded differently. In order to
capture the changes in the dimension of the code during conversion, we consider
M = lem(k!, k¥') number of “message” symbols (i.e., the data to be stored) over a
finite field IF,, denoted by m € ¥ éw . This corresponds to \! = M/k! codewords in
the initial configuration and A\f' = M/k" codewords in the final configuration. Let
rl = (n! — k) and r¥' = (nf' — k).

Figure 1.3 shows the conversion process for general initial and final codes. We
note that this need for considering multiple codewords in order to capture the smallest

instance of the problem deviates from existing literature on the code repair (e.g., [27,

Chapter 1. Convertible codes framework

(A = M/kT) initial codewords

} [| I I |
kI—|I—rI—| k;I—H—rI—I

AN

1
] 1
v Vv v Vv v
O-0+|”° - O-0|-| - O-00-0
- kF = F - kF = F kP = F
— " —— — ¥ — — nF —

(A = M/kF) final codewords

Figure 1.3: Conversion from [n!, k’] initial code to [nf", k] final code. Each box
denotes a symbol, and they are grouped into codewords. Dotted boxes denote retired
symbols, and cross-hatched boxes denote new symbols. The ¢ node denotes the
location where new symbols are computed from the symbols read during conversion.
Solid arrows denote a transfer of symbols (read or write) and dashed arrows denote
unchanged symbols.

Chapter 1. Convertible codes framework

28, 52, 63]) and code locality (e.g., [65, 70, 80]), where a single codeword is sufficient
to capture the problem.

Since there are multiple codewords, we first specify an initial partition P! and
a final partition P¥ of the set [M], which map the message symbols of m to their
corresponding initial and final codewords. The initial partition P! = {P], ..., P/{I}
is composed of A disjoint subsets of size |Pf| = k! (i € [\]), and the final partition
PE={Pf, ..., P{:} is composed of A disjoint subsets of size |Pf'| = k¥ (j € [\7]).
In the initial (respectively, final) configuration, the data indexed by each subset
P! € P! (respectively, P/" € P) is encoded using the code C' (respectively,C").
The codewords {C’(m| pi) | P! € P} are referred to as initial codewords, and the
codewords {C'(m| p]F) | PI" € P} are referred to as final codewords. The descriptions
of the initial and final partitions and codes, along with the conversion procedure,
define a convertible code. We now proceed to define conversions and convertible codes

formally.

Definition 1.1 (Code conversion): A conversion from an initial code C to a final code
CF with initial partition ! and final partition P¥ is a procedure, denoted by Ter_cr,
that for any m, takes the set of initial codewords {C!(m|p:) | P/ € P’} as input,

and outputs the corresponding set of final codewords {C*(m|pr) | P/ € P"}. >
J

Definition 1.2 (Convertible code): An (n’, k%; n'" k') convertible code over F,, is
defined by: (1) a pair of codes (C!,C) where C! is an [n!, k'] code over F, and
Ctis an [nf", k¥] code over F,; (2) a pair of partitions P/, P¥ of [M = lem(k!, k¥')]
such that each subset in P! is of size k! and each subset in P¥ is of size k¥'; and
(3) a conversion procedure Tpier that on input {C!(m)| pr) | P! € P’} outputs
{CF(m|PJF) | P e PF}, for any m € F)'. >

Typically, additional constraints would be imposed on C! and C¥', for example,
decodability constraints such as requiring both codes to be MDS.

The cost of conversion is determined by the cost of the conversion procedure
Teier, as a function of the parameters (n!, k%;n?, k). Towards minimizing the

overhead of the conversion, our general objective is to design codes (C!,CF), partitions

Chapter 1. Convertible codes framework

(P, PF) and conversion procedure Tpr_,cr that satisfy Definition 1.2 and minimize the
conversion cost for given parameters (n!, k';nt" k), subject to desired decodability
constraints on C! and C¥'.

Depending on the relative importance of various resources in the cluster, one
might be interested in optimizing the conversion with respect to various types of costs
such as symbol access, computation (CPU), communication (network bandwidth),
read /writes (disk 10), etc., or a combination of these costs. The general formulation
of code conversions above provides a powerful framework to theoretically reason about
convertible codes.

To decide whether or not a conversion procedure is efficient, we need to measure
its cost. Two kinds of cost have been consider the access cost of code conversion,

which measures the number of symbols that are affected by the conversion.

Definition 1.3 (Access cost): The read access cost of a conversion procedure is defined
as the total number of symbols read during the procedure. Similarly, the write access
cost of a conversion procedure is the total number of symbols written during the
procedure. The access cost of a conversion procedure is the sum of its read and write
access costs. The access cost of a convertible code is the access cost of its conversion

procedure. >

Definition 1.4 (Conversion bandwidth): The read conversion bandwidth of a conversion
procedure is defined as the total size of the data read from the initial codewords during
conversion. Similarly, the write conversion bandwidth of a conversion procedure is
defined as total size of the data written to the final codewords during conversion.
The conversion bandwidth of a conversion procedure is the sum of its read and
write conversion bandwidths. The conversion bandwidth of a convertible code is the

conversion bandwidth of its conversion procedure. >

Both of these costs are important in practice, but which one is more important
will depend on the specifics of the system and its workloads. Reducing access cost
makes code conversion less disruptive, reduces the its tail latency, and allows the

unaffected symbols to remain available for normal operation. Reducing conversion

Chapter 1. Convertible codes framework

bandwidth reduces the 10 of disks and the amount of network traffic. Reducing either
access cost or conversion bandwidth will also reduce the amount of computation and
communication required in contrast to the default approach. Given the definition of
codes given above, it would seem as though both access cost and conversion bandwidth
are equivalent, however, we will show in Chapter 3 that by considering a class of
codes known as vector codes, we can explicitly minimize conversion bandwidth.

In order to understand the necessary access cost of conversion, we classify symbols
into three categories: (1) unchanged symbols, which refers to symbols in the initial
codewords that remain as is in the final codewords; (2) retired symbols, which refers
to the remaining symbols of the initial codewords that are discarded; and (3) new
symbols, which refers the symbols in the final stripes which are not unchanged (and
therefore must be written during conversion). For example, in Figure 1.3, unchanged
symbols are unshaded, retired symbols in the initial codewords are dotted, and new
symbols in the final codewords are cross-hatched.

Having unchanged symbols has many practical benefits, because when conversion is
implemented, such symbols can stay in the same location and only their corresponding
metadata needs to be updated. We introduce the following definition to capture

codes that maximize the number of such symbols.

Definition 1.5 (Stable convertible code): An (n, k;n® k™) MDS convertible code is
said to be stable if it uses the maximum number of unchanged symbols over all (n?,
k'™ kT) MDS convertible codes. >

In the following chapters, we will see that stable convertible codes play an
important role in minimizing access cost and conversion bandwidth.

The convertible codes framework defined in this work is flexible and allows for
the initial and final codes to have any parameters and be of any kind. Our goal will

be to find codes that minimize the access cost and conversion bandwidth.

Definition 1.6 (Access-optimal): A convertible code is said to be access-optimal (over
a class of codes) if and only if it attains the minimum access cost possible (in that

class of codes). >

Chapter 1. Convertible codes framework

Table 1.1: Notation used in this thesis.

O/ Related to initial code OF Related to final code

n® Code length, number of symbols k® Code dimension, number of message symbols
A® Number of codewords C% Code

PO Partition of [k?] GY Generator matrix of C?

P® Parity matrix of C¢ m Message

S Encoding vectors (codeword 1) 8% All initial/final encoding vectors

U;; Unchanged vectors (= S/ NSf) D; Read access set (initial codeword i)

A; Accessed vectors (initial codeword i) N New encoding vectors (= S\ §7)

Definition 1.7 (Bandwidth-optimal): A convertible code is said to be bandwidth-optimal
(over a class of codes) if and only if it attains the minimum conversion bandwidth

possible (in that class of codes). >

In practice, the final parameters (n", k¥') might not be known at the time of code
construction because they might depend on future failure rates. To address this, we
also consider designing codes which have the ability to be converted to multiple final
codes of different length and dimension with optimal access cost. This way, instead
of having to decide (n”, k™) in advance, the user can specify a subset S C (N x N) of
possible values for the pair (n”', k¥') and construct an initial code with the ability to
be converted to an [nf", k¥’ final code for any (n", k¥') € S. At the time of conversion,
the user simply chooses the desired pair from S and converts. We introduce the

following definition to help describe such codes.

Definition 1.8 (Optimally convertible): A [n!, k] MDS code C is said to be access/
bandwidth-optimally convertible if and only if it is the initial code of an access/

bandwidth-optimal (n!, k'; n’" k) convertible code. >

1.3.1 Notation for linear convertible codes

In this chapter, we focus exclusively on convertible codes where C! and C*" are linear.
To this end, we introduce some notation for describing and analyzing this class of

codes. Table 1.1 summarizes the most important notation used for easy reference.

Chapter 1. Convertible codes framework

Let O € {I, F'}. The generator matrix of C? is a (k% xn%) matrix G® = [g} - - - g%],
where g;? €]F’;<> (j € [n9]) denotes the j-th encoding vector of C°. Consequently, with
a given partition P¢ = {Pf}f‘il, the j-th symbol of the i-th codeword corresponds to
(m]).

In order to analyse linear convertible codes, we also view each code symbol in
relation to the whole message m. Accordingly, we view the j-th symbol of the i-th

initial codeword as ngg ;, where the encoding vector gﬁ ;€]Ff]‘/[is defined to be equal

to g;?

P?. Note that m”g{, = (m|0)Tg? for all i € [A\] and j € [n°]. In general, we will

for coordinates in P?, i.e. gﬁ ilpo = g?, and equal to 0 everywhere outside of

refer to a code symbol and its corresponding encoding vector interchangeably.

Let S = {&Y; | j € [n°]} denote the encoding vectors of codeword i € [A%],
and let S% = Uicpog S?. Define U;; = (SI' N Sf) denoting the unchanged symbols
that form part of initial codeword i and final codeword j. If Al = 1 or AF = 1,
then we omit the corresponding index from U; ; for simplicity. Let U = (S' N SF)
denote all unchanged vectors. We define the read access set of a convertible code
as a set of tuples D € [X] x [n!], where (i,5) € D corresponds to the j-th symbol
of initial codeword 4. Furthermore, we use D; = {j | (i,7) € D}, Vi € [M] to
denote the symbols read from initial codeword ¢. Note that the read access cost is
given by |D|. Let A; = {g/; | j € D;} denote the encoding vectors of the symbols
from initial codeword i € [M] that are part of the read access set D, and define
A= {8/, | (i,j) € D} as the set of all encoding vectors of the symbols in the read
access set. Finally, let N' = (S \ 87) denote the new vectors. Notice that it must
hold that N C span(.A), since the new vectors are obtained as linear combinations of

the encoding vectors of the symbols in the read access set.

1.3.2 The case of k! = kf

Before diving into the study of convertible codes, we briefly study the exceptional
conversion case where k! = k. We typically do not consider conversion with
parameters k! = k¥ as part of the merge or split regime because it does not have

the same behavior. However, we analyze this case here for completeness. Observe

Chapter 1. Convertible codes framework

that in the case where n! > n’, conversion for any MDS code can be carried out
with zero access cost and conversion bandwidth by simply retiring any (n! — nf)
symbols. In the complementary case where n! < nf’, it is necessary to access at least
kT symbols and write at least (nf —n') symbols (i.e. it is not possible to beat the
default approach in terms of access cost). This is apparent from the fact that in an
[n, k] MDS code, any subset of k — 1 symbols gives no information about any one
of the remaining symbols. The minimization of conversion bandwidth in the where
n! < n! is non-trivial: it can be considered as an special case of a regenerating code

[27], and it has also been studied on previous work [92].

Chapter 2

Access-cost of convertible codes:
fundamental limits and optimal

constructions

This chapter is based on work from [7], done in collaboration with K. V. Rashmi; and

[99], done in collaboration with V. S. Chaitanya Mukka and K. V. Rashmi.

There are several ways in which one might measure the cost of conversion. In this
chapter, we will focus on access cost, which is measured in terms of the total number
of symbols that need to be accessed during conversion. In particular, by the end of

this chapter we will have presented:

1. lower bounds on the access cost of conversion for linear MDS codes for all valid

parameters, that is, all n!, k', n¥' k¥ € N such that n/ > k! and nf > k¥

2. explicit constructions of linear MDS convertible codes that achieve these lower

bounds, and are thus optimal in terms of access-cost.

To achieve this, we divide the problem space (the set of possible parameters) into

three regimes:

* the merge regime, where multiple codewords are combined into a single one (i.e.
kF = ME! for an integer A > 2);

Chapter 2. Access cost of convertible codes

Table 2.1: Optimal access cost for different regimes, assuming 7" < min{k!, k'}.
When 7 > k! or r¥" > k¥, the optimal access cost is the same as the default approach.

Regime A((;(;eis f??t A(icfeis :g;t Default approach
Merge regime N ! e MNE!
Split regime AR A =Dk + T NEE

Mt 4+ (M mod \F)

I LF
(k! — max{k" mod k! r'}) lem (A, &)

General regime lem (k! kT)

* the split regime, where a single codeword is split into multiple ones (i.e. k! =
MEF for an integer A" > 2);

* the general regime, where k! and k" take arbitrary values.

We prove access-cost lower bounds and constructions for each of these cases separately.
One surprising aspect is that the lower bounds and constructions for the merge
regime and split regime are directly used in proving a lower bound and designing the
construction for the general regime. Interestingly, one of the degrees-of-freedom in
the design of convertible codes (called “partitions”, described in Chapter 1), which
is inconsequential in the split and merge regimes, turns out to be crucial in the
general regime. The proposed construction for access-optimal convertible codes for
the general regime builds on the constructions for split and merge regimes, while
separately optimizing along this additional degree-of-freedom. We summarize the

results of this chapter in Table 2.1.

2.1 Lower bounds on the access cost of convertible

codes in the merge regime

In this section, we focus on studying the merge regime. Recall, from Section 1.3, that

the merge regime corresponds to conversion where multiple codewords are combined

Chapter 2. Access cost of convertible codes

~+~ -~
8 A 8 A
i)\ka-———-o— i)\I]{Z[‘ ______ —
8 8 — Optimal
SEEVE S
g AT & ~ Default
= S approach
Q rF Q rt
a'at o~ <

0 Al 0 il

Figure 2.1: Comparison of the read access cost of the optimal conversion of a (n’, k’;
nf', kT = M) convertible code and the default approach for a variable value of 7'
(x-axis) when 1’ < k7 (left side) and 7/ > k! (right side). When ¥ < min{k! r'},
optimal conversion achieves lower cost than the default approach, and when r¥ >
min{k?, 7'}, the default approach is (trivially) optimal. The optimal write access
cost in the merge regime is always r’.

Table 2.2: Access cost savings for different example parameters.

Optimal Default Write access Cost

(', K] = [n", k"] read access read access cost (either Jucti
cost cost approach) recuietion
[14,10] = [22,20] 4 20 2 72.7%
[9,6] = [14,12] 4 12 2 57.1%
[5,3] = [11,9] 6 9 2 27.8%
[9,5] = [14, 10] 8 10 4 14.3%
[6,4] = [11, 8] 8 8 3 0.0%

Chapter 2. Access cost of convertible codes

into a single codeword (i.e. k¥ = Mk for an integer A’ > 2). This implies that
M = kF and \F = 1.

In this section, we present lower bounds on the access cost of linear MDS convertible
codes in the merge regime. Our main result is summarized by the following theorem,

which will be proved at the end of this section.

Theorem 2.1. For all linear MDS (n!, k';n® k¥ = ME!) convertible codes, the read
access cost of conversion is at least X! min{k!, r™'} and the write access cost is at least

r'. Furthermore, if v < r, the read access cost of conversion is at least N'kT. [

As we will show in Section 2.2, this lower bound is achievable and it therefore
corresponds to the optimal access cost in the merge regime. Figure 2.1 shows a plot
comparing the optimal access cost against the access cost of the default approach
for different parameter values, and Table 2.2 shows these costs for some concrete
conversion examples.

We break down the proof of this result into four steps:

1. We show that in the merge regime, all possible pairs of partitions P! and P
partitions are equivalent up to relabeling, and hence do not need to be specified
(Lemma 2.2).

2. An upper bound on the maximum number of unchanged symbols is proved. As
described in Definition 1.5, convertible codes that meet this bound are called
stable (Lemma 2.3).

3. Lower bounds on the access cost of linear MDS convertible codes are proved
under the added restriction that the codes are stable (Lemmas 2.4 and 2.5
and Theorem 2.6).

4. The stability restriction is removed, by showing that non-stable linear MDS
convertible codes necessarily incur higher access cost, and hence it suffices to

consider only stable MDS convertible codes (Lemma 2.8 and Theorem 2.1).

In general, partitions need to be specified since they indicate how message symbols

from the initial codewords are mapped into the final codewords. However in the merge

Chapter 2. Access cost of convertible codes

regime, the choice of the partitions are equivalent, and hence are inconsequential as

shown below.

Lemma 2.2. For every (n, k5 nt kf' = MEL) convertible code, all possible pairs of

initial and final partitions (P1, PT) are equivalent up to relabeling of symbols.

Proof. We have that k' | k¥'. Thus A" = (M/k¥") = 1 and P¥ = {[M]} always holds.
Because of this, all data will be mapped to the same final codeword, regardless of
the initial partition. Therefore, for any two partitions P! and P! /, there exists some
permutation o of [\ k'] such that P!" = {¢(P) | P € P}, i.e., different partitions
differ only on the way symbols are labeled. O]

Since one of the terms in access cost is the number of new symbols, a natural way
to reduce access cost is to maximize the number of unchanged symbols. However,
there is a limit on the number of symbols that can remain unchanged which is

characterized below.

Lemma 2.3. In an MDS (n!, k';nt" k¥ = MK convertible code, there can be at most

k! unchanged symbols from each initial codeword.

Proof. By the MDS property of C! every subset of k41 symbols is linearly dependent.
Hence, there can be at most k! unchanged symbols from each initial codeword for C*
to be MDS. In other words, [U;| < k! for all i € [A]. O

This implies that there are at most Ak’ unchanged symbols and at least " new
symbols in total. Thus, the number of symbols that need to be written in a stable
code is at least rf.

Now, we focus on bounding the total number of symbols read, that is, the size
of the read access sets. The general strategy we use to obtain bounds on the size of
read access sets is to consider a specially chosen set of k" encoding vectors from the
final codeword, which by the MDS property of the final code is linearly independent.
We then use the fact that final codewords are the result of conversion to identify the
encoding vectors in each initial codeword that span the selected final encoding vectors.
The MDS property of the initial code and the fact that different initial codewords

Chapter 2. Access cost of convertible codes

contain different information will allow us to derive a lower bound on the number of
read symbols in each initial codeword.

Intuitively, having more new symbols means that more symbols have to be read in
order to construct them, resulting in higher access cost. With this intuition in mind,
we first focus on stable convertible codes, which minimize the number of new symbols
(Definition 1.5). We first prove lower bounds on the access cost of stable linear MDS
convertible codes, and then show that the minimum access cost of conversion in MDS
codes without this stability property can only be higher. The first lower bound on
the size of each D; (i € [\]) is given by the interaction between new symbols and
the MDS property.

Lemma 2.4. For every linear stable MDS (n', k%;nt" k¥ = MkT) convertible code,

the read access set D; from each initial codeword i € [N!] satisfies |D;| > min{k! rf'}.

Proof. For convenience, readers can recall the notation from Table 1.1. By the MDS
property, every subset V C S of size at most k¥ = A k! is linearly independent. For
any initial codeword i € [\], take the set of all unchanged encoding vectors from
other codewords UU,, and additionally pick any subset of new encoding vectors
W C N of size |W| = min{k’, r¥'}. The following holds for set V = (Upzldy UW):

Y CSFand [V = (N — DE' +min{k’,rF} <EF.

Therefore, all the encoding vectors in V are linearly independent.

Notice that the encoding vectors in (V' \ W) contain no information about initial
codeword i and complete information about every other initial codeword ¢ # 1.
Therefore, the information about initial codeword ¢ in each encoding vector in W
has to be linearly independent since, otherwise, ' could not be linearly independent.
Formally, it must be the case that W; = projpr (W) has rank equal to min{k! rf'}
(recall that P/ is the set of symbols corresponding to initial codeword i). However,
by definition, the subset W; must be contained in the span of A;. Therefore, the rank
of A; is at least that of W;, which implies that |D;| > min{k’, r’'}. O

We next show that when the number of new symbols rf is greater than r! in

Chapter 2. Access cost of convertible codes

a MDS stable convertible code in the merge regime, then the default approach is

optimal in terms of access cost.

Lemma 2.5. For every linear stable MDS (n!, k%;nt' k¥ = MET) convertible code,
if I < rf then the read access set D; from each initial codeword i € [N] satisfies
|D;| > k.

Proof. When ' > k!, this lemma is equivalent to Lemma 2.4, so assume r! < rf' <
k. From the proof of Lemma 2.4, for every initial codeword i € [A] it holds that
|D;| > r¥. Since r¥" > 7!, this implies that D; must contain at least one index of an
unchanged encoding vector.

Choose a subset of at most k¥ = M k! encoding vectors from S*', which must be
linearly independent by the MDS property. In this subset, include all the unchanged
encoding vectors from the other initial codewords, Up.;lfy. Then, choose all the un-
changed encoding vectors from initial codeword ¢ that are accessed during conversion,
W, = (A; NUY;). For the remaining vectors (if any), choose an arbitrary subset of new
encoding vectors, W, C N, such that:

Wa| = min{k! — (W[, "'} (2.1)

It is easy to check that the subset V = (Upz s UW; UW) is of size at most k%" = M k!,
and therefore it is linearly independent. This choice of V follows from the idea that
the information contributed by W; to the new encoding vectors is already present in
the unchanged encoding vectors, which will be at odds with the linear independence
of V.

Since the elements of W, and W, are the only encoding vectors in) that contain
information from initial codeword i, it must be the case that W = (proj Pf(Wl) U
projpr (Ws)) has rank (|Wi| + [Wa|). Moreover, W is contained in the span of A; by
definition, so it holds that:

|Di| = [Wi] 4 [Wal. (2.2)

From Equation (2.1), there are two cases:

Chapter 2. Access cost of convertible codes

Case 1: (k' — [Wy|) < rf. Then [Wy| = (k' — [W4|) and by Equation (2.2) it
holds that:
[Di| > (W] + W) = & (2.3)

Case 2: (k' — [Wy]) > rf. Then [Wy| = rf and by Equation (2.2) it holds that:
1D;| > Wi + 7" (2.4)

Notice that there are only 7/ retired (i.e. not unchanged) encoding vectors in codeword
1. Since every accessed encoding vector is either in W, or is a retired encoding vector,
it holds that:

Di| < Wa| + 7. (2.5)

By combining Equation (2.4) and Equation (2.5), we arrive at the contradiction
rf < r!, which occurs because there are not enough retired symbols in the initial
codeword ¢ to ensure that the final code has the MDS property. Therefore, case 1
must always hold, and |D;| > k. O

Combining the above results leads to the following theorem on the lower bound

of read access set size of linear stable MDS convertible codes.

Theorem 2.6. For all stable linear MDS (n®, kT;n*" k¥ = Mk!) convertible codes with
read access set D, it holds that |D| > M min{k’, 7¥'}. Furthermore, if r' < r¥, then
D[> k"

Proof. Follows directly from Lemma 2.4 and Lemma 2.5. O]

We next show that this lower bound generally applies even for non-stable convert-
ible codes by proving that increasing the number of new symbols from the minimum

possible does not decrease the lower bound on the size of the read access set D.

Lemma 2.7. The lower bounds on the size of the read access set from Theorem 2.6
hold for all linear MDS (n!, k';n® k¥ = ME!) convertible codes.

Chapter 2. Access cost of convertible codes

Proof. We show that, even for non-stable convertible codes, that is, when there are
more than 7 new symbols, the bounds on the read access set D from Theorem 2.6
still hold.

Case 1: r! > rP'. Let i € [\] be an arbitrary initial codeword. We lower bound
the size of D; by invoking the MDS property on a subset V C 8* of size |V| = M k!
that minimizes the size of the intersection |V N;|. There are exactly 7" encoding
vectors in (§7\ V), so the minimum size of the intersection |VNU;| is max{|i;|—r",0}.
Clearly, the subset proj PJ(V) has rank &/ due to the MDS property. Therefore, it
holds that |D;| + max{|if;| — r¥,0} > k. By reordering, the following is obtained:

1D;| > k' — max{|tf;| — r¥,0} > min{r® k'},

which means that the bound on D; established in Lemma 2.4 continues to hold for
non-stable codes.

Case 2: v’ < rf". Let i € [\] be an arbitrary initial codeword, let W, = (A; NU;)
be the unchanged encoding vectors that are accessed during conversion, and let
Wy = (U; \ W1) be the unchanged encoding vectors that are not accessed during
conversion. Consider the subset V C S* of [V| = k¥ encoding vectors from the
final codeword such that ¥V 2 W, and the size of the intersection W5 = (V N W) is
minimized. Since V may exclude at most r¥ encoding vectors from the final codeword,
it holds that:

IWs| = max{0, [Wsy| — r¥'}. (2.6)

By the MDS property, V is a linearly independent set of encoding vectors of size
k¥, and thus, must contain all the information to recover the contents of every initial
codeword, and in particular, initial codeword 7. Since all the information in ¥V about

codeword 7 is in either Wj or the accessed encoding vectors, it must hold that:
D] + W] > k. (2.7)

From Equation (2.6), there are two cases:
Subcase 2.1: (|Wy| — ") < 0. Then [Ws| = 0, and by Equation (2.7) it holds

Chapter 2. Access cost of convertible codes

that |D;| > k!, which matches the bound of Lemma 2.5.
Subcase 2.2: (|Wy| —r) > 0. Then [Ws| = (|Ws| — rf'), and by Equation (2.7)
it holds that:
Dy + Wa| — " > K. (2.8)

The initial codeword i has (k! 4+ 1) symbols. By the principle of inclusion-exclusion
we have that:
D]+ [th] — Wi <K+t (2.9)

By using Equation (2.8), Equation (2.9) and the fact that [Ws| = (|U;] — [WA]), we
conclude that 7/ > ¥, which is a contradiction and means that subcase 2.1 always
holds in this case. O

The above result, along with the fact that the lower bound in Theorem 2.6 is
achievable (as will be shown in Section 2.2), implies that all access-optimal linear

MDS convertible codes in the merge regime are stable.

Lemma 2.8. All access-optimal linear MDS (n!, k';nt' k¥ = MET) convertible codes

are stable.

Proof. Lemma 2.7 shows that the lower bound on the read access set D for stable
linear MDS convertible codes continues to hold in the non-stable case. Furthermore,
this bound is achievable by stable linear MDS convertible codes in the merge regime
(as will be shown in Section 2.2). The number of new blocks written during conversion
under stable MDS convertible codes is 7. On the other hand, the number of
new symbols under a non-stable convertible code is strictly greater than r. Thus,
the overall access cost of a non-stable MDS (nf, kI;n" k¥ = Mk!) convertible code
is strictly greater than the access cost of an access-optimal (nf, kf;nf" kF = MET)

convertible code. O

Thus, for MDS convertible codes in the merge regime, it suffices to focus only on
stable codes. Combining all the results above, leads to the main theorem presented

at the beginning of this section.

Chapter 2. Access cost of convertible codes

Proof of Theorem 2.1. Follows from Theorem 2.6 and Lemmas 2.7 and 2.8, and

the fact that at least 7" new symbols must be written. O

Next, in Section 2.2 we show that the lower bound of Theorem 2.1 is achievable for
all parameters. Thus, Theorem 2.1 implies that it is possible to perform conversion
of MDS convertible codes in the merge regime with significantly less access cost than

the default approach if and only if r¥ <! and rf < k’.

2.2 Achievability: Explicit access-optimal convertible

codes in the merge regime

In this section, we present an explicit construction of access-optimal MDS convertible
codes for all parameters in the merge regime. In other words, we present a construction
that matches the access cost lower bound presented in Section 2.1. In Section 2.2.1,
we present the construction of the generator matrices for the initial and final code.
Then, in Section 2.2.2, we describe sufficient conditions for optimality and show that
this construction satisfies these conditions and thus yields access-optimal convertible
codes. Our constructions in this and the following section work over any finite field
of sufficient size (which we explicitly specify), but for the sake of illustration we use

prime fields in our examples.

2.2.1 Explicit construction of generator matrices

Recall that, in the merge regime, k" = M k!, for an integer X > 2, while n! > k!
and nf" > kT are arbitrary. Also, recall that r’ = (n! — k') and r¥' = (nf" — kF).
Notice that when ! < v or k' < rF, constructing an access-optimal convertible
code is trivial, since the default approach to conversion is optimal. Thus, assume
r” < min{r! k'}.

Let F, be a finite field of size ¢ = pP, where p is any prime (in particular, we
can have p = 2, i.e. a binary field) and the degree D is determined by a function of

the convertible code parameters (discussed later in this subsection). The degree D

Chapter 2. Access cost of convertible codes

required by this construction is O((max{n’,n’"})?), that is, the field size requirement
is exponential in the length of the code. Let 6 be a primitive element of F,. Let
G! = [I|P!] and G = [I|P] be systematic generator matrices of C! and C¥ over F,,
where P! is a k! x r matrix and P is a k¥ x rI" matrix.

Define entry (i, 5) of P € F¥*" as 90001 where (i, j) ranges over [k'] x [r/].
Entry (4,7) of P¥ €]F’;FX’”F is defined identically as #0~YU=1 where (i, j) ranges

over [kf] x [rf']. That is, P! and P are as follows:

1 1 1 R 1
1 4 92 . Q(TI*U
PI e 1 02 94 st 92(7’171) 9
1 g -1 g1 ... -1 -1)
1 1 1 . 1 |
1 i QQ . Q(TFfl)
PP =1 ¢ or . gD
1 " -1 g2kF-1) . P11

Notice that this construction is stable, because it is access-optimal (recall from
Lemma 2.8). The unchanged symbols of the initial code are exactly the systematic

symbols.

2.2.2 Proof of optimality

Recall from Proposition 1.1, that if the constructed code is to be MDS, then both
P! and P¥ need to be superregular (every square submatrix of them is invertible).
In addtion, to be access-optimal during conversion in the non-trivial case, the new
symbols (corresponding to the columns of P¥') have to be such that they can be
generated by accessing 7" symbols from the initial codewords (corresponding to

columns of GY).

Chapter 2. Access cost of convertible codes

During conversion, the encoding vectors of symbols from the initial codewords
are represented as A k’-dimensional vectors, where each initial codeword occupies a
disjoint subset of k” coordinates. To capture this property, we introduce the following

definition.

Definition 2.1 (¢-column block-constructible): We will say that an n x m; matrix
M is t-column constructible from an n X msy matrix M, if and only if there exists
a subset S C cols(M;) of size ¢, such that the m; columns of M; are in the span of
S. We say that a An x my matrix M, is t-column block-constructible from an n X mq
matrix M, if and only if for every ¢ € [M], the submatrix M;[(i — 1)n + 1,...,in;*]

is t-column constructible from M. >

Theorem 2.9. A systematic (n!, k';n” k¥ = MET) convertible code with k' x r!
ingtial parity generator matriz P! and k¥ x vt final parity generator matriz P¥ is
MDS and access-optimal, if the following two conditions hold: (1) if r1 > r¥ then P¥

is r¥'-column block-constructible from P!, and (2) PL,PY are superregular.

Proof. Follows from Proposition 1.1 and the fact that P must be generated by

accessing just 7t symbols from each initial codeword (Lemma 2.4). a

Thus, we can reduce the problem of proving the optimality of a systematic MDS
convertible code in the merge regime to that of showing that matrices P and P¥

satisfy the two properties mentioned in Theorem 2.9.

We first show that the construction specified in Section 2.2.1 satisfies condition
(1) of Theorem 2.9.

Lemma 2.10. Let P!, PY be as defined in Section 2.2.1. Then P¥ is r¥'-column

block-constructible from PI.

Proof. Consider the first " columns of P!, which we denote as P/, = P'[x;1,...,7"].

Chapter 2. Access cost of convertible codes

Notice that P can be written as the following block matrix:

P,
Pl diag(1,0%, 6% ... 90"k
PP = | Pl diag(1,6% 922 . g0" -1

Pl diag(1, 00 DR gurT DR -DRT

where diag(ay, ag, . . ., a,) is the nxn diagonal matrix with (ay, ..., a,) as the diagonal
elements. From this representation, it is clear that P¥ can be constructed from the
the first 7" columns of P’. O

It only remains to show that the construction in Section 2.2.1 satisfies condition
(2) of Theorem 2.9, that is, that P! and P¥ are superregular.

Lemma 2.11. Let P!, P¥ be as defined in Section 2.2.1. Then P! and P¥ are

superreqular, for sufficiently large field size.

Proof. Let R be a t x t submatrix of P/ or P¥, determined by the row indices
iy < iy < --- < iy and the column indices j; < jp < -+ < j;, and denote entry (i, j)
of R as RJ[i, j]. The determinant of R is defined by the Leibniz formula:

o€Perm(t)

= > sgn(o)

o€Perm(t)

det(R)= > sgn(o) [[R[lo()]
=1 (2.10)
o

¢
where = (it — (o — 1),
=1

Perm(t) is the set of all permutations on ¢ elements, and sgn(o) € {—1,1} is the sign
of permutation o. Clearly, det(R) defines a univariate polynomial fg € F,[6]. We
will now show that deg(fr) = i1 (i1 — 1)(ji — 1) by showing that there is a unique

permutation ¢* € Perm(t) for which FE,- achieves this value, and that this is the

Chapter 2. Access cost of convertible codes

maximum over all permutations in Perm(¢). This means that fr has a leading term

of degree F,«.

To prove this statement, we show that any permutation o € Perm(¢)\{c*} can
be modified into a permutation ¢’ such that E, > FE,. Specifically, we show that
0* = 0yq, the identity permutation. Consider o € Perm(t)\{oiq}: let a be the smallest
index such that o(a) # a, let b = 07(a), and let ¢ = o(a). Let o’ be such that
o'(a) = a, 0'(b) = ¢, and o'(d) = o(d) for d € [t]\{a,b}. In other words, ¢’ is the
result of “swapping” the images of a and b in 0. Notice that a < b and a < ¢. Then,

we have that:
Ea/ - Ea = (ia - 1)(ja - 1) + (ib - 1)<jc - 1) - (ia - 1)(jc - 1) - (ib - 1)<ja - 1)
= (ib - Z.a)(jc - ja) >0

The last inequality comes from the fact that a < b implies i, < 7, and a < ¢ implies

Ja < Je. Therefore, deg(fr) = maXseperm(t) Fo = Lo,y

Let E*(M, kT rT r') be the maximum degree of fr over all submatrices R of P!
or PF'. Then, E*(M, k%, rf rt") corresponds to the diagonal with the largest elements
in P/ or P¥. In P¥ this is the diagonal of the square submatrix formed by the bottom
rf rows. In P! it can be either the diagonal of the square submatrix formed by the

bottom 7! rows, or by the right &/ columns. Thus, we have that:
E*(A[, k’l, T[, ’I“F) = maX{El, EQ, Eg}

Chapter 2. Access cost of convertible codes

rF-1
where By = > i(ME' — 1" +14)
i=0
=rF(rf —1)(BNE —rF —1)/6,
rl—1
Ey= > ik —r"+1i)
i=0
=ri(r" = 1)(3K" —r' —1)/6,
k-1
By= Y (" — k' +1i)
i=0

=k (K" =13 — k' —1)/6.

Recall that we defined the field size as ¢ = p” for any prime p. We set D =
(E*(M KL 7T rT) + 1), Then, if det(R) = 0 for some submatrix R, 6 is a root of fg,
which is a contradiction since 6 is a primitive element and the minimal polynomial of
6 over F, has degree D > deg(fr) [97]. O

Combining the above results leads to the following key result on the achievability

of the lower bounds on access cost derived in Section 2.1.

Theorem 2.12. The explicit construction provided in Section 2.2.1 yields access-

optimal linear MDS convertible codes for all parameter values in the merge regime.
Proof. Follows from Theorem 2.9, Lemma 2.10, and Lemma 2.11. O]

The construction presented in this section is practical only for small values of the
parameters since the required field size grows exponentially with the lengths of the

initial and final codes. In Section 2.3 we present practical low-field-size constructions.

2.3 Low field-size convertible codes in the merge

regime based on superregular Hankel arrays

In this section we present alternative constructions for (nf, k’; nf", k¥ = Mk!) convert-

ible code that require a significantly lower (polynomial) field size than the construction

Chapter 2. Access cost of convertible codes

presented in Section 2.2. We start by explaining the key ideas behind these construc-
tions and present two examples that represent two extremes of a tradeoff between
field size and coverage of parameter values. In Section 2.3.1, we describe the general
construction, which includes codes at the two extremes of the tradeoff and a sequence
of constructions in between. In Section 2.3.2, we show that the proposed code con-
struction can support access-optimal conversion even when parameters of the final

code are a priori unknown.

The key idea behind our constructions is to take the matrices P! and P as
cleverly-chosen submatrices from a specially constructed triangular array of the

following form:

b1 bg bg et bm—l bm
ba bg oo oo by,
b PR
Tw: (2.11)
bm—l bm
b

with the property that every submatrix of T}, is superregular (the submatrix must lie
completely within the triangular array). Here, (1) (by,...,b,) are (not necessarily
distinct) elements from F,, and (2) m is at most the field size ¢. The array T,
has Hankel form, that is, T,,[¢, j] = Tl — 1,7 + 1], for all ¢ € [2,m], j € [m — 1].
We denote T, a superregular Hankel array. Such an array can be constructed by
employing the algorithm proposed in [100] (where the algorithm was employed to

generate generalized Cauchy matrices to construct generalized Reed-Solomon codes).

We construct the initial and final codes by taking submatrices P! and P from
superregular Hankel arrays in a special manner. This guarantees that P! and P¥
are superregular. In addition, we exploit the Hankel form of the array by carefully
choosing the submatrices that form P! and P to ensure that P¥ is r¥-column
block-constructible from P!. Given the way we construct these matrices and the
properties of T}, all the initial and final codes presented in this section turn out to be

inside a well-studied class of codes known as (punctured) generalized doubly-extended

Chapter 2. Access cost of convertible codes

1 34 3 10010 5]9 6 5 10 . .

3 43 10105 96 5 10 212 1 9ff1)5 11 9(10 6092

4 31010 5/9 6|5 10 1201 9 1511 9 10/6] 92

3.10/10 5 96 5|10 1o 1 5o 10 6]9 2 »

10 105 9 65 10 () Pler; 91 5 11[9)[10 ¢ 92 O Plem;®
Ti: (1059 6 5 10 Tt | 1]s 11 910]6 9 2 e

5 96 5 10 () PFerip 5(11 9 10/6[9 2 () P" el

9 6|5 10 119 10 6|92

6 5 10 9106 92

.5 10

10

(a) Hankel-I construction. (b) Hankel-IT construction.

Figure 2.2: Examples of constructions based on Hankel arrays: (a) Hankel-I construc-
tion parity generator matrices for systematic (9, 5; 12, 10) convertible code. Notice how
matrix P¥ corresponds to the vertical concatenation of the first two columns and the
last two columns of matrix P?. (b) Hankel-II construction parity generator matrices
for systematic (7,4;10,8) convertible code. Notice how matrix P corresponds to
the vertical concatenation of the first and second column of P!, and the second and
third column of P7.

Reed-Solomon codes [100].

The above idea yields a sequence of constructions with a tradeoff between the field
size and the maximum value of ¥ supported. We first present two examples that
correspond to the extreme ends of this tradeoff, which we call Hankel-I and Hankel-11.
Construction Hankel-I, shown in Example 2.1, can be applied whenever ¥ < |rf /N |,
and requires a field size of ¢ > (max{n!,nf} —1). Construction Hankel-II, shown in
Example 2.2, can be applied whenever ¥ < (rf — M\ + 1), and requires a field size of
q>kirt.

Throughout this section we will assume that A < ! < k!. The ideas presented
here are still applicable when r/ > k!, but the constructions and analysis change in

minor ways.

Example 2.1 (Hankel-1): Consider the parameters (9,5;12,10) and the field Fy;

(any finite field of size at least 11 suffices, but we choose a prime field for ease of

Chapter 2. Access cost of convertible codes

explanation). Notice that these parameters satisfy:

F r!

q= 11> max{n’ nf} -1 =11

First, construct a superregular Hankel array of size nf — 1 = 11, T}, employing
the algorithm in [100]. Then, divide the r! = 4 initial parities into A = 2 groups:
encoding vectors of parities in the same group will correspond to contiguous columns
of Ty1. The submatrix P! € F37* is formed from the top k! = 5 rows and columns
1,2,k" +1 = 6 and k! +2 = 7 of T1;, as shown in Figure 2.2a. The submatrix
P € F19%? is formed from the top &’ = 10 rows and columns 1,2 of T}, as shown
in Figure 2.2a. Checking that these matrices are superregular follows from the
superregularity of T7;. It is straightforward to check that both these matrices are
superregular, which follows from the the superregularity of 7Tj;. Furthermore, notice

that the chosen parity matrices have the following structure:

T
P1 P2

! TOT T T .
P:p1p2p3p4], Ph =11 1
LoLoLd Ps Pa
o1

From this structure, it is clear that P is 2-column block-constructible from P.
Therefore, P! and P¥ satisfy the sufficient conditions of Theorem 2.9, and define an

access-optimal convertible code. >

Example 2.2 (Hankel-1l): Consider parameters (7,4;10,8) and field Fy3 (any finite
field of size at least 12 suffices, but we choose a prime field for ease of explanation).

Notice that these parameters satisfy:
rf=2<r - XN4+1=2 and q:132k17"1:12
First, construct a superregular Hankel array of size k'r! = 12, T}, by choosing ¢ = 13

Chapter 2. Access cost of convertible codes

b oo b | bmrier 0 ba—kise | | Be—nri4r Dis—1yki 4
Pl — by o b || bamnwiee 0 bamnkiegr | | Ds—Dkie2 0 Ds—1)kl e
brr oo bprggq |- bipt s bgrgn | bspr o barre
by e b, o b bewrse | | Beoaimier o b
PF_ by .- biy1 o basrise o bl—kiger || Dsmankiaz 0 DlemaneI 441 '
burpr o bargrgga | e b(i+)\171)k1 T b(i+)\f—1)k1+t—l e bort T bt i1

Figure 2.3: Generator matrix for initial and final parities in Hankel, construction.
The vertical bars separate groups of columns. In matrix P’ the index i ranges from
1 to s. In matrix P, the index i ranges from 1 to (s — A\ + 1).

as the field size, and employing the algorithm in [100]. The submatrix P! € F{;?

is formed by the top k! = 4 rows and columns {1, (k! +1) = 5, (2k! + 1) = 9} of
T2, as shown in Figure 2.2b. The submatrix P¥ € F$5? is formed by the top k¥ = 8
rows and columns {1, (k! + 1) = 5} of T}s, as shown in Figure 2.2b. It is easy to
check that P! and P are superregular, which follows from the superregularity of T,.

