
Mining Spatio-Temporal Attributes of
Anomalies through Large Ego-Vehicle Dataset

Tiffany Ma

CMU-CS-22-113

May 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Srinivasa Narasimhan, Co-Chair

Christoph Mertz, Co-Chair
Stephen Smith

Submitted in partial fulfillment of the requirements
for the degree of Master of Science.

Copyright © 2022 Tiffany Ma



Keywords: Urban Data Applications, Spatio-Temporal Data Mining, Object Detection



Abstract
In recent years, an increasing amount of urban visual big data is collected through

a diverse range of sources, such as taxi vehicle records, video from surveillance
cameras, or images captured by mobile devices. The large collection of urban data
contains rich implicit information that can help numerous downstream tasks, such as
monitoring for construction management companies, planning for government units,
etc. However, it is challenging to efficiently extract the desired information from a
large-scale dataset. In this work, we focus on developing methods for extracting
the spatial attribute and the temporal attribute from urban visual data. Specifically,
we introduce a method of organizing large-scale urban visual data into a spatial-
temporal structure by mining attributes inherent in the data. We demonstrate the
effectiveness of our method by using videos captured by the front-facing camera of
buses to detect and analyze work zones within the captured videos. First, the raw set
of bus data is preprocessed into a spatial-temporal data structure. Next, we exploit
the rich spatial and temporal attributes of bus data in the application of work zone
detection and analysis. The goal of this work is to demonstrate the effectiveness of
using spatial and temporal attributes to break down large-scale urban visual data and
extract insights from large-scale unlabeled data.
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Chapter 1

Introduction

In recent years, an increasing amount of urban visual data is collected through a diverse range
of sources, such as vehicle recordings from taxis, videos from surveillance cameras, or images
captured by mobile devices. The large collection of urban data contains rich implicit information
that can help numerous downstream tasks. For example, construction management companies
can use videos near the construction site to monitor its progress. Government units can improve
the infrastructure of the city by analyzing the traffic status of commuters. Autonomous vehicle
teams can also use large-scale vehicle data to design algorithms that better adapt to realistic
road environments. Although large-scale urban visual data contain rich information for many
downstream tasks, analyzing and excavating the value of these big data is a significant challenge
[18]. Sources such as surveillance cameras and vehicle recorders continuously collect data over
long periods of time. This accumulates up to terabytes or petabytes of unlabeled raw data. The
amount of raw data makes it difficult to extract points of interest from the large pool of data.
Another challenge is the lack of structure in the raw data forms. Each task needs to preprocess
the raw data into structures that highlight the desired properties.

Spatial and temporal properties are commonly observed in urban visual data. For example,
given a video recording of a taxi that drove through some spatial region, we can infer the bound-
aries of the traffic region by analyzing the density of cars in each frame of the video. In another
example, given a surveillance camera that is facing a parking lot, by analyzing changes at dif-
ferent hours, we can identify the hours at which a parking lot is busiest. Analyzing spatial and
temporal attributes enables us to extract interesting events from large-scale urban visual data.

In this work, we demonstrate the effectiveness of using spatial and temporal attributes to ex-
tract interesting events. Specifically, we extract instances of work zones from the bus recordings
by exploiting the spatial and temporal properties of the bus. One of the commonly overlooked
sources of spatial-temporal data is bus data. For safety and liability, nowadays transit buses have
cameras installed to observe the environment around the buses, together with some other sensors
such as GPS. These sensors provide rich urban visual data in areas where public transport is
widely available. Naturally, buses routinely traverse the same spatial region for a long period of
time. Such data can be distilled to construct a dataset of rich spatial-temporal information. To
mitigate the challenge of scale and lack of structure, we propose a method to map bus data to a
spatial-temporal data structure.

Using this structured data, we want to detect and analyze work zones. Work zones are a
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common source of traffic disruption, causing great inconvenience for commuters. Gaining a
better understanding of work zones can benefit various downstream applications. Construction
groups can use this knowledge to improve the planning of future construction sites. Government
units can also use the learned patterns of work zones to make decisions about modifying traffic
flows near the work zones. Prediction teams in Autonomous Vehicle companies can apply spatial
and temporal relations of work zones to better react to roadside anomalies. The completion time
of work zones can range from hours to months. For instance, a highway infrastructure change
may take up to months and span long regions of the highway; whereas a local road repainting
work typically lasts a few hours and span only a few meters. To fully understand a work zone
from start to finish, we should study patterns about a work zone in the temporal dimension.
Most of the current works that study work zones are mainly in the domain of planning, safety,
and transportation. Only a limited number of them use vision inputs. Part of this is due to the
variability of the work zones and the lack of a concrete definition for these sites. In this work,
we aggregate the definitions of road construction used in the transportation, vision, and safety
community to find a common ground for understanding these sites through a visual modality.

In summary, we are interested in studying methods for mining spatial and temporal attributes
in large-scale urban visual data. In this work, we work with a specific source of urban visual
data: recordings collected from front-facing cameras of the bus (bus data). The raw set of bus
data needs to be further preprocessed into a spatial-temporal structure. Next, we exploit the rich
spatial and temporal attributes of bus data in the application of work zone detection and analysis.

The main contributions of this thesis are explicitly stated as follows:
• We propose a structure for organizing bus data based on their spatial and temporal rela-

tions, which facilitates more accessible analysis for data with similar structure.
• We manually collect and annotate a dataset for work zone related objects.
• We demonstrate different types of spatial-temporal attributes that are present in work zones

detected from bus data and show the potential of such findings.

The remainder of this thesis is organized as follows:
• In Chapter 2, we discuss the values, challenges, and applications of urban big data and

how to exploit the spatial and temporal properties of urban big data.
• In Chapter 3, we explain our approach in mapping raw bus data to a spatial-temporal data

structure.
• In Chapter 4, we dive into more detail definitions of work zones and approaches to under-

standing work zones through visual input.
• In Chapter 5, we share the results of analyzing the identified sections of work zones from

the bus data and discuss how this can be generalized to a wider range of applications.
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Chapter 2

Background

2.1 Urban Big Data

Figure 2.1: This diagram [18] breaks down the definition of urban big data by its characteristics,
methods of analysis, and its downstream applications.

Urban big data refers to a combination of structured or unstructured data collected from
various urban environments. Zhang et al. [35] summarized the five characteristics of big data as
5Vs, which refers to volume, velocity, variety, veracity, and value. Volume refers to the amount of
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data available. Velocity refers to the speed with which data is generated and collected. The latter
three metrics may vary from task to task. Variety refers to the diversity of data types. Veracity
refers to the quality of the data collected. Last but not least, value refers to the value that this
dataset provides. These five features show the key characteristics that big data should have. It
also highlights common challenges in analyzing the value of these big data. For example, a large
volume of data may contain valuable data, but it is also computationally expensive to parse and
analyze this data. As [22] notes, urban big data is very complex, and we only extract a small
part of its knowledge.

