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Abstract
Probabilistic programs are programs that can draw random samples from probability

distributions and involve random control flows. They are becoming increasingly popular
and have been applied in many areas such as algorithm design, cryptographic protocols,
uncertainty modeling, and statistical inference. Formal reasoning about probabilistic
programs comes with unique challenges, because it is usually not tractable to obtain the
exact result distributions of probabilistic programs. This thesis focuses on an algebraic
approach for static analysis of probabilistic programs. The thesis first provides a brief
background on measure theory and introduces an imperative arithmetic probabilistic
programming language Appl with a novel hyper-graph program model. Second, the
thesis presents an algebraic denotational semantics for Appl that can be instantiated
with different models of nondeterminism. The thesis also develops a new model of
nondeterminism that involves nondeterminacy among state transformers and presents a
domain-theoretic characterization of the new model. Based on the algebraic denotational
semantics, the thesis proposes a general algebraic framework PMAF for designing,
implementing, and proving the correctness of static analyses of probabilistic programs.
The thesis also includes a concrete static analysis—central-moment analysis for cost
accumulators in probabilistic programs—and elaborates implementation strategies to
improve the usability and efficiency of the analysis. There is a gap between the general
PMAF framework and the central-moment analysis, in the sense that the former is based
on abstraction and iterative approximation, but the latter is based on constraint solving.
The thesis provides some preliminary results on bridging the gap, via the development
of novel regular hyper-path expressions, which finitely represent possibly-infinite hyper-
paths on control-flow hyper-graphs of probabilistic programs without nondeterminism,
and DMKAT algebraic structures, which can be used to interpret regular hyper-path
expressions. Future directions for extending the research covered by this thesis include
developing an algebraic static-analysis framework based on DMKAT and instantiating it to
perform central-moment analysis, generalizing DMKAT with support for nondeterminism
and formalizing an equational axiomatization for the generalized algebraic framework,
as well as applying the analysis framework developed in the thesis to the analysis and
verification of statistical guarantees for Bayesian probabilistic programming.
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Chapter 1

Introduction

Probabilistic systems are becoming increasingly popular in computer science, for their capability of
improving efficiency (e.g., randomized Quicksort [70]), protecting confidential information (e.g.,
optimal asymmetric encryption padding [12]), modeling peripheral uncertainty (e.g., airborne
collision-avoidance systems [109]), and describing statistical models (e.g., probabilistic graphical
models [96]). Probabilistic programming provides a framework for implementing and analyzing
probabilistic systems, such as randomized algorithms [8], cryptographic protocols [9], cyber-
physical systems [17], and machine-learning algorithms [61].
A probabilistic program is any program that can draw random samples from probability dis-

tributions and involve random control flows. In practice, the source of randomness is usually
a pseudo-random number generator (e.g., the rand() function in C language); however, in this
thesis, I focus on true randomness, in the sense that given an initial program state, a probabilistic
program produces a distribution that describes the probability of its computation results. The two
reasons why I assume true randomness in my development are that (i) some high-quality random
number generators are shown to be sufficiently good approximations of true randomness [77], so
the behavior of a program under pseudo-randomness would be conceptually close to its behavior
under true randomness, and (ii) compared to pseudo-randomness, there are plenty of well-studied
mathematical theories for true randomness, such as measure theory.
As the interest in probabilistic programming is increasing, there has been a corresponding

increase in the study of formal reasoning about probabilistic programs: What is the probability that
an assertion holds after a program terminates? Is there any expression that is an invariant under
expectation for a probabilistic loop? What is the expected time complexity of a program? In general,
these kinds of reasoning problems are challenging, because it is usually not tractable to compute
the result distributions of probabilistic programs precisely: composing simple distributions can
quickly complicate the result distribution, and randomness in the control flow can easily lead to
state-space explosion. Monte-Carlo simulation [134] is a common approach to analyze probabilistic
programs, but the technique does not provide formal guarantees on the accuracy of analysis results,
and can sometimes be inefficient [11].
Static analysis is a longstanding area about (usually automated) techniques for analyzing and

proving program properties without actually executing the programs. Static analysis of probabilistic
programs has also received a lot of attention [19, 20, 24–29, 39, 50–52, 55, 60, 85–87, 126, 136]. In
this thesis, I have conducted research on algebraic approaches for compositional static analysis of

1



2 CHAPTER 1. INTRODUCTION

probabilistic programs, i.e., designing and implementing static analyses based on semantic algebra,
which consists of a space of program properties and composition operators that correspond to
program constructs.

Thesis Statement Algebraic static analysis helps people reason about probabilistic
programs at compile time in a compositional and versatile way. Markov algebras
provide a natural way to describe the algebraic structure of probabilistic programs.
Based on Markov algebras, a denotational semantics for combining nondeterminism
and probabilities lays the foundation for an algebraic framework for static analysis of
probabilistic programs.

Denotational Semantics with Nondeterminism The first step in my development of static-
analysis techniques is to provide a suitable formal semantics for probabilistic programs. Despite
the fact that lots of existing work focuses on high-level probabilistic programs, e.g., lambda
calculus [16], higher-order functions [48, 69], and recursive types [145], I observe that low-level
features could arise naturally. For example, when developing a compiler for a probabilistic
programming language [58, 128], we need a semantics for the imperative target language to prove
compiler correctness. Also, static analysis of low-level code becomes desirable for verifying cross-
language programs [153] and detecting security vulnerabilities [1]. There have been studies on
denotational semantics for well-structured imperative programs [14, 78, 85, 98, 99, 110, 111, 126, 144],
as well as operational semantics for control-flow graphs (CFGs) based on Markov chains and Markov
decision processes ([27, 28, 55]). On the one hand, I prefer CFGs as program representations
because they enable rich low-level features such as unstructured flows, e.g., those introduced by
break and continue. On the other hand, from the perspective of formal reasoning, a denotational
semantics (i) abstracts from details about program executions and focuses on program effects, and
(ii) is compositional in the sense that the semantics of a program fragment is established from the
semantics of the fragment’s proper constituents.
Therefore, I devise a denotational semantics for low-level probabilistic programs with nonde-

terminism. This semantics is published as a standalone article at the 35th Conference on the
Mathematical Foundations of Programming Semantics [148]. In that work, I make three main
contributions:

• I use hyper-graphs as the representation for low-level probabilistic programs with unstructured
control-flow, general recursion, and nondeterminism.

• I develop a domain-theoretic characterization of a new model of nondeterminism for proba-
bilistic programming, which involves nondeterminacy among state transformers, opposed to a
common model that involves nondeterminacy among program states.

• I propose Markov algebras and devise an algebraic framework for denotational semantics.
One advantage of the framework is that it can be instantiated with different models of
nondeterminism. I also prove that for programs without procedure calls and nondeterminism,
the resulting denotational semantics is equivalent to a standard distribution-based operational
semantics.
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An Algebraic Framework for Static Analysis Despite the fact that there have been many static
analyses for probabilistic programs, these analyses are usually standalone developments, and it is
not immediately clear how different techniques relate. For example, Claret et al. [29] propose a
syntax-directed data-flow analysis to perform Bayesian inference, Chakarov and Sankaranarayanan
[25] develop a martingale-based abstract interpretation to construct expectation invariants, and
Sankaranarayanan et al. [136] combine symbolic execution with probabilistic volume-bound
computation to estimate the probability that an assertion holds at a program point. Thus, I
develop a framework, which I call PMAF (for Pre-Markov Algebra Framework), for designing,
implementing, and proving the correctness of static analyses of probabilistic programs. The
framework is published as a standalone article at the 39th Conference on Programming Language
Design and Implementation [146]. Using PMAF, I can formulate and generalize several analyses
that may appear to be quite different. Examples include Bayesian inference [29, 51, 52], Markov
decision problem with rewards [130], and probabilistic-invariant generation [25, 86].
PMAF is based on the algebraic denotational semantics that I described earlier in this chapter.

To formulate a static analysis, I introduce a new algebraic structure, called a pre-Markov algebra,
which is equipped with operations corresponding to control-flow actions in probabilistic programs:
sequencing, conditional-choice, probabilistic-choice, and nondeterministic-choice. To establish correct-
ness, I introduce probabilistic abstractions between a pre-Markov algebra—which represents the
abstract semantics—and the concrete semantics. This work shows how, with suitable extensions,
a blending of ideas from previous work on (i) static analysis of single-procedure probabilistic
programs, and (ii) interprocedural dataflow analysis of standard (non-probabilistic) programs can
be used to create a framework for interprocedural analysis of probabilistic programs. In particular,

• The semantics on which PMAF is based is an interpretation of the CFGs for a program’s
procedures. One key idea is to treat each CFG as a hyper-graph rather than a standard graph.

• The abstract semantics is formulated so that the analyzer can obtain procedure summaries.
The main advantage of PMAF is that instead of starting from scratch to create a new analysis,

one only needs to instantiate PMAF with the implementation of a new pre-Markov algebra. To
establish soundness, one has to establish some well-defined algebraic properties, and can then
rely on the soundness proof of the framework. To implement the analysis, one can rely on
PMAF to perform sound interprocedural analysis, with respect to the provided abstraction. The
PMAF implementation supplies common parts of different static analyses of probabilistic programs,
e.g., efficient iteration strategies with widenings and interprocedural summarization. Moreover,
improvements made to the PMAF implementation could immediately translate into improvements
to all of its instantiations.

Central Moment Analysis for Cost Accumulators As a concrete static analysis of probabilistic
programs, I study a specific yet important kind of uncertain quantity: cost accumulators, which
are program variables that can only be incremented or decremented through the program
execution and do not influence the control flow. Examples of cost accumulators include termination
time [11, 26, 27, 85, 126], rewards in Markov decision processes [130], position information in control
systems [10, 17, 136], and cash flow during bitcoin mining [154]. Recent work [17, 104, 124, 154]
has proposed successful static-analysis approaches that leverage aggregate information of a cost
accumulator 𝑋 , such as 𝑋 ’s expected value 𝔼[𝑋] (i.e., 𝑋 ’s “first moment”). The intuition why it is
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beneficial to compute aggregate information—in lieu of distributions—is that aggregate measures
like expectations abstract distributions to a single number, while still indicating nontrivial properties.
Moreover, expectations are transformed by statements in a probabilistic program in a manner
similar to the weakest-precondition transformation of formulas in a non-probabilistic program [111].
One important kind of aggregate information is moments. Whereas most previous work focused

on raw moments (i.e., 𝔼[𝑋𝑘] for any 𝑘 ≥ 1) I find out that central moments (i.e., 𝔼[(𝑋 − 𝔼[𝑋])𝑘]
for any 𝑘 ≥ 2) can usually provide more information about distributions. For example, the variance
𝕍 [𝑋] (i.e., 𝔼[(𝑋 − 𝔼[𝑋])2], 𝑋 ’s “second central moment”) indicates how 𝑋 can deviate from its
mean, the skewness (i.e., 𝔼[(𝑋−𝔼[𝑋])3]

(𝕍 [𝑋])3/2 , 𝑋 ’s “third standardized moment”) indicates how lopsided
the distribution of 𝑋 is, and the kurtosis (i.e., 𝔼[(𝑋−𝔼[𝑋])4]

(𝕍 [𝑋])2 , 𝑋 ’s “fourth standardized moment”)
measures the heaviness of the tails of the distribution of 𝑋 . One application of moments is to
answer queries about tail bounds, e.g., the assertions about probabilities of the form ℙ[𝑋 ≥ 𝑑],
via concentration-of-measure inequalities from probability theory [47]. With central moments, we
find an opportunity to obtain more precise tail bounds of the form ℙ[𝑋 ≥ 𝑑], and become able to
derive bounds on tail probabilities of the form ℙ[|𝑋 − 𝔼[𝑋] | ≥ 𝑑].
In this thesis, I have proposed and implemented the first fully automatic analysis for deriving

symbolic interval bounds on higher central moments for cost accumulators in probabilistic programs
with general recursion and continuous distributions. This analysis is published as a standalone
article at the 42nd Conference on Programming Language Design and Implementation [149]. One
challenge is to support interprocedural reasoning to reuse analysis results for procedures. My
solution makes use of a “lifting” technique from the natural-language-processing community. That
technique derives an algebra for second moments from an algebra for first moments [107]. I follow
the algebraic approach and develop moment semirings, and use them to carry out interprocedural
analysis, as well as derive a novel frame rule to handle procedure calls with moment-polymorphic
recursion.

Bridging the Gap between PMAF and Moment Analysis Although I have developed a general
framework PMAF for designing and implementing static analysis of probabilistic programs, my
central-moment analysis tool is implemented as a standalone tool. One reason why I do not
implement central-moment analysis as a PMAF abstract domain is that the underlying algorithm of
PMAF is iteration based, i.e., the algorithm starts with an initial solution to the analysis problem
and then iterates until convergence, but my central-moment analysis framework is constraint based,
i.e., the analysis walks through the analyzed program to collect constraints and then discharges
those constraints using an off-the-shelf constraint solver. PMAF has to rely on iterations because the
control-flow hyper-graph for a probabilistic program usually contains loops. For non-probabilistic
programs, people have been successful to sidestep iterations by using Kleene algebras, which
have a Kleene-star operation that interprets loops, as the algebraic foundations of static analysis
(e.g., [53, 54, 89, 92, 133, 157]). The key ideas are (i) the control-flow graph of a non-probabilistic
program can be precisely encoded as a regular expression, and (ii) the Kleene-star operation can
be implemented by non-iteration-based loop-summarization techniques. However, such algebraic
static-analysis framework cannot directly apply to probabilistic programs: probabilistic programs
are represented as control-flow hyper-graphs.
In this thesis, I present my current progress on developing the Deterministic Markov-Kleene
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Algebra with Tests (DMKAT) framework. As the name suggests, I focus on deterministic probabilistic
programs, which do not use nondeterministic choices. A control-flow graph of a non-probabilistic
program encodes a regular set of program paths, thus it can then be expressed by a regular
expression. Following the same methodology, I discover that a control-flow hyper-graph of a
deterministic probabilistic program encodes a regular hyper-path, which is essentially a possibly-
infinite tree, and develop a theory on regular hyper-paths. I then devise the novel regular
hyper-path expressions, which serve as finite representations for possibly-infinite trees. I also present
an algorithm that can construct a regular hyper-path expression from a deterministic control-flow
hyper-graph.
Kleene algebras can be used to interpret regular expressions; following the same methodology, I

develop a new family of algebras, namely the DMKATs, to interpret regular hyper-path expressions.
It turns out that DMKATs are suitable for expressing concrete semantics: I demonstrate two DMKATs
for a relational interpretation (non-probabilisitic) and a distribution-transformer interpretation
(probabilistic), respectively. I also prove that the hyper-path model is sound for any valid DMKAT
model, in the sense that if two regular hyper-path expressions correspond to the same hyper-path,
then their interpretations under a DMKAT are also the same. Based on DMKATs, I sketch some
possibilities to develop a non-iteration-based static-analysis framework for probabilistic programs,
and discuss how the framework would work do derive invariants on the moments of program
variables.

1.1 Thesis Organization
Chapter 2 provides necessary background for understanding this thesis. It first reviews standard
notions frommeasure theory. Then, it introduces an imperative probabilistic programming language
Appl that I use in this thesis, and a basic program execution model for the language.
Chapter 3 presents a denotational semantics for Appl with a novel nondeterminism-first resolution.

This chapter develops a domain-theoretic characterization of nondeterminism-first and proposes
an algebraic denotation semantics for probabilistic programs.
Chapter 4 designs an algebraic analysis framework, called PMAF, for designing, implementing,

and proving the correctness of static analyses of probabilistic programs. The framework is based
the algebraic denotational semantics presented in Chapter 3. This chapter also includes three
instantiations of PMAF to solve different analysis problems.
Chapter 5 develops a novel static analysis for deriving symbolic interval bounds on higher central

moments for cost accumulators in probabilistic programs. The analysis is based on a novel algebraic
structure calledmoment semirings. This chapter proves the soundness of the moment-bound analysis
with respect to a Markov-chain cost semantics. This chapter also discusses some implementation
strategies to improve the usability and efficiency of the central-moment analysis.
Chapter 6 focuses on probabilistic programs without nondeterminism and proposes a generaliza-

tion of PMAF, which is presented in Chapter 4, to support non-iteration-based analysis algorithms.
The new framework in based on a new family of algebras called DMKATs, which can be used
to interpret novel regular hyper-path expressions that encodes control-flow hyper graphs. The
ultimate goal is to develop an algebraic abstract domain to carry out the central-moment analysis
in Chapter 5.
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Chapter 7 gives concluding remarks.

1.2 Publications
This thesis contains work that was published in three different articles:

1. Di Wang, Jan Hoffmann, and Thomas Reps. 2019. A Denotational Semantics for Low-Level
Probabilistic Programs with Nondeterminism. In the 35th Conference on the Mathematical
Foundations of Programming Semantics (MFPS’19). Chapter 3 presents the denotational
semantics.

2. Di Wang, Jan Hoffmann, and Thomas Reps. 2018. PMAF: An Algebraic Framework for Static
Analysis of Probabilistic Programs. In the 39th Conference on Programming Language Design
and Implementation (PLDI’18). Chapter 4 presents the algebraic framework.

3. Di Wang, Jan Hoffmann, and Thomas Reps. 2021. Central Moment Analysis for Cost
Accumulators in Probabilistic Programs. In the 42nd Conference on Programming Language
Design and Implementation (PLDI’21). Chapter 5 presents the central moment analysis.

For the second and third articles, we also submitted implementations and data as research
artifacts [147, 151]) and they were validated by the Artificial Evaluation Committees.



Chapter 2

Setting the Stage: An Imperative
Probabilistic Programming Language

In this thesis, I use an imperative arithmetic probabilistic programming language Appl that supports
unstructured control-flow, general recursion, and nondeterminism, where program variables have
numeric values. I use the following notational conventions. Natural numbers ℕ exclude 0, i.e.,
ℕ

def
= {1, 2, 3, · · · } ⊆ ℤ+ def

= {0, 1, 2, · · · }. Reals, nonnegative reals, and extended nonnegative
reals are denoted by ℝ, ℝ+, and ℝ+∞, respectively. Let 𝟚 denote the set of Boolean values,
i.e., 𝟚 def

= {⊤,⊥}. The Iverson brackets [·] are defined by [𝜑] = 1 if 𝜑 is true and otherwise
[𝜑] = 0. Finite partial maps from 𝐴 to 𝐵 can be represented by finite sets of bindings, e.g.,
{𝑎1 ↦→ 𝑏1, 𝑎2 ↦→ 𝑏2, · · · , 𝑎𝑛 ↦→ 𝑏𝑛}. Updating an existing binding of 𝑥 in a finite map 𝑓 to 𝑣 is
denoted by 𝑓 [𝑥 ↦→ 𝑣].

2.1 Preliminaries on Measure Theory
This section reviews the following standard notions from measure theory: measurable spaces,
measurable functions, random variables, probability measures, expectations, and kernels. Interested
readers can refer to textbooks in the literature [15, 155] for more details about measure theory.
A measurable space is a pair (𝑆,S), where 𝑆 is a nonempty set, and S is a 𝜎-algebra on 𝑆, i.e., a

family of subsets of 𝑆 that contains ∅ and is closed under complements and countable unions. The
smallest 𝜎-algebra that contains a family A of subsets of 𝑆 is said to be generated by A, denoted
by 𝜎(A). Every topological space (𝑆, 𝜏) (i.e., 𝜏 ⊆ ℘(𝑆) is a collection of open sets that is closed
under arbitrary unions and finite intersections) admits a Borel 𝜎-algebra, given by 𝜎(𝜏). This gives
canonical 𝜎-algebras on ℝ, ℚ, ℕ, etc.
Example 2.1. One of the most important 𝜎-algebras is the Borel 𝜎-algebra on ℝ, and it is a standard

shorthand to denote this 𝜎-algebra by B. Elements of B can be very complex, so people have come up
with simpler constructions for B, e.g., B = 𝜎({(−∞, 𝑥] | 𝑥 ∈ ℝ}).
A measure ` on a measurable space (𝑆,S) is a mapping from S to ℝ+∞ such that (i) `(∅) = 0,

and (ii) for all pairwise-disjoint {𝐴𝑛}𝑛∈ℕ in S, it holds that `(⋃𝑛∈ℕ 𝐴𝑛) = ∑
𝑛∈ℕ `(𝐴𝑛). The triple

(𝑆,S, `) is called a measure space. A measure ` is called a probability (resp., sub-probability)

7
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measure, if `(𝑆) = 1 (resp., `(𝑆) ≤ 1). We denote the collection of probability measures on
(𝑆,S) by 𝔻(𝑆,S). The set of sub-probability measures on (𝑆,S) with the pointwise order forms an
𝜔-complete partial order (𝜔-cpo), i.e., every 𝜔-chain of sub-probability measures `1 ≤ `2 ≤ · · · ≤
`𝑛 ≤ · · · has a supremum that is also a sub-probability measure. The zero measure 0 is defined as
_𝐴.0. For each 𝑥 ∈ 𝑆, the Dirac measure 𝛿(𝑥) is defined as _𝐴.[𝑥 ∈ 𝐴], i.e., a point measure on 𝑥.
For measures ` and a, we write ` + a for the measure _𝐴.`(𝐴) + a(𝐴). For a measure ` and a
scalar 𝑐 ≥ 0, we write 𝑐 · ` for the measure _𝐴.𝑐 · `(𝐴).
Example 2.2. The Lebesgue measure Leb on (ℝ,B) makes precise the concept of length of a

measurable subset of ℝ. Leb is defined as the unique measure such that for any 𝐴 that can be written
as a finite union 𝐴 = (𝑎1, 𝑏1] ∪ · · · ∪ (𝑎𝑚, 𝑏𝑚] where 𝑚 ∈ ℕ and 𝑎1 ≤ 𝑏1 ≤ · · · ≤ 𝑎𝑚 ≤ 𝑏𝑚, it holds
that Leb(𝐴) = ∑𝑚

𝑖=1(𝑏𝑖 − 𝑎𝑖).
The counting measure is commonly used on a measurable space (𝑆,S) where 𝑆 is finite or countable.

The measure ` is defined by ` def
= _𝐴.|𝐴|, where |𝐴| denotes the cardinality of the set 𝐴, with the

understanding that `(𝐴) = ∞ if 𝐴 is an infinite set.
Lemma 2.3. The set of sub-probability measures on a measurable space (𝑆,S), ordered pointwise,

forms an 𝜔-cpo.

Proof. Let {`𝑛}𝑛∈ℕ be an 𝜔-chain of sub-probability measures on (𝑆,S). Let `
def
=

_𝐴. lim𝑛→∞ `𝑛(𝐴) be the pointwise limit of {`𝑛}𝑛∈ℕ. Then ` is a set function from S to the
unit interval [0, 1], and `(∅) = lim𝑛→∞ `𝑛(∅) = 0.
Fix a pairwise-disjoint {𝐴𝑚}𝑚∈ℕ in S. We conclude the proof by

`
(⋃

𝑚∈ℕ𝐴𝑚
)
= lim

𝑛→∞ `𝑛
(⋃

𝑚∈ℕ𝐴𝑚
)
= sup

𝑛∈ℕ
`𝑛

(⋃
𝑚∈ℕ𝐴𝑚

)
= sup

𝑛∈ℕ

∞∑︁
𝑚=1

`𝑛(𝐴𝑚)

= sup
𝑛∈ℕ

sup
𝑘∈ℕ

𝑘∑︁
𝑚=1

`𝑛(𝐴𝑚) = sup
𝑘∈ℕ

sup
𝑛∈ℕ

𝑘∑︁
𝑚=1

`𝑛(𝐴𝑚)

† {`𝑛(𝐴𝑚)}𝑛∈ℕ is an 𝜔-chain for any 𝑚 = 1, · · · , 𝑘 †

= sup
𝑘∈ℕ

𝑘∑︁
𝑚=1

sup
𝑛∈ℕ

`𝑛(𝐴𝑚) = sup
𝑘∈ℕ

𝑘∑︁
𝑚=1

`(𝐴𝑚) =
∞∑︁
𝑚=1

`(𝐴𝑚).

□

A function 𝑓 : 𝑆 → 𝑇 , where (𝑆,S) and (𝑇, T ) are measurable spaces, is said to be (S, T )-
measurable, if 𝑓−1(𝐵) ∈ S for each 𝐵 ∈ T . If 𝑇 = ℝ, we tacitly assume that the Borel 𝜎-algebra B
is defined on ℝ, and we simply say 𝑓 is measurable, or 𝑓 is a random variable. Measurable functions
form a vector space, and products and maxima preserve measurability; that is, for any measurable
functions 𝑓1, 𝑓2 and real numbers 𝑐1, 𝑐2, the functions (𝑐1 · 𝑓1 + 𝑐2 · 𝑓2), ( 𝑓1 · 𝑓2), and max( 𝑓1, 𝑓2)
are also measurable.
Example 2.4. Consider an experiment where one tosses a coin infinitely often. We can take

Ω
def
= {H, T}ℕ, so an element 𝜔 of Ω is a coin-toss sequence 𝜔 = {𝜔𝑛}𝑛∈ℕ, where 𝜔𝑛 ∈ {H, T}. We
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now define a 𝜎-algebra F on Ω as

F
def
= 𝜎({{𝜔 ∈ Ω | 𝜔𝑛 = 𝒞} | 𝒞 ∈ {H, T}, 𝑛 ∈ ℕ}),

which allows us to reason about events such as “the 𝑛-th toss shows heads.” Then for any 𝑛 ∈ ℕ,
𝑋𝑛

def
= _𝜔.[𝜔𝑛 = H] is a random variable on the measurable space (Ω, F ). Because measurable

functions form a vector space, the number of heads in first 𝑛 tosses 𝑆𝑛 def
=

∑𝑛
𝑖=1 𝑋𝑖 is also a random

variable.
Lemma 2.5. Let { 𝑓𝑛}𝑛∈ℕ be an 𝜔-chain of nonnegative measurable functions on a measurable space
(𝑆,S), i.e., 𝑓𝑛 : 𝑆→ ℝ+∞ for all 𝑛 ∈ ℕ. Then the pointwise limit of { 𝑓𝑛}𝑛∈ℕ is also measurable.

Proof. Let 𝑓 def
= _𝑥. lim𝑛→∞ 𝑓𝑛(𝑥). Fix a measurable subset 𝐵 of ℝ+∞. It is sufficient to consider

𝐵 with the form [0, 𝑐] for some 𝑐 ∈ ℝ+∞ (the class of such intervals generates the Borel 𝜎-algebra
on ℝ+∞) and show that 𝑓−1(𝐵) ∈ S. Indeed, we have

𝑓−1(𝐵) = {𝑥 ∈ 𝑆 | 𝑓 (𝑥) ≤ 𝑐} = {𝑥 ∈ 𝑆 | lim𝑛→∞ 𝑓𝑛(𝑥) ≤ 𝑐} = ⋂
𝑛∈ℕ 𝑓−1

𝑛 (𝐵),

which is a measurable set because 𝑓𝑛 is measurable for all 𝑛 ∈ ℕ and measurable sets are closed
under countable intersections. □

The integral of a measurable function 𝑓 on 𝐴 ∈ S with respect to a measure ` on (𝑆,S) is
defined following Lebesgue’s theory and is denoted by `( 𝑓 ; 𝐴),

∫
𝐴
𝑓 𝑑`, or

∫
𝐴
𝑓 (𝑥)`(𝑑𝑥). If ` is

a probability measure, we call the integral as the expectation of 𝑓 , written 𝔼𝑥∼` [ 𝑓 ; 𝐴], or simply
𝔼[ 𝑓 ; 𝐴] when the scope is clear in the context. If 𝐴 = 𝑆, we tacitly omit 𝐴 from the notations.
For each 𝐴 ∈ S, it holds that `( 𝑓 ; 𝐴) = `( 𝑓 · I𝐴), where I𝐴 def

= _𝑥.[𝑥 ∈ 𝐴] is the indicator
function for 𝐴. If 𝑓 is nonnegative, then `( 𝑓 ) is well-defined with the understanding that the
integral can be infinite. If `( | 𝑓 |) < ∞, then 𝑓 is said to be integrable, written 𝑓 ∈ L1(𝑆,S, `),
and its integral is well-defined and `( 𝑓 ) = `( 𝑓+) − `( 𝑓−), where 𝑓+ def

= _𝑥.max( 𝑓 (𝑥), 0) and
𝑓− def

= _𝑥.max(− 𝑓 (𝑥), 0). Integration is linear, in the sense that for any 𝑐, 𝑑 ∈ ℝ and integrable
functions 𝑓 , 𝑔, the function (𝑐 · 𝑓 + 𝑑 · 𝑔) is integrable and `(𝑐 · 𝑓 + 𝑑 · 𝑔) = 𝑐 · `( 𝑓 ) + 𝑑 · `(𝑔).
Example 2.6. Recall the coin-toss experiment in Example 2.4. If the tossed coin is fair, we can assign

a probability measure ` on the measurable space (Ω, F ) such that

`({𝜔 ∈ Ω | 𝜔𝑛 = 𝒞}) = 1
2 , ∀𝒞 ∈ {H, T}, 𝑛 ∈ ℕ.

Then the expectation of the random variable 𝑋𝑛 for any 𝑛 is 𝔼[𝑋𝑛] = ∑
𝒞∈{H,T} 1

2 · [𝒞 = H] = 1
2 and

by linearity, we obtain that for any 𝑛, the expectation of 𝑆𝑛 is 𝔼[𝑆𝑛] = ∑𝑛
𝑖=1 𝔼[𝑋𝑖] = 1

2𝑛.

