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Abstract
Depth estimation is an image translation problem that predicts depth maps for

a given camera image and has fostered research in various applications including
self-driving vehicles. Self-supervised depth estimation methods are of particular in-
terest since ground truth LIDAR depth is expensive to acquire and instead use view
synthesis as weaker supervision. Generally, the produced depth maps to date are
only point estimates of an underlying depth distribution due to randomness in model
training, resulting in noisy depth estimates that can propagate errors and lead to inac-
curate or fatal decisions in real-world applications. Recent interest has been sparked
in reducing such noise by modeling the uncertainty of depth estimates. Empirical
uncertainty strategies seek to predict uncertainty via statistical methods by treating
independent models as black box predictors. Of particular interest are predictive
strategies that seek to learn the inherent uncertainty of a depth model. For example,
student-teacher frameworks train one network to learn the depth output distribution
of another. Such methods are desirable due to the advantage of requiring fewer train-
ing and space resources compared to other empirical methods. In this work, we study
self-supervised depth models with a U-Net architecture that outputs depths at mul-
tiple scales. In particular, we explore a novel predictive uncertainty model that only
has access to these scales and the U-Net bottleneck feature. We evaluate and discuss
the novel method alongside other uncertainty strategies on the KITTI dataset.
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Chapter 1

Introduction

1.1 Monodepth: self-supervised monocular depth estimation

Figure 1.1: Monocular Depth Estimation, (Monodepth) is the problem of predicting pixel-wise
depth maps given a single camera image.

The problem of monocular depth estimation (monodepth) is to predict depth maps1 from a
given camera image as shown in Figure 1.1. The underlying premise is that single images of an
indoor/outdoor 3D scene contain various depth cues (i.e. object spatial arrangement, textures)
that encode the distance from the camera i.e. depth. Furthermore, if camera images are col-
lected via video or as stereo image pairs, then motion parallax between frames or stereo parallax
respectively can give further depth cues.

The significance of this challenge is that pixel-wise depth maps are used to reconstruct and
understand the 3D environment at the time the camera image was taken. Knowing the distance
to an object and the geometry of the camera, allows a geometric approach to reconstructing the
3D scene. This task is particularly interesting for self-driving car applications [8].

However, ground truth depth points usually from LIDAR (Light Detection and Ranging)
hardware are expensive to acquire. To address this problem, many works use view synthe-
sis which is a geometry-based supervision. Sometimes called warping or reconstruction, this
pipeline takes a camera image of a 3D scene from one viewpoint (i.e. camera pose) and predicts
the image of the same scene for another viewpoint. For example, the KITTI dataset [4] offers
stereo camera image pairs as the two views. Another option is to collect monocular video, and

1Depth maps from Convolutional Neural Networks (CNNs) usually output inverse depths, which are then flipped
and clipped to a depth range. We use 0.1m to 80m as the minimum and maximum depth ranges.
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use different frames of time as the viewpoints [16]. The latter technique is called SfM (Struc-
ture from Motion) and involves using visual odometry to understand the transformation between
viewpoints.

1.2 Uncertainty for self-supervised depth estimates
Depth maps produced by monodepth models are point estimates, which have no basis on whether
they should be trusted [12]. The sources of noise in the depth map estimates come from noise
from the dataset (aleatoric) and model–inherent (epistemic) noises (e.g. from the randomness
in training/initializations). Given a fixed camera image, there is an underlying pixel-wise depth
output distribution that depends on the randomness in model training.

Uncertainty is then defined as the variation for depth prediction estimates along the output
depth distribution. The goal of the uncertainty task is to predict the variation in the depth esti-
mate, given the model and the camera image. The motivation for predicting uncertainty is that
points far from the mean are more likely to have higher depth errors in evaluation. Therefore, we
could improve the quality of depth estimates by predicting and then filtering the points with the
highest uncertainty. It is important to note that Predicting uncertainty for self-supervised depth
models is relatively new [11], whereas other works have predicted uncertainty for optical flow
[10].

Uncertainty estimation hypothesis. If predicted uncertainty sufficiently encodes errors,
we can improve depth accuracy by filtering the highest-uncertainty points. The importance of
understanding this problem is that in self-driving vehicles that rely on depth map point estimates,
high uncertainty in predictions can lead to fatal decisions. Furthermore, in robotics applications,
keeping the most certain points for successive downstream tasks is the desired approach.
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Chapter 2

Related works

2.1 Self-supervised monodepth
Due to the high cost of LIDAR ground truth depths and ease of capturing many images via video,
much attention has been paid to self-supervised methods that use warping, or view synthesis
[1, 3, 5, 6, 7, 8, 9, 13, 15, 16], a geometric technique that can supervise depth by transforming
pixels in one camera image to another view. The final result is a synthesized camera image in
another view/pose.

During training, a pair of images It, Ic from two different camera poses are offered either as
stereo camera pairs [3, 5], or as successive frames in a video [6, 7, 13, 16]. The supervision signal
comes by using predicted depth map dt of It to transform (also called warping) pixels p ∈ It into
the pose of the Ic, and then comparing the warped image Ĩc with Ic using photometric loss. This
is a window-based loss that penalizes structural differences of the two images Ĩc, Ic, meaning if
the same neighborhood of pixels for the two images have similar spatial arrangements, then the
loss contribution from that region is smaller. Photometric loss is defined in terms of the Structural
Similarity (SSIM) and L1 loss of Ĩc, Ic:

Lphoto = α · 1− SSIM(Ĩc, Ic)

2
+ (1− α) · |Ĩc − Ic|1,

where α is a relative weighting term.