From Figure 2.1, we see that [18] lists three broad characteristics that urban big data gener-
ally holds. First, we observe that urban big data is collected from a wide range of sources. Meng
et al. [21] used real-time GPS readings of taxis, road networks from Internet Web data to infer
the volume of urban traffic. Second, we see that urban big data exist in many domains, including
spatial, temporal, static, and dynamic data [18]. Third, we see that urban big data is multimodal
and may include visual, textual, or numeric data. Yi et al. [33] used three datasets to predict
air quality, namely, air quality data, weather forecast data, and meteorological data. Weather is
represented as textual input (sunny, cloudy, overcast, foggy, etc.), and wind speed is represented
as numerical input. With appropriate analysis, urban big data can be used in a wide variety of
applications, including urban planning, urban traffic, urban environment, social applications, and
public safety and security.

Recently, there has been a rapid increase in the amount of visual data available in urban
locations. However, there is still a lack of a structural approach to organizing and understanding
such a vast amount of data. In our case, we are specifically interested in visual urban data. These
data can be collected from cameras mounted on stationary traffic light poles, front cameras of
moving vehicles, and even surveillance cameras.

2.2 Spatial-Temporal Data
According to [5], spatial-temporal data comprises of spatial and temporal representations. Spatial-
temporal data contains three distinct types of attributes, which are non-spatial-temporal, spatial,
and temporal attributes. Spatial attributes are those related to the location, shape, and physical
aspects of the object. Temporal attributes include timestamps and the duration of in-range data.
Non-spatial-temporal attributes typically refer to other additional numeric evaluations of aspects
that do not fall under spatial or temporal domains [5]. For example, [5] gave the example of air
pollution measures. Air pollution levels and name of location are one example of non-spatial-
temporal attributes. [13] used spatial-temporal data from 1,904 residential cars to generate a
heat map of vehicle mobility in the city during COVID-19. Based on the heat map, they en-
forced flexible lockdown strategies to reduce population flow within the city. These examples
demonstrate that with adequate analysis, spatial-temporal data can provide rich insights for many
event. One common example that uses spatial-temporal analysis is the field of traffic and trans-
portation. Traffic data represent spatial-temporal trajectories that are used to discover periodic
patterns. Rao et al. [25] observe that one challenge comes from the influence of nearby objects.
Examples of such influence are spatial-temporal events, such as accidents, that may affect traffic
patterns in irregular ways.
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Figure 2.2: Based on the spatial and temporal dimensions, a given data can be divided into
data with temporal attribute, data with spatial attribute, and data with both temporal and spatial
attributes (spatial-temporal data). [18]

Unlike typical datasets, spatial-temporal data do not follow the assumption that data points
are independently and identically distributed. Neighboring spatial-temporal objects share similar
characteristics that are often related. Spatial-temporal data can exploit relationships that are
usually omitted in normal data distributions. Although spatial-temporal data have the potential of
extracting rich insights and relationships, these patterns are challenging to mine for the following
reasons. First, spatial-temporal relationships are typically high in complexity. Co-located objects
in the spatial and temporal domains may influence each other, making detection of relationships
difficult. Second, another difficulty is that these relationships are typically implicitly defined.
Non-spatial-temporal data have explicit relationships represented through arithmetic relations,
such as ordering, instance of, subclass of, and member of. Spatial relationships are built on
the basis of qualities or features such as distance, volume, size, and time. These attributes are
expressed in a continuous spectrum. These meanings or representations of these attributes can
vary depending on interpretation and context, making it difficult to identify these relationships
[5].

Spatial-temporal data mining (STDM) [11] aims to tackle the above challenge. STDM dis-
covers useful patterns from the dynamic interplay between space and time. STDM contains
numerous tasks, such as prediction, clustering, hotspot detection, pattern discovery, outlier anal-
ysis, visualization, and visual analytics. These tasks are important in different applications, such
as understanding the behavior of objects, scenes, and events. STDM pattern mining works on
discovering hidden information (occurrences in space and time, such as movement patterns from
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trajectories of spatial-temporal objects). Discovering spatial-temporal associations of trajecto-
ries is challenging due to long temporal duration, different moving directions, and lack of spatial
accuracy.

Many traffic and transportation datasets contain correlated spatial and temporal attributes.
Public transportation data fits the exact definition. We know that public transports traverse on a
fixed trajectory. Therefore, for each image captured at a location, it is spatially related to nearby
images. In addition, buses travel through the same region for a long period of time, adding rich
temporal attributes to the collection of images. As [11] observes, modeling trajectory data in
a spatial-temporal structure can be challenging. In the latter sections, we describe the design
choices made to mitigate these challenges for the purpose of our application.

2.3 Work Zones
Work zones are a common source of traffic disruption, causing great inconvenience to com-
muters. Gaining a better understanding of work zones can benefit various downstream applica-
tions. According to [3], a work zone is an area where road work is carried out and can involve
lane closures, detours, and moving equipment. Highway work zones are established according to
the type of road and the work to be done on the road. The work zone can be long- or short-term
and can exist anytime of the year, but most commonly in the summer. Work zones are expected to
follow a set of regularizations to ensure the safety of the workers and nearby vehicles. There are
official guidelines for how to set up a work zone [2]. For example, temporary traffic control signs
should be placed at some distance before the actual work zone site. Channelizing devices such
as cones, vertical panels, and tubular markers should also be placed around actual construction
sites.

Barricade

Used to block travel. Con-
sists of horizontal strips of-
ten with orange and white
stripes (color may vary based
on country, city, etc)

Barrier
Used to block, separate, or
channel traffic.
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Temporary Traffic Control
(TTC) Sign

Temporarily placed during
work period. Usually orange
or yellow in the US

TTC Message Board Digital sign to provide info

Arrowboard
Digital sign that uses arrows
to direct traffic

Work Vehicle

Vehicles with specific func-
tions in road work zones,
for example, heavy machin-
ery, vehicles with ttc mes-
sage boards, bucket trucks,
etc.

Guide Sign
Signs used to direct traffic,
for example, detour signs

Tubular Marker

Tube shaped markers used
to divide traffic, mark road
edges, divert traffic, restrict
turns, etc.

Vertical panel

Rectangular shaped markers
used to divide traffic, mark
road edges, divert traffic, re-
strict turns, etc

7



Cone

Triangular shaped markers
used to divide traffic, mark
road edges, divert traffic, re-
strict turns, etc.

Fence

Used as a barrier to re-
strict access to the work
area. Temporary meshed
fence. Usually metal or plas-
tic

Worker

Any workers in the work
zone. Usually wearing a
brightly colored vest and
hard hat. Includes flaggers

Drum

Barrel shaped traffic con-
trol device to channel traffic
through a work zone or as a
warning of nearby road work

Table 2.1: A table listing work zone related objects.

2.3.1 Building Work Zone Understanding

A work zone generally follows the structure in Figure 2.3 and uses objects in Table 2.1 as
delineators. These structures are extremely helpful in understanding construction zones. [15]
aims at classifying whether a given scene is a construction site or not using related indicators
such as vehicle speed, speed limit on road segment and presence of traffic signs. Each of these
indicators is treated as a variable in the Bayesian model and aggregated to produce a probability
score of how likely the given scene is a work zone. The goal of this work is to design an online
detection pipeline that can handle uncertainty with efficient performance. However, this method
does not take into account the spatial information of the indicators. For example, the location
of indicator objects in the work zone scene and their relative spatial positioning could provide
information on the structure of the work zone.