A kernel from a measurable space (𝑆,S) to another (𝑇, T ) is a mapping from 𝑆 × T to ℝ+∞
such that (i) for each 𝑥 ∈ 𝑆, the set function _𝐵.^(𝑥, 𝐵) is a measure on (𝑇, T ), and (ii) for
each 𝐵 ∈ T , the function _𝑥.^(𝑥, 𝐵) is measurable. We sometimes also use the curried version
of kernels with the signature (𝑆 → T → ℝ+∞). We write ^ : (𝑆,S) ⇝ (𝑇, T ) to declare that
^ is a kernel from (𝑆,S) to (𝑇, T ). Intuitively, kernels describe measure transformers from one
measurable space to another. A kernel ^ is called a probability (resp., sub-probability) kernel, if
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^(𝑥, 𝑇) = 1 (resp., ^(𝑥, 𝑇) ≤ 1) for all 𝑥 ∈ 𝑆. We denote the collection of probability kernels
from (𝑆,S) to (𝑇, T ) by 𝕂((𝑆,S), (𝑇, T )). If the two measurable spaces coincide, we simply
write 𝕂(𝑆,S). The set of sub-probability kernels from (𝑆,S) to (𝑇, T ) with the pointwise order
forms an 𝜔-cpo. We can push-forward a measure ` on (𝑆,S) to a measure on (𝑇, T ) through
a kernel ^ : (𝑆,S) ⇝ (𝑇, T ) by integration: ` ≫= ^

def
= _𝐵.

∫
𝑆
^(𝑥, 𝐵) · `(𝑑𝑥). We can also

compose ^1 : (𝑆0,S0) ⇝ (𝑆1,S1) and ^2 : (𝑆1,S1) ⇝ (𝑆2,S2) to get their composition kernel by
integration: ^1 # ^2

def
= _ (𝑥, 𝐵).

∫
𝑆1
^1(𝑥, 𝑑 𝑦) · ^2(𝑦, 𝐵).

Example 2.7. As explained by Kozen [99], for a measurable space (𝑆,S) where 𝑆 is finite or countable,
a probability kernel ^ ∈ 𝕂(𝑆,S) has a representation as a Markov transition matrix 𝑀^, in which
each entry 𝑀^(𝑥, 𝑥′) for a pair of elements (𝑥, 𝑥′) ∈ 𝑆 × 𝑆 gives the probability that 𝑥 transitions to
𝑥′ under the kernel ^, and for any 𝑥 ∈ 𝑆 and 𝐴 ∈ S, it holds that ^(𝑥, 𝐴) = ∑

𝑥′∈𝐴 𝑀^(𝑥, 𝑥′).
Lemma 2.8. The set of sub-probability kernels from a measurable space (𝑆,S) to another (𝑇, T ),

ordered pointwise, forms an 𝜔-cpo.

Proof. Let {^𝑛}𝑛∈ℕ be an 𝜔-chain of sub-probability kernels from (𝑆,S) to (𝑇, T ). Let ^ def
=

_ (𝑥, 𝐵). lim𝑛→∞ ^𝑛(𝑥, 𝐵) be the pointwise limit of {^𝑛}𝑛∈ℕ. For each 𝑥 ∈ 𝑆, the sequence
{_𝐵.^𝑛(𝑥, 𝐵)}𝑛∈ℕ forms an 𝜔-chain of sub-probability measures on (𝑇, T ), thus by Lemma 2.3
the set function _𝐵.^(𝑥, 𝐵) is also a sub-probability measure. For each 𝐵 ∈ T , the sequence
{_𝑥.^𝑛(𝑥, 𝐵)}𝑛∈ℕ forms an 𝜔-chain of nonnegative measurable functions, thus by Lemma 2.8 the
function _𝑥.^(𝑥, 𝐵) is also a measurable function. Thus we conclude that ^ is a sub-probability
kernel. □

The product of two measurable spaces (𝑆1,S1) and (𝑆1,S2) is defined as (𝑆1,S1) ⊗ (𝑆2,S2) def
=

(𝑆1 ×𝑆2,S1 ⊗S2), where S1 ⊗S2 is the smallest 𝜎-algebra that makes coordinate maps measurable,
i.e., 𝜎({𝜋−1

1 (𝐴1) | 𝐴1 ∈ S1} ∪ {𝜋−1
2 (𝐴2) | 𝐴2 ∈ S2})), where 𝜋𝑖 is the 𝑖-th coordinate map.

2.2 A Hyper-Graph Program Model
In contrast to program models—such as standard control-flow graphs (CFGs)—for deterministic
programming languages, I use control-flow hyper-graphs (CFHGs) to model probabilistic programs.
Hyper-graphs consist of hyper-edges, each of which connects one source node and possibly several
destination nodes. For example, probabilistic choices are represented by weighted hyper-edges
with two destinations. Nondeterminism is then represented by multiple hyper-edges starting
in the same node. The interpretation of hyper-edges is also different from standard edges. If
the CFHG were treated as a standard graph, the subpaths from each successor of a branching
node would be reasoned about independently. In contrast, the hyper-graph approach interprets
a probabilistic-choice hyper-edge with probability 𝑝 as a function _𝑎._𝑏.(𝑎 𝑝⊕ 𝑏), where 𝑝⊕ is
an operation that weights the subpaths through the two successors by 𝑝 and (1 − 𝑝). In other
words, we do not reason about subpaths starting from a node individually, instead we reason about
these subpaths jointly as a probability distribution. If a node has two outgoing probabilistic-choice
hyper-edges, it represents two “worlds” of subpaths, each of which carries a probability distribution
with respect to the probabilistic choice made in this “world.”
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𝑛 B 0;
while prob(0.5) ∧ prob(0.5) do
𝑛 B 𝑛 + 1;
if 𝑛 ≥ 10 then break
else continue
fi

od

(a)

𝑣4

𝑣0 𝑣1

𝑣2 𝑣3
𝑛 B 𝑛 + 1

𝑛 B 0
prob(0.5)∧prob(0.5)

false

false
true𝑛 ≥ 10true

(b)
Fig. 2.1: (a) An example of probabilistic programs; (b) The corresponding CFHG.

To define CFHGs of probabilistic programs, I adopt a common approach for standard CFGs
in which the nodes represent program locations, and edges labeled with instructions describe
transitions among program locations (e.g., [54, 106, 123]). Instead of standard directed graphs, I
make use of hyper-graphs [59].

Definition 2.9. A hyper-graph 𝐻 is a quadruple (𝑉, 𝐸, 𝑣entry, 𝑣exit), where 𝑉 is a finite set of nodes,
𝐸 is a set of hyper-edges, 𝑣entry ∈ 𝑉 is a distinguished entry node, and 𝑣exit ∈ 𝑉 is a distinguished
exit node. A hyper-edge is an ordered pair (𝑥, 𝑌 ), where 𝑥 ∈ 𝑉 is a node and 𝑌 ⊆ 𝑉 is an ordered,
nonempty set of nodes. For a hyper-edge 𝑒 = (𝑥, 𝑌 ) in 𝐸, we use 𝑠𝑟𝑐(𝑒) to denote 𝑥 and 𝐷𝑠𝑡(𝑒) to
denote 𝑌 . Following the terminology from graphs, we say that 𝑒 is an outgoing edge of 𝑥 and an
incoming edge of each of the nodes 𝑦 ∈ 𝑌 . We assume 𝑣entry does not have incoming edges, and
𝑣exit has no outgoing edges.

Definition 2.10. A probabilistic program contains a finite set of procedures {𝐻𝑖}1≤𝑖≤𝑛, where
each procedure 𝐻𝑖 = (𝑉𝑖, 𝐸𝑖, 𝑣entry

𝑖 , 𝑣exit
𝑖 ) is a control-flow hyper-graph (CFHG) in which each

node except 𝑣exit
𝑖 has at least one outgoing hyper-edge, and 𝑣exit

𝑖 has no outgoing hyper-edges.
Define 𝑉 def

=
⋃

1≤𝑖≤𝑛 𝑉𝑖. To assign meanings to probabilistic programs modulo data actions Act
and deterministic conditions Cond that can be probabilistic, we associate with each hyper-edge
𝑒 ∈ 𝐸 =

⋃
1≤𝑖≤𝑛 𝐸𝑖 a control-flow action 𝐶𝑡𝑟𝑙(𝑒) that has one of the following three forms:

Ctrl F seq[act], where act ∈ Act
| cond[𝜑], where 𝜑 ∈ Cond
| call[𝑖→ 𝑗], where 1 ≤ 𝑖, 𝑗 ≤ 𝑛

where the number of destination nodes |𝐷𝑠𝑡(𝑒) | of a hyper-edge 𝑒 is 1 if 𝐶𝑡𝑟𝑙(𝑒) is seq[act] or
call[𝑖→ 𝑗], and 2 otherwise.

Example 2.11. Fig. 2.1(b) shows the CFHG of the program in Fig. 2.1(a), where 𝑣0 is the entry and 𝑣4
is the exit. The hyper-edge (𝑣2, {𝑣3}) is associated with a sequencing action seq[𝑛 := 𝑛 + 1], while
(𝑣1, {𝑣2, 𝑣4}) is assigned a deterministic-choice action cond[prob(0.5) ∧ prob(0.5)], i.e., an event
where two coin flips both show heads.

Note that break, continue (and also goto) are not data actions, and are encoded directly as
edges in CFHGs in a standard way. The grammar below defines data actions Act and deterministic
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conditions Cond for Appl, where 𝑝 ∈ [0, 1], 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 < 𝑏, and 𝑛 ∈ ℕ.

Act F 𝑥 B 𝑒 | 𝑥 ∼ 𝐷 | observe(𝜑) | skip
𝜑 ∈ Cond F ⊤ | ¬𝜑 | 𝜑1 ∧ 𝜑2 | 𝑒1 ≤ 𝑒2 | prob(𝑝)
𝑒 ∈ Exp F 𝑥 | 𝑐 | 𝑒1 + 𝑒2 | 𝑒1 × 𝑒2 | · · ·
𝐷 ∈ Dist F Binomial(𝑛, 𝑝) | Uniform(𝑎, 𝑏) | · · ·

Dist stands for a collection of primitive probability distributions. For example, Binomial(𝑛, 𝑝)
with 𝑛 ∈ ℕ and 𝑝 ∈ [0, 1] describes the distribution of the number of successes in 𝑛 independent
experiments, each of which succeeds with probability 𝑝; Uniform(𝑎, 𝑏) represents a uniform
distribution on the interval [𝑎, 𝑏]. Each distribution 𝐷 is associated with a probability measure
`𝐷 ∈ 𝔻(ℝ). For example, the probability measure for Uniform(𝑎, 𝑏) is the integration of its
density function `Uniform(𝑎,𝑏) (𝐴) def

=
∫
𝐴
[𝑎≤𝑥≤𝑏]
𝑏−𝑎 𝑑𝑥.

2.3 A Distribution-Based Small-Step Operational Semantics
The next step is to define an operational semantics for Appl based on CFHGs. I adapt Borgström
et al. [16]’s distribution-based small-step operational semantics for lambda calculus to the hyper-
graph setting, while suppressing the features of multiple procedures and nondeterminism for
now. In Chapter 3, I will develop a denotational semantics that supports multiple procedures and
nondeterminism, and justify the denotational semantics by proving an equivalence result with
respect to the small-step operational semantics that I develop in this section.
Three components are used to define the operational semantics:
• A measurable space (Ω, F ) on program states. For Appl, we define Ω

def
= Var → ℝ, i.e., a

set of partial maps from a finite set of program variables to their values, and F be the Borel
𝜎-algebra on the finite-dimensional space Ω.

• A (sub-)probability kernel JactK on program states for each data action act. Intuitively,
JactK(𝜔, 𝐹) is the probability that the action act, starting in state 𝜔 ∈ Ω, halts in a state that
satisfies 𝐹 ∈ F .

• A [0, 1]-valued measurable function J𝜑K from program states for each deterministic condition
𝜑. Intuitively, J𝜑K(𝜔) is the probability that the condition 𝜑 holds in state 𝜔 ∈ Ω.

Fig. 2.2 shows an interpretation of the data actions and deterministic conditions given in §2.2,
where 𝜔(𝑒) evaluates expression 𝑒 in state 𝜔. If 𝜑 does not contain any probabilistic choices
prob(𝑝), then J𝜑K(𝜔) is either 0 or 1. Intuitively, J𝜑K(𝜔) is the probability that 𝜑 is true in the
state 𝜔, with respect to a probability space specified by all the prob(𝑝)’s in 𝜑. Then the probability
of (𝜑1 ∧ 𝜑2) is defined as the product of the individual probabilities of 𝜑1 and 𝜑2, because 𝜑1
and 𝜑2 are interpreted with respect to probabilistic choices in 𝜑1 and 𝜑2, respectively, and these
two sets of choices are disjoint, thus independent.
Suppose that 𝑃 = (𝑉, 𝐸, 𝑣entry, 𝑣exit) is a single-procedure probabilistic program without nonde-

terminism, i.e., each node in 𝑃 except 𝑣exit is associated with exactly one hyper-edge. The program
configurations 𝑇 = 𝑉 × Ω are pairs of the form ⟨𝑣, 𝜔⟩, where 𝑣 ∈ 𝑉 is a node in the CFHG, and
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J𝑥 B 𝑒K def
= _𝜔. 𝛿(𝜔[𝑥 ↦→ 𝜔(𝑒)]) J⊤K def

= _𝜔. 1
J𝑥 ∼ 𝐷K def

= _𝜔. `𝐷 ≫= _𝑣. 𝛿(𝜔[𝑥 ↦→ 𝑣]) J¬𝜑K def
= _𝜔. 1 − J𝜑K(𝜔)

Jobserve(𝜑)K def
= _𝜔. J𝜑K(𝜔) · 𝛿(𝜔) J𝜑1 ∧ 𝜑2K

def
= _𝜔. J𝜑1K(𝜔) · J𝜑2K(𝜔)

JskipK def
= _𝜔. 𝛿(𝜔) J𝑒1 ≤ 𝑒2K

def
= _𝜔. [𝜔(𝑒1) ≤ 𝜔(𝑒2)]

Jprob(𝑝)K def
= _𝜔. 𝑝

Fig. 2.2: An interpretation of data actions and deterministic conditions.

⟨𝑣, 𝜔⟩ −→ _𝐴. JactK(𝜔, {𝜔′ | ⟨𝑢, 𝜔′⟩ ∈ 𝐴})
where 𝑒 = (𝑣, {𝑢}) ∈ 𝐸, 𝐶𝑡𝑟𝑙(𝑒) = seq[act]

⟨𝑣, 𝜔⟩ −→ J𝜑K(𝜔) · 𝛿(⟨𝑢1, 𝜔⟩) + (1 − J𝜑K(𝜔)) · 𝛿(⟨𝑢2, 𝜔⟩)
where 𝑒 = (𝑣, {𝑢1, 𝑢2}) ∈ 𝐸, 𝐶𝑡𝑟𝑙(𝑒) = cond[𝜑]

Fig. 2.3: The one-step evaluation relation.
𝜔 ∈ Ω is a program state. I then use the product measurable space (𝑉, ℘(𝑉)) ⊗ (Ω, F ) to construct
a measurable space of program configurations, where ℘(·) is the powerset operator.
I define one-step evaluation as a relation ⟨𝑣, 𝜔⟩ −→ ` between configurations ⟨𝑣, 𝜔⟩ and

sub-probability measures ` on configurations, as shown in Fig. 2.3.
Example 2.12. For the program in Fig. 2.1, some one-step evaluations are ⟨𝑣0, {𝑛 ↦→ 233}⟩ −→

𝛿(⟨𝑣1, {𝑛 ↦→ 0}⟩), ⟨𝑣1, {𝑛 ↦→ 1}⟩ −→ 0.25 · 𝛿(⟨𝑣2, {𝑛 ↦→ 1}⟩) + 0.75 · 𝛿(⟨𝑣4, {𝑛 ↦→ 1}⟩), and
⟨𝑣3, 𝑛 ↦→ 9⟩ −→ 𝛿(⟨𝑣1, {𝑛 ↦→ 9}⟩).
Lemma 2.13. The one-step evaluation relation −→ defines a sub-probability kernel on program

configurations.

Proof. The evaluation relation −→ can be seen as a function −̂→ defined as follows:

−̂→(⟨𝑣, 𝜔⟩, 𝐴) def
=

{
`(𝐴) if ⟨𝑣, 𝜔⟩ −→ `,
0 otherwise.

• For any ⟨𝑣, 𝜔⟩, it is obvious that _𝐴.−̂→(⟨𝑣, 𝜔⟩, 𝐴) is a sub-probability measure.

• For any measurable 𝐴, we want to show that the function 𝑓
def
= _⟨𝑣, 𝜔⟩.−̂→(⟨𝑣, 𝜔⟩, 𝐴) is

measurable. It is sufficient to show that for any measurable set 𝐵 ∈ B of real numbers, the
set 𝑓−1(𝐵) is a measurable set of configurations. Observe that 𝑓−1(𝐵) equals ⋃

𝑣∈𝑉 ( 𝑓−1(𝐵) ∩
({𝑣} × Ω)). Because 𝑉 is a finite set, it is sufficient to show that for any 𝑣 ∈ 𝑉, the set
𝑓−1(𝐵) ∩ ({𝑣} × Ω) is measurable. If 𝑣 = 𝑣exit, we have

𝑓−1(𝐵) ∩ ({𝑣exit} × Ω) =
{
{𝑣exit} × Ω if 0 ∈ 𝐵,
∅ otherwise,
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⟨𝑣, 𝜔⟩ −→0 0
⟨𝑣exit, 𝜔⟩ −→𝑛 𝛿(𝜔) if 𝑛 > 0

⟨𝑣, 𝜔⟩ −→𝑛+1 _𝐹.
∫

supp(`)
`(𝑑𝜏) · `′𝜏(𝐹) where⟨𝑣, 𝜔⟩ −→ `

and 𝜏 −→𝑛 `
′
𝜏 for any 𝜏 ∈ supp(`)

Fig. 2.4: The step-indexed evaluation relation.
thus the set is measurable. If 𝑣 ≠ 𝑣exit, we proceed by a case analysis on the hyper-edge whose
source is 𝑣.
– If 𝑒 = (𝑣, {𝑢}) ∈ 𝐸 and 𝐶𝑡𝑟𝑙(𝑒) = seq[act], we have

𝑓−1(𝐵) ∩ ({𝑣} × Ω) = {𝑣} × {𝜔 | JactK(𝜔, {𝜔′ | ⟨𝑢, 𝜔′⟩ ∈ 𝐴}) ∈ 𝐵}
= {𝑣} × (_𝜔.JactK(𝜔, {𝜔′ | ⟨𝑢, 𝜔′⟩ ∈ 𝐴}))−1(𝐵).

Because JactK is a kernel, we conclude that the set is measurable.
– If 𝑒 = (𝑣, {𝑢1, 𝑢2}) ∈ 𝐸 and 𝐶𝑡𝑟𝑙(𝑒) = cond[𝜑], we consider 𝐵 with the form (−∞, 𝑐] for
some 𝑐 ∈ ℝ. (This is sufficient because the class of such intervals generates B.) If 𝑐 < 0
(resp., 𝑐 > 1), we know the set 𝑓−1((−∞, 𝑐]) ∩ ({𝑣} × Ω) equals ∅ (resp., {𝑣} × Ω), thus
measurable. Otherwise, when 𝑐 ∈ [0, 1], we have 𝑓−1((−∞, 𝑐]) ∩ ({𝑣} × Ω) =⋃
𝑞∈ℚ
({⟨𝑣, 𝜔⟩ | ⟨𝑢1, 𝜔⟩ ∈ 𝐴∧ J𝜑K(𝜔) ≤ 𝑞} ∩ {⟨𝑣, 𝜔⟩ | ⟨𝑢2, 𝜔⟩ ∈ 𝐴∧ (1− J𝜑K(𝜔)) ≤ 𝑐− 𝑞}),

and if we define 𝐹1
def
= {𝜔 | ⟨𝑢1, 𝜔⟩ ∈ 𝐴} and 𝐹2

def
= {𝜔 | ⟨𝑢2, 𝜔⟩ ∈ 𝐴}, the set equals⋃

𝑞∈ℚ
(({𝑣} × (J𝜑K−1((−∞, 𝑞]) ∩ 𝐹1))) ∩ ({𝑣} × (J𝜑K−1( [1 − 𝑐 + 𝑞,∞)) ∩ 𝐹2))).

Because ℚ is a countable set, J𝜑K is a measurable function, and measurable sets are closed
under countable unions and intersections, we conclude that the set above is measurable.

□

I now define step-indexed evaluation as the family of 𝑛-indexed relations ⟨𝑣, 𝜔⟩ −→𝑛 ` between
configurations ⟨𝑣, 𝜔⟩ and sub-probability measures ` on program states inductively, as shown in
Fig. 2.4.
Example 2.14. For the program in Fig. 2.1, some step-indexed evaluations are ⟨𝑣4, {𝑛 ↦→ 10}⟩ −→1

𝛿({𝑛 ↦→ 10}), ⟨𝑣1, {𝑛 ↦→ 0}⟩ −→2 0.75 · 𝛿({𝑛 ↦→ 0}), and ⟨𝑣1, {𝑛 ↦→ 0}⟩ −→5 0.75 · 𝛿({𝑛 ↦→
0}) + 0.1875 · 𝛿({𝑛 ↦→ 1}).
Lemma 2.15. The step-indexed evaluation relation−→𝑛 defines a sub-probability kernel from program

configurations to program states for any 𝑛 ∈ ℤ+. Moreover, if ⟨𝑣, 𝜔⟩ −→𝑛 `1, ⟨𝑣, 𝜔⟩ −→𝑚 `2, and
𝑛 ≤ 𝑚, then `1 ≤ `2 pointwise.
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Proof. By induction on 𝑛.
• −→0 can be seen as the everywhere-zero function −̂→0, which is obviously a kernel.
• −→𝑛+1 can be seen as the function defined as follows:

−̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹) def
=


1 if 𝑣 = 𝑣exit ∧ 𝜔 ∈ 𝐹,
0 if 𝑣 = 𝑣exit ∧ 𝜔 ∉ 𝐹,∫

supp(`)
−̂→𝑛(𝜏, 𝐹) · `(𝑑𝜏) if ⟨𝑣, 𝜔⟩ −→ `.

– For any ⟨𝑣, 𝜔⟩, it is obvious that _𝐹.−̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹) is a sub-probability measure.

– For any measurable 𝐹, we want to show that the function 𝑓
def
= _⟨𝑣, 𝜔⟩.−̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹) is

measurable. It is sufficient to show that for any measurable set 𝐵 ∈ B of real numbers, the
set 𝑓−1(𝐵) is a measurable set of states. Observe that 𝑓−1(𝐵) equals

( 𝑓−1(𝐵) ∩ ({𝑣exit} × Ω)) ∪ ( 𝑓−1(𝐵) ∩ ((𝑉 \ {𝑣exit}) × Ω)).
We proceed by showing both operands of the set union above are measurable.
∗ We have

𝑓−1(𝐵) ∩ ({𝑣exit} × Ω) = {𝑣exit} × {𝜔 | 𝛿(𝜔) (𝐹) ∈ 𝐵} = {𝑣exit} × I−1
𝐹 (𝐵),

where I𝐹 def
= _𝜔.[𝜔 ∈ 𝐹] is the indicator function of 𝐹, which is measurable. We then

conclude that the set 𝑓−1(𝐵) ∩ ({𝑣exit} × Ω) is measurable.
∗ We have

𝑓−1(𝐵) ∩ ((𝑉 \ {𝑣exit}) × Ω)
= {⟨𝑣, 𝜔⟩ | 𝑣 ≠ 𝑣exit,

∫
−̂→𝑛(𝜏, 𝐹) · −̂→(⟨𝑣, 𝜔⟩, 𝑑𝜏) ∈ 𝐵}

= {⟨𝑣, 𝜔⟩ | 𝑣 ≠ 𝑣exit, (−̂→ # −̂→𝑛) (⟨𝑣, 𝜔⟩, 𝐹) ∈ 𝐵}
= ((𝑉 \ {𝑣exit}) × Ω) ∩ (_⟨𝑣, 𝜔⟩.(−̂→ # −̂→𝑛) (⟨𝑣, 𝜔⟩, 𝐹))−1(𝐵),

where # is the kernel-composition operator. Because the composition of two kernels is also
a kernel, we conclude that the set 𝑓−1(𝐵) ∩ ((𝑉 \ {𝑣exit}) × Ω) is measurable.

Meanwhile, we want to show that −̂→𝑛+1 ≥ −̂→𝑛 pointwise. We proceed by induction on 𝑛. If
𝑛 = 0, then the inequality holds obviously. For 𝑛 > 0, let us consider any 𝑣 ∈ 𝑉, 𝜔 ∈ Ω, and 𝐹 ∈ F ,
and proceed by a case analysis.

• If 𝑣 = 𝑣exit and 𝜔 ∈ 𝐹, then −̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹) = −̂→𝑛(⟨𝑣, 𝜔⟩, 𝐹) = 1.
• If 𝑣 = 𝑣exit and 𝜔 ∉ 𝐹, then −̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹) = −̂→𝑛(⟨𝑣, 𝜔⟩, 𝐹) = 0.
• Otherwise, suppose that ⟨𝑣, 𝜔⟩ −→ `, then

−̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹) =
∫

supp(`)
−̂→𝑛(𝜏) (𝐹) · `(𝑑𝜏),

−̂→𝑛(⟨𝑣, 𝜔⟩, 𝐹) =
∫

supp(`)
−̂→𝑛−1(𝜏, 𝐹) · `(𝑑𝜏).
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By the induction hypothesis, we know that −̂→𝑛−1 ≤ −̂→𝑛 pointwise, and the measure ` can
be seen as a nonnegative function, thus −̂→𝑛(⟨𝑣, 𝜔⟩, 𝐹) ≤ −̂→𝑛+1(⟨𝑣, 𝜔⟩, 𝐹).

□

For the program 𝑃 = (𝑉, 𝐸, 𝑣entry, 𝑣exit), by Lemma 2.15, I define its semantics as J𝑃Kos(𝜔, 𝐹) def
=

sup𝑛∈ℤ+{`(𝐹) | ⟨𝑣entry, 𝜔⟩ −→𝑛 `}.
Example 2.16. For the program 𝑃 in Fig. 2.1, the sub-probability measure _𝐹.J𝑃Kos(𝜔, 𝐹) for any

initial state 𝜔 that contains the program variable 𝑛 is given by ∑9
𝑘=0(0.75 × 0.25𝑘) · 𝛿(𝜔[𝑛 ↦→

𝑘]) + 0.00000095367431640625 · 𝛿(𝜔[𝑛 ↦→ 10]).
Lemma 2.17. For any program 𝑃, J𝑃Kos defines a sub-probability kernel on program states.

Proof. By definition, we have J𝑃Kos = sup𝑛∈ℤ+ −̂→𝑛. Then we can conclude by the fact that the
set of sub-probability kernels forms an 𝜔-cpo. □

In general, the measure _𝐹.J𝑃Kos(𝜔, 𝐹) that describes the evaluation results of a program 𝑃 with
an initial state 𝜔 is not always a probability measure. In the case that 𝑃 diverges with some positive
probability 𝑝 from the initial state 𝜔, the measure _𝐹.J𝑃Kos(𝜔, 𝐹) is a sub-probability measure
that satisfies J𝑃Kos(𝜔,Ω) = 1 − 𝑝, i.e., the probabilities of the resulting states “sum up” to (1 − 𝑝).