2.1.1 View-synthesis pipeline
In the geometry-based view synthesis pipeline, pixels from It must be projected from pixel-
space to 3D space, an operation called unprojection since projection is used to denote the reverse
operation. The unprojection operation ϕ uses the predicted depth dt and the camera’s inverse
intrinsics K−1, where the intrinsic K is a matrix used to project points onto the image of a
pinhole camera [13]. K is determined by the focal lengths fx, fy and pixel center cx, cy of the
camera geometry:

K =

fx 0 cx
0 fy cy
0 0 1

 .

3



Figure 2.1: Model architecture for view synthesis. Given two camera images, It, Ic, Ĩc is
synthesized from It, predicted depth dt of It, and transformation between the views Tt→c. Pho-
tometric loss Lphoto compares Ic and Ĩc, jointly supervising dt and Tt→c (if learned).

Once in 3D space in It’s camera reference frame, it is transformed to Ic’s camera reference
frame by either additionally predicting the transformation pose Tt→c between the frames in 3D
space via a pose model that maps (It, Ic) 7→ Tt→c or calculating it based on odometry hardware.
In the case where It, Ic are from two separate and fixed cameras (e.g. stereo, full-surround
rig [9]), camera extrinsics (the transformation from world to camera reference frame) are used
instead of predicting the transformation between them. Finally, the 3D point in Ic’s reference
frame is projected to Ic’s camera via its intrinsics K (often cameras are assumed to have identical
pinhole geometries). The last step to transform pixels to their final location in the synthesized
image is called projection and denoted π. The pipeline is summarized below:

1. Predict depth map dt from image It using a depth network.

2. Unproject points as homogenous coordinates p = (u, v, 1) in It to Ic’s 3D reference frame
using dt and camera inverse intrinsics K−1:

ϕ(p, dt) = dtK
−1It(p)

3. Transform 3D points ϕ(p, dt) to Ic’s camera reference frame.

P = Tt→cϕ(p, dt)

4. Project 3D points in Ic’s reference frame to Ic’s camera with camera intrinsics K:

Ĩc(p) = π(P ) =
1

Pz

KP =
1

Pz

KTt→cdtK
−1It(p)
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The prediction image Ĩc is compared with Ic using SSIM-based photometric loss.
It is important to note that due to the geometric grounding of the view synthesis pipeline, we

can generalize this process to datasets with stereo video, and even videos from multi-camera rigs.
Once unprojected via ϕ, we can chain transformations between cameras and between time frames
simultaneously (e.g. via an additional matrix multiplication step). A viewpoint is generalized to
any camera image at any time, and additional supervision comes from multiple photometric
losses from reconstructions between these viewpoints.

Even more surprising is that some works have shown that we can predict the camera intrinsics
K if unknown [1]. Furthermore, even with cameras without pinhole geometries (e.g. fish-eye
camera) or with unknown geometries, a method called NRS (Neural Ray Surfaces) [13] is used
to learn the unprojection and projection operations ϕ, π themselves.

During evaluation, the depth model is considered separately to make depth predictions for
single-camera images (monodepth).

2.1.2 Problems with monodepth
Photometric assumptions. There are a variety of assumptions made about the scene that when
broken, can affect the quality of depth estimates. One assumption is that the scene is rigid (no
dynamic objects) so that the car’s ego-motion is the only moving component of the scene. Some
works have been able to address this limitation by predicting dynamic motion using optical flow
[1] and by masking dynamic objects completely [7]. Either way, the view synthesis pipeline
becomes increasingly complex. Another assumption is about how the scene objects reflect light.
non-Lambertian surfaces like mirrors or glass affect the pixel brightness differently, and depth
predictions for those objects are often incorrect, as shown in Figure 2.2.

Photometric loss. The tradeoff between ground-truth LIDAR points for self-supervised pho-
tometric loss is that the latter is a weaker training signal. Since photometric loss is based on
structural similarity of points around the same neighborhoods of the two photos Ĩc, Ic, view syn-
thesis operations have more leniency with a less strict loss to warp all windows of the photo
correctly. Therefore, self-supervised depth estimates suffer reduced accuracy and are amenable
to possible post-processing.

Scale-ambiguity for monodepth. In the monodepth view synthesis pipeline as shown in
Figure 2.1, the units of scale for depth estimates are inherent to the model since nowhere are
metric units reinforced. Even the pose network estimate Tt→c is not supervised with metric units
(unless ground-truth pose from odometry is used). In other words, there is some freedom with
what scale the network learns to predict depth; such methods that don’t constrain the depth scale
are called scale-ambiguous. When depth estimates are in a metric scale, (when metric units enter
the pipeline through known, fixed camera extrinsic(s) e.g. in stereo, FSM), such methods are
called scale-aware.

There are ways to alleviate scale-ambiguity. Median-scaling [14] is a method to at least match
the median depth of the estimate dt with the median depth of ground truth d∗: simply multiply
ground truth estimates by a scale factor:

dscaledt = dt ·
median(d∗)

median(dt)
.
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Another such method is mean-scaling, where the scale factor is mean(d∗)/mean(dt).