[28] dives deeper into the understanding aspect of work zones by proposing a geometric
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Figure 2.3: An illustration of a short-term stationary setup. The distances A, B, C should be
proportional to the work zone speed limit. TTC Signs are placed some distance prior to the
actual work zone. Delinators are placed surrounding the boundaries of the work zone. [2]

definition of the boundaries of the work zone. It does so by first considering all detected objects
of interest as key points and then lifting the key points onto a bird’s eye view plane of the scene.
The work zone is mapped onto a contour whose boundaries are defined by the key points on
that bird’s-eye view plane. The authors of [28] also noted that the use of the RGB input and
the LiDAR input produces a more accurate contour. In our work, we will focus on using RGB
cameras as our source of visual input, since RGB cameras are more widely available.

Previously, most work related to work zone detection has focused on using speed data and
lane markers. There is a limited amount of work in the area of detecting vision-based roadside
work zones. This is because there is a lack of publicly available work zone delineator datasets.
Large ego-vehicle datasets such as BDD100K [34] and Cityscapes [9] contain minimal to no
labeled instances of road construction object data. NuScenes [6] contains labels for some work
zone delinators, such as barriers and traffic cones. However, training detectors for these objects
faces yet another challenge. For example, compared to common instances, such as vehicles or
persons, NuScenes [6] contains a lower number of construction-related instances. This presents
the challenge of class imbalance in the NuScenes dataset [6].

2.3.2 Challenges in Work Zones Understanding
Previous datasets focused more on common objects, such as vehicles, pedestrians, and traffic
signs. As we begin to build better models to capture these common objects, these datasets be-
gin to expand and include annotations for rarer instances. For example, NuScenes [6] included
annotations of traffic cones and barriers in their most recent release of the dataset. In the most
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recent release of the Argoverse 2.0 dataset [31], the authors added the construction cone and
the construction barrel to their annotation set. The growing amount of data related to road con-
struction is crucial to developing an understanding of work zones. However, to obtain a holistic
understanding of these work zones, we need to take into account more related and rarer objects
related to the work zone.

2.3.3 Hierarchical Scene Understanding of Work Zones

Figure 2.4: Based on the spatial and temporal dimensions, a given data can be divided into
data with temporal attribute, data with spatial attribute, and data with both temporal and spatial
attributes (spatial-temporal data). [28]

Part of the challenge in understanding work zones comes from the amount of variance on
construction sites. These work zones may differ in the delineator used on site, the scale of
construction, and the environment in which they are located (urban, suburban, highway). Most
scene understanding approaches are divided into two categories: top-down and bottom-up [23].
Top-down approaches look at the scene on a global scale without focusing on specific objects.
Bottom-up approaches start with lower-level features, such as objects, and build understanding
from the observed object categories and relationships. Understanding work zones can be built
on many levels, such as scene level, frame level, and object level. The first two take a top-
down approach, while the latter uses a bottom-up methodology. In the following, we will cover
different levels of understanding towards construction zones.

As mentioned, road construction zones vary on a variety of scales. Usually, the entire work
zone is not fully contained in a single frame. To capture the entire work zone as a whole, we will
need to analyze it through a series of neighboring frames that cover the entire work zone. In the
work proposed by [28], each work zone is defined by the contoured region on the bird’s-eye view
plane. Key points detected from a series of neighboring frames are aggregated on the bird’s-eye
view plane to construct the work zone contour.
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At frame level detection, the model loses context from neighboring frames and makes infer-
ences based on a single image. [8] showed efforts to train an image-level classification model
from a collection of queried images from the work zone on the road. The authors noticed that the
model tends to identify construction zones based on the vibrant orange colors that are commonly
seen in construction zones. However, this bias results in many false positives when the same
color is visible on non-construction objects. The classification model falsely classified images
with similar vibrant, orange color on non-construction objects as a roadside work zone image.

Object level scene understanding is built upon a bottom-up methodology. First, a detection
model is trained to detect objects of interest. In this case, the objects of interest are delineators
in the work zones. The detection results of each image are extracted and analyzed to gain an
understanding of the scene. The spatial and geometric relationships between the detected objects
can provide information about the image category.

2.4 Object Detection
In this work, we focus on exploring bottom-up approaches to the scene understanding task. As
previously mentioned, bottom-up approaches use detectors to identify key points or key objects,
then extract semantics about the scene from the the set of key points. In the following sections,
we provide an overview of previous object detection approaches, challenges in object detection,
and how it relates to the task of work zone detection.

CNN-based approaches are one of the dominant object detection solutions. Object detec-
tion approaches can be broadly split into two categories: two-stage approaches and one-stage
approaches [32]. The first line of work, pioneered by R-CNN [10], takes on a coarse-to-fine
architecture. First, it generates a class-agnostic region proposals of potential objects and then
refines and classifies the proposals into different categories. Faster R-CNN [26] eliminates se-
lective search by introducing the Region Proposal Network (RPN), making it the first end-to-end
and near-realtime deep learning detector. With the recent success in attention modules, the vision
Transformer architecture [30] has also shown promising results in object detection task. One of
the current state of the art is the Swin Transformer [19]. Swin Transformer uses a hierarchical
Transformer whose representation is computed with Shifted windows.

As mentioned above, one of the biggest challenges towards training a work zone object de-
tector comes from the lack of dataset in this domain. To the best of our knowledge, there is no
dataset that contains a majority of the objects above. There are efforts to expand the annotations
toward some of the work zone labels. For example, in the most recent release of Argoverse 2.0
[31], the authors added annotations for construction cones and construction barrels. Similarly,
[6] also contains annotations for construction cones and barricades. However, annotations across
datasets cannot be easily combined in training. [36] notes that the joining of two datasets may
introduce conflicts in their joined annotation. This calls for a stronger need for a specialized
dataset that focuses on work zone related objects.

We noticed that most objects appear at work zones at different frequencies and counts. For
example, channelizing devices, such as construction cones and vertical panels appear in most
construction zones and in large quantities. On the other hand, work vehicles are generally only
present at larger scale work zones. This introduces an imbalance between the quantities of each
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object, which introduces a class imbalance in the detection model. Class imbalance has been
a long-time challenge for detection models. A few ways to combat class imbalance is to apply
weighted sampling or weighted loss that is inversely proportional to the quantity of the class
label in the training set [14].

Within the domain of work zone objects, there lie many challenges that may be observed.
Many of these objects share a similar feature of having a bright orange color and reflective stripes.
Since most of these objects share similar salient features, it becomes easy for the detection model
to become confused about these work zone related objects.