Chapter 3

A Denotational Semantics for Probabilistic
Programs with Nondeterminism-First
Resolution

In §2.3, I have shown how nondeterminism-free, single-procedure probabilistic programs execute
operationally. In this chapter, I focus on developing a denotational semantics, which concentrates
on the effects of programs and abstracts from how the program executes. This characterization of
denotational semantics is beneficial for rigorous reasoning about programs, such as static analysis
and model checking, because one usually only cares whether programs satisfy certain properties,
e.g., if they terminate on all possible inputs. Even better, a denotational semantics is often
compositional—that is, the property of a whole program can be established from properties of
its proper constituents. In other words, one can develop local—and thus scalable—reasoning
techniques based on a denotational semantics. In contrast, the operational semantics in §2.3 is not
compositional—it takes into account the whole program 𝑃 to define J𝑃Kos.
Another benefit of a denotational semantics is that it is often easier to extend than an operational

one. As an example, let me briefly compare the complexity of adding procedure calls and
nondeterminism to an operational semantics versus a denotational semantics. To support multiple
procedures and procedure calls in the semantics proposed in §2.3, one needs to introduce a notion
of stacks to keep track of procedure calls, as done by previous work [51, 52, 126]. Then the program
configurations become triples of call stacks, control-flow-graph nodes, and program states. As
a consequence, the one-step and step-indexed evaluation relations in Figures 2.3 and 2.4 would
become more complex. However, such an extension is almost trivial for a denotational semantics.
Suppose we are able to compose semantic objects, e.g, J𝐶1;𝐶2Kds = J𝐶2Kds ◦ J𝐶1Kds, where 𝐶1, 𝐶2
are program fragments, ◦ denotes a composition operation, and J𝐶Kds gives the denotation of 𝐶.
For example, consider that 𝐶1 is a procedure call call 𝑄, where 𝑄 is a procedure. Because we can
obtain the denotation J𝑄Kds of 𝑄, we can interpret Jcall 𝑄;𝐶2Kds merely as J𝐶2Kds ◦ J𝑄Kds. By this
means we do not need to reason about stacks explicitly.
Another important programming feature is nondeterminism. For operational semantics of

probabilistic programs, nondeterminism is often formalized using the notion of a scheduler, which
resolves a nondeterministic choice from the computation that leads up to it (e.g., [27, 28, 55]).
When the scheduler is fixed, a program can be executed deterministically (as shown in §2.3). To

17
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𝑡 = 1

𝑡′ = 2 wprob. 0.5
𝑡′ = 0 wprob. 0.5

𝑡′ = 2 wprob. 0.8
𝑡′ = 0 wprob. 0.2

Fig. 3.1: An example where★ resolved after 𝑡 is given. A box represents a probability distribution.
reason about nondeterministic programs with respect to an operational semantics, one needs to
take all possible schedulers into consideration. However, if one only cares about the effects of
a program, it is possible to sidestep these schedulers by switching to a denotational semantics.
For example, let 𝐶1, 𝐶2 be two program fragments and J𝐶1Kds, J𝐶2Kds be their denotations, which
could be maps from initial states to a collection of possible final states. Then the denotation
Jif ★ then 𝐶1 else 𝐶2 fiKds of a nondeterministic-choice between 𝐶1 and 𝐶2 could be something like
_𝜔.J𝐶1Kds(𝜔) ∪ J𝐶2Kds(𝜔). Note that this approach does not need to consider schedulers explicitly.
Some high-level decision choices about nondeterminism arise when I develop a denotational

semantics for Appl. Nondeterminism itself is an important feature from two perspectives: (i) it
arises naturally from probabilistic models, such as the agent for a Markov decision process [13],
or the unknown input distribution for modeling fault tolerance [87], and (ii) it is required by the
common paradigm of abstraction and refinement1 on programs [46, 111]. While nondeterminism
has been well studied for standard programming languages, the combination of probabilities and
nondeterminism turns out to be tricky. One substantial question is when the nondeterminism is
resolved. A well-studied model for nondeterminism in probabilistic programming is to resolve
program inputs prior to nondeterminism [45, 110, 111, 115, 116, 144]. This model follows a
commonplace principle of semantics research that represents a nondeterministic function as a
set-valued function that maps an input to a collection of possible outputs, i.e., an element in
𝑋 → ℘(𝑋), where 𝑋 is a program state space and ℘(·) is the powerset operator. However, it is
sometimes desirable to resolve nondeterminism prior to program inputs, i.e., a nondeterministic
program should represent a collection of elements in ℘(𝑋 → 𝑋). For example, one may want to
show for every refined version of a nondeterministic program with each nondeterministic choice
replaced by a conditional, its behavior on all inputs are indistinguishable. I call the common model
nondeterminism-last and the other nondeterminism-first.
Example 3.1. Consider the following program 𝑃 where ★ represents nondeterminism.

if ★ then 𝑡 B 𝑡 + 1 else 𝑡 B 𝑡 − 1 fi
Fig. 3.1 illustrates the nondeterminism-last model: given an input 𝑡 = 1, ★ is resolved as prob(0.5) in
the left box, whereas it is resolved as prob(0.8) in the right box. Fig. 3.2 then demonstrates the novel
nondeterminism-first model: ★ is resolved prior to the input, i.e., each resolution leads to a function
that maps an input to a probability distribution.
In §3.2, I present a domain-theoretic study of nondeterminism-first for probabilistic programs

with a countable state space. Technically, I propose a notion of generalized convexity (g-convexity, for
1Abstraction enables reasoning about a program through its high-level specifications, and refinement allows stepwise

software development, where programs are “refined” from specifications to low-level implementations.
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𝑡 = 1

𝑡′ = 2 wprob. 0.5
𝑡′ = 0 wprob. 0.5

★ resolved as prob(0.5)

𝑡 = 1

𝑡′ = 2 wprob. 0.8
𝑡′ = 0 wprob. 0.2

★ resolved as prob(0.8)
Fig. 3.2: An example where★ resolved before 𝑡 is given. A box represents a probability distribution.

if ★ then if prob(1/2) then 𝑡 B 0 else 𝑡 B 1 fi
else if prob(1/3) then 𝑡 B 0 else 𝑡 B 1 fi fi

Fig. 3.3: A nondeterministic, probabilistic program.

short), which expresses that a set of state transformers is stable under refinements (while standard
convexity describes that a set of states is stable under refinements), as well as devise a g-convex
powerdomain that characterizes expressible semantic objects.
To achieve my ultimate goal of developing a denotational semantics, instead of restricting myself

to one specific model for nondeterminism, I propose a general algebraic denotational semantics
in §3.3, which can be instantiated with different treatments of nondeterminism. The semantics
is algebraic in the sense that it performs reasoning in some space of program states and state
transformers, while the transformers should obey some algebraic laws. For instance, the program
command skip should be interpreted as the identity element for sequencing in an algebra of
program-state transformers. In addition, the algebraic approach is a good fit for static analysis of
probabilistic programs.
The algebraic approach I take in this thesis is challenging in the setting of probabilistic program-

ming. In contrast, for standard, non-probabilistic programming languages, it is almost trivial to
derive a low-level denotational semantics once one has a semantics for well-structured programs
at hand. The trick is to first define the semantic operations as a Kleene algebra [33, 93, 97, 100],
which admits an extend operation, used for sequencing, a combine operation, used for branching,
and a closure operation, used for looping; then extract from the CFG a regular expression that
captures all execution paths by Tarjan [142]’s path-expression algorithm; and finally use the Kleene
algebra to reinterpret the regular expression to obtain the semantics for the CFG. However, this
approach fails when both probabilities and nondeterminism come into the picture. Consider the
probabilistic program with a nondeterministic choice ★ in Fig. 3.3. The program is intended to draw
a random value 𝑡 from either a fair coin flip or a biased one. If one adopts the path-expression
approach, one ends up with a regular expression that describes a single collection of four program
executions: (i) 𝑡 B 0 with probability 1/2, (ii) 𝑡 B 1 with probability 1/2, (iii) 𝑡 B 0 with probability
1/3, and (iv) 𝑡 B 1 with probability 2/3. The collection does not describe the intended meaning,
and does not even form a well-defined probability distribution—all the probabilities sum up to 2
instead of 1. Intuitively, the path-expression approach fails for probabilistic programs because it
can only express the semantics as a collection of executions with probabilities, whereas probabilistic
programs actually specify collections of distributions over executions.
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3.1 A Summary of Existing Domain-Theoretic Developments
To present the technical development of nondeterminism-first for probabilistic programs with
a countable state space, I will use a simplified notion of sub-probability measures. Let 𝑋 be a
nonempty countable set. A distribution on 𝑋 is a function Δ : 𝑋 → [0, 1] such that ∑𝑥∈𝑋 Δ(𝑥) ≤ 1,
and the Dirac distribution 𝛿(𝑥) for some 𝑥 ∈ 𝑋 is defined as _𝑥′. [𝑥 = 𝑥′]. The set of all distributions
on 𝑋 is denoted by D (𝑋).
My development of models for nondeterminism makes great use of existing domain-theoretic

studies of powerdomains, thus in this section, I present a brief summary of them. I review
some standard notions from domain theory [2, 74, 114], as well as some results on probabilistic
powerdomains [82, 83] and nondeterministic powerdomains [45, 110, 111, 115, 116, 144].

3.1.1 Background from Domain Theory
Let 𝑃 be a nonempty set with a partial order ⊑, i.e., a poset. The lower closure of a subset 𝐴
is defined as ↓𝐴 def

= {𝑥 ∈ 𝑃 | ∃𝑎 ∈ 𝐴 : 𝑥 ⊑ 𝑎}. The upper closure of a subset 𝐴 is defined as
↑𝐴 def

= {𝑥 ∈ 𝑃 | ∃𝑎 ∈ 𝐴 : 𝑎 ⊑ 𝑥}. A subset 𝐴 satisfying ↓𝐴 = 𝐴 is called a lower set. A subset 𝐴
satisfying ↑𝐴 = 𝐴 is called an upper set. If all elements of 𝑃 are above a single element 𝑥 ∈ 𝑃, then
𝑥 is called the least element, denoted commonly by ⊥. A function 𝑓 : 𝑃 → 𝑄 between two posets 𝑃
and 𝑄 is monotone if for all 𝑥, 𝑦 ∈ 𝑃 such that 𝑥 ⊑ 𝑦, it holds that 𝑓 (𝑥) ⊑ 𝑓 (𝑦). A subset 𝐴 of 𝑃 is
directed if it is nonempty and each pair of elements in 𝐴 has an upper bound in 𝐴. If 𝐴 is totally
ordered and isomorphic to natural numbers, then 𝐴 is called an 𝜔-chain. If a directed set 𝐴 has a
supremum, then it is denoted by ⊔↑ 𝐴.
A poset 𝐷 is called directed complete or a dcpo if each directed subset 𝐴 of 𝐷 has a supremum⊔↑ 𝐴 in 𝐷. A function 𝑓 : 𝐷→ 𝐸 between two dcpos 𝐷 and 𝐸 is Scott-continuous if it is monotone

and preserves directed suprema, i.e., 𝑓 (⊔↑ 𝐴) = ⊔↑ 𝑓 (𝐴) for all directed subsets 𝐴 of 𝐷. We
denote the set of Scott-continuous functions from 𝐷 to 𝐸, ordered pointwise, by [𝐷→ 𝐸]. If both
𝐷 and 𝐸 have a least element, we say a function 𝑓 ∈ [𝐷 → 𝐸] is strict if 𝑓 preserves the least
element. We denote the set of strict functions from 𝐷 to 𝐸 by [𝐷 ⊥!−−→ 𝐸].
Example 3.2. The natural numbers ℕ with the usual order does not form a dcpo, because ℕ itself as

a directed set does not have a supremum in ℕ. One way to complete ℕ is to add a distinguished top
element 𝜔 such that 𝑛 ⊑ 𝜔 for all 𝑛 ∈ ℕ.

Let 𝐷 be a dcpo. For two elements 𝑥, 𝑦 of 𝐷, we say that 𝑥 approximates 𝑦, denoted by 𝑥 ≪ 𝑦, if
for all directed subsets 𝐴 of 𝐷, it holds that 𝑦 ⊑ ⊔↑ 𝐴 implies 𝑥 ⊑ 𝑎 for some 𝑎 ∈ 𝐴. We define

↠

𝐴
def
= {𝑥 ∈ 𝐷 | ∃𝑎 ∈ 𝐴 : 𝑥 ≪ 𝑎} and ↞ 𝐴 def

= {𝑥 ∈ 𝐷 | ∃𝑎 ∈ 𝐴 : 𝑎 ≪ 𝑥}. A dcpo 𝐷 is called continuous
if for every element 𝑥 of 𝐷, the set ↠ 𝑥 is directed and 𝑥 =

⊔↑ ↠ 𝑥. A subset 𝐵 of a dcpo 𝐷 is said to
be a basis for 𝐷, if for every element 𝑥 of 𝐷, the set ↠ 𝑥 ∩ 𝐵 is directed and 𝑥 =

⊔↑( ↠ 𝑥 ∩ 𝐵). Every
continuous dcpo then obviously has a basis.

Example 3.3. The unit interval [0, 1] with the usual order forms a continuous dcpo, where the order
of approximation 𝑥 ≪ 𝑦 is given by the usual number order 𝑥 < 𝑦. The rational numbers ℚ ∩ [0, 1]
can be seen as a basis for the unit interval.
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Let 𝐷 be a dcpo. A subset 𝐴 is Scott-closed if 𝐴 is a lower set and is closed under directed suprema.
The complement 𝐷 \ 𝐴 of a Scott-closed subset 𝐴 is called Scott-open. These Scott-open subsets
form the Scott-topology on 𝐷. The closure of a subset 𝐴 is the smallest Scott-closed set containing 𝐴
as a subset, denoted by 𝐴.
Let 𝑋 be a topological space whose open sets are denoted by O(𝑋). A cover C of a subset 𝐴 of 𝑋

is a collection of subsets whose union contains 𝐴 as a subset. A sub-cover of C is a subset of C that
still covers 𝐴. The cover C is called an open-cover if each of its members is an open set. A subset
𝐴 is compact if every open-cover of 𝐴 contains a finite sub-cover. A subset 𝐴 is saturated if 𝐴 is
an intersection of its neighborhoods (i.e., 𝐴’s open supersets). The saturation of a subset 𝐴 is the
intersection of its neighborhoods. In dcpo’s equipped with the Scott-topology, saturated sets are
precisely the upper sets, and the saturation of a subset 𝐴 is given by ↑𝐴.
Let 𝐷 be a dcpo. A nonempty subset of 𝐷 is said to be a lens if it is the intersection of a Scott-closed

subset and a Scott-compact saturated subset. Lenses are always Scott-compact, and a canonical
representation for a lens 𝐿 is given by 𝐿 ∩ ↑𝐿. On lenses we can define the Egli-Miler ordering ⊑𝐸𝑀 ,
by 𝐿1 ⊑𝐸𝑀 𝐿2 iff 𝐿1 ⊆ ↓𝐿2 and 𝐿2 ⊆ ↑𝐿1.
A continuous dcpo 𝐷 is called coherent if, with the Scott topology, the intersection of any two

Scott-compact saturated subsets is also Scott-compact. The Lawson-topology on a dcpo 𝐷 is
generated by Scott-open sets and sets of the form 𝐷 \ ↑𝑥 with 𝑥 ∈ 𝐷. The Lawson-topology on a
coherent dcpo is compact. Lenses are always Lawson-closed sets; thus, in a coherent dcpo, lenses
are always Lawson-compact sets.
I am going to use the following theorems in my technical development.
Proposition 3.4 (Kleene fixed-point theorem). Suppose (𝐷, ⊑) is a dcpo with a least element
⊥, and let 𝑓 : 𝐷 → 𝐷 be a Scott-continuous function. Then 𝑓 has a least fixed point which is the
supremum of the ascending Kleene chain of 𝑓 (i.e., the 𝜔-chain ⊥ ⊑ 𝑓 (⊥) ⊑ 𝑓 ( 𝑓 (⊥)) ⊑ · · · ⊑
𝑓 𝑛(⊥) ⊑ · · · ), denoted by lfp⊑⊥ 𝑓 .
Proposition 3.5 (Cor. of [74, Hofmann-Mislove theorem]). Let 𝑋 be a sober space, i.e., a

𝑇0-space where every nonempty closed set is either the closure of a point or the union of two proper
closed subsets. The intersection of a filtered family {𝐴𝑖}𝑖∈I (i.e., the intersection of any two subsets
is in the family) of nonempty compact saturated subsets is compact and nonempty. In addition,
if such a filtered intersection is contained in an open set 𝑈, it holds that 𝐴𝑖 ⊆ 𝑈 for some 𝑖 ∈ I.
Specifically, continuous dcpos equipped with the Scott-topology and coherent dcpos equipped with the
Lawson-topology are sober.

3.1.2 Probabilistic Powerdomains
Jones and Plotkin [83]’s pioneer work on probabilistic powerdomains extends the complete
partially ordered sets, which are pervasively used in computer science, to model probabilistic
computations. Let 𝑋 be a nonempty countable set. We say that the set of all distributions on 𝑋 ,
denoted by D (𝑋), is a probabilistic powerdomain over 𝑋 . Distributions are ordered pointwise, i.e.,
Δ1 ⊑𝐷 Δ2

def
= ∀𝑥 ∈ 𝑋 : Δ1(𝑥) ≤ Δ2(𝑥). We define the probabilistic-choice of distributions Δ1, Δ2

with respect to a weight 𝑝 ∈ [0, 1], written Δ1 𝑝⊕ Δ2, as 𝑝 · Δ1 + (1 − 𝑝) · Δ2. The operation 𝑝⊕
corresponds to the program construct “if prob(𝑝) then · · · else · · · fi.”
The following theorems provide a characterization of the probabilistic powerdomains.
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Proposition 3.6 ([82, 83, 110, 144]). The poset (D (𝑋), ⊑𝐷) forms a coherent dcpo with a countable
basis {∑𝑛

𝑖=1 𝑟𝑖 ·𝛿(𝑥𝑖) | 𝑛 ∈ ℤ+∧ 𝑟𝑖 ∈ ℚ+∧
∑𝑛
𝑖=1 𝑟𝑖 ≤ 1∧ 𝑥𝑖 ∈ 𝑋}. It admits a least element ⊥𝐷 def

= _𝑥.0.
Moreover, 𝑝⊕ is Scott-continuous for all 𝑝 ∈ [0, 1].
Proposition 3.7 ([82, 144]). Every function 𝑓 : 𝑋 → D (𝑋) can be lifted to a unique Scott-

continuous linear (in the sense that it preserves probabilistic-choice) map �̂� : D (𝑋) → D (𝑋).

3.1.3 Nondeterministic Powerdomains
When nondeterminism comes into the picture, as I discussed at the beginning of this chapter, existing
studies usually resolve program inputs prior to nondeterminism [45, 84, 110, 111, 115, 116, 144]. I
call such a model nondeterminism-last, which interprets nondeterministic functions as maps from
inputs to sets of outputs. Let 𝑋 be a nonempty countable set. A subset 𝐴 of D (𝑋) is called convex if
for all Δ1, Δ2 ∈ 𝐴 and all 𝑝 ∈ [0, 1], we have Δ1 𝑝⊕ Δ2 ∈ 𝐴. The convex hull of an arbitrary subset
𝐴 is the smallest convex set containing 𝐴 as a subset, denoted by 𝑐𝑜𝑛𝑣(𝐴). The convexity condition
ensures that from the perspective of programming, nondeterministic choices can always be refined
by probabilistic choices. The convex powerdomain PD (𝑋) over the probabilistic powerdomain
D (𝑋) is then defined as convex lenses in D (𝑋)—nonempty subsets of D (𝑋) each of which is the
intersection of a Scott-closed subset and a Scott-compact saturated subset—with the Egli-Milner
order 𝐴 ⊑𝑃 𝐵 def

= 𝐴 ⊆ ↓𝐵 ∧ ↑𝐴 ⊇ 𝐵.
The following theorems provide a characterization of the convex powerdomains.
Proposition 3.8 ([110, 144]). The poset (PD (𝑋), ⊑𝑃) forms a coherent dcpo. It admits a least

element ⊥𝑃 def
= {⊥𝐷}. For 𝑟1, 𝑟2 ∈ [0, 1] satisfying 𝑟1 + 𝑟2 ≤ 1, we define 𝑟1 · 𝐴 + 𝑟2 · 𝐵 def

= 𝐶 ∩ ↑𝐶
where 𝐶 is {𝑟1 · Δ1 + 𝑟2 · Δ2 | Δ1 ∈ 𝐴 ∧ Δ2 ∈ 𝐵}. Then the probabilistic-choice operation is lifted to a
Scott-continuous operation as 𝐴 𝑝⊕𝑃 𝐵

def
= 𝑝 · 𝐴 + (1 − 𝑝) · 𝐵. Moreover, it carries a Scott-continuous

semilattice operation, called formal union, defined as 𝐴 −−∪𝑃 𝐵 def
= 𝐶 ∩ ↑𝐶 where 𝐶 is 𝑐𝑜𝑛𝑣(𝐴 ∪ 𝐵).

The formal-union operation −−∪ corresponds to the program construct “if ★ then · · · else · · · fi”
for nondeterministic choices.
Proposition 3.9 ([144]). Every function 𝑔 : 𝑋 → PD (𝑋) can be lifted to a unique Scott-continuous

linear (in the sense that it preserves lifted probabilistic-choice) map ̂̂𝑔 : PD (𝑋) → PD (𝑋) preserving
formal unions.
Example 3.10. Consider the following program 𝑃 where ★ can be refined by any deterministic

condition involving the program variable 𝑡:

if ★ then 𝑡 B 𝑡 + 1 else 𝑡 B 𝑡 − 1 fi

and we want to assign a denotation to it from 𝑋 → PD (𝑋), where the state space 𝑋 = ℚ represents the
value of 𝑡. Fix an input 𝑡 ∈ ℚ. The data actions 𝑡 B 𝑡+1 and 𝑡 B 𝑡−1 then take the input to singletons
{𝛿(𝑡 +1)} and {𝛿(𝑡−1)}, respectively, in the powerdomain PD (ℚ). Thus the nondeterministic-choice
is interpreted as {𝛿(𝑡 + 1)} −−∪𝑃 {𝛿(𝑡 − 1)}, which is {𝑟 · 𝛿(𝑡 + 1) + (1 − 𝑟) · 𝛿(𝑡 − 1) | 𝑟 ∈ [0, 1]}, for
a given 𝑡 ∈ ℚ.
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3.2 Nondeterminism-First
In this section, I develop a new model of nondeterminism—the nondeterminism-first approach,
which resolves nondeterministic choices prior to program inputs—in a domain-theoretic way. This
model is inspired by reasoning about a program’s behavior on different inputs (as mentioned in the
beginning of this chapter), which requires nondeterministic functions to be treated as a family
of transformers (i.e., an element of ℘(𝑋 → 𝑋)) instead of a set-valued map (i.e., an element of
𝑋 → ℘(𝑋)). As will be shown in this section, with nondeterminism-first, 𝑡 B 𝑡 + 1 and 𝑡 B 𝑡 − 1
are assigned semantic objects {_𝑡. 𝛿(𝑡 + 1)} and {_𝑡. 𝛿(𝑡 − 1)}, respectively.
I first introduce a simplified notion of kernels on a countable state space, then propose a new

notion of generalized convexity (g-convexity, for short), and finally develop a powerdomain for
nondeterminism-first.

3.2.1 A Powerdomain for Sub-Probability Kernels
Let 𝑋 be a nonempty countable set. A function ^ : 𝑋 → D (𝑋) is called a (sub-probability)
kernel. Intuitively, a kernel maps an input state to a distribution over output states. The set
of all such kernels is denoted by K (𝑋) def

= 𝑋 → D (𝑋). Kernels are ordered pointwise, i.e.,
^1 ⊑𝐾 ^2

def
= ∀𝑥 ∈ 𝑋 : ^1(𝑥) ⊑𝐷 ^2(𝑥).

Theorem 3.11. The poset (K (𝑋), ⊑𝐾) forms a coherent dcpo, with ⊥𝐾 def
= _𝑥.⊥𝐷 as its least element.

Proof. We equip 𝑋 with the discrete topology. We then define 𝑋⊥ = 𝑋 ∪{⊥} with a distinguished
least element ⊥ and thus 𝑋⊥ is a flat domain. Then 𝑋⊥ is a bounded-complete domain.2 The
Scott-compact subsets of 𝑋⊥ are precisely finite subsets of 𝑋 and all subsets that contain ⊥. Thus
𝑋⊥ is coherent. By [2, Ex. 4.3.11.14], we know that 𝑋⊥ is an FS-domain.3
By Proposition 3.6 we know that D (𝑋) is coherent. Moreover, D (𝑋) is also bounded-complete.

Thus, by [2, Ex. 4.3.11.14], D (𝑋) is an FS-domain. By [2, Thm. 4.2.11], we know that [𝑋⊥ → D (𝑋)]
is an FS-domain.
Let 𝑠 def

= _ 𝑓 . 𝑓 and 𝑟 def
= _𝑔._𝑥.if 𝑥 = ⊥ then ⊥𝐷 else 𝑔(𝑥). Then 𝑠 : [𝑋⊥ ⊥!−−→ D (𝑋)] → [𝑋⊥ →

D (𝑋)], 𝑟 : [𝑋⊥ → D (𝑋)] → [𝑋⊥ ⊥!−−→ D (𝑋)], and 𝑟 ◦ 𝑠 is the identity on [𝑋⊥ ⊥!−−→ D (𝑋)], where
[𝐴 ⊥!−−→ 𝐵] stands for Scott-continuous functions from a dcpo 𝐴 to a dcpo 𝐵 that preserve the least
element. Hence [𝑋⊥ ⊥!−−→ D (𝑋)] is a retract of [𝑋⊥ → D (𝑋)]. By [2, Prop. 4.2.12], we know that
[𝑋⊥ ⊥!−−→ D (𝑋)] is also an FS-domain.
For any 𝑓 in [𝑋 → D (𝑋)], we define a unique function 𝑔

def
= _𝑥.if 𝑥 = ⊥ then ⊥𝐷 else 𝑓 (𝑥).

For any 𝑔 in [𝑋⊥ ⊥!−−→ D (𝑋)], we define a unique function 𝑓
def
= _𝑥.𝑔(𝑥). Thus [𝑋 → D (𝑋)] is

homeomorphic to [𝑋⊥ ⊥!−−→ D (𝑋)], and we know that [𝑋 → D (𝑋)] is also an FS-domain. By [2,
2A continuous dcpo 𝐷 with a least element is said to be a bounded-complete domain, if each bounded pair of

elements of 𝐷 has a supremum.
3A dcpo 𝐷 with a least element is said to be an FS-domain, if there exists a directed set { 𝑓𝑖}𝑖∈I of Scott-continuous

functions on 𝐷, where each 𝑓𝑖 is finitely separated from the identity on 𝐷, i.e., there exists a finite set 𝑀𝑖 such that for
any 𝑥 ∈ 𝐷 there is 𝑚 ∈ 𝑀𝑖 with 𝑓𝑖 (𝑥) ⊑ 𝑚 ⊑ 𝑥, and ⊔↑

𝑖∈I 𝑓𝑖 is the identity map on 𝐷.
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Thm. 4.2.18], we know that [𝑋 → D (𝑋)] is coherent. Because the topology on 𝑋 is discrete,
[𝑋 → D (𝑋)] is precisely 𝑋 → D (𝑋). Thus we conclude that K (𝑋) is coherent. □

Let 𝕎 (𝑋) def
= 𝑋 → [0, 1] be the set of functions from 𝑋 to the unit interval [0, 1]. We denote the

pointwise comparison by ¤≤ and the constant function by ¤𝑟 for any 𝑟 ∈ [0, 1]. If ^ is a kernel and
𝜙 ∈ 𝕎 (𝑋), we write 𝜙 · ^ for the kernel _𝑥.𝜙(𝑥) · ^(𝑥). If ^1, ^2 are kernels and 𝜙1, 𝜙2 ∈ 𝕎 (𝑋)
such that 𝜙1+𝜙2 ¤≤ ¤1, we write 𝜙1 ·^1+𝜙2 ·^2 for the kernel _𝑥. 𝜙1(𝑥) ·^1(𝑥) +𝜙2(𝑥) ·^2(𝑥). More
generally, if {^𝑖}𝑖∈ℕ is a sequence of kernels, and {𝜙𝑖}𝑖∈ℕ is a sequence of functions in 𝕎 (𝑋) such
that ∑∞𝑖=1 𝜙𝑖 ¤≤¤1, we write ∑∞

𝑖=1 𝜙𝑖 · ^𝑖 for the kernel ⊔↑𝑛∈ℤ+ ∑𝑛
𝑖=1 𝜙𝑖 · ^𝑖. Then we define conditional-

choice of kernels ^1, ^2 conditioning on a function 𝜙 ∈ 𝕎 (𝑋) as ^1 𝜙^ ^2
def
= 𝜙 · ^1 + ( ¤1 − 𝜙) · ^2.

We define the composition of kernels ^1, ^2 as ^1 ⊗ ^2
def
= _𝑥. _𝑥′′.

∑
𝑥′∈𝑋 ^1(𝑥) (𝑥′) · ^2(𝑥′) (𝑥′′).

Lemma 3.12.
1. The conditional-choice operation 𝜙^ is Scott-continuous for all 𝜙 ∈ 𝕎 (𝑋).
2. The composition operation ⊗ is Scott-continuous.

Proof.
1. Monotonicity is obvious. It then suffices to show that for all directed set 𝐴 ⊆ K (𝑋),
𝜙 · (⊔↑ 𝐴) = ⊔↑

^∈𝐴 𝜙 · ^. Let ^′
def
=

⊔↑ 𝐴. We conclude the proof by⊔↑
^∈𝐴𝜙(𝑥) · ^(𝑥) = 𝜙(𝑥) ·

⊔↑
^∈𝐴^(𝑥) = 𝜙(𝑥) · (

⊔↑
𝐴) (𝑥) = 𝜙(𝑥) · ^′(𝑥),

for any 𝑥 ∈ 𝑋 .
2. Monotonicity is obvious. We proceed with a discussion of the left and right continuity.

Left-Scott-continuity. For all directed set 𝐴 ⊆ K (𝑋) and all 𝜌 ∈ K (𝑋), we want to show that
(⊔↑ 𝐴) ⊗ 𝜌 =

⊔↑
^∈𝐴 ^ ⊗ 𝜌. Let ^′

def
=

⊔↑ 𝐴. Then it is sufficient to show that for all 𝑥 and 𝑥′′ in
𝑋 , it holds that ∑︁

𝑥′∈𝑋
^′(𝑥) (𝑥′)𝜌(𝑥′) (𝑥′′) =

⊔↑
^∈𝐴

∑︁
𝑥′∈𝑋

^(𝑥) (𝑥′)𝜌(𝑥′) (𝑥′′). (3.1)

Because 𝐴 is directed andK (𝑋) is ordered pointwise, the set {^(𝑥) | ^ ∈ 𝐴} is also directed in
D (𝑋). By [83, Thm. 3.3] , the right-hand-side of (3.1) equals∑𝑥′∈𝑋 (⊔↑^∈𝐴 ^(𝑥)) (𝑥′)𝜌(𝑥′) (𝑥′′).
We conclude the proof by ^′(𝑥) = ⊔↑

^∈𝐴 ^(𝑥) by the definition of ^′.
Right-Scott-continuity. For all directed set 𝐴 ⊆ K (𝑋) and all 𝜌 ∈ K (𝑋), we want to show that
𝜌 ⊗ (⊔↑ 𝐴) = ⊔↑

^∈𝐴 𝜌 ⊗ ^. Let ^′
def
=

⊔↑ 𝐴. Then it is sufficient to show that for all 𝑥 and 𝑥′′ in
𝑋 , it holds that ∑︁

𝑥′∈𝑋
𝜌(𝑥) (𝑥′)^′(𝑥′) (𝑥′′) =

⊔↑
^∈𝐴

∑︁
𝑥′∈𝑋

𝜌(𝑥) (𝑥′)^(𝑥′) (𝑥′′). (3.2)

Because 𝐴 is directed andK (𝑋) as well asD (𝑋) are ordered pointwise, the set {_𝑥′.^(𝑥′) (𝑥′′) |
^ ∈ 𝐴} is directed and bounded. By [83, Thm. 3.1], the right-hand-side of (3.2) equals∑
𝑥′∈𝑋 𝜌(𝑥) (𝑥′) (⊔↑^∈𝐴 _𝑥′.^(𝑥′) (𝑥′′)) (𝑥′). We conclude the proof by the fact _𝑥′.^′(𝑥′) (𝑥′′) =⊔↑
^∈𝐴 _𝑥

′.^(𝑥′) (𝑥′′) from the definition of ^′.
□



3.2. NONDETERMINISM-FIRST 25

3.2.2 Generalized Convexity
As shown in §3.1.3, nondeterminism-last is captured by convex sets of distributions. However, a
more complicated notion of convexity is needed to develop nondeterminism-first semantics over
kernels. Let 𝑋 be a nonempty countable set. Every semantic object should be closed under the
conditional-choice 𝜙^ for every function 𝜙 ∈ 𝕎 (𝑋). The operation 𝜙^ corresponds to the program
construct “if 𝜙 then · · · else · · · fi.” Recall that the definition ^1 𝜙^ ^2

def
= 𝜙 · ^1 + ( ¤1 − 𝜙) · ^2 is

similar to a convex combination, except that the coefficients might not only be constants, but can
also depend on the state. I formalize the idea by defining a notion of g-convexity.
Definition 3.13. A subset 𝐴 of K (𝑋) is called g-convex, if for all sequences {^𝑖}𝑖∈ℕ ⊆ 𝐴 and
{𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) such that ∑∞𝑖=1 𝜙𝑖 = ¤1, it holds that

∑∞
𝑖=1 𝜙𝑖 · ^𝑖 is contained in 𝐴.