Still, ground truth depths are required to perform median-scaling, and even with median-
scaled estimates, the model may still output different depth distributions than the ground truth
distribution.

3D reconstructions. With accurate depth estimates, reconstructing the scene in 3D can still
reveal “flying points”, where the estimated depth at that pixel does not unproject it to the correct
object as shown in Figure 2.3. In essence, this reveals the problem of depth estimates along
object boundaries. Without additional processing or semantic segmentation, such boundaries
present problems without explicit handling. Some works add a smoothness loss to penalize
depth gradients where image sharpness decreases with an “edge-aware” term [5, 6, 13, 15, 16].
Still, recognizing and explicitly handling such points is of crucial importance when the depth
network is provided as a black box for downstream applications.

Figure 2.2: Depth predictions on non-Lambertian surfaces. The depth map estimate (bottom)
for the camera image (top) shows that depth estimates are inaccurate for the front window (a
non-Lambertian surface) of the vehicle, which illustrates a common failure case of monodepth:
when photometric assumptions on which the view synthesis pipeline depend are broken.
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Figure 2.3: Flying points in 3D reconstruction. Flying points in the reconstruction (right) can
be seen corresponding to the boundary of the vehicle (top left). depth map is shown bottom left.

2.2 Predictive Uncertainty

2.2.1 Black box and gray box uncertainty estimation

Black Box Uncertainty Estimation (BBUE) strategies only have access to the model as a black
box. An example of a BBUE strategy is to perturb the input image and observe the change in
output depth. Some perturbation T (rotation, flip, translation, etc.) is applied to input It, fed
into the model M , then the inverse transformation T−1 is applied to the output M(T (x)). Many
observations {(T−1

i ◦M ◦Ti)(x)}Ni=1 made by randomizing the perturbations Ti can be made this
way. Then uncertainty is taken as the variance along the final outputs. Still, N observations cost
N forward passes of the same model with N random transformations Ti, T

−1
i .

Gray Box Uncertainty Estimation (GBUE) strategies - such as injecting noise into model
features and dropout sampling - have access to intermediate layers of the network (but not the
parameters). Through this intermediate access, we can create random perturbations in a single
forward pass to create the observations for statistical variance.

Feature noise: During a forward pass for depth estimation, Gaussian noise is added to the
feature maps of the network’s intermediate layers. In this case, each depth observation costs one
forward pass, and uncertainty is again taken as the variance among the final depth outputs.

Dropout sampling. Like GBUE strategies, dropout sampling randomly affects a set of in-
termediate layers (sometimes just the final convolutional layer). The effect on these layers is
to randomly zero out the value of certain neurons for each forward pass, as shown in Figure
2.4. Dropping a set of neurons in a forward pass forms one depth observation, so this process is
repeated N times for N observations.
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Figure 2.4: Dropout sampling Using random dropout to zero out certain neurons. Uncertainty
is taken as variance across N independent dropout forward passes with the same model after
training.

2.2.2 Learning uncertainty

Self-teaching. The fundamental limitation of empirical, black box, and grey-box uncertainty
estimation strategies is that they require N forward passes (one for each observation). Another
class of uncertainty estimation strategies, called learning or predictive uncertainty strategies,
seeks to learn the uncertainty of the depth network itself with another neural network. In general,
such strategies only train a network once and require only one set of models and one forward pass
without any perturbations.

Poggi et. al. [11] reformulates the student-teacher framework, whereby one model (student)
learns the output of another (teacher) for monodepth estimation. They call their framework self-
teaching since the student network is architecturally identical to the teacher network. Assume
that given a fixed input image I , a “teacher” depth network T has an output depth map dT
with an underlying pixel-wise distribution (assumed to be Laplacian). The “student” uncertainty
network S estimates the mean and standard deviation µ(dS), σ(dS) of this distribution given I
(Figure 2.5). It is important to note that S’s parameter estimates µ(dS), σ(dS) are parameterized
by the input. In other words, S is learning to predict T ’s output distribution for any given input
image.

Student network S is trained to output the most probable parameters µ(dS), σ(dS) for dt’s
distribution given the data (input camera image I). The formulation is the same as Maximum
Likelihood Estimation (MLE), which finds the most probable parameters of some distribution

8



Figure 2.5: Self-teaching. An uncertainty network S learns to predict parameters for the output
distribution of a depth network T , for any input image I . The loss Lself that supervises training
for network S takes dT , µ(dS), and σ(dS).

family, given some fixed data/observations. Assuming a Laplacian distribution1 on dt [10], S is
trained via minimizing the Negative Log-Likelihood, equivalently minimizing the loss:

LSelf =
|µ(dS)− dT |

σ(dS)
+ log σ(dS). (2.1)

2.3 Empirical uncertainty
Empirical methods use many models as black box predictors and use the mean and variance
of the predictions to form parameter estimates of the depth distribution. We will describe two
methods that we use: bootstrap ensembles and snapshot ensembles [11].

2.3.1 Bootstrap ensembles
One straightforward way to use black box models, is train N independent depth networks. The
uncertainty is defined as the variance of the independent depth estimates on a single image 2.6.
However, this method requires training and storing N independent models and performing N
forward passes, which is time and resource intensive.