Furthermore, notice that the chosen parity matrices have the following structure:

T T
P1 P2

T T T P

P1P2P3]= P—%%
P2 Ps
L1

It is easy to see that P is 2-column block-constructible from P!. Therefore, P!
and P¥ satisfy the sufficient conditions of Theorem 2.9, and define an access-optimal

convertible code. >

Chapter 2. Access cost of convertible codes

2.3.1 General Hankel-array-based construction of convertible

codes

In this subsection, we present a sequence of Hankel-array-based constructions of
access-optimal MDS convertible codes. This sequence of constructions presents a
tradeoff between field size and the range of 7" supported. To index the sequence we
use s € {\, M +1,..., 7'} which corresponds to the number of groups into which
the initial parity encoding vectors are divided. Given parameters {k,r!, A} and a
field F,, construction Hankel, (s € {\, A\ +1,...,r'}) supports:

,'J

rf < (s—= M 41) {J + max{(r’ mod s) — A + 1,0},
s

I
requiring ¢ > max{sk’ + YJ —1,n" —1}.

s

Therefore, Hankel-I, from Example 2.1 corresponds to Hankely: and Hankel-II

from Example 2.2 corresponds to Hankel,r.

Construction of Hankel,

Assume, for the sake of simplicity, that k! > r! s | 7! and let t = (r!/s). Now we

describe how to construct P/ and P* over a field F, whenever:
r <(s—=M4+1)t and ¢>sk'+t—1.

Without loss of generality, we consider r* = (s — A + 1)t (lesser values of rf" can
be obtained by puncturing the final code, i.e., eliminating some of the final parities).
Let T, be as in Equation (2.11), with m = (sk! +t — 1). Divide the r! initial parity
encoding vectors into s disjoint sets (S, Ss, ..., Ss) of size t each. We associate each
set S; (i € [s]) with a set of column indices col(S;) = {(i — D)k + 1, (i — 1)k! +
2,...,(i —1)k! +t} of T,,. Matrix P! is the submatrix formed by the top k' rows
and the columns indexed by the set (col(S;) U - U col(Sy)) of Ty,. Matrix P is
the submatrix formed by the top Mk’ rows and the columns indexed by the set

Chapter 2. Access cost of convertible codes

(col(S1) U -+ Ucol(Ss_xi41)) of T,,,. The resulting matrices P! and P are shown
in Figure 2.3. In the case where s { 7/, we form an additional set S,,; with the

remaining (r! mod s) initial parity encoding vectors, and proceed as above.

Theorem 2.13. Given parameters k', 7', N\, and a field F, Hankels (s € {\,...,r'})
constructs an access-optimal (n!, kT;n™ k¥ = NE!) convertible code if:

I

rf < (s=MN+1) VJ + max{(r’ mod s) — A 4 1,0}
s

TI

—1,n' =1}
-1y

and q> max{skl + {

Proof. Consider the construction Hankel, described in this section, for some s €
{\...,r'}. The Hankel form of T,, and the manner in which P! and P are
constructed guarantees that the [-th column of P¥ corresponds to the vertical
concatenation of columns {I,1 +t,... 1+ (A — 1)t} of PL. Thus, P¥ is r/-column
block-constructible from P!. Furthermore, since P! and P¥ are submatrices of
T, they are superregular. Thus P! and P! satisfy both of the properties laid out
in Theorem 2.9 and hence the convertible code constructed by Hankel; is access-

optimal. O

Conversion procedure

During conversion, the k! data symbols from each of the A\ initial codewords remain
unchanged, and become the k¥ = M k! data symbols from the final codeword. The r¥
new (parity) symbols from the final codeword are constructed by accessing symbols
from the initial codewords as detailed below. To construct the [-th new symbol
(corresponding to the i-th column of P, [€ [r]), read parity symbol (I + (i — 1))
from each initial codeword i € [A!], and then sum the A’ symbols read. The encoding
vector of the new symbol will be equal to the sum of the encoding vectors of the

symbols read. This is done for every new encoding vector [€ [rf].

Chapter 2. Access cost of convertible codes

2.3.2 Handling a priori unknown parameters

In practice, the final parameters (n’, k¥') might be unknown at the time of code
construction, as they might depend on the empirically observed failure rates. Thus, it
is of interest to construct initial codes that are (n’', k')-access-optimally convertible
for all (', k¥) in a given set. The general construction and the Hankel-array based

constructions presented above indeed provide such a property.

Proposition 2.14. Every initial code from an (n!, k';nt" k¥ = MED) convertible code
constructed using the constructions in this section and Section 2.2 is also (nF/, kFI)—
access-optimally convertible for any = N'E and nf' = (T’F/ + /fF/) with 0 < rf' <

rf and?ﬁ)\ﬂg)\l.

Proof. The conversion procedure can be easily modified to take fewer initial codewords
(i.e. by treating some of the initial codewords as all-zero codewords) or construct
fewer parity symbols. Since the access cost associated with each initial codeword is
min{k?, r’}, and the access cost associated with every parity symbol is A’ + 1, the

resulting conversion procedure has optimal access cost. O

Thus, to support access-optimal conversion for all parameters (n” = ME! +
r k¥ = ME!) in a given finite set of values for ! and r¥, it suffices to construct
an access-optimal convertible code using the largest parameter A and r% in the set.
Then, by Proposition 2.14, the initial code will support access-optimal conversion for

all parameter values in the given set.

2.4 Split regime

The split regime of convertible codes corresponds to the case where a single initial
codeword is split into multiple final codewords. This regime is, in some sense, the
opposite of the merge regime, in which multiple initial codewords are combined into
one final codeword. Specifically, an (n!, k%;n’", k¥') convertible code is in the split
regime if k! = \FkF for an integer A\¥' > 2, with arbitrary n/ and nf. Notice that in
this regime we have that M = lem(k!, k') = k! and M\ = 1.

Chapter 2. Access cost of convertible codes

First, in Section 2.4.1, we show a lower bound on access cost for the split regime. In
Section 2.4.2 we show a matching upper bound on access cost by showing that for every
systematic [nf, \F'k¥] MDS code C there exists an access-optimal (n!, kI = A\ kE; nt'
k) convertible code having C as its initial code by presenting a conversion procedure

whose cost matches the lower bound.

2.4.1 Access cost lower bound for the split regime

In this subsection, we lower bound the access cost of conversion in the split regime.
This is done by first showing a lower bound on write access cost, and then showing a
lower bound on the read access cost of conversion.

The following fact simplifies the analysis of the split regime.

Proposition 2.15. For a linear MDS (n!, k! = \'kF;n' kY) convertible code, all

possible pairs of initial and final partitions are equivalent (up to relabeling).

Proof. There is only one possible initial partition P! = {[k’]}, hence any two final

partitions can be made equivalent by relabeling symbols. O]

Therefore, we do not need to consider differences in partitions in our analysis of

the split regime.

Proposition 2.16. In a linear MDS (n!, k! = \'kF;n?" kT convertible code, there
are at most k¥ unchanged symbols in each of the final codewords (i.e., at least r™ new

symbols per codeword). Hence, there are at most k! unchanged symbols in total.

Proof. For any final codeword i € [\'], any subset V C 8! of size at least k¥" + 1 is
linearly dependent due to the MDS property. Thus, V C S’ contradicts the fact that
C! is MDS. Hence, each final codeword i has at most k¥ unchanged symbols. O

Therefore, the total write access cost in the split regime is at least \'rf".
Now we focus on bounding the read access cost. The general strategy we use
to obtain bounds on read access cost is to consider a specially chosen set W of k'

symbols from a final codeword, which by the MDS property of the final code is enough

Chapter 2. Access cost of convertible codes

to decode all data in that codeword. We then use the fact that final codewords are
the result of conversion to identify a set)V of initial symbols that contain all the
information contained in YW. The MDS property of the initial code constrains the
information available in V, which allows us to derive a lower bound on its size and

thus a lower bound on the number of read symbols.

Lemma 2.17. For all linear MDS (n!, kT = MNEF;nT" kT') convertible codes, the read

access set D satisfies |D| > (AF — 1)k¥ + min{r¥ kF'}.

Proof. If v > k¥, then all data should be decodable by accessing only new symbols
in the final codewords, and the result follows easily since all data must have been
read to create the new symbols. Therefore, assume for the rest of this proof that
rf < k.

Suppose, for the sake of contradiction, that |D| < (A" — 1)k* + rf'. Let u be a
symbol in some final codeword i € [AF] which is neither read nor written. Such a
codeword and symbol exist since otherwise every symbol in the final codewords would
be accessed (for either read or write) and thus S would be in the span of A, which
is a contradiction since tk(S*) = k',

Let W, be a subset of symbols of the same final codeword ¢ such that W; C N
and |[W;| = rf. Such a subset exists by virtue of Proposition 2.16. Further, let
W, C SF\ (W, U{u}) be such that [Wy| = kF —rF". Clearly W = W, UW), is of size
IW| = k¥ and can reconstruct the contents of u, by the MDS property of the final
code. In other words, u € span(W).

Let Wi = (W, NU;) be the unchanged symbols in W. Since W; and Wy \ W) only
have new symbols, they are both contained in span(.A), therefore YW C span(.AUWS).
Notice that the subset V = (AU W) consists only of initial symbols. Furthermore, it
holds that rk(A) < |D| and tk(Wj) < [Wh| = kF — rf" < k¥, Thus:

rk(V) < tk(A) +1k(W}) < |D| + (kF — ") < k'

This implies that W is spanned by less than k! initial symbols (which do not include
u). However, by the MDS property of the initial code, any subset of less than k!

Chapter 2. Access cost of convertible codes

initial symbols that does not contain symbol u, has no information about u. This
causes a contradiction with the fact that u € span(WW) C span()). Thus, we must
have |D| > (A\F — 1)k +rF. O

It is easy to show that if we only read unchanged symbols, it is not possible to do
better than the default approach. This follows from the fact that unchanged symbols
are already present in the final codewords and hence using them to create the new
symbols will contradict with the MDS property. Retired symbols, on the other hand,
do not have this drawback. Thus, intuitively, based on Lemma 2.17, one might expect
to achieve an efficient conversion by reading from the retired symbols. However, we
next show that it is not possible to achieve lower read access cost than the default

approach when r! < rf.

Lemma 2.18. For all linear MDS (n!, k! = NFEF;n® | kE) convertible codes, if r! < rF

then the read access set D satisfies |D| > MkF.

Proof. Suppose, for the sake of contradiction, that |D| < A\'kF". Let u be a symbol
in some final codeword i € [\¥] which is neither read nor written. Such a codeword
and symbol always exist as described in the proof of Lemma 2.17. We will choose a
subset of symbols W C S of size |W| = k. By the MDS property of the final code,
symbol u is decodable from W, i.e., u € span(W). There are two cases for the choice
of W depending on the total number of accessed symbols in codeword i:

Case 1: If [N;| + |U; N A| > kP, then let W C N; U (U; NA). That is, W only
contains symbols that are read or written. It is easy to see that W C span(.A).

Clearly, A contains only initial symbols, and the following holds:
rk(A) < |D| < MFEF = kL.

However, this is a contradiction with the fact that u € span(W), since by the MDS
property of the initial code, A contains no information about symbol u.

Case 2: If |NV;| + [U; N Al < k¥, then choose W = (W) U W), where W, =
(N; U (U; N A)) and W is any subset of (SI"\ (W) U {u})) of size [Ws| = kI — W]

That is, YW contains all the symbols of final codeword ¢ that are read or written

Chapter 2. Access cost of convertible codes

(in addition to other unchanged symbols distinct from u). It is easy to see that
W, C span(A) and thus W C span(.A U W,). Furthermore, the subset V = (AU W)
consists only of initial symbols.

Notice that there are at most (|S?| — [Ui]) = (k! + r! — |U]) read symbols
outside of final codeword i (i.e., in 8’ \ i;). Therefore, we can bound rk(A) by
rk(A) < kT + 7T — U] + [U; N A|. On the other hand, it is clear that tk(W,) < [Ws| =
kT — |N:| — |U; N A]. Combining these, we get:

rk(V) < 1k(A) 4+ rk(Ws)
<k +rt+ kT — U] — NV
<kl 40t —oF
<K'
However, this is a contradiction with the fact that u € span(W) C span(V), since

by the MDS property of the initial codes, V contains no information about symbol
U. [

By combining all the results in this subsection, we obtain the following lower

bound on the access cost of conversion in the split regime.

Theorem 2.19. The total access cost of any linear MDS (nf, k! = \EF; nt" k)
convertible code is at least (N' — 1)kT + min{r" k'} + NrF if ! > v and at least

Mt otherwise.
Proof. Follows from Proposition 2.16 and Lemmas 2.17 and 2.18. O

As we show in the next subsection, this lower bound is tight since it is achievable.

2.4.2 Access-optimal convertible codes for the split regime

In this subsection we present a construction of access-optimal convertible codes in the
split regime. Under this construction, any systematic MDS code can be used as the

initial code. The final code corresponds to the projection of the initial code onto the

Chapter 2. Access cost of convertible codes

coordinates of any k" systematic symbols. Since our construction can be applied to
existing codes and only specifies the conversion procedure, we introduce the following

definition capturing the property of codes that can be converted efficiently.

Definition 2.2: A code C! is (n'', k*")-optimally convertible if and only if there exists
an [n k*] code CF" (along with partitions and conversion procedure) that form an

access-optimal (nf, k’;n" k¥") convertible code. >

The conversion procedure that leads to optimal access cost (meeting the lower

bound in Theorem 2.19) is as follows.

Conversion procedure: All the systematic symbols are used as unchanged symbols.
When ! < r¥ or v > k¥, the conversion is trivial since one cannot do better than
the default approach. The conversion procedure for the nontrivial case proceeds as
follows. For all but one final codeword, all unchanged symbols are read ((A\F — 1)k*
in total), and the new symbols are naively constructed from them. For the remaining
final codeword, 7" retired symbols are read, and then the unchanged symbols from the
other final codewords are used to remove their interference from the retired symbols

to obtain 7 new symbols.

Theorem 2.20. Every systematic linear MDS [n’, k' = A\'E"] code CT is (n', kT')-

optimally convertible.

Proof. 1If ¥ > min{r?, k*'}, then the default approach achieves the bound stated in
Theorem 2.19. Thus, assume 7" < min{r! k¥'}. Let G! = [I | P!] be the generator
matrix of C! and assume symbols are numbered in the same order as the columns of
G!. Define CI' as the code generated by the matrix formed by taking the first k¥
rows of G, and columns 1,..., k" and k' +1,... kT +7F. Let (i — 1)k +1,...,ik?
be the columns of the unchanged symbols corresponding to final codeword i € [AF].
Consider the following conversion procedure: read the the subset of unchanged
symbols U = {k¥" +1,... A\Fk""} and the retired symbols R = {k +1,... k' +rF'}.
To construct the new symbols for codeword 1, simply project the symbols of R onto

their first k" coordinates by using symbols U. To construct the new symbols for

Chapter 2. Access cost of convertible codes

codeword 7 # 1, simply use then symbols in U. This conversion procedure reads a
total of |U|+ |R| = (\F — 1)kF +rF symbols and writes a total of Af'r¥ new symbols,
which matches the bound from Theorem 2.19. O]

Notice that convertible codes created using the construction above are stable. We

show this property is, in fact, necessary.
Lemma 2.21. All access-optimal convertible codes for the split regime are stable.

Proof. Theorem 2.20 shows that there exist stable access-optimal codes for the split
regime. Since any unstable convertible code must incur higher write access cost and

at least as much read access cost, it cannot be access-optimal. O

2.5 General regime

In this section, we will study the general regime of convertible codes with arbitrary
valid parameter values (i.e. any n! > k! and n¥" > k). Recall that the choice of
partition functions was inconsequential in the split and merge regimes. In contrast, it
turns out that the choice of initial and final partitions play an important role in the
general regime. This makes the general regime significantly harder to analyze. We
deal with this complexity by reducing conversion in the general regime to generalized
versions of the split and merge conversions, and by identifying the conditions on
initial and final partitions to minimize total access cost.

In Section 2.5.1, we explore a generalization of the split regime and of the merge
regime. In Section 2.5.2, these generalizations are used to lower bound the access
cost of conversion in the general regime. In Section 2.5.3, we describe a conversion
procedure and construction for access-optimal conversion in the general regime which

utilizes ideas from the constructions for generalizations of split and merge regimes.

2.5.1 Generalized split and merge regimes

The generalized split and merge regimes are similar to the split and merge regimes,

except that the generalized variants allow for initial or final codewords of unequal

Chapter 2. Access cost of convertible codes

sizes. This flexibility enables the generalized split and merge regimes to be used as
building blocks in the analysis of the general regime. In these generalized variants, the
message length M is defined to be max{k’, £’} (which coincides with the definition of
M in the split and merge regime), but now the sets in the initial and final partitions
need not be all of the same size.

Since the initial (or final) codewords might be of different lengths, we define them

as shortenings of a common code C.

Definition 2.3: An s-shortening of an [n, k] code C is the code C’ formed by all the
codewords in C that have 0 in a fixed subset of s positions, with those s positions
deleted. >

Shortening a code has the effect of decreasing the length n and dimension £ while
keeping (n — k) fixed. It can be shown that an s-shortening of an [n, k] MDS code
is an [n — s,k — s] MDS code. Lengthening is the inverse operation of shortening,
and has the effect of increasing length n and dimension & while keeping (n — k) fixed.
For linear codes, an s-lengthening of a code can be defined as adding s additional
columns to its parity check matrix. Similarly, it can be shown that for an [n, k] MDS
code, there exists an s-lengthening of it that is an [n + s, k 4+ s] MDS code (assuming

a large enough field size).

Generalized split regime

In the generalized split regime, A\’ = 1 is fixed, A > 1 is arbitrary, and the final
partition P* = {P{",..., P{r} is such that |P| = k" and Y;cprm k] = k. Let
kI = max;cpr) k7. Then CF is a [, kI'] MDS code, and the code corresponding
to each final codeword is some fixed shortening of C¥. In this case, we define

rf =nt — k.

Definition 2.4: A (n! k! =)N kF:n {kF}X)) convertible code for the generalized

=1 "

split regime is a variant of a convertible code defined by:

1. " and C¥ as [n!, k'] and [n", k]| codes, where kI = max;c\r) k]

7 7

Chapter 2. Access cost of convertible codes

2. a partition P = {Pf, ... Pl} where |PF| = kI, and

3. a conversion procedure such that each final codeword i, is an s;-shortening of

CF where s; = kI — kF.

The generalized split regime has an access cost lower bound similar to the split
regime presented in Section 2.4. We show this by showing that a more efficient
conversion procedure for the generalized split regime would imply the existence of a
conversion procedure for split regime violating Theorem 2.19.

Theorem 2.22. For all linear MDS (n’, k! =), kF:nF {kFYN) convertible codes,

i=1"% >

the read access set D satisfies:

ID| > k' — max{kf — ¥, 0}, where kI = Zrél[eALP}g] kE
Proof. Suppose, for the sake of contradiction, that there exists a conversion procedure
with read access cost |D| < k7 — max{k!" — r¥", 0} for some convertible code in the
generalized split regime with codes C! and C¥. We modify the initial code C! by
lengthening it to an [n!, kI] MDS code C?%, such that kI = Akl and v/ =n! — k! =
n! — kL. This adds S0, (kF — kF) = (k! — k') extra “pseudo-symbols” to the initial
code, which we denote with W.

We then define a new conversion procedure from code C* to code C* which uses the
conversion procedure for the generalized split regime convertible code as a subroutine,
and then simply reads all the added pseudo-symbols to construct the new symbols.
This procedure only reads the read access set D from C* along with the (k! — k)
pseudo-symbols.

Hence, the total read access is,

IDUW| < (k' — max{kf — " 0}) + (k! — k')
< (N = Dk + min{r", EF}.

Chapter 2. Access cost of convertible codes

However, the codes C® and C¥ with the new conversion procedure clearly form an
MDS (nl, kI = AEE; nt' kF) convertible code. Therefore, this is in contradiction to

Theorem 2.19. Then, it must hold that |D| > k! — max{kf" — r¥ 0}. O

This lower bound is achievable for all pairs of initial and final parameters. Similar
to the case of the split regime, shown in Section 2.4.2, we can use any systematic
MDS codes as initial and final codes, and access all but a set of symbols of size kZ
(forming the largest final codeword) to perform this conversion, as described below.

Conversion procedure: All the systematic symbols are used as unchanged symbols.
When r! < r¥ or ¥ > kF| the conversion is trivial since one cannot do better than
the default approach. The conversion procedure for the nontrivial case proceeds
as follows. For all but the largest final codeword, all unchanged symbols are read
(AFEE — kF in total), and the new symbols are naively constructed from them. For
the largest final codeword, the r* retired symbols are read, and then the unchanged
symbols from the other final codewords are used to remove their interference from

F

the retired symbols to obtain 7" new symbols.

Generalized merge regime

In the generalized merge regime, the sets in the initial partition need not be all of
the same size. In this case, we fix M = k¥ and \' = 1, while A > 1 is arbitrary.
The initial partition P = {P/,..., P{;} is such that |P/| = k] and >;cp & = k7.
Let k]l = max;ep k/. Then C' is a [n', kI] MDS code, ' = n' — kI, and the code

corresponding to each initial codeword is some fixed shortening of C’.

Definition 2.5: A (n, {kI}} ;n k' = >N kI) convertible code for the generalized
merge regime is a variant of a convertible code defined by:

1. C1,CF as [n', kl] and [n", kF] codes, where kI = max;ep k]

2. partition PY = {P/,..., P];} where |P!| = k!, and

3. a conversion procedure such that each initial codeword i, is an s;-shortening of

C! where s; = kI — k.

Chapter 2. Access cost of convertible codes

>

The next theorem gives a lower bound on the read access cost of a (n!, {k/}X:

n? k=M k! convertible code.

Theorem 2.23. For all (n, {kI}}:n* kF = X kD) convertible code, the following
holds:
|D;| > min{k!,r"} for all i € [\].

Furthermore, if v <t then |D;| > k! for all i € [M].

Proof. Follows from the proofs of Lemmas 10, 11, and 13 in [96], with some straight-
forward modifications to account for the difference in the number of symbols of each

initial codeword. O

We can achieve this lower bound by shortening an access-optimal (nf, kI;nf kL)

*) m?
convertible code, where k' = M kI and nf = kI’ + rf".

2.5.2 Access cost lower bound for the general regime

In this subsection, we study the access cost lower bound for conversions in the general
regime (i.e., for all valid parameter values, n! > k! and nf > k%'). As in the merge
and split regime, we show that when ! > 7, significant reduction in access cost can
be achieved. However when 7/ < r', one cannot do better than the default approach.

For an (n!, k';n”" k™) convertible code with k! # k" and partitions (P!, PF), let
kij = [P/ N P[] for (i,7) € [M] x [\] and let k; . = max epr) ki ;.

Lemma 2.24. For all linear MDS (n!, k';n® kT) convertible codes with k! # k¥ :
1D;| > k' — max{k;, —r",0} for alli € [\].

Moreover, if v < vt then |D;| > k! for all i € [\].

Proof. Let i € [\] be an initial codeword. There are two cases.

Chapter 2. Access cost of convertible codes

Case ;. < k': In this case, we can reduce this conversion to a conversion in the
generalized split regime by focusing on initial codeword ¢, and considering messages
which are zero everywhere outside of P!/. This is equivalent to a (nf, k'; k; . + 7%
{/{:”}3\;) convertible code. Then, the result follows from Theorem 2.22.

Case k; . = k': Let j = argmax ,c(yr) ki . In this case, we can reduce this conversion
to conversion in the generalized merge regime by focusing on final codeword j, and
considering messages which are zero everywhere outside of PjF . This is equivalent to
a (n!, {ki; X ,;n", k) convertible code. Then, the result follows from Theorem 2.23.

[]

We prove a lower bound on the total access cost of conversion in the general
regime by using Lemma 2.24 on all initial codewords and finding a partition that

minimizes the value of the sum.

Theorem 2.25. For every linear MDS (n! kT;nt k¥) convertible code such that
k' £ kY it holds that:

D] > Mrf 4+ (M mod M) (k' — max{k* mod k', r"'})
if v < min{k!, k*'}. Furthermore, if v < ¥ or v > min{k! k*'}, then |D| > M.
Proof. Clearly, it holds that |D| = zjil |D;|. Then, the case 7! < r¥ follows directly
from Lemma 2.24. Otherwise, by the same lemma we have:

A N
D] =3P = 30k — max{ki. — ¥, 0}. (212)
=1 =1

First, we consider the case k' > k¥". Notice that in this case (Al mod A\F') = A and
(k" mod kT) = kT If " > k¥ then the result is trivial, so assume ¥ < k. Since
ki« < kT for all i € [\], we have:

)\I

|D| > ZkI —max{k;, — 7,0} > N (k" + 0" — k7,

=1

Chapter 2. Access cost of convertible codes

which proves the result.

Now, we consider the case k! < k¥'. Assume, for now, that the right hand side of

Inequality 2.12 is minimized when:

KL for 1 <i < (M — (M mod \F))
ki = (2.13)
(k¥ mod k'), otherwise.

Then, from Inequality 2.12 we have:

D| >
ME'— (A = (M mod M) max{k’ —r¥, 0} — (A mod ') max{ (k" mod k') —r" 0}
(2.14)

If 7 > k!, then the result is trivial, so assume ¥ < k. Then, by manipulating the
terms of Inequality 2.14, the result is obtained.

It only remains to prove that the right hand side of Inequality 2.12 is minimized
when Equation (2.13) holds.

Notice that this is equivalent to showing that s = Y max{k;, — r¥,0} is
maximized by the proposed assignment. To prove this, we will show that any optimal
assignment to the variables k; ; can be modified to be of the proposed form, without
decreasing the value of the objective s. Firstly, it is straightforward to check that

there exists a feasible assignment to the variables k; ; that satisfies the statement.

Suppose we have an optimal assignment for variable &; ; that is not of the proposed
form and assume, without loss of generality, that ki, > --- > ky,. Let 1 <4 <
(A" = (A mod \)) be the least such that k;. < k', and let j = argmax;cyr ki It
must hold that k;, > max{r" k¥ mod k’}, otherwise this assignment could not be
optimal. Notice that k., = k! for all / < i and since k! { (k¥" — k;), there exists
at least one i’ > i such that k;; > 0. Furthermore, there exists j' # j such that
ki > 0, since k;. < k'. Then, we can “swap” elements from k; y with k; ;. This
increases k; . and decreases ky , by at most the same amount. Since k;, > r this

cannot decrease the value of the objective s. We can repeat this procedure until

Chapter 2. Access cost of convertible codes

H [[e[e]efe] :\ [TTTRl LITTTRely, (LTIl (LTI Re (LT T I
rﬁ [[ofefef@| LITTTEL (LITTTE, JLITTTE (LITTTRE, (LITTTHE,
e e U e G Do i
: : o s Chos e s U O
Y Y Y Y Y
LT LLTT] LLTT] LTTT] LT
L[] L] L) CEr L[]
—— split procedure - ---+ merge procedure ¢ read node
Initial stripes [I Intermediate stripes Final stripes

Figure 2.4: Conversion procedure from [6,5] to [13,12] (A = 12 and A" = 5). Read
access cost is 18 compared to 60 in the default approach (70% savings).

ki. =k for all 1 <i < (A — (M mod \F)).
Notice now that for every (A — (A mod M) <4 < A\l it holds that:

ki < k¥ mod K’ (2.15)

otherwise, there must exist some j € [AF] such that ¥) ki; > kP, If ¥ <
(k¥ mod k'), then Inequality 2.15 must hold with equality. Otherwise, each such k; .
will contribute exactly r¥ to the objective s, so they can be modified to be of the

desired form without decreasing s. O

2.5.3 Access-optimal convertible codes for the general regime

In this subsection we prove that the lower bound from Theorem 2.25 is achievable
by presenting convertible code constructions that are access-optimal in the general
regime. We first present the conversion procedure for our construction and then
describe the construction of the initial and final codes that are compatible with this

conversion procedure.

Conversion procedure

Conversion in the general regime can be achieved by combining the conversion

procedures of codes in the generalized split and merge regimes. In the case where

Chapter 2. Access cost of convertible codes

LT Tel LT Tl [T Tl [T Tl [T TTe
‘.‘.‘.‘.‘.. ‘.‘.‘.‘.‘.‘.‘ ‘.‘.‘.‘.‘.. ‘.‘.‘.‘.‘.. ‘.‘.‘.‘.‘. .‘
I____Y_'_'I l'_'_t_'_'l l'_'_t_'__l : :
OO e U0 DI A Y
K : o o (ol eim——sloleim——slo] |
CITTTEd| JCLrrrem J(TTrTT e JCIITreEa [ITTTE [TT11EF
(ITTTE| (CLTTTE CLTTT®Em (CLTTTEm, [TTTTE ([[II]H
—— merge procedure - ---+ split procedure ¢ read node
Initial stripes [I Intermediate stripes Final stripes

Figure 2.5: Conversion procedure from [13,12] to [6,5] (\f = 5 and A\f' = 12). Read
access cost is 40, compared to 60 in the default approach (33.3% savings in read
access cost).

rI < rf we access k! symbols from each initial codeword and use the default approach.
For the case where ! > r'| we present the conversion procedure by considering three
cases: k! = k¥, k! < k¥, and k' > EF.

Case k! = kf': Notice that n! > n' since ! > r. This is a degenerate case where
any n’ symbols from the initial codeword can be kept unchanged.

Case k! < kF': We will separate the symbols of initial codewords into A\ disjoint
groups with the same amount of information. This requires splitting some initial
codewords into what we call intermediate codewords, which are then assigned to
different groups. We will finally merge each group to form the A final codewords.

Specifically (see Figure 2.4):
1. Assign |+ /k!| initial codewords to each group (dashed boxes in Figure 2.4).

2. Use an (!, k!;n? {kF}))) conversion procedure to (generalized) split the
(A mod AF) remaining initial codewords to obtain AP intermediate codewords,
where A¥ = [k /kF mod k)], kF = (k¥ mod k') for i € [\F — 1], and ki =
(k" mod k') if (k" mod k') | k" and kf, = (k' mod (k" mod k')) otherwise.

Each intermediate codeword is assigned to a different group.

3. The conversion procedure for generalized merge is used to turn each codeword

group into a single final codeword.

Chapter 2. Access cost of convertible codes

The total number of symbols read during conversion is:
A+ (A mod A7) (k" — max{k" mod &', 7"}),

which matches Theorem 2.25.

Case k! > kI': Conversion occurs in two steps (see Figure 2.5):

1. First, use an (nf, k';nt" {kF };\ZFl) conversion procedure to (generalized) split
each initial codeword, where \F' = ([¥'/kr]), k' = kF for i € [A\F — 1] (cor-
responding to final codewords), and kf, = k" if &* | k' (corresponding to
another final codeword) and k{,, = (k" mod k') otherwise (corresponding to

an intermediate codeword).

2. Assemble the M (k" mod k') remaining symbols from the intermediate code-
words into (A\f mod A?) final codewords. This is done using the default approach,
since all the remaining symbols would have been already accessed in the first

step.

The total number of symbols read in this case during conversion is M (rf + k! — k%),
which matches Theorem 2.25.

Therefore, the total access cost of conversion when ! > 7" and k! # kP is
AL+ M) 4+ (A mod A7) (kT — max{k? mod k’,7¥'}), while the access cost of the

default approach is Af'nf".

Access-optimal construction

Since the conversion procedure in Section 2.5.3 is based on the generalized split and
merge regimes, we only need to ensure that the constructed codes can perform those

conversions with optimal access cost.

Theorem 2.26. For all k¥ < k!, every systematic linear MDS [n', k'] code C! is
(nf', kT)-optimally convertible. For all k¥ < \'kT with integer NI > 2, every access-
optimal systematic linear MDS (n!, kT;nf" kF' = N'KT) convertible code is (n*', kT")

-optimally convertible.

Chapter 2. Access cost of convertible codes

Proof. Recall, from Section 2.5.1 that any systematic [n!, k'] code C! can be used

as the initial code of an access-optimal convertible code in the generalized split

F.
7

regime (i.e., an (n!, k! = SN, kP n® {kF}))) convertible code). Since the conversion
procedure for the general regime in the case where k! > k¥ only uses conversions
from the generalized split regime and conversions from the generalized merge regime
that can be carried out using the default approach, it is clear that any systematic
code C! can be used. Similarly, from Section 2.5.1 we know that any [n!, k] code C!
that is (', \f'kT)-optimally convertible for an integer A" > 2 can achieve conversion
with optimal access cost in a (n!, {k/}},:nf k¥ = X, kT) convertible code, where
M < M. Since the conversion procedure for the general regime in the case where
k! < k¥ only uses conversions from the generalized split and merge regimes, it is
clear that any (n", A'k!)-optimally convertible code C! such that A\F > [¥ /g!] can

be used. O

Therefore, the constructions for the merge regime presented in [96] can be used

to construct access-optimal convertible codes in the general regime.

Chapter 3

Bandwidth-cost of convertible codes:
fundamental limits and optimal

constructions

This chapter is based on work from [101, 102], done in collaboration with K. V.

Rashmi.

In the preceding chapter, we measured cost in terms of the access cost of conversion,
which corresponds to the number of codeword symbols accessed during conversion.
Another important resource overhead incurred during conversion is that on the network
bandwidth, which we call conversion bandwidth. In the system, this corresponds to
the total amount of data transferred between nodes during conversion. Figure 3.1
depicts the conversion process from an [n’, k!] initial code to an [n’', k*'] final code:
the total amount of data read from the nodes g corresponds to the read conversion
bandwidth, and the total amount of data written back to the nodes vy corresponds
to the write conversion bandwidth. Access-optimal convertible codes, by virtue of
reducing the number of code symbols accessed, also reduce conversion bandwidth as
compared to the default approach. However, it is not clear, a priori, whether these
codes are also optimal with respect to conversion bandwidth.

In this chapter, we study the conversion bandwidth of code conversions. As in the

previous chapter, we will focus on MDS codes, and study the merge and split regimes.

Chapter 3. Bandwidth cost of convertible codes

Write Y/
(D (D

— f_

E8E88s E8g8:zs
SS8EE8 SES8SEE88
288288 l.lll&

[n!, k1] coded data n*, k'] coded data

Figure 3.1: Conversion process of codewords of an [nI , k] initial code into codewords
of an [nf" k¥] final code. In this figure, each color represents a different codeword.
Code conversion is performed by downloading data from storage nodes to a central
location, processing the data, and writing back the processed data to the nodes. The
total amount of data read is denoted by vg, and the total amount of data written is
denoted by vy .

For each of these regimes, we derive lower bounds on conversion bandwidth, and
propose constructions that are more efficient than the default approach and access-
optimal codes in terms of conversion bandwidth. Similar to access cost, conversion
bandwidth costs behave differently depending on whether v/ < rf or r! > rF.
However, in both cases it is possible to reduce conversion bandwidth compared to the

default approach (unlike access cost, which could only be reduced when rf > 7).

To achieve these reductions in conversion bandwidth, it is necessary to use vector
codes, where each symbol is a vector of a subsymbols. This is unlike the case of
access cost, where scalar codes (each symbol is a scalar and o = 1) were sufficient for

constructing optimal codes.

In Table 3.1, we summarize the results shown in this chapter.

3.1 Additional background

In this section we introduce some additional concepts from the literature which are

used in this chapter. We then do an overview of other related work.

Chapter 3. Bandwidth cost of convertible codes

Table 3.1: Comparison of the read conversion bandwidth of different approaches to
the merge regime and split regime. In all cases, the write conversion bandwidth is
Mrfa. We assume that r” < min{k’, k*'}; when this condition does not hold, the
default approach is bandwidth-optimal.

MERGE REGIME

Approach Read bandwidth (r’ < rf") Read bandwidth (r! > r)
Default Ml Ml
Access optimal [96] MEkla Nrfo
Bandwidth optimal Mkfa — Mrla (f—; — 1) Mrfo

SPLIT REGIME

Approach Read bandwidth (r’ < ') Read bandwidth (r! > r)
Default MNEF o MNEF o
Access optimal [99] MNEE (A = DEF +rFa
Bandwidth optimal M 'kfa —rla (f—; — 1))\FT’F&%

Chapter 3. Bandwidth cost of convertible codes

3.1.1 Vector codes and puncturing

In this section we introduce the basic notation for vector codes, and generalize some
definitions to the case of vector codes. Let [i] denote the subset {1,2,...,i}, for
a natural number i. An [n, k, o] vector code C over a finite field F, is an injective
mapping C : F&* — F2". For a given codeword ¢ = C(m) and i € [n], define
c; = C;(m) = (Ca(i—1)+1; - - - » Cai) as the i-th symbol of c, which is a vector of length «
over F,. We refer to elements from the base field F, as subsymbols. A code is said to
be systematic if it always maps m to a codeword that contains all the subsymbols of
m uncoded. In a linear [n, k, a] vector code C, the encoding of message m € IF’;O‘ is
given by the mapping m — mG where G € IF’;O‘X"" is called the generator matriz
of C, and the columns of G are called encoding vectors. The minimum distance of a

vector code is defined as:
dist(C) := H;éin/ {i € [n] : C;(m) # C;(m')}].

An [n, k, a] vector code C is said to be mazimum-distance-separable (MDS) if dist(C) =
n —k+ 1 (i.e., it achieves the Singleton bound [97]). MDS codes are commonly used
in practice because they achieve the optimal tradeoff between storage overhead and
failure tolerance.

A scalar code is a vector code with o = 1. We will omit the parameter o when it
is clear from context or when o = 1. A puncturing of a vector code C is the resulting

vector code after removing a fixed subset of symbols from every codeword.

3.1.2 Convertible codes [96, 99]

We recall a few definitions and results on access-optimal convertible codes from
Chapter 2.

The access cost of a conversion procedure is the sum of the read access cost,
i.e. the total number of code symbols read, and the write access cost, i.e. the total
number of code symbols written. An access-optimal convertible code is a convertible

code whose conversion procedure has the minimum access cost over all convertible

Chapter 3. Bandwidth cost of convertible codes

Symbol 1 | fi(my) | fi(mg) | ---| fi(mya) filmy) | fi(my) +g21(mg) |-+ | fi(my) + go,1(my, ..., my)

Symbol 2 | fa(my) | fo(my) |-+ | f2(mg) fo(my) | fo(my) 4+ goo(mg) |-+ | fa(mg) + ga2(my, ..., my)

SymbOI n fn,(ml) fn(m2) ot fn(ma) fn(ml) fn(ml) + 92,n(m2) ot fl (ma) + ga,n(mla e ama)
(a) « instances of the base code (b) Piggybacked code

Figure 3.2: Piggybacking framework [63] for constructing vector codes.

codes with given parameters (n!, k;n?", k¥'). Similarly, an [n!, k'] code is said to be
(nf", k¥')-access-optimally convertible if it is the initial code of an access-optimal (nf,

kLt kF) convertible code.

In practice, the values of n" and k% for the conversion might be unknown. Thus,
constructing convertible codes which are simultaneously (n’, k'')-access-optimally
convertible for several possible values of nf" and k¥ is also important (as will be

discussed in Section 3.4.2).

Though the definition of convertible codes allows for any kind of initial and final
codes, this chapter focuses on MDS codes. A convertible code is said to be MDS when
both C! and C¥ are MDS. The access cost lower bound for linear MDS convertible
codes is summarized in Table 2.1. There are explicit constructions of access-optimal
convertible codes for all valid parameters (nf, k’;nf", k') (described in Chapter 2).
Notice that for the increasing-redundancy region (r! < r¥'), read access cost is always
M, which is the same as the default approach. In the decreasing-redundancy region
(rf > r¥), on the other hand, one can achieve lower access cost than the default
approach when r < min{k?, k*'}.

During conversion, code symbols from the initial codewords can play multiple
roles: they can become part of different final codewords, their contents might be read
or written, additional code symbols may be added and existing code symbols may
be removed. Based on their role, code symbols can be divided into three groups: (1)
unchanged symbols, which are present both in the initial and final codewords without

any modifications; (2) retired symbols, which are only present in the initial codewords

Chapter 3. Bandwidth cost of convertible codes

but not in the final codewords; and (3) new symbols, which are present only in the
final codewords but not in the initial codewords. Both unchanged and retired symbols
may be read during conversion, and then linear combinations of data read are written
into the new symbols.

The merge regime (Section 1.1) is a fundamental regime of convertible codes which
corresponds to conversions which merge multiple initial codewords into a single final
codeword. Thus, convertible codes in the merge regime are such that & = M k! for
some integer X! > 2. and A = 1. We recall two lemmas from the previous chapter
which will be useful for analyzing the merge regime in this chapter. First, Lemma 2.2,
which notes that all data gets mapped to the same final stripe. Thus, the initial
and final partition do not play an important role in the merge regime. And second,
Lemma 2.3, which states that there can be at most k! unchanged symbols in each
initial codeword. This is because having more than k! unchanged symbols in an
initial codeword would contradict the MDS property. Recall that codes which have
the maximum number of unchanged symbols are called stable (Definition 1.5).
Access-optimal convertible code for merge regime. When r! < r%, the default
approach has optimal access cost, and so constructing an access-optimal code for
this case is trivial. When 7/ > ¥ and the code is in the merge regime, only 7" code
symbols from each initial codeword need to be read. These symbols are then used to
compute ¥ new code symbols.

In Chapter 2, several constructions for access-optimal convertible codes in the
merge regime were presented. Codes built using these constructions are (1) systematic,
(2) linear, (3) during conversion only access r’ parities from each initial stripe, and
(4) when constructed with a given value of A = X and r¥ = r, the initial [n!, k'] code
is (nf', k¥)-access-optimally convertible for all k¥ = Nk! and nf = k¥ + »’ such that
1< XN <Xand 1 <7 <r. In Section 3.4 we use an access-optimal convertible code
in the merge regime as part of our construction of bandwidth-optimal convertible
codes for the merge regime. Next, we give a brief summary of the general construction
presented in Section 2.2.

Consider the case where r/ > rf" and rI < k! (otherwise, the construction

is trivial). The codes C! and C* over finite field F, are defined via the matrices

Chapter 3. Bandwidth cost of convertible codes

Gl = [Ikz |PI} and GI' = {Ikp | PF} where:

* I is the k x k identity matrix,

* iy, qg,...,q.r are distinct elements from I,
« P!is the k! x r! Vandermonde matrix with evaluation points (as, ..., a.1),
* P is the k¥ x rI Vandermonde matrix with evaluation points (av, ..., a,r).

(In Section 2.2, o; was chosen as §°~! for some primitive element § € F,.) One
important aspect of this construction is that, due to the nature of Vandermonde
matrices, the i-th column of P¥ is equal to the vertical concatenation of the respective
i-th columns of PT o' PT ... ,alw_l)klP[. This property ensures that each final
parity can be constructed during conversion as a linear combination of one initial
parity from each initial codeword. As shown in Chapter 2, this construction satisfies
the properties (1-4) described above, and is MDS for appropriately chosen points «;
(i € [r']) and sufficiently large F,.

Example 3.1 (Access-optimal code): Consider the parameters (n! = 7, k! = 4;nf" =
11, k¥ = 8) over Fy7: the evaluation points (a; = 1,9 = 2, a3 = 6) yield an MDS
access-optimal code. It is easy to check that the codes defined by the following

matrices are MDS:

1 1
1 2
11 1 4
pr_ |12 pr_ |1 8 12
1 4 2 1 16 4
1 8 12 1 15 7
1 13 8
19 14]
Now, suppose the data (ai,...,a4) and (as,...,as) are encoded with the initial code.