I now show that some domain-theoretic operations preserve g-convexity.
Lemma 3.14. Let 𝐴 be a g-convex subset of K (𝑋). Then
1. The saturation ↑𝐴 and the lower closure ↓𝐴 are g-convex.
2. The closure 𝐴 is g-convex.

Proof.
1. Straightforward by the fact that for any {𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋), and any {^𝑖}𝑖∈ℕ ⊆ K (𝑋), {𝜌𝑖}𝑖∈ℕ ⊆
K (𝑋) satisfying that ^𝑖 ⊑𝐾 𝜌𝑖 for all 𝑖 ∈ ℤ+, it holds that ∑∞𝑖=0 𝜙𝑖 · ^𝑖 ⊑𝐾

∑∞
𝑖=0 𝜙𝑖 · 𝜌𝑖.

2. The Scott-closure of 𝐴 can be obtained by 𝐴 = {⊔↑ 𝐵 | 𝐵 ⊆ ↓𝐴, 𝐵 directed} [144]. For any
{^𝑖}𝑖∈ℕ ⊆ 𝐴, there are directed subsets 𝐵𝑖 of ↓𝐴 such that ^𝑖 =

⊔↑ 𝐵𝑖 for all 𝑖 ∈ ℕ. For any
{𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) such that ∑∞𝑖=1 𝜙𝑖 = ¤1, we have

∞∑︁
𝑖=1

𝜙𝑖 · ^𝑖 =
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 · ^𝑖

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 ·
(⊔↑

𝐵𝑖
)

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

⊔↑
𝜌𝑖∈𝐵𝑖𝜙𝑖 · 𝜌𝑖

=
⊔↑

𝑛∈ℤ+
⊔↑
∀𝑖:𝜌𝑖∈𝐵𝑖

𝑛∑︁
𝑖=1

𝜙𝑖 · 𝜌𝑖

=
⊔↑
∀𝑖:𝜌𝑖∈𝐵𝑖

⊔↑
𝑛∈ℤ+

𝑛∑︁
𝑖=1

𝜙𝑖 · 𝜌𝑖

=
⊔↑
∀𝑖:𝜌𝑖∈𝐵𝑖

∞∑︁
𝑖=1

𝜙𝑖 · 𝜌𝑖,

where ∑∞
𝑖=1 𝜙𝑖 · 𝜌𝑖 is indeed contained in ↓𝐴 by its g-convexity and hence {∑∞𝑖=1 𝜙𝑖 · 𝜌𝑖 | ∀𝑖 :

𝜌𝑖 ∈ 𝐵𝑖} is a directed subset of ↓𝐴, thus ∑∞
𝑖=1 𝜙𝑖 · ^𝑖 is contained in 𝐴.

□
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The g-convex hull of a subset 𝐴 of K (𝑋) is the smallest g-convex set containing 𝐴 as a subset,
denoted by 𝑔𝑐𝑜𝑛𝑣(𝐴). Intuitively, 𝑔𝑐𝑜𝑛𝑣(𝐴) enriches 𝐴 to become a reasonable semantic object
that is closed under arbitrary conditional-choice.
Below are some properties of the 𝑔𝑐𝑜𝑛𝑣(·) operator.
Lemma 3.15. Suppose that 𝐴 and 𝐵 are g-convex subsets of K (𝑋). Then {^ 𝜙^ 𝜌 | ^ ∈ 𝐴 ∧ 𝜌 ∈ 𝐵}

is g-convex for all functions 𝜙 ∈ 𝕎 (𝑋).
Proof. Let {[𝑖}𝑖∈ℕ be any sequence in {^ 𝜙^ 𝜌 | ^ ∈ 𝐴 ∧ 𝜌 ∈ 𝐵}, and [𝑖 = ^𝑖 𝜙^ 𝜌𝑖 such that

^𝑖 ∈ 𝐴, 𝜌𝑖 ∈ 𝐵 for all 𝑖 ∈ ℕ. For any {𝜓𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) such that ∑∞𝑖=1 𝜓𝑖 = ¤1, we have
∞∑︁
𝑖=1

𝜓𝑖 · [𝑖 =
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜓𝑖 · [𝑖

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜓𝑖 · (^𝑖 𝜙^ 𝜌𝑖)

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜓𝑖 · (𝜙 · ^𝑖 + ( ¤1 − 𝜙) · 𝜌𝑖)

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1
((𝜓𝑖𝜙) · ^𝑖 + (𝜓𝑖 − 𝜓𝑖𝜙) · 𝜌𝑖)

=
⊔↑

𝑛∈ℤ+

(
𝑛∑︁
𝑖=1
(𝜓𝑖𝜙) · ^𝑖 +

𝑛∑︁
𝑖=1
(𝜓𝑖 − 𝜓𝑖𝜙) · 𝜌𝑖

)
=

⊔↑
𝑛∈ℤ+

𝑛∑︁
𝑖=1
(𝜓𝑖𝜙) · ^𝑖 +

⊔↑
𝑛∈ℤ+

𝑛∑︁
𝑖=1
(𝜓𝑖 − 𝜓𝑖𝜙) · 𝜌𝑖

= 𝜙 ·
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜓𝑖 · ^𝑖 + ( ¤1 − 𝜙) ·
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜓𝑖 · 𝜌𝑖

=

(
∞∑︁
𝑖=1

𝜓𝑖 · ^𝑖
)
𝜙^

(
∞∑︁
𝑖=1

𝜓𝑖 · 𝜌𝑖
)
.

Because 𝐴 and 𝐵 are g-convex, we know that ∑∞𝑖=0 𝜓𝑖 ·^𝑖 ∈ 𝐴 and ∑∞
𝑖=1 𝜓𝑖 · 𝜌𝑖 ∈ 𝐵. Hence ∑∞

𝑖=1 𝜓𝑖 ·[𝑖
is contained in {^ 𝜙^ 𝜌 | ^ ∈ 𝐴 ∧ 𝜌 ∈ 𝐵}. □

Corollary 3.16. If 𝐴 and 𝐵 are g-convex, then 𝑔𝑐𝑜𝑛𝑣(𝐴∪ 𝐵) is given by {^1 𝜙^ ^2 | ^1 ∈ 𝐴∧ ^2 ∈
𝐵 ∧ 𝜙 ∈ 𝕎 (𝑋)}.
Proof. It is straightforward to show that 𝑔𝑐𝑜𝑛𝑣(𝐴∪ 𝐵) is a superset of {^1 𝜙^ ^2 | ^1 ∈ 𝐴∧^2 ∈

𝐵 ∧ 𝜙 ∈ 𝕎 (𝑋)}. Then it suffices to show this set is indeed g-convex. We conclude the proof by
Lemma 3.15. □

For a finite subset 𝐹 of K (𝑋), as an immediate corollary of Corollary 3.16, by a simple induction
we know that 𝑔𝑐𝑜𝑛𝑣(𝐹) = {∑^∈𝐹 𝜙^ · ^ | {𝜙^}^∈𝐹 ⊆ 𝕎 (𝑋) ∧∑

^∈𝐹 𝜙^ = ¤1}.
Lemma 3.17. For an arbitrary 𝐴 ⊆ K (𝑋), it holds that

𝑔𝑐𝑜𝑛𝑣(𝐴) =
{
∞∑︁
𝑖=1

𝜙𝑖 · ^𝑖 | {^𝑖}𝑖∈ℕ ⊆ 𝐴 ∧ {𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) ∧
∞∑︁
𝑖=1

𝜙𝑖 = ¤1
}
. (3.3)
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Proof. It is straightforward to show that 𝑔𝑐𝑜𝑛𝑣(𝐴) is a superset of the right-hand-side of (3.3).
Then we want to show the right-hand-side is indeed g-convex, which indicates the desired equality
by the definition of 𝑔𝑐𝑜𝑛𝑣(𝐴).
Suppose {^𝑖}𝑖∈ℕ is a sequence in the right-hand-side of (3.3). Then for all 𝑖 ∈ ℕ, there exist
{^𝑖, 𝑗} 𝑗∈ℕ ⊆ 𝐴 and {𝜙𝑖, 𝑗} 𝑗∈ℕ such that ∑∞𝑗=1 𝜙𝑖, 𝑗 = ¤1 and ^𝑖 =

∑∞
𝑗=1 𝜙𝑖, 𝑗 · ^𝑖, 𝑗. It is sufficient to show

that for all {𝜙𝑖}𝑖∈ℕ, the kernel ∑∞𝑖=1 𝜙𝑖 · ^𝑖 is contained in the right-hand-side of (3.3). We have

∞∑︁
𝑖=1

𝜙𝑖 · ^𝑖 =
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 · ^𝑖

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 ·
∞∑︁
𝑗=1

𝜙𝑖, 𝑗 · ^𝑖, 𝑗

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 ·
⊔↑

𝑚∈ℤ+
𝑚∑︁
𝑗=1

𝜙𝑖, 𝑗 · ^𝑖, 𝑗

=
⊔↑

𝑛∈ℤ+,𝑚∈ℤ+
∑︁

1≤𝑖≤𝑛,1≤ 𝑗≤𝑚
(𝜙𝑖𝜙𝑖, 𝑗) · ^𝑖, 𝑗.

Let \ : ℕ×ℕ→ ℕ be an arbitrary bijection. Let 𝜌𝑘 def
= ^𝑖, 𝑗 and 𝜓𝑘

def
= 𝜙𝑖𝜙𝑖, 𝑗 such that (𝑖, 𝑗) = \−1(𝑘).

Then ∑∞
𝑘=1 𝜓𝑘 =

∑∞
𝑖=1

∑∞
𝑗=1 𝜓\(𝑖, 𝑗) =

∑∞
𝑖=1

∑∞
𝑗=1 𝜙𝑖𝜙𝑖, 𝑗 =

∑∞
𝑖=1 𝜙𝑖

∑∞
𝑗=1 𝜙𝑖, 𝑗 =

∑∞
𝑖=1 𝜙𝑖 · ¤1 =

∑∞
𝑖=1 𝜙𝑖 =

¤1. We now have⊔↑
𝑛∈ℤ+,𝑚∈ℤ+

∑︁
1≤𝑖≤𝑛,1≤ 𝑗≤𝑚

(𝜙𝑖𝜙𝑖, 𝑗) · ^𝑖, 𝑗 =
⊔↑

𝑛∈ℤ+,𝑚∈ℤ+
∑︁

1≤𝑖≤𝑛,1≤ 𝑗≤𝑚
𝜓\(𝑖, 𝑗) · 𝜌\(𝑖, 𝑗)

=
⊔↑

𝑙∈ℤ+
𝑙∑︁

𝑘=1
𝜓𝑘 · 𝜌𝑘

=
∞∑︁
𝑘=1

𝜓𝑙 · 𝜌𝑙,

which is indeed contained in the right-hand-side of (3.3). The second last equation of the derivation
above is established as follows:

• To show ⊔↑
𝑛∈ℤ+,𝑚∈ℤ+

∑
1≤𝑖≤𝑛,1≤ 𝑗≤𝑚 𝜓\(𝑖, 𝑗) · 𝜌\(𝑖, 𝑗) ⊑𝐾 ⊔↑

𝑙∈ℤ+
∑𝑙
𝑘=1 𝜓𝑘 · 𝜌𝑘: Fix 𝑛𝑜 ∈ ℤ+ and

𝑚𝑜 ∈ ℤ+. Let 𝑙𝑜 def
= max1≤𝑖≤𝑛𝑜,1≤ 𝑗≤𝑚𝑜 \(𝑖, 𝑗). Then we conclude by ∑

1≤𝑖≤𝑛𝑜,1≤ 𝑗≤𝑚𝑜 𝜓\(𝑖, 𝑗) ·
𝜌\(𝑖, 𝑗) ⊑𝐾 ∑𝑙𝑜

𝑘=1 𝜓𝑘 · 𝜌𝑘.

• To show ⊔↑
𝑙∈ℤ+

∑𝑙
𝑘=1 𝜓𝑘 · 𝜌𝑘 ⊑𝐾 ⊔↑

𝑛∈ℤ+,𝑚∈ℤ+
∑

1≤𝑖≤𝑛,1≤ 𝑗≤𝑚 𝜓\(𝑖, 𝑗) · 𝜌\(𝑖, 𝑗): Fix 𝑙𝑜 ∈ ℤ+. Let
𝑛𝑜

def
= max1≤𝑘≤𝑙𝑜 \

−1(𝑘).fst and 𝑚𝑜
def
= max1≤𝑘≤𝑙𝑜 \

−1(𝑘).snd. Then we conclude by ∑𝑙𝑜
𝑘=1 𝜓𝑘 ·

𝜌𝑘 ⊑𝐾 ∑
1≤𝑖≤𝑛𝑜,1≤ 𝑗≤𝑚𝑜 𝜓\(𝑖, 𝑗) · 𝜌\(𝑖, 𝑗) .

□

Lemma 3.18.

1. For an arbitrary 𝐴 ⊆ K (𝑋), it holds that 𝑔𝑐𝑜𝑛𝑣(𝐴) = 𝑔𝑐𝑜𝑛𝑣
(
𝐴
)
.
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2. If {𝐴𝑖}𝑖∈I is a directed collection of Scott-closed subsets of K (𝑋) ordered by set inclusion, then
𝑔𝑐𝑜𝑛𝑣 (⋃𝑖∈I 𝐴𝑖) = ⋃

𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖).

Proof.
1. The ⊆-direction is straightforward. For the ⊇-direction, we have

𝑔𝑐𝑜𝑛𝑣
(
𝐴
)
=

{
∞∑︁
𝑖=1

𝜙𝑖 · ^𝑖 | {^𝑖}𝑖∈ℕ ⊆ 𝐴 ∧ {𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) ∧
∞∑︁
𝑖=1

𝜙𝑖 = ¤1
}

by Lemma 3.17 and 𝐴 = {⊔↑ 𝐵 | 𝐵 ⊆ ↓𝐴, 𝐵 directed} [144]. Let ^ def
=

∑∞
𝑖=1 𝜙𝑖 ·^𝑖 be an element

of 𝑔𝑐𝑜𝑛𝑣
(
𝐴
)
where {^𝑖}𝑖∈ℕ ⊆ 𝐴. Then for all 𝑖 ∈ ℕ, there exists a directed 𝐵𝑖 ⊆ ↓𝐴 satisfying

^𝑖 =
⊔↑ 𝐵𝑖. Then we have

∞∑︁
𝑖=1

𝜙𝑖 · ^𝑖 =
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 · ^𝑖

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖 ·
⊔↑

𝐵𝑖

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

⊔↑
𝜌𝑖∈𝐵𝑖 (𝜙𝑖 · 𝜌𝑖)

=
⊔↑

𝑛∈ℤ+
⊔↑
∀𝑖:𝜌𝑖∈𝐵𝑖

𝑛∑︁
𝑖=1

𝜙𝑖 · 𝜌𝑖

=
⊔↑
∀𝑖:𝜌𝑖∈𝐵𝑖

⊔↑
𝑛∈ℤ+

𝑛∑︁
𝑖=1

𝜙𝑖 · 𝜌𝑖

=
⊔↑
∀𝑖:𝜌𝑖∈𝐵𝑖

∞∑︁
𝑖=1

𝜙𝑖 · 𝜌𝑖.

Because 𝜌𝑖 ∈ 𝐵𝑖 ⊆ ↓𝐴, there exists [𝑖 ∈ 𝐴 satisfying 𝜌𝑖 ⊑𝐾 [𝑖 for all 𝑖 ∈ ℕ, and thus∑∞
𝑖=1 𝜙𝑖 · [𝑖 ∈ 𝑔𝑐𝑜𝑛𝑣(𝐴). We also know that ∑∞

𝑖=1 𝜙𝑖 · 𝜌𝑖 ⊑𝐾
∑∞
𝑖=1 𝜙𝑖 · [𝑖, thus

∑∞
𝑖=1 𝜙𝑖 · 𝜌𝑖 ∈

↓𝑔𝑐𝑜𝑛𝑣(𝐴). Therefore ∑∞
𝑖=1 𝜙𝑖 · ^𝑖 ∈ 𝑔𝑐𝑜𝑛𝑣(𝐴). By 𝑔𝑐𝑜𝑛𝑣

(
𝐴
)
⊆ 𝑔𝑐𝑜𝑛𝑣(𝐴) we conclude that

𝑔𝑐𝑜𝑛𝑣
(
𝐴
)
⊆ 𝑔𝑐𝑜𝑛𝑣(𝐴).

2. For the ⊇-direction, we have

∀𝑖 ∈ I : 𝑔𝑐𝑜𝑛𝑣
(⋃

𝑖∈I𝐴𝑖
)
⊇ 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖)

=⇒ ∀𝑖 ∈ I : 𝑔𝑐𝑜𝑛𝑣
(⋃

𝑖∈I𝐴𝑖
)
⊇ 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖)

=⇒ 𝑔𝑐𝑜𝑛𝑣
(⋃

𝑖∈I𝐴𝑖
)
⊇

⋃
𝑖∈I𝑔𝑐𝑜𝑛𝑣(𝐴𝑖)

=⇒ 𝑔𝑐𝑜𝑛𝑣
(⋃

𝑖∈I𝐴𝑖
)
⊇

⋃
𝑖∈I𝑔𝑐𝑜𝑛𝑣(𝐴𝑖).
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For the ⊆-direction, we know that

𝑔𝑐𝑜𝑛𝑣
(⋃

𝑖∈I𝐴𝑖
)
=

{
∞∑︁
𝑗=1

𝜙 𝑗 · ^ 𝑗 | {^ 𝑗} 𝑗∈ℕ ⊆
⋃

𝑖∈I𝐴𝑖 ∧ {𝜙 𝑗} 𝑗∈ℕ ⊆ 𝕎 (𝑋) ∧
∞∑︁
𝑗=1

𝜙 𝑗 = ¤1
}
,

by Lemma 3.17. Let ^
def
=

∑∞
𝑗=1 𝜙 𝑗 · ^ 𝑗 be an element of 𝑔𝑐𝑜𝑛𝑣 (⋃𝑖∈I 𝐴𝑖) where

{^ 𝑗} 𝑗∈ℤ+ ⊆ ⋃
𝑖∈I 𝐴𝑖. For all 𝑛 ∈ ℤ+, because {𝐴𝑖}𝑖∈I is directed, there exists 𝐴𝑜(𝑛)

satisfying {^1, · · · , ^𝑛} ⊆ 𝐴𝑜(𝑛). Thus ∑𝑛
𝑗=1 𝜙 𝑗 · ^ 𝑗 ∈ 𝑔𝑐𝑜𝑛𝑣

(
𝐴𝑜(𝑛)

)
. By the definition

of Scott-closure, we know that ⊔↑
𝑛∈ℤ+

∑𝑛
𝑗=1 𝜙 𝑗 · ^ 𝑗 ∈ ⋃

𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖). Thus ^ is con-
tained in ⋃

𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖) and 𝑔𝑐𝑜𝑛𝑣 (⋃𝑖∈I 𝐴𝑖) ⊆ ⋃
𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖). Hence we conclude that

𝑔𝑐𝑜𝑛𝑣 (⋃𝑖∈I 𝐴𝑖) ⊆ ⋃
𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖).

□

Lemma 3.19. Let 𝐴 and 𝐵 be Scott-compact g-convex subsets of K (𝑋). Then 𝑔𝑐𝑜𝑛𝑣(𝐴 ∪ 𝐵) is also
Scott-compact.

Proof. The unit interval [0, 1] equipped with its usual linear order forms a Scott-compact
topology. By Tikhonov’s theorem,4 we know that 𝑋 → [0, 1] = [0, 1]𝑋 with the product topology is
a Scott-compact space. Hence Γ def

= {(𝜙, ¤1−𝜙) | 𝜙 ∈ 𝕎 (𝑋)} is also a Scott-compact space. The map
from Γ×K (𝑋) ×K (𝑋) to K (𝑋) defined by ((𝜙, ¤1−𝜙), ^1, ^2) ↦→ ^1 𝜙^ ^2 is Scott-continuous. By
Corollary 3.16 we know that 𝑔𝑐𝑜𝑛𝑣(𝐴∪ 𝐵) is precisely the image of the Scott-compact set Γ× 𝐴× 𝐵.
Because Scott-continuous functions preserve Scott-compactness, we conclude that 𝑔𝑐𝑜𝑛𝑣(𝐴 ∪ 𝐵) is
also Scott-compact. □

I now turn to discuss some separation properties for g-convexity.
Lemma 3.20.
1. If 𝐴 ⊆ K (𝑋) is g-convex, then for all 𝑥 ∈ 𝑋 , the set {^(𝑥) | ^ ∈ 𝐴} is convex.
2. If 𝐴 ⊆ K (𝑋) is Scott-compact, then for all 𝑥 ∈ 𝑋 , the set {^(𝑥) | ^ ∈ 𝐴} is Scott-compact.
3. If 𝐴 ⊆ K (𝑋) is Scott-closed, then for all 𝑥 ∈ 𝑋 , the set {^(𝑥) | ^ ∈ 𝐴} is Scott-closed.

Proof.
1. Let 𝑥 ∈ 𝑋 , ^1, ^2 ∈ 𝐴, and 𝑝 ∈ [0, 1]. We want to show that 𝑝 · ^1(𝑥) + (1 − 𝑝) · ^2(𝑥) ∈
{^(𝑥) | ^ ∈ 𝐴}. Let 𝜙 def

= _𝑥.𝑝. Then ^1 𝜙^ ^2 ∈ 𝐴 because of g-convexity. We conclude the
proof by (^1 𝜙^ ^2) (𝑥) = 𝜙(𝑥) · ^1(𝑥) + (1 − 𝜙(𝑥)) · ^2(𝑥) = 𝑝 · ^1(𝑥) + (1 − 𝑝) · ^2(𝑥).

2. Let 𝑥 ∈ 𝑋 . Let 𝐹(^) def
= ^(𝑥) be a map from K (𝑋) to D (𝑋). Because 𝐹 is Scott-continuous

and Scott-continuous functions preserve Scott-compactness, we conclude that 𝐹(𝐴) is Scott-
compact because 𝐴 is Scott-compact.

3. Straightforward by the fact that K (𝑋) = 𝑋 → D (𝑋) and K (𝑋) is ordered pointwise.
4Let {(𝑋𝛼, 𝜏𝛼)}𝛼∈Λ be a collection of topological spaces. Then ∏

𝛼∈Λ 𝑋𝛼 is compact iff 𝑋𝛼 is compact for all 𝛼 ∈ Λ.
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□

Lemma 3.21. Let us consider subsets of K (𝑋). Suppose that 𝐾 is a Scott-compact g-convex set and
𝐴 is a nonempty Scott-closed g-convex set that is disjoint from 𝐾. Then they can be separated by a
g-convex Scott-open set, i.e., there is a g-convex Scott-open set 𝑉 including 𝐾 and disjoint from 𝐴.

Proof. We claim that there exists 𝑥 ∈ 𝑋 such that 𝐾 (𝑥) ∩ 𝐴(𝑥) = ∅.
If not, then for all 𝑥 ∈ 𝑋 there is 𝐾 (𝑥) ∩ 𝐴(𝑥) ≠ ∅. Hence we can define a kernel ^ such that

^(𝑥) ∈ 𝐾 (𝑥) ∩ 𝐴(𝑥) for every 𝑥. We want to show that ^ ∈ 𝐴 and ^ ∈ 𝐾. This follows from
g-convexity of 𝐴 and 𝐾: suppose ^(𝑥) = ^𝑥 (𝑥) such that ^𝑥 ∈ 𝐾 for all 𝑥, then ^ =

∑
𝑥∈𝑋 (_𝑥′.[𝑥 =

𝑥′]) · ^𝑥 . This contradicts the fact that 𝐾 and 𝐴 are disjoint.
Let 𝑥 ∈ 𝑋 such that 𝐾 (𝑥) ∩ 𝐴(𝑥) = ∅. By Lemma 3.20(ii)(iii) we know that 𝐾 (𝑥) is Scott-compact

and 𝐴(𝑥) is Scott-closed. By [144, Thm. 3.8] we know that there exist a Scott-continuous linear
map 𝐹 and a number 𝑎 in ℝ+∞ such that 𝐹(`) > 𝑎 > 1 ≥ 𝐹(a) for all ` in 𝐾 (𝑥) and a in 𝐴(𝑥). Let
𝑉

def
= {^ | 𝐹(^(𝑥)) > 𝑎} be a Scott-open subset of K (𝑋). Then we know that 𝐾 ⊆ 𝑉 and 𝐴 ∩ 𝑉 = ∅.

Then it suffices to show that 𝑉 is g-convex. For any {^𝑖}𝑖∈ℕ ⊆ 𝑉 and {𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) such that∑∞
𝑖=1 𝜙𝑖 = ¤1, we have

𝐹

((
∞∑︁
𝑖=1

𝜙𝑖 · ^𝑖
)
(𝑥)

)
= 𝐹

(
∞∑︁
𝑖=1

𝜙𝑖(𝑥) · ^𝑖(𝑥)
)

= 𝐹

(⊔↑
𝑛∈ℤ+

𝑛∑︁
𝑖=1

𝜙𝑖(𝑥) · ^𝑖(𝑥)
)

=
⊔↑

𝑛∈ℤ+𝐹

(
𝑛∑︁
𝑖=1

𝜙𝑖(𝑥) · ^𝑖(𝑥)
)

=
⊔↑

𝑛∈ℤ+
𝑛∑︁
𝑖=1

𝜙𝑖(𝑥) · 𝐹(^𝑖(𝑥))

> 𝑎,

hence ∑∞
𝑖=1 𝜙𝑖 · ^𝑖 ∈ 𝑉. □

Lemma 3.22. If 𝐾 ⊆ K (𝑋) is nonempty and Scott-compact, then 𝑔𝑐𝑜𝑛𝑣(𝐾) is Scott-compact.

Proof. It suffices to show that any open-cover of 𝐾 is an open-cover of 𝑔𝑐𝑜𝑛𝑣(𝐾). Let C be an
open-cover of 𝐾. Let 𝑈 =

⋃
C. If 𝑔𝑐𝑜𝑛𝑣(𝐾) is not contained in 𝑈, then by Lemma 3.17, there

exist {^𝑖}𝑖∈ℕ ⊆ 𝐾 and {𝜙𝑖}𝑖∈ℕ ⊆ 𝕎 (𝑋) such that ∑∞𝑖=1 𝜙𝑖 = ¤1 and ^ def
=

∑∞
𝑖=1 𝜙𝑖 · ^𝑖 ∈ 𝑔𝑐𝑜𝑛𝑣(𝐾) \𝑈.

Let 𝐴 = ↓^ be a Scott-closed set, then 𝐴 is disjoint from 𝑈, and thus disjoint from 𝐾. Similar
to the proof of Lemma 3.21, we claim that there exist 𝑥 ∈ 𝑋 and a Scott-continuous linear map
𝐹 and a number 𝑎 ∈ ℝ+∞ such that 𝐹(`) > 𝑎 > 1 ≥ 𝐹(a) for all ` in 𝐾 (𝑥) and a ∈ 𝐴(𝑥).
Then 𝐹(^(𝑥)) = 𝐹((∑∞𝑖=1 𝜙𝑖 · ^𝑖) (𝑥)) = 𝐹(∑∞𝑖=1 𝜙𝑖(𝑥) · ^𝑖(𝑥)) =

⊔↑
𝑛∈ℤ+ 𝐹(

∑𝑛
𝑖=1 𝜙𝑖(𝑥) · ^𝑖(𝑥)) =⊔↑

𝑛∈ℤ+ 𝜙𝑖(𝑥) · 𝐹(^𝑖(𝑥)) > 𝑎 > 1, but because ^ ∈ 𝐴 we also have 𝐹(^(𝑥)) ≤ 1. We then conclude
the proof by contradiction. □
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3.2.3 A g-convex Powerdomain for Nondeterminism-First
From the literature, a Plotkin powertheory [2] is defined by one binary operation −−∪, called formal
union, and the following laws: (i) 𝐴 −−∪ 𝐵 = 𝐵 −−∪ 𝐴, (ii) (𝐴 −−∪ 𝐵) −−∪ 𝐶 = 𝐴 −−∪ (𝐵 −−∪ 𝐶), and (iii)
𝐴 −−∪ 𝐴 = 𝐴, for all objects 𝐴, 𝐵, 𝐶 in the powerdomain. Intuitively, the formal union −−∪ represents
nondeterministic-choice. Moreover, the formal union induces a semilattice ordering: 𝐴 ≤ 𝐵 if
𝐴−−∪ 𝐵 = 𝐵. The semilattice ordering is usually not interesting from the perspective of domain theory,
however, it is instrumental to describe the relation between conditional-choice and nondeterministic-
choice—𝐴 𝜙^ 𝐵 ≤ 𝐴 −−∪ 𝐵 for all semantic objects 𝐴, 𝐵—a nondeterministic-choice should abstract
an arbitrary (possibly probabilistic) conditional-choice.
Let 𝑋 be a nonempty countable set. As nondeterminism-first interprets programs as collections of

input-output transformers, I want to develop a powerdomain onK (𝑋), i.e., kernels on 𝑋 . To achieve
this goal, I need to (i) identify a collection of well-formed semantic objects in ℘(K (𝑋)), which
admits a formal-union operation described above, (ii) lift conditional-choice 𝜙^ and composition
⊗ on kernels to the powerdomain properly, and (iii) prove the powerdomain is a dcpo and the
operations are Scott-continuous.
Inspired by studies on convex powerdomains [2, 110, 144], I start with the following collection

GK (𝑋) def
= {𝑆 ⊆ K (𝑋) | 𝑆 a nonempty g-convex lens}

to be the set of all g-convex lenses of K (𝑋) ordered by Egli-Miler order 𝐴 ⊑𝐺 𝐵
def
= 𝐴 ⊆ ↓𝐵 ∧↑𝐴 ⊇ 𝐵.