1Assuming a Gaussian distribution for dt, L2 loss instead of L1 is used in the negative log-likelihood minimiza-
tion formula (Equation 2.1).
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Figure 2.6: Bootstrap ensembles. Using variance across bootstrap ensembles as uncertainty.

2.3.2 Snapshot ensembles
Training N independent models is resource and time intensive. Instead, snapshot ensembles
[11] trains a single depth network under a cyclic learning rate throughout training2. The model
weights are saved as a single snapshot whenever the learning rate hits its lower bound. The un-
certainty is defined as the variance across depth estimates of these snapshots, as shown in Figure
2.7. It is important to note that statistical independence between snapshots is an approximation
since only a single training cycle is run instead of N . Still, N forward passes are needed.

2As a technical detail, the learning rate scheduler updates every batch instead of every epoch.
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Figure 2.7: Snapshot ensembles. Using variance across snapshot ensembles as uncertainty.
Snapshots of the model are taken at low points of a cyclic learning rate throughout a single
training session.

11



12



Chapter 3

Predicting Uncertainty with Depth Scales

Figure 3.1: Basic ScaleDecoder architecture. The ScaleDecoder (bottom) takes the four depth
scales of the depth decoder (top) and the U-Net bottlenet to predict parameters µ(dS), σ(dS) for
dT ’s underlying distribution for the given input camera image It. The depth scales are concate-
nated with the decoder’s previous layer.

3.1 Uncertainty from depth scales
So far we have talked about depth networks for monodepth in general. In this work, we focus on
a modified Monodepth2 [6] U-Net architecture with skip connections and a ResNet18 backbone
as shown in Figure 3.2.

13



Figure 3.2: Basic depth U-Net architecture. The ScaleDecoder (bottom) takes the four depth
scales of the depth decoder (top) and the U-Net bottlenet to predict parameters µ(dS), σ(dS) for
dT ’s underlying distribution for the given input camera image It.

Scale. Similar to how snapshot ensembles trade off the model independence assumption for
more efficient training, we can treat each scale output dit, i ∈ [4] as a single prediction. This
approach further loosens our approximation of independence. Here, uncertainty is defined as the
variance across the scales1 {dit}4i=1. This uncertainty strategy needs only one training cycle and
one forward pass to get all scales.

One issue with taking the variance across depth scales as the uncertainty (Section 3.1), is
that each scale is twice the resolution of the previous (scales are (H/8,W/8), (H/4,W/4),
(H/2,W/2), and (H,W ), where (H,W ) are the dimensions of the input camera image It). This
causes high-frequency noise in the variance as shown in Figure 3.3b.

However, the variance across depth scales (Figure 3.3b) seem to highlight the failure cases
for monodepth for 3D reconstruction (Subsection 2.1.2). Not only do the boundaries of static and
dynamic objects like cars have high variance, but regions such as the sky also have high variance
among the scales.

14



(a) Camera image (b) Variance across depth scales

Figure 3.3: Scale noise. Uncertainty from variance across depth scales reveals high-frequency
noise.

3.2 Predictive uncertainty from depth scales: novel ScaleDe-
coder

ScaleDecoder. As seen in the scale strategy, variance across depth scales seem to highlight
failure cases for monodepth (e.g. inaccurate depths for object boundaries, “sky” points of infinite
depth, etc.), yet contain high-frequency noise and artifacts that must be further processed. We
propose a novel ScaleDecoder (Figure 3.1) to processes the U-Net bottleneck and the depth scales
to produce parameter estimates for dt’s depth distribution: µ(d), σ(d).

ScaleDecoder Hypothesis. We hypothesize that the depth decoder scales and U-Net bot-
tleneck feature has sufficient information to learn the depth networks output distribution. The
distribution parameter σ(d) is taken as the uncertainty and is evaluated for how well it encodes
the depth errors. The details of uncertainty evaluation is described in 4.1.2.

Like the self-teaching method from Poggi et. al. [11] (Section 2.2.2), ScaleDecoder only
needs to train for a single training cycle. Producing an uncertainty estimate is only a single
forward pass. Furthermore, ScaleDecoder is only “one-half” of a U-Net (the decoder), requiring
fewer resources to store and compute.

3.3 ScaleDecoder variants
To further understand how parts of ScaleDecoder contribute to its depth and uncertainty perfor-
mance, we create variants in the training scheme, final network nonlinearity, and the number of
uncertainty scales to output by ScaleDecoder.
Training scheme.

(a) Teach – trained and frozen depth network, only uncertainty network learns.

(b) Detach – depth and uncertainty networks learn together, but uncertainty gradients do not
backpropogate to depth network.

(c) Joint - depth and uncertainty network learn together, all gradients backpropogate.
Final network nonlinearity. As in Poggi et. al. [11], the uncertainty network predicts log σ(d)
instead of σ(d) since it is more numerical stable and always results in positive σ(d) by exponenti-
ation. However, the range of the non-linearity used to predict log σ(d) determines the bounds for

1The variance is taken after “nearest”-interpolation of all scales to the highest resolution.
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σ(d). We try two different methods: the default network predicts log σ(d) as a fixed or learnable
transformation of the final nonlinearity tanh:

(a) Default - log σ(d) = 6 tanh(· · · )− 3.

