
Delayed Gaussian Processes with Time
Dependencies and Context

Ari Fiorino

CMU-CS-22-110

May 2022

Computer Science Department
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Thesis Committee:
Aarti Singh

Jeff Schneider

Submitted in partial fulfillment of the requirements
for the Fifth Year Master’s Program

Copyright © 2022 Ari Fiorino

Keywords: Additive Manufacturing, Gaussian Processes, Contextual Gaussian Processes,
Time Series Optimization, Delayed Rewards

Abstract
This thesis presents a method to find a series of actions that optimizes a series of

rewards. This is with the assumption that the rewards are only known periodically
after a series of actions are taken, and that there is a time dependency between actions
and rewards. This setting is motivated by an additive manufacturing problem where
we first create an object (make actions), and then measure its properties (observe
rewards). The method makes use of Contextual Gaussian Processes to make efficient
and informative predictions from past training data. The method is shown to work on
synthetic data and is compared to four other algorithms designed to solve the same
problem. A greedy variation is described which performs much faster than the full
version and has close to optimal performance. Finally, the method is applied to a
COVID dataset to predict a sequence of COVID deaths given a sequence of COVID
cases. The algorithm presented in this thesis is applicable in many other fields, and
is capable of finding a quicker and better optimum than similar methods.

iv

Acknowledgments
I would like to acknowledge Aarti Singh for guiding me through this research.

She was tremendously helpful for suggesting ideas and next steps along the way.
I would like to thank Ojash Neopane for meeting with me and Aarti weekly and
for contributing ideas for algorithmic improvements. I also thank Morgan Chen for
working with me on his chemical synthesis robot which led me to begin researching
GPs. I also thank Reeja Jayan for guiding my research with Morgan. I also thank
Benji Maruyama at AFRL for inviting me to visit the lab and allowing me to experiment
with the AM robot. Finally I would like to thank Jim Denault for building the AM
robot which led to this gaussian process method to be developed.

vi

Contents

1 Introduction 1

2 Algorithm Description 5
2.1 Motivating Problem . 5
2.2 Problem Formulation . 6
2.3 Algorithm overview . 6
2.4 Baseline Algorithms . 7
2.5 Greedy Algorithm . 7

3 Synthetic Results 9
3.1 Experimental Setup . 9
3.2 Results . 9
3.3 Explanation of Results . 11
3.4 Related Work . 12

4 COVID Dataset 13
4.1 Experimental setup . 13
4.2 Results . 14

5 Conclusion 17

Bibliography 19

vii

viii

Chapter 1

Introduction

A Gaussian Process (GP) [4] takes as input a set of observations (x, f(x)) for some unknown
function f :

Then it creates an approximation of f , and the mean and uncertainty of its prediction fµ, fσ:

1

Note that fσ is small around points that have been observed already.
Now, say we want to optimize a function f using a GP. This is where the Gaussian Process -
Upper Confidence Bound (GP-UCB) algorithm comes into play. This algorithm picks as its next
point:

argmax
x

fµ(x) +m · fσ(x)

The m parameter is the exploitation-exploration tradeoff. It is picking a point that it knows will
have a high value for f , but also a point that it is uncertain of, and wants to explore if it has a
high value. For our f , it would choose this point as it’s next query (m = 1):

2

So, GP-UCB will be able to maximize any arbitrary function in this manner.
But there is a modification to GP-UCB where for each round the GP-UCB algorithm is tasked
with finding the maximum, it is given a different context c and it has to find the maximum of
f(c, x) [3]. In this scenario, the Contextual GP-UCB (CGP-UCB) algorithm will approximate
f(c, x) as fµ, fσ and then choose:

argmax
x

fµ(c, x) +m · fσ(c, x)

As its next point.

3

4

Chapter 2

Algorithm Description

2.1 Motivating Problem

The goal is to use Gaussian Processes to optimize additive manufacturing problems. Specifically,
in the Wright-Patterson Air Force Base, there is a robot that which draws 2D shapes out of a
viscous material in a syringe [1]:

One can specify how much material to extrude along the shape and the robot has a camera which
can take a picture of the finished shape. Some challenges are that there is a delay between
extruding the viscous material and when the viscous material is actually extruded. This delay is
hard to predict and would require predicting a different delay for different materials. This delay
also changes depending on which shape we are drawing. Therefore an algorithm is presented
which uses CGP-UCB to draw any shape with any material.

5

The algorithm is very broad, and only assumes a time dependency between actions and rewards,
so it is able to run on a COVID dataset to predict a sequence of deaths from a sequence of cases.