Recall that a lens of K (𝑋) is a nonempty subset of K (𝑋) that is the intersection of a Scott-closed
subset and a Scott-compact saturated subset. I call GK (𝑋) a g-convex powerdomain over kernels
on 𝑋 .
The following theorem establishes a characterization of g-convex powerdomains.

Theorem 3.23. (GK (𝑋), ⊑𝐺) forms a dcpo, with a least element ⊥𝐺 def
= {⊥𝐾}.

Proof. It is straightforward to show that (GK (𝑋), ⊑𝐺) forms a poset and ⊥𝐺 is the least element.
Then it suffices to show the powerdomain admits directed suprema. For a directed collection
A = {𝐴𝑖}𝑖∈I ⊆ GK (𝑋), we define ⊔↑

𝑖∈I 𝐴𝑖
def
=

⋃
𝑖∈I ↓𝐴𝑖∩⋂

𝑖∈I ↑𝐴𝑖. We now show ⊔↑
𝑖∈I 𝐴𝑖 is indeed

the least upper bound of A.
We already know K (𝑋) is coherent by Theorem 3.11. Observe that ⊔↑

𝑖∈I 𝐴𝑖 =
⋃

𝑖∈I ↓𝐴𝑖 ∩⋂
𝑖∈I ↑𝐴𝑖 = ⋂

𝑖∈I (⋃𝑖∈I ↑𝐴𝑖 ∩ ↑𝐴𝑖), and {⋃𝑖∈I ↑𝐴𝑖 ∩ ↑𝐴𝑖}𝑖∈I is a filtered family of nonempty lenses,
or more generally, nonempty Lawson-closed subsets thus nonempty Lawson-compact subsets
because of the coherence of K (𝑋). By Proposition 3.5 we know the filtered family admits a
nonempty intersection. Thus ⊔↑

𝑖∈I 𝐴𝑖 is a nonempty lens that is indeed g-convex by Lemma 3.14
and the g-convexity of 𝐴𝑖’s. In this way we show that ⊔↑

𝑖∈I 𝐴𝑖 ∈ GK (𝑋).
Let 𝐵 def

=
⊔↑

𝑖∈I 𝐴𝑖. To show that 𝐵 is the least upper bound of A, we claim that ↓𝐵 =
⋃

𝑖∈I ↓𝐴𝑖
and ↑𝐵 =

⋂
𝑖∈I ↑𝐴𝑖. If so, then 𝐵 is obviously an upper bound of A and if 𝐴𝑖 ⊑𝐺 𝐵′ for all 𝑖 ∈ I,

then ↓𝐴𝑖 ⊆ ↓𝐵′ and ↑𝐴𝑖 ⊇ ↑𝐵′ for all 𝑖 ∈ I, thus ↓𝐵 =
⋃

𝑖∈I ↓𝐴𝑖 ⊆ ↓𝐵′ and ↑𝐵 =
⋂

𝑖∈I ↑𝐴𝑖 ⊇ ↑𝐵′,
thus 𝐵 ⊑𝐺 𝐵′. Since 𝐵′ is arbitrarily chosen, we can conclude that 𝐵 is the least upper bound of A.
We adapt a proof approach from Tix et al. [144]’s work as follows.
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• To show ↓𝐵 =
⋃

𝑖∈I ↓𝐴𝑖: Inclusion is obvious. For the reversed inclusion, it is sufficient to show
↓𝐵 ⊇ ⋃

𝑖∈I ↓𝐴𝑖 since ↓𝐵 is Scott-closed. Fix 𝑥 ∈ ↓𝐴𝑖 for some 𝑖 ∈ I. Then there exists 𝑦 ∈ 𝐴𝑖
such that 𝑥 ⊑𝐾 𝑦. For all 𝑗 ∈ I satisfying 𝐴𝑖 ⊑𝐺 𝐴 𝑗, there exists 𝑧 ∈ 𝐴 𝑗 such that 𝑦 ⊑𝐾 𝑧.
Therefore ↑𝑥 ∩⋃

𝑖∈I ↓𝐴𝑖 ∩ ↑𝐴 𝑗 ≠ ∅. Again a filtered family of nonempty Lawson-compact sets
admits a nonempty intersection by Proposition 3.5, we have ↑𝑥 ∩⋃

𝑖∈I ↓𝐴𝑖 ∩⋂
𝑗∈I ↑𝐴 𝑗 ≠ ∅,

i.e., ↑𝑥 ∩ 𝐵 ≠ ∅, thus 𝑥 ∈ ↓𝐵.
• To show ↑𝐵 =

⋂
𝑖∈I ↑𝐴𝑖: Inclusion is obvious. For the reversed inclusion, fix 𝑥 ∈ ⋂

𝑖∈I ↑𝐴𝑖.
Then we have ↓𝑥 ∩⋃

𝑖∈I ↓𝐴𝑖 ∩ ↑𝐴 𝑗 ≠ ∅ for all 𝑗 ∈ I. By a similar reasoning to the previous
case we have ↓𝑥 ∩⋃

𝑖∈I ↓𝐴𝑖 ∩⋂
𝑗∈I ↑𝐴 𝑗 ≠ ∅, i.e., ↓𝑥 ∩ 𝐵 ≠ ∅, thus 𝑥 ∈ ↑𝐵.

□

I now lift conditional-choice 𝜙^ (where 𝜙 ∈ 𝕎 (𝑋)) and composition ⊗ for kernels to the
powerdomain GK (𝑋) as follows.

𝐴 𝜙^𝐺 𝐵
def
= {𝑎 𝜙^ 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵} ∩ ↑{𝑎 𝜙^ 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}

𝐴 ⊗𝐺 𝐵 def
= 𝑔𝑐𝑜𝑛𝑣({𝑎 ⊗ 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}) ∩ ↑𝑔𝑐𝑜𝑛𝑣({𝑎 ⊗ 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵})

The operations construct nonempty g-convex lenses by Lemmas 3.14 and 3.22. As conditional-
choice and composition operations are Scott-continuous on kernels, the lifted operations are also
Scott-continuous in the powerdomain.

Lemma 3.24. The operations 𝜙^𝐺 and ⊗𝐺 are Scott-continuous for all 𝜙 ∈ 𝕎 (𝑋).

Proof. The only nontrivial part of the proof is to show ⊗𝐺 preserves directed suprema. Firstly
we claim that ↓(𝐴 ⊗𝐺 𝐵) = 𝑔𝑐𝑜𝑛𝑣({𝑎 ⊗ 𝑏 | 𝑎 ∈ ↓𝐴 ∧ 𝑏 ∈ ↓𝐵}) and ↑(𝐴 ⊗𝐺 𝐵) = ↑𝑔𝑐𝑜𝑛𝑣({𝑎 ⊗ 𝑏 |
𝑎 ∈ ↑𝐴 ∧ 𝑏 ∈ ↑𝐵}). Let’s write 𝐴 ¤⊗ 𝐵 for {𝑎 ⊗ 𝑏 | 𝑎 ∈ 𝐴 ∧ 𝑏 ∈ 𝐵}.

• To show ↓(𝐴⊗𝐺𝐵) = 𝑔𝑐𝑜𝑛𝑣(↓𝐴 ¤⊗ ↓𝐵): Inclusion is obvious. For the reversed inclusion, we have
𝑔𝑐𝑜𝑛𝑣(↓𝐴 ¤⊗ ↓𝐵) ⊆ 𝑔𝑐𝑜𝑛𝑣(↓(𝐴 ¤⊗ 𝐵)) = 𝑔𝑐𝑜𝑛𝑣(↓(𝐴 ¤⊗ 𝐵)) = 𝑔𝑐𝑜𝑛𝑣(𝐴 ¤⊗ 𝐵) = 𝑔𝑐𝑜𝑛𝑣(𝐴 ¤⊗ 𝐵) ⊆
↓(𝐴 ⊗𝐺 𝐵) by Lemma 3.18(i) and Lawson-compactness of 𝐴 ⊗𝐺 𝐵.

• To show ↑(𝐴 ⊗𝐺 𝐵) = ↑𝑔𝑐𝑜𝑛𝑣(↑𝐴 ¤⊗ ↑𝐵): Inclusion is obvious. For the reversed inclusion, we
have ↑𝑔𝑐𝑜𝑛𝑣(↑𝐴 ¤⊗ ↑𝐵) ⊆ ↑𝑔𝑐𝑜𝑛𝑣(↑(𝐴 ¤⊗ 𝐵)) ⊆ ↑𝑔𝑐𝑜𝑛𝑣(𝐴 ¤⊗ 𝐵) ⊆ ↑(𝐴 ⊗𝐺 𝐵).

Then it suffices to show that ⊗𝐺 is Scott-continuous in the space of down-closures (i.e., {↓𝐴 | 𝐴 ∈
GK (𝑋)}), as well as in the space of up-closures (i.e., {↑𝐴 | 𝐴 ∈ GK (𝑋)}).

• Let a directed family {𝐴𝑖}𝑖∈I (ordered by inclusion) and 𝐵 be nonempty Scott-closed g-convex
subsets of K (𝑋). We want to show that 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ¤⊗ 𝐵) = ⋃

𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ¤⊗ 𝐵), i.e., the
left-Scott-continuity. Indeed, we have 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ¤⊗ 𝐵) = 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ¤⊗ 𝐵) =

𝑔𝑐𝑜𝑛𝑣((⋃𝑖∈I 𝐴𝑖) ¤⊗ 𝐵) = 𝑔𝑐𝑜𝑛𝑣((⋃𝑖∈I 𝐴𝑖) ¤⊗ 𝐵) = 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I (𝐴𝑖 ¤⊗ 𝐵)) =⋃
𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ¤⊗ 𝐵) by Lemma 3.18 and Scott-continuity of ⊗ from Lemma 3.12(ii).

The right-Scott-continuity is proved in a similar way.
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• Let a directed family {𝐴𝑖}𝑖∈I (ordered by reversed inclusion) and 𝐵 be nonempty Scott-
compact saturated g-convex subsets of K (𝑋). We want to show that ↑𝑔𝑐𝑜𝑛𝑣((⋂𝑖∈I 𝐴𝑖) ¤⊗ 𝐵) =⋂

𝑖∈I ↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ¤⊗ 𝐵). Inclusion is obvious. For the reversed inclusion, choose any g-
convex Scott-open set 𝑈 containing ↑𝑔𝑐𝑜𝑛𝑣(⋂𝑖∈I 𝐴𝑖 ¤⊗ 𝐵). As every g-convex Scott-compact
saturated subset of a dcpo is the intersection of its g-convex Scott-open neighborhoods
(by Lemma 3.21), it suffices to prove that ⋂

𝑖∈I ↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ¤⊗ 𝐵) is contained in 𝑈. Observe
that 𝑔𝑐𝑜𝑛𝑣((⋂𝑖∈I 𝐴𝑖) ¤⊗ 𝐵) ⊆ 𝑈 and also (⋂𝑖∈I 𝐴𝑖) ¤⊗ 𝐵 ⊆ 𝑈, as ⊗ is Scott-continuous by
Lemma 3.12(ii) and ⋂

𝑖∈I 𝐴𝑖 and 𝐵 are Scott-compact saturated, we know that ⋂𝑖∈I 𝐴𝑖 and
𝐵 have Scott-open neighborhoods 𝑉 and 𝑊 respectively such that 𝑉 ¤⊗ 𝑊 ⊆ 𝑈. Because⋂
𝑖∈I 𝐴𝑖 ⊆ 𝑉, by Proposition 3.5 we know there is an 𝑖𝑜 ∈ I such that 𝐴𝑖𝑜 ⊆ 𝑉. Therefore

𝐴𝑖𝑜 ¤⊗ 𝐵 ⊆ 𝑉 ¤⊗𝑊 ⊆ 𝑈, and because 𝑈 is g-convex, we know 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖𝑜 ¤⊗ 𝐵) ⊆ 𝑈. Recall that 𝑈
is Scott-open, we conclude that ⋂𝑖∈I ↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ¤⊗𝐵) ⊆ 𝑈. The right-Scott-continuity is proved
in a similar way.

□

Finally, I define a formal union operation −−∪𝐺 as in Proposition 3.8 to interpret nondeterministic-
choice as 𝐴 −−∪𝐺 𝐵 def

= 𝐶 ∩ ↑𝐶 where 𝐶 is 𝑔𝑐𝑜𝑛𝑣(𝐴 ∪ 𝐵).
Lemma 3.25. The formal union −−∪𝐺 is a Scott-continuous semilattice operation on GK (𝑋).

Proof. It is straightforward to show that −−∪𝐺 is idempotent, commutative, and associative, i.e.,
−−∪𝐺 is a semilattice operation. Similar to the argument in the proof of Lemma 3.24, it suffices to
show the Scott-continuity of −−∪𝐺 with respect to lower closures as well as upper closures.

• Let a directed family {𝐴𝑖}𝑖∈I (ordered by inclusion) and 𝐵 be nonempty Scott-closed g-
convex subsets of K (𝑋). We want to show 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ∪ 𝐵) =

⋃
𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪ 𝐵).

Indeed, we have 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ∪ 𝐵) = 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ∪ 𝐵) = 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ∪ 𝐵) =

𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I 𝐴𝑖 ∪ 𝐵) = 𝑔𝑐𝑜𝑛𝑣(⋃𝑖∈I (𝐴𝑖 ∪ 𝐵)) = ⋃
𝑖∈I 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪ 𝐵) by Lemma 3.18.

• Let a directed family {𝐴𝑖}𝑖∈I (ordered by reversed inclusion) and 𝐵 be nonempty Scott-
compact saturated g-convex subsets of K (𝑋). We want to show that ↑𝑔𝑐𝑜𝑛𝑣((⋂𝑖∈I 𝐴𝑖) ∪ 𝐵) =⋂

𝑖∈I ↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪ 𝐵). Inclusion is obvious. For reversed inclusion, it suffices to show that for
every open set 𝑈 that is a neighborhood of ↑𝑔𝑐𝑜𝑛𝑣((⋂𝑖∈I 𝐴𝑖) ∪ 𝐵), we have that 𝑈 contains⋂

𝑖∈I ↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪ 𝐵) as a subset by Lemma 3.21. Observe that 𝑔𝑐𝑜𝑛𝑣((⋂𝑖∈I 𝐴𝑖) ∪ 𝐵) ⊆ 𝑈
thus (⋂𝑖∈I 𝐴𝑖) ∪ 𝐵 ⊆ 𝑈. Since ⋂

𝑖∈I 𝐴𝑖 and 𝐵 are Scott-compact saturated sets, there exist
Scott-open neighborhoods 𝑉 and 𝑊 of ⋂

𝑖∈I 𝐴𝑖 and 𝐵, respectively, such that 𝑉 ∪𝑊 ⊆ 𝑈.
Then by Proposition 3.5 we know that there exists 𝑖𝑜 ∈ I such that 𝐴𝑖𝑜 ⊆ 𝑉 by the fact that⋂

𝑖∈I 𝐴𝑖 ⊆ 𝑉. Thus 𝐴𝑖𝑜∪𝐵 ⊆ 𝑉∪𝑊 ⊆ 𝑈. Recall that𝑈 is g-convex, we have 𝑔𝑐𝑜𝑛𝑣(𝐴𝑖𝑜∪𝐵) ⊆ 𝑈.
Moreover, 𝑈 is Scott-open, thus saturated, hence we conclude that ⋂𝑖∈I ↑𝑔𝑐𝑜𝑛𝑣(𝐴𝑖 ∪ 𝐵) ⊆ 𝑈.

□

Example 3.26. Recall the probabilistic program 𝑃 in Example 3.10:

if ★ then 𝑡 B 𝑡 + 1 else 𝑡 B 𝑡 − 1 fi
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the state space 𝑋 is ℚ, and we want to show that for any probabilistic refinement 𝑃𝑟 of 𝑃 (i.e., ★ is
refined by prob(𝑟)), for input values 𝑡1, 𝑡2 of 𝑡, we have 𝔼𝑡′1∼Δ1,𝑡′2∼Δ2 [𝑡′1 − 𝑡′2] = 𝑡1 − 𝑡2, where the
program 𝑃𝑟 ends up with a distribution Δ1 starting with 𝑡 = 𝑡1 and Δ2 with 𝑡 = 𝑡2.
With the g-convex powerdomain GK (𝑋) for nondeterminism-first, 𝑡 B 𝑡 + 1 and 𝑡 B 𝑡 − 1 are

assigned semantic objects {_𝑡. 𝛿(𝑡 + 1)} and {_𝑡. 𝛿(𝑡 − 1)}, respectively. Thus the nondeterministic-
choice is interpreted as a subset of {_𝑡. 𝛿(𝑡 + 1)} −−∪𝐺 {_𝑡. 𝛿(𝑡 − 1)}, which is {^𝑟 | 𝑟 ∈ [0, 1]}, where
^𝑟 = _𝑡. 𝑟 · 𝛿(𝑡 + 1) + (1− 𝑟) · 𝛿(𝑡 − 1) is the kernel for the deterministic refinement 𝑃𝑟 of 𝑃. Therefore
for every 𝑟 ∈ [0, 1], we have 𝔼𝑡′1∼Δ1,𝑡′2∼Δ2 [𝑡′1 − 𝑡′2] = 𝔼𝑡′1∼^𝑟 (𝑡1),𝑡′2∼^𝑟 (𝑡2) [𝑡′1] − 𝔼𝑡′1∼^𝑟 (𝑡1),𝑡′2∼^𝑟 (𝑡2) [𝑡′2] =(𝑟(𝑡1 + 1) + (1 − 𝑟) (𝑡1 − 1)) − (𝑟(𝑡2 + 1) + (1 − 𝑟) (𝑡2 − 1)) = 𝑡1 − 𝑡2.
In contrast, if one started with the convex powerdomain PD (𝑋) reviewed in §3.1.3 for

nondeterminism-last, we would obtain the semantic object _𝑡. {𝑟 ·𝛿(𝑡+1)+(1−𝑟) ·𝛿(𝑡−1) | 𝑟 ∈ [0, 1]}
for the program 𝑃, as shown in Example 3.10. Now the refinements of 𝑃 include some ^ such that
^(𝑡1) = 0.5 · 𝛿(𝑡1 + 1) + 0.5 · 𝛿(𝑡1 − 1) and ^(𝑡2) = 0.3 · 𝛿(𝑡2 + 1) + 0.7 · 𝛿(𝑡2 − 1), thus we are not
able to prove the claim 𝔼[𝑡′1 − 𝑡′2] = 𝑡1 − 𝑡2.

3.3 Algebraic Denotational Semantics
The operational semantics described in §2.3 presents a reasonable model for evaluating single-
procedure probabilistic programs without nondeterminism. In this section, I develop a general
denotational semantics for CFHGs (introduced in §2.2) of multi-procedure probabilistic programs
with nondeterminism. The semantics is algebraic in the sense that it could be instantiated with
different concrete models of nondeterminism, e.g., nondeterminism-last reviewed in §3.1.3, as
well as novel nondeterminism-first developed in §3.2.3. I also show the denotational semantics is
equivalent to the operational semantics in §2.3 if we suppress procedure calls and nondeterminism
in the programming model.

3.3.1 A Fixpoint Semantics based on Markov Algebras
The algebraic denotational semantics is obtained by composing 𝐶𝑡𝑟𝑙(𝑒) operations along hyper-
edges. The semantics of programs is determined by an interpretation, which consists of two parts:
(i) a semantic algebra, which defines a set of possible program meanings, and which is equipped
with sequencing, conditional-choice, and nondeterministic-choice operators to compose these
meanings, and (ii) a semantic function, which assigns a meaning to each data action act ∈ Act. In
my thesis, I propose Markov algebras as the semantic algebras:
Definition 3.27. A Markov algebra (MA) over a set Cond of deterministic conditions is a 7-tuple
M = (𝑀, ⊑𝑀 , ⊗𝑀 , 𝜑^𝑀

,−−∪𝑀 ,⊥𝑀 , 1𝑀), where (𝑀, ⊑𝑀) forms a dcpo with ⊥𝑀 as its least element;
(𝑀, ⊗𝑀 , 1𝑀) forms a monoid (i.e., ⊗𝑀 is an associative binary operator with 1𝑀 as its identity
element); 𝜑^𝑀

is a binary operator parametrized by a condition 𝜑 ∈ Cond; −−∪𝑀 is idempotent,
commutative, associative and for all 𝑎, 𝑏 ∈ 𝑀 and 𝜑 ∈ Cond it holds that 𝑎 𝜑^𝑀

𝑏 ≤𝑀 𝑎 −−∪𝑀 𝑏
where ≤𝑀 is the semilattice ordering induced by −−∪𝑀 (i.e., 𝑎 ≤𝑀 𝑏 if 𝑎−−∪𝑀 𝑏 = 𝑏); and ⊗𝑀 , 𝜑^𝑀

,−−∪𝑀
are Scott-continuous.
Example 3.28. LetΩ be a nonempty countable set of program states and Cond be a set of deterministic

conditions, the definition and meaning of which are given in §2.2 and §2.3.
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1. The convex powerdomain PD (Ω) admits an MA (Ω → PD (Ω), ¤⊑𝑃, ⊗𝑃, 𝜑^𝑃
, ¤−−∪𝑃, ¤⊥𝑃, 1𝑃),

where ¤⊑𝑃, ¤−−∪𝑃, ¤⊥𝑃 are pointwise extensions of ⊑𝑃,−−∪𝑃,⊥𝑃, defined in §3.1.3, and 𝑔 ⊗𝑃 ℎ def
=

̂̂
ℎ ◦ 𝑔

where ̂̂
ℎ is given by Proposition 3.9, 𝑔 𝜑^𝑃

ℎ
def
= _𝜔.𝑔(𝜔) J𝜑K(𝜔)⊕𝑃 ℎ(𝜔), as well as 1𝑃 def

=

_𝜔. {𝛿(𝜔)}.
2. The g-convex powerdomain GK (Ω) admits an MA (GK (Ω), ⊑𝐺, ⊗𝐺, 𝜑^𝐺,−−∪𝐺,⊥𝐺, 1𝐺), where
⊑𝐺, ⊗𝐺, 𝜑^𝐺,−−∪𝐺,⊥𝐺 come from §3.2.3,5 and 1𝐺 def

= {_𝜔. 𝛿(𝜔)}.
Definition 3.29. An interpretation is a pairℐ = (M, J·Kℐ), whereM is an MA and J·Kℐ : Act→
M. We callM the semantic algebra of the interpretation and J·Kℐ the semantic function.
Example 3.30. We can lift the interpretation of data actions defined in Fig. 2.2 to semantic

functions with respect to convex or g-convex powerdomains—𝒫 = (PD (Ω), J·K𝒫) with JactK𝒫 def
=

_𝜔. {JactK(𝜔)} and𝒢 = (GK (Ω), J·K𝒢) with JactK𝒢 def
= {JactK}.

Given a probabilistic program 𝑃 = {𝐻𝑖}1≤𝑖≤𝑛 where each 𝐻𝑖 = (𝑉𝑖, 𝐸𝑖, 𝑣entry
𝑖 , 𝑣exit

𝑖 ) is a CFHG,
and an interpretation ℐ = (M, J·Kℐ), I define ℐ [𝑃] to be the interpretation of the probabilistic
program, as the least fixpoint of the function 𝐹𝑃, which is defined as

_S._𝑣.
−−−
⋃

𝑀

{ �𝐶𝑡𝑟𝑙(𝑒) (S(𝑢1), · · · , S(𝑢𝑘)) | 𝑒 = (𝑣, {𝑢1, · · · , 𝑢𝑘}) ∈ 𝐸
}

𝑣 ≠ 𝑣exit
𝑖 for all 𝑖

1𝑀 otherwise

where �𝐶𝑡𝑟𝑙(𝑒) for different kinds of control-flow actions is defined as follows:

�seq[act] (𝑆1) def
= JactKℐ ⊗𝑀 𝑆1, �cond[𝜑] (𝑆1, 𝑆2) def

= 𝑆1 𝜑^𝑀
𝑆2,�call[𝑖→ 𝑗] (𝑆1) def

= S(𝑣entry
𝑗 ) ⊗𝑀 𝑆1.

The least fixpoint of 𝐹𝑃 exists by Proposition 3.4 as well as the following lemma. Hence the
semantics of the procedure 𝐻𝑖 is given by J𝐻𝑖Kds def

= (lfp ¤⊑𝑀¤⊥𝑀 𝐹𝑃) (𝑣
entry
𝑖 ).

Lemma 3.31. The function 𝐹𝑃 is Scott-continuous on the dcpo (𝑉 → 𝑀, ¤⊑𝑀) with ¤⊥𝑀 def
= _𝑣.⊥𝑀 as

the least element, where ¤⊑𝑀 is the pointwise extension of ⊑𝑀 .

Proof. Appeal to the Scott-continuity of the operations ⊗𝑀 , 𝜑^𝑀
, and −−∪𝑀 . □

3.3.2 An Equivalence Result
To justify the denotational semantics proposed in §3.3.1, I go back to the restricted programming
language used to define the operational semantics in §2.3. If we suppress the features of multi-
procedure and nondeterminism, we should end up with a semantics that is equivalent to the
operational semantics J·Kos on a countable state space Ω (with the powerset ℘(Ω) as the 𝜎-algebra).

5The conditional-choice is actually interpreted as J𝜑K^𝐺
in the powerdomain.
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Lemma 3.32. Let 𝑃 = (𝑉, 𝐸, 𝑣entry, 𝑣exit) be a deterministic single-procedure probabilistic program.
1. If we interpret 𝑃 using 𝒫 = (Ω→ PD (Ω), J·K𝒫), we will have J𝑃Kds = _𝜔. {J𝑃Kos(𝜔)}.
2. If we interpret 𝑃 using𝒢 = (GK (Ω), J·K𝒢), we will have J𝑃Kds = {J𝑃Kos}.
Proof. It is sufficient to show that

_𝜔. sup
𝑛∈ℤ+
{−̂→𝑛}(⟨𝑣entry, 𝜔⟩) = (lfp ¤⊑𝐾_𝑣.⊥𝐾 𝐹𝑃) (𝑣entry),

and we are instead going to show for all 𝑛 ∈ ℤ+ and 𝑣 ∈ 𝑉 the following holds

_𝜔.−̂→𝑛(⟨𝑣, 𝜔⟩) = 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑣).
By induction on 𝑛, the base case is straightforward because both sides equal ⊥𝐾 . Suppose that for
some 𝑛, the equality holds for all 𝑣 ∈ 𝑉. Then for all 𝑣 ∈ 𝑉, we want to show that

_𝜔.−̂→𝑛+1(⟨𝑣, 𝜔⟩) = 𝐹𝑛+1𝑃 (_𝑣.⊥𝐾) (𝑣). (3.4)

• If 𝑣 is not associated with any edges, then −̂→𝑛+1(⟨𝑣, 𝜔⟩)(𝜔′) = [𝜔 = 𝜔′] for all 𝜔 and 𝜔′.
The right-hand-side of (3.4) equals 𝐹𝑃 (𝐹𝑛𝑃 (_𝑣.⊥𝐾)) (𝑣) and by the definition of 𝐹𝑃 we know it
is equal to _𝜔._𝜔′.[𝜔 = 𝜔′].

• If 𝑣 is associated with 𝑒 = (𝑣, {𝑢1, · · · , 𝑢𝑘}), then we know _𝜔.−̂→𝑛(⟨𝑢𝑖, 𝜔⟩) = 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢𝑖)
for all 𝑖 by induction hypothesis.
– If 𝐶𝑡𝑟𝑙(𝑒) = seq[act], then the right-hand-side of (3.4) equals JactK ⊗ 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢1). The
left-hand-side of (3.4) is

_𝜔._𝜔′.
∑︁
𝜏

−̂→(⟨𝑣, 𝜔⟩)(𝜏) · −̂→𝑛(𝜏) (𝜔′)

= _𝜔._𝜔′.
∑︁
𝜔′′

JactK(𝜔) (𝜔′′) · −̂→𝑛(⟨𝑢1, 𝜔
′′⟩)(𝜔′)

= JactK ⊗ 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢1).

– If 𝐶𝑡𝑟𝑙(𝑒) = cond[𝜑], then the right-hand-side of (3.4) equals 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢1) J𝜑K̂
𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢2). The left-hand-side of (3.4) is

_𝜔._𝜔′.
∑︁
𝜏

−̂→(⟨𝑣, 𝜔⟩)(𝜏) · −̂→𝑛(𝜏) (𝜔′)

= _𝜔._𝜔′.
(∑︁
𝜔′′

J𝜑K(𝜔) · 𝛿(𝜔) (𝜔′′) · −̂→𝑛(⟨𝑢1, 𝜔
′′⟩)(𝜔′)

+
∑︁
𝜔′′
(1 − J𝜑K(𝜔)) · 𝛿(𝜔) (𝜔′′) · −̂→𝑛(⟨𝑢2, 𝜔

′′⟩)(𝜔′)
)

= _𝜔._𝜔′.
(
J𝜑K(𝜔) · −̂→𝑛(⟨𝑢1, 𝜔⟩)(𝜔′) + (1 − J𝜑K(𝜔)) · −̂→𝑛(⟨𝑢2, 𝜔⟩)(𝜔′)

)
= _𝜔._𝜔′.