(b) Adaptive - log σ(d) = a tanh(· · · )− b, where a, b are trainable, network parameters.
Number of output uncertainty scales.

(a) Default - ScaleDecoder outputs distribution parameters at a single scale σ(d), µ(d).

(b) Multi-scale - ScaleDecoder outputs distribution parameters at four scales: σ1(d), µ1(d),
σ2(d), µ2(d), · · · , σ4(d), µ4(d).
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Chapter 4

Experimental Results

4.1 Metrics

In our evaluations, we report uncertainty metrics for predictive uncertainty methods (ScaleDe-
coder variants) and empirical uncertainty methods (bootstrap ensembles, snapshot ensembles,
and depth scales). In the depth metrics, we are evaluating the estimated mean depth µ(d) from
the uncertainty strategy, not the original depth network. In the uncertainty metrics, we are eval-
uating the uncertainty defined for each method. Empirical strategies will use the variance across
observations as the uncertainty, while predictive strategies will use the estimated distribution
parameter σ(d). The desired performance for an ideal uncertainty strategy is that it produces
distribution parameters µ(d) well enough to outperform the original depth network in the mon-
odepth task [11] and σ(d) well enough to accurately encode depth errors (Subsection 4.1.2).

4.1.1 Depth Metrics

For evaluation, LIDAR ground truth depth map d∗ is compared against the predicted depth map
dt only on valid ground-truth LIDAR pixels P . Table 4.1 shows the definitions for the metrics
AbsRel (Absolute Relative), SqRel (Squared Relative), RMSE (Root Mean Squared Error), and
RMSElog (Root Mean Squared of Log Error). During the model evaluation, these instance
metrics are averaged over the entire KITTI Eigen test split [2].

So far, we have only looked at scale-variant metrics, in that the metrics depend on the scale
learned by a monodepth network. We can partially address this problem by median-scaling the
depth predictions by ground truth (Section 2.1.2). After median-scaling, the maximum scale
factor between prediction d∗ and ground truth dt is defined as δ = max(dt/d

∗, d∗/dt). Then we
can evaluate a depth map for scale accuracy as well. The notation δ < c represents the percentage
of pixels p that have predicted depth dt(p) within a maximum scale factor of c with respect to
ground truth d∗(p) (1

c
< dt

d∗
< c). In self-supervised depth estimation literature, c is chosen as

1.25, 1.252, and 1.253 for three accuracy metrics.
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AbsRel↓ SqRel↓ RMSE↓ RMSElog ↓

1
|P |

∑
P

|dt−d∗|
d∗

1
|P |

∑
P

||dt−d∗||2
d∗

√
1
|P |

∑
P ||dt − d∗||2

√
1
|P |

∑
P || log(dt)− log(d∗)||2

(a) Evaluation error metrics.
δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

max( dt
d∗
, d

∗

dt
) < 1.25 max( dt

d∗
, d

∗

dt
) < 1.252 max( dt

d∗
, d

∗

dt
) < 1.253

(b) Accuracy scale metrics.

Table 4.1: Depth metrics’ definitions.

4.1.2 Uncertainty metrics

The principle concern in evaluating uncertainty is the lack of “ground-truth uncertainty” as a
basis. Predictive uncertainty models are trained to predict the mean µ(d) and standard deviation
σ(d) of the output distribution of a depth network. Furthermore, regions of the image that have
high variance of depth distribution also tend to have greater expected error with respect to ground
truth depth d∗. We can thus evaluate uncertainty by measuring how well predicted uncertainty
encodes the depth errors. In some sense, we want the pixels ordered by largest uncertainty to
roughly match the pixels ordered by largest error. We quantify “roughly matching” these pixel
orders via sparsification-based metrics AUSE and AURG [10, 11] as described below.

Sparsification. Let P = {p : p ∈ dt} be the set of pixels in a depth map estimate. Let
ϵ : P(P ) → R be some error metric (e.g. RMSE, AbsRel, or any metric from Table 4.1) that
gives a scalar value on any subset of points from P . Let ord be an ordering on the pixels (e.g.
ordered by decreasing σ(d)). Let ord[s] denote the set of remaining pixels P when s ∈ [0, 1]
fraction of the highest ord pixels are removed (e.g. ord[0] = P, ord[1] = ∅). The sparsification
plot of some chosen pixel order ord (e.g. ord = decreasing σ(d)) is a measure of how ϵ evolves
on ord[s] as s → 1 from 0.

Note that in the ideal case, the pixel order given by ord is the same as the single pixels
ordered by ϵ, so the sparsification plot is non-increasing. In the implementation, we iteratively
(a) remove a constant fraction of the highest ord-ordered pixels (e.g. 2%), (b) plot error ϵ over
the remaining set of points, and (c) repeat until no points are left.

Model sparsification. Given an error metric ϵ : P(P ) → R and a model’s uncertainty
estimate σ(d) as the order ord. The sparsification plot for that model is a function of ϵ (y-axis)
on σ(d)[s] as s → 1 from 0 (x-axis). The blue line plot in Figure 4.1a is an example of model
sparsification.

Oracle sparsification. Given an error metric ϵ : P(P ) → R, let the order ord be the ϵ order
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on single pixels. The oracle sparsification is the ideal sparsification since we remove points by
the highest error first. The green line plot in Figure 4.1a is an example of oracle sparsification.