2.2 Problem Formulation
Overall the robot will convert a sequence of extrusion amounts along the shape:

To a sequence of rewards according to how well each section was drawn:

This is formalized as follows:
In each episode,

1. The algorithm receives contexts c1, . . . , cT which relate to the current shape we are drawing.
This is the angle between the current section and the previous section. For example, in
above it is 0, 0,−90◦, 0,+90◦, 0.

2. The algorithm chooses actions a1, . . . , aT . This is the amount to extrude in each line
segment.

3. The robot draws the shape

4. The algorithm receives rewards r1, . . . , rT which is how well each segment is drawn.

2.3 Algorithm overview
For the algorithm, the assumption is that rt = f(at, . . . , at−k, ct, . . . , ct−k) for some unknown
function f and delay parameter k. One can approximate f with a GP on past data and get fµ, fσ.

6

Then the goal is to maximize the sum of rewards using CGP-UCB. Therefore the update is

â = argmax
a1,...,aT

T∑
t=1

fµ(at, . . . , at−k, ct, . . . , ct−k) +m · fσ(at, . . . , at−k, ct, . . . , ct−k)

2.4 Baseline Algorithms
In order to prove the algorithm is optimal, four other algorithms are presented to compare against.

Algorithm 1 Here we assume rt = f(at, ct) for some unknown f . We approximate f with a
GP and end up with fµ, fσ. Then as our update, we pick

ât = argmax
at

fµ(at, ct) +m · fσ(at, ct)

Algorithm 1’ Here we assume there are T separate functions f1, . . . , fT and that rt = ft(at, ct).
Each ft only takes as input the action and context at time t and outputs the reward at time t. We
approximate f1, . . . , fT with distinct GPs and end up with f1,µ, f1,σ, . . . , fT,µ, fT,σ. Then as our
update, we pick

ât = argmax
at

ft,µ(at, ct) +m · ft,σ(at, ct)

Algorithm 2 Here we assume
∑T

t=1 rt = f(a1, . . . , aT , c1, . . . , cT) for an unknown function
f . We approximate f with a GP and end up with fµ, fσ. Then as our update, we pick

â = argmax
a1,...,aT

fµ(a1, . . . , aT , c1, . . . , cT) +m · fσ(a1, . . . , aT , c1, . . . , cT)

Algorithm 2’ Here we assume rt = f(at, . . . , at−k) for some unknown function f and delay
parameter k. One can approximate f with a GP on past data and get fµ, fσ. Then the goal is to
maximize the sum of rewards using GP-UCB. Therefore the update is

â = argmax
a1,...,aT

T∑
t=1

fµ(at, . . . , at−k) +m · fσ(at, . . . , at−k)

Algorithm 3 This is the algorithm described in section 2.3.

2.5 Greedy Algorithm
Algorithm 4 An issue observed with algorithm 3 is that it is slow to calculate the next actions.
This is because we are doing an argmax over all a1, . . . , aT . Therefore the runtime is O(cT)

7

for some constant c. Therefore there is a greedy version of algorithm 3 which first finds the best
a1, . . . , ak to maximize

argmax
a1,...ak

fµ(ak, . . . , a1, ck, . . . , c1) +m · fσ(ak, . . . , a1, ck, . . . , c1)

Once a1, . . . , ak are found, ak+1 is calculated as

argmax
ak+1

fµ(ak+1, . . . , a2, ck+1, . . . , c2) +m · fσ(ak+1, . . . , a2, ck+1, . . . , c2)

Then ak+2 is calculated as

argmax
ak+2

fµ(ak+2, . . . , a3, ck+2, . . . , c3) +m · fσ(ak+2, . . . , a3, ck+2, . . . , c3)

And so on...

This makes algorithm 3 run in O(ck) while algorithm 4 runs in O(cT) for some constant c.

This makes algorithm 4 much faster to run than algorithm 3, over 1000x faster in practice. But
there is a performance loss associated with this greedy algorithm, it is not actually finding the
optimal sequence of actions to optimize the cumulative UCB. This is just an approximation.
Therefore another algorithm is introduced which is slightly slower than algorithm 4, but has
better performance:

Algorithm 4’ First run algorithm 4, then find if changing any one action increases the cumulative
UCB. To check action at, check if the sum of all the UCB components that include at is higher
than the previous sum. There are k of these components to check. Therefore a runtime of O(kT)
is added. Since this is a polynomial amount of time, the added time is negligible. Algorithm 4’
is still around 1000x faster than algorithm 3.

8

Chapter 3

Synthetic Results

3.1 Experimental Setup

Experiments were ran on synthetic data to compare the algorithms. These were the experimental
parameters: T = 5, {c1, . . . , c5} = {1, 2, 1, 2, 1}, k = 3, m = 5, at ∈ {1, . . . , 5}. The
kernel function for the GP is an RBF kernel with σ = 2. We first generate a random function
f : {1, . . . , 5}k × {0, 1} → R. This function is represented as a vector of length 53 · 2, because
every input needs to have an output defined. Then a covariance matrix was created using the
RBF kernel between every possible input of f . Then np.random.multivariate normal
is used with this covariance matrix to generate f as a vector. Then g is created, the function to
optimize. g : {1, . . . , 5}T → RT . g is defined as (g(a1, . . . , aT))t = f(at, . . . , at−k+1, ct). A
modulus is used so that a0 = a5.