(
J𝜑K(𝜔) · 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢1) (𝜔) (𝜔′) + (1 − J𝜑K(𝜔)) · 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢2) (𝜔) (𝜔′)

)
= 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢1) J𝜑K̂ 𝐹𝑛𝑃 (_𝑣.⊥𝐾) (𝑢2).

Thus we conclude the proof.
□
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3.4 Discussion

3.4.1 Continuous Distributions
One important feature of probabilistic programming that is missing from the development of
nondeterminism-first in this chapter is continuous probability distributions, such as Normal
distributions. Notions from measure theory, such as measures and kernels, are extensively used
to model continuous distributions in probabilistic programming. Kozen [98] studied the relation
between deterministic probabilistic programs and continuous distributions via a metric on measures.
Many approaches used probability kernels [99, 139], sub-probability kernels [16], and s-finite
kernels [14, 140]. A different approach used measurable functions 𝐴→ 𝔻(ℝ+ × 𝐵) where 𝔻(𝑆)
stands for the set of all probability measures on 𝑆 [141]. Ehrhard et al. [48] provided a category
Cstabm on stable and measurable maps between cones, and used it to give a denotational semantics
for probabilistic PCF. Heunen et al. [69] proposed quasi-Borel spaces that form a new formalization
of probability theory replacing measurable spaces, and later Vákár et al. [145] extended quasi-Borel
spaces to give a denotational semantics for statistical Fixed-Point Calculus (FPC) [56].
However, those measure-theoretic developments do not work properly when nondeterminism

comes into the picture. To overcome this challenge, people have been adapting domain-theoretic
results to incorporate nondeterminism-last models. McIver and Morgan built a Plotkin-style
powerdomain over probability distributions on a discrete state space [110, 111]. Mislove et
al. [115, 116] studied powerdomain constructions for probabilistic CSP. Tix et al. [144] generalized
McIver and Morgan’s results to continuous state spaces, and construct three powerdomains for the
extended probabilistic powerdomains. Although there has been a lot of work on this direction, one
has to keep in mind that the domain-theoretic notion of “continuous” distributions is different from
the notion in measure theory—instead, the domain-theoretic studies are focused on computable
distributions. In other words, real numbers are realized by some computable models, such as partial
reals [49]. These models would become unsatisfactory when one wants to observe a random value
drawn from a continuous distribution, e.g., the meaning of “𝑥 ∼ Normal(0, 1); if 𝑥 = 0 then · · · fi”
may not be expressible. There has also been some work on domain-theoretic characterizations of
measure-theoretic notions. Smolka et al. [139] presented a continuous dcpo on probability kernels
for probabilistic networks, with a parallel-composition operator that resolves network-related
nondeterminism, which is different from both nondeterminism-last and nondeterminism-first.

3.4.2 Higher-Order Functions
In functional programming, higher-order functions are functions that can take functions as
arguments, as well as return a function as a result. Some probabilistic programming languages,
such as Church [63], are indeed functional programming languages and can express higher-order
functions. While operational models for probabilistic functional programming have been proposed
(e.g., [16]), developing a denotational semantics for higher-order probabilistic programming has
been an open problem for years.
The major challenge is to propose a Cartesian-closed category for semantic objects of probabilistic

programming. Intuitively, the Cartesian-closure property ensures that if type 𝐴 and type 𝐵 are two
objects in the category, then the function space 𝐵𝐴 (i.e., an object for the arrow type 𝐴→ 𝐵) is also
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if ℎ = 1 then
if prob(0.9) then read_bit(𝑙)
else 𝑙 B 1 fi

else
if prob(0.1) then 𝑙 B 0
else read_bit(𝑙) fi

fi

(a)

if ★ then
if prob(0.9) then read_bit(𝑙)
else 𝑙 B 1 fi

else
if prob(0.1) then 𝑙 B 0
else read_bit(𝑙) fi

fi

(b)
Fig. 3.4: (a) A concrete program; (b) an abstract program.

contained in the category. The category of measurable spaces is clearly not Cartesian-closed. A lot of
probabilistic powerdomains also do not admit a Cartesian-closed category [84]. Recently, Ehrhard
et al. [48] provided a Cartesian-closed category Cstabm on stable and measurable maps between
cones. Heunen et al. [69] proposed quasi-Borel spaces that form a Cartesian-closed category, and
thus support higher-order functions in probabilistic programming. This approach was further
extended by Vákár et al. [145] to support recursive types in FPC. Dahlqvist and Kozen [40] presented
a denotational semantics for higher-order probabilistic programs with conditioning in terms of
linear operators between Banach spaces. However, it is unclear how to model nondeterminism in
those frameworks.

3.4.3 Probabilistic Noninterference
A potential application of nondeterminism-first is refinement-based reasoning about security
policies, such as noninterference, or, more generally, hyperproperties [30]. As an example, consider
the program in Fig. 3.4(a) with a low-confidentiality one-bit variable 𝑙 and a high-confidentiality
one-bit variable ℎ, where read_bit(𝑙) inputs a bit from outside in the sense that 𝑙 is assigned
an unknown bit. We then want to know whether the confidential information could flow from
high-confidentiality variables (e.g., ℎ) to low-confidentiality ones (e.g., 𝑙). One way [127] to
formalize noninterference for probabilistic programs with external unknown inputs is to reason
about transition relations—pairs of an initial state 𝜎 and a final distribution Δ over possible
states—such that for any transitions ⟨𝜎1, Δ1⟩, ⟨𝜎2, Δ2⟩, there exists a transition ⟨𝜎3, Δ3⟩ satisfying
that

• the initial states 𝜎1 and 𝜎3 have the same high-confidentiality information; and

• the transitions ⟨𝜎2, Δ2⟩ and ⟨𝜎3, Δ3⟩ have the same low-confidentiality information.
Back to the example, this means 𝜎1(ℎ) = 𝜎3(ℎ), 𝜎2(𝑙) = 𝜎3(𝑙), and the marginal distributions
on the final value of 𝑙 are identical, i.e., ∑ℎ′ Δ2(𝑙′, ℎ′) = ∑

ℎ′ Δ3(𝑙′, ℎ′) for any 𝑙′ ∈ {0, 1}, where
the primed variables stand for the final values of the corresponding variables. The example
program does not satisfy noninterference because of the following counterexample: suppose
𝜎1 = [𝑙 ↦→ 0, ℎ ↦→ 0], 𝜎2 = [𝑙 ↦→ 0, ℎ ↦→ 1], Δ1 = 𝛿( [𝑙′ ↦→ 0, ℎ′ ↦→ 0]), Δ2 = 𝛿( [𝑙′ ↦→ 1, ℎ′ ↦→ 1]),
we know that 𝜎3 = [𝑙 ↦→ 0, ℎ ↦→ 0], the program should execute the else-branch of the outside
conditional, thus the probability that 𝑙′ = 0 should be at least 0.1, and hence there does not exist a
feasible Δ3. On the other hand, consider the program in Fig. 3.4(b), which is an abstraction of the
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example program. If we use the nondeterministic-last model, the semantics of the abstract program
would imply for any input state, every marginal distribution on the final value of 𝑙 is possible.
Thus, the abstract program satisfies noninterference. However, the principle of refinement-based
reasoning fails in this situation—if a specification satisfies noninterference, its refinements may not
satisfy noninterference.
In contrast, using the nondeterminism-first model developed in this chapter, we can define the

semantics of Fig. 3.4(b) as a collection of transition functions:{
_ (𝑙, ℎ). {𝜙(𝑙, ℎ) · Δ1 + (1 − 𝜙(𝑙, ℎ)) · Δ2 | Δ1 ∈ 𝐴 ∧ Δ2 ∈ 𝐵} | 𝜙 : {0, 1}2 → [0, 1]} ,

where 𝜙(𝑙, ℎ) represents any refinement of the nondeterministic choice★, and 𝐴, 𝐵 are the semantic
objects of the two branches of the outside conditional, respectively, given an input state (𝑙, ℎ):

𝐴 = {0.9(1 − 𝑝) · [𝑙′ = 0, ℎ′ = ℎ] + (0.9𝑝 + 0.1) · [𝑙′ = 1, ℎ′ = ℎ] | 𝑝 ∈ [0, 1]},
𝐵 = {(0.1 + 0.9𝑞) · [𝑙′ = 0, ℎ′ = ℎ] + 0.9(1 − 𝑞) · [𝑙′ = 1, ℎ′ = ℎ] | 𝑞 ∈ [0, 1]},

where the probabilities 𝑝 and 𝑞 model the unknown inputs from read_bit(𝑙). Thus, the abstract
program satisfies noninterference if and only if every transition function in the collection satisfies
noninterference. By selecting 𝜙 to be _ (𝑙, ℎ). (ℎ = 1), we obtain exactly the semantics of the
concrete program in Fig. 3.4(a) that does not satisfies noninterference. Therefore, the abstract
program also does not satisfy noninterference.
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Chapter 4

PMAF: An Algebraic Framework for Static
Analysis of Probabilistic Programs

In this chapter, I present a framework, which I call PMAF (for Pre-Markov Algebra Framework), for
designing, implementing, and proving the correctness of static analyses of probabilistic programs.
I will show how several analyses that may appear to be quite different, can be formulated—and
generalized—using PMAF. Examples include Bayesian inference [29, 51, 52], Markov decision
problem with rewards [130], and probabilistic-invariant generation [24, 26, 86].
For the purpose of designing a flexible static-analysis framework, I categorize new constructs in

probabilistic programs into two kinds, to express data randomness (e.g., sampling) and control-flow
randomness (e.g., probabilistic choice). PMAF is based on the algebraic denotational semantics
introduced in §3.3, which is an interpretation of the control-flow graphs for a program’s procedures
with respect to a semantic Markov algebra. To express both kinds of randomness in the analysis
framework, I further introduce a new algebraic structure, called a pre-Markov algebra, which is
equipped with operations corresponding to control-flow actions in probabilistic programs: sequenc-
ing, conditional-choice, probabilistic-choice, and nondeterministic-choice. To establish correctness,
I introduce probabilistic abstractions between a Markov algebra and a pre-Markov algebra that
represent the concrete and abstract semantics, respectively.
In this chapter, I will show how, with suitable extensions, a blending of ideas from prior work on (i)

static analysis of single-procedure probabilistic programs, and (ii) interprocedural dataflow analysis
of standard (non-probabilistic) programs can be used to create a framework for interprocedural
analysis of multi-procedure probabilistic programs. In particular,

• The algebraic denotational semantics on which PMAF is based is an interpretation of the
control-flow hyper-graphs for a program’s procedures.

• The abstract semantics is formulated so that the analyzer can obtain procedure summaries.
Recall that hyper-graphs contain hyper-edges, each of which consists of one source node and possi-

bly several destination nodes. Conditional-branching, probabilistic-branching, and nondeterministic-
branching statements can all be represented by hyper-edges. In ordinary control-flow graphs
(CFGs), nodes can also have several successors; however, the operator applied at a confluence point
𝑞 when analyzing a CFG is join (⊔), and the paths leading up to 𝑞 are analyzed independently.
For reasons discussed in §4.1.3, PMAF is based on a backward analysis, so the confluence points
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represent the program’s branch points (i.e., for if-statements and while-loops). If the CFG is
treated as a graph, join would be applied at each branch-node, and the subpaths from each
successor would be analyzed independently. In contrast, when the CFG is treated as a hyper-graph,
i.e., as a control-flow hyper-graph (CFHG), the operator applied at a probabilistic-choice node
with probability 𝑝 is _𝑎._𝑏.𝑎 𝑝⊕ 𝑏—where 𝑝⊕ is not join, but an operator that weights the two
successor paths by 𝑝 and (1 − 𝑝). For instance, in Fig. 4.2(b), the hyper-edge (𝑣0, {𝑣1, 𝑣5})
generates the inequality 𝒜 [𝑣0] ⊒ 𝒜 [𝑣1] 0.75⊕𝒜 [𝑣5], for some analysis 𝒜. This approach allows
the (hyper-)subpaths from the successors to be analyzed jointly.
To perform interprocedural analyses of probabilistic programs, I adopt a common practice

from interprocedural analysis of standard non-probabilistic programs: the abstract domain is a
two-vocabulary domain (each value represents an abstraction of a state transformer) rather than a
one-vocabulary domain (each value represents an abstraction of a state). In the algebraic approach,
an element in the algebra represents a two-vocabulary transformer. Elements can be “multiplied”
by the algebra’s formal multiplication operator, which is typically interpreted as (an abstraction of)
the reversal of transformer composition. The transformer obtained for the set of hyper-paths from
the entry of procedure 𝑃 to the exit of 𝑃 is the summary for 𝑃.
In the case of loops and recursive procedures, PMAF uses widening to ensure convergence. Here

my approach is slightly non-standard: I found that for some instantiations of the framework, one
could improve precision by using different widening operators for loops controlled by conditional,
probabilistic, and nondeterministic branches.
The main advantage of PMAF is that instead of starting from scratch to create a new analysis,

one only needs to instantiate PMAF with the implementation of a new pre-Markov algebra. To
establish soundness, one just has to establish some well-defined algebraic properties, and can
then rely on the soundness of the framework. To implement an analysis, one can rely on an
implementation of PMAF to perform sound interprocedural analysis, with respect to the abstraction
of the analysis. The PMAF implementation supplies common parts of different static analyses
of probabilistic programs, e.g., efficient iteration strategies with widenings and interprocedural
summarization. Moreover, any improvements made to the PMAF implementation immediately
translate into improvements to all of its instantiations.
To evaluate PMAF, I created a prototype implementation, and reformulated two existing

intraprocedural probabilistic-program analyses—the Bayesian-inference algorithm proposed by
Claret et al. [29], andMarkov decision problemwith rewards [130]—to fit into PMAF: Reformulation
involved changing from the one-vocabulary abstract domains proposed in the original papers to
appropriate two-vocabulary abstract domains. I also developed a new program analysis: linear
expectation-invariant analysis (LEIA). Linear expectation-invariants are (in)equalities involving
expected values of linear expressions over program variables.
A related approach to static analysis of probabilistic programs is probabilistic abstract interpretation

(PAI) [39, 118–120], which lifts standard program analysis to the probabilistic setting. PAI is both
general and elegant, but the more concrete approach developed in my work on PMAF has a
couple of advantages. First, PMAF is algebraic and provides a simple and well-defined interface
for implementing new abstractions. I created an actual implementation of PMAF that can be
easily instantiated to specific abstract domains. Second, PMAF is based on a different semantic
foundation, which follows the standard interpretation of non-deterministic probabilistic programs
in domain theory [45, 82, 83, 115, 116, 144].
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𝑏1 ∼ Bernoulli(0.5);
𝑏2 ∼ Bernoulli(0.5);
while (¬𝑏1 ∧ ¬𝑏2) do
𝑏1 ∼ Bernoulli(0.5);
𝑏2 ∼ Bernoulli(0.5)

od

(a)

while prob(0.75) do
𝑧 ∼ Uniform(0, 2);
if ★ then 𝑥 B 𝑥 + 𝑧
else 𝑦 B 𝑦 + 𝑧
fi

od

(b)
Fig. 4.1: (a) A Boolean probabilistic program; (b) An arithmetic probabilistic program.

The concrete semantics of PAI isolates probabilistic choices from the non-probabilistic part of the
semantics by interpreting programs as distributions 𝑃 : Ω→ (𝐷→ 𝐷), where Ω is a probability
space and 𝐷→ 𝐷 is the space of non-probabilistic transformers. As a result, the PAI interpretation
of the following non-deterministic program is that with probability 1/2, we have a program that
non-deterministically returns 1 or 2; with probability 1/4, we have a program that returns 1; and
with probability 1/4, a program that returns 2.

if ★ then if prob(1/2) then return 1 else return 2
else if prob(1/2) then return 1 else return 2 fi

In contrast, the semantics used in PMAF resolves non-determinism on the outside, and thus the
semantics of the program is that it returns 1 with probability 1/2 and 2 with 1/2. As a result, one can
conclude that the expected return value 𝑟 is 1.5. However, PAI—and every static analysis based on
PAI—can only conclude 𝑟 ∈ {1.25, 1.5, 1.75}.

4.1 Overview
In this section, I briefly introduce two different static analyses of probabilistic programs: Bayesian
inference and linear expectation invariant analysis. I then informally explain the main ideas behind
the algebraic framework for analyzing probabilistic programs and show how it generalizes the
aforementioned analyses.

4.1.1 Example Probabilistic Programs
In PMAF, I categorize the new constructs in probabilistic programs into two kinds of randomness:
(i) data randomness, i.e., the ability to draw random values from distributions, and (ii) control-flow
randomness, i.e., the ability to branch probabilistically.
I use the Boolean program in Fig. 4.1(a) to illustrate data randomness. In the program, 𝑏1

and 𝑏2 are two Boolean-valued variables. The sampling statement 𝑥 ∼ Dist(\̄) draws a value
from a distribution Dist with a vector of parameters \̄, and assigns it to the variable 𝑥, e.g.,
𝑏1 ∼ Bernoulli(0.5) assigns to 𝑏1 a random value drawn from a Bernoulli distribution with mean
0.5. Intuitively, the program tosses two fair Boolean-valued coins repeatedly, until one coin shows
𝑡𝑟𝑢𝑒.
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I introduce control-flow randomness through the arithmetic program in Fig. 4.1(b). In the
program, 𝑥, 𝑦, and 𝑧 are real-valued variables. As in the previous example, we have sampling
statements, and Uniform(𝑙, 𝑢) represents a uniform distribution on the interval [𝑙, 𝑢]. The
probabilistic choice prob(𝑝) returns true with probability 𝑝 and false with probability (1 − 𝑝).
Moreover, the program also exhibits nondeterminism, as the symbol ★ stands for a nondeterministic
choice that can behave like standard nondeterminism, as well as an arbitrary probabilistic choice
[111, §6.6]. Intuitively, the program describes two players 𝑥 and 𝑦 playing a round-based game
that ends with probability 0.25 after each round. In each round, either player 𝑥 or player 𝑦 gains
some reward that is uniformly distributed on the interval [0, 2].

4.1.2 Two Static Analyses
Bayesian Inference (BI) Probabilistic programs can be seen as descriptions of probability
distributions [23, 63, 112]. For a Boolean probabilistic program, such as the one in Fig. 4.1(a),
Bayesian-inference analysis [29] calculates the distribution over variable valuations at the end of
the program, conditioned on the program terminating. For convenience, I will call the inferred
probability distribution the post-state probability distribution. The program in Fig. 4.1(a) specifies
the post-state distribution over the variables (𝑏1, 𝑏2) given by: ℙ[𝑏1 = false, 𝑏2 = false] = 0,
and ℙ[𝑏1 = false, 𝑏2 = true] = ℙ[𝑏1 = true, 𝑏2 = false] = ℙ[𝑏1 = true, 𝑏2 = true] = 1/3. This
distribution also indicates that the program terminates almost surely, i.e., the probability that the
program terminates is 1.

Linear Expectation Invariant Analysis (LEIA) Loop invariants are crucial to verification of
imperative programs [46, 57, 71]. Although loop invariants for traditional programs are usually
formulas over program variables, numeric invariants are needed to prove the correctness of
probabilistic loops [98, 111]. Such expectation invariants are usually defined as random variables—
specified as expressions over program variables—with some desirable properties [24, 25, 86]. In
this chapter, I work on a more general kind of expectation invariant, defined as follows.
Definition 4.1. For a program 𝑃, 𝔼[E2] ⊲⊳ E1 is called an expectation invariant if E1 and E2

are numeric expressions over 𝑃’s program variables, ⊲⊳ is one of {=, <, >, ≤, ≥}, and the following
property holds: For any initial valuation of the program variables, the expected value of E2 in the
final valuation (i.e., after the execution of 𝑃) is related to the value of E1 in the initial valuation by
⊲⊳.

I will use variables with primes in E2 to denote the values in the final valuation. For example, for
the program in Fig. 4.1(b), 𝔼[𝑥′ + 𝑦′] = 𝑥 + 𝑦 + 3, 𝔼[𝑧′] = 0.25𝑧 + 0.75, 𝔼[𝑥′] ≤ 𝑥 + 3, 𝔼[𝑥′] ≥ 𝑥,
𝔼[𝑦′] ≤ 𝑦 + 3, and 𝔼[𝑦′] ≥ 𝑦 are several linear expectation invariants, and LEIA can derive all of
these automatically! The expectation invariant 𝔼[𝑥′ + 𝑦′] = 𝑥 + 𝑦 + 3 indicates that the expected
value of the total reward that the two players would gain is exactly 3.

4.1.3 The Algebraic Framework
This section explains the main ideas behind PMAF, which is general enough to encode the two
analyses from §4.1.2.
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𝑣0 𝑣1 𝑣2
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𝑏1, 𝑏2 ∼ B(0.5)
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true¬𝑏1 ∧ ¬𝑏2

𝑏1, 𝑏2 ∼ B(0.5)
(a)

𝑣4

𝑣5
𝑣0

𝑣1 𝑣2

𝑣3

true 𝑧 ∼ U(0, 2)
prob[ 34 ] false

𝑥 B 𝑥 + 𝑧

𝑦 B 𝑦 + 𝑧
ndet

(b)
Fig. 4.2: (a) The control-flow hyper-graph of the program in Fig. 4.1(a); (b) The control-flow hyper-graph of theprogram in Fig. 4.1(b).
Data Randomness vs. Control-Flow Randomness The first principle is to make an explicit
separation between data randomness and control-flow randomness. This distinction is intended to
make the framework more flexible for analysis designers by providing multiple ways to translate
the constructs of their specific probabilistic programming language into the constructs of PMAF.
Analysis designers may find it useful to use the control-flow-randomness construct directly (e.g.,
“if prob(0.3) · · · ”), rather than simulating control-flow randomness by data randomness (e.g.,
“𝑝 ∼ Uniform(0, 1); if (𝑝 < 0.3) · · · ”). For program analysis, such a simulation can lead to
suboptimal results if the constructs used in the simulation require properties to be tracked that
are outside the class of properties that a particular analysis’s abstract domain is capable of
tracking. For example, if an analysis domain only keeps track of expectations, then analysis of
“𝑝 ∼ Uniform(0, 1)” only indicates that 𝔼[𝑝] = 0.5, which does not provide enough information
to establish that ℙ[𝑝 < 0.3] = 0.3 in the then-branch of “if (𝑝 < 0.3) · · · ”. In contrast, when
“prob(0.3) · · · ” is analyzed in the fragment with the explicit control-flow-randomness construct
(“if prob(0.3) · · · ”) the analyzer can directly assign the probabilities 0.3 and 0.7 to the outgoing
branches, and use those probabilities to compute appropriate expectations in the respective
branches.
I achieve the separation between data randomness and control-flow randomness by capturing

the different types of randomness in the graphs that I use for representing programs. Recall that in
contrast to traditional program analyses, which usually work on control-flow graphs (CFGs), I use
control-flow hyper-graphs (CFHGs) to model probabilistic programs. Hyper-graphs are directed
graphs, each edge of which (i) has one source and possibly multiple destinations, and (ii) has
an associated control-flow action—either sequencing, conditional-choice, probabilistic-choice, or
nondeterministic-choice. A traditional CFG represents a collection of execution paths, while in
probabilistic programs, paths are no longer independent, and the program specifies a collection of
probability distributions over the paths. It is natural to treat a collection of paths as a whole and
define distributions over the collections. Intuitively, these kinds of collections might be precisely
formalized as hyper-paths made up of hyper-edges in hyper-graphs.
Fig. 4.2 shows the CFHGs of the two programs in Fig. 4.1. Every edge has an associated

action, e.g., the control-flow actions cond[¬𝑏1 ∧ ¬𝑏2], prob[3/4], and ndet are conditional-choice,
probabilistic-choice, and nondeterministic-choice actions. Note that in Chapter 3, nondeterminism
is achieved by allowing multiple outgoing hyper-edges on a single node, but in this chapter, I
introduce the nondeterministic choice ndet as a control-flow action, for a more uniform treatment
of branching edges. Data actions, like 𝑥 B 𝑥 + 𝑧 and 𝑏1 ∼ Bernoulli(0.5), also perform a trivial
control-flow action to transfer control to their only destination node.
Just as the control-flow graph of a procedure typically has a single entry node and a single exit
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node, a procedure’s control-flow hyper-graph also has a single entry node and a single exit node.
In Fig. 4.2(a), the entry and exit nodes are 𝑣0 and 𝑣3, respectively; in Fig. 4.2(b), the entry and exit
nodes are 𝑣0 and 𝑣5, respectively.

Backward Analysis Traditional static analyses assign to a CFG node 𝑣 either backward assertions—
about the computations that can lead up to 𝑣—or forward assertions—about the computations that
can continue from 𝑣 [35, 37]. Backward assertions are computed via a forward analysis (in the
same direction as CFG edges); forward assertions are computed via a backward analysis (counter
to the flow of CFG edges).
Because, with PMAF, we work with hyper-graphs rather than CFGs, from the perspective of a node

𝑣, there is a difference in how things “look” in the backward and forward direction: hyper-edges
fan out in the forward direction. Hyper-edges can have two destination nodes, but only one source
node.
The second principle of the framework is essentially dictated by this structural asymmetry: the

framework supports backward analyses that compute a particular kind of forward assertion. In
particular, the property to be computed for a node 𝑣 in the control-flow hyper-graph for procedure
𝑃 is (an abstraction of) a transformer that summarizes the transformation carried out by the
hyper-graph fragment that extends from 𝑣 to the exit node of 𝑃. It is possible to reason in the
forward direction—i.e., about computations that lead up to 𝑣—but one would have to “break”
hyper-paths into paths and “relocate” probabilities, which is more complicated than reasoning
in the backward direction. The framework interprets an edge as a property transformer that
computes properties of the edge’s source node as a function of properties of the edge’s destination
node(s) and the edge’s associated action. These property transformers propagate information in a
hypergraph-leaf-to-hypergraph-root manner, which is natural in hyper-graph problems. For example,
standard formulations of interprocedural dataflow analysis [94, 105, 123, 138] can be viewed as
hyper-graph analyses, and propagation is performed in the leaf-to-root direction there as well.
Recall the Boolean program in Fig. 4.1(a). Suppose that we want to perform BI to analyze

ℙ[𝑏1 = true, 𝑏2 = true] in the post-state distribution. The property to be computed for a node
will be a mapping from variable valuations to probabilities, where the probability reflects the
chance that a given state will cause the program to terminate in the post-state (𝑏1 = true, 𝑏2 =

true). For example, the property that we would hope to compute for node 𝑣1 is the function
_ (𝑏1, 𝑏2).[𝑏1 ∧ 𝑏2] + [¬𝑏1 ∧¬𝑏2] · 1/3, where [𝜑] is an Iverson bracket, which evaluates to 1 if 𝜑 is
true, and 0 otherwise.

Two-Vocabulary Program Properties In the example of BI above, we can observe that the
property transformation discussed above is not suitable for interprocedural analysis. Suppose that
(i) we want analysis results to tell us something about ℙ[𝑏1 = true, 𝑏2 = true] in the post-state
distribution of the main procedure, but (ii) to obtain the answer, the analysis must also analyze a
call to some other procedure 𝑄. In the main procedure, the analysis is driven by the post-state-
probability query ℙ[𝑏1 = true, 𝑏2 = true]; in general, however, 𝑄 will need to be analyzed with
respect to some other post-state probability (obtained from the distribution of valuations at the
point in main just after the call to 𝑄). One might try to solve this issue by analyzing each procedure
multiple times with different post-state-probability queries. However, in an infinite state space, or
when the state space is quite large, this approach is no longer feasible.
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Following common practice in interprocedural static analysis of traditional programs, the third
principle of the framework is to work with two-vocabulary program properties. The property
sketched in the BI example above is actually one-vocabulary, i.e., the property assigned to a
control-flow node only involves the state at that node. In contrast, a two-vocabulary property at
node 𝑣 (in the control-flow hyper-graph for procedure 𝑃) should describe the state transformation
carried out by the hyper-graph fragment that extends from 𝑣 to the exit node of 𝑃.
For instance, LEIA assigns to each control-flow node a conjunction of expectation invariants,

which relate the state at the node to the state at the exit node; consequently, LEIA deals with
two-vocabulary properties. In §4.3, I reformulate BI to manipulate two-vocabulary properties. As in
interprocedural dataflow analysis [36, 138], procedure summaries are used to interpret procedure
calls.

Separation of Concerns The fourth principle—which is common to most analysis frameworks—is
separation of concerns, by which I mean:

Provide a declarative interface for a client to specify the program properties to be tracked
by a desired analysis, but leave it to the framework to furnish the analysis implementation
by which the analysis is carried out.

I achieve this goal by adopting (and adapting) ideas from previous work on algebraic program
analysis [54, 131, 142]. Algebraic program analysis is based on the following idea:

Any static analysis method performs reasoning in some space of program properties and
property transformers; such property transformers should obey algebraic laws.

For instance, the data action skip, which does nothing, can be interpreted as the identity element
in an algebra of program-property transformers.
Concretely, the fourth principle has three aspects:
1. For an intended domain of probabilistic programs, identify an appropriate set of algebraic

laws that hold for useful sets of property transformers.

2. Define a specific algebra A for a program-analysis problem by defining a specific set of
property transformers that obey the laws identified in item 1. Give translations from data
actions and control-flow actions to such property transformers. (When such a translation is
applied to a specific program, it sets up an equation system to be solved over A.)

3. Develop a generic analysis algorithm that solves an equation system over any algebra that
satisfies the laws identified in item 1.