Random sparsification. Given an error metric ϵ : P(P ) → R, let the order ord be a random
order on single pixels. The random sparsification is the weakest (expected to be a straight line
as s → 1 from 0) since we remove points in random order when plotting ϵ(ord[s]). The red line
plot in Figure 4.1a is an example of random sparsification.

(a) Example sparsification plots. (b) Example sparsification errors.

Figure 4.1: Example sparsification plot and errors. In (a), the green line (bottom) is the oracle
sparsification, blue (middle) is the method sparsification, and red (top) is the random sparsifi-
cation. In (b), the blue (bottom) model sparsification errors and red (top) random sparsification
errors result from subtracting the oracle sparsification plot from the respective sparsification plot.

Sparsification Error. To understand how well some pixel order matches the error order, the
model sparsification plot needs to be compared with the oracle sparsification. We can quantify
this via sparsification error: the sparsification plot in question minus the oracle sparsification,
as shown in Figure 4.1b. When a sparsification error is closer to the x-axis, it’s corresponding
sparsification plot is closer to the oracle.

AUSE↓ To quantify “closeness to the oracle”, we integrate the area between the sparsification
plot in question and the oracle sparsification plot (illustrated in Figure 4.2a). Equivalently, we
can integrate the area between the x-axis and the sparsification error, called Area Under Spar-
sification Error (AUSE). The closer AUSE is to 0, the closer the model sparsification is to the
oracle, and the better the σ(d) uncertainty order encodes the depth errors.

AURG↑ We can also use random sparsification as another boundary for evaluating model
sparsification. A random pixel order is the most uncorrelated with the depth order, and we would
like to see how much better than random order is the order from the predicted uncertainty. The
Area Under Random Gain (AURG) is the area between the random and model sparsification plots
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(a) Example AUSE illustrated. (b) Example AURG illustrated.

Figure 4.2: Example AUSE, AURG illustrated.

(illustrated in Figure 4.2b), or equivalently, the area between the random and model sparsification
errors. Pixel orderings that more closely match the error order have larger AURG since the model
sparsification plots are closer to the oracle and thus farther from random sparsification.

The key takeaway is that given an uncertainty estimate σ(d) and depth errors, the AUSE↓ and
AURG↑ metrics tell us how well the uncertainty encodes errors.

4.2 Data

(a) Input image. (b) Ground truth LIDAR.

Figure 4.3: Input image (a) and Ground truth LIDAR (b) used for Figure 4.4.

20



Model Depth µ(d) Filtered Depth Uncertainty σ(d)

boot

scale

snap

SD teach

SD teach ad.

SD teach ad. ms.

SD detach ms.

SD detach ad. ms.

Figure 4.4: Depth, filtered depth, and predicted uncertainty visualized. Each row is the un-
certainty inference for an uncertainty strategy. The filtered depth are the depth map dt with 15%
of the highest-uncertainty points removed. Abbreviations: “SD”=ScaleDecoder, “ad.”=adaptive,
“ms.”=multiscale (definitions in Section 3.3).
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Model Reconstruction Filtered reconstruction

boot

scale

snap

SD teach

Figure 4.5: 3D reconstructions before and after uncertainty filtering. Each row is the 3D
reconstruction from depth predictions (left column) and filtered depths after removing 15% of
the highest-uncertainty points. The red ball indicates the scene origin (0, 0, 0).
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Model Reconstruction Filtered reconstruction

SD teach ad.

SD teach ad. ms.

SD detach ms.

SD detach ad. ms.

Figure 4.6: 3D reconstructions before and after uncertainty filtering. Continuation of Figure
4.5.
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Model AbsRel↓ SqRel↓ RMSE↓ RMSElog ↓ δ < 1.25 ↑ δ < 1.252 ↑ δ < 1.253 ↑

de
pt

h

boot 0.973 14.849 18.939 3.633 – – –
scale 0.964 14.652 18.825 3.350 – – –
snap 0.974 14.963 19.063 3.688 – – –
SD teach* 0.963 14.567 18.757 3.348 – – –
MS SD detach 0.957 14.376 18.627 3.189 – – –
MS SD detach ad. 0.956 14.366 18.638 3.163 – – –
MS SD joint** 0.922 13.428 18.034 2.620 – – –

de
pt

h-
pp

boot 0.973 14.849 18.939 3.633 – – –
scale 0.964 14.656 18.828 3.351 – – –
snap 0.974 14.962 19.063 3.688 – – –
SD teach* 0.964 14.571 18.760 3.348 – – –
SD detach MS 0.957 14.388 18.639 3.192 – – –
MS SD detach ad. 0.956 14.374 18.649 3.162 – – –
SD joint MS** 0.923 13.455 18.064 2.620 – – –

de
pt

h-
gt

boot 0.126 0.849 4.716 0.200 0.855 0.955 0.981
scale 0.123 1.048 5.087 0.204 0.866 0.955 0.978
snap 0.189 1.549 7.681 0.287 0.691 0.888 0.954
SD teach* 0.133 1.166 5.226 0.216 0.852 0.949 0.975
SD detach MS 0.145 1.243 5.444 0.223 0.828 0.943 0.975
MS SD detach ad. 0.144 1.162 5.287 0.224 0.826 0.942 0.974
SD joint MS** 0.168 1.304 5.577 0.244 0.773 0.929 0.971

de
pt

h-
pp

-g
t

boot 0.126 0.844 4.704 0.200 0.855 0.955 0.981
scale 0.119 0.939 4.883 0.199 0.870 0.957 0.979
snap 0.188 1.544 7.680 0.287 0.692 0.889 0.954
SD teach* 0.129 1.052 5.035 0.211 0.855 0.952 0.977
SD detach MS 0.144 1.126 5.283 0.220 0.825 0.947 0.977
MS SD detach ad. 0.141 1.026 5.166 0.219 0.826 0.946 0.977
SD joint MS** 0.159 1.146 5.348 0.235 0.784 0.939 0.975