Another common example is when our objects of interest are subclasses of common objects.
For instance, the class “worker” is a specific instance of “person”. Some of the instances of
a “work vehicle” also fall under the broader category of “vehicle”. This makes categorizing
these challenging, because ”person” and ”vehicle” also appear frequently in most ego-vehicle
datasets. This requires the model to learn to differentiate between these two instances in the
situation where there are fewer instances of our interest.
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Chapter 3

Structure of Bus Data

In this work, we are interested in exploiting spatial and temporal attributes within large-scale
urban visual data to detect regions of interest. Specifically, we structure unprocessed bus data
based on their spatial and temporal attributes to mine patterns about work zones. As mentioned
above, visual data from public transit systems is a good source to study work zones for many
reasons. The bus traverses on fixed and repeated routes. As such, this allows us to track changes
across specific spatial regions of the route over time. This property is especially suitable to mine
patterns about work zones, since long-term work zones span a long period of time at a fixed
location.

Previous work used bus data for statistical analysis [24], [27], [29]. However, most of
these works focus on attributes directly related to the transportation task, such as the number
of stops visited, the time elapsed at each stop, the number of pedestrians on board, etc. A
limited amount of work places the focus on using visual data collected from outfacing cameras
from the bus to perform analysis of its surroundings. In this work, we will use data collected
through the BusEdge [32] system. In the following sections, we will give a brief overview of
the data collection process and the modalities of the data. Next, we will cover how the bus data
is organized into aligned trajectories.

3.1 Data Source and Collection Process

The data used in this work are collected from a bus that traveled between downtown Pittsburgh,
PA and Washington County, PA. Two round trips are collected every work day. The route tra-
versed is drawn in Figure 3.1. The inbound trip starts at the intersection of Wylie and Allison
Avenues and ends at East Busway in downtown Pittsburgh. The outbound trip starts on the East
Busway in downtown Pittsburgh and ends at the Washington Transit Center.

In total, five cameras are installed on the bus. Four waterproof exterior cameras are placed
at the top corners of the bus, with two side cameras looking backward and two rear cameras
looking forward. The last camera is an interior camera placed behind the windshield of the bus.
The technical specifications of the cameras are listed in Table 3.1 and Table 3.2. In addition to
the five RGB cameras, the bus is also equipped with a Mobile Mark’s LTM501 Series Multiband
MIMO antenna. This antenna has five built-in antennas, one of them being a GPS antenna. Data
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(a) Downtown Pittsburgh (b) Washington Country to
Downtown Pittsburgh

Figure 3.1: Visualization of the trajectory taken by the bus [1]

Figure 3.2: Pictures of the Transit Bus and its Exterior Cameras [32]

Brand Safety Vision
Model 43 series IP camera

Highest Resolution 1920 × 1080
Focal Length 2.8mm

Table 3.1: Specification of Interior Camera

Brand Safety Vision
Model 37 series IP camera

Highest Resolution 1920 × 1080
Focal Length 2.8mm, 4.0mm

Table 3.2: Specifications of Exterior Cameras

are collected continuously through the bus system.

3.2 Raw Data Definition
Our data source traverses two endpoints: East busway in downtown Pittsburgh and East Chestnut
Street Transit Center. We define a bus run R as a sequence of data points that traverse between the
end points. Each run travels in either the inbound or outbound direction. Next, we sort the col-
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Figure 3.3: Illustration of the data points collected along the ith run of the bus

lection of runs by the starting time of that run and enumerate the runs. Let Ri be the ith run in the
collection. Each run is a sequence of raw data instances, denoted as Ri = [di,0, ..., di,j, ..., di,n].
Let dij be the jth raw data instance from the i -th run. di,j = (ci,j, ti,j, Ii,j), where ci,j ∈ R2 is the
latitude and longitude coordinates of the data instance, ti,j ∈ N represents the time in the unix
timestamp, and Ii,j is the RGB image.

Our goal is to detect changes in work zones from the collection of runs. Specifically, we
are looking for changes along the spatial or temporal axis. To observe changes in these axes,
we should first define an ordering for the collection of runs along the temporal and spatial axes.
Based on the above definition, we see that a natural derivation of the temporal axis is the indices
of the enumerated runs since the collections of runs are sorted by the starting time of that run. We
will derive the spatial axis in the next few sections. In the following sections, we will formulate
the bus data as a series of trajectories and cover algorithms available to cluster and subsample
these points.

3.3 Data Cleaning
Based on prior knowledge of the bus trajectories, we expect the collected data points to be con-
tinuous and the trajectories to be coarsely aligned. However, data collected in the wild do not
always adhere to this assumption. There are rare instances where there are missing images or
GPS coordinates in the sequence of data points. This could be caused by hardware malfunctions
and should be filtered out.

From the bus, images are taken at five frames per second continuously. We perform pre-
processing to remove low-quality images. For example, at low illumination scenarios (e.g. before
sunrise), the images collected tend to be overly blurry. When the bus is stationary (e.g. waiting
for the red light), the collected images tend to be highly similar to its neighbors. We remove
these instances by thresholding to some blur and duplicate scores. For each data instance di,j
from run Ri, we filter out images whose blur score and dup score are above some predefined
threshold.

blur score = blur(Ii,j)
dup score = dup(Ii,j−1, Ii,j) with j > 0
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Here, blur(I) is a measure of the variance of the Laplacian in the image I . For blurry images,
the variance is expected to be low. dup(Ij−1, Ij) measures the pixel-wise L1 distance of the two
images. Repeating imags are expected to have a low L1 distance measure. To ensure the quality
of the captured images, in the following experiments, we only used images taken during the day
(between 9 am and 5 pm).

(a) Blurred Image (b) Duplicate Image at time t (c) Duplicate Image at time t+ 1

Figure 3.4: (a) Images taken before sunrise tends to result in high-blur images. (b) and (c) is a
pair of consecutive frames that are taken when the vehicle is stationary. This will generate a pair
of images that are close duplicates of one another.

3.4 Align Images using Spatial Coordinates

Figure 3.5: Overview of the alignment process: for each data point dij , we map it to a location
on the discretized 2D space formed by a spatial and temporal axis.

By nature, the bus traverses on a repeated path. However, we do not have a set of sample
trajectory points that correspond to the repeated path. In addition, there are situations where, on
certain days, the bus path deviates from the set routes. For example, the weekday and week-
end routes traverse between different points. Another example is that when part of the road is
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blocked, there may be a small detour in that section. The direct alignment of the bus data may not
be adapted to these changes. Thus, we generate a trajectory baseline by clustering and sampling
points from the aggregation of trajectories at different start times and produce a mean represen-
tational path. Our goal is to extract a sequence of K ⊆ R2 coordinates as a representation of the
average path that the bus data traverse.

3.4.1 Generating a Baseline Trajectory

Figure 3.6: The collection of bus runs are iteratively clustered into a dense baseline trajectory.

The work [4] organized a set of algorithms for map construction. They defined map construc-
tion as a task that automatically produces or updates street map datasets using vehicle tracking
data. This matches our purpose of building a street map from bus tracking data. Map construction
algorithms can be organized into three categories: point clustering, incremental track insertion,
and intersection linking. Specifically, our data structure best fits the idea of incremental track
insertion. Incremental track insertion uses ideas from map matching, where the tracks are clus-
tered and refined based on a rough baseline. This fits our use case, since bus trajectories adhere
to the assumption that most of the trajectories are roughly aligned on most of the segments.