Chapter 3. Bandwidth cost of convertible codes

It is easy to check that the following holds:

1 0 0
(ar,...,a)P" + (as,...,a)PT [0 16 0| = (ay,...,as)P".
0 0 4

3.1.3 Network information flow

Network information flow [103] is a class of problems that model the transmission
of information from sources to sinks in a point-to-point communication network.
Network coding [104-108] is a generalization of store-and-forward routing, where
each node in the network is allowed to combine its inputs using a code before
communicating messages to other nodes. For the purposes of this chapter, an
information flow graph is a directed acyclic graph G = (V, E), where V is the set
of nodes, £ C V x V x Ry is the set of edges with non-negative capacities, and
(1,7,¢) € E represents that information can be sent noiselessly from node ¢ to node
7 at rate c. Let Xy, Xo,...,X,, be mutually independent information sources with
rates 1, Zo, ..., T, respectively. Each information source X; is associated with a
source s; € V', where it is generated, and a sink ¢; € V', where it is required. In this
chapter we mainly make use of the information maz-flow bound [109] which indicates
that it is impossible to transmit X; at a higher rate than the maximum flow from
s; to t;. In other words, x; < max-flow(s;, t;) for all i € [m] is a necessary condition
for a network coding scheme satisfying all constraints to exist. In our analysis, we
will consider s;-t;-cuts of the information flow graph, which give an upper bound
on max-flow(s;,¢;) and thus an upper bound on z; as well. We will also utilize the
fact that two independent information sources with the same source and sink can be
considered as a single information source with rate equal to the sum of their rates.
In [27], information flow and network coding is applied to the repair problem in
distributed storage systems. The repair problem is the problem of reconstructing a

small number of failed code symbols in an erasure code (without having to decode

Chapter 3. Bandwidth cost of convertible codes

the full codeword). Dimakis et al. [27] use information flow to establish bounds on
the storage size and repair network-bandwidth of erasure codes. In this work we use
information flow to model the process of code conversion and establish lower bounds

on the total amount of network bandwidth used during conversion.

3.1.4 Piggybacking framework for constructing vector codes

The Piggybacking framework [63, 110] is a framework for constructing new vector
codes building on top of existing codes. The main technique behind the Piggybacking
framework is to take an existing code as a base code, create a new vector code
consisting of multiple instances of the base code (as described below), and then add
carefully designed functions of the data (called piggybacks) from one instance to the
others. These piggybacks are added in a way such that it retains the decodability
properties of the base code (such as the MDS property). The piggyback functions
are chosen to confer additional desired properties to the resulting code. In [63], the
authors showcase the Piggybacking framework by constructing codes that are efficient
in reducing bandwidth consumed in repairing codeword symbols.

More specifically, the Piggybacking framework works as follows. Consider a length
n code defined by the function f(m) = (f;(m), fo(m),..., f,(m)). Now, consider «
instances of this base code, each corresponding to a coordinate of the a-length vector
of each symbol in the new vector code. Let (mj, mo, ..., m,) denote the independent
messages encoded under these « instances, as shown in Figure 3.2a. For every ¢
such that 2 < i < «, one can add to the data encoded in instance ¢ an arbitrary
function of the data encoded by instances {1,..., (i — 1)}. Such functions are called
piggyback functions, and the piggyback function corresponding to code symbol j € [n]
of instance i € {2,...,a} is denoted as g; ;.

The decoding of the piggybacked code proceeds as follows. Observe that instance 1
does not have any piggybacks. First, instance 1 of the base code is decoded using the
base code’s decoding procedure in order to obtain m;. Then, m; is used to compute
and subtract any of the piggybacks {g2;(m;)}?, from instance 2 and the base code’s

decoding can then be used to recover my. Decoding proceeds like this, using the

Chapter 3. Bandwidth cost of convertible codes

data decoded from previous instances in order to remove the piggybacks until all
instances have been decoded. It is clear that if an [n, k, a] vector code is constructed
from an [n, k] MDS code as the base code using the Piggybacking framework, then
the resulting vector code is also MDS. This is because any set of k& symbols from the
vector code contains a set of k subsymbols from each of the « instances.

In this chapter, we use the Piggybacking framework to design a code where

piggybacks store data which helps in making the conversion process efficient.

3.2 Modeling conversion for conversion bandwidth op-
timization

In this section, we model the conversion process as an information flow problem.
We utilize this model primarily for deriving lower bounds on the total amount
of information that needs to be transferred during conversion. Since our focus is
on modeling the conversion process, we consider a single value for each of the final
parameters nf” and k¥". This model continues to be valid for each individual conversion,
even when the final parameters might take multiple values.

In the previous chapter (Chapter 2) we considered only scalar codes, where each
code symbol corresponds to a scalar from a finite field F,. Considering scalar codes
is sufficient when optimizing for access cost, which was the focus in that chapter,
since the access cost is measured at the granularity of code symbols. However, when
optimizing conversion bandwidth, vector codes can perform better than scalar codes
since they allow partial download from a node. This allows conversion procedures
to only download a fraction of a code symbol and thus only incur the conversion
bandwidth associated with the size of that fraction. This can potentially lead to
significant reduction in the total conversion bandwidth. For this reason, we consider
the initial code C! as an [nf, k!, a] MDS code and the final code C*" as an [nf', k¥,
MDS code, where o > 1 is considered as a free parameter chosen to minimize
conversion bandwidth. This move to vector codes is inspired by the work of Dimakis

et al. [27] on regenerating codes, who showed the benefit of vector codes in reducing

Chapter 3. Bandwidth cost of convertible codes

Initial
codewords

inal
cofewords O O Q\?f
)

Figure 3.3: Information flow graph of conversion in the general case. Unchanged,
retired, and new nodes are shown in different colors. Notice that each unchanged
node in this figure is drawn twice: once in the initial codewords and once in the final
codewords. These correspond to exactly the same node, but are drawn twice for
clarity. Some representative edges are labeled with their capacities.

network bandwidth in the context of the repair problem. For MDS convertible
codes, message size will be B = Ma = lem(k!, k*")a, which we interpret as a vector
m €]Fflw @ composed of M symbols made up of a subsymbols each. We will denote
the number of subsymbols downloaded from node s during conversion as 3(s) < «
and extend this notation to sets of nodes as 3(S) = Y5 B(5).

Consider an (n!, kT;nf" k™) MDS convertible code with initial partition P; =
{Pl,..., Pl;} and final partition Pr = {P{,..., Pl:}. We model conversion using
an information flow graph as the one shown in Figure 3.3 where message symbols are
generated at source nodes, and sinks represent the decoding constraints of the final
code. Symbols of message m are modeled as information sources X7, Xo, ..., Xy
of rate a (over F,) each. For each initial codeword i € [A], we include one source
node s;, where the information sources corresponding to the message symbols in P/
are generated. Each code symbol of initial codeword ¢ is modeled as a node with
an incoming edge from s;. A coordinator node ¢ models the central location where
the contents of new symbols are computed, and it has incoming edges from all nodes

in the initial codewords. During conversion, some of the initial code symbols will

Chapter 3. Bandwidth cost of convertible codes

Figure 3.4: Information flow graph of conversion in the merge regime with two
different cuts (used in proofs). For clarity, each unchanged node is drawn twice: once
in the initial codewords and once in the final codeword. These two instances are
connected by a dashed arrow. Marked edges denote a graph cut.

remain unchanged, some will be retired, and some new code symbols will be added.
Thus, we also include the nodes corresponding to unchanged symbols in the final
codewords (that is, every unchanged node is shown twice in Figure 3.3). Note that
the unchanged nodes in the initial codewords and the unchanged nodes in the final
codewords are identical, and thus do not add any conversion bandwidth. For each
new symbol we add a node that connects to the coordinator node. From this point,
we will refer to code symbols and their corresponding nodes interchangeably. For
each final codeword j € [AF], we add a sink ¢; which connects to some subset of nodes
from final codeword 7, and recovers the information sources corresponding to the
message symbols in PF.

Thus, the information flow graph for a convertible code comprises the following

nodes:

* unchanged nodes U; ; = {u; 1, ..., uiju,, } for all i € [\'], j € [AF], which are

present both in the initial and final codewords;

* retired nodes R; = {v;1,...,v;r,} for i € [A], which are only present in the

initial codewords;
* new nodes N = {wj1,...,w;; } for j € [AF], which are only present in the

Chapter 3. Bandwidth cost of convertible codes

final codewords;
* source nodes s; for i € [\!], representing the data to be encoded;
* sink nodes ¢; for j € [\F], representing the data decoded; and
* a coordinator node c.

In the information flow graph, information source X is generated at node s; if and
only if I € P/, and recovered at node t if and only if [€ P/".

Throughout this chapter, we use the disjoint union symbol U when appropriate
to emphasize that the two sets in the union are disjoint. To simplify the notation,
when * is used as an index, it denotes the disjoint union of the indexed set over the
range of that index, e.g. U, ; = LY, U ;.

The information flow graph must be such that the following conditions hold: (1)
the number of nodes per initial codeword is n!, i.e., [U; .| + |R;| = n’ for all i € [\];
and (2) the number of nodes per final codeword is n*', i.e., U, ;| + |N;| = n* for all
j € [A\F]. Additionally, the information flow graph contains the following set of edges
E, where a directed edge from node u to v with capacity ¢ is represented with the

triple (u,v,9):

s {(si,z,a):x €U UR;} C FE for each i € [\], where the capacity corresponds

to the size of the data stored on each node;

s {(z,¢,8(z)) : © € Ups UR;} C E for each i € [M], where the capacity

corresponds to the amount of data downloaded from node z;

* {(c,y,a):y € N;} C E for each j € [\F], where the capacity corresponds to

the size of the data stored on each new node;

s {(y,t;,a):y € V;} C E for V; C U, ; UN; such that |V;| = k| for all j € [\F],

where the capacity corresponds to the size of the data stored on each node.

The sinks ¢; represent the decoding constraints of the final code, and each choice

of set V; will represent a different choice of k¥ code symbols for decoding the final

— 77 —

Chapter 3. Bandwidth cost of convertible codes

codeword. A necessary condition for a conversion procedure is to satisfy all sinks ¢; for
all possible Vi, ..., Vyr. The sets U; ;, R;, N; and the capacities 3(x) are determined
by the conversion procedure of the convertible code. Figure 3.3 shows the information

flow graph of an arbitrary convertible code.

Definition 3.1 (Conversion bandwidth): The read conversion bandwidth g is the total
amount of data transferred from the initial nodes to the coordinator node c. The write
conversion bandwidth vy is the total amount of data transferred from the coordinator
node ¢ to the new nodes. The (total) conversion bandwidth v is the sum of the read

conversion bandwidth and the write conversion bandwidth. Formally:

TR = 6(2/{*,* L R*)) Tw ‘= |N*|O./, T =R + Tw- (31)

Once the structure of the graph is set and fixed, information flow analysis gives
lower bounds on the capacities 5(z). Therefore, a part of our objective in designing

convertible codes is to set U; ;, R;, N; so as to minimize the lower bound on 7.

Notice that the conversion process, as defined above, is not a single-source multi-
cast problem; therefore, the information max-flow bound is not guaranteed to be
achievable. Nonetheless, information flow can be applied to obtain a lower bound

(Section 3.3), which we show is achievable by providing a construction (Section 3.4).

Remark 3.1: In practice, conversion bandwidth can sometimes be further reduced
by placing the coordinator node along with a new node and/or a retired node in the
same server. One can even first split the coordinator node into several coordinator
nodes, each processing data which is not used in conjunction with data processed
by other coordinator nodes, and then place them in the same server as a new node
and/or a retired node. Such “optimizations” do not fundamentally alter our result,

and hence are left out in order to make the exposition clear. >

Chapter 3. Bandwidth cost of convertible codes

3.3 Optimizing conversion bandwidth in the merge

regime

In this section, we use the information flow model presented in Section 3.2 to derive
a lower bound on the conversion bandwidth for MDS codes in the merge regime.
Recall from Section 3.1.2; that convertible codes in the merge regime are those where
EF = Mk for some integer A > 2, i.e., this regime corresponds to conversions where
multiple initial codewords are merged into a single final codeword. As in the previous
section, our analysis focuses on a single conversion, and thus a single value for the
final parameters n" and k. However, our analysis only depends on the conversion
process itself; therefore, the bound on the bandwidth still applies even if we consider

multiple conversions.

Consider an (nf, k';nf MET) convertible code in the merge regime, for some
integer A’ > 2. Note that for all convertible codes in the merge regime, it holds that
the number of final codewords is Af = 1. Since all initial and final partitions (P, Pr)
are equivalent up to relabeling in this regime (by Lemma 2.2), we can omit them
from our analysis. Note also that all information sources are recovered at the same
sink node, t;. Thus, we may treat each source node s; as having a single information
source X; of rate ak! (i € [\]). For each source node and each sink node pair, we can
invoke the information max-flow bound (Section 3.1.3) to derive an inequality. For
conversion to be possible, the variable-capacity edges must take on values such that
all these inequalities are simultaneously satisfied. Figure 3.4a shows the information

flow graph for a convertible code in the merge regime.

First, we derive a general lower bound on conversion bandwidth in the merge
regime by considering a simple cut in the information flow graph. Intuitively, this
lower bound emerges from the fact that new nodes need to have a certain amount
of information from each initial codeword in order to fulfill the MDS property of
the final code. This lower bound depends on the number of unchanged nodes and
achieves its minimum when the number of unchanged nodes is maximized. Recall

from Section 3.1.2 that convertible codes with maximum number of unchanged nodes

Chapter 3. Bandwidth cost of convertible codes

are called stable convertible codes. Thus, the derived lower bound is minimized for

stable convertible codes.

Lemma 3.2. Consider an MDS (n', k';n* ME!) convertible code. Then:
vr > Ma min{rF, kI} and yw >rfa,

where equality is only possible for stable codes.

Proof. We prove this inequality via an information flow argument. Let i € [\] and
consider the information source generated at source s;. Let S C U;; be a subset
of unchanged nodes from initial codeword i of size #; = min{r’, |U4;|}. Consider a
sink ¢, that connects to nodes U, ; \ S. We choose the graph cut defined by nodes
{s;} UlU;1 UR; (see Figure 3.4a, which depicts the cut for i = A). This cut yields
the following inequality:

o < max{|U,| — ", 0 a + B(U; UR,)

< BUi1 UR) > (K" +r" — max{|Ui1|,7" })a

This inequality must hold for every i € [A\] simultaneously; otherwise, it would be
impossible for the sink to recover the full data. By summing this inequality over all
sources i € [M] and using the definition of v (Equation (3.1)), we obtain:

)\I

v > (K 4" — max{|U 1|, r" P+ [M]a

i=1
By Lemma 2.3, |U; 1] < k'. Therefore, it is clear that the right hand side achieves its
minimum if and only if [U; ;] = k! for all i € [\] (i.e. the code is stable). Lemma 2.3

also implies that vy > r¥'«r, proving the lemma. O

Remark 3.3: Note that the conversion bandwidth lower bound described in Lemma 3.2
coincides with the access-cost lower bound described in Table 2.1 when ! > . This
follows by recalling that each node corresponds to an a-length vector, and for scalar

codes oo = 1. >

Chapter 3. Bandwidth cost of convertible codes

In particular, this implies that convertible codes in the merge regime which
are access-optimal and have r! > r are also bandwidth-optimal (i.e. those in the
decreasing-redundancy region). However, as we will show next, this property fails to
hold when r? < r" (that is, increasing-redundancy region).

We next derive a lower bound on conversion bandwidth which is tighter than
Lemma 3.2 when 7! < r. Nevertheless, it allows for less conversion bandwidth usage
than the access-optimal codes.

Intuitively, the data downloaded from retired nodes during conversion will be
“more useful” than the data downloaded from unchanged nodes, since unchanged
nodes already form part of the final codeword. At the same time, it is better to have
the maximum amount of unchanged nodes per initial codeword (k’) because this
minimizes the number of new nodes that need to be constructed. However, this leads
to fewer retired nodes per initial codeword (r!). If the number of retired nodes per
initial codeword is less than the number of new nodes (r! < r); then conversion
procedures are forced to download data from unchanged nodes. This is because one
needs to download at least 7"« from each initial codeword (by Lemma 3.2). Since
data from unchanged nodes is “less useful”, more data needs to be downloaded in
order to construct the new nodes.

As in the case of Lemma 3.2, this lower bound depends on the number of unchanged
nodes in each initial codeword, and achieves its minimum in the case of stable

convertible codes.

Lemma 3.4. Consider an MDS (n!, k';n™, N kT) convertible code, with parameters
such that v < r¥ < k. Then YR > Ma (7"[+ k! (1 — :—;)) and yw > rFa, where

equality is only possible for stable codes.

Proof. We prove this via an information flow argument. Let i € [A] and consider
the information source generated at source s;. Let S C U;; be a subset of size
7 = min{r®, |U;1|}. Consider a sink ¢; that connects to the nodes in U, ; \ S. Now,
we choose a different cut from the one considered in Lemma 3.2, which allows to
derive a tighter bound when r! < r¥. We choose the graph cut defined by nodes
{s;} USUR; (see Figure 3.4b, which depicts the cut when i = \!). This yields the

Chapter 3. Bandwidth cost of convertible codes

following inequality:
kICL’ < (]Ulyl\ - 7’;1)04 + 5(5) + B(Rz) .

This inequality must hold for all possible S C U;; simultaneously; otherwise, there
would exist at least one sink incapable of recovering the full data, which violates the
MDS property. By rearranging this inequality and summing over all possible choices

of subset S, we obtain the following inequality:

(‘%”)(H A ('%1"1)&%1) n <Wf’1‘>6(7€¢)

T; T

— ’ui,1‘<k1 + 7 — Ui) < 7i8(U) + (Ui |B(R) - (3.2)

Then, our strategy to obtain a lower bound is to find the minimum value for conversion
bandwidth v which satisfies Inequality (3.2) for all i € [A\], which can be formulated

as the following optimization problem:

minimize v = > cn [BUi1) + B(Ry)] + |M |«
subject to Inequality (3.2), for all i € [\] (3.3)
0<pB(x)<a, forall x € U1 UR,.

Intuitively, this linear program shows that it is preferable to download more data
from retired nodes (5(R;)) than unchanged nodes (/5(U;1)), since both have the same
impact on « but the contribution of S(R;) towards satisfying Inequality (3.2) is
greater than or equal to that of S(U; 1), because 7; < |U; 1| by definition. Thus to
obtain an optimal solution we first set S(R;) = min{k! + 7; — |U; 1], |Ri|}c to the

maximum needed for all i € [\!], and then set:

max{7; — r!, 0}U; 1|

T

for all i € [\]

Y. Bla)=

T€U; 1

?

to satisfy the constraints. It is straightforward to check that this solution satisfies the

KKT (Karush-Kuhn-Tucker) conditions, and thus is an optimal solution to Linear

Chapter 3. Bandwidth cost of convertible codes

program 3.3. By replacing these terms back into v and simplifying we obtain the

optimal objective value:

Uial

)\I
7*:2 [kyl—min{rl,ﬁ}< 7“ 1>]a+|_/\/’1|a
i=1

(2

It is easy to show that the right hand side achieves its minimum if and only if
Ui 1| = k! for all i € [M] (i.e., the code is stable). This gives the following lower

bound for conversion bandwidth:
I
v > Ma (TI+]€I (1— TF)) +rfa.
r

Since we must write at least r!" parities, vy > 7', which proves the lemma. O

By combining Lemmas 3.2 and 3.4 we obtain the following general lower bound

on conversion bandwidth of MDS convertible codes in the merge regime.

Theorem 3.5. For any MDS (n’, k';n*" ME!) convertible code:

Mamin{k! rI'}, if rt >rF or kP <rF,
YR 2 ,
Ma (TI + K (1 — :—F)) , otherwise.
r

F

Yw =1

where equality can only be achieved by stable convertible codes.
Proof. Follows from Lemmas 3.2 and 3.4. O

In Section 3.4, we show that the lower bound of Theorem 3.5 is indeed achievable
for all parameter values in the merge regime, and thus it is tight. We will refer to

convertible codes that meet this bound with equality as bandwidth-optimal.

Remark 3.6: Observe that the model above allows for nonuniform data download
during conversion, that is, it allows the amount of data downloaded from each node

during conversion to be different. If instead one were to assume uniform download,

Chapter 3. Bandwidth cost of convertible codes

ie. p(xz) = B(y) for all z,y € U, . U R., then a higher lower bound for conversion
bandwidth 7 is obtained (mainly due to Inequality (3.2) in the proof of Lemma 3.4).
Since the lower bound of Theorem 3.5 is achievable, this implies that assuming

uniform download necessarily leads to a suboptimal solution. >

Remark 3.7: The case where k! = k¥ can be analyzed using the same techniques
used in this section. In this case, A’ = 1. There are some differences compared to the
case of the merge regime: for example, in this case the number of unchanged nodes
can be at most min{n!, nf"} (in contrast to the M k! maximum of the merge regime).
So, conversion bandwidth in the case where nf > n!" is zero, since we can simply keep
n¥ nodes unchanged. In the case where n! < n!’, the same analysis from Lemma 3.4
is followed, but the larger number of unchanged nodes will lead to a slightly different

inequality. Thus, in the case of k! = k¥ the lower bound on conversion bandwidth is:

0, if n! > nt

a (kI + TI) (1 - :—;) + (rf —rDa, otherwise.

Readers familiar with regenerating codes might notice that the above lower bound
is equivalent to the lower bound on the repair bandwidth [27, 36] when (rf — r1)
symbols of an [k +rF, k'] MDS code are to be repaired with the help of the remaining
(k! 4+ rT) symbols. Note that this setting imposes a relaxed requirement of repairing
only a specific subset of symbols as compared to regenerating codes which require
optimal repair of all nodes. Yet, the lower bound remains the same. This is not
surprising though, since it has been shown [29] that the regenerating codes lower

bound for MDS codes applies even for repair of only a single specific symbol. >

3.4 Explicit construction of bandwidth-optimal MDS

convertible codes in the merge regime

In this section, we present an explicit construction for bandwidth-optimal convertible

codes in the merge regime. Our construction employs the Piggybacking framework [63].

Chapter 3. Bandwidth cost of convertible codes

Recall from Section 3.1.4 that the Piggybacking framework is a framework for
constructing vector codes using an existing code as a base code and adding specially
designed functions called piggybacks which impart additional properties to the
resulting code. We use an access-optimal convertible code to construct the base
code and design the piggybacks to help achieve minimum conversion bandwidth.
First, in Section 3.4.1, we describe our construction of bandwidth-optimal convertible
codes in the case where we only consider fixed unique values for the final parameters
nt and k¥ = MkE!. Then, in Section 3.4.2, we show that initial codes built with
this construction are not only (n’, k*')-bandwidth-optimally convertible, but also
simultaneously bandwidth-optimally convertible for multiple other values of the
pair (nf', k¥). Additionally, we present a construction which given any finite set of
possible final parameter values (n'", k¥), constructs an initial [n, k] code which is
simultaneously (n’', k*')-bandwidth-optimally convertible for every (n’, k') in that

set.

3.4.1 Bandwidth-optimal MDS convertible codes for fixed final

parameters

The case where ¥ > k! is trivial, since the default approach to conversion is
bandwidth-optimal in this case. Therefore, in the rest of this section, we only consider
rf” < kI. Moreover, in the case where r! > rf" (decreasing-redundancy region),
access-optimal convertible codes (for which explicit constructions are known) are also
bandwidth-optimal. Therefore, we focus on the case ! < r (increasing-redundancy
region).

We start by describing the base code used in our construction, followed by the
design of piggybacks, and then describe the conversion procedure along with the
role of piggybacks during conversion. To help illustrate the construction, we keep a

running example showing each step.

Base code for piggybacking. As the base code for our construction, we use a

punctured initial code of an access-optimal (k! + r¥', kT;n" k') convertible code. Any

Chapter 3. Bandwidth cost of convertible codes

access-optimal convertible code can be used. However, as mentioned in Section 3.1.2,
we assume that this convertible code is: (1) systematic, (2) linear, and (3) only
requires accessing the first r parities from each initial codeword during access-
optimal conversion. We refer to the [k! + I, k'] initial code of this access-optimal
convertible code as CT', to its [nf" k¥] final code as CF'. Let C!" be the punctured

version of C!’ where the last (r — 7!) parity symbols are punctured.

Example 3.2: Suppose we want to construct a bandwidth-optimal (5, 4; 10, 8) con-
vertible code over a finite field IF, (assume that ¢ is sufficiently large). As a base code,
we use a punctured access-optimal (6, 4; 10, 8) convertible code. For this example, we
use the code presented in Example 3.1 and puncture the last parity. Thus, C! "is a
[6,4] code, C™ is a [10, 8] code, and C!" is a [5, 4] code. >

Piggyback design. Now, we describe how to construct the [nf, k!,] initial vector
code C! and the [, k¥, o] final vector code C*" that make up the bandwidth-optimal
(nf, kI;nf ME!) convertible code.

The first step is to choose the value of a. Let us reexamine the lower bound

derived in Theorem 3.5 for ! < rf" < k!, which is rewritten below in a different form.

I
v > M (rloz—i-kl (1—2) Oz)—l—?“Foz.
r

We can see that one way to achieve this lower bound would be to download exactly
B1 = a subsymbols from each of the r! retired nodes in the ! initial codewords, and
to download S5 = (1 — ' /i) a subsymbols from each of the k' unchanged nodes in
the Al initial stripes. Thus, we choose o = 7", which is the smallest value that makes

b1 and [, integers, thus making:
By =1l and By = (rf — 1.

The next step is to design the piggybacks. We first provide the intuition behind
the design. Recall from above that we can download 3y = (r’ — r’) subsymbols

from each unchanged node and all the o subsymbols from each retired node. Hence,

Chapter 3. Bandwidth cost of convertible codes

F

we can utilize up to 3y = (r — r) coordinates from each of the 7 parity nodes

for piggybacking. Given that there are precisely (rf — r!) punctured symbols and
« instances of C! ”, we can store piggybacks corresponding to r! instances of each
of these punctured symbols. During conversion, these punctured symbols can be

reconstructed and used for constructing the new nodes.

(s)
j
the data encoded by instance j € [a] of the base code in initial codeword s € [M].
correspond to the contents of the j-th coordinate of the k! systematic nodes in initial

Consider a message m € IF(’I\I’“IQ split into Al o submessages m:” € IFZI, representing

Recall that ¢ is systematic by construction. Therefore, the submessage m;”’ will
codeword s. Let CZ{ ;(s) denote the contents of the j-th coordinate of parity symbol i
in initial codeword s under code C’, and cf ; let denote the same for the single final

codeword encoded under C¥'. These are constructed as follows:

s € [\,

for e [r],
1<j<o!

s € [N,

p]I-, for ie[r],

QN

m; p;,

(8) T

m; p; + miS)

rl < <ot
I

¢y =m"’--m{pf’, forie), je ")
where p! corresponds to the encoding vector of the i-th parity of C’ " and p! corre-
sponds to the encoding vector of the i-th parity of C¥ ' By using the access-optimal
conversion procedure from the base code, we can compute cf = [mgl) e mg-’\l)]pf
from {mgs)p{ : s € [M]} for all i € [rF] and j € [rF]. Notice that each initial
codeword is independent and encoded in the same way (as required).

This piggybacking design, that of using parity code subsymbols of the base code
as piggybacks, is inspired by one of the piggybacking designs proposed in [63], where

it is used for efficiently reconstructing failed (parity) code symbols.

Example 3.2 (continued): Let p!, pi €]]:7‘3Xl be the encoding vectors for the parities of

Chapter 3. Bandwidth cost of convertible codes

final codeword (C*')

aq by
initial codeword 1 (C') initial codeword 2 (C')
a b1 as bs a4 by
as bs
ay by as bs
api | b¥p{ +a'p, | |a®pj | b¥pj +ap] | | as bs
ap{ bp{
ap} bp;

Figure 3.5: Example of a bandwidth-optimal (5, 4; 10, 8) convertible code. Each block
in this diagram represents a codeword, where each column corresponds to a distinct
coordinate of the a-length vector (o = 2 in this case), and each row corresponds
to a node. The shaded rows correspond to retired nodes for the first two blocks
(initial codewords), and new nodes for the third block (final codeword). For the
initial codewords, text color is used emphasize the piggybacks. In the final codeword,
text color is used to denote the base code subsymbol that is constructed from the
piggybacks.

Chapter 3. Bandwidth cost of convertible codes

¢!’ and pl,pl e Fg“ be the encoding vector for the parities of C¥'. Since o = rF = 2,
we construct a [5,4, 2] initial vector code C! and a [10, 8, 2] final vector code C¥'. Let

a=(ay,...,ag)and b = (by,...,bs). Figure 3.5 shows the resulting piggybacked codes

encoding submessages all) = (ay,...,a4),a® = (as,...,ag), b = (by,...,b,),b® =
(bs,...,bs) € IF}]XA‘. Recall from Example 3.1, that ap! + afa®p! = ap! for
i € {1,2} (and equivalently for b). >

Conversion procedure. Conversion proceeds as follows:
1. Download D = {mgs) cse Mandr! <j<rf}, Cr={c;(s):s€[N], i¢e
[r], and 1 < j < v}, and Cy = {¢/;(s) : s € [M], i € [r'], and r' < j <rF}.

2. Recover the piggybacks Cs = {mgs)pf cse M, rf<i<rf and1<j<rf}

by computing mgs)pjr from D and obtaining mg-s)pf =cl(s) — m§5>p§ using Cb.

3. Compute the remaining base code symbols from the punctured symbols Cy =

{m{pl s € M), rf <i<rP, and ¢! < j <7} using D,

4. Compute the parity nodes of the final codeword specified by the subsymbols
Cs = {cf; i e[r"], j € [rF]}. This is done by using the conversion procedure
from the access-optimal convertible code used as base code to compute C5 from
Cl, CQ, Cg, and C4.

This procedure requires downloading 3; subsymbols from each retired node and

B2 subsymbols from each unchanged node. Thus, the read conversion bandwidth is:
e =\ (7“[51 + kjﬁz)
L
=\ <r1a+k1 (1—F> a).
r
Additionally, 7o write conversion bandwidth is required for the new nodes.

w = ra

Since v = vr + yw, this matches Theorem 3.5.

Chapter 3. Bandwidth cost of convertible codes

Example 3.2 (continued): During conversion, only 12 subsymbols need to be down-
loaded: b b® and all the parity symbols from both codewords. From these
subsymbols, we can recover the piggyback terms a®’pl and a®p?, and then compute
bWpl and b@p! in order to reconstruct the second parity symbol of C'. Finally, we
use a@p!, b@p! a®pl bpl for i € {1,2} with the conversion procedure from the
access-optimal convertible code to compute the base code symbols a pf',a pZ, b p¥
and b pf of the new nodes.

The default approach would require one to download 16 subsymbols in total
from the initial nodes. Both approaches require downloading 4 subsymbols in total
from the coordinator node to the new nodes. Thus, the proposed construction leads
to 20% reduction in conversion bandwidth as compared to the default approach of

reencoding. >

3.4.2 Convertible codes with bandwidth-optimal conversion for

multiple final parameters

In practice, the final parameters n!", k" might depend on observations made after the
initial encoding of the data and hence they may be unknown at code construction
time. In particular, for a (nf, k’;nf", A k!) convertible code in the merge regime this
means that the values of A and rf" = (nf" — k') are unknown.

To ameliorate this problem, we now present convertible codes which support
bandwidth-optimal conversion simultaneously for multiple possible values of the final
parameters. Recall property (4) of the access-optimal base code which we reviewed
in Section 3.1.2: when constructed with a given value of X! = X and r¥ = r, the
initial [n!, k7] code is (nf, k'')-access-optimally convertible for all k¥ = XNk and
nf=kF 47" suchthat 1 < N < Xand 1 <7 <r.

Supporting multiple values of)\’

The construction from Section 3.4 with a particular value of A = \, intrinsically

supports bandwidth-optimal conversion for any A’ = X < \. This is a consequence

Chapter 3. Bandwidth cost of convertible codes

of property (4) above, and can be done easily by considering one or multiple of the
initial codewords as consisting of zeroes only, and ignoring them during conversion.
From Theorem 3.5, it is easy to see that this modified conversion procedure achieves

the optimal conversion bandwidth for the new parameter A\I = X,

Supporting multiple values of r

We break this scenario into two cases:

Case 1 (supporting " < r): due to property (4) above, the base code used in
the construction from Section 3.4 supports access-optimal conversion for any value of
rf = r such that r» < r!. Using this property, one can achieve bandwidth optimality
for any r < r! by simply using the access-optimal conversion on each of the « instances
of the base code independently. The only difference is that some of the instances
might have piggybacks, which can be simply ignored. The final code might still have
these piggybacks, however they will still satisfy the property that the piggybacks in
instance ¢ (2 < i < «) only depend on data from instances {1,...,(: — 1)}. Thus,
the final code will have the MDS property and the desired parameters.

Case 2 (supporting ¥ > r1): for supporting multiple values of r¥" € {r,ro, ...,
rs} such that r; > ! (i € [s]), we start with an access-optimal convertible code
having " = max; r;. Then we repeat the piggybacking step of the construction (see
Section 3.4.1) for each r;, using the resulting code from step i (with the punctured
symbols from C’" added back) as a base code for step (i + 1). Therefore, the resulting
code will have o« = [];_; ;. Since the piggybacking step will preserve the MDS
property of its base code, and the initial code used in the first piggyback step is MDS,
it is clear that the initial code resulting from the last piggybacking step will also
be MDS. Conversion for one of the supported rf" = r; is performed as described in
Section 3.4.1 on each of the additional instances created by steps (i 4+ 1),...,s (i.e.
[15—(i41)re in total). As before, some of these instances after conversion will have
piggybacks, which can be simply ignored, as the resulting code will continue to have
the property that piggybacks from a given instance only depend on data from earlier

instances.

Chapter 3. Bandwidth cost of convertible codes

initial codeword i (CT)

(4i—3 byi—3 C4i—3 dygi—3 €4i—3 fai—3

Q4 bai C4i dy; €4; fai

a®pI [bOpl + atpt|[cpl +a®pl [dDpl + cpl [[e@pl + atpl|FVp + o pl
+bWpl +bpl

final codeword (rf" = 2)

ap | b c1 dy e1 fi
as | bs cs ds es IE
apf |bpf ||cpf +a®p) +a®pj|dpf ||epf +api +a®pf|fpl
ap} | bpf cp} dp} eps fpd
final codeword (rf’ = 3)

ay by c1 | di ||l el | fr

as bs cg | dg || es | fs

ap! |bpf +aVpl +a®pl| cpf |dpf | ep! |fpf

ap?’ bp% cpj |dp3 | eps |fps

ap? bp’ cpj |dpj | ep§ |fp5

Figure 3.6: Example of a [5, 4] MDS code that supports bandwidth-optimal conversion
to multiple final codes. This code supports bandwidth-optimal conversion to a [8+7, §]
MDS code for r = 1,2, 3. Piggybacks from the first round (r = 2) are colored orange
and piggybacks from the second round (r = 3) are colored magenta. In the possible
final codewords, text color is used to show base code symbols which are directly
computed from the corresponding piggybacks, or to denote leftover piggybacks that
were not used during conversion.

Chapter 3. Bandwidth cost of convertible codes

Example 3.3 (bandwidth-optimal conversion for multiple final parameters): In this
example, we will extend the (5,4;10,8) convertible code from Example 3.2 (rf = 2)
to construct a code which additionally supports bandwidth-optimal conversion to
an [11,8] MDS code (rf" = 3). Figure 3.6 shows initial codeword i € {1,2} of
the new initial vector code, which has o = 2-3 = 6. Here a®) = (ay,...,a4),
a® = (as,...,a3) € Fé“, a=(ay,...,as) € Féxg, and similarly for b,...,f. The
vectors p! € F4*! are the encoding vectors of the initial code C!" and p!” € F8*! are
encoding vectors of the final code C*' (i € {1,2,3}). Since the maximum supported
rF is 3, we start with an access-optimal (7,4;11,8) convertible code. Thus, '’ is
a [7,4] code, C™" is a [11,8] code, and C" is a [5,4] code. In the first round of
piggybacking we consider ¥ = 2, which yields the code shown in Example 3.2. In the
second round of piggybacking we consider ¥ = 3 and piggyback the code resulting
from the first round, which yields the code shown in Figure 3.6. Conversion for rf = 1
proceeds by simply downloading the contents of the single parity node and using the
access-optimal conversion procedure. Conversion for r¥" = 2 proceeds by treating this
code as three instances of the code from Example 3.2 and performing conversion for
each one independently. Conversion for " = 3 proceeds by treating this code as a
vector code with a@ = 3 and base field F2 (i.e. each element is a vector over F, of
length 2). >

Remark 3.8 (Field size requirement): The field size requirement for F, of the construc-
tions presented in this section is given by the field size requirement of the base code
used. The currently lowest known field size requirement for an explicit construction
of systematic linear access-optimal convertible codes in the merge regime is given
by [96]. For typical parameters, this requirement is roughly ¢ > Q(2>‘I("1)3). When
rf° < prl — X' +1, this can be significantly reduced to ¢ > k’r!. And when rf" < [#'/x1],

>

this can be further reduced to ¢ > max{n!, n}.

Chapter 3. Bandwidth cost of convertible codes

1.0 A

o o
o o

o
ES

p (relative savings in
conversion bandwidth)

o
N

0.0 1

0.0 0.2 0.4 0.6 0.8 1.0

Figure 3.7: Achievable savings in conversion bandwidth by bandwidth-optimal
convertible codes in comparison to the default approach to conversion. Here 7 = r! /k!

and 77" = r¥'/k! are the initial and final redundancies, divided by the initial code

dimension. Each curve shows the relative savings for a fixed value of 7, as 7% varies.

Solid lines indicate bandwidth-optimal convertible codes, and dashed lines indicate
access-optimal convertible codes. Notice that each curve overlaps with the red curve
(71 > 1) in the range 7" € (0, 77].

3.5 Bandwidth savings of bandwidth-optimal convert-

ible codes

In this section, we show the amount of savings in bandwidth that can be obtained
by using bandwidth-optimal convertible codes in the merge regime, relative to the
default approach to conversion. We present the amount of savings in terms of two

ratios:

M= () and 7 = (),

i.e. the initial and final amount of “redundancy” relative to the initial dimension of
the code. For simplicity, we only consider the read conversion bandwidth (data sent
from initial nodes to the coordinator node), since the write conversion bandwidth
(data sent from the coordinator node to the new nodes) is fixed for stable convertible
codes (specifically, it is equal to ar®’). Thus, the conversion bandwidth of the default

approach is always M k’a. Figure 3.7 shows the relative savings, i.e. the ratio between

Chapter 3. Bandwidth cost of convertible codes

the conversion bandwidth of optimal conversion and the conversion bandwidth of the
default approach, for fixed values of 7/ € (0,00) and varying 7" € (0, c0).

Each curve shown in Figure 3.7 can be divided into three regions, depending on

the value of 7

¢ Region 0 < 7" <7 and 7" < 1: these conditions imply that 7" <7, so by

Lemma 3.2 the conversion bandwidth is Mrf«, and the relative savings are:
MrEa
MELo

This region corresponds to the decreasing-redundancy region, and in this region
access-optimal convertible codes are also bandwidth-optimal. This region of

the curve is linear, and the amount of savings is not affected by 7.

e Region 7/ <7 < 1: this implies that ! < rf < k!, and by Lemma 3.4 the

conversion bandwidth is Ma(r! + k(1 —r!/rf)), and the relative savings are:

Mo (rf 4k (1= 1)) :;I<1 _1>.

—1- —
P Nk o P

This corresponds to the increasing-redundancy region, where access-optimal
convertible codes provide no conversion bandwidth savings. Thus bandwidth-
optimal convertible codes provide substantial savings in conversion bandwidth

in this regime, compared to access-optimal convertible codes.

¢ Region 7 > 1: this implies that v > k! and by Lemma 3.2 a conversion
bandwidth of AM'k’« is required. Thus no savings in conversion bandwidth are

possible in this region.

Thus, bandwidth-optimal convertible codes allow for savings in conversion band-

width on a much broader region relative to access-optimal convertible codes.

Chapter 3. Bandwidth cost of convertible codes

; Conversion bandwidth (A" = 2, !/ = 0.4) ; Conversion bandwidth (*' = 3, //k! = 0.1)
5 3 T seneeneennt
O _ 08 Q ___ 08 o™
s °og =
|x e o
@ ~2 (. © ~2 (. 7
[:< Inf. flow bound (Thm 4) [:< e Inf. flow bound (Thm 4)
_g ~ 04 = - Conj. bound (Thm 7) _g ~o04 (,/X ----Conj. bound (Thm 7)
8 <) Access optimal 8 < 78 Access optimal
0. 0.
E x Construction (k¥ = 5) & x Construction (k¥ = 10)

et o
0.0 0.0 "
0.0 02 0.4 0.6 0.8 10 12 0.0 05 10 15 2.0 25 3.0

7.F/,.I 7.I—'/,.I

Figure 3.8: Read-conversion-bandwidth relative to the default approach (split regime).
In each plot, the value of the parameters A" and the ratio v’ /k! are fixed, and the
value of the ratio ' /r! ranges in (0, (A7 /k')~!]. By choosing this parametrization,
the plotted curves are independent of the value of k. For illustration, markers are
added on the points that can be achieved by the construction of Section 3.7 when k%
takes the given example value.

3.6 Conversion bandwidth of the split regime

In this section we analyze the conversion bandwidth required by MDS convertible
codes in the split regime, i.e., the case where k! = \F'kF for some integer \¥' > 2.

In order to obtain a lower bound on the conversion bandwidth, we model split
conversion as an information flow problem. In this model, we represent the flow
of information during conversion as a DAG with edges with variable capacity that
represent the transfer of data between nodes. Our objective is to set the capacity
of edges in a way that minimizes the conversion bandwidth, while ensuring that the
flow conditions necessary for conversion are met.

One challenge is that, as we will show, the bound we obtain through information
flow is not achievable in general.! This bound is not achievable in general because
retired symbols contain data that is associated with more than one final codeword.
Thus, in order to make use of these symbols during conversion, we must also download
enough data from unchanged symbols to remove the “interference” from other final
codewords. To this end, we introduce a conjecture and derive from it a lower bound

which, as we show in Section 3.7, is achievable.

1Split conversion corresponds to a multi-source multicast problem. In this case (unlike the
single-source case) the information flow bound is not necessarily tight with respect to coding [109].

Chapter 3. Bandwidth cost of convertible codes

O-0G0 m

Figure 3.9: Information flow graph of split conversion. For clarity, each unchanged
symbol is drawn twice, in order to show the initial configuration of the system in the
top row of nodes, and the final configuration in the bottom row of nodes. The edges
with a red mark depict a graph cut.

3.6.1 Information flow

We model the conversion process using the graph (see Figure 3.9) composed by the

following nodes:
* source s, representing the whole data m € ngl;
* the set U; for i € [A\F], representing the unchanged symbols of final codeword i
* the set R representing retired symbols;
* the set \V; for i € [\f], representing the new symbols of final codeword 4;
* data collectors t; for i € [A\''] that represent the decoders for each final codeword;
* a central node c that computes the new symbols;
* asink t collecting the data for all final codewords (i.e. m).