Table 4.2: Metrics for uncertainty-based depth predictions on KITTI Eigen test split. The
sections from top to bottom are raw depth, post-processed depth, ground-truth median-scaled
depth, and post-processed ground-truth median-scaled depth. Best metrics are bolded and best
metrics among the novel ScaleDecoder (SD) family are underlined. *All teaching ScaleDecoder
variants have the same depth metrics. **The joint strategy reported is tested with a smaller
posenet encoder.
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Model AUSE↓ AURG↑
de

pt
h

boot 14.856 -4.971
scale 2.851 6.923
snap 0.759 9.257
SD teach 7.312 2.483
SD teach adaptive 6.923 2.873
SD teach adaptive MS 6.157 3.640
SD detach MS 7.896 1.828
SD detach adaptive MS 4.322 5.425
SD joint* 3.239 6.211

de
pt

h-
pp

boot 15.155 -5.262
scale 2.339 7.430
snap 0.739 9.280
SD teach 7.119 2.676
SD teach adaptive 6.735 3.060
SD teach adaptive MS 5.960 3.837
SD detach MS 7.529 2.204
SD detach adaptive MS 4.108 5.648
SD joint* 3.233 6.243

de
pt

h-
gt

boot 4.379 -0.462
scale 1.981 2.322
snap 1.290 5.035
SD teach 2.452 1.947
SD teach adaptive 2.300 2.099
SD teach adaptive MS 1.972 2.422
SD detach MS 2.550 1.984
SD detach adaptive MS 1.522 2.860
SD joint* 1.470 3.028

de
pt

h-
pp

-g
t

boot 4.365 -0.466
scale 1.736 2.377
snap 1.265 5.052
SD teach 2.299 1.926
SD teach adaptive 2.151 2.073
SD teach adaptive MS 1.828 2.390
SD detach MS 2.360 1.991
SD detach adaptive MS 1.416 2.835
SD joint* 1.440 2.867

Table 4.3: Metrics on uncertainty predictions. The sections from top to bottom are raw depth,
post-processed depth, ground-truth median-scaled depth, and ground-truth median-scaled post-
processed depth. Best metrics are bolded. Best metric for novel ScaleDecoder (SD) among
variants are underlined. *The joint strategy reported is tested with a smaller posenet encoder.
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Figure 4.7: Average test sparsification errors. The sparsification error graphs are reported
as the average over the KITTI Eigen test split [2]. We plot the RMSE metric (y-axis) on the
remaining points after iteratively removing 2% of the most uncertain points (Sparsity, x-axis).
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Chapter 5

Discussion

5.1 Depth

Depth metrics in Table 4.2 are evaluated with the uncertainty strategy’s mean depth estimate
µ(d) on the KITTI Eigen test split [2]. We focus on post-processed ground-truth median-scaled
depth estimates (depth-pp-gt rows) since median-scaling allows us to compare scale accuracy δ
as defined in Table 4.1b, and since depth metrics improve across the board relative to just ground-
truth median-scaling (depth-gt). We report all teaching strategies together (row of SD teach*)
since they have nearly identical depth metrics (all “teach” strategies estimate µ(d) from the same
frozen depth network, trained from scratch).

ScaleDecoder depths generally perform comparably to empirical methods, while under-performing
the boot strategy specifically. While scale is reported as the best depth strategy, it is the result of
using the depth network’s estimate dt, not the uncertainty mean depth estimate µ(d). We seek to
rectify this soon.

Among the ScaleDecoder variants, teach generally outperforms the detach or joint training
schemes, regardless of number of scales or final network nonlinearity (described in Section 3.3).

We can explain the relative performance of ScaleDecoder by training schemes. The joint
training scheme underperforms all ScaleDecoders since we are allowing gradients from the un-
certainty network to “pollute” the depth network from its own task’s gradients. The joint scheme
not only degrades the teacher depth network whose distribution the uncertainty network is trying
to learn but it changes the depth distribution itself. Detach training faces a similar issue in that
the teacher depth network is still learning, so the training signal for the uncertainty network is
weaker. This is despite the fact that the depth network’s weights are detached from uncertainty
network gradient updates, unlike joint training. Teach is the best training scheme for mean depth
performance, since unlike joint or detach, the depth network is trained and frozen from scratch
before the uncertainty network learns. In other words, the depth distribution has converged and
is unchanging so the uncertainty network learns the distribution more accurately.
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5.2 Uncertainty

Uncertainty metrics AUSE and AURG in Table 4.3 are evaluated with the uncertainty strategy’s
uncertainty estimate (σ(d) for predictive models, variance for empirical models). We use ϵ =
RMSE as the sparsification metric and again focus on post-processed, ground-truth median-
scaled depth estimates (depth-pp-gt, last rows).