Items 1 and 3 are tasks for me, the framework designer; they are the subjects of §4.2. Item 2 is a
task for a client of the framework: examples are given in §4.3.
A client of the framework must furnish an interpretation—which consists of a semantic algebra

and a semantic function—and a program. The semantic algebra consists of a universe, which
defines the space of possible program-property transformers, and sequencing, conditional-choice,
probabilistic-choice, and nondeterministic-choice operators, corresponding to control-flow actions.
The semantic function is a mapping from data actions to the universe. (An interpretation is also
called a domain.)
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S(𝑣0) ⊒ prob[0.75] (S(𝑣1),S(𝑣5)) S(𝑣3) ⊒ seq[𝑥 := 𝑥 + 𝑧] (S(𝑣0))
S(𝑣1) ⊒ seq[𝑧 ∼ Uniform(0, 2)] (S(𝑣2)) S(𝑣4) ⊒ seq[𝑦 := 𝑦 + 𝑧] (S(𝑣0))
S(𝑣2) ⊒ ndet(S(𝑣3),S(𝑣4)) S(𝑣5) ⊒ 1

Fig. 4.3: The system of inequalities corresponding to Fig. 4.2(b).

To address item 3, my prototype implementation follows the standard iterative paradigm of static
analysis [35, 88]: I first transform the control-flow hyper-graph into a system of inequalities, and
then use a chaotic-iteration algorithm to compute a solution to it (e.g., [18]), which repeatedly
applies the interpretation until a fixed point is reached (possibly using widening to ensure
convergence). For example, the control-flow hyper-graph in Fig. 4.2(b) can be transformed into
the system shown in Fig. 4.3, where S(𝑣) ∈ M are elements in the semantic algebra; ⊑ is the
approximation order onM; J·K is the semantic function, which maps data actions toM; and 1 is
the transformer associated with the exit node.
The soundness of the analysis (with respect to a concrete semantics) is proved by (i) establishing

an approximation relation between the concrete semantics and the abstract domain; (ii) showing
that the abstract semantic function approximates the concrete one; and (iii) showing that the
abstract operators (sequencing, conditional-choice, probabilistic-choice, and nondeterministic-
choice) approximate the concrete ones.
For BI, I instantiate the PMAF framework to give lower bounds on post-state distributions, using

with an interpretation in which state transformers are probability matrices (see §4.3.1). For LEIA, I
design an interpretation using a Cartesian product of polyhedra (see §4.3.3). Once the functions of
the interpretations are implemented, and a program is translated into the appropriate hyper-graph,
the framework handles the rest of the work, namely, solving the equation system.

4.2 Analysis Framework
To aid in creating abstractions of probabilistic programs, I first identify, in §4.2.1, some algebraic
properties that underlie the mechanisms used in the algebraic denotational semantics from §3.3.
This algebra will aid my later definitions of abstractions in §4.2.2. I then discuss interprocedural
analysis (in §4.2.3) and widening (§4.2.4).

4.2.1 An Algebraic Characterization of Fixpoint Semantics
In the denotational semantics, the concrete semantics is obtained by composing �𝐶𝑡𝑟𝑙(𝑒) operations
along hyper-paths. Hence in the algebraic framework, the semantics of probabilistic programs is
denoted by an interpretation, which consists of two parts: (i) a semantic algebra, which defines
a set of possible program meanings, and which is equipped with sequencing, conditional-choice,
probabilistic-choice, and nondeterministic-choice operators to compose these meanings, and (ii) a
semantic function, which assigns a meaning to each basic program action.
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Recall that in §3.3, I introduce Markov algebras (MAs) as the semantic algebras. The lattices
used for abstract interpretation are pre-Markov algebras defined below. Note that rather than the
possibly-probabilistic deterministic conditions from §2.2, I use and distinguish between purely
deterministic conditions (i.e., logical conditions) and purely probabilistic conditions (i.e., prob(𝑝)
for 𝑝 ∈ [0, 1]).
Definition 4.2 (Pre-Markov algebras). A pre-Markov algebra (PMA) over a set of logical

conditions L is an 8-tupleM = (𝑀, ⊑, ⊗, 𝜑^, 𝑝⊕,−−∪,⊥, 1), where (𝑀, ⊑) forms a complete lattice
with ⊥ as its least element; (𝑀, ⊗, 1) forms a monoid (i.e., ⊗ is an associative binary operator with
1 as its identity element); 𝜑^ is a binary operator parameterized by a condition 𝜑 ∈ L; 𝑝⊕ is a
binary operator parameterized by 𝑝 ∈ [0, 1]; −−∪ is idempotent, commutative, associative and for
all 𝑎, 𝑏 ∈ 𝑀 and 𝜑 ∈ L, 𝑝 ∈ [0, 1] it holds that 𝑎 𝜑^ 𝑏 ≤ 𝑎 −−∪ 𝑏, 𝑎 𝑝⊕ 𝑏 ≤ 𝑎 −−∪ 𝑏 where ≤ is the
semilattice ordering induced by −−∪ (i.e., 𝑎 ≤ 𝑏 if 𝑎 −−∪ 𝑏 = 𝑏); and ⊗, 𝑝⊕, 𝜑^, −−∪ are monotone with
respect to ⊑. In addition, the following algebraic properties are usually desirable:

𝑎 = 𝑎 𝜑^ 𝑎, 𝑎 = 𝑎 truê 𝑏, 𝑎 𝜑^ 𝑏 = 𝑏 ¬𝜑^ 𝑎
𝑎 = 𝑎 𝑝⊕ 𝑎 , 𝑎 = 𝑎 1⊕ 𝑏 , 𝑎 𝑝⊕ 𝑏 = 𝑏 1−𝑝⊕ 𝑎

𝑎 𝜑^ (𝑏 𝜓^ 𝑐) = (𝑎 𝜑′^ 𝑏) 𝜓′^ 𝑐 where 𝜑 = 𝜑′ ∧ 𝜓′, 𝜑 ∨ 𝜓 = 𝜓′

𝑎 𝑝⊕ (𝑏 𝑞⊕ 𝑐) = (𝑎 𝑝′⊕ 𝑏) 𝑞′⊕ 𝑐 where 𝑝 = 𝑝′𝑞′, (1 − 𝑝) (1 − 𝑞) = (1 − 𝑞′)
The precedence of the operators is that ⊗ binds tightest, followed by 𝜑^, 𝑝⊕, and −−∪.
Remark 4.3. These algebraic properties are not needed to prove soundness of the framework (stated

in Theorem 4.7). These laws helped us when designing the abstract domains. Exploiting these algebraic
laws to design better algorithms is an interesting direction for future work.
As is standard in abstract interpretation, the order on the algebra should represent an approxi-

mation order: 𝑎 ⊑ 𝑏 iff 𝑎 is approximated by 𝑏 (i.e., if 𝑎 represents a more precise property than
𝑏).
Definition 4.4 (Interpretations). An interpretation is a pair ℐ = (M, J·K), where M is a

pre-Markov algebra, and J·K : Act → M, where Act is the set of data actions for probabilistic
programs. We callM the semantic algebra of the interpretation and J·K the semantic function.
Given a probabilistic program 𝑃 = {𝐻𝑖}1≤𝑖≤𝑛, where each procedure 𝐻𝑖 = (𝑉𝑖, 𝐸𝑖, 𝑣entry

𝑖 , 𝑣exit
𝑖 )

is a CFHG, and an interpretation ℐ = (M, J·K), I define ℐ [𝑃] to be the interpretation of the
probabilistic program. Recall that in this chapter, nondeterministic choices are represented by
hyper-edges with the ndet control-flow action, thus we can assume each node in a control-flow
hyper-graph has at most one outgoing edge. ℐ [𝑃] is then defined as the least fixed point of the
function 𝐹♯𝑃, which is defined as

_S♯._𝑣.

{ �𝐶𝑡𝑟𝑙(𝑒)♯ (S♯ (𝑢1), . . . ,S♯ (𝑢𝑘)) 𝑒 = (𝑣, {𝑢1, . . . , 𝑢𝑘}) ∈ 𝐸 def
=

⋃𝑛
𝑖=1 𝐸𝑖,

1 otherwise,
where �seq[act]♯ (𝑎1) def

= JactK ⊗ 𝑎1 �cond[𝜑]♯ (𝑎1, 𝑎2) def
= 𝑎1 𝜑^ 𝑎2�call[𝑖→ 𝑗]♯ (𝑎1) def

= S♯ (𝑣entry
𝑗 ) ⊗ 𝑎1 �prob[𝑝]♯ (𝑎1, 𝑎2) def

= 𝑎1 𝑝⊕ 𝑎2

n̂det♯ (𝑎1, 𝑎2) def
= 𝑎1 −−∪ 𝑎2
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By the Knaster-Tarski theorem (reviewed below), I use the least fixed point of 𝐹♯𝑃 to define
the interpretation of a probabilistic program 𝑃 as ℐ [𝑃] def

= lfp ¤⊑_𝑣.⊥𝐹
♯
𝑃. The interpretation of a

control-flow node 𝑣 ∈ 𝑉 def
=

⋃𝑛
𝑖=1 𝑉𝑖 is then defined as ℐ [𝑣] def

= ℐ [𝑃] (𝑣).
Proposition 4.5 (Knaster-Tarski theorem). Suppose (𝐿, ⊑) is a complete lattice with a least

element ⊥, and let 𝑓 : 𝐿→ 𝐿 be a monotone function with respect to ⊑. Then the set of fixed points of
𝑓 in 𝐿 also forms a complete lattice under ⊑. In particular, 𝑓 admits a least fixed point, denoted by
lfp⊑⊥ 𝑓 .

4.2.2 Abstractions of Probabilistic Programs
Given an MA C and a PMA A, a probabilistic abstraction is defined as follows:
Definition 4.6 (Probabilistic abstractions). A probabilistic over-abstraction (resp., under-

abstraction) from an MA C to a PMA A is a concretization mapping, 𝛾 : A → C, such that
• ⊥

C
⊑C 𝛾(⊥A) (resp., 𝛾(⊥A) ⊑C ⊥C),

• 1
C
⊑C 𝛾(1A) (resp., 𝛾(1A) ⊑C 1

C
),

• for all 𝑄1, 𝑄2 ∈ A, 𝛾(𝑄1) ⊗C 𝛾(𝑄2) ⊑C 𝛾(𝑄1⊗A𝑄2) (resp., 𝛾(𝑄1⊗A𝑄2) ⊑C 𝛾(𝑄1) ⊗C 𝛾(𝑄2)),
• for all 𝑄1, 𝑄2 ∈ A, 𝛾(𝑄1) 𝜑^C 𝛾(𝑄2) ⊑C 𝛾(𝑄1 𝜑^A 𝑄2) (resp., 𝛾(𝑄1 𝜑^A 𝑄2) ⊑C 𝛾(𝑄1) 𝜑^C
𝛾(𝑄2)),

• for all 𝑄1, 𝑄2 ∈ A, 𝛾(𝑄1) _𝜔.𝑝^C 𝛾(𝑄2) ⊑C 𝛾(𝑄1 𝑝⊕A 𝑄2) (resp., 𝛾(𝑄1 𝑝⊕A 𝑄2) ⊑C
𝛾(𝑄1) _𝜔.𝑝^C 𝛾(𝑄2)), and

• for all 𝑄1, 𝑄2 ∈ A, 𝛾(𝑄1) −−∪C 𝛾(𝑄2) ⊑C 𝛾(𝑄1−−∪A𝑄2) (resp., 𝛾(𝑄1−−∪A𝑄2) ⊑C 𝛾(𝑄1) −−∪C 𝛾(𝑄2)).
A probabilistic abstraction leads to a sound analyses:
Theorem 4.7. Let 𝒞 and 𝒜 be interpretations over the MA C and the PMA A, respectively;

let 𝛾 be a probabilistic over-abstraction (resp., under-abstraction) from C to A; and let 𝑃 be an
arbitrary probabilistic program. If for all basic actions act ∈ Act, JactK𝒞 ⊑C 𝛾(JactK𝒜) (resp.,
𝛾(JactK𝒜) ⊑C JactK𝒞), then it holds that 𝒞[𝑃] ¤⊑C ¤𝛾(𝒜 [𝑃]) (resp., ¤𝛾(𝒜 [𝑃]) ¤⊑C 𝒞[𝑃]).

Proof. Without loss of generality, I present the proof for over-approximations.
Recall the algebraic denotational semantics from §3.3, 𝒞[𝑃] = lfp ¤⊑C_𝑣.⊥

C

𝐹𝒞𝑃 =

sup𝑛∈ℤ+{(𝐹𝒞𝑃 )𝑛(_𝑣.⊥C)} by the Kleene fixed-point theorem, and 𝒜 [𝑃] = lfp ¤⊑A_𝑣.⊥
A

𝐹𝒜𝑃 ob-
tained by the Knaster-Tarski theorem. We want to show that for all 𝑛 ∈ ℤ+ it holds that
(𝐹𝒞𝑃 )𝑛(_𝑣.⊥C) ¤⊑C ¤𝛾(𝒜 [𝑃]). We proceed by induction on 𝑛. The base case follows directly
from the fact that ⊥

C
is the least element in C. For the induction step, suppose we know

(𝐹𝒞𝑃 )𝑛(_𝑣.⊥C) ¤⊑C ¤𝛾(𝒜 [𝑃]) for some 𝑛 ∈ ℤ+. Let us denote the left hand side (i.e., (𝐹𝒞𝑃 )𝑛(_𝑣.⊥C))
by 𝐿𝐻𝑆 and 𝒜 [𝑃] by 𝑆𝑂𝐿. We want to show that 𝐹𝒞𝑃 (𝐿𝐻𝑆) ¤⊑C ¤𝛾(𝑆𝑂𝐿). This expands to
𝐹𝒞𝑃 (𝐿𝐻𝑆) (𝑣) ⊑C 𝛾(𝑆𝑂𝐿(𝑣)) for all 𝑣 ∈ 𝑉. We proceed by a case analysis on the kind of edges
leaving 𝑣.
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1. If 𝑣 = 𝑣exit
𝑖 for some procedure 𝐻𝑖, then 𝐹𝒞𝑃 (𝐿𝐻𝑆) (𝑣) = 1

C
. Then we can conclude this case

by showing that 𝑆𝑂𝐿(𝑣) = 1
A
. Indeed, by definition of 𝑆𝑂𝐿, we know that 𝐹𝒜𝑃 (𝑆𝑂𝐿) = 𝑆𝑂𝐿,

thus 𝐹𝒜𝑃 (𝑆𝑂𝐿) (𝑣) = 𝑆𝑂𝐿(𝑣). By definition of 𝐹𝒜𝑃 , we know that 𝐹𝒜𝑃 (𝑆𝑂𝐿) (𝑣) = 1
A
.

2. If 𝑣 ≠ 𝑣exit
𝑖 for any procedure 𝐻𝑖, then 𝑣 is associated with some hyper-edge 𝑒 =

(𝑣, {𝑢1, · · · , 𝑢𝑘}) ∈ 𝐸, and we have

𝐹𝒞𝑃 (𝐿𝐻𝑆) (𝑣) = �𝐶𝑡𝑟𝑙(𝑒) (𝐿𝐻𝑆(𝑢1), · · · , 𝐿𝐻𝑆(𝑢𝑘))
⊑C �𝐶𝑡𝑟𝑙(𝑒) (𝛾(𝑆𝑂𝐿(𝑢1)), · · · , 𝛾(𝑆𝑂𝐿(𝑢𝑘))),

by the monotonicity of algebraic operators. If we can prove that for any kind of 𝐶𝑡𝑟𝑙(𝑒) it
holds that �𝐶𝑡𝑟𝑙(𝑒) (𝛾(𝑥1), · · · , 𝛾(𝑥𝑘)) ⊑C 𝛾(�𝐶𝑡𝑟𝑙(𝑒)♯ (𝑥1, · · · , 𝑥𝑘)), then we can conclude the
case by the following argument:

𝐹𝒞𝑃 (𝐿𝐻𝑆) (𝑣) ⊑C 𝛾(�𝐶𝑡𝑟𝑙(𝑒)♯ (𝑆𝑂𝐿(𝑢1), · · · , 𝑆𝑂𝐿(𝑢𝑘)))
= 𝛾(𝐹𝒜𝑃 (𝑆𝑂𝐿) (𝑣))
= 𝛾(𝑆𝑂𝐿(𝑣)).

Now consider the form of 𝐶𝑡𝑟𝑙(𝑒).
• 𝐶𝑡𝑟𝑙(𝑒) = seq[act]: We want to show that �seq[act] (𝛾(𝑥1)) ⊑C 𝛾(�seq[act]♯ (𝑥1)). It is
equivalent to JactK𝒞 ⊗C 𝛾(𝑥1) ⊑C 𝛾(JactK𝒜 ⊗A 𝑥1). Indeed, we have

JactK𝒞 ⊗C 𝛾(𝑥1) ⊑C 𝛾(JactK𝒜) ⊗C 𝛾(𝑥1) ⊑C 𝛾(JactK𝒜 ⊗A 𝑥1)

by the monotonicity of ⊗C and properties of 𝛾.

• 𝐶𝑡𝑟𝑙(𝑒) = call[𝑖→ 𝑗]: We want to show that �call[𝑖→ 𝑗] (𝛾(𝑥1)) ⊑C 𝛾( �call[𝑖→ 𝑗]♯ (𝑥1)). It
is equivalent to 𝐿𝐻𝑆(𝑣entry

𝑗 ) ⊗C 𝛾(𝑥1) ⊑C 𝛾(𝑆𝑂𝐿(𝑣entry
𝑗 ) ⊗A 𝑥1). Indeed, we have

𝐿𝐻𝑆(𝑣entry
𝑗 ) ⊗C 𝛾(𝑥1) ⊑C 𝛾(𝑆𝑂𝐿(𝑣entry

𝑗 )) ⊗C 𝛾(𝑥1) ⊑C 𝛾(𝑆𝑂𝐿(𝑣entry
𝑗 ) ⊗A 𝑥1)

by induction hypothesis, the monotonicity of ⊗C, and properties of 𝛾.

• 𝐶𝑡𝑟𝑙(𝑒) = cond[𝜑]: We want to show that �cond[𝜑] (𝛾(𝑥1), 𝛾(𝑥2)) ⊑C 𝛾(�𝑐𝑜𝑛𝑑 [𝜑]♯ (𝑥1, 𝑥2)).
It is equivalent to 𝛾(𝑥1) 𝜑^C 𝛾(𝑥2) ⊑C 𝛾(𝑥1 𝜑^A 𝑥2). Appeal to properties of 𝛾.

• 𝐶𝑡𝑟𝑙(𝑒) = prob[𝑝]: We want to show that �prob[𝑝] (𝛾(𝑥1), 𝛾(𝑥2)) ⊑C 𝛾(�prob[𝑝]♯ (𝑥1, 𝑥2)). It
is equivalent to 𝛾(𝑥1) _𝜔.𝑝^C 𝛾(𝑥2) ⊑C 𝛾(𝑥1 𝑝⊕A 𝑥2). Appeal to properties of 𝛾.

• 𝐶𝑡𝑟𝑙(𝑒) = ndet: We want to show that n̂det(𝛾(𝑥1), 𝛾(𝑥2)) ⊑C 𝛾(n̂det♯ (𝑥1, 𝑥2)). It is
equivalent to 𝛾(𝑥1) −−∪C 𝛾(𝑥2) ⊑C 𝛾(𝑥1 −−∪A 𝑥2). Appeal to properties of 𝛾.

□
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4.2.3 Interprocedural Analysis Algorithm
We are given a probabilistic program 𝑃 and an interpretation 𝒜 = (A, J·K𝒜), where A = (𝑀A , ⊑A
, ⊗A , 𝜑^A , 𝑝⊕A ,−−∪A ,⊥A , 1A) is a PMA and J·K𝒜 is a semantic function. The goal is to compute
(an overapproximation of) 𝒜 [𝑃] = lfp ¤⊑A_𝑣.⊥

A

𝐹♯𝑃. An equivalent way to define 𝒜 [𝑃] is to specify it
as the least solution to a system of inequalities on {𝒜 [𝑣] | 𝑣 ∈ 𝑉} (where 𝑒 ∈ 𝐸 in each case):

𝑒 𝐶𝑡𝑟𝑙(𝑒)
𝒜 [𝑣] ⊒A JactK𝒜 ⊗A 𝒜 [𝑢1] (𝑣, {𝑢1}) seq[act]
𝒜 [𝑣] ⊒A 𝒜 [𝑢1] 𝜑^A 𝒜 [𝑢2] (𝑣, {𝑢1, 𝑢2}) cond[𝜑]
𝒜 [𝑣] ⊒A 𝒜 [𝑢1] 𝑝⊕A 𝒜 [𝑢2] (𝑣, {𝑢1, 𝑢2}) prob[𝑝]
𝒜 [𝑣] ⊒A 𝒜 [𝑢1] −−∪A 𝒜 [𝑢2] (𝑣, {𝑢1, 𝑢2}) ndet
𝒜 [𝑣] ⊒A 𝒜 [𝑣entry

𝑗 ] ⊗A 𝒜 [𝑢1] (𝑣, {𝑢1}) call[𝑖→ 𝑗]
𝒜 [𝑣] ⊒A 1

A
if 𝑣 = 𝑣exit

𝑖 for some procedure 𝐻𝑖
Note that in line 5 a call is treated as a hyper-edge with the action _ (entry, succ).entry⊗A succ. There
is no explicit return edge to match a call (as in many multi-procedure program representations,
e.g., [132]); instead, each exit node is initialized with the constant 1

A
(line 6).

I mainly adopt known techniques from previous work on interprocedural dataflow analysis, with
some adaptations to the PMAF setting, which uses hyper-graphs instead of ordinary graphs (i.e.,
CFGs).6 The analysis direction is backward, and the algorithm is similar to methods for computing
summary edges in demand interprocedural-dataflow-analysis algorithms ([76, Fig. 4], [135, Fig.
10]). The algorithm uses a standard chaotic-iteration strategy, i.e., Bourdoncle’s strategy [18]
(except that propagation is performed along hyper-edges instead of edges); it uses a fair iteration
strategy for selecting the next edge to consider.

4.2.4 Widening
Widening is a general technique in static analysis to ensure and speed up convergence [34, 36]. To
choose the nodes at which widening is to be applied, I treat the hyper-graph as a graph—i.e., each
hyper-edge (including calls) contributes one or two ordinary edges. More precisely, I construct a
dependence graph 𝐺(𝑃) = (𝑁, 𝐴) from a probabilistic program 𝑃 = {(𝑉𝑖, 𝐸𝑖, 𝑣entry

𝑖 , 𝑣exit
𝑖 )}1≤𝑖≤𝑛 by

defining 𝑁 def
=

⋃
1≤𝑖≤𝑛 𝑉𝑖, and

𝐴
def
= {(𝑢, 𝑣) | ∃𝑒 ∈ 𝐸 : (𝑣 = 𝑠𝑟𝑐(𝑒) ∧ 𝑢 ∈ 𝐷𝑠𝑡(𝑒))}
∪ {(𝑣entry

𝑗 , 𝑣) | ∃𝑒 ∈ 𝐸 : (𝑣 = 𝑠𝑟𝑐(𝑒) ∧ 𝐶𝑡𝑟𝑙(𝑒) = call[𝑖→ 𝑗])}.
(4.1)

I then compute a set𝑊 of widening points for 𝐺(𝑃) via the algorithm of Bourdoncle [18, Fig. 4].
Because of the second set-former in (4.1),𝑊 contains widening points that cut each cycle caused
by recursion.

6As mentioned in §4.1.3, standard formulations of interprocedural dataflow analysis [94, 105, 123, 138] can be
viewed as hyper-graph analyses. In that setting, one deals with hyper-graphs with constituent control-flow graphs.
With PMAF, because each procedure is represented as a hyper-graph, one has hyper-graphs of constituent hyper-graphs.
Fortunately, each procedure’s hyper-graph is a single-entry/single-exit hyper-graph, so the basic ideas and algorithms
from standard interprocedural dataflow analysis carry over to PMAF.
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While traditional programs exhibit only one sort of choice operator, probabilistic programs can
have three different kinds of choice operators, and hence loops can exhibit three different kinds
of behavior. I found that if we used the same widening operator for all widening nodes, there
could be a substantial loss in precision. Thus, I equip the framework with three separate widening
operators: ▽𝑐, ▽𝑝, and ▽𝑛. Let 𝑣 ∈ 𝑊 be the source of edge 𝑒 ∈ 𝐸. Then the inequalities for
widening points become

𝑒 𝐶𝑡𝑟𝑙(𝑒)
𝒜 [𝑣] ⊒A𝒜 [𝑣] ▽𝑛 (JactK𝒜 ⊗A 𝒜 [𝑢1]) (𝑣, {𝑢1}) seq[act]
𝒜 [𝑣] ⊒A𝒜 [𝑣] ▽𝑐 (𝒜 [𝑢1] 𝜑^A 𝒜 [𝑢2]) ⟨𝑣, {𝑢1, 𝑢2}) cond[𝜑]
𝒜 [𝑣] ⊒A𝒜 [𝑣] ▽𝑝 (𝒜 [𝑢1] 𝑝⊕A 𝒜 [𝑢2]) (𝑣, {𝑢1, 𝑢2}) prob[𝑝]
𝒜 [𝑣] ⊒A𝒜 [𝑣] ▽𝑛 (𝒜 [𝑢1] −−∪A 𝒜 [𝑢2]) (𝑣, {𝑢1, 𝑢2}) ndet
𝒜 [𝑣] ⊒A𝒜 [𝑣] ▽𝑛 (𝒜 [𝑣entry

𝑗 ] ⊗A 𝒜 [𝑢1]) (𝑣, {𝑢1}) call[𝑖→ 𝑗]

Observation 4.8. Recall that in this chapter, I assume that in a probabilistic program, each
non-exit node has exactly one outgoing hyper-edge. In each right-hand side above, the second
argument to the widening operator re-evaluates the action of the (one outgoing) hyper-edge.
Consequently, during an analysis, there is an invariant that whenever a widening operation 𝑎 ▽ 𝑏 is
performed, the property 𝑎 ⊑A 𝑏 holds.

The safety properties for the three widening operators are adaptations of the standard stabilization
condition: For every pair of ascending chains {𝑎𝑘}𝑘∈ℤ+ and {𝑏𝑘}𝑘∈ℤ+ ,

• the chain {𝑐𝑘}𝑘∈ℤ+ defined by 𝑐0 = 𝑎0 𝜑^A 𝑏0 and 𝑐𝑘+1 = 𝑐𝑘 ▽𝑐 (𝑎𝑘+1 𝜑^A 𝑏𝑘+1) is eventually
stable;

• the chain {𝑐𝑘}𝑘∈ℤ+ defined by 𝑐0 = 𝑎0 𝑝⊕A 𝑏0 and 𝑐𝑘+1 = 𝑐𝑘 ▽𝑝 (𝑎𝑘+1 𝑝⊕A 𝑏𝑘+1) is eventually
stable; and

• the chain {𝑐𝑘}𝑘∈ℤ+ defined by 𝑐0 = 𝑎0 −−∪A 𝑏0 and 𝑐𝑘+1 = 𝑐𝑘 ▽𝑛 (𝑎𝑘+1 −−∪A 𝑏𝑘+1) is eventually
stable.

4.3 Instantiations
In this section, I instantiate the framework to derive three important analyses: Bayesian inference
(BI) (§4.3.1), computing rewards in Markov decision processes (§4.3.2), and linear expectation-
invariant analysis (LEIA) (§4.3.3).

4.3.1 Bayesian Inference
Claret et al. [29] proposed a technique to perform Bayesian inference on Boolean programs using
dataflow analysis. They use a forward analysis to compute the post-state distribution of a single-
procedure, well-structured, probabilistic program. Their analysis is similar to an intraprocedural
dataflow analysis: they use discrete joint-probability distributions as dataflow facts, merge these
facts at join points, and compute fixpoints in the presence of loops. Let Var be a finite set of program
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variables; the set of program states is Ω def
= Var→ 𝟚, where 𝟚 = {true, false} is the set of Boolean

values. Note that Ω is isomorphic to 𝟚|Var|, and consequently, a distribution can be represented
by a vector of length 2|Var| of real numbers in the unit interval [0, 1]. (Their implementation uses
Algebraic Decision Diagrams [5] to represent distributions compactly.)
The algorithm by Claret et al. [29, Alg. 2] is defined inductively on the struc-

ture of programs—for example, the output distribution of 𝑥 ∼ Bernoulli(𝑟)
from an input distribution `, denoted by 𝑃𝑜𝑠𝑡(`, 𝑥 ∼ Bernoulli(𝑟)), is computed as
_𝜎′.

(
𝑟 ·∑{𝜎|𝜎′=𝜎[𝑥←true]} `(𝜎) + (1 − 𝑟) ·∑{𝜎|𝜎′=𝜎[𝑥←false]} `(𝜎)

)
.

I have used PMAF to extend their work in two dimensions, creating (i) an interprocedural version
of Bayesian inference with (ii) nondeterminism. Because of nondeterminism, for a given input state
the post-state distribution is not unique; consequently, my goal is to compute procedure summaries
that gives lower bounds on post-state distributions. I consider the following data actions Act and
logical conditions L for Boolean programs, where 𝑝 ∈ [0, 1].