Let (u,v,z) denote and edge from node u to node v with capacity = > 0. Nodes are

connected by the following edges:

Chapter 3. Bandwidth cost of convertible codes

* {(s,z,a) | z € U;U; UR}, representing the data stored in the initial symbols;

* {(z,c, 1) | * € U;U;} representing the data downloaded from unchanged

symbols;
* {(z,c,B2) | © € R}, representing the data downloaded from retired symbols;
* {(c,z,a) | x € U; N;}, representing the data written to the new symbols;

s {(z,t;,a) | z € Vi} for V; C U;(U; UN;) such that |V;| = k¥ for j € [A\F],

representing decoding of final codeword i;
o {(t;,t,ak?) | i € [\F]}, representing the collection of all the decoded data.

In this chapter, we focus on stable codes (see Chapter 1). Therefore, we have that
U;| = kF, |R| =r!, and |N;| = rF (i € [\F]). The total conversion bandwidth v will
be given by the total size of the information communicated between nodes during

conversion, which corresponds to the following equation:

Y i=YR T YW,

(3.4)
where vg := MNEE By 4+ 15y and YW = Mo,

We refer to vg as the read conversion bandwidth and to vy, as the write conversion
bandwidth. Our objective is to set (1, 52) to minimize v while ensuring an information
flow of size ak! (the size of the data m) is feasible. Since yy is constant with respect
to (01, B2), our analysis will focus on ~g.

Note that our model assumes a uniform amount of data downloaded from un-
changed symbols and retired symbols. This is without loss of generality, since any
stable convertible code with non-uniform downloads, can be made uniform by repeat-
ing the code a sufficient number of times and rotating the assignment of symbols to
nodes with each repetition.

Our first lemma expresses the constraint which arises from considering the cut

shown in Figure 3.9.

Chapter 3. Bandwidth cost of convertible codes

Lemma 3.9. For all stable MDS (n, k! = \CEF;nt" kT convertible code:
MNomin{r? k" Ya < A min{r® K7} 8) + 173, (3.5)

Proof. For each j € [A], consider a sink t; that connects to all symbols in a
final codeword but a set S; C U; of size min{k,r¥'}. Consider the cut defined by
{s} U Uj-il S; UR. This cut yields (3.5) after simplification. O

Using (3.4), we can show that when r¥ > k' no savings in conversion bandwidth

are possible over the default approach.
Corollary 3.10. When r¥ > k¥, we have vz > Mk a.

In other words, the default approach has optimal conversion bandwidth when
rf > kP, For this reason, we will only focus on the case ' < kt".
To obtain a lower bound on 7, we will minimize it subject to (3.5) with 3; and [,

as variables.

Lemma 3.11. Assume r¥ < k¥'. Then, the value of v is minimized subject to (3.5)

hen:
whe .

r) ApE
ﬁlzmax{l—w,()}a, ﬁgzmm{l,rl}a.

Proof. As intuition, note that [, offers the better “bang for the buck” for satisfying
(3.5), because each unit of 8, contributes r! costing rf, while each unit of 3; contributes
MrE costing AEET. Thus, in order to satisfy (3.5), it is better to increase 3, first,
and then increase (3, if necessary. This approach leads to the proposed solution. It is
straightforward to check that this solution satisfies the Karush-Kuhn-Tucker (KKT)

conditions, and is thus an optimal solution. O

By replacing into (3.4), we obtain the following lower bound.

Theorem 3.12. For all stable MDS (n', kT = \UEF: n?" k) convertible code:

)\Fk:Foz—rIozmaX{ﬁ—? — 1,0} if vt < NpF,

YR =
M min{r? k' }a otherwise.

Chapter 3. Bandwidth cost of convertible codes

Proof. Follows from Lemma 3.11 and case analysis. [

This bound shows that there is potential for conversion bandwidth savings when
kT > r¥ because the bound is strictly lower than the default approach (A\'k"«) in
this region. Unfortunately, this bound is not always achievable, as we see next.

For example, suppose we have have a stable convertible code with kf > r¥,
r! = A'rF and that we set 3; = 0 and B, = a. This assignment satisfies Theorem 3.12
(and it is easy to check that it leads to a feasible flow in Figure 3.9). However, as
shown by previous work on access cost of conversion [99], it is not possible to perform
conversion in this case by accessing fewer than (A — 1)k + 7 symbols. Furthermore,
it can be shown that any assignment that makes 3; > 0 necessarily leads to a higher
conversion bandwidth than the lower bound of Theorem 3.12. The fundamental
problem in this case is that to create new symbols for a particular final codeword we
need to remove the interference from all other final codewords. This is not possible if
the conversion procedure does not access a sufficient number of symbols.

For this reason, we introduce the following conjecture, which lower bounds the
amount of data that needs to be downloaded from unchanged symbols based on the

above intuition.

Conjecture 3.13. In the information flow model presented in this section, for all

stable MDS (n!, kT = NFEF;n®' kY) convertible code we must have:
Mg > (A —1)8,. (3.6)

We incorporate this constraint into the minimization of v and obtain a different
solution, which limits the amount of data downloaded from retired symbols when
rl >t
Lemma 3.14. Assume v < k¥'. Then, the minimum value of v subject to (3.5) and

(3.6) is achieved by Lemma 3.11 when r! <P and otherwise by:

A —1)rfa Nrfo

b = (AF — 1)rF 417 b2 = A —1)rf 4L

— 100 —

Chapter 3. Bandwidth cost of convertible codes

Proof. As in the case of Lemma 3.11, it is intuitively better to increase (3, rather
than ;. However, (3.6) gives an upper bound on f, in terms of ;. Therefore, we set
[y = min {a, Aﬁ—:ﬂl}. We then replace (§y in (3.5) and set (31 in order to satisfy the
inequality. When r! < 7, one can check that (3.6) is not tight, and thus we obtain
the same values that Lemma 3.11. Otherwise, we obtain the stated values of 3; and
Bo. It is straightforward to check that this solution satisfies the KKT conditions, and

is thus an optimal solution. O

By replacing back into (3.4), we obtain the following lower bound based on
Conjecture 3.13.

Theorem 3.15. If Conjecture 3.13 holds, then for all (n!, k! = NkE;nt kF) con-

vertible code with ¥ > r¥ and r¥ < kF':

(A — DRF 4!

> \pF .
TR=AT a()\F—l)rF+rI

Proof. Follows from Lemma 3.14. O

As we shall see in Section 3.7, the proposed constructions achieve the combination
of the lower bounds of Theorem 3.12 and Theorem 3.15. Thus, we finish this section by
comparing the conversion bandwidth of our approach with that of the default approach
and existing convertible codes optimized for access cost [99]. Since in all approaches
the write conversion bandwidth is equal (A"rf'a), we focus on the read conversion
bandwidth. Table 3.1 includes the expressions for the read conversion bandwidth of
different approaches. Figure 3.8 plots the lower bounds on read conversion bandwidth
relative to the default approach for some example parameters. These results show that
our approach can achieve significant savings in conversion bandwidth with respect to

the default approach and access-optimal convertible codes.

3.7 Explicit constructions

In this section, we present constructions for convertible codes in the split regime

that optimize for conversion bandwidth. The constructions employ the Piggybacking

— 101 —

Chapter 3. Bandwidth cost of convertible codes

framework [63].

Theorem 3.16. The constructions presented in this section achieve the optimal
conversion bandwidth when v < r¥. Furthermore, they achieve the optimal conversion

bandwidth when r1 > r¥ if Conjecture 3.13 is true.

Proof. Follows directly from the design and description of the constructions below.
O

These construction require less conversion bandwidth than the default approach
and the access optimal approach (regardless of Conjecture 3.13) as long as 7" < k%'
(Corollary 3.10). We begin by describing the base code used in both constructions,
and then present the piggybacking constructions for the cases ! > rf and r! < rf,

respectively.

3.7.1 The base code

We utilize an [n!, k!] systematic code with a Vandermonde matrix with evaluation
points (&1, ..., &.r) as the parity matrix. A code of this form is guaranteed to be MDS
when choosing & (¢ € [r']) and field size as specified by the general construction in

[96]. Nonetheless, in practice it is often possible to search for & that generate an MDS

code over a given finite field. Let h, := (h{”, ..., hg})T = (1,&, ..., T be parity
encoding vector ¢ € [r!] of the base code. In our construction, we use the property
that (h{”,... %)) = f[(i_l)kF(hg)_l)kFH, B for all t €[] and i € [AF].

3.7.2 Piggybacking construction (case r’ > r’)

We now describe the construction (assuming r* < k%'). Recall that during conversion,
we download f; from each unchanged symbol, and fs from each retired symbol,

which are set as discussed in Section 3.6. If we set the set the size of each symbol as
a = (A =)rf + D), then By := (A — 1)rf and By := A'rf". For simplicity, we

— 102 —

Chapter 3. Bandwidth cost of convertible codes

SubsymbolsL
SubsymbolsLL

)\FF

Initial symbols
Final symbols

Figure 3.10: Diagram of convertible code construction in the split regime when
rf > ¢ and A\ = 3.

divide « into blocks: for a given ¢ € [a] we define (¢4, ¢5) as follows.

({%1,(6—1m0d7f)+1) if ¢ <\l

(€1,£2) =
A +1, 0= M) otherwise.

To describe the encoding vectors of our code, we decompose each encoding vector
of the base code into A\ vectors of length k', corresponding to the data associated
with each final codeword. Then, we represent each of these vector in the ak’-
dimensional space corresponding to the whole data m (by filling the additional

dimensions with zeros). Specifically, we define p,% € IF;“’“I as the column vector such

that mpgfg corresponds to the encoding of the data under the base code for parity
t € [r!], final codeword i € [A], and instance ¢ € [a]. We achieve this by setting
pgz[(z —DkFa+(j—Da+/{] :=h(i — 1)k" +j] for j € [kF] and 0 everywhere else.

We specify how to construct q; ¢ € IF"’“ , which is the encoding vector for instance
(€ [a] of parity t € [r] of the initial codeword, and qF(Z) € Fo*' which is the

encoding vector for instance ¢ € [a] of parity ¢ € [rf] of final codeword i € [A\F]. The

— 103 —

Chapter 3. Bandwidth cost of convertible codes

construction is designed so that the final codewords are all encoded under the same
final code. Figure 3.10 shows a diagram for this construction. The construction has

three important elements:

1. Permutation: In the initial code, the first A¥ blocks of the data symbols
associated with final codeword i are circularly shifted to the right i — 1 times
(denoted with letters A-C). This reordering is logical (no data is moved) and

used for describing the code only.

2. Projection: For parities 1 through r¥ (P blocks), we use the base code without
modification to encode each data column. During conversion, we download
blocks {2,..., A"} from each data symbol (blocks B and C) and subtract their
interference from the corresponding parity symbols to obtain the first block of
each final codeword (P) blocks).

3. Piggybacks: For parities (rf + 1) through r! (Q blocks), we use the base code
and add piggybacks to block ¢; € [A\f] that contain the subsymbols of block
(A + 1) of final codeword ¢; (transposed). During conversion, we recover the
piggybacks by using the downloaded data (blocks B and C). Note that the
piggybacks will still have extra data remaining from the unaccessed block (A).
However, the final code can still be sequentially decoded (the same way that

codes in the piggyback framework are decoded).

The remaining parity subsymbols are generated from the accessed data blocks (B and
C). Finally, parity symbol ¢ € [rf] in final codeword i € [AF] is scaled by &, (i=k"
to ensure that all final codewords are encoded by the same final code (as described
in Section 3.7.1). Let 7(@) := ((¢; — i mod A)EkF + £) be the instance index after

permutation. Then, the encoding vectors for the initial and final codes are defined as:

P, if ¢ < rF, 6 <\,
I . 3 i l .
Qi = Zi\:l p;)?(z) + pézi()XF—l)'rF—i-t ift> TF? 61 <)‘Fa
22{1 P% otherwise.

— 104 —

Chapter 3. Bandwidth cost of convertible codes

—G—DKF @G .
& I pl) if 0, < AP,

S —(i—1kF (i i .
& = (piﬁ + p7(°12+£2,t) otherwise.

LA e’} 1
scaling factor extra data

Notice that during conversion we only need to download 8; = (A" — 1)rf sub-
symbols from each unchanged symbol and 3, = A\rf subsymbols from each retired
symbol, out of the o = (A" — 1)rf 4 7!) subsymbols in each symbol. Therefore, this
construction achieves the conversion bandwidth bound of Theorem 3.15. Furthermore,
the constructed code is MDS because it uses the piggyback framework and the base
code is MDS.

3.7.3 Piggybacking construction (case r! < rf)

The construction in the case when r/ < 7 is similar. In this case, we set o := \'r¥,
and (3 := (A'rf" —rl) and By := M'rf". We divide each symbol evenly into A" blocks

of 7 columns. Thus, for a given ¢ € [a] we define ({1, {3) as follows.

14
wi=|).

o = (£ — 1 mod r¥) + 1.

Now we describe the construction. Figure 3.11 shows a diagram for this construc-

tion.

1. Permutation: In the initial code, the ¥ blocks of the data symbols associated
with final codeword i are circularly shifted to the right i — 1 times (denoted
with letters A-C). This reordering is logical (no data is moved) and used for

describing the code only.

2. Projection: For the first 7/ columns of each block, we use the base code without

modification to encode each data column. During conversion, we download
the data in the first 7/ columns of blocks {2,..., A"} from each data symbol

(blocks B and C) and subtract their interferonce from the corresponding parity

— 105 —

Chapter 3. Bandwidth cost of convertible codes

Subsymbols
Subsymbols h
NE\
|
Ry
=4 ®n
2 2
E AFEF =
= >
“ data 0
&= =3
= A=
g e

Figure 3.11: Diagram of convertible code construction in the split regime when
rI <rfand \F = 3.

symbols to obtain the first 7/ columns of the first block of parities 1 through r!
in each final codeword (P) blocks).

3. Piggybacks: For columns (r’ 4 1) through r¥" of each block (Q blocks), we use
the base code and add piggybacks that contain the subsymbols of the first r!
columns of the first block of parities (7! +1) through 7" in each final codeword ¢,
(transposed). During conversion, we download all the data in the corresponding

columns (blocks A’, B and C) and recover the piggybacks.

The remaining parity subsymbols are generated from the accessed data blocks (A',
B, and C). Finally, parity symbol ¢ € [rf] is scaled by &, L " 7 and pt
be defined as before (in the case r! > 7). Then, the encoding vectors for the initial

and final codes are defined as:

— 106 —

Chapter 3. Bandwidth cost of convertible codes

L Zz 1p7) £l <
Qi = M p 1 p) otherwise
=1 t, g() eQ t '

{)ljS}gl) 1(]\()

q = f tl

scaling factor

Notice that during conversion we only need to download 3; = (A\f'rf" —r) subsymbols
from each unchanged symbol and 3, = A'r¥" subsymbols from each retired symbol,
out of the a = A'r¥ subsymbols in each symbol. Therefore, this construction achieves
the conversion bandwidth bound of Theorem 3.15. Furthermore, the constructed

code is MDS because it uses the piggyback framework and the base code is MDS.

- 107 —

Chapter 4

Locally repairable convertible codes

This chapter is based on work from [111], done in collaboration with K. V. Rashmi.

The previous two chapters of this thesis focus on conversion of mazimum-distance-
separable (MDS) codes from length n! and dimension k! to nf" and k%", respectively.
Recently, there has been increased interest in wide codes, i.e. codes with large k, as
they can achieve lower storage overhead given a target level of failure tolerance. One
important drawback of wide codes is that even if a single node becomes unavailable,
one must incur high resource-costs to repair it. For example, in the case of an
MDS code, one must read k different nodes and reconstruct the original data to
repair a node. In practice, repair operations are common enough that those costs
negatively affect the performance of the cluster [12, 13, 112]. Locally repairable codes
(LRCs) [70, 113] mitigate this problem by encoding data in a way that allows nodes

to be repaired by accessing r < k nodes only.

! LT L] N

k' =18 [T 1 It L EF =18
I _ [T It F _

g =2 g e 09
r'=3 [[[t L r® =
EI =1 L[] gF —9

Figure 4.1: Example of LRC conversion. Empty boxes are message symbols. L and
G are local and global parities respectively.

— 108 —

Chapter 4. Locally repairable convertible codes

To change the optimal repair properties over time, we study the code conversion
problem for LRCs (see Figure 4.1). This chapter focuses on codes with (r,¢) data
locality, where k data nodes are divided into groups of size r, each with ¢ local parities
that are a function of those r data nodes only. In addition, the code has g global
parities which are a function of all k£ data nodes. We focus on LRCs with optimal
distance [65]. As the cost of conversions, we consider conversion bandwidth, defined
as the total amount of data communicated between nodes during conversion. Our
contribution is a new construction technique for LRCs with efficient conversion. This
technique can be applied to different types of conversions: in this chapter we focus
on global conversions, which only change k£ and ¢g. Even though it is possible to
do this type of conversion with existing constructions for MDS codes [101, 102],
the constructions presented in this chapter are able to further reduce conversion
bandwidth by using both local and global parities. E.g., our construction achieves the
conversion of (k, g,r,¢) from (40,2, 10,2) to (20,3, 10,2) with 17.89% less conversion

bandwidth than existing constructions [102].

4.1 Background and related work

Let [i] :== {1,...,i}. Let v}, denote entries ¢ through j of a vector v. A linear
[n, k,d, o] vector code C over finite field F is a linear subspace of F*" of dimension
ak. We refer to each coordinate (an element of F) as a symbol. A codeword ¢ € C is
divided into n nodes c; == (¢;;)5—; (i € [n]). The minimum distance of C is d, and it
is defined as the minimum Hamming distance over F* between distinct codewords
in C. The code C is said to be MDS if d = n — k + 1 (in which case d is omitted).
Data m € F°* is encoded via a ak x an generator matrix G as ¢ = mG. As an
abuse of notation, we denote the encoding of m under C as C(m). Code C is said
to be systematic if ¢; = m; == (m; ;)5 for i € [k]. The support of a code symbol is
the set of data symbols corresponding to the non-zero indices in its generator matrix

column; the support of a node is the union of the supports of its symbols.

A systematic code C is said to have (r, ¢) data locality if for each data node c; there

— 109 —

Chapter 4. Locally repairable convertible codes

exists a set of indices I'(7) containing i such that |T'(7)] < r + ¢ and the restriction of
C to I'(7) has minimum distance at least ¢ 4+ 1. Prior work [114] has shown that a

code with (r,¢) data locality satisfies:

d<n-rkri-of |5 -1}, (1)

r

In this chapter, we consider codes defined by parameters (k,g,r,¢), denoting a
[n, k,d, o] vector code with n == k+ [%W + g, having (r, ¢) data locality, and minimum
distance d satisfying (4.1) with equality (i.e. optimal distance); we assume r | k and
treat « as a free variable. The constructions that we present are systematic codes
with the following structure: the code has m = % disjoint local groups each with r

data nodes and /¢ local parity nodes, and g additional global parity nodes.

4.1.1 Systematic Vandermonde code

A systematic Vandermonde code is an [n, k, d, «=1] code defined by a generator matrix
that is the concatenation of a k x k identity matrix and a k x (n — k) Vandermonde
matrix with evaluation points (&)7=F. If the field is large enough, choosing &; = !,
where 0 is a primitive element, guarantees the MDS property (construction in |7,
§V]). Column i of a Vandermonde matrix has the following property: consider a
subvector and scale it by a power of &;; this is equivalent to shifting the subvector by
i entries. In particular, let k == A, and h(® := (¢&/ *1);?:1 be the i-th encoding vector;

then h[((i,)n_mﬂ,mt} = 51'(m_1)thﬁ?ﬂ for all i € [n — k] and m € [A].

4.1.2 Basic pyramid code [113]

One method for constructing a code with (r, ¢) data locality and optimal distance is
to start with a [k + ¢ + g, k, o] MDS systematic linear code C. Then, the generator
matrix column of local parity j € [¢] in local group i € [£] is constructed by taking the
column of parity j in C, and setting all the entries outside of rows {(j —1)r+1,...,jr}
to 0.

— 110 —

Chapter 4. Locally repairable convertible codes

4.1.3 Piggybacking framework [63]

The piggybacking framework constructs an [n, k, d, a] vector code, by using « instances
of an [n, k, d] base code and adding special functions (called piggybacks) to certain
symbols. I.e. symbol ¢; ; is the encoding of (m;;)¥ ; under the base code, plus an
specially designed piggyback. We refer to the non-piggyback part of a symbol as
the base. A piggybacked code must have a decoding order for the instances of the
base code given by a permutation o : [a] — [a]. To satisfy o, the piggybacking
functions used in instance i can only use data from instance j if o(i) > o(j). Thus,
when decoding by the order o, the already-decoded instances are used to remove
piggybacks, and the bodies are decoded with the base code. The utility of piggybacks
is that they can store useful information which can be retrieved by subtracting the

base.

4.1.4 Other related work

Codes designed to have small localities were first proposed in [113, 115], and a
bound on the minimum distance of LRCs was proved in [65]. LRCs have been the
subject of a wide range of works [66, 68-71, 73-81, 112—114, 116], which has proposed
constructions, bounds on field size, and stronger recoverability properties than optimal
distance (such as mazimum recoverability).

The general problem of code conversion was introduced in [7]. Several works [7,
91, 92, 99, 101, 102] have proposed constructions for code conversion. The results
in these works consider two types of cost (access cost and conversion bandwidth)
and focus on constructions and lower bounds for code conversions in which both the
initial and final codes are MDS.

To the best of our knowledge, the idea of converting between different LRCs was
first considered in [93] (called up/downcoding). Xia et al. [93] propose a conversion
procedure for converting between two specific LRCs with different r parameter (and
constant £ = 1, k, g). This conversion procedure can be viewed as reducing the number
of nodes read during conversion (i.e. access cost [7]). In this chapter, we focus on

reducing conversion bandwidth instead. Minimization of conversion bandwidth for

— 111 —

Chapter 4. Locally repairable convertible codes

MDS codes was studied in [101, 102].

Recently, [90, 117-119] studied LRC conversion (also called scaling) in a clustered
setting, where code symbols are placed in clusters with the goal of reducing inter-
cluster communication and satisfying some fault-tolerance constraints. The present
chapter is, to the best of our knowledge, the first one to focus on LRC conversion

bandwidth (i.e. inter-node communication).

4.2 Conversion of LRCs

We study the LRC conversion from initial parameters (k, g%, 7!, ¢!) to final param-
eters (k' g™, rt" ¢¥"). Conversion is carried by a converter which reads data from
nodes, computes new symbols, and writes them. Cost is measured as conversion
bandwidth [101]: the total amount of data communicated to and from the converter.
We focus on reducing read conversion bandwidth (i.e. number of symbols read), since
the number of symbols written is fixed. We denote read conversion bandwidth as -,

and normalize it as 4 := v/«a. Codes must satisfy:
P1) the initial [n!, k7, 0iq,] code has (1!, ¢1) data locality and optimal distance oiq,
P2) the final [0 k¥ d¥, a] code has (r", ¢*") data locality and optimal distance d”’,

P3) there is a conversion procedure from initial code to final code that is efficient in

conversion bandwidth.

As in the code conversion literature [7], k is changed by considering M =
lem(k!, k*') data nodes evenly divided among A := 2% codewords in the initial code
and \' = kMF codewords in the final code. Our approach is to construct a code
with the piggybacking framework and using the piggybacks to reduce conversion
bandwidth. As the base code, we use a basic pyramid code derived from a systematic
Vandermonde code, which guarantees optimal distance. Our constructions combine a
small number of techniques, which simplifies their description and analysis. We start
by presenting two running examples used throughout the chapter to illustrate our

techniques. Details will be made clear as we explain our construction approach.

— 112 —

Chapter 4. Locally repairable convertible codes

Final codeword

Initial codeword 1 Initial codeword 2 i by C1
@ by ¢ az by cr as by ¢
2 by C2 ag b cs as by cs
. . P[1,3) " C[1,3 +
a by cs a bo e Py g | Pug - b} N a
Py - P16 * A[4.6] | Plag) - Plag)} 10 0
. : P) : — , P .
Pus -2 | Py - biuard Bk ay P - Al | P bt W | [P ar l} P - by 1'['4;}?]‘3]?5[:?‘“’”
¥ I ’) 1,3] " PI79{ "t 4 -
[P 2aa [Pl] s o [Pia) - 20.12Plaq - Bruoaf {15 -y [P B0.12]plag) by]é}fi]]
' ' 4,6] * P[10,12]} tla,6] - @[10,12)
] €16 T T E
|Q[1 oo ‘q[l 9 bo. G]I t?‘i] bl[lﬁ"l | |q[16 i ‘q“ a° b[”z]ﬂ tn o] b7[7lfll | 1,12 * A[1,12])d471,12] - P12 2) - C1,12)
t11,12) - @p112)/t[,12) - Btz - €zl

Figure 4.2:
kKl =6, k' =

(Example 4.1) Example of global merge conversion with parameters
12, ' =1,¢"=2,r=3,0=1.

Initial codeword

Final codeword 1
a; by &1 dy by az cr dr
ay by (5] dy
as by Cy dy bg ag Cg dg
ap b C2 d
asz by c3 ds by ag Cy dy 2 2
P13 - blig + Pl - bro + az b3 c3 ds
P(ia) - @) | P P T Ps) - gl | prg) - A P9 T Pg) c Az,e) | Pl © €(7.9] | Py - dir)
q[1,3] [1,3] q[1,3] [7,9] P[] 3) b[] 3) I
Ps) - 261 p‘;[f]o“‘)cﬂ1+ Pia6] * Ca6] | Plag) - diag] p‘[;[«b.]of F’(-l[:](,lfLJT['1~0] ‘allf)v”]lp["h"] *C[10,121P (a6 * d[10,12] Pl A (50 | Pal - sl | Py - divg
[P aue] G0 TGS [Pusl - Cosl [Prg - disg)
qpye] * a6 + | qpe) b + o p .
]] R _ ——
T o Blie T qp16] * A[16] | e - bpe [e - el | 0L
[1,6] * @[1,6]
t7,12] - braz) +| tiria) ez £ 6 12) © Cp112)b[,12) 'd[1.12]
dpgdng | vane - diz)

Figure 4.3: (Example 4.2) Example of global split conversion with parameters
K'=12, k" =6, g' =2, g" =1, r =3, £ = 1. In the code, v := £. For compactness,
only one final codeword is shown; the other final codeword has the same encoding.

— 113 —

Chapter 4. Locally repairable convertible codes

Example 4.1: Figure 4.2 shows an example of conversion from (k'=6, g/=1,r1=3,
1=1) to (kF'=12, gF'=2,7"'=3,/F=1). We refer to this type of conversion as a global
merge conversion. In the example, data corresponds to (a, b, c), and the encoding
vectors of the base code are p (local parity) and (q, t) (global parities). The non-gray
symbols in the initial codewords are read and used in generating the colored symbols
in the final codeword (where colors denote techniques that will be described later).
Conversion uses the property of Vandermonde codes that, e.g, pug = £/pp1,3- The
decoding order in the initial and final codes is (1,2,3). By using this construction,
conversion requires 4 = 7%, compared to 12 (default approach) or 8 (MDS code

in [101]). : >

Example 4.2: Figure 4.3 shows conversion from (k!=12, g'=2,r'=3, ¢'=1) to (k''=6,
gF'=1,r"=3 ("=1). We refer to this type of conversion as a global split conversion.
As in the previous example, data corresponds to (a, b, c,d), encoding vectors are p
(local parity) and (q, t) (global parities), and non-gray symbols in the initial codeword
are read and used in generating the non-gray symbols in the final codewords. The
decoding order is (3,4,1,2) in the initial code, and (3,1,4,2) in the final code.
Conversion requires 4 = 5, compared to 12 (default approach) or 5% (MDS code
in [102]). >

These examples show that it is possible to reduce conversion bandwidth compared

to other approaches. Now, we describe our general approach in detail.

4.2.1 Base code

Let k == max{k’, k"'} and § := max{¢'+¢’, (¥ +¢"}. First, we construct a systematic
Vandermonde MDS code C (Section 4.1.1) of length k + § and dimension k. Then,
we shorten and puncture C by removing the last k — k! rows, the last k — k! data
columns, and the last § — ¢! — ¢! parity columns from the generator matrix to obtain
C!. Finally, we derive the initial base code as a basic pyramid code (Section 4.1.2) of

¢! (and likewise for the final base code).

— 114 —

Chapter 4. Locally repairable convertible codes

4.2.2 Conversion techniques

For ease of exposition, we first present the techniques that will be used in designing
conversion-bandwidth efficient codes:

Direct computation (DC). A final parity symbol is computed from the data
symbols in its support. E.g., this is used in Example 4.1 to compute qpi19] - C[1,12)
from c.

Projection (Pr). A final parity symbol with support S’ is computed from an
initial parity symbol with support S 2 S’ and data symbols in S\ S’. E.g., used in
Example 4.2 to compute qp g - ap6 from (qp e - ape + d7,12 - bjr,12)) and b.
Piggybacks (Pb). A final parity symbol for instance j € [o] is stored as a piggyback
on an initial parity symbol of instance ¢ € [such that o(i) > o(j). The piggyback
is recovered by computing and subtracting the base of the initial parity using the
data in instance ¢. E.g., this is used in Example 4.1 to compute tp 19 - bp1,19) from
(ape) - €16 + e - Pre), (A - iz + tie - brrag), and c.

Projected piggybacks (PP). A final parity symbol for instance j € [« is stored
as a piggyback on an initial parity symbol of instance ¢ € [a] with o(i) > o(j). The
base of the initial parity symbol (with support S) is projected using the data in
a subset S’ C S; the remaining part (with support S\ S’) becomes a piggyback
in the final parity symbol. In the final code, ¢ and j are swapped in the decoding
order. E.g., this is used in Example 4.2 to compute (qpi 6 - dp,e + tpe - ape) from
(tre - ape + traz - brag +ape - dpg) and b.

Linear combination (LC). A final parity symbol with support 7" is computed as
a linear combination of symbols with support S; such that 7" = (J; S;. The linear
combination is determined by the base code. E.g., this is used in Example 4.1 to
compute qi,12] - ap1,12] from qpu ¢ - ap) and qp 6 - agr,12)-

Instance reassignment (IR). During conversion, the data symbols associated to
data node i € [k]| are reassigned to instances via some permutation 7; : [a] — [a].
That is, data in the final code is interpreted as m; = (m; r,(j))j=; for 7 € [k]. This
reassignment affects the supports of parities, but it does not modify data nodes. E.g.,

this is used in Example 4.2 to exchange a and b during conversion in some nodes.

— 115 —

Chapter 4. Locally repairable convertible codes

Merge
parity

ity O
parity
oy I
parity
Figure 4.4: Parity designs. Data is shown with a dashed box; parities with a solid
box. Parities have one special block (B-block then A-block), a regular block, and a

remainder block. Numbers indicate how initial parity symbols are used in the final
parities.

We denote linear combination of multiple piggybacks as Pb+LC, e.g., as used in
the piggybacks of local parities in both examples. In diagrams, we denote the use of

IR with letters, and use the following colors to distinguish the other techniques:

EDC HPr EPb EPP @LC BEPb+LC

4.2.3 General strategy

As the output of conversion, the converter constructs new parity nodes, called target
parities. Target parities are grouped into s sets, such that parity nodes that have
the same support are in the same set. Data nodes are divided into s disjoint batches
of equal size, corresponding to the supports of the s sets of target parities. In other
words, target parities in set ¢ are in the span of batch i (¢ € [s]). E.g., in Example 4.1,
there is single target parity and s=1 set., while in Example 4.2 there are two final
parities (one in each final codeword) and thus s=2 sets.

The « instances are divided into s blocks of size B, plus a remainder block of size

R (i.e. a:= sB + R), where s, B, and R are positive integers set depending on the

— 116 —

Chapter 4. Locally repairable convertible codes

type of conversion. E.g., in Example 4.1, B=3 and R=0, while in Example 4.2 B=1
and R=2.

We refer to block i € [s] of nodes in batch i as a special block, and to blocks
Jj # i € [s]| as regular blocks. Special blocks are divided into two sub-blocks: an
accessed sub-block (A-block) of size E and an unaccessed sub-block (B-block) of size
B — E. In initial parity nodes, block i € [s] is special if its support and the data in
batch i (i.e. data in a special block i) have a non-empty intersection; otherwise, the
block is regular. Notice that for each ¢ € [s], there is a single batch whose nodes have
block ¢ as special. In particular, when s = 1, all nodes have a single special block,
and no regular blocks. E.g., in Example 4.1, each node has a single block (special)
and E=1. In Example 4.2, each node has one regular, special, and remainder block;

the special block corresponds to b and E=0.

4.2.4 Design of parities and conversion

We describe three types of parity design: merge parities, split parities, and unchanged
parities (see Figure 4.4). In each design, we describe the techniques associated which
each symbol.

During conversion, for each batch, the converter downloads all symbols in regular
blocks and A-blocks of data nodes (i.e. B-blocks and remainder blocks are not read).
In addition, the converter downloads symbols from initial parities and uses them as
specified by the parity type. To ensure the final code has optimal distance, each initial
parity symbol is used in constructing at most one final parity symbol (which avoids
linear dependencies that reduce distance). Thus, we assign at most one technique
to each initial parity symbol. In addition, piggybacks in local parities must be a
function of data in their local group, and piggybacks in global parities must be a
functions of the data in their codeword.

In all parity types, A-blocks and regular blocks are designed the same way: these
blocks use Pb or Pb+LC. For symbols in these blocks, all data in their supports is
read during conversion, and so piggybacks in them can be recovered. Piggybacks in

A-blocks are chosen as parity symbols of instances in the corresponding B-blocks;

- 117 —

Chapter 4. Locally repairable convertible codes

piggybacks from regular blocks are chosen as parity symbols of instances in the
remainder block. Target parity symbols that are a function of data in A-blocks or

regular blocks use DC.

Merge parities: This design is used for parities whose support is a strict subset
of the support of a target parity. E.g., in Example 4.1 the initial global parities are
merge parities. When oyq > d¥', the B-block and remainder block of target parities
can be fully constructed via LC of initial parity symbols in the respective blocks.
Otherwise, we use LC to construct the B-block and remainder block of some target
parities, and use Pb or Pb+LC from A-blocks and regular blocks for other target

parities.

Split parities: This design is used for parities whose support is a strict superset of
the support of a target parity. E.g., in Example 4.2 the initial global parities are split
parities. The remainder block of split parities is unused. When o34 > d¥, then the
B-block of target parities can be fully constructed via Pr of split parities in B-blocks.
If 03q > d¥, the rest of the initial parity symbols in B-blocks use PP to construct
final parity symbols in a remainder block. When o34 < d¥’, the whole B-block of split
parities uses Pr. The rest of the final parity symbols in the B-block use Pb from
A-blocks.

Unchanged parities: Both B-blocks and remainder blocks are unused. E.g., in
both examples local parities are unchanged parities. This type of parity can be kept

in the final code.

4.2.5 Instance reassighment

In conversions where the number of codewords increases, we have to ensure that
final codewords use the same code. Otherwise, systems would need to keep extra
metadata for each codeword, which induces extra complexity and overhead. The

template described so far does not meet this requirement:we use IR to correct this.

— 118 —

Chapter 4. Locally repairable convertible codes
Let batch(i) := {(Z%)SJ For data node 7, we use permutation:

) ((j —batch(i)B — 1) mod sB) + 1, if j < sB,
Ti\J) =
7, otherwise.

Theorem 4.1. The construction template presented in this section yields codes satis-

fying properties P1-3.

Proof. By construction, the initial and final base codes satisfy P1 and P2. Therefore,
we must first show that after adding the piggybacks, the codes retain these properties.
Then, we must show that the construction template indeed describes a conversion
procedure from the initial code to the final code (P3).

For the first part, it suffices to show that there are valid decoding orders for the
initial and final code. This, and the restriction that the support of a piggyback must
be contained in the support of its node, ensure that P1 and P2 still hold. This is
because the decoding order can be used to remove piggybacks both in local decoding
and global decoding. Given the design of piggybacks, the following is always a
decoding order in the initial code: remainder block, B-blocks, A-blocks. The decoding
order in the final code is different only when projected piggybacks are used: in this
case, the projected piggybacks (which are part of the remainder block) are decoded
after the B-blocks. Notice that IR has no impact the validity of this order, as the
relative order of blocks does not matter (as long as the B-blocks are decoded before
the corresponding A-blocks).

For the second part, we note that, by construction, the amount of downloaded
symbols is sufficient for generating the target parities. Similarly, the design of initial
parities is chosen so that generated symbols have the same support as the target
parities. Therefore, we must only prove that the different techniques are capable of

producing the required final symbols:
DC) Can construct any arbitrary function of the data.
Pb) Given the support of the piggyback, the piggybacking functions are arbitrary,

and can thus construct any final symbol.

— 119 —

Chapter 4. Locally repairable convertible codes

Pr) When this technique is used, an initial parity symbol is projected onto
the space spanned by a single batch. By the properties of systematic
Vandermonde codes (Section 4.1.1) and basic pyramid codes (Section 4.1.2),
the projected symbol can be scaled to obtain the symbol of the target parity.

LC) Similar to the Pr case, the properties of the systematic Vandermonde base
code make it possible to obtain the symbols of the target parity by linear

combination.

PP) This case follows from the Pr and Pb cases. Notice that, as a consequence
of Pr, a scaling factor might be applied to the piggyback during conversion.
However, since the piggyback is arbitrary, the inverse of the scaling factor
can be pre-applied to the piggyback, in order to obtain the desired piggyback

after conversion.

Pb+LC) Follows directly from case Pb and LC.

4.3 Conversion of global parameters

In this section, we describe constructions where both k and ¢ vary, with r and /¢
constant. These conversions are useful to alter the durability of the code. In particular,
we explore two types: global merge conversions, which combine multiple codewords
into one; and global split conversions, which divide one codeword into multiple. In

both types, g changes arbitrarily.

One way to achieve these conversions is to ignore local parities, and use existing
constructions for MDS codes [101, 102]. The new constructions also use local parities
in conversion, and thus can reduce the conversion bandwidth compared to previous

constructions.

— 120 —

Chapter 4. Locally repairable convertible codes

4.3.1 Global merge conversion

In global merge conversions, A’ > 2 codewords are merged into one, i.e. k' = M k!,

Local parities are designed as unchanged parities, and global parities as merge parities.

Theorem 4.2. The construction presented in this section achieves the following

conversion bandwidth:

I({ (E+mlo)(g"—g")
)\(9F+Z ’

ﬁ/ =
+ gI), otherwise.

[]

We present the proof for this theorem after describing the construction. It is
worth noting that this construction generalizes the MDS construction (¢ = 0).
Case ¢ < g': Conversion is carried out using only global parities, as in the MDS

case [101].

Case g > ¢g': In this construction (see Figure 4.5), we set:
s=1, B=g¢"+(¢, R=0, E=g4"-4"

During conversion, LC is used in the global parities to construct symbols in the first
g’ final global parities. The rest of the final symbols are constructed via Pb, Pb+LC,
or DC.

Proof of Theorem 4.2. In the case where g < ¢!, only g% global parities from each
of the M initial codewords need to be read, and the final global parities are computed
via LC. Thus, v = Mg

When ¢ > ¢', we download the full ¢’ parities from each of the A initial
codewords, and E symbols from data nodes and local parities. When normalized, the
conversion bandwidth from global parities is 1 from each of the A g’ global parities,

gF —g!

L, from each of the AM'k! data nodes and \'m¢ local parity nodes. O

and

— 121 —

Chapter 4. Locally repairable convertible codes

m groups ~ \'m groups 3

7)

T B-LEFE ~ §S
o N r Q
=r 2
) /)
o J T
o o
@) (®)
=9 . F ©
p= 9 £
= 1\1 -
= = M\ codewords

Figure 4.5: Global merge conversion (r = %, M =2 and ¢' < g").

4.3.2 Global split conversion

In global split conversions, a single initial codeword is split into A > 2, i.e. kT = AL

Local parities are designed as unchanged parities, and global parities as split parities.

Theorem 4.3. The construction presented in this section achieves the following

conversion bandwidth:

F_F AF=1)(E"+mP0)+g’ B I

~ /\ g (AFfl)gFJrgI‘i»e(AFgl)’ ng S g,
TN Mg (R 4mP O (A gF —g")+gTg") :

otherwise.

AEgE (gF+0)—g't ’
[-]

We present the proof for this theorem after describing the construction. It is
worth noting that this construction generalizes the MDS construction (¢ = 0).

Case g’ > g”': Variables are set as follows (see Figure 4.6):
s=XN, B=g" R=(\'—-1)+¢"—¢", E=0.

The first g¥" global parities use Pr to construct symbols in the final global parities;
the remaining initial global parities use PP to construct symbols in remainder blocks.

Local parities use Pb+LC to construct symbols from remainder blocks.

— 122 —

Chapter 4. Locally repairable convertible codes

BBB R \,\%gmum\

>
~ 3
>
o
(@]
D%

Final codewords

Initial codeword

codewords

gI

Figure 4.6: Global split conversion (r = %, M= 3, and ¢' > g).

Case g’ < g!': We set the construction variables as follows:
s=A" B=(¢")? R=Mtg" g, E=g"(¢" —¢").

During conversion, initial global parities use Pr to construct symbols for the B-blocks
of the first g global parities in each final codeword. The rest of the symbols are
constructed via Pb and Pb+LC from the A-blocks. The remainder block of final

global parities is constructed via Pb+LC on local parities.

Proof of Theorem 4.3. In the case where ¢ < ¢, we download sB symbols from
each global parity node, and (s — 1)B + E from each data and local parity. The size

of each node is &« = sB + R. In terms of conversion bandwidth, this is

sB A gt
sB+R (A —1)({+gF)+ ¢!

— 123 —

Chapter 4. Locally repairable convertible codes

from each of the ¢’ global parities, and

(s—1)B+E (A —1)g"
sB+R (A =1 +gF)+g4!

from each of the A'k¥" data nodes, and each of the A¥'mf'¢ local parities. With some
arithmetic manipulation, this yields the amount in the theorem.

In the case where g > ¢!, we download sB from each global parity node, and
(s —1)B + E from data and local parity nodes. The size of each node is o = sB + R.

In terms of conversion bandwidth, this is

sB A (gF)?
sB+ R MgF(gF+10)—glt

from each of the g’ global parities, and

(s—DB+E _ (A" =DA(g")* +4"(¢" —g")
sB+ R AgF (gt 4+ 0) — gt

from each of the Af'kf" data nodes, and each of the \¥'m®¢ local parities. With some

arithmetic manipulation, this yields the amount in the theorem. O

— 124 —

Chapter 5

Designing distributed storage systems

for code conversion

This chapter is based on work from [15], done in collaboration with Saurabh Kadekods,
Suhas Jayaram Subramanya, Juncheng Yang, K. V. Rashmi, and Gregory R. Ganger;
and [120], done in collaboration with Saurabh Kadekodi, Sanjith Athlur, Arif Merchant,
K. V. Rashmi and Gregory R. Ganger.

So far, our work in this thesis has concentrated on designing erasure codes to make
code conversion more efficient. However, the design of a fully-fledged distributed
storage system encompasses much more than the erasure codes. Commonly used
distributed storage systems (such as HDF'S [11]) are not designed with code conversion
in mind: it needs to be manually performed by the user, and it can only be performed
by reading, re-encoding, and rewriting the data. In this chapter, we propose two
novel designs for distributed storage systems which automatically adapt to changes
in disk failure rates using code conversion. By adapting in this way, these systems
are able to achieve lower storage overhead than a classical distributed storage system
without compromising reliability.