We used the implementation of the Cao and Krumm’s [7] incremental track insertion al-
gorithm. This incremental track insertion approach proceeds in two stages. In the first stage,
a simulation of physical attraction is used to modify the input tracks to group portions of the
tracks that are similar together. This results in a cleaner data set in which track clusters are more
pronounced and different lanes are more separated. Then, these much cleaner data are used as
the input for a fairly simple incremental track insertion algorithm. This algorithm makes local
decisions based on distance and direction to insert an edge or vertex and either merge the vertex
into an existing edge or add a new edge and vertex. From this algorithm, we now have a set of
dense coordinates, K, which contain the sample points of the original runs.

3.4.2 Downsampling the Baseline Trajectory
One challenge in working with spatial-temporal data comes from the large amount of data. Un-
like other independently and identically distributed datasets, time series data lies on a continuous
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Figure 3.7: (Left) The dense baseline trajectory is downsampled based on a distance threshold to
neighboring points. (Right) The number of points on the baseline trajectory decreases exponen-
tially as we increase the distance threshold.

scale. One practical approach to working with these continuous data is to downsample the data
to a coarse representation. Ego vehicle datasets, such as NuScenes [6], do so by extracting key
frames among the continuous stream of data. However, in our case, we are interested in the
relationship between neighboring data on both the spatial and temporal axes. Thus, it is impor-
tant to find a sampling distance threshold that can extract a manageable set of coordinates while
retaining interesting spatial and temporal attributes.

Given the densely clustered baseline trajectory, we want to downsample the points so that
the sample clusters can retain spatial information. In the context of bus data, this means that
neighboring clusters should share similar visual features. For example, if two neighboring points
are too far apart, then we would lose a lot of the spatial imagery feature since they are aggregated
under a single cluster point.

3.4.3 Assigning Data Points to the Baseline Trajectory
Now that we have a sequence of baseline coordinates, we want to align the collection of runs onto
the baseline coordinates. Let K be the sequence of baseline coordinates composed of the baseline
coordinates. Recall that a run is defined as Ri = [di,0, ..., di,j, ..., di,n] and di,j = (ci,j, ti,j, Ii,j).
For each data instance di,j , we assign it to the cluster k = argmink∈K dist(ci,j, k). As noted
above, we can order the coordinates in K so that they follow the order of the bus trajectory.

From the above sections, we define a structure to organize the vast collection of bus data.
First, we split the data into a series of runs Ri. Each run consists of an ordered sequence of data
instances. Each data instance stores an image Ii,j , the time ti,j at which the image is taken, and
the geographic location ci,j at which the image is taken. Each location ci,j is further mapped to
one of the coordinates k ∈ K, an averaged and downsampled representation of the bus trajectory.
Thus, we define the temporal axis as the start time of the run and the spatial axis as the indices
of the ordered baseline coordinates.
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Figure 3.8: Data points on each run is assigned to its nearest point on the downsampled baseline
trajectory.
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Chapter 4

Work Zone Detection

Work zones are a common source of traffic disruption, causing great inconvenience for com-
muters. Gaining a better understanding of work zones can benefit various downstream applica-
tions. Our goal is to detect work zone among an unlabeled set of large-scale bus data. To do so,
we exploit the spatial and temporal properties of the bus data to find patterns for the work zones
along these axes. Anomalies can occur across the spatial axis (changes across time) or on a fixed
starting time (across regions in space). As such, we are interested in answering the following
questions:

• Is there a work zone at the current point (spatial location and time)?
• Is there an observable change when observing across time or space?

Figure 4.1: For each data point on a run, we assign an anomaly score that indicates the likelihood
of that scene being a work zone.

Previously, we discussed several works that cover approaches to define a work zone. [15]
uses a probabilistic model to model a binary classifier for work zones. Each factor related to
the work zone, such as the speed of the vehicle and the existence of temporary traffic control
objects, is treated as a weighted input to the model. Although this approach considers many
related factors, it does not capture the spatial and temporal attributes of these related objects.
In [28], each work zone is defined by the contoured region on the bird’s-eye view plane. Key
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points detected from a series of neighboring frames are aggregated on the bird’s-eye view plane
to construct the work zone contour. This work captures the spatial information of a work zone,
but does not capture the temporal changes of a work zone. In our work, we aim to bridge this gap
by detecting work zones from data points mapped onto a 2D spatial-temporal space. To do so,
we use a bottom-up approach to compute an anomaly score for each data point, which measures
the likelihood of a work zone at that data point. Figure 4.1 illustrates how we use the output of
the detection models to assign anomaly scores. For each data point, we also consider its spatial
and temporal neighbors to capture more spatial and temporal attributes. In this section, we focus
on our approach of assigning each data point a corresponding anomaly score.

4.1 Work Zone Related Datasets

4.1.1 Manually Labeled Dataset

In an effort to make progress in research on work zone detection, we collected and annotated
a set of images from work zones. We scrapped 4,400 work zone images from the Internet and
selected 200 images that contain work zones from the bus. Currently, we have 4,600 work zone
images. These images are manually annotated with objects listed in Table 2.1.

Figure 4.2: Visualization of current annotation progress of work zone related objects.

The annotation of this dataset is in ongoing progress. The instance counts in Figure 4.2 give
us information about the frequency at which each object is present in the work zones. Top counts,
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such as cones, work vehicles, worker, and vertical panels, are observed more frequently in work
zone images.

4.1.2 NuScenes

NuScenes [6] is a public large-scale dataset for autonomous driving. It enables researchers to
study challenging urban driving situations through densely captured visual inputs. NuScenes
contains four class labels that are related to work zones: barriers, traffic cone, construction vehi-
cle, and construction worker.

Barrier Traffic Cone Construction Vehicle Construction Worker
88,545 (12.76%) 87,603 (12.63%) 6,071 (0.88%) 13,582 (1.96%)

Table 4.1: Number of instances and ratio of all annotations in each class label the NuScenes 2D
dataset.

For preliminary experiments, we trained a multiclass object detection model using the four
class labels related to the work zone: barrier, traffic cone, construction vehicle, and construction
worker. In this experiment, we used a Faster R-CNN model [26] with a ResNet-50 backbone.
From the training results, we noticed some challenges in the current experiment setup. First, the
model performs worse on construction vehicles and construction workers compared to barriers
and traffic cones. The imbalance in the number of instances among the four classes makes it
difficult to train a multiclass object detector, especially when there are 15 times more instances
of barrier than those of construction vehicles. Next, the model struggles to differentiate between
normal vehicles (trucks) and construction vehicles (trucks in the construction zone). A similar
problem persists between pedestrians and construction workers. This suggests that a hierarchical
detection structure may be needed for these subclasses. From the current set of available an-
notations, the detection model performs consistently when performing single-class traffic cone
detection.

For the purpose of this work, we use the number of traffic cones detected as a measure of
the probability that the given region contains a work zone. We hope to improve this detector
to a multiclass detector as we continue to annotate the work zone dataset. To train our object
detection model, we use the traffic cone class [6], and tested our result on the traffic cone class
of bus data.