The experimental setup for comparing the algorithms is as follows. First pick a random starting
point for the algorithms. This means setting random values for a1, . . . a5. Then run all algorithms
starting with the same starting point for 100 iterations each. Once this is done, pick another
starting point and repeat the process. After going through the process 100 times, the mean and
standard deviation of the regret per iteration is plotted for the algorithms.

3.2 Results

These are the plots comparing the performance of the algorithms. Each plot has a randomly
generated target function.

9

This is the comparison from algorithm 3 to algorithm 4 on four different target functions.

10

This is the comparison from algorithm 4 to algorithm 4’.

For this experiment, algorithm 3 took on average 133.93s, algorithm 4 took 0.11s, and algorithm
4’ took 0.15s to run.

3.3 Explanation of Results
We see that Algorithm 3 performs much better than Algorithms 1, 1’, 2, and 2’. Here are the
downsides of those algorithms, and why they perform worse:

Algorithm 1 This algorithm only assumes that, rt = f(at, ct) for some function f . Since this
f is the same for all t, if ct = ct′ for some t, t′, then at = at′ . This means that in the additive
manufacturing context, all segments with the same context will have the same extrusion amount.
This limits the set of possible action sequences, and often excludes the optimal action sequence.

Algorithm 1’ This algorithm assumes that rt = ft(at, ct) for some functions f1, . . . , fT . In
this case, there are T separate GPs, one for each action. Let’s see an example where we T = 5
and we use a constant context c1 = c2 = · · · = c5 and our past experiments are [a1, . . . , a5] =
[1, 2, 3, 4, 5] → [r1, . . . , r5] = [3, 3, 3, 3, 3] and [a1, . . . , a5] = [1, 3, 3, 4, 4] → [r1, . . . , r5] =
[4, 4, 4, 4, 4]. In this case, conflicting training points are passed into the GPs. For example, the

11

GP for a1 sees 1 → 3 and 1 → 4 as its training points. These conflicting training points for GPs
cause this algorithm not to work optimally.

Algorithm 2 In this algorithm,
∑T

t=1 rt = f(a1, . . . , aT , c1, . . . , cT). This assumes a full
dependency between actions and rewards. Therefore a5 can affect r1 even though action 5 is
taken after reward 1. This is a very large GP that will take a long time to converge, making it
inefficient.

Algorithm 2’ In this algorithm, rt = f(at, . . . , at−k). The only downside to this algorithm
is that it doesn’t take into account the context associated with each action. This context adds
information about the shape being drawn. Without the context, it assumes all shapes should be
drawn the same way.

We see that the performance of Algorithm 4 depends on which target function we are optimizing
over. This is expected of a greedy algorithm. Also Algorithm 4 is much more scalable as we can
scale T to be very large while having a constant k. Algorithm 4’ is always performs better or the
same as Algorithm 4, and it only has a slightly higher runtime.

3.4 Related Work
In order to solve our problem formulation, we used Gaussian Processes to approximate our
time dependency function. Gaussian processes as originally formulated [4] were useful, but
we needed to include a context in order to draw different shapes. This is where Contextual
Gaussian Processes [3] were used and they were modified to allow for delayed rewards and for
time dependencies. We passed our shape parameters as the context and optimized drawing our
shape based on that context.

Another related line of work is reinforcement learning (RL) [5], which is a class of machine
learning algorithms with the following problem formulation. There is a current state s. The
algorithm picks an action a for the state s. The algorithm receives a reward r for taking that
action for that state. Then the algorithm receives a new state s′. Then the algorithm continues at
state s′. We can formulate our problem as an RL problem. We have as our state the past actions
we’ve taken in the episode and the current context. After taking actions a1, . . . , aT−1, we receive
a reward of 0⃗. Then after taking action aT , we receive a reward of [r1, . . . , rT]. We need to
formulate it in this way because we only receive the rewards after taking all the actions. We need
to have a vector of rewards because we need to include the time dependencies of each reward.
There is a limited amount of work on reinforcement learning with a vector of rewards. Possibly
this algorithm could be applied in a reinforcement learning setting.