The first system of this kind to be proposed was HeART (Heterogeneity-Aware
Redundancy Tuner) [1]. The main feature of HeART is its ability to automatically
detect changes in device failure rates and re-encode data based on that. However, the

main disadvantage of HeART is that the work that results from re-encoding the data

— 125 —

Chapter 5. Designing systems for code conversion

(i.e. reading, re-computing parities, and writing them) can overwhelm the cluster for
long periods of time.

The first system that we propose, Pacemaker, solves this challenge by dividing
disks into groups with similar failure rates, and then placing data strictly within
groups. By doing this, Pacemaker can monitor the failure rate trends of disks and
proactively re-encode data so as to avoid large bursts of 10 usage. However, in real
systems, data placement is already very constrained by a lot of factors. Thus, it is not
ideal to have additional placement constraints imposed by the system. The second
system that we propose, Tiger, does not impose any additional constraints on data
placement. Instead, it uses more advanced reliability models that take failure rate
heterogeneity into account. This allows Tiger to monitor the reliability of data on a
finer grain. This fine-grain monitoring, coupled with the diversity that results from
unconstrained placement, naturally results into more gradual re-encodings without

large bursts of work.

5.1 Pacemaker: avoiding HeART attacks in storage

clusters

Distributed storage systems use data redundancy to protect data in the face of disk
failures [8, 121, 122]. While it provides resilience, redundancy imposes significant
cost overhead. Most large-scale systems today erasure code most of the data stored,
instead of replicating, which helps to reduce the space overhead well below 100% [10,
112, 121, 123-125]. Despite this, space overhead remains a key concern in large-scale
systems since it directly translates to an increase in the number of disks and the
associated increase in capital, operating and energy costs [10, 112, 121, 125].
Storage clusters are made up of disks from a mix of makes/models acquired
over time, and different makes/models have highly varying failure rates [1, 126, 127].
Despite that, storage clusters employ a “one-size-fits-all-disks” approach to choosing
redundancy levels, without considering failure rate differences among disks. Hence,

space overhead is often inflated by overly conservative redundancy levels, chosen to

— 126 —

Chapter 5. Designing systems for code conversion

;\3 100 o
g Bl [Tyansition 10 Num disks (right axis) 350K-§
o 75f c
© 250K 2

0n
g 50 2
o 150K 2
— 25t =
I i l {50k 5
|2 0 * T T =z

2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
(a) Transition IO for HeART [1] on Google Clusterl.

<100 o
< Bl Transition 10 ---- Transition 10 cap 1350K-S
? 751 Num disks (right axis) S50k 5
g 50¢ 9
o 150K 2
— 25t c
1 150K 5
= == == _—r N reviule =2

1 T T - T A
2017-06 2018-01 2018-06 2019-01 2019-06 2019-12
(b) Transition IO for PACEMAKER on Google Clusterl.

Figure 5.1: Fraction of total cluster IO bandwidth needed to use disk-adaptive
redundancy for a Google storage cluster’s first three years. The state-of-the-art
proposal [1] shown in (a) would require up to 100% of the cluster bandwidth for
extended periods, whereas PACEMAKER shown in (b) always fits its IO under a cap
(5%). The light gray region shows the disk count (right Y-axis) over time.

ensure sufficient protection for the most failure-prone disks in the cluster. Although
tempting, the overhead cannot be removed by using very “wide” codes (which
can provide high reliability with low storage overhead) for all data, due to the
prohibitive reconstruction cost induced by the most failure-prone disks (more details
in Section 5.2). An exciting alternative is to dynamically adapt redundancy choices
to observed failure rates (AFRs)! for different disks, which recent proposals suggest
could substantially reduce the space overhead [1].

Adapting redundancy involves dynamic transitioning of redundancy schemes,
because AFRs must be learned from observation of deployed disks and because
AFRs change over time due to disk aging. Changing already encoded data from one

redundancy scheme to another, for example from an erasure code with parameters

LAFR describes the expected fraction of disks that experience failure in a typical year.

- 127 —

Chapter 5. Designing systems for code conversion

ki-of-ny to ke-of-ny (where k-of-n denotes k data chunks and n — k parity chunks;
more details in Section 5.2), can be exorbitantly IO intensive. Existing designs for
disk-adaptive redundancy are rendered unusable by overwhelming bursts of urgent
transition IO when applied to real-world storage clusters. Indeed, as illustrated in
Figure 5.1a, our analyses of production traces show extended periods of needing
100% of the cluster’s 10 bandwidth for transitions. We refer to this as the transition
overload problem. At its core, transition overload occurs whenever an observed AFR
increase for a subset of disks requires too much urgent transition IO in order to
keep data safe. Existing designs for disk-adaptive redundancy perform redundancy
transitions as a reaction to AFR changes. Since prior designs are reactive, for an
increase in AFR, the data is already under-protected by the time the transition
to increase redundancy is issued. And it will continue to be under-protected until
that transition completes. For example, around 2019-09 in Figure 5.1a, data was
under-protected for over a month, even though the entire cluster’s IO bandwidth was
used solely for redundancy transitions. Simple rate-limiting to reduce urgent bursts
of 10 would only exacerbate this problem causing data-reliability goals to be violated
for even longer.

To understand the causes of transition overload and inform solutions, we analyse
multi-year deployment and failure logs for over 5.3 million disks from Google, Net App
and Backblaze. Two common transition overload patterns are observed. First,
sometimes disks are added in tens or hundreds over time, which we call trickle
deployments. A statistically confident AFR observation requires thousands of disks.
Thus, by the time it is known that AFR for a specific make/model and age is too high
for the redundancy used, the oldest thousands of that make/model will be past that
age. At that point, all of those disks need immediate transition. Second, sometimes
disks are added in batches of many thousands, which we call step deployments. Steps
have sufficient disks for statistically confident AFR estimation. However, when a step
reaches an age where the AFR is too high for the redundancy used, all disks of the
step need immediate transition.

In this chapter we introduce PACEMAKER, a new disk-adaptive redundancy orches-

tration system that exploits insights from the aforementioned analyses to eliminate

— 128 —

Chapter 5. Designing systems for code conversion

the transition overload problem. PACEMAKER proactively organizes data layouts to
enable efficient transitions for each deployment pattern, reducing total transition
10 by over 90%. Indeed, by virtue of its reduced total transition I0, PACEMAKER
can afford to use extra transitions to reap increased space-savings. PACEMAKER. also
proactively initiates anticipated transitions sufficiently in advance that the resulting
transition IO can be rate-limited without placing data at risk. Figure 5.1b provides
a peek into the final result: PACEMAKER achieves disk-adaptive redundancy with
substantially less total transition IO and never exceeds a specified transition IO cap
(5% in the graph).

We evaluate PACEMAKER using logs containing all disk deployment, failure, and
decommissioning events from four production storage clusters: three 160K-450K-disk
Google clusters and a ~110K-disk cluster used for the Backblaze Internet backup
service [128]. On all four clusters, PACEMAKER provides disk-adaptive redundancy
while using less than 0.4% of cluster IO bandwidth for transitions on average, and
never exceeding the specified rate limit (e.g., 5%) on 10 bandwidth. Yet, despite its
proactive approach, PACEMAKER loses less than 3% of the space-savings as compared
to to an idealized system with perfectly-timed and instant transitions. Specifically,
PACEMAKER provides 14-20% average space-savings compared to a one-size-fits-all-
disks approach, without ever failing to meet the target data reliability and with no
transition overload. We note that this is substantial savings for large-scale systems,
where even a single-digit space-savings is worth the engineering effort. For example,
in aggregate, the four clusters would need ~200K fewer disks.

We also implement PACEMAKER in HDFS, demonstrating that PACEMAKER’S
mechanisms fit into an existing cluster storage system with minimal changes. Comple-
menting our longitudinal evaluation using traces from large scale clusters, we report
measurements of redundancy transitions in PACEMAKER-enhanced HDFS via small-
scale cluster experiments. A prototype of HDFS with Pacemaker is open-sourced and
is available at https://github.com/thesys-lab/pacemaker-hdfs.git.

The first part of this chapter (Sections 5.1 to 5.9) is dedicated to PACEMAKER, and
it makes five primary contributions. First, it demonstrates that transition overload is a

roadblock that precludes use of previous disk-adaptive redundancy proposals. Second,

— 129 —

https://github.com/thesys-lab/pacemaker-hdfs.git

Chapter 5. Designing systems for code conversion

it presents insights into the sources of transition overload from longitudinal analyses
of deployment and failure logs for 5.3 million disks from three large organizations.
Third, it describes PACEMAKER'’s novel techniques, designed based on insights drawn
from these analyses, for safe disk-adaptive redundancy without transition overload.
Fourth, it evaluates PACEMAKER’s policies for four large real-world storage clusters,
demonstrating their effectiveness for a range of deployment and disk failure patterns.
Fifth, it describes integration of and experiments with PACEMAKER'’s techniques in
HDFS, demonstrating their feasibility, functionality, and ease of integration into a

cluster storage implementation.

5.2 Whither disk-adaptive redundancy

Cluster storage systems and data reliability. Modern storage clusters scale to
huge capacities by combining up to hundreds of thousands of storage devices into
a single storage system [8, 122, 129]. In general, there is a metadata service that
tracks data locations (and other metadata) and a large number of storage servers
that each have up to tens of disks. Data is partitioned into chunks that are spread
across storage servers/devices. Although hot/warm data is now often stored on Flash
SSDs, cost considerations lead to the majority of data continuing to be stored on
mechanical disks (HDDs) for the foreseeable future [130-132]. For the rest of the

chapter, any reference to a “device” or “disk” implies HDDs.

Disk failures are common and storage clusters use data redundancy to protect
against irrecoverable data loss in the face of disk failures [8, 10, 12, 112, 125, 127, 128].
For hot data, often replication is used for performance benefits. But, for most bulk
and colder data, cost considerations have led to the use of erasure coding schemes.
Under a k-of-n coding scheme, each set of k£ data chunks are coupled with n-k “parity
chunks” to form a “stripe”. A k-of-n scheme provides tolerance for up to (n — k)
failures with a space overhead of 7. Thus, erasure coding achieves substantially lower
space overhead for tolerating a given number of failures. Schemes like 6-0f-9 and

10-0f-14 are commonly used in real-world deployments [12, 112, 121, 125]. Under

— 130 —

Chapter 5. Designing systems for code conversion

erasure coding, additional work is involved in recovering from a device failure. To
reconstruct a lost chunk, &£ remaining chunks from the stripe must be read.

The redundancy scheme selection problem. The reliability of data stored
redundantly is often quantified as mean-time-to-data-loss (MTTDL) [133], which
essentially captures the average time until more than the tolerated number of chunks
are lost. MTTDL is calculated using the disks’ AFR and its mean-time-to-repair
(MTTR).

Large clusters are built over time, and hence usually consist of a mix of disks
belonging to multiple makes/models depending on which options were most cost
effective at each time. AFR values vary significantly between makes/models and
disks of different ages [1, 126, 127, 134]. Since disks have different AFRs, computing
MTTDL of a candidate redundancy scheme for a large-scale storage cluster is often
difficult.

The MTTDL equations can still be used to guide decisions, as long as a sufficiently
high AFR value is used. For example, if the highest AFR value possible for any
deployed make/model at any age is used, the computed MTTDL will be a lower
bound. So long as the lower bound on MTTDL meets the target MTTDL, the data
is adequately reliable. Unfortunately, the range of possible AFR values in a large
storage cluster is generally quite large (over an order of magnitude) [1, 126, 127, 135].
Since the overall average is closer to the lower end of the AFR range, the highest
AFR value is a conservative over-estimate for most disks. The resulting MTTDLs are
thus loose lower bounds, prompting decision-makers to use a one-size-fits-all scheme
with excessive redundancy leading to wasted space.

Using wide schemes with large number of parities (e.g., 30-0f-36) can achieve the
desired MTTDL while keeping the storage overhead low enough to make disk-adaptive
redundancy appear not worth the effort. But, while this might seem like a panacea,
wide schemes in high-AFR regimes cause significant increase in failure reconstruction
IO traffic. The failure reconstruction 10 is derived by multiplying the AFR with
the number of data chunks in each stripe. Thus, if either of these quantities are
excessively high, or both are moderately high, it can lead to overwhelmingly high

failure reconstruction 10. In addition, wide schemes also result in higher tail latencies

— 131 —

Chapter 5. Designing systems for code conversion

for individual disk reconstructions because of having to read from many more disks.
Combined, these reasons prevent use of wide schemes for all data all the time from
being a viable solution for most systems.

Disk-adaptive redundancy. Since the problem arises from using a single AFR
value, a promising alternative is to adapt redundancy for subsets of disks with similar
AFRs. A recent proposal, heterogeneity-aware redundancy tuner (HeART) [1], sug-
gests treating subsets of deployed disks with different AFR characteristics differently.
Specifically, HeART adapts redundancy of each disk by observing its failure rate
on-the-fly? depending on its make/model and its current age. It is well known that
AFR of disks follow a “bathtub” shape with three distinct phases of life: AFR is
high in “infancy” (1-3 months), low and stable during its “useful life” (3-5 years),
and high during the “wearout” (a few months before decommissioning). HeART uses
a default (one-size-fits-all) redundancy scheme for each new disk’s infancy. It then
dynamically changes the redundancy to a scheme adapted to the observed useful life
AFR for that disk’s make/model, and then dynamically changes back to the default
scheme at the end of useful life. The per-make/model useful life redundancy schemes
typically have much lower space overhead than the default scheme. This suggests the
ability to maintain target MTTDL with many fewer disks (i.e., lower cost).

Although exciting, the design of HeART overlooks a crucial element: the 1O cost
associated with changing the redundancy schemes. Changing already encoded data
under one erasure code to another can be exorbitantly IO intensive. Indeed, our
evaluation of HeART on real-world storage cluster logs reveal extended periods where
data safety is at risk and where 100% cluster 10 bandwidth is consumed for scheme
changes. We call this problem transition overload.

An enticing solution that might appear to mitigate transition overload is to adapt
redundancy schemes only by removing parities in low-AFR regimes and adding parities
in high-AFR regimes. While this solution eliminates transition IO when reducing
the level of redundancy, it does only marginally better when redundancy needs to
be increased, because new parity creation cannot avoid reading all data chunks from

2Although it may be tempting to use AFR values taken from manufacturer’s specifications, several
studies have shown that failure rates observed in practice often do not match those [127, 134, 135].

— 132 —

Chapter 5. Designing systems for code conversion

each stripe. What makes this worse is that transitions that increase redundancy are
time-critical, since delaying them would miss the MTTDL target and leave the data
under-protected. Moreover, addition/removal of a parity chunk massively changes
the stripe’s MTTDL compared to addition/removal of a data chunk. For example, a
6-of-9 MTTDL is 10000x higher than 6-of-8 MTTDL, but is only 1.5x higher than
7-0f-10 MTTDL. AFR changes would almost never be large enough to safely remove
a parity, given default schemes like 6-0f-9, eliminating almost all potential benefits of
disk-adaptive redundancy.

This chapter analyzes disk deployment and failure data from large-scale production
clusters to discover sources of transition overload and informs the design of a solution.
It then describes and evaluates PACEMAKER, which realizes the dream of safe disk-

adaptive redundancy without transition overload.

5.3 Longitudinal production trace analyses

This section presents an analysis of multi-year disk reliability logs and deployment
characteristics of 5.3 million HDDs, covering over 60 makes/models from real-world
environments. Key insights presented here shed light on the sources of transition
overload and challenges/opportunities for a robust disk-adaptive redundancy solution.

The data. Our largest dataset comes from NetApp and contains information
about disks deployed in filers (file servers). Each filer reports the health of each
disk periodically (typically once a fortnight) using their AutoSupport [136] system.
We analyzed the data for a subset of their deployed disks, which included over 50
makes/models and over 4.3 million disks total. As observed in previous studies [1,
127, 134], we observe well over an order of magnitude difference between the highest
and lowest useful-life AFRs (see Figure 5.2a).

Our other datasets come from large storage clusters deployed at Google and the
Backblaze Internet backup service. Although the basic disk characteristics (e.g.,
AFR heterogeneity and its behavior discussed below) are similar to the NetApp

dataset, these datasets also capture the evolution and behavior in our target context

— 133 —

Chapter 5. Designing systems for code conversion

101 4

AFR (%)

107t 4T

[0, 3) [3, 4) [4,5) [5, 6)
Age of oldest disk (years)

(a) Spread of make/model AFRs

J==csaoH H _ H
0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 45 5.0 5.5
Age (years)

(b) AFR distribution over disk life

Tolerance: AFR ratio (max / min)

=
N_
w_
g

5 12345 12345 Age
Number of useful life phases

(c) Approximate useful-life length

Figure 5.2: (a) AFR spread for over 50 makes/models from NetApp binned by the
age of the oldest disk. Each box corresponds to a unique make/model, and at least
10000 disks of each make/model were observed (outlier AFR values omitted). (b)
Distribution of AFR calculated over consecutive non-overlapping six-month periods
for NetApp disks, showing the gradual rise of AFR with age (outliers omitted). (c)
Approximation of useful life length for NetApp disks for 1-5 consecutive phases of
useful life and three different tolerance levels.

— 134 —

Chapter 5. Designing systems for code conversion

(large-scale storage clusters), and thus are also used in the evaluation detailed in
(Section 5.7). The particular Google clusters were selected based on their longitudinal
data availability, but were not otherwise screened for favorability.

For each cluster, the multi-year log records (daily) all disk deployment, failure,
and decommissioning events from birth of the cluster until the date of the log
snapshot. Google Clusterl’s disk population over three years included ~350K disks
of 7 makes/models. Google Cluster2’s population over 2.5 years included ~450K
disks of 4 makes/models. Google Cluster3’s population over 3 years included ~160K
disks of 3 makes/models. The Backblaze cluster’s population since 2013 included
~110K disks of 7 makes/models.

5.3.1 Causes of transition overload

Disk deployment patterns. We observe disk deployments occurring in two distinct
patterns, which we label trickle and step. Trickle-deployed disks are added to a
cluster frequently (weekly or even daily) over time by the tens and hundreds. For
example, the slow rise in disk count seen between 2018-01 and 2018-07 in Figure 5.1
represents a series of trickle-deployments. In contrast, a step-deployment introduces
many thousands of disks into the cluster “at once” (over a span of a few days),
followed by potentially months of no new step-deployments. The sharp rises in disk
count around 2017-12 and 2019-11 in Figure 5.1 represent step-deployments.

A given cluster may be entirely trickle-deployed (like the Backblaze cluster),
entirely step-deployed (like Google Cluster2), or a mix of the two (like Google
Clusterl and Cluster3). Disks of a step are typically of the same make/model.

Learning AFR curves online. Disk-adaptive redundancy involves learning
the AFR curve for each make/model by observing failures among deployed disks of
that make/model. Because AFR is a statistical measure, the larger the population of
disks observed at a given age, the lower is the uncertainty in the calculated AFR at
that age. We have found that a few thousand disks need to be observed to obtain
sufficiently accurate AFR measurements.

Transition overload for trickle-deployed disks. Since trickle-deployed disks

— 135 —

Chapter 5. Designing systems for code conversion

are deployed in tiny batches over time, several months can pass before the required
number of disks of a new make/model are past any given age. Thus, by the time the
required number of disks can be observed at the age that is eventually identified as
having too-high an AFR and requiring increased redundancy, data on the older disks
will have been left under-protected for months. And, the thousands of already-older
disks need to be immediately transitioned to a stronger redundancy scheme, together
with the newest disks to reach that age. This results in transition overload.
Transition overload for step-deployed disks. Assuming that they are of the
same make/model, a batch of step-deployed disks will have the same age and AFR,
and indeed represent a large enough population for confident learning of the AFR
curve as they age. But, this means that all of those disks will reach AFR values
together, as they age. So, when their AFR rises to the point where the redundancy
must be increased to keep data safe, all of the disks must transition together to
the new safer redundancy scheme. Worse, if they are the first disks of the given
make/model deployed in the cluster, which is often true in the clusters studied, then
the system adapting the redundancy will learn of the need only when the age in
question is reached. At that point, all data stored on the entire batch of disks is

unsafe and needs immediate transitioning. This results in transition overload.

5.3.2 Informing a solution

Analyzing the disk logs has exposed a number of observations that provide hope and
guide the design of PACEMAKER. The AFR curves we observed deviate substantially
from the canonical representation where infancy and wearout periods are identically
looking and have high AFR values, and AFR in useful life is flat and low throughout.

AFRs rise gradually over time with no clear wearout. AFR curves generally
exhibit neither a flat useful life phase nor a sudden transition to so-called wearout.
Rather, in general, it was observed that AFR curves rise gradually as a function of disk
age. Figure 5.2b shows the gradual rise in AFR over six month periods of disk lifetimes.
Each box represents the AFR of disks whose age corresponds to the six-month period

denoted along the X-axis. AFR curves for individual makes/models (e.g., Figures 5.5b

— 136 —

Chapter 5. Designing systems for code conversion

and 5.5¢) are consistent with this aggregate illustration. Importantly, none of the
over 60 makes/models from Google, Backblaze and NetApp displayed sudden onset

of wearout.

Gradual increases in AFR, rather than sudden onset of wearout, suggests that one
could anticipate a step-deployed batch of disks approaching an AFR threshold. This

is one foundation on which PACEMAKER’s proactive transitioning approach rests.

Useful life could have multiple phases. Given the gradual rise of AFRs, useful
life can be decomposed into multiple, piece-wise constant phases. Figure 5.2¢ shows
an approximation of the length of useful life when multiple phases are considered.
Each box in the figure represents the distribution over different make/models of the
approximate length of useful life. Useful life is approximated by considering the
longest period of time which can be decomposed into multiple consecutive phases
(number of phases indicated by the bottom X-axis) such that the ratio between the
maximum and minimum AFR in each phase is under a given tolerance level (indicated
by the top X-axis). The last box indicates the distribution over make/models of the
age of the oldest disk, which is an upper bound to the length of useful life. As shown
by Figure 5.2¢, the length of useful life can be significantly extended (for all tolerance
levels) by considering more than one phase. Furthermore, the data show that a small
number of phases suffice in practice, as the approximate length of useful life changes

by little when considering four or more phases.

Infancy often short-lived. Disks may go through (potentially) multiple rounds
of so-called “burn-in” testing. The first tests may happen at the manufacturer’s site.
There may be additional burn-in tests done at the deployment site allowing most of
the infant mortality to be captured before the disk is deployed in production. For
the NetApp and Google disks, we see the AFR drop sharply and plateau by 20 days
for most of the makes/models. In contrast, the Backblaze disks display a slightly
longer and higher AFR during infancy, which can be directly attributed to their less

aggressive on-site burn-in.

PACEMAKER’s design is heavily influenced from these learnings, as will be explained

in the next section.

- 137 —

Chapter 5. Designing systems for code conversion

5.4 Design goals of PACEMAKER

PACEMAKER is an 1O efficient redundancy orchestrator for storage clusters that support
disk-adaptive redundancy. Before going into the design goals for PACEMAKER, we
first chronicle a disk’s lifecycle, introducing the terminology that will be used in the
rest of the chapter (defined in Table 5.1).

Disk lifecycle under PACEMAKER. Throughout its life, each disk under PACE-
MAKER simultaneously belongs to a Dgroup and an Rgroup. There are as many
Dgroups in a cluster as there are unique disk makes/models. Rgroups on the other
hand are a function of redundancy schemes and placement restrictions. Each Rgroup
has an associated redundancy scheme, and its data (encoded stripes) must reside
completely within that Rgroup’s disks. Multiple Rgroups can use the same redun-
dancy scheme, but no stripe may span across Rgroups. The Dgroup of a disk never
changes, but a disk may transition through multiple Rgroups during its lifetime. At
the time of deployment (or “birth”), the disk belongs to Rgroup0, and is termed
as an unspecialized disk. Disks in Rgroup0 use the default redundancy scheme, i.e.
the conservative one-scheme-fits-all scheme used in storage clusters that do not have
disk-adaptive redundancy. The redundancy scheme employed for a disk (and hence
its Rgroup) changes via transitions. The first transition any disk undergoes is an RDn
transition. A RDn transition changes the disk’s Rgroup to one with lower redundancy,
i.e. more optimized for space. Whenever the disk departs from Rgroup0, it is termed
as a specialized disk. Disks depart from Rgroup0O at the end of their infancy. Since
infancy is short-lived (Section 5.3.2), PACEMAKER only considers one RDn transition
for each disk.

The first RDn transition occurs at the start of the disk’s useful life, and marks the
start of its specialization period. As explained in Section 5.3.2, a disk may experience
multiple useful life phases. PACEMAKER performs a transition at the start of each
useful life phase. After the first (and only) RDn transition, each subsequent transition
is an RUp transition. An RUp transition changes the disk’s Rgroup to one with higher
redundancy, i.e. less optimized for space, but the disk is still considered a specialized

disk unless the Rgroup that the disk is being RUp transitioned to is Rgroup0. The

— 138 —

Chapter 5. Designing systems for code conversion

Term Definition
Dgroup Group of disks of the same make/model.
Transition The act of changing the redundancy scheme.

RDn transition
RUp transition
peak-I10-cap
Rgroup

Rgroup0
Unspecialized disks

Specialized disks
Canary disks

Transition to a lower level of redundancy.
Transition to a higher level of redundancy.

10 bandwidth cap for transitions.

Group of disks using the same redundancy
with placement restricted to the group of disks.
Rgroup using the default one-scheme-fits-all
redundancy used in storage clusters today.
Disks that are a part of Rgroup0.

Disks that are not part of Rgroup0.

First few thousand disks of a trickle-deployed

Dgroup used to learn AFR curve.

Max AFR for which redundancy scheme meets
reliability constraint.

The AFR threshold crossing which triggers

an RUp transition for step-deployed disks.

Tolerated-AFR

Threshold-AFR

Table 5.1: Definitions of PACEMAKER’s terms.

space-savings (and thus cost-savings) associated with disk-adaptive redundancy are
proportional to the fraction of life the disks remain specialized for.
Key decisions. To adapt redundancy throughout a disk’s lifecycle as chronicled

above, three key decisions related to transitions must be made
1. When should the disks transition?
2. Which Rgroup should the disks transition to?
3. How should the disks transition?

Constraints. The above decisions need to be taken such that a set of constraints
are met. An obvious constraint, central to any storage system, is that of data
reliability. The reliability constraint mandates that all data must always meet a
predefined target MTTDL. Another important constraint is the failure reconstruction
10 constraint. This constraint bounds the IO spent on data reconstruction of failed

disks, which as explained in Section 5.2 is proportional to AFR and scheme width.

— 139 —

Chapter 5. Designing systems for code conversion

This is why wide schemes cannot be used for all disks all the time, but they can be
used for low-AFR regimes of disk lifetimes (as discussed in Section 5.2).

Existing approaches to disk-adaptive redundancy make their decisions on the basis
of only these constraints [1], but fail to consider the equally important 10 caused by
redundancy transitions. Ignoring this causes the transition overload problem, which
proves to be a show-stopper for disk-adaptive redundancy systems. PACEMAKER
treats transition 1O as a first class citizen by taking it into account for each of its
three key decisions. As such, PACEMAKER enforces carefully designed constraints on
transition 10 as well.

Designing 10 constraints on transitions. Apart from serving foreground
10 requests, a storage cluster performs numerous background tasks like scrubbing
and load balancing [137-139]. Redundancy management is also a background task.
In current storage clusters, redundancy management tasks predominantly consist of
performing data redundancy (e.g. replicating or encoding data) and reconstructing
data of failed or otherwise unavailable disks. Disk-adaptive redundancy systems add
redundancy transitions to the list of IO-intensive background tasks.

There are two goals for background tasks: Goal 1: they are not too much work,
and Goal 2: they interfere as little as possible with foreground 10. PACEMAKER
applies two 1O constraints on background transition tasks to achieve these goals: (1)
average-10 constraint and (2) peak-10 constraint. The average-10 constraint achieves
Goal 1 by allowing storage administrators to specify a cap on the fraction of the 10
bandwidth of a disk that can be used for transitions over its lifetime. For example, if
a disk can transition in 1 day using 100% of its IO bandwidth, then an average-10
constraint of 1% would mean that the disk will transition at most once every 100
days. The peak-IO constraint achieves Goal 2 by allowing storage administrators to
specify the peak rate (defined as the peak-IO-cap) at which transitions can occur so as
to limit their interference with foreground traffic. Continuing the previous example,
if the peak-1O0-cap is set at 5%, the disk that would have taken 1 day to transition at
100% IO bandwidth would now take at least 20 days. The average-1O constraint and
the peak-10-cap can be configured based on how busy the cluster is. For example, a

cluster designed for data archival would have a lower foreground traffic, compared

— 140 —

Chapter 5. Designing systems for code conversion

N FS Metadata Disk health <
service monitoring service failureldata
-—] A
é & PACEMAKER AFR curve learner
P el .
2[E N Proactive- <
ol ags T € y
q_P transition-initiator | Change point
ﬁ new AFR,|disks detector
35 old AFR
© Y
8L
§ = Rgroup-planner
['4 new Rgroup, »
Wl = Jdisks <
(7] =
g < | [*[Transition-executor &
= E . . -
o IEIJJ wrate limit, 10 8
% | . Ratelimiter <
GE) 10
o - - > D> > D> > >
g EEEEEEETD

Figure 5.3: PACEMAKER architecture.

to a cluster designed for serving ads or recommendations. Thus, low-traffic clusters
can set a higher peak-IO-cap resulting in faster transitions and potentially increased

space-savings.

Design goals. The key design goals are to answer the three questions related to
transitions such that the space-savings are maximized and the following constraints
are met: (1) reliability constraint on all data all the time, (2) failure reconstruction
IO constraint on all disks all the time, (3) peak-IO constraint on all disks all the time,

and (4) average-10 constraint on all disks over time.

— 141 —

Chapter 5. Designing systems for code conversion

5.5 Design of PACEMAKER

Figure 5.3 shows the high level architecture of PACEMAKER and how it interacts
with some other components of a storage cluster. The three main components
of PACEMAKER correspond to the three key decisions that the system makes as
discussed in Section 5.4. The first main component of PACEMAKER is the proactive-
transition-initiator (Section 5.5.1), which determines when to transition disks
using the AFR curves and the disk deployment information. The information of
the transitioning disks and their observed AFR is passed to the Rgroup-planner
(Section 5.5.2), which chooses the Rgroup to which the disks should transition. The
Rgroup-planner passes the information of the transitioning disks and the target Rgroup
to the transition-executor (Section 5.5.3). The transition-executor addresses how
to transition the disks to the planned Rgroup in the most 10-efficient way.
Additionally, PACEMAKER also maintains its own metadata and a simple rate-
limiter. PACEMAKER metadata interacts with all of PACEMAKER’S components
and also the storage cluster’s metadata service. It maintains various configuration
settings of a PACEMAKER installation along with the disk deployment information
that guides transition decisions. The rate-limiter rate-limits the IO load generated
by any transition as per administrator specified limits. Other cluster components
external-to-PACEMAKER that inform it are the AFR curve learner and the change
point detector. As is evident from their names, these components learn the AFR
curve® of each Dgroup and identify change points for redundancy transitions. The
AFR curve learner receives failure data from the disk health monitoring service, which

monitors the disk fleet and maintains their vitals.

5.5.1 Proactive-transition-initiator

Proactive-transition-initiator’s role is to determine when to transition the disks. Below
we explain PACEMAKER’s methodology for making this decision for the two types of
transitions (RDn and RUp) and the two types of deployments (step and trickle).

3The AFR estimation methodology employed is detailed in Section 5.8.

— 142 —

Chapter 5. Designing systems for code conversion

Deciding when to RDn a disk

Recall that a disk’s first transition is an RDn transition. As soon as proactive-
transition-initiator observes (in a statistically accurate manner) that the AFR has
decreased sufficiently, and is stable, it performs an RDn transition from the default
scheme (i.e., from Rgroup0) employed in infancy to a more space-efficient scheme.

This is the only RDn transition in a disk’s lifetime.

Deciding when to RUp a disk

RUp transitions are performed either when there are too few disks in any Rgroup
such that data placement is heavily restricted (which we term purging an Rgroup),
or when there is a rise in AFR such that the reliability constraint is (going to be)
violated. Purging an Rgroup involves RUp transitioning all of its disks to an Rgroup
with higher redundancy. This transition isn’t an imminent threat to reliability, and
therefore can be done in a relaxed manner without violating the reliability constraint
as explained in Section 5.5.3.

However, most RUp transitions in a storage cluster are done in response to a rise
in AFR. These are challenging with respect to meeting IO constraints due to the
associated risk of violating the reliability constraints whenever the AFR rises beyond
the AFR tolerated by the redundancy scheme (termed tolerated-AFR).

In order to be able to safely rate-limit the IO load due to RUp transitions,
PACEMAKER takes a proactive approach. The key is in determining when to initiate a
proactive RUp transition such that the transition can be completed before the AFR
crosses the tolerated-AFR, while adhering to the IO and the reliability constraints
without compromising much on space-savings. To do so, the proactive-transition-
initiator assumes that its transitions will proceed as per the peak-IO constraint, which
is ensured by the transition-executor. PACEMAKER’s methodology for determining
when to initiate a proactive RUp transition is tailored differently for trickle versus for
step deployments, since they raise different challenges.

Trickle deployments. For trickle-deployed disks, PACEMAKER considers two
category of disks: (1) first disks to be deployed from any particular trickle-deployed

— 143 —

Chapter 5. Designing systems for code conversion

Dgroup, and (2) disks from that Dgroup that are deployed later.

PACEMAKER labels the first C' deployed disks of a Dgroup as canary disks, where
C' is a configurable, high enough number of disks to yield statistically significant
AFR observations. For example, based on our disk analyses, we observe that C' in
low thousands (e.g., 3000) is sufficient. The canary disks of any Dgroup are the first
to undergo the various phases of life for that Dgroup, and these observations are
used to learn the AFR curve for that Dgroup. The AFR value for the Dgroup at
any particular age is not known (with statistical confidence) until all canary disks go
past that age. Furthermore, due to the trickle nature of the deployment, the canary
disks would themselves have been deployed over weeks if not months. Thus, AFR for
the canary disks can be ascertained only in retrospect. PACEMAKER never changes
the redundancy of the canary disks to avoid them from ever violating the reliability
constraint. This does not significantly reduce space-savings, since C' is expected to
be small relative to the total number of disks of a Dgroup (usually in the tens of
thousands).

The disks that are deployed later in any particular Dgroup are easier to handle,
since the Dgroup’s AFR curve would have been learned by observing the canaries.
Thus, the date at which a disk among the later-deployed disks needs to RUp to meet
the reliability constraints is known in advance by the proactive-transition-initiator,
which it uses to issue proactive RUp transitions.

Step deployments. Recall that in a step deployment, most disks of a Dgroup
may be deployed within a few days. So, canaries are not a good solution, as they
would provide little-to-no advance warning about how the AFR curve’s rises would
affect most disks.

PACEMAKER’s approach to handling step-deployments is based on two properties:
(1) Step-deployments have a large number of disks deployed together, leading to
a statistically accurate AFR estimation; (2) AFR curves based on a large set of
disks tend to exhibit gradual, rather than sudden, AFR increases as the disk ages
(Section 5.3.2). PACEMAKER leverages these two properties to employ a simple early
warning methodology to predict a forthcoming need to RUp transition a step well in

advance. Specifically, PACEMAKER sets a threshold, termed threshold-AFR, which

— 144 —

Chapter 5. Designing systems for code conversion

is a (configurable) fraction of the tolerated-AFR of the current redundancy scheme
employed. For step-deployments, when the observed AFR crosses the threshold-AFR,

the proactive-transition-initiator initiates a proactive RUp transition.

5.5.2 Rgroup-planner

The Rgroup-planner’s role is to determine which Rgroup should disks transition to.
This involves making two interdependent choices: (1) the redundancy scheme to
transition into, (2) whether or not to create a new Rgroup.

Choice of the redundancy scheme. At a high level, the Rgroup-planner first
uses a set of selection criteria to arrive at a set of viable schemes. It further narrows
down the choices by filtering out the schemes that are not worth transitioning to
when the transition IO and IO constraints are accounted for.

Selection criteria for viable schemes. Each viable redundancy scheme has to
satisfy the following criteria in addition to the reliability constraint: each scheme (1)
must satisfy the minimum number of simultaneous failures per stripe (i.e., n — k);
(2) must not exceed the maximum allowed stripe dimension (k); (3) must have its
expected failure reconstruction 10 (AFR x k x disk-capacity) be no higher than
was assumed possible for Rgroup0 (since disks in Rgroup0 are expected to have the
highest AFR); (4) must have a recovery time in case of failure (MTTR) that does not
exceed the maximum MTTR (set by the administrator when selecting the default
redundancy scheme for Rgroup0).

Determining if a scheme is worth transitioning to. Whether the 10 cost of
transitioning to a scheme is worth it or not and what space-savings can be achieved
by that transition is a function of the number of days disks will remain in that scheme
(also known as disk-days). This, in turn, depends on (1) when the disks enter the new
scheme, and (2) how soon disks will require another transition out of that scheme.

The time it takes for the disks to enter the new scheme is determined by the
transition IO and the rate-limit. When the disks will transition out of the target
Rgroup is dependent on the future and can only be estimated. For this estimation,

the Rgroup-planner needs to estimate the number of days the AFR curve will remain

— 145 —

Chapter 5. Designing systems for code conversion

below the threshold that forces a transition out. This needs different strategies for
the two deployment patterns (trickle and step).

Recall that PACEMAKER knows the AFR curve for trickle-deployed disks (from
the canaries) in advance. Recall that step-deployed disks have the property that the
AFR curve learned from them is statistically robust and tends to exhibit gradual, as
opposed to sudden AFR increases. The Rgroup-planner leverages these properties to
estimate the future AFR behavior based on the recent past. Specifically, it takes the
slope of the AFR curve in the recent past® and uses that to project the AFR curve
rise in the future.

The number of disk-days in a scheme for it to be worth transitioning to is dictated
by the IO constraints. For example, let us consider a disk running under PACEMAKER
that requires a transition, and PACEMAKER is configured with an average-10 constraint
of 1% and a peak-IO-cap of 5%. Suppose the disk requires 1 day to complete its
transition at 100% IO bandwidth. With the current settings, PACEMAKER will only
consider an Rgroup worthy of transitioning to (assuming it is allowed to use all
5% of its IO bandwidth) if at least 80 disk-days are spent after the disk entirely
transitions to it (since transitioning to it would take up to 20 days at the allowed 5%
IO bandwidth).

From among the viable schemes that are worth transitioning to based on the
IO constraints, the Rgroup-planner chooses the one that provides the highest space-
savings.

Decision on Rgroup creation. Rgroups cannot be created arbitrarily. This is
because every Rgroup adds placement restrictions, since all chunks of a stripe have to
be stored on disks belonging to the same Rgroup. Therefore, Rgroup-planner creates
a new Rgroup only when (1) the resulting placement pool created by the new Rgroup
is large enough to overcome traditional placement restrictions such as “no two chunks
on the same rack®”, and (2) the space-savings achievable by the chosen redundancy

scheme is sufficiently greater than using an existing (less-space-efficient) Rgroup.

YPACEMAKER uses a 60 day (configurable) sliding window with an Epanechnikov kernel, which
gives more weight to AFR changes in the recent past [140].
SInter-cluster fault tolerance remains orthogonal to and unaffected by PACEMAKER.

— 146 —

Chapter 5. Designing systems for code conversion

The disk deployment pattern also affects Rgroup formation. While the rules for
whether to form an Rgroup remain the same for trickle and step-deployed disks,
mixing disks deployed differently impacts the transitioning techniques that can be
used for eventually transitioning disks out of that Rgroup. This in turn affects
how the IO constraints are enforced. Specifically, for trickle deployments, creating
an Rgroup for each set of transitioning disks would lead to too many small-sized
Rgroups. So, for trickle-deployments, the Rgroup-planner creates a new Rgroup for a
redundancy scheme if and only if one does not exist already. Creating Rgroups this
way will also ensure that enough disks (thousands) will go into it to satisfy placement
restrictions. Mixing disks from different trickle-deployments in the same Rgroup
does not impact the IO constraints, because PACEMAKER optimizes the transition
mechanism for few disks transitioning at a time, as is explained in Section 5.5.3. For
step-deployments, due to the large fraction of disks that undergo transition together,
having disks from multiple steps, or mixing trickle-deployed disks within the same
Rgroup, creates adverse interactions (discussed in Section 5.5.3). Hence, the Rgroup-
planner creates a new Rgroup for each step-deployment, even if there already exists
one or more Rgroups that employ the chosen scheme. Each such Rgroup will contain
many thousands of disks to overcome traditional placement restrictions. Per-step
Rgroups also extend to the Rgroup with default redundancy schemes, implying a
per-step Rgroup0. Despite having clusters with disk populations as high as 450K
disks, PACEMAKER's restrained Rgroup creation led to no cluster ever having more

than 10 Rgroups.

Rules for purging an Rgroup. An Rgroup may be purged for having too few
disks. This can happen when too many of its constituent disks transition to other
Rgroups, or they fail, or they are decommissioned leading to difficulty in fulfilling
placement restrictions. If the Rgroup to be purged is made up of trickle-deployed disks,
the Rgroup-planner will choose to RUp transition disks to an existing Rgroup with
higher redundancy while meeting the IO constraints. For step-deployments, purging
implies RUp transitioning disks into the more-failure-tolerant RGroup (RGroup0)
that may include trickle-deployed disks.

— 147 —

Chapter 5. Designing systems for code conversion

5.5.3 Transition-executor

The transition-executor’s role is to determine how to transition the disks. This involves
choosing (1) the most [0-efficient technique to execute that transition, and (2) how
to rate-limit the transition at hand. Once the transition technique is chosen, the
transition-executor executes the transition via the rate-limiter as shown in Figure 5.3.

Selecting the transition technique. Suppose the data needs to be convention-
ally re-encoded from a k,y-0f-ny, scheme to a k,,c,-0f-1,0, scheme. The 10 cost of
conventional re-encoding involves reading-re-encoding—writing all the stripes whose
chunks reside on each transitioning disk. This amounts to a read IO of k., xdisk-
capacity (assuming almost-full disks), and a write 1O of k., x disk-capacity x e for
a total IO > 2 X k., xdisk-capacity for each disk.

In addition to conventional re-encoding, PACEMAKER supports two new approaches
to changing the redundancy scheme for disks and selects the most efficient option for
any given transition. The best option depends on the fraction of the Rgroup being
transitioned at once.

Type 1 (Transition by emptying disks). If a small percentage of an Rgroup’s disks
are being transitioned, it is more efficient to retain the contents of the transitioning
disks in that Rgroup rather than re-encoding. Under this technique, the data
stored on transitioning disks are simply moved (copied) to other disks within the
current Rgroup. This involves reading and writing (elsewhere) the contents of the
transitioning disks. Thus, the IO of transitioning via Type 1 is at most 2xdisk-
capacity, independent of scheme parameters, and therefore at least k., x cheaper
than conventional re-encoding.

Type 1 can be employed whenever there is sufficient free space available to move
the contents of the transitioning disks into other disks in the current Rgroup. Once
the transitioning disks are empty, they can be removed from the current Rgroup and
added to the new Rgroup as “new” (empty) disks.