Number of Images Traffic Cone
NuScenes [6] 11,867 87,603

Bus Data 158 1,042

Table 4.2: Number of images and number of instances for NuImages and Bus Data datasets.
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4.2 Model Architecture
For the purpose of this work, we are interested in detecting work zones and analyzing their
spatial-temporal relationship. As such, we are more interested in obtaining accurate bottom-up
detection than in efficient real-time performance. The two-stage proposal generation network
generally outperforms the one-stage detection model architecture. Thus, for our baseline model,
we employ the Faster R-CNN model architecture with ResNet-50 and Feature Pyramid network
as backbone. In addition, we also experiment with the current state of the art, which uses a
transformer model Swin-T as backbone architecture.

To evaluate the performance of the object detector, we measured the following metrics: APbb,
APbb

50, APbb
75, APbb

S , APbb
M , and APbb

L , which are standard COCO metrics [16]. Average precision
(AP) measures the mean precision values set at some recall threshold level (0 to 1 with a step
size of 0.1). The numerical subscript of the AP symbols refers to the threshold of the IoU score.
APbb

50 means that a prediction with IoU > 0.5 is considered a true positive prediction. Usually, the
mean average precision (mAP) is averaged across all class labels. In our case, we are working
with single-class object detection, so we do not take the mean. The subscript S, M , L refers to
the sizes of the detected objects. APbb

S measures the average precision score of objects whose
area of the ground truth bounding box is less than 322. APbb

M consists of boxes whose area is in
the range of 322 and 962. APbb

L contains boxes of area > 962.

Backbone APbb APbb
50 APbb

75 APbb
S APbb

M APbb
L

Faster R-CNN [26] ResNet-50 FPN [12, 17] 46.8 83.8 45.5 35.6 57.1 65.2
Faster R-CNN [26] Swin-T FPN [17, 20] 55.7 90.8 59.0 44.7 65.1 75.0

Table 4.3: Traffic cone detection results on dev set of NuScenes on the Traffic Cones class.

Based on Table 4.3, Faster R-CNN with a Swin-T outperforms the model using a ResNet-50
backbone. Next, we will test the performance of this traffic cone detector on a set of manually
annotated bus data using images that contain traffic cone instances. We expect the performance
of the traffic cone detector to drop on the bus data, since the training and testing distribution has
changed.

Data APbb APbb
50 APbb

75 APbb
S APbb

M APbb
L

NuScenes [Train] 46.8 83.8 45.5 35.6 57.1 65.2
Bus Data [Evaluation] 35.8 81.4 25.6 32.5 64.7 -

Table 4.4: Traffic cone detection results using Faster R-CNN with Swin-T backbone.

Our goal is to detect work zone events among an unlabeled set of large-scale bus data. To do
so, we design a model that assigns an anomaly score to each input data point. The anomaly score
indicates the likelihood of a work zone at that data point. Currently, we use predicted traffic cone
counts as an anomaly score. Since the goal is to mine and detect patterns of work zones in bus
data, we value high recall over high precision. We want to capture as many instances of the work
zone as possible to find patterns in the spatial and temporal domains. From the precision recall
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Figure 4.3: Precision-Recall curve of Faster R-CNN Swin-T FPN model on Bus Data.

curve, we see that the model is capable of achieving a recall greater than 0.8 while maintaining
an accuracy greater than 0.6. Figure 4.3 was generated using a confidence threshold of 0.05.
Some of the detected results are shown in Figure 5.2. In the next section, we show that with
this performance we can extract interesting patterns about work zones from large amounts of bus
data when aggregated across the spatial and temporal dimension.

4.3 Sample Outputs
In the following experiments, we use the predicted traffic cone counts at a data point as an
indicator of the likelihood that there is a work zone at that location. This means that if there is a
high number of traffic cones, we claim that there is a work zone at that given location. However,
traffic cone counts in a single frame may not be the most accurate measurement of the anomaly
score. In the following, we provide a few examples where ambiguities arise. We later show
that these ambiguities can be avoided by considering the anomaly score across the spatial and
temporal axes.

In the top-left image of Figure 4.4, there are many traffic cones in the parking lot, behind
each of the parked vehicles. However, it is clear that it is not an active construction site. In the
top right image, we see an active work zone in the middle of the road. Our method would then
correctly predict that location as a work zone. In the bottom-left image, our method would also
correctly mark it as not a work zone since the model detects a low number of traffic cones. The
image on the bottom right indicates the start of a medium-to-large scale work zone. Temporary
Traffic Control (TTC) sign is placed to warn drivers that there is a work zone ahead. However,
since the image contains a low number of traffic cones, our method would falsely classify the
location as not a work zone. In the next section, we show that by aggregating neighboring spatial
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Figure 4.4: On a single frame, there are ambiguities on whether high predicted traffic cone counts
indicate the location is a work zone.

and temporal predictions, we can avoid these ambiguities and mine interesting patterns about
work zones from the large amount of bus data.
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Chapter 5

Results

Our goal is to detect and analyze instances of work zones from a set of raw bus data. To do so,
we introduce a method for mapping data points from bus trajectories into a discretized 2D space
defined by a spatial axis and a temporal axis. The temporal axis is defined by the start times
for each bus run. The spatial axis is an sequence of baseline coordinates. The collection of bus
data is assigned to a point on the baseline trajectory. Next, we use a bottom approach to evaluate
the anomaly score at each data point. Finally, we visualize the anomaly scores on a discretized
2D space defined by a spatial and temporal axis. From this 2D map, we discuss the spatial and
temporal attributes that we discovered by mining bus data for work zone events.

5.1 Overview

Figure 5.1: Pipeline of mapping each input data point to a value on the spatial-temporal space.

Previously, we discussed how to formulate the temporal axis and the spatial axis from the
collection of raw bus data. Based on our definition, the temporal axis corresponds to the ordering
of the runs based on the start time. For example, the first run R0, which started at time T00, would
correspond to the index 0 on the temporal axis. The last run RN would correspond to the index
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N − 1 on the temporal axis. Formulating the spatial axis requires more work. The coordinates
of all the runs are clustered and then downsampled to form a baseline trajectory. This baseline
trajectory is a representative sequence of coordinates on which the bus travels. Since the bus
travels to and from two fixed endpoints, we assign an ordering to the baseline trajectory and use
this ordering as the spatial axis. In the spatial dimension, each data point is mapped to the index
that corresponds to the coordinate on the baseline trajectory closest to the data point’s location.
We call this module the Spatial-Temporal Locator.

We also defined a method for assigning an anomaly score to each data point. For each data
point, we pass it through a trained traffic cone object detector to obtain a predicted traffic cone
count of the scene. We use this count score as an indication of the likelihood of a work zone at
that data point. We call this module the Traffic Cone Detector.

Let dij be a data point that corresponds to the jth data point in ith run Ri. We feed dij through
the two above modules. The Spatial-Temporal Locator returns two indices (s, t), which indicates
the location where dij is assigned to the 2D discretized space. The Traffic Cone Detector returns
an integer score, which is the value at that location. The discretized 2D space can be naturally
visualized in the form of a heat map. In the following sections, we will analyze the spatial and
temporal attributes of work zones by mining for patterns on the heat map.