12

Chapter 4

COVID Dataset

4.1 Experimental setup
After running synthetic experiments, the goal was to apply the algorithm on a real world dataset.
The dataset from the CDC of COVID cases and deaths per day was used. This dataset was
chosen because there is proven lag between cases and deaths of 8.053 ± 4.116 days [2]. In our
case, we will be predicting a sequence of deaths from a sequence of cases. The dependencies are
demonstrated in this image:

The deaths on day d depend on the past 3 days of cases. Say on day d we predict deaths xd, the
actual deaths are x̂d, and our loss is ℓd. Then we have

ℓd = |xd − x̂d|+ |xd−1 − x̂d−1|+ |xd−2 − x̂d−2|

This loss function was chosen to include a time dependency associated with it. This assumption
is necessary for our algorithm to work. Then experimental setup is as follows:

• Pick a random day d

• Algorithm receives cases for d, . . . , d+ 7

• Algorithm predicts deaths for d+ 2, . . . , d+ 7

• Algorithm receives losses for d+ 4, . . . , d+ 7

The algorithm knows that ℓd = f(xd, xd−1, xd−2, x̂d, x̂d−1, x̂d−2) It also knows that x̂d = g(cd, cd−1, cd−2)
where c is cases. Therefore it uses this assumption

ℓd = h(xd, xd−1, xd−2, cd, cd−1, cd−2, cd−3, cd−4)

13

It approximates h with a GP and then minimizes it. Also, the deaths are split into bins so the
algorithm only optimizes over a small number of deaths. For example the algorithm can only
choose deaths {0, 500, 1000, 1500, 2000}.

4.2 Results

First, algorithms 3 and 4 were ran on the covid dataset (k = 3 with 5 bins):

Since they performed equally well but algorithm 4 is much faster to run, algorithm 4 was used
from this point forward. Algorithm 4 was ran on a larger scale (k = 24 with 40 bins):

The loss was halved from random which is a good result. In this graph, the blue line is actual
deaths and the black dots are deaths the algorithm queried while running GP-UCB:

14

And here are the final deaths it predicted:

We can see that it closely resembles the actual deaths on those days.

15

16

Chapter 5

Conclusion

In conclusion, this thesis presented a method of optimizing a series of rewards from a series
of actions using GP-UCB. This method is shown to find the optimal faster than four status quo
algorithms on synthetic data. Then a greedy version of the method is presented which is much
faster to run and has only slightly worse performance. Then the algorithm was applied to a covid
dataset to predict a sequence of deaths from a sequence of cases and the algorithm was shown to
work optimally. Future work would include running the algorithm on an additive manufacturing
robot or another problem with the time dependency assumptions. Future work also includes
finding faster algorithms like algorithm 4’.

The full code is available at: https://github.com/arifiorino/Modified-GP

17

https://github.com/arifiorino/Modified-GP

18

Bibliography

[1] James Deneault, Jorge Chang, Jay Myung, Daylond Hooper, Andrew Armstrong, Mark Pitt,
and Benji Maruyama. Toward autonomous additive manufacturing: Bayesian optimization
on a 3d printer. MRS Bulletin, 46, 04 2021. doi: 10.1557/s43577-021-00051-1. 2.1

[2] Raymond Jin. The lag between daily reported covid-19 cases and deaths and its relationship
to age. Journal of Public Health Research, 10(3):jphr.2021.2049, 2021. doi: 10.4081/
jphr.2021.2049. URL https://doi.org/10.4081/jphr.2021.2049. PMID:
33709641. 4.1

[3] Andreas Krause and Cheng Ong. Contextual gaussian process bandit optimization.
In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Weinberger, editors,
Advances in Neural Information Processing Systems, volume 24. Curran Associates,
Inc., 2011. URL https://proceedings.neurips.cc/paper/2011/file/
f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf. 1, 3.4

[4] Niranjan Srinivas, Andreas Krause, Sham M. Kakade, and Matthias W. Seeger. Gaussian
process bandits without regret: An experimental design approach. CoRR, abs/0912.3995,
2009. URL http://arxiv.org/abs/0912.3995. 1, 3.4

[5] Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction. A
Bradford Book, Cambridge, MA, USA, 2018. ISBN 0262039249. 3.4

19

https://doi.org/10.4081/jphr.2021.2049
https://proceedings.neurips.cc/paper/2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
https://proceedings.neurips.cc/paper/2011/file/f3f1b7fc5a8779a9e618e1f23a7b7860-Paper.pdf
http://arxiv.org/abs/0912.3995

	1 Introduction
	2 Algorithm Description
	2.1 Motivating Problem
	2.2 Problem Formulation
	2.3 Algorithm overview
	2.4 Baseline Algorithms
	2.5 Greedy Algorithm

	3 Synthetic Results
	3.1 Experimental Setup
	3.2 Results
	3.3 Explanation of Results
	3.4 Related Work

	4 COVID Dataset
	4.1 Experimental setup
	4.2 Results

	5 Conclusion
	Bibliography