Type 2 (Bulk transition by recalculating parities). If a large fraction of disks in
an Rgroup need to transition together, it is more efficient to transition the entire

Rgroup rather than only the disks that need a transition at that time. Most cluster

— 148 —

Chapter 5. Designing systems for code conversion

storage systems use systematic codes® [121, 141-143], wherein transitioning an entire
Rgroup involves only calculating and storing new parities and deleting the old parities.
Specifically, the data chunks have to be only read for computing the new parities,
but they do not have to be re-written. In contrast, if only a part of the disks are
transitioned, some fraction of the data chunks also need to be re-written. Thus, the IO
cost for transitioning via Type 2 involves a read 10 of % x disk-capacity, and a write
IO of only the new parities, which amounts to a total IO of W X %xdisk—
capacity for each disk in the Rgroup. This is at most 2 x fﬁ: x disk-capacity, which
makes it at least n.,,.x cheaper than conventional re-encoding.

Selecting the most efficient approach for a transition. For any given transition, the
transition-executor selects the most 1O-efficient of all the viable approaches. Almost
always, trickle-deployed disks use Type 1 because they transition a-few-at-a-time,
and step-deployed disks use Type 2 because Rgroup-planner maintains each step in a
separate Rgroup.

Choosing how to rate limit a transition. Irrespective of the transitioning
techniques, the transition-executor has to resolve the competing concerns of maximiz-
ing space-savings and minimizing risk of data loss via fast transitions, and minimizing
foreground work interference by slowing down transitions so as to not overwhelm the
foreground IO. Arbitrarily slowing down a transition to minimize interference is only
possible when the transition is not in response to a rise in AFR. This is because a
rising AFR hints at the data being under-protected if not transitioned to a higher
redundancy soon. In PACEMAKER, a transition without an AFR rise occurs either
when disks are being RDn transitioned at the end of infancy, or when they are being
RUp transitioned because the Rgroup they belong to is being purged. For all the
other RUp transitions, PACEMAKER carefully chooses how to rate limit the transition.

Determining how much bandwidth to allow for a given transition could be difficult,
given that other transitions may be in-progress already or may be initiated at any
time (we do observe concurrent transitions in our evaluations). So, to ensure that
the aggregate IO of all ongoing transitions conforms to the peak-IO-cap cluster-wide,

6In systematic codes, the data chunks are stored in unencoded form. This helps to avoid having
to decode for normal (i.e., non-degraded-mode) reads.

— 149 —

Chapter 5. Designing systems for code conversion

PACEMAKER limits each transition to the peak-10-cap within its Rgroup. For trickle-
deployed disks, which share Rgroups, the rate of transition initiations is consistently
a small percentage of the shared Rgroup, allowing disk emptying to proceed at well
below the peak-10-cap. For step-deployed disks, this is easy for PACEMAKER, since a
step only makes one transition at a time and its IO is fully contained in its separate
Rgroup. The transition-executor’s approach to managing peak-IO on a per-Rgroup
basis is also why the proactive-transition-initiator can safely assume a rate-limit of
the peak-IO-cap without consulting the transition-executor. If there is a sudden AFR
increase that puts data at risk, PACEMAKER is designed to ignore its IO constraints
to continue meeting the reliability constraint—this safety valve was never needed for
any cluster evaluated.

After finalizing the transitioning technique, the transition-executor performs the
necessary 10 for transitioning disks (read, writes, parity recalculation, etc.). We find
that the components required for the transition-executor are already present and
adequately modular in existing distributed storage systems. In Section 5.6, we show
how we implement PACEMAKER in HDFS with minimal effort.

Note that this design is for the common case where storage clusters are designed
for a single dedicated storage service. Multiple distinct distributed storage services
independently using the same underlying devices would need to coordinate their use
of bandwidth (for their non-transition related load as well) in some way, which is

outside the scope of this work.

5.6 Implementation of PACEMAKER in HDFS

We have implemented a prototype of PACEMAKER for the Hadoop distributed
file system (HDFS) [122]. HDFS is a popular open source distributed file sys-
tem, widely employed in the industry for storing large volumes of data. We use
HDFS v3.2.0, which natively supports erasure coding. The prototype of HDFS with
Pacemaker is open-sourced and is available at https://github.com/thesys-1lab/
pacemaker-hdfs.git.

— 150 —

https://github.com/thesys-lab/pacemaker-hdfs.git
https://github.com/thesys-lab/pacemaker-hdfs.git

Chapter 5. Designing systems for code conversion

Block Manager

Datanode Mgr Datanode Mgr Datanode Mgr
(sp! Rgroup) (Rgroup0) (sp! Rgroup)

PP o =

Datanode Datanode Datanode Datanode Datanode Datanode

o o

Figure 5.4: PACEMAKER-enhanced HDF'S architecture.

Background on HDF'S architecture. HDFS has a central metadata server
called Namenode (NN, akin to the master node) and a collection of servers containing
the data stored in the file system, called Datanodes (DN, akin to worker nodes).
Clients interact with the NN only to perform operations on file metadata (containing
a collection of the DNs that store the file data). Clients directly request the data

from the DNs. Each DN stores data on its local drives using a local file system.

Realizing Rgroups in HDF'S. This design makes a simplifying assumption that
all disks belonging to a DN are of the same Dgroup and are deployed together (this
could be relaxed easily). Under this simplifying assumption, conceptually, an Rgroup
would consist of a set of DNs that need to be managed independent of other such
sets of DNs as shown in Figure 5.4.

The NN maintains a DatanodeManager (DNMgr), which is a gateway for the NN
to interact with the DNs. The DNMgr maintains a list of the DNs, along with their
usage statistics. The DNMgr also contains a HeartBeatManager (HrtBtMgr) which
handles the periodic keepalive heartbeats from DNs. A natural mechanism to realize
Rgroups in HDF'S is to have one DNMgr per Rgroup. Note that the sets of DNs
belonging to the different DNMgrs are mutually exclusive. Implementing Rgroups
with multiple DNMgrs has several advantages.

Right level of control and view of the system. Since the DNMgr resides below the

— 151 —

Chapter 5. Designing systems for code conversion

block layer, when the data needs to be moved for redundancy adaptations, the logical
view of the file remains unaffected. Only the mapping from HDFS blocks to DNs
gets updated in the inode. The statistics maintained by the DNMgr can be used to
balance load across Rgroups.

Minimizing changes to the HDFS architecture and maximizing re-purposing of
existing HDFS mechanisms. This design obviates the need to change HDFS’s block
placement policy, since it is implemented at the DNMgr level. Block placement policies
are notoriously hard to get right. Moreover, block placement decisions are affected by
fault domains and network topologies, both of which are orthogonal to PACEMAKER'S
goals, and thus best left untouched. Likewise, the code for reconstruction of data
from a failed DN need not be touched, since all of the reads (to reconstruct each
lost chunk) and writes (to store it somewhere else) will occur within the set of nodes
managed by its DNMgr. Existing mechanisms for adding / decommissioning nodes
managed by the DNMgr can be re-purposed to implement PACEMAKER’s Type 1
transitions (described below).

Cost of maintaining multiple DNMgrs is small. Each DNMgr maintains two
threads: a HrtBtMgr and a DNAdminMgr. The former tracks and handles heartbeats
from each DN, and the latter monitors the DNs for performing decommissioning and
maintenance. The number of DNMgr threads in the NN will increase from two to
2x the number of Rgroups. Fortunately, even for large clusters, we observe that the
number of Rgroups would not exceed the low tens (Section 5.7.4). The NN is usually
a high-end server compared to the DNs, and an additional tens of threads shouldn’t
affect performance.

Rgroup transitions in HDFS. An important part of PACEMAKER function-
ality is transitioning DNs between Rgroups. Recall from Section 5.5.3 that one of
PACEMAKER’s preferred way of transitioning disks across Rgroups is by emptying
the disks. In HDFS, the planned removal of a DN from a HDFS cluster is called
decommissioning. PACEMAKER re-uses decommissioning to remove a DN from the
set of DNs managed by one DNMgr and then adds it to the set managed by another,
effectively transitioning a DN from one Rgroup to another.

PACEMAKER does not change the file manipulation API or client access paths. But,

— 152 —

Chapter 5. Designing systems for code conversion

20

9 I Transitioning (RDn or RUp) IO B Unspecialized disks (right axis) 350K o
<. 15{ B Reconstruction 10 71 Specialized disks (right axis) f 2

p . C
35 ’ 250K 3
Q10 %
o 150K 5
® 571 IS
- =}
e 50K Z

0.
2017-06 2018-01 2018-06 2019-01 2019-06 2019-12

(a) Redundancy management IO due to PACEMAKER over its 2.5+ year lifetime broken
down by IO type. This identical to Figure 5.1b with the left Y axis only going to 20% to
show the detailed 10 activity happening in the cluster.

151 — AFR of first step 159 —— AFR of canaries
=== Threshold-AFR —=—=- Threshold-AFR
;\3 104 [0 Tolerated-AFR region :\3 10
o a4
[T w
< <

0

0

LoV 191 S8 08 85000 0° o191 e 0o o 0o 0
(b) G-1 (step) AFR curve. (c) G-2 (trickle) AFR curve.
100 -
Space-savings 11-0f-14

~
wu

Capacity (%)
N (6,1
(6,1 o

0
2017-06 2018-01 2018-06 2019-01 2019-06 2019-12

(d) Space-savings due to PACEMAKER. Each colored region represents the fraction of cluster
capacity that is using a particular redundancy scheme. 6-of-9 is the default redundancy
scheme (Rgroup0’s).

Figure 5.5: Detailed 1O analysis and space savings achieved by PACEMAKER-enabled
adaptive redundancy on Google Clusterl.

— 153 —

Chapter 5. Designing systems for code conversion

there is one corner-case related to transitions when file reads can be affected internally.
To read a file, a client queries the NN for the inode and caches it. Subsequently,
the reads are performed directly from the client to the DN. If the DN transitions to
another Rgroup while the file is still being read, the HDF'S client may find that that
DN no longer has the requested data. But, because this design uses existing HDFS
decommissioning for transitions, the client software knows to react by re-requesting

the updated inode from the NN and resuming the read.

5.7 Evaluation of PACEMAKER

PACEMAKER-enabled disk-adaptive redundancy using is evaluated on production logs
from four large-scale real-world storage clusters, each with hundreds of thousands of
disks. We also experiment with a proof-of-concept HDF'S implementation on a smaller
sized cluster. This evaluation has four primary takeaways: (1) PACEMAKER eliminates
transition overload, never using more than 5% of cluster 10 bandwidth (0.2-0.4% on
average) and always meets target MTTDL, in stark contrast to prior work approaches
that do not account for transition 10 load; (2) PACEMAKER provides more than 97%
of idealized-potential space-savings, despite being proactive, reducing disk capacity
needed by 14-20% compared to one-size-fits-all; (3) PACEMAKER’s behavior is not
overly sensitive across a range of values for its configurable parameters; (4) PACE-
MAKER copes well with the real-world AFR characteristics explained in Section 5.3.2.
For example, it successfully combines the “multiple useful life phases” observation
with efficient transitioning schemes. This evaluation also shows PACEMAKER in action
by measuring disk-adaptive redundancy in PACEMAKER-enhanced HDFS.
Evaluation methodology. PACEMAKER is simulated chronologically for each
of the four cluster logs described in Section 5.3: three clusters from Google and
one from Backblaze. For each simulated date, the simulator changes the cluster
composition according to the disk additions, failures and decommissioning events in
the log. PACEMAKER is provided the log information, as though it were being captured

live in the cluster. I0 bandwidth needed for each day’s redundancy management is

— 154 —

Chapter 5. Designing systems for code conversion

computed as the sum of 1O for failure reconstruction and transition 1O requested by
PACEMAKER, and is reported as a fraction of the configured cluster IO bandwidth
(100MB/sec per disk, by default).

PACEMAKER was configured to use a peak-IO-cap of 5%, an average-IO constraint
of 1% and a threshold-AFR of 75% of the tolerated-AFR, except for the sensitivity
studies in Section 5.7.3. For comparison, we also simulate (1) an idealized disk-
adaptive redundancy system in which transitions are instantaneous (requiring no I10)
and (2) the prior state-of-the-art approach (HeART) for disk-adaptive redundancy.
For all cases, Rgroup0 uses 6-0f-9, representing a one-size-fits-all scheme reported in
prior literature [121]. The required target MTTDL is then back-calculated using the
6-0f-9 default and an assumed tolerated-AFR of 16% for Rgroup0. These configuration

defaults were set by consulting storage administrators of clusters we evaluated.

5.7.1 PACEMAKER on Google Clusterl in-depth

Figure 5.5a shows the 10 generated by PACEMAKER (and disk count) over the ~3-year
lifetime of Google Clusterl. Over time, the cluster grew to over 350K disks comprising
of disks from 7 makes/models (Dgroups) via a mix of trickle and step deployments.
Figures 5.5b and 5.5¢ show AFR curves of 2 of the 7 Dgroups’ (obfuscated as G-1
and G-2 for confidentiality) along with how PACEMAKER adapted to them at each
age. G-1 disks are trickle-deployed whereas G-2 disks are step-deployed. The other
5 Dgroups are omitted due to lack of space. Figure 5.5d shows the corresponding
space-savings (the white space above the colors).

All disks enter the cluster as unspecialized disks, i.e. Rgroup0 (dark gray region
in the Figure 5.5a and left gray region of Figures 5.5b and 5.5¢). Once a Dgroup’s
AFR reduces sufficiently, PACEMAKER RDn transitions them to a specialized Rgroup
(light gray area in Figure 5.5a). Over their lifetime, disks may transition through
multiple RUp transitions over the multiple useful life phases. Each transition requires
IO, which is captured in blue in Figure 5.5a. For example, the sudden drop in the

unspecialized disks, and the blue area around 2018-04 captures the Type 2 transitions

"The rest of the Dgroups’ AFR curves are shown in Figure 5.9 in Section 5.9.

— 155 —

Chapter 5. Designing systems for code conversion

100 - 1450K 100 200K
g 350k g HeART 2150k
250) / T1250K =50 — B1100K
i r E150k 3 o Elcok
° 250k 9 | Il %
100 p — 450K 100 200K
S Pacemaker y “$l3s0k g Pacemaker - giisox
250) y 2[250K 250 R _____ 2I100K
S f 3 150K ® o S(50K
4

o, 50Kk 9 = T T —
,];00 Space-savings I ,];00 Space-savings I
S S

s
£50 250
© ©
5 g
(S] o

o

Q
2017-06 2018-01 2018-06 2019-01 2019-06 2019-12 2017-01 2017-06 2018-01 2018-06 2019-01 2019-06 2019-12

(a) Google Cluster2 (b) Google Cluster3
% T HeART
350 gl
s, Lz \L@M&Mﬁ
100
S Pacemaker 200K
750 '
A
2o
100

Capac(i;y(%)
o

0

2014-01 2015-01 2016-01 2017-01 2018-01 2019-01 2019-12

(c) Backblaze

Figure 5.6: Top two rows show the IO overhead comparison between prior adaptive
redundancy system (HeART) and PACEMAKER on two Google clusters and one
Backblaze cluster. PACEMAKER successfully bounds all IO under 5% (visible as tiny
blue regions in middle graphs, for e.g. around 2017 in (a)). The bottom row shows
the 14-20% average space-savings achieved by PACEMAKER across the three clusters.
The AFR curves of all three clusters are shown in Figures 5.10 to 5.12 in Section 5.9.

— 156 —

Chapter 5. Designing systems for code conversion

caused when over 100K disks RDn transition from Rgroup0 to a specialized Rgroup.
The light gray region in Figure 5.5a corresponds to the time over which space-savings
are obtained, which can be seen in Figure 5.5d.

Many transitions with no transition overload. PACEMAKER successfully
bounds all redundancy management IO comfortably under the configured peak-1O-cap
throughout the cluster’s lifetime. This can be seen via an imaginary horizontal line at
5% (the configured peak-10-cap) that none of the blue regions goes above. Recall that
PACEMAKER rate-limits the 1O within each Rgroup to ensure simultaneous transitions
do not violate the cluster’s IO cap. Events G-1eA and G-2eA are examples of
events where both G-1 and G-2 disks (making up almost 100% of the cluster at that
time) request transitions at the same time. Despite that, the IO remains bounded
below 5%. G-3eC and G-6eB also show huge disk populations of G-3 and G-6
Dgroups (AFRs not shown) requesting almost simultaneous RUp transitions, but
PACEMAKER’s design ensures that the peak-IO constraint is never violated. This is
in sharp contrast with HeART’s frequent transition overload, shown in Figure 5.1a.

Disks experience multiple useful life phases. G-1, G-3, G-6 and G-7 disks
experience two phases of useful life each. In Figure 5.5a, events G-1eA and G-1eB
mark the two transitions of G-1 disks through its multiple useful lives as shown in
Figure 5.5b. In the absence of multiple useful life phases, PACEMAKER would have
RUp transitioned G-1 disks to Rgroup0 in 2019-05, eliminating space-savings for the
remainder of their time in the cluster. Section 5.7.3 quantifies the benefit of multiple
useful life phases for all four clusters.

MTTDL always at or above target. Along with the AFR curves, Figures 5.5b
and 5.5¢ also show the upper bound on the AFR for which the reliability constraint
is met (top of the gray region). PACEMAKER sufficiently protects all disks throughout
their life for all Dgroups across evaluated clusters.

Substantial space-savings. PACEMAKER provides 14% average space-savings
(Figure 5.5d) over the cluster lifetime to date. Except for 2017-01 to 2017-05 and
2017-11 to 2018-03, which correspond to infancy periods for large batches of new
empty disks added to the cluster, the entire cluster achieves ~20% space-savings. Note

that the apparent reduction in space-savings from 2017-11 to 2018-03 isn’t actually

— 157 —

Chapter 5. Designing systems for code conversion

reduced space in absolute terms. Since Figure 5.5d shows relative space-savings,
the over 100K disks deployed around 2017-11, and their infancy period makes the

space-savings appear reduced relative to the size of the cluster.

5.7.2 PACEMAKER on the other three clusters

Figure 5.6 compares the transition 10 incurred by PACEMAKER to that for HeART [1]
for Google Cluster2, Google Cluster3 and Backblaze, along with the corresponding
space-savings achieved by PACEMAKER. While clusters using HeART would suffer
transition overload, the same clusters under PACEMAKER always had all their transition
IO under the peak-IO-cap of 5%. In fact, on average, only 0.21-0.32% percent of the
cluster IO bandwidth was used for transitions. The average space-savings for the
three clusters are 14-20%.

Google Cluster2. Figure 5.6a shows the transition overload and space-savings
in Google Cluster2 and the corresponding space-savings. All Dgroups in Google
Cluster2 are step-deployed. Thus, it is not surprising that Figure 5.7¢ shows that over
98% of the transitions in Cluster2 were Type 2 transitions (bulk parity recalculation).
Cluster2’s disk population exceeds 450K disks. Even at such large scales, PACEMAKER
obtains average space-savings of almost 17% and peak space-savings of over 25%.
This translates to needing 100K fewer disks.

Google Cluster3. Google Cluster3 (Figure 5.6b) is not as large as Clusterl or
Cluster2. At its peak, Cluster3 has a disk population of approximately 200K disks.
But, it achieves the highest average space-savings (20%) among clusters evaluated.
Like Cluster2, Cluster3 is also mostly step-deployed.

Backblaze Cluster. Backblaze (Figure 5.6¢) is a completely trickle-deployed
cluster. The dark grey region across the bottom of Figure 5.6¢’s PACEMAKER plot
shows the persistent presence of canary disks throughout the cluster’s lifetime. Unlike
the Google clusters, the transition IO of Backblaze does not produce bursts of
transition 10 that lasts for weeks. Instead, since trickle-deployed disks transition
a-few-at-a-time, we see transition work appearing continuously throughout the cluster

lifetime of over 6 years. The rise in the transition IO spikes in 2019, for HeART, is

— 158 —

Chapter 5. Designing systems for code conversion

[Google Clusterl [Google Cluster2 [Google Cluster3 [IBackblaze

o
o

~
vl

N
v

@(Google Cluster2)
@(Google Clusterl)
@(Google Cluster2)
@(Google Clusterl)

1)
~
o

% optimal savings_.
3

@(Google Clusterl)

97.6

o
[

5%

2

5% 3.5% 5% 7.5%
Pacemaker's peak-10-cap

(a) PACEMAKER's sensitivity to the peak-IO constraint.

o
o

B)] o]
o o o
L L L

Transition type split,
N
o

o
I

1.5

=
=}
.

o
n
1.03x

Optimized disk-days

o
o
!

Goog\ecéoog\ecéoog\ecgac\(b\aze

(b) Multiple useful life phases

B8 Typel I Type?2

Go0g\ecéoog\ecéoog\ecéac\(b\ale

(c) Transition type distribution

Figure 5.7: (a) shows PACEMAKER'’s sensitivity to the peak 10 bandwidth constraint.
(b) shows the advantage of multiple useful life phases and (c¢) shows the contribution
of the two transitioning techniques when PACEMAKER was simulated on the four

production clusters.

— 159 —

Chapter 5. Designing systems for code conversion

because of large capacity 12TB disks replacing 4TB disks. Unsurprisingly, under
PACEMAKER, most of the transitions are done using Type 1 (transitioning by emptying
disks) as shown in Figure 5.7c. The average space-savings obtained on Backblaze are
14%.

5.7.3 Sensitivity analyses and ablation studies

Sensitivity to IO constraints. The peak-IO constraint governs Figure 5.7a, which
shows the percentages of optimal space-savings achieved with PACEMAKER for peak-
IO-cap settings between 1.5% and 7.5%. A peak-IO-cap of up to 7.5% is used in order
to compare with the IO percentage spent for existing background 10 activity, such as
scrubbing. By scrubbing all data once every 15 days [137], the scrubber uses around
7% 10O bandwidth, and is a background work IO level tolerated by today’s clusters.

The Y-axis captures how close the space-savings are for the different peak-10-
caps compared to “Optimal savings”, i.e. an idealized system with infinitely fast
transitions. PACEMAKER'’s default peak-10-cap (5%) achieves over 97% of the optimal
space-savings for each of the four clusters. For peak-IO constraint set to <2.5%, some
RUp transitions in Google Clusterl and Cluster2 become too aggressively rate-limited
causing a subsequent AFR rise to violate the peak-10 constraints. We indicate this
as a failure, and show it as “@”. The same situation happens for Google Clusterl at
3.5%.

Sensitivity to threshold-AFR. The threshold-AFR determines when proactive
RUp transitions of step-deployed disks are initiated. Conceptually, the threshold-AFR
governs how risk-averse the admin wants to be. Lowering the threshold would trigger
an RUp transition when disks are farther away from the tolerated-AFR (more risk-
averse), and vice-versa. We evaluated PACEMAKER for threshold-AFRs of 60%, 75%
and 90% of the respective Rgroups’ tolerated-AFRs. We found that PACEMAKER'’s
space-savings is not very sensitive to threshold-AFR, with space-savings only 2%
lower at 60% than at 90%. Data remained safe at each of these settings, but would
become unsafe with higher values.

Contribution of multiple useful life phases. Figure 5.7b compares the

— 160 —

Chapter 5. Designing systems for code conversion

increased number of disk-days spent in specialized Rgroups because of considering
multiple useful life phases. In the best case, Google Cluster2 spent 33% more disk-days
in specialized redundancy, increasing overall space-savings from 16% to 19%. Note
that in large-scale storage clusters, even 1% space-savings are considered substantial
as it represents thousands of disks.

Contribution of transition types. By proactively keeping step-deployed disks
in distinct Rgroups and using specialized transitioning schemes whenever possible,
instead of using simple re-encoding for all transitions, PACEMAKER reduces total
transition 10 by 92-96% for the four clusters. Figure 5.7¢ shows what percentage of
transitions were done via Type 1 (disk emptying) vs. Type 2 (bulk parity recalculation).
As expected, Google clusters rely more on Type 2 transitions, because most disks
are step-deployed. In contrast, the Backblaze cluster is entirely trickle-deployed and
hence mostly uses Type 1 transitions. The small percentage of Type 2 transitions in

Backblaze occur when Rgroups are purged.

5.7.4 Evaluating HDFS + PACEMAKER

This section describes basic experiments with the PACEMAKER-enabled HDF'S, fo-
cusing on its functioning and operation. Note that PACEMAKER is designed for
longitudinal disk deployments over several years, a scenario that cannot be repro-
duced identically in laboratory settings. Hence, these HDFS experiments are aimed
to display that integrating PACEMAKER with an existing storage system is straight-
forward, rather than on the long-term aspects like overall space-savings or transition
IO behavior over cluster lifetime as evaluated via simulation above.

The HDF'S experiments run on a PRObE Emulab cluster [144]. Each machine
has a Dual-Core AMD Opteron Processor, 16GB RAM, and Gigabit Ethernet. We
use a 21-node cluster running HDF'S 3.2.0 with one NN and 20 DNs. Each DN has a
10GB partition on a 10000 RPM HDD for a total cluster size of 200GB. We statically
define the cluster to be made up of two Rgroups of ten DNs each, one using the 6-0f-9
erasure coding scheme and the other using a 7-of-10 scheme. DFS-perf [145], a popular
open-source HDFS benchmark is used, after populating the cluster to 60% full. Each

— 161 —

Chapter 5. Designing systems for code conversion

Failure Relaxed Rgroup Transition

1 I 1
! Baseline — Failure Baseline — Relaxed Rgroup Transition
1 1

Throughput (MB/sec)

Begin transition

0 200 400 600 800 0 200 400 600 800
Time (sec) Time (sec)

Figure 5.8: DFS-perf reported throughput for baseline, with one DN failure and one
Rgroup transition.

DFS-perf client sequentially reads one file over and over again (size=768MB), for
a total read size of about 1.75TB over 40 iterations. We use 60 DFS-perf clients,

running on 20 nodes separate from the HDFS cluster.

We focus on the behavior of a DN as it transitions between Rgroups, compared
with baseline HDFS performance (where all DNs are healthy) and its behavior while
recovering from a failed DN. Figure 5.8 shows the client throughput after the setup
phase, followed by a noticeable drop in client throughput when a DN fails (emuated
by stopping the DN). This is caused by the reconstruction IO that recreates the
data from the failed node. Read latency exhibits similar behavior (not shown due to
space). Eventually, throughput settles at about 5% lower than prior to failure, since
now there are 19 DNs.

Figure 5.8 also shows client throughput when a node is RDn transitioned from
6-0f-9 to 7-of-10. There is minor interference during the transition, which can be
attributed to the data movement that HDFS performs as a part of decommissioning.
The transition requires less work than failed node reconstruction, yet takes longer
to complete because PACEMAKER limits the transition 10. Eventually, even though
20 DNs are running, the throughput is lower by ~5% (one DN’s throughput). This
happens because PACEMAKER empties the DN before it moves into the new Rgroup,
and load-balancing data to newly added DNs happens over a longer time-frame.

Experiments with RUp transition showed similar results.

— 162 —

Chapter 5. Designing systems for code conversion

5.8 Failure rate estimation in PACEMAKER

This section describes how we calculate failure rates for each Dgroup based on the
disks’ age using empirical data. In the storage device reliability literature, the failure

rate over a period of time is typically expressed in terms of Annualized Failure Rate
(AFR), and calculated as:

AFR (%) = g x 100, (5.1)

where d is the number of observed disk failures, and E is the sum of the exposure
time of each disk, measured in years. The exposure time of a disk is the amount of
time it was in operation (i.e., deployed and had not failed nor been retired) during
the period in consideration, and it is typically measured at the granularity of days.

If the time to failure is exponentially distributed, then Equation (5.1) corresponds
to the maximum likelihood estimate for the rate parameter of the exponential distri-
bution. Due to the memoryless property of this distribution, such a formula would
be appropriate only if we assume that failure rate is constant with respect to time or
device age. Thus, Equation (5.1) may be useful for estimating AFR over long and
stable periods of time, but makes it hard to reason about changes in AFR over time.
Therefore, in this work, we estimate AFR using the following approach.

Assume that the lifetime (time from deployment to failure) of each disk is an
i.i.d. discrete random variable T with cumulative density function F' and probability
mass function f. The failure rate (also known as hazard rate) [146] of this distribution
is given by:

h(t) = f()/(1 = F(t)). (5.2)

The cumulative hazard defined as H(t) = Y°t_, k(i) is commonly estimated using the

Nelson-Aalen estimator:
~ tod.
H(it)y=> = for t € {0,...,m}, (5.3)
i—0 i

where d; is the number of disks that failed during their ¢-th day, a; is the number of

disks that were in operation at the start of their i-th day, and m is the age in days of

— 163 —

Chapter 5. Designing systems for code conversion

the oldest observed disk drive. An estimate for the failure rate can be obtained by
applying the so-called kernel method [147]:

m

ht) =Y iK(t —i), forted{0,...,m}, (5.4)

o @i

1=

where K (-) is a kernel function. In practice, Equation (5.4) can be considered as a
smoothing over the increments of Equation (5.3). For our calculations, we utilized an
Epanechnikov kernel [140] with a bandwidth of 30 days (the Epanechnikov kernel is
frequently used in practice due to its good theoretical properties).

A big advantage of this approach is that it is nonparametric, meaning that it
does not assume that the lifetime 7" follows any particular distribution. This allows
PACEMAKER to adapt and work effectively with a wide arrange of storage devices

with vastly different failure rate behaviors.

5.9 Detailed cluster evaluations of PACEMAKER

This section shows the remaining Dgroups of Google Cluster]l (Figure 5.9) and
provides a similar deep-dive of PACEMAKER on Google Cluster2, Google Cluster3 and
the Backblaze cluster along with the AFR curves of all Dgroups of those clusters.

Dgroups of Google Clusterl. Recall from Section 5.7 that Google Clusterl
is made up of seven Dgroups. G-1 and G-2 AFR curves are shown in Figures 5.5b
and 5.5¢ respectively. Here we show the four of the file remaining Dgroups, viz. G-3,
G-5, G-6 and G-7 in Figures 5.9a to 5.9e. G-3 and G-7 disks are trickle-deployed
similar to G-2 disks, whereas the other disks are step-deployed.

Google Cluster2. Figure 5.10a shows the PACEMAKER-generated 10 for redun-
dancy management. Figure 5.10b shows the corresponding space savings. Finally
Figures 5.10c to 5.10f shows the AFRs of the four Dgroups that make up Cluster2.
All Dgroups in Google Cluster2 are step-deployed. Thus, it is not surprising that
Figure 5.7¢ shows that over 98% of the transitions in Cluster2 were performed by

bulk parity recalculation. This is the largest cluster PACEMAKER was simulated on.

— 164 —

Chapter 5. Designing systems for code conversion

1597 — AFR of first step 159 —— AFR of canaries
===+ Threshold-AFR === Threshold-AFR
— Tolerated-AFR region — Tolerated-AFR region
Q\Cl 10 1 S\Ci 10 1
o A o
[T L
< 54 < 54
0 : - ; . 0 T : —j\/
02 009 502 0% 0% 02 0%
’)_0\% 7_018 7_019 7_0\9 ’)_0\% 7_019 7_0&9
(a) G-6 (step) AFR curve (b) G-4 (trickle) AFR curve
159 — AFR of first step 151 — AFR of first step
=== Threshold-AFR ===+ Threshold-AFR
§ 10+ Tolerated-AFR region § 10+ Tolerated-AFR region
o o
w w
< 5 < 5
0 = T 0 T T r v
0% A 02 .0.00 .02 o.0%
2019 2019 28 8T 0019 D01
(c) G-8 (step) AFR curve (d) G-5 (step) AFR curve
151 AFR of canaries
== Threshold-AFR e
;\; 104 Tolerated-AFR regipn
e e =
w
< 5
0 T T r
<) o)
20080 090 300

(e) G-3 (trickle) AFR curve

Figure 5.9: Detailed IO analysis and space savings achieved by PACEMAKER-enabled
adaptive redundancy on Google Clusterl.

— 165 —

Chapter 5. Designing systems for code conversion

Cluster2’s disk population exceeds 450K disks. Even at such large scales, PACEMAKER
is able to obtain average space savings of almost 17% and peak space savings of
over 25%. This translates to needing 100K fewer disks, essentially saving millions of
dollars.

Google Cluster3. Google Cluster3 is not as large as Clusterl or Cluster2. At its
peak, Cluster3 has a disk population of approximately 200K disks. But, it achieves
the highest average space savings (20%) compared to all other clusters. Figure 5.11a
shows the PACEMAKER-generated 10, Figure 5.11b shows the space savings and
Figures 5.11c to 5.11e shows the AFR curves of its three Dgroups. Like Cluster2,
Cluster3 is also mostly step-deployed.

Backblaze Cluster. Backblaze is a completely trickle-deployed cluster. Fig-
ure 5.12a shows the PACEMAKER-generated 10. Unlike Google clusters, the transition
IO of Backblaze does not produce large regions of transition workload. Instead, since
trickle-deployed disks transition a-few-at-a-time, we see transition work appearing
continuously throughout the cluster lifetime of over 6 years. Unsurprisingly, most of
the transitions are done by emptying disks (Type 1; refer to Figure 5.7¢). In terms of
sensitivity, the Backblaze cluster is the most insensitive to the peak-10 constraint

since always requires much lower transition bandwidth per day.

5.10 Tiger: disk-adaptive redundancy without addi-

tional placement restrictions

As we have shown in this chapter, the conventional approach of using a single erasure
code across the cluster uses excessive redundancy (wasting capacity, and thus money
and energy) to guarantee data safety, given that different disks have different failure
rates. Instead, adapting the redundancy scheme selection to the observed failure (as
done by Pacemaker) reduces the space overhead of redundancy by up to 20%.

The design of Pacemaker, however, faces several significant adoption hurdles. At
its core, this design is based on rigidly partitioning a storage cluster into subclusters

of disks (called redundancy groups or Rgroups) that have similar failure rates, so

— 166 —

Chapter 5. Designing systems for code conversion

20
: EEN Transitioning (RDn or RUp) 10 BEE Unspecialized disks (right axis)..___ 400K @
>.15{ EEE Reconstruction 10 [/Specialized disks (right axis) c
3 B Decommissioning 10 // 300K §
g10 y ¥
o ZOOK‘E
g3 100k §
K =z

0
2017-07 2017-10 2018-01 2018-04 2018-07 2018-10 2019-01 2019-04 2019-07 2019-10

(a) Google Cluster2 redundancy management IO due to PACEMAKER over its 2+ year
lifetime broken down by 10 type.
100

80
60
40
20

Capacity (%)

0
2017-072017-102018-012018-042018-072018-102019-012019-042019-07 2019-10

(b) Google Cluster2 space savings achieved by PACEMAKER.

159 — AFR of first step 151 — AFR of first step 151 — AFR of first step 151 — AFR of first step
===+ Threshold-AFR ===+ Threshold-AFR === Threshold-AFR ===+ Threshold-AFR I
;\3 10 [0 Tolerated-AFR region :\; 101 [0 Tolerated-AFR region ;\3 10 [0 Tolerated-AFR region ;\3 10 0 Tolerated-AfX region
o < | T o o -
w w w w
< 5 < 5 < < 5
0T o ’ e ® 3 ’ J J ’ ®
-0 02 -0 0 02, o0 02, .0 02 0 02 -0 -0 02 -0
208 012 20150185018 501975019 20387 0180 019 v 208 0 09

(c) G-6 (step) AFR (d) G-1 (step) AFR (e) G-5 (step) AFR (f) G-3 (step) AFR

curve curve curve curve

Figure 5.10: Detailed IO analysis and space savings achieved by PACEMAKER-enabled
adaptive redundancy on Google Cluster2.

- 167 —

N
o

Chapter 5. Designing systems for code conversion

fun
w

w

Total 10 per day (%)
=
o

0
2016-09 2017-01 2017-05 2

200K
B Transitioning (RDn or RUp) IO B Unspecialized disks (right axis) o
I Reconstruction 10 7771 Specialized disks (right axis). ' 150K'§
I Decommissioning 10 - T 5
- I 100K £
w
2
50K E
=)
=

017-09 2018-01 2018-05 2018-09 2019-01 2019-05 2019-09

(a) Google Cluster3 redundancy management IO due to PACEMAKER

over its 3 year lifetime

broken down by IO type.

100
< 80
8
> 60
=
®
T 40
©
O 20
2016-092017-012017-052017-092018-012018-052018-092019-012019-052019-09
(b) Google Cluster3 space savings achieved by PACEMAKER.
151 — AFR of first step 151 — AFR of first step 151 — AFR of first step
——- Threshold-AFR | === Threshold-AFR ==+ Threshold-AFR L
—_ [0 Tolerated-AFR region —_ [0 Tolerated-AFR region —_ [0 Tolerated-AFR regi
x 10 X 107 X 104
s - s
w w w
< 5 < 5] < 5-\-/\/\’,\/ __________

0 0
R Re e Barflo 05 R fRerRRefto

018 10071008

(c) G-2 (step) AFR (d) G-4 (step) AFR (e) G-1 (step) AFR

curve curve curve

— 168 —

Figure 5.11: Detailed IO analysis and space savings achieved by PACEMAKER-enabled
adaptive redundancy on Google Cluster3.

Chapter 5. Designing systems for code conversion

N
o

B Transitioning (RDn or RUp) 10 BN Unspecialized disks (right axis)

—

=
w

B Reconstruction 10 [Specialized disks (right.axis)- " 100K
I Decommissioning 10 _o i

50K

w

Total 10 per day (%)
=
o

Num disks running

2014 2015 2016 2017 2018 2019

(a) Backblaze redundancy management IO due to PACEMAKER over its 6+ year lifetime
broken down by IO type.
100

80
60
40
20

0

15-0f-18

Capacity (%)

2014 2015 2016 2017 2018 2019

(b) Backblaze space savings achieved by PACEMAKER.

151 — AFR of canaries 159 — AFR of canaries 157 — AFR of canaries 15 AFR of canaries
=== Threshold-AFR ==+ Threshold-AFR ===+ Threshold-AFR —=- Threshold-AFR_____ |
—_ 00 Tolerated-AFR region —_ [0 Tolerated-AFR region —_ [0 Tolerated-AFR region —_ Tolerated-AFR region
x 10 X 101 x 10 x 10
« o o «
w w w w o eeaee
< < 5| < 5 <
0 k“‘"“-‘“‘- 0 LA s aar 0 e 0
20v%885885;886;8 1,88, 80 0° 2 e i1 e hoo® 2% 19010 0® 20v%885,885 886 881,380,880 0°
(c) H-4A (trickle) (d) H-4B (trickle) (e) H-12E (trickle) (f) S-4 (trickle) AFR
AFR curve AFR curve AFR curve curve
15 1514 154

—— AFR of canaries —— AFR of canaries —— AFR of canaries

—=- Threshold-AFR === Threshold-AFR ==+ Threshold-AFR
[T Tolerated-AFR region

| B8 Tolerated-AFR region

o 0%

08
o 20V

08 o
201 oM

e e e e
-L()Xf”“ 7_0&1’0 -)_()X%’o 203 10X‘3"° 7_019’0

(g) S-8C (trickle) (h) S-8E (trickle) (i) S-12E (trickle)
AFR curve AFR curve AFR curve

Figure 5.12: Detailed IO analysis and space savings achieved by PACEMAKER-enabled
adaptive redundancy on the Backblaze cluster.

— 169 —

Chapter 5. Designing systems for code conversion

— e e = e
I=] [= u] L= 5] |= (1] R
— e e e
| 1o | |) e —
e c—— gy ca—— (S| — | —_— e— [= [] [] u]
[= i) | [¥] || [= L= 1] s o
e e c—
Py () o Tl
— T S [] w] [= =]
o N I I G — | —
| CIICE By L i ol = =
S o1 — | o s | S N¥ —
g— e e e | |
[i] || |= u I= 0 [l | =L ——
4 dh——
P | | e S =I5=
— e ol | =] ([[s] | [=
u] |0 [] 1} — T 1+ 1+
e — o bBA kA B
- = — S|] e _
G e e
PP
==l cr—rcr.J <tk d AR
] | () S | S | —) —
———— — o o c— w| | =] ([]=] | |=
I=] |= u] = n n u] e — el — iy — o
dtE—d 4k
L1) — oo
[] [] [|
) 7] HRE
(a) Conventional cluster (b) Pacemaker SRS R P
storage (subcluster-based) (c) Tiger

Figure 5.13: Stripe placements and configurations in different erasure coding systems:
Disks of same color have similar annualized failure rates (AFRs), with red being
least reliable (highest AFR), then blue, then green. Rectangles represent stripes
with shorter stripes having higher redundancy. Conventional one-scheme-fits all
designs (Figure 5.13a) impose no placement restrictions, but make no distinction of
disk AFRs and therefore overprotect much of the data—all stripes use the widest
redundancy scheme, shown as 2-wide for illustration. Pacemaker (Figure 5.13b) and
Tiger (Figure 5.13¢) tailor redundancy based on disk AFRs, resulting in different
stripe widths in the illustration, and thereby reduce storage overhead. Pacemaker
does this with rigid AFR-based subcluster boundaries, whereas Tiger requires no
such boundaries.

- 170 —

Chapter 5. Designing systems for code conversion

they can use a subcluster-wide redundancy scheme tailored to meet the required
data reliability target (e.g., Figure 5.13b). Key adoption hurdles include: (1) Since
each stripe must be entirely within a single Rgroup, this subcluster-based design can
interfere with other data placement considerations, such as enhancing risk-diversity
by spreading data across fault domains and different makes/models/batches of disks.
Indeed, many of the Rgroups consist of a single make/model. (2) To provide reasonable
degrees of performance and reconstruction speed scalability, subclusters must be
sizable, making these designs only suitable for very large storage clusters. (3) When
failure rates rise for a given make/model, as it ages, the redundancy scheme for
an entire Rgroup (potentially 100s of PBs) may need to change to maintain target
data reliability levels—all at once. The Pacemaker design [15] proposes to predict
such changes and start them early, but they need to predict a month or more in
advance to avoid reliability problems given the huge amount of data being transitioned,
which is inherently a risky proposition. (4) The subcluster-based designs assume full
adoption of disk-adaptive redundancy, not allowing for selective adoption for some
data corpuses but not for others.

In the remainder of this chapter, we present Tiger, a disk-adaptive redundancy
system that eliminates the placement constraints posed by subcluster-based disk-
adaptive redundancy designs while providing equal or greater benefits. Tiger’s core
new abstraction is the eclectic stripe, in which disks of different AFRs can be used to
store a stripe that has redundancy tailored to the set of AFRs for those disks. In
terms of placement flexibility, eclectic stripes are identical to stripes in conventional
(non-disk-adaptive redundancy) designs. But, unlike conventional stripes, eclectic
stripes do not conservatively assume the worst-case AFR for all disks. Instead, with
eclectic stripes, the redundancy scheme is dynamically set for each stripe based on
the AFRs of the chosen disks (e.g., Figure 5.13¢). Tiger’s eclectic stripe approach
avoids all the adoption hurdles discussed above, while simultaneously increasing
the effectiveness (higher space-savings) and robustness (lower burstiness of urgent
transition 10) of disk-adaptive redundancy.