Empirical snap outperforms other methods in uncertainty estimation. As the snapshot model
trains, the most severe depth errors lessen quickest as the depth network learns to minimize
photometric loss across epochs. Thus, the largest source of variation across snapshots are those
regions vulnerable to high error, and we can expect the variance in depth estimates to encode the
largest sources of error.

Among ScaleDecoder variants, there are no clear winners when grouping by training scheme,
final network nonlinearity, or the number of uncertainty scales (3.3). A comparison of all group
combinations, especially after grouping by single or multi-scale predictions could reveal more
patterns. Regardless, ScaleDecoder performs within the bounds of other methods (boot, snap,
scale).

In Figure 4.7 we plot the sparsification errors averaged over the KITTI Eigen test split.
Dashed lines are ScaleDecoder variants, and solid lines are the rest. As in 4.3, there is a similar
pattern where empirical strategies form bounds for ScaleDecoder performance, and there is no
clear winner among ScaleDecoders grouped by any single category (i.e. by training scheme,
etc.).

While we expected self-teaching strategies to out-perform empirical ones [11], ScaleDecoder
is very restrictive in that it only comprises a decoder (almost half of the uncertainty network
presented in [11]) constrained to the features of another network. It performs as well as other
empirical strategies, yet only requires one additional training step, one forward pass, and no
feature-perturbations as described in GBUE strategies (2.2.1). ScaleDecoder thus presents as
a candidate substitute for resource-heavy empirical methods that require multiple independent
model training cycles and forward passes.

5.3 Qualitative visualizations

Figure 4.4 shows uncertainty estimates µ(d), σ(d) for each method, as well as a filtered depth
row which masks out the 15% most uncertain pixels (sorted by σ(d)). In the Filtered Depth
column we see that ScaleDecoder variants emphasize object boundaries as more uncertain than
other methods so that filtered depth more drastically separates objects in the scene.

We can see a similar story in the 3D reconstructions and filtered reconstructions in Figure
4.5 and 4.6, where flying points are more consistently removed in the filtered 3D reconstruction
around the car’s roof (bottom right of scene) and pixels surrounding tree branches (top left of the
scene).
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5.4 Limitations of uncertainty evaluation
It is important to note that valid LIDAR ground truth points do not cover all pixels of the image
(Figure 4.3b). This sparsity is an evaluation problem since uncertainty can only be evaluated
by how well it encodes the depth errors which require ground truth. In other words, uncertainty
evaluation as presented cannot be evaluated on invalid LIDAR pixels (e.g. “sky” regions that
are infinitely far away, or non-Lambertian surfaces [glass, mirrors, car windows, etc.]), which
comprise the monodepth problems (2.1.2) that we are trying to solve with uncertainty-filtering.

Another issue is the event that predictive uncertainty estimates report a region of pixels as
low uncertainty when the depth at that region is incorrect. This type of uncertainty error is
very dangerous since we may keep and promote erroneous points, leading to a disaster on the
road with a self-driving vehicle. This possibility is more likely with predictive uncertainty since
empirical models predict uncertainty with raw observation, but as Ilg et. al. concludes: “no one
knows how exactly [a trained network] solves the task” [10].
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Chapter 6

Future Works

We still seek to understand how much of ScaleDecoder’s uncertainty performance is due to it’s
scale and bottleneck inputs. In other words, we would like to evaluate a ScaleDecoder variant
that takes all intermediate features, and then abalate the choices of input features.

Another unsolved issue is evaluating uncertainty on pixels without ground-truth LIDAR
depth since we evaluate uncertainty for how well it encodes the depth errors. Many problem-
atic regions for the monodepth task (esp. very far away points) are invisible to the evaluation
process simply because there are no valid LIDAR points for these regions. This is an important
line of investigation since these are precisely the regions that may cause problems in downstream
tasks.

Furthermore, we would like to compare many more uncertainty estimation strategies such as
dropout, feature noise, and self-teaching [11].
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Chapter 7

Conclusion

Monodepth is the problem of depth estimation from single camera images, but much interest
has been sparked in trying to predict the inherent uncertainty of depth models trained in a self-
supervised manner. We show various empirical, predictive, and grey-box methods for estimating
the distribution of monodepth depth maps. Furthermore, we propose and evaluate ScaleDecoder
to predict the depth uncertainty from the depth scales provided by Monodepth2-based architec-
tures.

For ScaleDecoder, we hypothesize that the depth decoder scales and U-Net bottleneck pro-
vides sufficient information to learn the depth network’s uncertainty. We find that ScaleDecoder
performs only as well as empirical methods but with much fewer training, storage, and compute
resources, presenting as a practical alternative to other empirical methods.

We also hypothesize about uncertainty filtering that if the learned uncertainty sufficiently
encodes the depth errors, then we can improve overall depth accuracy by filtering the most un-
certain points. Our qualitative results from ScaleDecoder suggests that “flying points” on object
boundaries are removed alleviating some common problems with monodepth, leaving a cleaner
3D reconstruction from depth, but we seek to quantitatively analyze this improvement in future
works.
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