5.2 Visualizations

5.2.1 Spatial Aggregation of Detection Results

(a) Two neighboring frames being aggregated to the same baseline point.

(b) Image from dij (c) Image from dij+1

Figure 5.2: (b) and (c) are two neighboring frames along the same run. As we get closer to the
objects, we can detect them more accurately.

28



In Figure 5.2(b), the traffic cones in the second rows were not detected at time step Tij . As
the bus approaches closer to the work zone, the second row of traffic cones are detected by the
detector more easily. In this scene, the work zone cannot be fully captured in a single shot. As the
bus moves along the spatial axis, it can gather more information about the same work zone. By
aggregating neighboring frames to a coarser baseline trajectory, we can capture more indicative
information about the region in space. This is especially applicable to work zones, since work
zones vary in scale and are rarely contained within a single frame.

5.2.2 Spatial Changes

(a) Heat map of spatial changes along run Ri

(b) Image at Li (c) Image at Li+2

(d) Image at Li+14 (e) Image from Li+15

Figure 5.3: A heat map indicating changes across the spatial axis and their corresponding images.

Figure 5.3 demonstrates a large scale work zone region where half of the road is blocked.
From the heat map, we see an increase in traffic cone counts near the start of the segment, then a
decrease at the tail of the region. Looking at the matching images, we see that at the beginning
of the work zone, there is a denser placement of traffic cones to notify the incoming drivers. In
the middle sections of the work zones, the traffic cones are placed more sparsely. The gradient
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pattern on the heat map gives clear indications of the spatial boundaries of the work zone. Using
this pattern, we can efficiently identify the potential boundaries of the work zones at a coarse
level (from downsampled trajectories). These data can help autonomous vehicle teams to learn
to predict the spatial boundaries of construction zones, which can enhance the robustness of the
autonomous vehicle when faced with roadside anomalies.

5.2.3 Temporal Changes
From the heat map in Figure 5.4 (a), we see a similar gradient effect along the temporal axis
at a specific location Li. Looking at the corresponding image, we see that the location Li is
undergoing a long-term construction that spans multiple runs of the bus. At time Ti+1 (Figure
5.4 (b)), there is a white box near the center of the road and there are no indicators of work zones
yet. The bus data clearly captured the progression of this work zone from start to finish. At time
Ti+2 (Figure 5.4 (c)), the same location has become an active construction site with traffic cones
and construction vehicles present. At time Ti+2 (Figure 5.4 (e)), the traffic cones were removed
and we observed a change in the white box region in Figure 5.4 (b). From changes along the
temporal axis, we were able to pinpoint a specific region of change among the vast amount of
large-scale bus data. By mapping the bus data onto a spatial-temporal structured space, we were
able to capture the progress of a work zone from start to finish. These data could be invaluable
to construction management companies for an automated process of monitoring the progress of
work zones.

5.2.4 The Bigger Picture
In the previous two sections, we analyzed the patterns of work zones along the temporal and
spatial axis. The patterns extracted along either of the axes can be beneficial for a wide range
of downstream tasks. For example, construction companies may be interested in monitoring
changes in a work zone over time. Autonomous vehicle teams may be interested in data con-
taining road anomalies for training. The possibilities of these insights are immense, but they
are challenging to mine. In total, we used two months of bus data in these experiments, which
contains approximately 916K raw data points. Figure 5.5 shows the heat maps in different sub-
segments along the spatial axis. We notice that most of the heat maps are null, which means
that there are no signs of the work zone at that time and location. Without an efficient way of
organizing the bus data, it would be computationally expensive to extract spatial and temporal
attributes over large-scale data.
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(a) Heat map of temporal changes at location Li

(b) Image at Ti+1 (c) Image at Ti+2

(d) Image at Ti+3 (e) Image from Ti+4

Figure 5.4: A heat map indicating changes across the temporal axis and their corresponding
images.
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(a) Location L0 to L100 (b) Location L100 to L200

(c) Image at Location L200 to L300 (d) Location L300 to L400

(e) Location L400 to L500 (f) Location L500 to L600

(g) Location L600 to L700 (h) Location L700 to L800

Figure 5.5: Collection of heat map at different subsegments of the spatial axis.

32



Chapter 6

Conclusion and Future Work

In this work, we detected and analyzed the spatial and temporal patterns of work zones from
a large scale, unprocessed collection of bus data. To efficiently draw inferences from the bus
data, we clustered and downsampled the data points based on their spatial property. Next, we
imposed an ordering on the sequences of bus data based on the start time of each run. This
organization enables us to effectively exploit the spatial and temporal patterns of the events of
interest. In our work, we focus on detecting and analyzing patterns of work zones. We noticed
that work zones naturally span long periods of time and cover a certain region in space. Through
looking at locations or times where there is a high number of traffic cone counts, we were able
to mine instances of work zones among 916K raw image data. The scope of this work focuses
on exploring ways to organize and extract information about events of interest from large-scale,
unprocessed data. From observing the spatial and temporal axes, we identified coarse regions
where events of interest are located. This opens up possibilities for a variety of downstream
tasks. For example, we can extend the current scope of our method and perform fine analysis
on the extracted work zone regions. These could include tasks such as quantifying the scale of a
work zone, localizing objects within a work zone, and performing semantic understanding of a
work zone.

Like bus data, many data sources naturally contain spatial or temporal properties. For exam-
ple, taxi vehicle records contain spatial information about the trajectory the taxi drove on. Videos
from surveillance cameras contain rich information about changes over time in some fixed lo-
cation. By defining a spatial or temporal organization for these data, we can more effectively
extract information from these urban big data. This can tackle the difficulty of extracting points
of interest from a large set of data. In boarder terms, our work highlights the effectiveness of
exploiting spatial and temporal patterns to perform more efficient urban visual data mining.
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Spatial-temporal potential exposure risk analytics and urban sustainability impacts related
to covid-19 mitigation: A perspective from car mobility behaviour. Journal of Cleaner
Production, 279:123673, 08 2020. doi: 10.1016/j.jclepro.2020.123673. 2.2

[14] Harsurinder Kaur, Husanbir Singh Pannu, and Avleen Kaur Malhi. A systematic review
on imbalanced data challenges in machine learning: Applications and solutions. ACM
Comput. Surv., 52(4), aug 2019. ISSN 0360-0300. doi: 10.1145/3343440. URL https:
//doi.org/10.1145/3343440. 2.4

[15] Philipp Kunz and Matthias Schreier. Automated detection of construction sites on motor-
ways. In 2017 IEEE Intelligent Vehicles Symposium (IV), pages 1378–1385, 2017. doi:
10.1109/IVS.2017.7995903. 2.3.1, 4

[16] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona,
Deva Ramanan, Piotr Dollar, and Larry Zitnick. Microsoft coco: Com-
mon objects in context. In ECCV. European Conference on Computer Vision,
September 2014. URL https://www.microsoft.com/en-us/research/
publication/microsoft-coco-common-objects-in-context/. 4.2

[17] Tsung-Yi Lin, Piotr Dollár, Ross B. Girshick, Kaiming He, Bharath Hariharan, and Serge J.
Belongie. Feature pyramid networks for object detection. 2017 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 936–944, 2017. ??, ??