Efficiently incorporating the proposed new abstraction of eclectic stripes is chal-

lenging due to multiple reasons. Tiger introduces several new design elements

- 171 —

Chapter 5. Designing systems for code conversion

to overcome these challenges. First, calculating the exact reliability in terms of
mean-time-to-data-loss (MTTDL) of a stripe can be prohibitively expensive, since
accounting for different failure rates can lead to an exponential number of states
in the traditional Markov chain reliability model. To address this, we provide a
novel approximation technique that speeds up MTTDL calculation by 2-4 orders
of magnitude while always preserving accuracy of over 95%, and on average over
99.5%. Second, while disks for a stripe can be chosen based on pre-existing placement
policies, the chosen disks may not form an adequately-reliable stripe for a planned
redundancy scheme, since the reliability is dependent on the chosen disks’ AFRs.
Tiger uses an AFR-aware stripe-width-reduction policy to quickly achieve sufficient
reliability. Third, disk AFRs change over time [1], which can require changing the
redundancy schemes of some eclectic stripes. Keeping track of AFRs for each stripe
and triggering the redundancy schemes can significantly increase the overhead for
metadata and background operations. Tiger introduces an eclectic volume abstraction
to reduce metadata overhead and make identification of required changes efficient.
It also introduces policies to reduce transition 10: the 10 involved with enacting
changes to stripe redundancy schemes.

Evaluating the feasibility and efficacy of eclectic stripes requires analysis of long-
term effects on huge storage clusters. We evaluate Tiger using the same logs as used
to evaluate Pacemaker, enabling an apples-to-apples comparison. These logs contain
all disk-deployment, failure, and decommissioning events from four production storage
clusters: three 160K-450K-disk Google clusters and a ~110K-disk cluster used for
the Backblaze Internet backup service [128]. Simulation driven by production logs
allows us to analyze reliability, space usage, and redundancy maintenance traffic for
multiple clusters each with over 100K disks and over multiple years, which would be
infeasible otherwise as part of a research setup. For all four clusters, Tiger provides
equal or better space-savings than Pacemaker, while requiring at most 0.5% of daily
IO bandwidth for transition I0. More importantly, the transition IO is both less
bursty, in terms of when it is needed, and less urgent, in terms of how unsafe an
unsafe stripe might be if the scheme transition were delayed. For instance, in response

to a tiny rise in AFR (< 0.25%) for disks of a given make/model, Pacemaker would

- 172 —

Chapter 5. Designing systems for code conversion

need 196% of the total IO bandwidth from each of those disks in order to make
the data safe—to avoid stealing more than 5% of 10 bandwidth for transition IO,
Pacemaker would have to know to start 40 days in advance—but Tiger would need
<1.6% even for a 1% AFR increase because of the diversity of its eclectic stripes. And,
most importantly, Tiger exhibits significantly better risk-diversity, stemming from
removing placement constraints and allowing differently-reliable disks (and hence
disks of different makes/models) to belong to the same stripe. For example, even
with random selection of disks for each stripe, most of Tiger’s eclectic stripes span
most of a cluster’s make/models; Pacemaker’s strict Rgroup boundaries disallow use
of more than one make/model for most stripes.

Contributions. In the rest of this chapter, we make four main contributions.
First, we introduce eclectic stripes as a tool for realizing disk-adaptive redundancy
without the placement restrictions posed by prior designs. Second, we present a
reliability model and its approximation to efficiently calculate the MTTDL of eclectic
stripes. A surprising outcome is that a homogeneous stripe with the same scheme and
average disk AFR as an eclectic stripe is less reliable! Third, we present the design and
architecture of Tiger, the first disk-adaptive redundancy system for supporting and
efficiently managing eclectic stripes. Fourth, we evaluate Tiger and compare it to the
state-of-the-art, using logs from four large real-world storage clusters, demonstrating
its effectiveness in realizing disk-adaptive redundancy without prior designs’ adoption

challenges and with greater space-savings and lower risk.

5.11 Motivation of Tiger

In this section, we describe the problems with existing disk-adaptive redundancy
systems, which is the motivation for this system.

As shown by prior work [126, 127], disk AFRs are highly correlated with their
vintage, and can vary dramatically over their life. Disk-adaptive redundancy cap-
italizes on differences in disk AFRs and dynamically tailors data redundancy to

observed disk failure rates [148]. Disk-adaptive redundancy systems take into account

- 173 —

Chapter 5. Designing systems for code conversion

various constraints including the reconstruction costs when making the decision of
a target stripe width to adapt to. Specifically, wide schemes are used only when a
stripe’s average AFR is low enough to keep the reconstruction cost contained below a
configured limit. More generally, wide stripes provide cost savings in terms of smaller
storage overhead at the cost of higher reconstruction costs and higher degraded mode
reads. We know from conversing with architects of large-scale storage clusters that
the cost of the excess byte footprint matters more than the cost of excess 10 required
in the context of redundancy, given existing workloads. This is especially so since, in
general, large-scale capacity-tier storage cluster workloads tend to be cold (have low
I0/s per byte). Additionally, cold data experiences fewer reads, and therefore has
very few costly degraded mode reads. Backblaze is an example where, for archival
data that has low IO access rates, administrators have publicly confirmed use of wide
redundancy schemes such as 17-0f-20 [149]. By using more space-efficient redundancy
schemes during low AFR regimes, disk-adaptive redundancy can provide substantial

space-savings (> 20%) in clusters with over 100K disks.

There are two disk-adaptive redundancy systems that have been proposed prior
to Tiger: HeART [1] and Pacemaker, which we presented earlier in this chapter. In
HeART, the authors propose a tool to statistically learn the AFRs of different disk
groups and identify change-points for safe redundancy transitions. By transitioning
to an encoding scheme with minimum storage overhead that still meets the target
MTTDL, HeART was able to obtain ~ 20% space-savings when tailoring erasure codes,
and =~ 33% space-savings when tailoring replication. Although lucrative, HeART
overlooked an important practical hurdle in performing disk-adaptive redundancy:
transition overload, i.e. the IO overhead of performing redundancy transitions. Crip-
pling transition overload when thousands of disks require simultaneous redundancy
transitions forms the basis for Pacemaker. The gist of Pacemaker is to convert urgent
redundancy transitions into schedulable ones by making conservative predictions of
the rise in AFR and proactively issuing redundancy transitions. This allows the
transition overload to be spread out over time, such that it can be completed within

tolerable 1O limits without compromising data safety.

- 174 —

Chapter 5. Designing systems for code conversion

< == £ 100
v > —e— Google Cluster 2
2 g sol ™ Google Cluster 3
o —— Backblaze _g !
,>‘, o Google Cluster|1 ﬁ 0 Baa A Aﬁ
4
6-0f9 1A—0f'17 Zz_oﬁ-’l"? 30‘0@33 6-0f2 ﬂ_of_ﬂ 22_0{_2530_(,{_33
Redundancy schemes Redundancy schemes
(increasing space-efficiency) (increasing space-efficiency)
(a) Placement constraints (b) Risk-diversity

Figure 5.14: Figure 5.14a shows Pacemaker’s placement constraints by highlighting
the fraction of the disk fleet that is viable for different schemes exercised on four
production clusters. Figure 5.14b shows the risk-diversity obtained by the same
clusters on particular dates in their lifetime. A risk-diversity of 100% implies at least
one chunk stored on every possible make/model, whereas a 0% risk-diversity implies
that the particular scheme was not feasible in the cluster. Pacemaker performs poorly
in both placement constraints and risk-diversity.

5.11.1 Existing designs are impractical

Despite remarkable space-savings and low 1O costs, existing disk-adaptive redundancy
systems remain impractical in real-world settings.

Placement restrictions. The primary hurdle stems from the placement restric-
tions posed by reliance on redundancy groups (Rgroups). Recall that an Rgroup
is a set of disks with similar AFRs, such that they can use the same redundancy
scheme. Prior systems redundancy management techniques rigidly partition the
cluster’s disks into Rgroups, and every stripe must be stored entirely within a single
Rgroup. Figure 5.14a shows the percentage of disks that are rendered infeasible for
various redundancy schemes Pacemaker can employ on a particular day in four large
storage clusters. More than 30% of the disks are deemed infeasible for space-efficient
schemes beyond 22-of-25, because their AFRs are not low enough for those disks
to participate in an Rgroup for which schemes beyond 22-0f-25 can meet the target
MTTDL. Furthermore, in order to maintain proper redundancy, stripes are typically
constrained to span across different racks, servers, power lines, etc. Adding another

placement constraint may be close to impossible.

- 175 —

Chapter 5. Designing systems for code conversion

Lower risk-diversity. Due to high correlation of AFRs and makes/models/
batches [126, 127], and in order to enable efficient transitioning mechanisms, many
Rgroups contain disks from just one make/model. This is undesirable from a risk-
diversity perspective. Figure 5.14b shows the fraction of makes/models that are
covered for the same stripe configurations in the same four clusters described above.
Higher risk-diversity is valuable for mitigating consequences of bulk failure situa-
tions (e.g., from rapid degradation due to manufacturing defects), especially in a
disk-adaptive redundancy system where redundancy is tuned rather than regularly

excessive.

Reliance on AFR prediction. With lower risk-diversity, Pacemaker’s Rgroups
are already susceptible to data loss due to bulk failures in a single make/model
(uncommon, but not impossible). Furthermore, Pacemaker’s 10 cost reduction is
highly dependent on being able to accurately predict an AFR rise well in advance.
Currently AFR is calculated only on the basis of age. Prior work has highlighted
that it is dependent on various factors such as vintage, temperature, vibration,
ete. [126, 127, 150, 151]. This makes an already difficult task of accurate AFR

prediction even harder.

All-or-nothing. Current disk-adaptive redundancy designs depend on forming
Rgroups, and work efficiently if entire Rgroups perform redundancy transitions
together (for step-deployed disks). This implies that the entire cluster must commit
to performing disk-adaptive redundancy for all of their data stored on all disks. Such
a restriction makes disk-adaptive redundancy unusable without a major overhaul of

the architecture of the existing storage cluster.

The key takeaway is that additional data placement restrictions create adoption-
blocking limitations and risks. In order have have both placement flexibility and
disk-adaptivity, we need a new approach that includes the ability to reason about
and tune the reliability of stripes that span disks with different AFRs. We achieve

this via eclectic stripes.

- 176 —

Chapter 5. Designing systems for code conversion

5.12 Eclectic Stripes and their challenges

Eclectic stripes are central to Tiger’s approach of providing disk-adaptive redundancy
without placement restrictions. An eclectic stripe is an EC stripe placed on a collection
of disks that can have different failure rates. The reliability model of conventional EC
stripes forces them to be allocated on disks having (or worse, assumed to be having)
the same failure rate. In terms of composition an eclectic stripe is no different than
what a conventional EC stripe would be. Specifically, the same disks that make up a
conventional stripe can also make up an eclectic stripe, just that eclectic stripes are
cognizant of the AFR differences of the underlying disks and can accurately reason
about the resulting reliability. A disk-adaptive redundancy system that supports
eclectic stripes has to overcome several challenges.

1. Ensure efficient creation of sufficiently reliable eclectic stripes. Taking
AFR differences of all disks in a stripe into account makes exact MTTDL calculation
of eclectic stripes prohibitively expensive (see Section 5.13.1). Since stripe creation is
a critical-path operation, it is imperative that a disk-adaptive redundancy system
supporting eclectic stripes reasons about its reliability in an efficient and accurate
manner.

2. Ensure efficient management of eclectic stripes. All underlying disks
of an eclectic stripe will not experience an AFR rise or fall together. A system
supporting eclectic stripes must efficiently identify which stripes need to change their
redundancy in response to changing AFRs.

3. Support unchanged placement policies. While tweaking the placement
policies might provide additional optimizations, a system that supports eclectic stripes
must support existing placement policies without any change.

4. Retain key benefits of disk-adaptive redundancy. Dynamic redundancy
adaptation at a low transition IO cost; continuously providing adequate reliability;
providing space-savings by using more space-efficient redundancy schemes in low-AFR
regimes are the key benefits of disk-adaptive redundancy. Any proposed disk-adaptive
redundancy system should strive to maintain these benefits.

5. Ensure an adoption-friendly design. Apart from placement restrictions,

- 177 —

Chapter 5. Designing systems for code conversion

existing disk-adaptive redundancy system designs require that the entire cluster
commits entirely to perform disk-adaptive redundancy, or it cannot gain any of
its benefits. Moreover, only the very large-scale storage clusters can use existing
disk-adaptive redundancy designs, whereas the small and medium sized clusters
are outside their scope. High emphasis on usability and showcasing a way for easy
adoption of disk-adaptive redundancy in existing storage clusters of all shapes and

sizes is an important design challenge.

5.13 Mechanisms to enable eclectic stripes

In this section, we address the two main challenges of eclectic stripes: their reliability

and their management.

5.13.1 Interpreting reliability of eclectic stripes

We first shed light on key takeaways from our study of the reliability of eclectic stripes
and then provide the detailed theory and the associated analysis.

Calculating MTTDL of eclectic stripes is efficient and accurate. The
exact calculation of the MTTDL of an eclectic stripe is computationally expensive. We
provide a novel approximation that provides the MTTDL with over 99.5% accuracy
(on average), and always provides over 95% accuracy in our tests. In practice, a
difference of 5% in MTTDL typically translates into a difference of around 0.1% AFR
for a homogeneous stripe, which is negligible. The exact MTTDL calculation and the
approximation are detailed in Section 5.13.1.

Eclectic stripes are more reliable than homogeneous stripes. When
comparing the MTTDL of an eclectic stripe with a homogeneous stripe having the
same EC scheme and same avg. AFR, the MTTDL of the eclectic stripe is always
higher than the MTTDL of the corresponding homogeneous stripe for typical system
parameters (Section 5.13.2, Figure 5.16).

Eclectic stripes are robust to AFR changes of individual disks. The
MTTDL of the eclectic stripes does not react abruptly to the increase in AFR of a

- 178 —

Chapter 5. Designing systems for code conversion

Figure 5.15: Left: Classic Markov chain model for the MTTDL of a 2-of-4 homoge-
neous stripe. Right: Markov chain model for the MTTDL of a 2-of-4 eclectic stripe.

few disks. Compared to the conventional approach of treating stripes as homogeneous
with AFR equal to the maximum AFR in the stripe, MTTDL of eclectic stripes react
very gradually to AFR changes.

Eclectic stripes are more robust to AFR misestimations. Due to the
nature of empirical data, any system that measures AFR has to estimate it. Since the
AFRs of different disk make/models are estimated independently, it is unlikely that
there will be simultaneous underestimation of the AFR of every disk in an eclectic
stripe, and hence the impact of estimation errors is smaller (Figure 5.17) and may
even cancel each other out. Furthermore, disk-adaptive redundancy systems are made
even more robust against misprediction by the use of confidence intervals. Thus,
eclectic stripes are more robust to AFR misestimations compared to homogeneous

stripes.

Exact MTTDL calculation is costly

Using a Markov chain model to calculate the MTTDL of storage systems is a classic
approach [133]. A generalization of this approach helps us take into account disks
with different failure rates. Consider an EC stripe of a k-of-n scheme, placed over
n disks with failure rates \;(i € [n]) and a disk repair rate of p. The state of the
system is given by an n-length vector s = (sq,. .., s,) with s; = 1 if disk 4 has failed,
and s; = 0 otherwise (i € [n]). The state space is given by states (s;)!; such that the

total number of failure } 7 , s; is at most the number of parities n — k, and a data

- 179 —

Chapter 5. Designing systems for code conversion

loss state labeled DL. Therefore, the total number of states is 1 + Z?;Ok (’Z) The

rate of transition from state s to s’ is defined as:

* Niifs;=0,s; =1, and s; = &) for i # j (" disk fails),

* pifsi=1,5;=0, and s; = s for i # j (i'"" disk repaired),

Pl —=s)N it YT s; =n—kands = DL (any disk fails when n — k disks

have failed and are not repaired).

The MTTDL is defined as the mean time to state DL from the initial state 0 =
0,...,0).

Given the values of n, k, (A\;)!, and u, one can compute the MTTDL by using
the standard approach of solving a system of equations. However, this approach is
not tractable, due to the exponential explosion on the number of states with respect
to n — k (see Figure 5.15 to compare conventional Markov chain with that of an
eclectic stripe). For example, the Markov chain of a 10-of-14 eclectic stripe has 1472
states, compared to 6 states in the case of a 10-of-14 homogeneous stripe. Reasoning
about this model can be hard too, since it is not directly clear how disk AFRs affect
MTTDL. Furthermore, this approach tends to be numerically unstable, which makes
obtaining precise MTTDLs hard. We find that computing a single MTTDL using
this approach with realistic parameters can take up to several seconds using the
Mathematica 12 software [152] on a desktop PC. This is too slow in practice, because
not only do we need to compute the MTTDL when creating new stripes, but we also
need to periodically compute the MTTDL of every stripe in the system (typically
billions) as device AFRs change. The next section describes an efficient approximation
that makes the MTTDL calculation of eclectic stripes computationally tractable and
highly accurate.

Efficient and accurate MTTDL approximation

In order to compute and better understand the MTTDL of eclectic stripes, we

propose an approximation formula, building on the approach presented in [153] for

— 180 —

Chapter 5. Designing systems for code conversion

High variance (2-16% AFR) Low variance (5-13% AFR)

@ ©
~ o
w o
T

—{ 1+

Hh
—{H
—{Th

HH
—1H
'—D]—'
'—UI*
—{Th

L

H

Hb

ot
u
o

AFR of equivalent
[o0]
=
o

homogeneous stripe (%)
o
N
(9]

___ Average AFR of
each eclectic stripe

N
N
u

6 17 31 32 33 7 8 9
4 14 30 30 30 6 6 6
m

Encoding scheme (7))

6 17 31 32 33

9 151 151
6 141 14 14 14 30 30 30

o~
o

Figure 5.16: Reliability of eclectic stripes compared to homogeneous stripes. For
each scheme, we sample 1000 eclectic stripes and for each stripe we compute its
MTTDL p and then compute the AFR A of a homogeneous stripe with the same
scheme and MTTDL equal to p. The boxes show the distribution of A over the 1000
stripes. The AFR of the first n — 1 disks in a eclectic stripe are sampled uniformly
at random from the range 2-16% (high variance) or 5-13% (low variance), and the
AFR of the last disk in a stripe is chosen to ensure that the average AFR of the
disks in each stripe is fixed at 9%. E.g. the median 6-of-9 eclectic stripe from the
high-variance group is as reliable as a 6-of-9 homogeneous stripe with AFR 8.5%,
despite having an average AFR of 9%.

— 181 —

Chapter 5. Designing systems for code conversion

homogeneous stripes. This approximation is extremely good when g > max; A,

which is true for modern cluster storage systems.

The main idea behind this approximation is to note that (in the steady state)
disk ¢ will be available a fraction A; = p/(pu + A;) of the time, and that the system
will reach the DL state when exactly k — 1 of the disks are available. Therefore, the
MTTDL can be approximated with the following formula (see Section 5.16 for the

full derivation):
MTTDL ~ (u(n — k + 1) PBin(k — 1;n, (4,)",)) ", (5.5)

where PBin(k;n, (p;)!) is the probability of obtaining exactly k heads when flipping
n biased coins with probability of heads p; for coin 7. PBin is known as the Poisson-

binomial distribution, and it can be efficiently evaluated [154, 155].

We tested this approximation against the Markov chain approach over all values
of 6 <k <30,1<n-—k<3, and AFRs of 1-16%. The relative difference between
the two output MTTDLs never exceeded 5% and was less than 0.5% on average®. As
a benefit, the approximation is 2-4 orders of magnitude faster to evaluate (in the
order of milliseconds), more numerically stable, significantly simpler to implement,

and gives direct insight into how the parameters affect MTTDL.

5.13.2 Understanding MTTDL of eclectic stripes

The main difference between the reliability of an eclectic stripe and a homogeneous
stripe is given by the Poisson-binomial factor in Equation (5.5), which becomes
Binomial when all probabilities are equal. Notice that the difference between A; in
Equation (5.5) will be small because p > max; \;, and therefore the corresponding

Poisson-Binomial distribution will not deviate too much from a Binomial distribution

8The median relative difference between the exact and approximated eclectic stripe MTTDL was
0.1%, the 90" percentile error was 0.5%, and the 95" percentile error was 0.7%.

— 182 —

Chapter 5. Designing systems for code conversion

15.5 --- Homogeneous stripe with avg AFR
—— Eclectic stripe

loglO(MTTDL in days)
&
N

5 10 15 20 25 30
AFR of single disk (%)

Figure 5.17: Reliability of a 6-of-9 eclectic stripe when the AFR of a single disk
varies. The eclectic stripe is composed of 8 devices with AFR 9%, and one device
whose AFR varies from 1% to 30% (x axis). The dashed line denotes the MTTDL of
a 6-of-9 homogeneous stripe with the same average AFR as the eclectic stripe. The
solid line denotes the MTTDL of the eclectic stripe. Reliability of the eclectic stripe
is always above the corresponding homogeneous stripe.

with trial success probability A = > ; A;/n [156]. Furthermore, we have:

_ s Ai/n
/1/)

where we use the approximation 1/(1 + z) &~ 1 — x for small . This means that the
reliability of an eclectic stripe will tend to be close to the reliability of a homogeneous

stripe with AFR equal to the average AFR of the eclectic stripe.

To measure how close the MTTDL of an eclectic stripe will be to that of a
homogeneous stripe with the same scheme and average AFR, we conduct two numerical
experiments. Figure 5.16 compares eclectic stripes against homogeneous stripes that
have the same MTTDL, across different schemes and AFR ranges. In this experiment,
instead of directly showing an MTTDL p (which is hard to interpret) in the y-axis,
we show the AFR A of a homogeneous stripe that has MTTDL equal to p (under
the relevant scheme). The results show that eclectic stripes are more reliable than
homogeneous stripes with the same scheme and average AFR. In other words, for

a homogeneous stripe composed of disks with AFR X to match the reliability of an

— 183 —

Chapter 5. Designing systems for code conversion

eclectic stripe with AFRs (\;)!_,, the disks in the homogeneous stripe have to be
more reliable on average, i.e., A < > | A\;/n. The difference, however, becomes small
when the ratio n/k is small, or the range of AFRs is small. Figure 5.17 shows the
reliability of an eclectic stripe when the AFR of a single disk in the eclectic stripe
varies in the range 1-30%. This experiment shows that eclectic stripes provide a
dampening effect against AFR rises of a small number of devices in two ways: (1)
a small number of devices have a smaller impact on the average AFR of the stripe
(slope of the dashed line), and (2) the convex shape of the curve shows that the
eclectic stripe is even more reliable than a homogeneous stripe with the same scheme
and average AFR.

Checking if a stripe is safe: Typically, a minimum level of reliability is set in
the cluster by setting a MTTDL threshold that all stripes must satisfy in order to be
deemed safe. Given the results presented in this section, we now describe a simple
method to determine whether a stripe is safe. We define the critical AFR of a k-of-n
scheme and MTTDL threshold 6 as the highest AFR that disks in a homogeneous
k-of-n stripe can attain while still having an MTTDL of at least . The critical
AFRs for the different schemes that are used in a system can be precomputed and
stored. Then, a simple andx efficient way of checking whether an eclectic stripe under
some scheme is safe is to check whether the average AFR in the stripe is less than
the critical AFR for that scheme. Since an eclectic stripe is at least as reliable as
a homogeneous stripe with the same scheme and average AFR, if the stripe passes
this check, then we can be certain that the stripe is safe. If the stripe does not pass
the check, then it may be unsafe, which can determined by computing its MTTDL.
This test can help greatly reduce the amount of work needed in checking whether
stripes are still safe, and it also provides a simple way of understanding the reliability

of eclectic stripes.

5.13.3 Eclectic Volumes

Disk AFR changes may trigger redundancy transitions. Prior designs performed
disk-adaptive redundancy at the disk level. Thus, if a disk’s AFR changed, either all

— 184 —

Chapter 5. Designing systems for code conversion

or none of the stripes on that disk required a redundancy transition. With eclectic
stripes, each disk may store chunks of stripes with different reliabilities. An AFR
change might only require redundancy transitions for a subset of those stripes. With
millions of eclectic stripe chunks being stored on each disk, a linear search through
all of them for each AFR change is impractical.

An eclectic volume is a collection of eclectic stripes that use the same EC scheme
and are stored on the same set of disks. A disk can contain multiple volume fragments
identified by their globally unique volume ID. Each disk maintains a map of stripe ID
to eclectic volume ID. Since each eclectic volume spans the exact same disks, whenever
a disk’s AFR changes, Tiger only needs to check whether the EC scheme used for
each of the disk’s constituent volumes still meets the required MTTDL target. There
is no need to check the reliability of each of the individual eclectic stripes within
a volume since they are all identically reliable. The details of how Tiger manages
eclectic volumes is described in Section 5.14.3.

Eclectic volumes prove to be efficient only if they represent a large number of
eclectic stripes. Therefore, in Tiger the default size of an eclectic volume is set to 1
TeraByte (TB). This way, even though Tiger performs reliability monitoring at the

volume granularity it ensures that each eclectic stripe is always sufficiently reliable.

5.14 Design and working of Tiger

Tiger is a practical disk-adaptive redundancy system designed to overcome the
challenges described in Section 5.12. Figure 5.18 shows the architectural components
of Tiger (colored boxes) and how they interact with existing cluster storage system

components and common disk-adaptive redundancy components.

5.14.1 Data flow in Tiger

We overview Tiger by explaining the lifecycle of eclectic stripes. An eclectic stripe
is created via the FEclectic Stripe Allocator (ESAllocator), which identifies a set

of disks and the corresponding scheme on which this data is to be stored. The

— 185 —

Chapter 5. Designing systems for code conversion

mmmmmmg Eclectic stripe Conventional stripe
allocator allocator

Existing data placement policy
Disk health inspector

Cluster metadata service

Disk-adaptive redundancy framework

AFR curve Change point
learner detector

Eclectic stripe Eclectic volume
manager manager

Health
inspector

Provide chosen disks and apt scheme

Refine scheme by querying MTTDL for scheme + disks
Buidaaxpo0oq 10} A10308.1g BWN|OA 0} Seduis apInoid

MTTDL engine

Stripe Volume
reorganizer directory
Exchange
stripe metadata

Rate limiter
Perform IO on disks
1111111
O

Figure 5.18: Architecture of Tiger. The blue boxes correspond to Tiger’s compo-
nents. The gray boxes correspond to existing components in cluster storage system
architecture and components present in existing disk-adaptive redundancy systems.

— 186 —

Chapter 5. Designing systems for code conversion

ESAllocator uses the existing and unmodified data placement policy to obtain a
set of disks. That placement policy uses whatever knowledge designers choose (e.g.,
available freespace, load balance, and fault domain constraints) in selecting the set of
disks. The ESAllocator then queries the Eclectic Stripe Manager’s MTTDL Engine
(ESMTTDLEngine) with the AFRs of the chosen disks, and a stripe configuration,
to verify that the planned stripe’s MTTDL meets the required target MTTDL. If it
does not, the ESAllocator boosts the MTTDL by changing the stripe configuration
until an appropriately safe redundancy scheme is found. Section 5.14.2 details this

process.

Once created, the ESAllocator passes the stripe to the Eclectic Volume Manager
(EVManager, see Section 5.14.3) to either add the stripe to an existing volume, or
create a new volume which will contain the new stripe. The Eclectic Volume Health
Inspector (EVHInspector) continuously monitors the reliability of the eclectic volume
by querying the change point detector, which identifies significant AFR changes in
the data from the AFR curve learner. The AFR curve learner, change point detector
and the rate limiter can be reused without change from any existing disk-adaptive
redundancy system’. In reaction to a significant AFR change (rise or fall), the
EVHInspector alerts the EVManager, which fetches the eclectic stripe metadata from
the EVDirectory and provides both the AFR change and the metadata to the Eclectic
Stripe Reorganizer (ESReorganizer; see Section 5.14.2). The ESReorganizer includes
techniques to efficiently perform redundancy transitions. If eclectic stripes must
change, the ESReorganizer consults the ESAllocator in forming them. Non-urgent
redundancy transitions (when the target MTTDL is not at risk of being violated) are

throttled by the rate limiter in order to not overwhelm the storage cluster.

Tiger’s stripe-by-stripe disk-adaptive redundancy approach enables incremental
adoption by allowing data to be stored either as an eclectic stripe or a homogeneous

stripe. This is in contrast to subcluster-based designs that are all-or-nothing.

9Tiger reuses the Ruptures change-point detection library [157, 158], the AFR curve-learner and
the rate-limiter from HeART [1] and Pacemaker [15].

— 187 —

Chapter 5. Designing systems for code conversion

5.14.2 The Eclectic Stripe Manager

The Eclectic Stripe Manager (ESManager) handles construction, maintenance and
reorganization of eclectic stripes.

Constructing eclectic stripes. In the absence of an existing eclectic volume
that has space (described later in Section 5.13.3), the ESAllocator asks the existing
data placement policy for disks to store each new eclectic stripe. Since that placement
policy is unaware of disk-adaptive redundancy, it may return a set of disks whose
AFRs produce an MTTDL that either fails to meet or far exceeds the target MTTDL.
Algorithm 1 describes the process to build a space-efficient, yet adequately reliable

eclectic stripe.

Algorithm 1

OvirroL < target MTTDL
Nmax < max{n | (n, k) € schemes}
(di,...,dn,,..) < "max randomly sampled devices

for (n, k) € schemes in order of increasing n/k do
if MTTDL(n, k, (d1,...,d,)) > OmrrpL then return (n, k)

To give itself flexibility, ESAllocator asks the placement policy to provide a set of
disks for the maximum-width-allowed stripe (e.g., 33 for 30-0f-33). The ESAllocator
then queries the ESMTTDLEngine with the provided disks and its planned scheme to
get the MTTDL value. If the MTTDL does not meet the target MTTDL, ESAllocator
discards a disk from the set and increases the redundancy of the corresponding scheme
(e.g., 29-0f-32 instead of 30-0f-33) to boost the stripe’s MTTDL, repeating this process
until sufficient MTTDL is achieved. This process is guaranteed to terminate, since
the least space-efficient scheme in a storage cluster must meet the target MTTDL.
Moreover, by iterating from the most space-efficient scheme allowed, the algorithm
terminates at the most space-efficient scheme for the provided disks.

Ensuring reliability amid disk failures. The reliability of each eclectic stripe
is a function of the AFRs on the disks on which it is stored. So, when a disk fails,
the reconstructed data cannot simply be placed on a randomly chosen disk, since its

AFR might be high enough to cause the eclectic stripe’s MTTDL to exceed the target.

— 188 —

Chapter 5. Designing systems for code conversion

Recall, from Section 5.13.2, that the critical AFR of an EC scheme is the highest
AFR that a homogeneous stripe of that scheme can reliably support, and a simple
way to test that an eclectic stripe is safe is to check that its average AFR is below
the critical AFR for its EC scheme. Therefore, we can ensure that reliability will
be preserved if we choose a disk that keeps the average AFR of the affected stripes
under their respective critical AFRs.

When a disk in Tiger fails, the EVManager is notified. This triggers a lookup
in the EVDirectory for eclectic stripes whose chunks need to be reconstructed. The
EVManager forwards the list of chunks to the ESReorganizer. For each stripe, the
ESReorganizer asks the ESAllocator for disks to replace the failed disks, providing
the critical AFR for the stripe. The ESAllocator returns suitable disks, if they
are found, otherwise, it allocates (one or more) new eclectic stripes and moves the
prior stripe’s data (including any reconstructed data) to the new stripes. Finding
sufficiently reliable disks to store the reconstructed data results in lower transition 10
than allocating new eclectic stripes, since the latter involves moving data of disks that
did not fail. After the reconstruction process (whether or not new eclectic stripes are
formed), ESReorganizer informs the EVManager of the changes, which then updates
the EVDirectory accordingly.

Dealing with AFR changes over time. A disk’s AFR is not constant
throughout its lifetime [148, 159-161]. In addition to building and maintaining
eclectic stripes, ESManager must also ensure that data is kept safe when a disk’s
AFR changes.

Ensuring data reliability with increasing AFRs. The EVManager monitors AFR
by querying the change point detector. Whenever the AFR rises, the EVManager
identifies any eclectic volumes whose data is at a risk of becoming under-reliable. It
alerts the ESReorganizer, with the necessary stripe metadata of such stripes, which
calls the ESAllocator with the current and previous disk AFR values and the number
of chunks that need reallocation onto safer disks.

As with failed data reconstruction, ESAllocator prefers finding suitable disk
alternates whose AFRs are less than or equal to previous AFRs values of the disks

whose AFRs rose. If ESAllocator cannot find suitable disks, new eclectic stripes are

— 189 —

Chapter 5. Designing systems for code conversion

formed and data is moved, as described previously.

Reducing data over-protection with reducing AFRs. When a disk’s AFR decreases,
there is no reliability threat to the data stored on that disk, but there may be an
opportunity to reduce redundancy and obtain space-savings.

The simplest way (that also entails no transition 10 cost) of reducing a stripe’s
redundancy is by deleting excess parities'’. However, deleting parities is rarely an
option for two reasons. First, most storage clusters have a minimum requirement
on the number of parities per stripe, set by the system administrator. Second,
adding/deleting a parity has a much higher impact on the MTTDL value of a stripe
than adding/deleting a data chunk—deleting even a single parity usually makes the
stripe miss the target MTTDL. When ESReorganizer receives metadata of possibly
over-redundant stripes from the EVManager, it queries the ESMTTDLEngine whether

reducing parities is feasible and, if so, enacts the change.

When deleting parities is not an option, there are two additional ways redundancy
can be reduced. First, the ESAllocator could find candidate disks with AFR higher
than the current disk’s AFR, but low enough that the mean AFR is below the stripe’s
critical AFR. This method is cost-effective, since it involves only reading and writing
those chunks that are on over-protected disks. Second, if the ESAllocator cannot
find suitable disks, it performs new stripe allocations if it can find a new eclectic
stripe with lower storage overhead. Although re-allocation has a high 10 overhead
(since it involves copying data over to the new stripe), it is not urgent when lowering
redundancy and can be throttled by the rate limiter without putting any data at risk.

The eclectic stripe reorganizer (ESReorganizer). The ESReorganizer uses
several techniques to ensure adequate reliability and provide maximum space-savings.

At any given time, the ESReorganizer might be dealing with multiple eclectic
stripes seeking possible changes. ESReorganizer processes requests in priority of
maintaining reliability: failed data reconstruction, then near-risk stripes that need to
increase their redundancy, then requests of decommissioning disks to move data off of

them, and then stripes seeking a redundancy reduction. It processes eclectic stripes

0Deleting parities may not work reducing redundancy of non-MDS codes.

— 190 —

Chapter 5. Designing systems for code conversion

that are requesting reduction in redundancy in descending order of their storage

overhead.

5.14.3 The Eclectic Volume Manager

The EVManager is responsible for creating, maintaining and monitoring the health
of eclectic volumes. Recall (from Section 5.13.3) that an eclectic volume (typically in
TBs) contains hundreds-of-thousands of eclectic stripes (typically in MBs). Along
with health, the EVManager maintains usage statistics (e.g., freespace and load) for
each eclectic volume.

Constructing and populating eclectic volumes. Similar to how ESMan-
ager manages eclectic stripes, EVManager dynamically creates and destroys eclectic
volumes. The construction of the first eclectic stripe forces the creation of the first
eclectic volume on the same set of disks that are chosen by the ESAllocator. When
creating subsequent eclectic stripes, the ESAllocator first queries the EVManager
to check if there are eclectic volumes that are conducive for storing new stripes.
The EVManager does this by maintaining capacity and load-balancing metrics for
each eclectic volume. Thus, the EVManager also avoids hot-spotting within eclectic
volumes by spreading hot data evenly across multiple eclectic volumes. Once the
target eclectic volume is identified, the set of disks comprising the eclectic volume are
returned to the ESAllocator. If there is no space available, the ESAllocator gets a
new set of disks from the placement policy which causes EVManager to create a new
eclectic volume atop those disks. Tiger’s eclectic volumes operate similar to Ceph’s
placement groups [129].

The Eclectic Volume Directory. Recall from Section 5.13.3 that eclectic
volumes are simply a logical grouping of all the eclectic stripes with the same
redundancy scheme on the same set of disks. Each eclectic volume has a unique entry
in the EVDirectory and stored against the eclectic volume ID are the disks on which
the eclectic volume is stored. In addition, the EVDirectory also contains a mapping
from disk serial number to list of volume IDs whose fragments are stored on that disk.

Note that the size of this metadata is very small. With TB-sized volume fragments,

— 191 —

Chapter 5. Designing systems for code conversion

even a 100K disk storage cluster with 20TB disks will have an EVDirectory less than
100MB.

The tiny size of the EVDirectory also implies that it is unlikely to be a bottleneck.
The EVDirectory will typically be queried and updated whenever disks fail, or their
AFR increases significantly (in order to fetch the eclectic volumes IDs stored on the
affected disks). It might also be queried to fulfill an allocation request in order to get
the disks on which an eclectic volume is stored, if the eclectic-volume-to-disks mapping
is not cached. Even a cluster with 500K disks has at most a few hundred disk failures
in a day and typically not more than 10 makes/models, thus limiting the EVDirectory
updates to less than 1000 per day. Although allocations are more frequent, caching
can filter most queries for them, and their rate is also much lower than the rate of
file metadata lookups in a cluster with billions of files. And, if necessary, traditional
metadata scaling techniques can be employed to prevent EVDirectory from becoming
a bottleneck.

Reacting to failures and AFR changes. The EVHInspector continuously
polls the change point detector and the cluster metadata service to gather information
about disk failures and significant AFR changes. For all significant changes, the
EVHInspector reconfirms the MTTDL of the affected volumes by querying the
ESMTTDLEngine with the changed AFRs. Even though it is technically not a stripe,
a EVDirectory has all information required to calculate the reliability of an eclectic
volume, viz. the AFRs of the disks on which the volume resides, and the redundancy
scheme configuration. Due to its small metadata footprint, EVHInspector can check
the health of billions of stripes by checking the reliability of only thousands of eclectic
volumes.

Whenever a disk fails, or a disk’s AFR increases, the EVHInspector looks up
the EVDirectory to find the volumes affected due to this failure/AFR rise. If the
disk in question is alive, the volume manager queries the disk to obtain the stripe
IDs belonging to that volume ID. If the disk has failed, the EVHInspector queries
other disks of that particular eclectic volume and gathers the stripe IDs from them.
Note that all disks storing a particular eclectic volume have the same list of eclectic

stripe IDs in common (but they also each may have other stripes as well from

— 192 —

Chapter 5. Designing systems for code conversion

non-overlapping eclectic volumes).

The EVHInspector then forwards the list of stripe IDs to the ESReorganizer
along with the updated and previous AFR information and the action to be taken
(reconstruct data, increase redundancy or reduce redundancy). On performing the
appropriate task, the ESReorganizer communicates the metadata changes back to the
EVManager, and the EVManager subsequently reflects it in the EVDirectory. For
reconstruction and increase in redundancy, if a replacement disk is found, and has
enough capacity to accommodate all chunks of the failed disk/disks whose AFR has
increased, the eclectic volume of all constituting eclectic stripes after the operation
remains the same. For redundancy reductions, or in case of not finding a replacement
disk, or not finding one with enough capacity, the eclectic stripes depart from their
original eclectic volume (unlike Ceph’s placement groups) since they will now be

stored on potentially different subset of disks.

5.15 Evaluation of Tiger

We now evaluate how Tiger performs on real-world data, and show how it fulfills the
challenges laid out in Section 5.12. Tiger is evaluated using real-world deployment
and failure logs from four production clusters at two different organizations (Google
and Backblaze). Each cluster has a multi-year lifetime and disks from multiple
makes/models/batches. Backblaze uses trickle-deployed disks. These disks are added
to the cluster every few days in the tens or hundreds. Google Cluster 2 and Cluster
3 have step-deployed makes/models where disks are introduced into the cluster in
large batches of tens-of-thousands of disks within a very short span of time. Google
Cluster 1 is a mix of step- and trickle-deployed disks.

The highlights of our evaluation are (1) Tiger significantly lowers placement
restrictions posed by Pacemaker (existing state-of-the-art disk-adaptive redundancy
system); (2) Tiger’s eclectic stripes provide much higher risk-diversity compared to
Pacemaker; (3) Tiger is closer to the target MTTDL, and thus more efficient than

existing disk-adaptive redundancy approaches; (4) Tiger outperforms Pacemaker in

— 193 —

Chapter 5. Designing systems for code conversion

=100 =100 =100 =100

n v.‘\ n w n

] % % %

5 50 5 50 5 50 5 50

Q@ —— Tiger @ —— Tiger Q@ —— Tiger Q@ —— Tiger

Q e Qo Q

© —e— Pacemaker © —e— Pacemaker © —e— Pacemaker © —e— Pacemaker

>0 >0 >0 >0
6-0f2 lg_of'ﬂ Zl_of'2530_of'33 6-0t2 1A,—0§‘11 Zl_of'1530_of'33 6-0t2 XA—0('1111-0('2530-0('33 6-0f2 lg_of'ﬂ Zl_of'2530_of'33

Redundancy schemes Redundancy schemes Redundancy schemes Redundancy schemes

(increasing space-efficiency) (increasing space-efficiency) (increasing space-efficiency) (increasing space-efficiency)

(a) Backblaze (b) Google Cluster 1 (c) Google Cluster 2 (d) Google Cluster 3

Figure 5.19: Placement constraints posed by Tiger compared to Pacemaker by
observing the percentage of the disk fleet that is viable for the different redundancy
schemes. Tiger has lower placement constraints than Pacemaker. Tiger has over >75%
disks being viable for all four clusters for all scheme configurations. Pacemaker’s
placement constraints are more pronounced in Google clusters since they are mostly
step-deployed. This results in strict Rgroup boundaries disallowing disks from different
makes/models being a part of the same Rgroup.

space-savings while keeping the average transition I0 < 0.5% and peak transition 10
< 5% of cluster IO bandwidth and (5) Tiger’s eclectic stripes are less sensitive to

rising AFR and provide better data safety.

5.15.1 Tiger enables flexible data placement

We capture the flexibility in data placement by measuring the percentage of the disk
fleet that is considered viable for storing data using a particular redundancy scheme.
The viability is decided by whether the data stored on those disks will meet the
target MTTDL. The X-axis in Figure 5.19a shows the various schemes that can be
supported in each storage cluster''. For estimating Tiger’s viable disk candidates, we
perform a Monte-Carlo simulation on specific days in each of the cluster’s lifetime.
We allocate 1000 eclectic stripes by picking disks uniformly at random and check
how many of the possible schemes can use the chosen disks. For Pacemaker, we bin
the disks by AFRs to mimic Rgroups and measure the ratio of the population of the
Rgroups to the entire disk fleet.

"The narrowest scheme is set to 6-of-9 and widest is set to 30-of-33. Schemes with higher width
have lower redundancy since the number of parities are kept the same. This is based on reference to

prior work [1, 15], and also on the basis of communication with storage administrators of large-scale
cluster storage systems at various organizations.

— 194 —

Chapter 5. Designing systems for code conversion

I I 3100 3100
< < < < —e— Tiger
> > > >
= & X & = —e— Pacemaker
o 4] —e— Tiger @ i
g Pacemaker g —— Pacemaker g 50 g 50
kS 5 5 Tlger 3
* x X Pacemaker 5 \\
© 9 A bl > € 0 9 A)l > =)l > 0 9 A) >
& "y L > N "y L > = A L > K " X 5%
° \)‘,o& ,ﬂ,o‘ ’5“,0“ ° \)‘,o" ,ﬂ,o‘ ’5“,0“ ey b‘o& 0K QOK o° \/m,o" ’L,L,o" 30,0‘
Redundancy schemes Redundancy schemes Redundancy schemes Redundancy schemes
(increasing space-efficiency) (increasing space-efficiency) (increasing space-efficiency) (increasing space-efficiency)
(a) Backblaze risk- (b) Google Cluster 1 (c) Google Cluster 2 (d) Google Cluster 3
diversity risk-diversity risk-diversity risk-diversity

Figure 5.20: Risk-diversity achieved by Tiger over three large-scale cluster storage
systems. All three plots are average risk-diversity measurements taken over 5 days
spread equally over the lifetime of the clusters. Pacemaker due its Rgroup based
design has much lower risk-diversity compared to Tiger, more evident in Figures 5.20c
and 5.20d which are entirely step-deployed clusters.