[18] Jia Liu, Tianrui Li, Peng Xie, Shengdong Du, Fei Teng, and Xin Yang. Urban big data
fusion based on deep learning: An overview. Information Fusion, 53:123–133, 2020. 1,
2.1, 2.2

[19] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Bain-
ing Guo. Swin transformer: Hierarchical vision transformer using shifted windows. In
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV), 2021.
2.4

[20] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Bain-
ing Guo. Swin transformer: Hierarchical vision transformer using shifted windows, 2021.
URL https://arxiv.org/abs/2103.14030. ??

[21] Chuishi Meng, Xiuwen Yi, Lu Su, Jing Gao, and Yu Zheng. City-wide traffic volume
inference with loop detector data and taxi trajectories. In Proceedings of the 25th ACM
SIGSPATIAL International Conference on Advances in Geographic Information Systems,
pages 1–10, 2017. 2.1

[22] Daniel Moreira, Sandra Avila, Mauricio Perez, Daniel Moraes, Vanessa Testoni, Eduardo
Valle, Siome Goldenstein, and Anderson Rocha. Multimodal data fusion for sensitive scene
localization. Information Fusion, 45:307–323, 2019. ISSN 1566-2535. 2.1

[23] Prajakta Ganesh Pawar and V Devendran. Scene understanding: A survey to see the world
at a single glance. In 2019 2nd International Conference on Intelligent Communication and
Computational Techniques (ICCT), pages 182–186, 2019. doi: 10.1109/ICCT46177.2019.

36

https://doi.org/10.1145/3343440
https://doi.org/10.1145/3343440
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://www.microsoft.com/en-us/research/publication/microsoft-coco-common-objects-in-context/
https://arxiv.org/abs/2103.14030


8969051. 2.3.3

[24] Simone Porru, Francesco Edoardo Misso, Filippo Eros Pani, and Cino Repetto. Smart mo-
bility and public transport: Opportunities and challenges in rural and urban areas. Journal
of traffic and transportation engineering (English edition), 7(1):88–97, 2020. 3

[25] Amudapuram Mohan Rao and Kalaga Ramachandra Rao. Measuring urban traffic
congestion-a review. International Journal for Traffic & Transport Engineering, 2(4), 2012.
2.2

[26] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster r-cnn: Towards real-time
object detection with region proposal networks. Advances in neural information processing
systems, 28, 2015. 2.4, 4.1.2, ??, ??

[27] Prasanta K Sahu, Babak Mehran, Surya P Mahapatra, and Satish Sharma. Spatial data
analysis approach for network-wide consolidation of bus stop locations. Public Transport,
13(2):375–394, 2021. 3

[28] Weijing Shi and Ragunathan Raj Rajkumar. Work zone detection for autonomous vehicles.
In 2021 IEEE International Intelligent Transportation Systems Conference (ITSC), pages
1585–1591, 2021. doi: 10.1109/ITSC48978.2021.9565073. 2.3.1, 2.4, 2.3.3, 4

[29] Shijie Sun, Naveed Akhtar, Huansheng Song, Chaoyang Zhang, Jianxin Li, and Ajmal
Mian. Benchmark data and method for real-time people counting in cluttered scenes using
depth sensors. IEEE Transactions on Intelligent Transportation Systems, 20(10):3599–
3612, 2019. 3

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N
Gomez, Ł ukasz Kaiser, and Illia Polosukhin. Attention is all you need. In I. Guyon,
U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett,
editors, Advances in Neural Information Processing Systems, volume 30. Curran Asso-
ciates, Inc., 2017. URL https://proceedings.neurips.cc/paper/2017/
file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf. 2.4

[31] Benjamin Wilson, William Qi, Tanmay Agarwal, John Lambert, Jagjeet Singh, Siddhesh
Khandelwal, Bowen Pan, Ratnesh Kumar, Andrew Hartnett, Jhony Kaesemodel Pontes,
Deva Ramanan, Peter Carr, and James Hays. Argoverse 2: Next generation datasets for self-
driving perception and forecasting. In Proceedings of the Neural Information Processing
Systems Track on Datasets and Benchmarks (NeurIPS Datasets and Benchmarks 2021),
2021. 2.3.2, 2.4

[32] Canbo Ye. Busedge: Efficient live video analytics for transit buses via edge computing.
Master’s thesis, Pittsburgh, PA, July 2021. 2.4, 3, 3.2

[33] Xiuwen Yi, Junbo Zhang, Zhaoyuan Wang, Tianrui Li, and Yu Zheng. Deep distributed
fusion network for air quality prediction. In Proceedings of the 24th ACM SIGKDD Inter-
national Conference on Knowledge Discovery amp; Data Mining, KDD ’18, page 965–973,
New York, NY, USA, 2018. Association for Computing Machinery. ISBN 9781450355520.
doi: 10.1145/3219819.3219822. URL https://doi.org/10.1145/3219819.
3219822. 2.1

37

https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1145/3219819.3219822
https://doi.org/10.1145/3219819.3219822


[34] Fisher Yu, Haofeng Chen, Xin Wang, Wenqi Xian, Yingying Chen, Fangchen Liu, Vashisht
Madhavan, and Trevor Darrell. Bdd100k: A diverse driving dataset for heterogeneous
multitask learning. In IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020. 2.3.1

[35] Lili Zhang, Yuxiang Xie, Luan Xidao, and Xin Zhang. Multi-source heterogeneous data
fusion. In 2018 International conference on artificial intelligence and big data (ICAIBD),
pages 47–51. IEEE, 2018. 2.1

[36] Bowen Zhao, Chen Chen, Wanpeng Xiao, Xi Xiao, Qi Ju, and Shutao Xia. Towards a
category-extended object detector without relabeling or conflicts, 12 2020. 2.4

38


	1 Introduction
	2 Background
	2.1 Urban Big Data
	2.2 Spatial-Temporal Data
	2.3 Work Zones
	2.3.1 Building Work Zone Understanding
	2.3.2 Challenges in Work Zones Understanding
	2.3.3 Hierarchical Scene Understanding of Work Zones

	2.4 Object Detection

	3 Structure of Bus Data
	3.1 Data Source and Collection Process
	3.2 Raw Data Definition
	3.3 Data Cleaning
	3.4 Align Images using Spatial Coordinates
	3.4.1 Generating a Baseline Trajectory
	3.4.2 Downsampling the Baseline Trajectory
	3.4.3 Assigning Data Points to the Baseline Trajectory


	4 Work Zone Detection
	4.1 Work Zone Related Datasets
	4.1.1 Manually Labeled Dataset
	4.1.2 NuScenes

	4.2 Model Architecture
	4.3 Sample Outputs

	5 Results
	5.1 Overview
	5.2 Visualizations
	5.2.1 Spatial Aggregation of Detection Results
	5.2.2 Spatial Changes
	5.2.3 Temporal Changes
	5.2.4 The Bigger Picture


	6 Conclusion and Future Work
	Bibliography