Tiger has almost all disks available for allocation for any scheme in Google
Clusters 1 and 3 (Figures 5.19b and 5.19d), whereas in Backblaze and Google Cluster
2 (Figures 5.19a and 5.19¢) at most 25% disks are deemed not viable for the widest
schemes (beyond 22-0f-25). When a large fraction of disks of the cluster have a high
AFR (as is the case with Backblaze and Google Cluster 2 for the chosen dates),
formation of eclectic stripes ends up with mostly high AFR disks. In such situations,
Tiger cannot employ a very space-efficient redundancy scheme. Pacemaker’s strict
Rgroup boundaries, on the other hand, limit all disks in an Rgroup to a single scheme
that may not be very wide. Therefore, for Pacemaker, all clusters see a significant

drop in viable disks as the width increases.

5.15.2 Tiger achieves high risk-diversity

Risk-diversity of a stripe is directly proportional to the number of unique makes/
models participating in that stripe. If all makes/models in the storage cluster have
representation in the stripe, its risk-diversity is defined to be 100%. A 0% risk-diversity
implies that there were no disks in the cluster that could be used for the particular
scheme. The setup used for evaluating risk-diversity is a Monte-Carlo simulation,

where 100 stripes were allocated for each scheme configuration by choosing disks

— 195 —

Chapter 5. Designing systems for code conversion

uniformly at random. For Tiger, we measure risk-diversity by capturing the average
number of unique disk makes/models on which the chunks of an eclectic stripe are
stored for each stripe configuration. For Pacemaker, we again bin the disks by AFR
to form Rgroups, and count the unique number of makes/models within each Rgroup.
We take the average of this simulation performed on five equally spaced days in the

cluster lifetime to get an overall sense of risk-diversity of both systems.

Tiger significantly outperforms Pacemaker in providing high risk-diversity. Fig-
ure 5.20 captures the risk-diversity achieved by Tiger vs Pacemaker. Since Tiger has
no partitioning of disks, all disks of any make/model are viable for allocating any
scheme. The minimum risk-diversity achieved by Tiger is 60% across all four clusters,
that too for the narrowest scheme (6-0f-9) for Backblaze (Figure 5.20a) and Google
Cluster 1 (Figure 5.20b) clusters. Both these clusters have seven makes/models, and
it is unlikely that seven out of nine chunks will be across different makes/models. As
the stripe width increases, Tiger’s risk-diversity also improves. Entirely step-deployed
clusters, Google Cluster 2 (Figure 5.20c) and Google Cluster 3 (Figure 5.20d) have
four and three makes/models respectively. Tiger achieves perfect risk-diversity for
all possible schemes in those clusters. For Pacemaker, it is more likely that clusters
where all makes/models are trickle-deployed will have a better risk-diversity because
multiple makes/models can be a part of the same Rgroup so long as their AFRs are
in the same range, for e.g. Backblaze (Figure 5.20a). Nevertheless, even clusters
with all trickle-deployed disks do not see perfect (or even good) risk-diversity since
different makes/models are deployed at different times, and they go through different
phases of life at different dates. Risk-diversity is poorer for Pacemaker in clusters
with step-deployed makes /models as seen in Figures 5.20c and 5.20d. This is because
Rgroups and steps have a 1:1 mapping and each step only contains disks of a single
make/model. The reason Pacemaker has 100% risk-diversity for 30-o0f-33 is because
when averaging over multiple days (5 for this experiment), all makes/models on some

date belonged to an Rgroup with the 30-0f-33 redundancy scheme.

— 196 —

Chapter 5. Designing systems for code conversion

Conventional

(a) 500 i"""l mean AFR scheme
0 il ||I|...._, (Overhead=1.1)
I Conventional
o b i, ..
>~ 0 [,Jnmm I hm"demL .. (Overhead=1.5)
g 2500 I
(€S | | Pacemaker
g 0 1ol (Overhead=1.2)
. Tiger
(d) 1000 Ih"" (Overhead=1.1)
0 ...

13 14 15 16 17 18 19 20
loglO(MTTDL in days)

Figure 5.21: Comparison of MTTDL distributions for different approaches. We
form 10000 random stripes for each approach using the AFRs from Google Cluster 1
(notice the different scales in the Y-axis). In a conventional system, a single scheme
is chosen for all stripes based on the average AFR (a) or maximum AFR (b). (¢) In
Pacemaker, stripes must reside within an Rgroup, and the scheme depends on the
Rgroup. (d) In Tiger, the scheme for each stripe is chosen based on the AFRs in the
stripe. The dashed vertical line denotes the target MTTDL.

- 197 —

w
o

Chapter 5. Designing systems for code conversion

s Tiger

Bm Pacemaker

N
o

o
o

Space savings (%)

0
A e <] 33
\:)_,oﬁx Xg,,oﬂ' ,I_A,oﬁl 30,& 3

Max allowed stripe width

w
o

mm Tiger
Bm Pacemaker

N
o

10

Space savings (%)

PTG PN LR

Max allowed stripe width

w
o

. Tiger
Bm Pacemaker

N
o

10

Space savings (%)

PTG PN LR

Max allowed stripe width

w
o

B Tiger
Bm Pacemaker

N
o

un
o

Space savings (%)

120 g 02 T o2

Max allowed stripe width

(a) Backblaze space- (b) Google Cluster 1 (c) Google Cluster 2 (d) Google Cluster 3
savings space-savings space-savings space-savings

Figure 5.22: Space-savings achieved by Tiger for disk-adaptive redundancy simulated
on four production clusters compared to Pacemaker over conventional one-scheme-
fits-all redundancy approaches. Figures 5.22a to 5.22d show that across all clusters
with different maximum stripe width configurations, Tiger provides up to 5% higher
average space-savings compared to Pacemaker.

5.15.3 Tiger adapts redundancy efficiently

The efficacy of disk-adaptive redundancy performed by Tiger is evaluated using
three metrics. First, we discuss the MTTDL distribution of data stored using Tiger.
Subsequently, using the same four clusters used by Pacemaker we evaluate the resulting
space-savings obtained by Tiger because of disk-adaptive redundancy, and finally we
measure the IO overhead needed to perform necessary redundancy transitions. For
fair comparison, when evaluating Tiger, we employ the same configurations (such as
the IO constraints and permitted redundancy schemes) and tools (such as the AFR
curve learner and the change-point detector) that are used in Pacemaker.

Tiger’s achieves tight reliability. Storage clusters have to ensure that all data
in the cluster always meets a specified target level of reliability typically specified as a
MTTDL value. Tiger’s target MTTDL is set as the lowest acceptable MTTDL in the
system. This is calculated using the MTTDL of the most conservative homogeneous
stripe possible (6-0f-9) having the maximum possible AFR (16%). These settings are
borrowed from Pacemaker’s evaluation for a fair comparison with Tiger.

Figure 5.21 shows a comparison in the distribution of stripe MTTDL with different
approaches to redundancy selection for a specific day in Google Cluster 1. Figure 5.21a

shows conventional systems choosing the redundancy scheme based on the avg. AFR,

— 198 —

Chapter 5. Designing systems for code conversion

. Tiger
mmm Pacemaker

s Tiger
B Pacemaker

. Tiger
s Pacemaker

B Tiger
B Pacemaker

o
o
o
o
°
o

<
IS
<
IS
EN

I

<
N

0.2

o
N

Avg. transition 10 (%)
Avg. transition 10 (%)
Avg. transition 10 (%)

0.0

Avg. transition 10 (%)
o

.0 .0 .0
ﬂ.o“ﬁﬁ,,o“lxlm,o“ﬂ 30.0“33 ﬂ.oﬁ‘ﬁﬁ,o“lxlwo“ﬂ 30.0“33 X')_.oﬁ‘ﬁxg,o“lxlh,o“ﬂ 30,0“33 Xr)_,o(‘\’C)Xg‘,<><‘7'x?_b‘.0‘(‘7:I 39,0“33

Max allowed stripe width Max allowed stripe width Max allowed stripe width Max allowed stripe width

(a) Backblaze IO over- (b) Google Cluster 1 (c) Google Cluster 2 (d) Google Cluster 3
head IO overhead IO overhead IO overhead

Figure 5.23: 10 overhead of redundancy scheme transitions of Tiger versus Pacemaker.
In most configurations, Tiger has a higher IO overhead compared to Pacemaker due
to Pacemaker leveraging its 1O-efficient transitioning mechanisms. Despite being
higher, the average 10 overhead of Tiger is still at most 0.5% of the overall cluster’s
IO bandwidth; much lower than existing background tasks such as scrubbing, that
require approximately 7% 10 bandwidth [137]

which results in small storage overhead, but puts a big fraction of the stripes at risk.
Figure 5.21b shows conventional systems that choose the redundancy scheme on the
basis of max AFR. Although all stripes are sufficiently protected, the storage overhead
is the highest among all four alternatives. Figure 5.21c shows Pacemaker where the
different MTTDL clusters represent different Rgroups with different redundancy
schemes. Pacemaker achieves good reduction in storage overhead, and keeps all
stripes above the target MTTDL. In fact, some Rgroups (with higher MTTDL
values) are too over-protected and denote lost opportunities for space-savings. Finally,
Figure 5.21d shows Tiger’s MTTDL distribution. Despite all its eclectic stripes being
above the MTTDL threshold, Tiger has least storage overhead.

Tiger achieves attractive space-savings. Akin to Pacemaker, by dynamically
tailoring redundancy to disk AFRs, Tiger’s eclectic stripes can use more space-
efficient redundancy schemes to meet the required MTTDL target. Figure 5.22 shows
that Tiger achieves equal or better average space-savings compared to Pacemaker
in all four clusters. For Google Clusters 1, 2 and 3 (Figures 5.22b to 5.22d), the
highly cost-efficient redundancy transitions of Pacemaker allows a large step-deployed
make/model to spend more time in lower redundancy. This boosts Pacemaker’s

overall space-savings for these clusters and prevents Tiger from surpassing it easily.

— 199 —

Chapter 5. Designing systems for code conversion

In the Backblaze cluster (Figure 5.22a), the reason for Tiger achieving better
space-savings is because eclectic stripes allow high AFR disks to be mixed with low
AFR disks and yet use an optimized redundancy scheme. In Pacemaker, high AFR
disks cannot be mixed with other disks, resulting in lower space-savings. In the
Backblaze cluster, all the seven makes/models are trickle-deployed. This results in
a non-trivial fraction of disks constantly being in high-AFR regimes of infancy or
wearout. While Pacemaker is forced to use the default, most conservative redundancy
scheme on these disks, Tiger can use these disks for more space-efficient redundancy
schemes by combining them with other, more robust disks. As a result, Tiger is able
to achieve up to 5% higher space-savings compared to Pacemaker.

Tiger has very low IO overhead. Figure 5.23 shows the IO overhead com-
parison between Pacemaker and Tiger. Although both systems are capped at 5%
and in general require very low IO (compared to background tasks such as scrubbing
that requires ~ 7% [137]), our evaluation shows that Tiger can achieve all its benefits
with an average I0 bandwidth required for redundancy transitions of at most 0.5%.
In an absolute sense, Tiger’s low IO overhead is mainly attributed to Tiger’s efficient
redundancy transitions for an AFR rise (detailed in Section 5.14.2), where Tiger
moves the potentially risky chunk from an unsafe disk to a safe disk rather than
re-encoding it or reallocating it; both having a significantly higher 1O cost.

Compared to Pacemaker, Tiger still incurs slightly higher IO overhead. This is
due to Tiger’s mechanism of coalescing space-inefficient (high-redundancy) eclectic
stripes into new space-efficient (low-redundancy) eclectic stripes in response to AFR
reduction by moving all chunks. It leads to more data movement compared to moving
just the chunks of the high-AFR disks (as is the case when AFR rises). This is a
conscious design choice made in Tiger in order to maximize space-savings for non-
urgent redundancy transitions at the expense of a minor increase in the IO overhead.
Moreover, Pacemaker’s 10-efficient redundancy transitioning mechanisms (that are
more suitable for its Rgroup-based design) further help in reducing its IO overhead.

Tiger does not experience urgent IO bursts. In order to understand the
burstiness of the IO that can be experienced by Tiger compared to Pacemaker, we

artificially increase the AFR of a make/model and measure the resulting transition

— 200 —

Chapter 5. Designing systems for code conversion

Google cluster 2 Google cluster 2

g Google cluster 1 Disk 1 Disk 2 00 %
1

o m o-0-0-0-¢ —8— Pacemaker o O
= © 100 1 T o-0-0-0-0-|—9— Tiger F75 = 5
C o C -Ia
8 - e-0-0-0-0-0-2""1 50 -8 =
@S g] | G O
© 0.14 1.6 0 0 b25 ©5
S -

2 0 . . . 0 ©

- 0.0 0.5 1.0 0.0 0.5 1.0 0.0 0.5 1.0 2

Increase in AFR (%) of one constituent make/model

Figure 5.24: 10 cost of redundancy transitions associated with the increase of AFR
for one constituent make/model. 10 cost is measured as a percentage of the total 10
bandwidth of the Rgroup for Pacemaker, whereas it is the total cluster IO bandwidth
for Tiger. It is calculated by scaling up a simulation of 1000 random stripes in each
system and measuring the number of stripes that become unsafe after the given
increase in AFR.

IO load for maintaining data reliability. Figure 5.24 shows the comparison of 10 loads
experienced by Pacemaker vs Tiger for three instances of increasing AFR of a single
step-deployed make/model. Performed on three different dates in two Google clusters
(Cluster 1 and Cluster 2), we observe that Pacemaker needs orders of magnitude
higher IO bandwidth than Tiger to achieve the required transitions. In fact for
Google Cluster 2, in both instances none of Tiger’s stripes needed transitioning
despite observing a 1% rise in AFR.

We explain Pacemaker’s high 10 requirement with an example. Suppose a 20TB
disk, which can perform 100MB/s needs to transition away from using a 30-0f-33
scheme. Despite using Pacemaker’s optimized Type 2 transitions'?, simply reading
the data to recalculate new parities would require 196% of the disk’s possible 10
bandwidth in a day (assuming 90% fullness to match Pacemaker’s setup). In a
step-deployed make/model all disks of an Rgroup transition together. In order to
spread out the resulting IO burst over time, Pacemaker relies on predicting the AFR

rise well in advance. To maintain a 5% IO cap, Pacemaker would need to know the

12Tn Type 2 transitions, Pacemaker re-encodes data from one scheme to another without re-writing
any data. It simply recalculates new parities, writes them and deletes the old ones.

— 201 —

Chapter 5. Designing systems for code conversion

AFR rise at least 40 days in advance. Long-term AFR predictions are both non-robust

and non-trivial.

In contrast, Tiger for the same transition does not suffer from any IO bursts.
Firstly, because of eclectic stripes, even if the disk AFR increases, only a limited
fraction of data stored on it will need a redundancy transition, since other stripes
might be residing on more robust disks and might continue to meet the target MTTDL.
Secondly, other disks over which the eclectic stripes needing an increase in redundancy
are spread need not (and probably will not) belong to the same make/model/batch.
Therefore, they will not require a simultaneous increase in redundancy and can assist
in transitioning data from the affected stripes. Thus disks in Tiger are spared from

any sudden IO bursts.

5.15.4 Challenging situations for Tiger

There are certain situations that create fundamental challenges for Tiger and other

disk-adaptive redundancy systems.

Sudden rise in AFRs mimicking bulk failures. Although Figure 5.24 shows
that Tiger is robust to AFR rises in any make/model in a cluster, there could be bulk
failure scenarios where large fraction of the disks in the cluster fail together. On such
occasions, any system (including Tiger) that depends on redundancy will suffer from

potential data loss unless the system includes cross-cluster redundancy.

A cluster with a single step-deployed make/model. Suppose a cluster had
only one make/model, deployed in a step-deployed manner (note: we have not come
across such an example for the large clusters targeted): there would be no diversity
to exploit and all disks of the cluster would undergo redundancy transitions together.
Not only would this produce bursty 1O, but also will potentially result in a capacity
crunch (when increasing redundancy). Such clusters would either need to keep some
space unutilized to account for the bulk redundancy-increasing transitions, or will need
to make provisions to add more disks to the cluster before the redundancy-increasing

transitions are issued.

— 202 —

Chapter 5. Designing systems for code conversion

5.16 Derivation of approximation of MTTDL of eclec-

tic stripes

In order to approximate the MTTDL of an eclectic stripe, we will assume that the
stripe can be repaired in the data loss state and we will approximate the MTTDL as
the mean time between visits to the data loss state. In particular, we will analyze
the stripe as an alternating renewal process. Let Ag be the stripe availability (i.e.,
the fraction of the time that the stripe is not in the data loss state), us be the repair
rate in the data loss state, and A, the stripe data loss rate. As described above, the
MTTDL is approximately A;!. For an alternating renewal process, we have that:
Hs 1 Ag

A, = & — = —— 5.6
,us + /\s)\s Ms(]- - As) ()

The repair rate in the data loss state is simply the number of failed disks in that
state:
ps = (n—k+1)u. (5.7)

We assume that each disk in the stripe fails independently from the rest, and that
it is repaired with rate p if it fails. Then, in steady state, disk ¢ is available with

probability:
_ M
pt A

Let P(j) be the probability that we find the stripe in a state where exactly j disks

(5.8)

7

are available in the stripe. Since there are no states with more than n — k + 1 failed

disks, we have that:

Q)
Qk—1)+---+Q(n)

P(j) = Jor k—1<j<n, (5.9)

where ((j) is the probability that exactly j disks are available. Since disks are

independent, @(j) is equal to a Poisson-binomial distribution, with probabilities

— 203 —

Chapter 5. Designing systems for code conversion
(A;)I,. Given this, the availability of stripe is given by:
Ay =P(k)+---+ P(n). (5.10)

Thus, we have:

i: Q(k)++Q(n) ~ 1 (5 11)
As pln—k+1)Q(Kk—-1) pln—k+1)Q(k—1) '

Where the approximation comes from the fact that Q(n) ~ 1 because p > max; \;
and thus all A, are close to 1.

In summary, we have that:

1
MTTDL ~ (5.12)

p(n —k+1)Q(k — 1)

5.17 Related Work

The closest related work is HeART, which we have discussed several times throughout
this chapter. Additional related work can be divided into works that study the
reliability of disks and distributed storage, and systems that manage multiple EC
schemes and transitions between them. One essential part of disk-adaptive redundancy
is the monitoring of disk AFRs, which are used by Tiger to assess the reliability of
stripes. Many works have studied the behavior of disk AFRs and their impact on
distributed storage reliability [21, 126, 127, 134, 137, 138, 162-166]. Also, multiple
works have studied the prediction of disk AFRs based on different features [151, 167
172].

Many existing distributed storage systems allow for multiple EC schemes to coexist
in the same cluster [141, 173]. There are systems that propose choosing different EC
schemes for different data [93, 174]. The problem of transitioning data from one EC
scheme to another has been widely studied in the Coding Theory literature, with
many works studying its cost, as well as proposing special code designs that reduce
the cost of transitions [19, 63, 83, 86, 87, 89, 91-93, 95, 96, 99, 175]. Such designs

— 204 —

Chapter 5. Designing systems for code conversion

could be used with Tiger, though our evaluations indicate that transition 1O is not a

significant problem.

— 205 —

Part Il

Dynamic storage codes for change

dCross space

— 206 —

The second part of this thesis deals with changes in storage codes across space. In
particular, we focus on the challenge of designing storage codes and systems that can
adapt to differences in density across geographic regions. In Chapter 6, we design
minimum-update cost codes, a new type of storage code designed for minimizing
storage overhead and WAN bandwidth usage in geo-distributed storage systems. In
Chapter 7, we propose Pudu, a strongly-consistent geo-distributed storage system

that leverages minimum-update cost codes to reduce the resource-cost of the system.

- 207 -

Chapter 6

Irregular Array Codes with Arbitrary
Access Sets for Geo-Distributed
Storage

This chapter is based on work from [176], done in collaboration with K. V. Rashmi.

Erasure codes are commonly used in distributed storage systems to provide
resiliency against failures. In such applications, an [n, k] block code C' is used to
encode a message m consisting of k symbols into a codeword c consisting of n
symbols, where symbols are taken from a finite field F, of size ¢. In a scalar code,
each codeword symbol is then placed in a different node in the system. Mazximum
distance separable (MDS) codes are widely used in practice, because they require the
least amount of storage for a given level of failure tolerance.

Scalar MDS codes have the property that the message m can be decoded from
any subset of k£ out of all n nodes. Some applications, however, require the ability
to decode the message from only a few of those subsets. In some cases, it may even
be desirable to decode the message from certain subsets of size smaller than k. An
example of such an application is geo-distributed storage systems [6, 177-180]. In
these systems, data is encoded and distributed across different servers around the
globe. Clients in diverse geographical locations then decode and update the data

by communicating with these servers. One important constraint is given by the

— 208 —

Chapter 6. Codes for geo-distributed storage

1
° node 1 a b
2 0 node 2 c
[] [)
node 3 a
3 4 node 4| b
[) [)
node 5 c

(a) (b)

Figure 6.1: (a) Example of arbitrary access sets over five nodes and (b) an irregular
array code that satisfies them.

maximum latency facing clients when decoding data (i.e. read latency). Due to the
geo-distributed nature of this application, network latency across pairs of clients and
servers varies significantly. Thus each client is only able to communicate with a small
subset of nearby servers under a given read latency threshold. On top of this, one
wants to provide certain failure tolerance guarantees, such as ensuring that each
client can decode the data even if one of the nearby servers fails. This leads to the

requirement that clients must be able to decode data from specific subsets of nodes.

We formalize such constraints on decodability through the notion of access sets.
An access set is a subset of nodes S C {1,...,n} expressing the requirement that the
message m must be decodable using only symbols stored in the nodes in .S. We say
that a collection of access sets S is satisfied by a code if the message m is decodable
from each of the access sets in S. Note that there can be other subsets not in S which
are also sufficient for decoding m. Our goal is to design a code satisfying the given

access sets while minimizing other cost metrics.

Existing work on codes with arbitrary access sets [181, 182] has focused on
minimizing storage overhead, i.e. the ratio between the total number of symbols in
a codeword and the number of symbols in the message it encodes. In this chapter,
we focus on an additional metric of practical importance: update cost. The update
cost of a code is the average number of symbols communicated when a single symbol
of the message is updated. In the setting of geo-distributed storage systems, these

transmissions would consume the wide-area network (WAN) bandwidth which is a

— 209 —

Chapter 6. Codes for geo-distributed storage

scarce and expensive resource in distributed systems [183]. Thus, update cost is an
important metric to minimize in geo-distributed storage systems.

When the access sets correspond to all (Z) subsets of size k, it can be shown from
basic results about MDS codes that the minimum storage overhead is 7/k and the
minimum update cost is (n — k 4 1), both of which are simultaneously achieved by
systematic [n, k] Reed-Solomon codes (or other MDS codes).

Towards the goal of optimizing these two metrics in geo-distributed storage
systems, we ask the following question: When the required access sets are more
relaxed than all subsets of size k, is it possible to reduce update cost and storage
overhead simultaneously by tailoring the code construction to the access sets? We
answer this question in the affirmative.

Consider the following toy example.

Example 6.1: Consider n = 5 nodes and access sets S = {{1,2},{1,5},{2, 3,4}, {3, 4,
5}} (see Figure 6.1a). A code that satisfies S is a systematic [5, 2] Reed-Solomon code,
with update cost 4 and storage overhead 5/2 = 2.5. Another code that satisfies S is the
irregular array code shown on Figure 6.1b, which encodes the message m = (a, b, ¢).
Note that m can be fully decoded from any of the access sets in S, and that each
message symbol is present in only two different nodes. Thus, this code has update

cost 2 and storage overhead 6/3 = 2. >

In Example 6.1, it was possible to reduce storage overhead by placing data unevenly
on nodes. This kind of code is called an irreqular array code, which allows for the
storage of a variable number of symbols on each node, in contrast to scalar codes
which only store a single symbol per node. Note also that in Example 6.1 the sparsity
of the access sets makes it possible to reduce update cost.

We study the problem of designing codes that satisfy the given access sets while
minimizing update cost and storage overhead. We start by presenting the problem
formally and exploring its fundamental limits (Section 6.2). We do this by first
deriving the minimum update cost achievable by an irregular array code satisfying
the given access sets (Section 6.2.1). We then focus on analyzing update cost and

storage overhead in conjunction, and demonstrate that employing irreqular array

— 210 —

Chapter 6. Codes for geo-distributed storage

codes is necessary for jointly minimizing both of these metrics (Section 6.2.2). We also
show that, unlike the case where all subsets of size k are access sets, it is not always
possible to simultaneously achieve the minimum update cost and minimum storage
overhead (Section 6.2.3). Since the cost of WAN bandwidth tends to be higher than
the cost of storage [183, 184], we focus on codes with minimum update cost (termed
MUC) and minimize storage overhead subject to this constraint. We model MUC
codes using information flow graphs, and use this model to derive a lower bound on
their storage overhead (Section 6.3). Finally, we show the existence of MUC codes
meeting this lower bound through a randomized construction (Section 6.3). Overall,
the results show that it is possible to obtain significant savings in update cost and
storage overhead compared to traditional MDS codes when one adapts the design
of a code to the given access sets. This chapter also exposes a new trade-off space
between update cost and storage overhead under arbitrary access sets, which is of

significance in geo-distributed storage systems.

6.1 Related work and existing results

In this section, we summarize the related work and review existing results which will

be used in this chapter.

6.1.1 Related work

The concept of codes with arbitrary access sets has been previously studied in the
information dispersal and secret sharing literatures. Information dispersal [181, 182,
185] studies the problem of encoding and distributing a given file f among nodes in
a way that satisfies prespecified access sets. While [181, 182] study the minimum
storage overhead required by arbitrary access sets, to the best of our knowledge,
work in the information dispersal literature has not focused on update cost. Secret
sharing with general access structures [186] considers the same scenario as information
dispersal but adds a security requirement: any subset of nodes that is not an access

set leaks no information about f. Security is not among the objectives of this chapter.

— 211 —

Chapter 6. Codes for geo-distributed storage

Gonen et al. [187] consider collections of access sets which are restricted to be of the
same size k and study the field size requirement of scalar codes satisfying them.

Irregular array codes have also been used by [188-190] in a line of work called
irreqular MDS' array codes. In this setting, the following parameters are given as
input: the number of nodes n, the number of message symbols m; stored in node
i € {l,...,n}, and a number k such that all message symbols can be decoded from
any k nodes. The goal in these works is: 1) to determine the necessary number of
parity symbols p; stored in each node ¢ while minimizing the total number of parity
symbols -7 | p;, and 2) to design a code that stores m; message symbols and p; parity
symbols in node 7 such that the message can be decoded from any k nodes.

Several works have studied the cost of updates in storage codes via different
metrics, such as update complexity, update efficiency, and update bandwidth. Update
complezity [23, 24, 35, 191-202] is defined as the average number of codeword symbols
updated when a single message symbol is updated. In linear codes, this is related
to the fraction of non-zero entries (i.e. density) of the generator matrix. Update
efficiency [203-205] refers to the asymptotic behavior of update complexity. Update
bandwidth [190] assumes a systematic irregular array code, and is the average amount
of symbols communicated among nodes when all message symbols stored in a single
node are updated. All these metrics differ from the update cost considered in our
work, which is defined as the average number of symbols communicated when a
single message symbol is updated. Update complexity and update efficiency focus
on the number of symbols updated, whereas update cost focuses on the number of
symbols commaunicated (when nodes store multiple symbols, a single communicated
symbol can be used to update several symbols at a node). We focus on the number
of symbols communicated rather than updated in order to capture the usage of WAN
bandwidth in geo-distributed storage systems. Update bandwidth also focuses on the
number of symbols communicated, but is defined for systematic codes only and is
motivated by a setting where data is generated at the nodes, which is not a good fit
for our target application of geo-distributed storage systems. Several other works have
studied handling updates in storage systems in different settings, such as multiversion
coding [206] and oblivious updates [207].

— 212 —

Chapter 6. Codes for geo-distributed storage

The design of erasure codes for distributed storage systems has also been studied
by other lines of research with the goal of optimizing other metrics. For example,
regenerating codes (e.g. [27-30, 35, 37, 40, 43]) minimize the bandwidth cost of node
repair, locally repairable codes (e.g. [65, 66, 70, 71, 114]) reduce the number of nodes
that must participate in the repair of a single node, and Piggyback codes [47, 63, 208]
construct codes to reduce the amount of data read and downloaded during repair

while having a low number of symbols per node (i.e., substripes).

6.1.2 Existing results on storage overhead for arbitrary access

sets

In this subsection, we summarize results from previous works that are used in this
chapter. Naor and Roth [181] proved a lower bound on the minimum storage overhead
of a code satisfying given access sets S. Let [n] = {1,...,n}. Each node v € [n] is
modeled as a variable w, € [0, 1] denoting the size of node v as a fraction of the size
of the message m. One clear restriction is that the combined size of the nodes in an
access set must be at least that of the message. Therefore, a lower bound on storage

overhead is given by the solution to the following linear program (LP).

minimize Zve[n} Wy
subject to Y ,cqw, > 1, VS €S (LP1)
w, €10,1], Yo € [n]

Lemma 6.1 ([181]). LP1 gives a lower bound on the storage overhead of irregular

array codes satisfying access sets S.

Proof. Let M be a uniform random variable representing message m, and let
{W4}vem) be random variables representing the contents of nodes. A necessary

condition for decoding to be possible is that the message is completely determined by
the nodes in an access set, i.e., H(M|{W,},es) =0 for all S € S. Thus, for all S € S

— 213 —

Chapter 6. Codes for geo-distributed storage

it holds that:

IN

H(M) H(Ma{Wv}v€S>
H({W’U}’UES) + H(M|{W’U}’UES)
H

({Wv}vGS) < ZUGS H(WU)

Moreover, H(M) = k, and clearly H(W,) < ¢, for all v € [n]. This is captured by

LP1 when we introduce variables w,, := ¢ /k. [

Lemma 6.2 ([182]). The bound of Lemma 6.1 is achievable by using a sufficiently
long MDS code and distributing symbols according to the weights {wy }yepp)-

Proof. Let {w}},cn) be a rational solution to LP1. The message size k is chosen
as the least common denominator of the w; variables, and the number of symbols
in node v is set to £, = kw;. Let N = k3,1, w; be the total number of symbols.
Then, one can utilize an [N, k] MDS block code and distribute its symbols according
to the node sizes (¢,),c[y to construct an irregular array code which has minimum

storage size and satisfies the access sets S. O]

6.2 Fundamental limits on codes with arbitrary access

sets

An irregular array code over finite field F, with n nodes, message of length k, and
node sizes ({;);efy is defined by a mapping C': Fi — F)', where N = 33,c(, {; is the
length of a codeword. An irregular array code is said to be linear if C' is linear. Each
codeword C(m) = (c1,...,cn) is interpreted as an n-node array, with node ¢ denoted
as Cij(m) = (c(sy1)s - - Cesqe)) Where 7 = Y021 4;. Let the symbol x denote an
erasure and, for a subset S C [n], let Cs(m) denote the result of erasing every symbol
in C;(m) for ¢ € [n] \ S. We say that an irregular array code satisfies access sets
S C 2 if m can be decoded from Cg(m), i.e., there exists a decoding function
D : (FyU{+})" — F such that D(Cs(m)) = m for all m € F} and S € S. Note that

— 214 —

Chapter 6. Codes for geo-distributed storage

if it is possible to decode m from an access set .S, then it is possible to decode m from
any access set S’ D S. Thus, we assume without loss of generality that all subsets
in S are minimal, and thus [S| < (L"?QJ) (by Sperner’s theorem [209]). The storage
overhead of an irregular array code is defined as the ratio V/k. We define the update
cost of an irregular array code as the average number of symbols communicated to
nodes when a single symbol of the message is updated. In general, update cost is at
least the average number of nodes that are updated when a single message symbol is
updated, since at least one symbol must be communicated to each updated node. In
linear codes, both the number of symbols communicated and the number of nodes
updated are equivalent because if message symbol m; is updated to m; it suffices to
send symbol Am; = (m} —m;) to every updated node. Each node then scales Am; by

the appropriate factor and updates its symbols. Thus, for linear codes update cost is:

i1 {7 €[] : Cj(es) # 0}|7

update-cost(C) := -

where e; € F¥ is the i-th standard basis vector. When (; = ¢ for all i € [n] we say
that the code is a regular array code, and when ¢ = 1 we say that it is a scalar code.

Our ultimate goal is to construct codes that minimize update cost and storage
overhead while satisfying the given access sets S. We begin by studying update cost
in isolation (Section 6.2.1). Then, we study both update cost and storage overhead in
conjunction (Section 6.2.3). Along the way, we show that using irregular array codes

is necessary for minimizing these two metrics (Section 6.2.2).

6.2.1 Minimum update cost

Now, we derive a lower bound on the update cost of a code satisfying the given access
sets S. To achieve this, we model each node v € [n| with a binary variable w, € {0,1}
indicating whether the node is updated or not when updating any single arbitrarily
chosen message symbol. Observe that if a symbol of the message is updated, then
at least one node in each access set S € S has to be updated, since otherwise the

output of the decoding function on this access set would remain unchanged. Thus,

— 215 —

Chapter 6. Codes for geo-distributed storage

one can compute a lower bound on the number of nodes updated by a single symbol
update and, by extension, a lower bound on update cost, through the following integer
program (IP).
minimize -, ¢ Wy
subject to Y gty > 1, VS €S (IP1)
w, € {0,1}, Vv € [n]

Note that this formulation corresponds to computing a set cover of the access sets by

nodes, where a node v is said to cover access set S if v € S.

Lemma 6.3. /P1 gives a lower bound on the update cost of irreqular array codes

satisfying access sets S.

Proof. Let u* be the optimal value of [P1, and suppose there exists a message symbol
that updates fewer nodes when updated. Let U’ be the subset of nodes updated.
Since |U’| < u*, there must exist at least one access set S € S such that (U'NS) = 0.
This is a contradiction, since decoding from S would yield the same output as before
the update.

Since the above holds for every symbol in the message, u* is also a lower bound
on the average number of nodes changed by a single symbol update, which is in turn
a lower bound on the average number of symbols communicated, i.e., the update
cost. [

We show that this bound is achievable via strategic replication.
Lemma 6.4. The bound of Lemma 6.5 is achievable.

Proof. Let {1} },cn be the optimal solution to IP1. Consider a code that places a
full copy of the message m on each node v where w; = 1. Clearly, this code achieves

the minimum update cost and satisfies the access sets S. O
The next theorem follows from Lemmas 6.3 and 6.4.

Theorem 6.5. The minimum update cost of an irregular array code satisfying access

sets S is given by IP1 and is achieved by strategic replication.

— 216 —

Chapter 6. Codes for geo-distributed storage

Minimum update sets or p-sets: IP1 may have multiple optimal solutions for the
given access sets S. Each optimal solution can be interpreted as a subset of nodes U
where v € U iff w, = 1. We call such subsets of nodes a minimum update set or u-set,
and denote the collection of all p-sets for the given access sets as U. Note that a code
can have minimum update cost only if every update to a message symbol updates
a number of nodes equal to the minimum update cost. Because of this, u-sets are
important for studying codes with minimum update cost, and each message symbol
must be associated to a specific u-set that is updated when that message symbol is
updated. As a consequence, in codes with minimum update cost, a node v depends
on a certain message symbol iff it belongs to its corresponding pu-set. For example,
in Example 6.1, one can verify that the minimum update cost is 2, and that each
message symbol updates a u-set: a updates {1, 3}, b updates {1,4}, and ¢ updates
{2,5}. Note that the size of U can be exponential in n and, like S, it is upper bounded

by (L“72J)‘

6.2.2 The necessity of irregular array codes

In this subsection, we show that considering irregular array codes (instead of tra-
ditional scalar codes) is not only important for the sake of generality, but also a

necessity for reducing both update cost and storage overhead.

Lemma 6.6. Irreqular array codes are necessary for achieving the minimum storage

overhead of arbitrary access sets.

Proof. The proof proceeds by contradiction using an example. Consider Example 6.1.
Notice that any coding scheme that places the same number of symbols in each
node must place at least ¥/2 symbols on each node, due to decoding set {1,2} and
Lemma 6.1. This results in an storage overhead of at least 2.5. On the other hand,
the code proposed in Example 6.1 achieves the minimum storage overhead, which
is 2 by Lemma 6.1 (consider the solution wy = 2/3 and w, = 1/3 for v € {2,...,5}).
This means that storing a different amount of symbols in each node is necessary for

minimizing storage overhead. O

- 217 -

Chapter 6. Codes for geo-distributed storage

6 node 1 a b
node 2 c d
3 9 node 3 e f
node4 | a+e | d+e
nodeb | a+f | c+f
node6 | b+e | cte
4 1 5 node7 | b+f | d+f

(a) (b)

Figure 6.2: (a) Access sets over seven nodes defined by the Fano plane and (b) an
array code that satisfies it.

In general, irregular array codes tend to achieve better storage overhead than
scalar codes when the access sets are of different sizes, and when nodes belong to
different number of access sets. These two situations arise naturally in geo-distributed
storage systems because of the difference in density of servers in distinct regions. Note
that existing codes for arbitrary access sets with reduced storage overhead compared
to MDS codes (from the literature on information dispersal [181, 182, 185] and secret

sharing [186]) are indeed irregular array codes.

Lemma 6.7. Fven for access sets where scalar codes can achieve the minimum storage

overhead, array codes are necessary for additionally minimizing the update cost.
We use the next example in the proof to this lemma.

Example 6.2: Consider n = 7 and the access sets S defined by the Fano plane, where
each subset of three nodes is in S iff they lie on the same line (see Figure 6.2a).
The minimum storage overhead for S is 7/3, by Lemma 6.1. The minimum update
cost is 3, by Theorem 6.5 (every line is a p-set). The access sets S are satisfied by
a systematic [7,3] Reed-Solomon code, which has the minimum storage overhead
and its update cost is 5 (higher than the minimum update cost). The access sets S
are also satisfied by the irregular array code shown in Figure 6.2b, which encodes
the message m = (a,b,¢,d, e, f), and has the minimum storage overhead and the

minimum update cost. >

— 218 —

Chapter 6. Codes for geo-distributed storage

Proof of Lemma 6.7. The proof proceeds by contradiction using an example. Con-
sider Example 6.2. For these access sets, no code which places a single symbol per
node and has minimum storage overhead can achieve the minimum update cost, as
explained below. Clearly, the p-sets associated with the message symbols must cover
all nodes, as otherwise uncovered nodes would never be updated. Thus, the code
must have k = 3, since at least three u-sets are needed to cover every node, and there
are exactly three nodes in each access set. However, for these access sets, any triple of
pu-sets that covers all nodes must intersect at exactly one node. No code that places
a single symbol in each node can satisfy the access sets in such a triple, since two of
the nodes in it would be a function of the same message symbol, and the remaining

node would be a function of all three message symbols. O]

6.2.3 Tradeoff of update cost vs. storage overhead

So far, we looked at update cost and storage overhead separately, and saw how to
construct codes that achieve the minimum cost possible on each metric separately.
However, it is easy to see that while the constructions in Lemmas 6.1 and 6.4 achieve
the minimum cost with respect to one metric, they do not perform well with respect to
the other. Therefore, it is a natural question to ask whether it is possible to construct
codes that minimize both of these metrics at the same time. For some collections of
access sets, it is possible to simultaneously achieve both the minimum update cost
and minimum storage overhead. For instance, the collections of access sets discussed
in Examples 6.1 and 6.2 both have this property. As another example, the access sets
consisting of all size k subsets of [n] are satisfied by a systematic [n, k] MDS code,
which achieves the minimum update cost (n — k + 1) and minimum storage overhead
("/k). However, as the next example shows, this is impossible for some collections of

access sets and there is a tradeoff between update cost and storage overhead.

Example 6.3: Consider n = 5 and access sets S = {{7,j} : i # j € [5]} \ {{4.5}} (see
Figure 6.3). From Lemma 6.1, it follows that the minimum storage overhead for S
is 5/2. Here, the only p-set is U = {1, 2, 3}, since any other subset of at most three

nodes leaves at least one access set uncovered. Thus the minimum update cost is 3.

— 219 —

Chapter 6. Codes for geo-distributed storage

3 4

Figure 6.3: Example of access sets for which minimum update cost and storage
overhead cannot be simultaneously achieved.

Any MUC code cannot place any symbols in node 4 or 5, since any update to
those nodes would require updating more nodes than the minimum. Since {1,4},
{2,4}, and {3,4} are access sets and 4 is empty, 1, 2, and 3 each must have at least a
full copy of message m. This requires storage overhead of at least 3, which is higher

than the minimum. >

Since, in general, it is impossible to achieve the minimum cost of both metrics
simultaneously, and due to the premium in WAN bandwidth cost over storage cost,
we focus on codes with minimum update cost and then minimize the storage overhead
subject to that constraint. This approach attains one of the Pareto-optimal points in
the tradeoff.

Definition 6.1 (MUC code): An irregular array code satisfying access sets S is said
to be a minimum update cost (MUC) code if it achieves the minimum update cost

(Theorem 6.5) corresponding to S. >

6.3 Storage overhead of MUC codes: lower bound

and achievability

In this section, we focus on deriving a lower bound on the storage overhead of MUC

codes. In order to derive a lower bound on storage overhead, we model the decoding

— 220 —

Chapter 6. Codes for geo-distributed storage

message

p-sets @ @ @
o0

nodes

(2) g“
access sets

Figure 6.4: Information flow graph for given access sets.

process as a network information flow graph [109].
Recall from Section 6.2.1 that in MUC codes every message symbol is associated
to a pu-set U € U that is updated whenever that message symbol is updated. For

given access sets S, we build an information flow graph with the following vertices:
e X, for the message m,;
* {Xv}veu, for the fraction of m encoded in p-set U;
* {Y,}vep), for the contents of node v;
* {Zs}ses, for the decoding of access set S.
The graph also contains the following directed edges:
* {(X, Xv)}veu, where (X, Xyy) has capacity ky;
* {(Xy,Y,) :v € U}lyey, each with unlimited capacity;
* {(Y,,Zs) : v € S}ges, where (Y, Zs) has capacity £,,.

A necessary condition for a MUC code with parameters n, k = Y ¢y ky, and
(Ei)ie[n] to exist is that in its information flow graph the maximum flow from the

source to each sink is at least k. Therefore, the values of {ky}yey and {€,}yef must

— 221 —

Chapter 6. Codes for geo-distributed storage

be set in order to allow the flows while minimizing the ratio > ,cp ¢/, o, kv, Which
corresponds to the storage overhead.

In order to model the information flow graph, we introduce the following variables:

* zy € [0,1] for U € U representing the fraction of message m associated with

p-set U, i.e., xy = kufk;

* y, € [0,1] for v € [n] representing the size of node v as a fraction of the size of

the message m, i.e., y, := & /k;

* zuws € [0,1] representing the flow from p-set U through node v when access

set S is used as the sink.

The following LP captures the information flow graph:

minimize