Act F 𝑥 B 𝜑 | 𝑥 ∼ Bernoulli(𝑝) | observe(𝜑) | skip
𝜑 ∈ L F 𝑥 | true | false | not 𝜑 | 𝜑1 and 𝜑2 | 𝜑1 or 𝜑2

Similarly, I define interpretations of data actions and logical conditions for Boolean programs as I
have done for arithmetic programs in §2.3:

J𝑥 B 𝜑K def
= _𝜔. 𝛿(𝜔[𝑥 ↦→ J𝜑K(𝜔)]) J𝑥K def

= _𝜔. 𝜔(𝑥)
J𝑥 ∼ Bernoulli(𝑝)K def

= _𝜔. 𝑝 · 𝛿(𝜔[𝑥 ↦→ true]) J𝑐K def
= _𝜔. 𝑐 where 𝑐 ∈ {true, false}

+ (1 − 𝑝) · 𝛿(𝜔[𝑥 ↦→ false]) Jnot 𝜑K def
= _𝜔. ¬J𝜑K(𝜔)

Jobserve(𝜑)K def
= _𝜔. J𝜑K(𝜔) · 𝛿(𝜔) J𝜑1 and 𝜑2K

def
= _𝜔. J𝜑1K(𝜔) ∧ J𝜑2K(𝜔)

JskipK def
= _𝜔. 𝛿(𝜔) J𝜑1 or 𝜑2K

def
= _𝜔. J𝜑1K(𝜔) ∨ J𝜑2K(𝜔)

To reformulate the domain in the two-vocabulary setting needed for computing procedure
summaries, I introduce Var′, primed versions of the variables in Var. Var and Var′ denote the
variables in the pre-state and post-state of a state transformer. A distribution transformer (and
therefore a procedure summary) is a matrix of size 2|Var| ×2|Var′ | of real numbers in the unit interval
[0, 1]. I define a PMA B = (𝑀B, ⊑B, ⊗B, 𝜑^B, 𝑝⊕B,−−∪B,⊥B, 1B) as follows:

𝑀B
def
= 2|Var| × 2|Var′ | → [0, 1]

𝑎 ⊑B 𝑏 def
= 𝑎 ¤≤ 𝑏 𝑎 −−∪B 𝑏 def

= ¤min(𝑎, 𝑏)
𝑎 ⊗B 𝑏 def

= 𝑎 × 𝑏 ⊥
B

def
= _ (𝑠, 𝑡).0

𝑎 𝑝⊕B 𝑏
def
= 𝑝 · 𝑎 + (1 − 𝑝) · 𝑏 1

B

def
= _ (𝑠, 𝑡).[𝑠 = 𝑡]

𝑎 𝜑^B 𝑏
def
= _ (𝑠, 𝑡). if J𝜑K(𝑠) then 𝑎(𝑠, 𝑡) else 𝑏(𝑠, 𝑡)

The use of pointwise min in the definition of 𝑎 −−∪B 𝑏 causes the analysis to compute procedure
summaries that provide lower bounds on the post-state distributions.
Lemma 4.9. B is a PMA.

Proof. (𝑀B, ⊑B) forms a complete lattice because all elements in 𝑀B are supported by the
bounded interval [0, 1]. (𝑀B, ⊗B, 1B) forms a monoid because the set of square matrices (of
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the same dimension) with matrix multiplication forms a monoid with the identity matrix as the
identity element. The semilattice ordering induced by −−∪B is the pointwise ordering ¤≥, and it is
straightforward to check 𝑎 𝜑^B 𝑏 ¤≥ 𝑎 −−∪B 𝑏 and 𝑎 𝑝⊕B 𝑏 ¤≥ 𝑎 −−∪B 𝑏 for all 𝑎, 𝑏 ∈ 𝑀B and 𝜑 ∈ L,
𝑝 ∈ [0, 1]. Finally, it is also straightforward to check that the operators ⊗B, 𝜑^B, 𝑝⊕B, −−∪B are
monotone with respect to ⊑B. □

Letℬ = (B, J·Kℬ) be the interpretation for Bayesian inference. I define the semantic function for
data actions as follows. Recall that [·] is the Iverson bracket, which evaluates to 1 if the argument
condition is true, and 0 otherwise.

J𝑥 B 𝜑Kℬ def
= _ (𝑠, 𝑡). [𝑠[𝑥 ↦→ J𝜑K(𝑠)] = 𝑡]

J𝑥 ∼ Bernoulli(𝑝)Kℬ def
= _ (𝑠, 𝑡). 𝑝 · [𝑠[𝑥 ↦→ true] = 𝑡] + (1 − 𝑝) · [𝑠[𝑥 ↦→ false] = 𝑡]

Jobserve(𝜑)Kℬ def
= _ (𝑠, 𝑡). [J𝜑K(𝑠)] · [𝑠 = 𝑡]

JskipKℬ def
= _ (𝑠, 𝑡). [𝑠 = 𝑡]

To prove soundness, I use the denotational semantics based on the g-convex powerdomain GK (Ω)
(denoted by C in this section) developed in §3.3. I then define the concretization mapping
𝛾B : 𝑀B → GK (Ω) as 𝛾B (𝑎) def

= {^ | ∀𝑠, 𝑠′ : ^(𝑠) (𝑠′) ≥ 𝑎(𝑠, 𝑠′)}, indicating that the abstract
domain keeps track of lower bounds.
Lemma 4.10. 𝛾B is a probabilistic under-abstraction from C to B.

Proof. By definition, we have 𝛾B (𝑎) = ↑(_𝑠._𝑠′.𝑎(𝑠, 𝑠′)), i.e., the upper closure of 𝑎 in the
g-convex powerdomain GK (Ω).

• We want to show 𝛾B (1B) ⊑C 1
C
. Appeal to the fact that ↑(_𝑠._𝑠′.[𝑠 = 𝑠′]) = ↑{_𝑠.𝛿(𝑠)} =

{_𝑠.𝛿(𝑠)} = 1
C
.

• We want to show for all 𝑄1, 𝑄2 ∈ B, 𝛾B (𝑄1 ⊗B 𝑄2) ⊑C 𝛾B (𝑄1) ⊗C 𝛾B (𝑄2). Because 𝛾B always
maps to saturated subsets, it is sufficient to show 𝛾B (𝑄1 ×𝑄2) ⊇ ↑𝑔𝑐𝑜𝑛𝑣(𝛾B (𝑄1) ⊗C 𝛾B (𝑄2)).
Observe that 𝛾B (𝑄1×𝑄2) is saturated and g-convex, it is sufficient to show 𝛾B (𝑄1)⊗C𝛾B (𝑄2) ⊆
𝛾B (𝑄1 × 𝑄2).
Fix ^1 ∈ 𝛾B (𝑄1) and ^2 ∈ 𝛾B (𝑄2). Let 𝑞1 = _𝑠._𝑠′.𝑄1(𝑠, 𝑠′) and 𝑞2 = _𝑠._𝑠′.𝑄2(𝑠, 𝑠′). Then
^1 ⊒𝐾 𝑞1 and ^2 ⊒𝐾 𝑞2. Because the kernel composition operator ⊗ is monotone, we know
that ^1 ⊗ ^2 ⊒𝐾 𝑞1 ⊗ 𝑞2. Observe that

𝑞1 ⊗ 𝑞2 = _𝑠._𝑠′′.
∑︁
𝑠′∈Ω

𝑞1(𝑠) (𝑠′) · 𝑞2(𝑠′) (𝑠′′) = _𝑠._𝑠′′.(𝑄1 × 𝑄2) (𝑠, 𝑠′′),

thus 𝑞1 ⊗ 𝑞2 ∈ 𝛾B (𝑄1 × 𝑄2). Because ^1 ⊗ ^2 ⊒𝐾 𝑞1 ⊗ 𝑞2 and 𝛾B (𝑄1 × 𝑄2) is saturated, we
conclude that ^1 ⊗ ^2 ∈ 𝛾B (𝑄1 × 𝑄2).

• We want to show that for all 𝑄1, 𝑄2 ∈ B and 𝜑 ∈ L, it holds that 𝛾B (𝑄1 𝜑^B 𝑄2) ⊑C
𝛾B (𝑄1) 𝜑^C 𝛾B (𝑄2). It is sufficient to show that

𝛾B (_ (𝑠, 𝑠′). if J𝜑K(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)) ⊇ ↑(𝛾B (𝑄1) 𝜑^C 𝛾B (𝑄2)).
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Observe that the left-hand-side is saturated. It is sufficient to show

𝛾B (𝑄1) 𝜑^C 𝛾B (𝑄2) ⊆ 𝛾B (_ (𝑠, 𝑠′). if J𝜑K(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)).
Fix ^1 ∈ 𝛾B (𝑄1) and ^2 ∈ 𝛾B (𝑄2). Let 𝑞1 = _𝑠._𝑠′.𝑄1(𝑠, 𝑠′) and 𝑞2 = _𝑠._𝑠′.𝑄2(𝑠, 𝑠′). Then
^1 ⊒𝐾 𝑞1 and ^2 ⊒𝐾 𝑞2. Because the kernel conditional-choice operator 𝜑^ is monotone, we
know that ^1 𝜑^ ^2 ⊒𝐾 𝑞1 𝜑^ 𝑞2. Observe that

𝑞1 𝜑^ 𝑞2 = _𝑠._𝑠′.[J𝜑K(𝑠)] · 𝑞1(𝑠) (𝑠′) + [1 − J𝜑K(𝑠)] · 𝑞2(𝑠) (𝑠′)
= _𝑠._𝑠′.if J𝜑K(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′),

thus 𝑞1 𝜑^ 𝑞2 ∈ 𝛾B (_ (𝑠, 𝑠′).if J𝜑K(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)). Hence ^1 𝜑^ ^2 ∈
𝛾B (_ (𝑠, 𝑠′).if J𝜑K(𝑠) then 𝑄1(𝑠, 𝑠′) else 𝑄2(𝑠, 𝑠′)).

• We want to show that for all 𝑄1, 𝑄2 ∈ B and 𝑝 ∈ [0, 1], it holds that 𝛾B (𝑄1 𝑝⊕B 𝑄2) ⊑C
𝛾B (𝑄1) _𝜔.𝑝^C 𝛾B (𝑄2). It is sufficient to show that

𝛾B (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2) ⊇ ↑(𝛾B (𝑄1) _𝜔.𝑝^C 𝛾B (𝑄2)).

Observe that the left-hand-side is saturated, it is sufficient to show

𝛾B (𝑄1) _𝜔.𝑝^C 𝛾B (𝑄2) ⊆ 𝛾B (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2).

Fix ^1 ∈ 𝛾B (𝑄1) and ^2 ∈ 𝛾B (𝑄2). Let 𝑞1 = _𝑠._𝑠′.𝑄1(𝑠, 𝑠′) and 𝑞2 = _𝑠._𝑠′.𝑄2(𝑠, 𝑠′). Then
^1 ⊒𝐾 𝑞1 and ^2 ⊒𝐾 𝑞2. Because the kernel condition-choice operator _𝜔.𝑝^ is monotone, we
know that ^1 _𝜔.𝑝^ ^2 ⊒𝐾 𝑞1 _𝜔.𝑝^ 𝑞2. Observe that

𝑞1 _𝜔.𝑝^ 𝑞2 = _𝑠._𝑠′.𝑝 · 𝑞1(𝑠) (𝑠′) + (1− 𝑝) · 𝑞2(𝑠) (𝑠′) = _𝑠._𝑠′.𝑝 ·𝑄1(𝑠, 𝑠′) + (1− 𝑝) ·𝑄2(𝑠, 𝑠′),
thus 𝑞1 _𝜔.𝑝^ 𝑞2 ∈ 𝛾B (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2). Hence ^1 _𝜔.𝑝^ ^2 ∈ 𝛾B (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2).

• We want to show that for all 𝑄1, 𝑄2 ∈ B, 𝛾B (𝑄1 −−∪B 𝑄2) ⊑C 𝛾B (𝑄1) −−∪C 𝛾B (𝑄2). It is sufficient
to show 𝛾B ( ¤min(𝑄1, 𝑄2)) ⊇ ↑𝑔𝑐𝑜𝑛𝑣(𝛾B (𝑄1) ∪ 𝛾B (𝑄2)). Observe that the left-hand-side is
saturated and g-convex, it is sufficient to show 𝛾B (𝑄1) ∪ 𝛾B (𝑄2) ⊆ 𝛾B ( ¤min(𝑄1, 𝑄2)). It
follows directly from the fact that ¤min(𝑄1, 𝑄2) ¤≤𝑄1 and ¤min(𝑄1, 𝑄2) ¤≤𝑄2, as well as the
definition of 𝛾B, which maps to saturated subsets.

□

I do not define widening operators for BI, because 𝛾B is an under-abstraction and the chaotic-
iteration algorithm starts from the bottom element in the abstract domain, the intermediate result
at any iteration is a sound answer.

4.3.2 Markov Decision Process with Rewards
Analyses of finite-state Markov decision processes were originally developed in the fields of
operational research and finance mathematics [130]. Originally, Markov decision processes were
defined as finite-state machines with actions that exhibit probabilistic transitions. In this section, I
use a slightly different formalization, using hyper-graphs.
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Definition 4.11 (Markov decision processes). A Markov decision process (MDP) is a hyper-graph
𝐻 = (𝑉, 𝐸, 𝑣entry, 𝑣exit), where every node except 𝑣exit has exactly one outgoing hyper-edge; each
hyper-edge with just a single destination has an associated reward, seq[reward(𝑟)], where 𝑟 is a
positive rational number; and each hyper-edge with two destinations has either prob[𝑝], where
0 ≤ 𝑝 ≤ 1, or ndet. Note that MDPs are a specialization of single-procedure probabilistic programs
without conditional-choice.

We can also treat the hyper-graph as a graph: each hyper-edge contributes one or two graph
edges. A path through the graph has a reward, which is the sum of the rewards that label the
edges of the path. (Edges from hyper-edges with the actions prob[𝑝] or ndet are considered to
have reward 0.) The analysis problem that I wish to solve is to determine, for each node 𝑣, the
greatest expected reward that one can gain by executing the program from 𝑣.
It is natural to extend MDPs with procedure calls and multiple procedures, to obtain recursive

Markov decision processes. The set of program states is defined to be the set of extended nonnegative
rational numbers: Ω def

= ℚ+∞. To address the maximum-expected-reward problem for a recursive
Markov decision process, I define a PMA R = (𝑀R , ⊑R , ⊗R , 𝜑^R , 𝑝⊕R ,−−∪R ,⊥R , 1R) as follows:

𝑀R
def
= ℝ+∞ 𝜑^R

def
= max ⊥

R

def
= 0

⊑R def
= ≤ 𝑎 𝑝⊕R 𝑏

def
= 𝑝 · 𝑎 + (1 − 𝑝) · 𝑏 1

R

def
= 0

⊗R def
= + −−∪R def

= max

Lemma 4.12. R is a PMA.

Proof. (𝑀R , ⊑R) forms a complete lattice because it is isomorphic to the set of extended
nonnegative real numbers. (𝑀R , ⊗R , 1R) forms a monoid because addition + is associative on real
numbers and has 0 as its identity element. The semilattice ordering induced by −−∪R is the standard
real number ordering ≤, and it is straightforward to check 𝑎 𝜑^R 𝑏 ≤ 𝑎 −−∪R 𝑏 and 𝑎 𝑝⊕R 𝑏 ≤ 𝑎 −−∪R 𝑏
for all 𝑎, 𝑏 ∈ 𝑀R and 𝜑 ∈ L, 𝑝 ∈ [0, 1]. Finally, it is also straightforward to check that the
operators ⊗R , 𝜑^R , 𝑝⊕R , −−∪R are monotone with respect to ⊑R . □

Let ℛ = (R, J·Kℛ) be the interpretation for a Markov decision process with rewards. Because
MDPs do not have logical conditions (i.e., L = ∅) and the only data action is reward(𝑟), I define
the concrete interpretation as Jreward(𝑟)K def

= _𝑠.𝛿(𝑠 + 𝑟) and the abstract semantic function as
Jreward(𝑟)Kℛ def

= 𝑟.
To prove soundness, I use the denotational semantics based on the g-convex powerdomain
GK (Ω) (denoted by C in this section) developed in §3.3. I then define the concretization mapping
𝛾R : 𝑀R → GK (Ω) as 𝛾R (𝑎) def

= {^ | ∀𝑠 : ∑
𝑠′∈Ω 𝑠′ · ^(𝑠) (𝑠′) ≤ 𝑠 + 𝑎}, indicating that the abstract

domain keeps track of upper bounds.
Lemma 4.13. 𝛾R is a probabilistic over-abstraction from C to R.

Proof. By definition, we have 𝛾R (𝑎) = {^ | ∀𝑠 : ∑
𝑠′∈Ω 𝑠′ · ^(𝑠) (𝑠′) = 𝑠 + 𝑎}, where 𝑈 is the Scott

closure of 𝑈 in the g-convex powerdomain GK (Ω).
• We want to show 1

C
⊑C 𝛾R (1R). Appeal to the fact that _𝑠.𝛿(𝑠) ∈ 𝛾R (0).
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• We want to show for all 𝑄1, 𝑄2 ∈ R, 𝛾R (𝑄1) ⊗C 𝛾R (𝑄2) ⊑C 𝛾R (𝑄1 ⊗R 𝑄2). Because 𝛾R
always maps to Scott-closed subsets, it is sufficient to show that 𝑔𝑐𝑜𝑛𝑣(𝛾R (𝑄1) ⊗C 𝛾R (𝑄2)) ⊆
𝛾R (𝑄1 + 𝑄2). Observe that 𝛾R (𝑄1 + 𝑄2) is Scott-closed and g-convex, it is sufficient to show
that 𝛾R (𝑄1) ⊗C 𝛾R (𝑄2) ⊆ 𝛾R (𝑄1 + 𝑄2).
Fix ^1 ∈ 𝛾R (𝑄1) and ^2 ∈ 𝛾R (𝑄2). Observe that ∑

𝑦∈Ω 𝑦 · ^1(𝑠) (𝑦) ≤ 𝑠 + 𝑄1 and ∑
𝑦∈Ω 𝑦 ·

^2(𝑠) (𝑦) ≤ 𝑠 + 𝑄2. By the definition of the kernel composition operator ⊗, we have∑︁
𝑦∈Ω

𝑦 · (^1 ⊗ ^2) (𝑠) (𝑦) =
∑︁
𝑦∈Ω

𝑦 · (
∑︁
𝑧∈Ω

^1(𝑠) (𝑧) · ^2(𝑧) (𝑦))

=
∑︁
𝑧∈Ω
(
∑︁
𝑦∈Ω

𝑦 · ^2(𝑧) (𝑦)) · ^1(𝑠) (𝑧)

≤
∑︁
𝑧∈Ω
(𝑧 + 𝑄2) · ^1(𝑠) (𝑧)

=
∑︁
𝑧∈Ω

𝑧 · ^1(𝑠) (𝑧) + 𝑄2 ·
∑︁
𝑧∈Ω

^1(𝑠) (𝑧)

≤ 𝑠 + 𝑄1 + 𝑄2.

Hence ^1 ⊗ ^2 ∈ 𝛾R (𝑄1 + 𝑄2).

• Wewant to show that for all 𝑄1, 𝑄2 ∈ R and 𝑝 ∈ [0, 1], it holds that 𝛾R (𝑄1) _𝜔.𝑝^C 𝛾R (𝑄2) ⊑C
𝛾R (𝑄1 𝑝⊕R 𝑄2). It is sufficient to show that 𝛾R (𝑄1) _𝜔.𝑝^ 𝛾R (𝑄2) ⊆ 𝛾R (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2).
Observe that 𝛾R (𝑝 ·𝑄1+ (1− 𝑝) ·𝑄2) is Scott-closed, it is sufficient to show that 𝛾R (𝑄1) _𝜔.𝑝^C
𝛾R (𝑄2) ⊆ 𝛾R (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2).
Fix ^1 ∈ 𝛾R (𝑄1) and ^2 ∈ 𝛾R (𝑄2). Observe that ∑

𝑦∈Ω 𝑦 · ^1(𝑠) (𝑦) ≤ 𝑠 + 𝑄1 and ∑
𝑦∈Ω 𝑦 ·

^2(𝑠) (𝑦) ≤ 𝑠 + 𝑄2. By the definition of the kernel conditional-choice operator 𝜑^, we have∑︁
𝑦∈Ω

𝑦 · (^1 _𝜔.𝑝^ ^2) (𝑠) (𝑦) =
∑︁
𝑦∈Ω

𝑦 · (𝑝 · ^1 + (1 − 𝑝) · ^2) (𝑠) (𝑦)

=
∑︁
𝑦∈Ω

𝑦 · 𝑝 · ^1(𝑠) (𝑦) +
∑︁
𝑦∈Ω

𝑦 · (1 − 𝑝) · ^2(𝑠) (𝑦)

≤ 𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2.

Hence ^1 _𝜔.𝑝^ ^2 ∈ 𝛾R (𝑝 · 𝑄1 + (1 − 𝑝) · 𝑄2).

• We want to show for all 𝑄1, 𝑄2 ∈ R, 𝛾R (𝑄1) −−∪C 𝛾R (𝑄2) ⊑C 𝛾R (𝑄1 −−∪R 𝑄2). It is sufficient to
show that 𝑔𝑐𝑜𝑛𝑣(𝛾R (𝑄1) ∪ 𝛾R (𝑄2)) ⊆ 𝛾R (max(𝑄1, 𝑄2)). Observe that 𝛾R (max(𝑄1, 𝑄2)) is
Scott-closed and g-convex, it is sufficient to show that 𝛾R (𝑄1) ∪ 𝛾R (𝑄2) ⊆ 𝛾R (max(𝑄1, 𝑄2)).
It follows directly from the fact that 𝑄1 ≤ max(𝑄1, 𝑄2) and 𝑄2 ≤ max(𝑄1, 𝑄2), as well as
the definition of 𝛾R , which maps to Scott-closed subsets.

□

I then use a trivial widening in this analysis: if after some fixed number of iterations the analysis
does not converge, it returns ∞ as the result.
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4.3.3 Linear Expectation-Invariant Analysis
Several examples of expectation invariants obtained via linear expectation-invariant analysis (LEIA)
were given in §4.1.2. This section gives details of the abstract domain for LEIA.
I make use of an existing abstract domain, namely, the domain of convex polyhedra [38]. Elements

of the polyhedral domain are defined by linear-inequality and linear-equality constraints among
program variables. For LEIA, I use two-vocabulary polyhedra over nonnegative program variables.
Let 𝑥 = (𝑥1, · · · , 𝑥𝑛)𝑇 be a column vector of nonnegative program variables and 𝑥′ = (𝑥′1, · · · , 𝑥′𝑛)𝑇
be a column vector of the “primed” versions of corresponding program variables. A polyhedron
𝑃 ⊆ (ℝ+)2𝑛 captures linear-inequality constraints among 𝑥 and 𝑥′, which can be interpreted as a
relation between pre-state and post-state variable valuations.
A polyhedron 𝑃 = {(𝑥′𝑇 𝑥𝑇 )𝑇 ∈ (ℝ+)2𝑛 | 𝐴′𝑥′ + 𝐴𝑥 ≤ 𝑏 ∧ 𝐷′𝑥′ + 𝐷𝑥 = 𝑒}, can be encoded

as the intersection of a finite number of closed half spaces and a finite number of subspaces,
where 𝐴′, 𝐴, 𝐷′, 𝐷 are matrices and 𝑏, 𝑒 are vectors. The associated constraint set is defined as
C𝑃 = {𝐴′𝑥′ + 𝐴𝑥 ≤ 𝑏, 𝐷′𝑥′ + 𝐷𝑥 = 𝑒}. Let P be the set of polyhedra; P is equipped with meet, join,
renaming, forgetting, and comparison operations.
LEIA uses expectation polyhedra. They are actually the same as polyhedra, except that the two

vocabularies are 𝑥 = (𝑥1, · · · , 𝑥𝑛)𝑇 and 𝔼[𝑥′] = (𝔼[𝑥′1], · · · ,𝔼[𝑥′𝑛])𝑇 . An expectation polyhedron
represents a constraint set of the form

{𝐴′𝔼[𝑥′] + 𝐴𝑥 ≤ 𝑏, 𝐷′𝔼[𝑥′] + 𝐷𝑥 = 𝑒}. (4.2)

Because of the linearity of the expectation operator 𝔼, an equivalent way to express (4.2) is as
follows:

{𝔼[𝐴′𝑥′] + 𝐴𝑥 ≤ 𝑏,𝔼[𝐷′𝑥′] + 𝐷𝑥 = 𝑒}.
Let EP be the set of expectation polyhedra. EP is equipped with the same set of operations as P.
I define the state space to be Ω = (ℝ+)𝑛. I then define a PMA I with a universe 𝑀I def

= P × EP.
An element (𝑃, 𝐸𝑃) ∈ I consists of
(i) a set of standard constraints 𝑃 ∈ P, and

(ii) a set of expectation constraints 𝐸𝑃 ∈ EP, such that 0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′] ⊒ 𝐸𝑃 holds, where
0 def
=

∧𝑛
𝑖=1(𝔼[𝑥′𝑖] = 0).

The latter property means that, if necessary, one can always “rebuild” a pessimistic EP component
from the P component as 0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′].7
Because the state space Ω is not countable, I use the denotational semantics based on the convex

powerdomain Ω→ PD (Ω) (denoted by C in this section) reviewed in §3.3. Note that to support
distributions on real numbers, the state space Ω is equipped with a coherent dcpo [110, 144]. I
define the concretization mapping 𝛾I as follows:

𝛾I (𝑃, 𝐸𝑃) = _𝑠. {` | `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 |= 𝑃}) = `(Ω) ∧ [
∫
𝑠′𝑇 · `(𝑑𝑠′) 𝑠𝑇 ]𝑇 |= 0 ⊔ 𝐸𝑃}.

7The intuition is that 𝑃 represents a convex over-approximation to some desired set of points; the expected value
has to lie somewhere inside ®0 ⊔ 𝑃, where “®0 ⊔ . . .” is needed to account for sub-probability distributions. For instance,
for a nonnegative interval [lo, hi], it must hold that expected ∈ ([0, 0] ⊔ [lo, hi]); i.e., 0 ≤ expected ≤ hi.
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Comparison The comparison operation on ordinary polyhedra can be defined as standard set
inclusion. For expectation polyhedra, taking into account sub-probability distributions, I define
𝐸𝑃1 ⊑ 𝐸𝑃2 to be 0⊔ 𝐸𝑃1 ⊆ 0⊔ 𝐸𝑃2, so that any element inside or below 𝐸𝑃1 should also be inside
or below 𝐸𝑃2. Consequently, I define (𝑃1, 𝐸𝑃1) ⊑I (𝑃2, 𝐸𝑃2) def

= 𝑃1 ⊆ 𝑃2 ∧ 0 ⊔ 𝐸𝑃1 ⊆ 0 ⊔ 𝐸𝑃2.

Composition For ordinary polyhedra, the composition of 𝑃1 and 𝑃2 can be defined as
(∃𝑥′′ : C𝑃1 [𝑥′′/𝑥′] ∧ C𝑃2 [𝑥′′/𝑥]) =⇒ C𝑃1⊗𝑃2 ,

where I introduce an intermediate vocabulary 𝑥′′ = (𝑥′′1 , · · · , 𝑥′′𝑛 )𝑇 , and use it to connect 𝑃1 and
𝑃2. Consequently, I define 𝑃1 ⊗ 𝑃2 to be ∃𝑥′′ : C𝑃1 [𝑥′′/𝑥′] ∧ C𝑃2 [𝑥′′/𝑥]. Operationally, composition
involves first introducing a new vocabulary; renaming the variables properly; performing a meet,
and finally forgetting the intermediate vocabulary.
Somewhat surprisingly, because of the tower property in probability theory, exactly the same

steps can be used to compose expectation polyhedra. Informally, the tower property means
that 𝔼[𝑋] = 𝔼[𝔼[𝑋 | 𝑌 ]], where 𝑋 and 𝑌 are two random variables, and 𝔼[𝑋 | 𝑌 ] is a
conditional expectation. For instance, suppose that 𝐸𝑃1 and 𝐸𝑃2 are defined by the constraint
sets {𝔼(𝑥′) = 𝑥 + 2} and {𝔼(𝑥′) = 7𝑥}, respectively. Following the renaming recipe above, we
have 𝔼(𝑥′′) = 𝑥 + 2 and 𝔼(𝑥′ | 𝑥′′) = 7𝑥′′. By the tower property, we have 𝔼(𝑥′) = 𝔼(𝔼(𝑥′ | 𝑥′′))
= 𝔼(7𝑥′′) = 7𝔼(𝑥′′) = 7𝑥 + 14. Operationally, the tower property allows one to compose linear
expectation invariants, and eliminate the intermediate vocabulary 𝑥′′. Consequently, I define

(𝑃1, 𝐸𝑃1) ⊗I (𝑃2, 𝐸𝑃2) def
= (𝑃1 ⊗ 𝑃2, 𝐸𝑃1 ⊗ 𝐸𝑃2).

Conditional-choice For the ordinary-polyhedron component, a conditional-choice 𝜑^ is per-
formed by first meeting each operand with the logical constraint 𝜑, and then joining the results.
However, for the expectation-polyhedron component, conditioning can split the probability space
in almost arbitrary ways. Consequently, the constraints on post-state expectations as a function of
pre-state valuations are not necessarily true after conditioning. Thus, I define

(𝑃1, 𝐸𝑃1) 𝜑^I (𝑃2, 𝐸𝑃2) def
= let 𝑃 = ({𝜑} ⊓ 𝑃1) ⊔ ({¬𝜑} ⊓ 𝑃2)

in (𝑃, (𝐸𝑃1 ⊔ 𝐸𝑃2) ⊓ (0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′])).
The ⊓ in the second component is performed to maintain the invariant that 0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′] ⊒ the
second component.

Probabilistic-choice For the ordinary-polyhedron component, I merely join the components of
the two operands. For the expectation-polyhedron component, I introduce two more vocabularies
and have

(∃𝑥′′, 𝑥′′′ : C𝐸𝑃1 [𝑥′′/𝔼[𝑥′]] ∧ C𝐸𝑃2 [𝑥′′′/𝔼[𝑥′]] ∧
𝑛∧
𝑖=1

𝔼[𝑥′𝑖] = 𝑝 · 𝑥′′𝑖 + (1 − 𝑝) · 𝑥′′′𝑖 ) =⇒ C𝐸𝑃1 𝑝⊕𝐸𝑃2 .

Consequently, I define 𝐸𝑃1 𝑝⊕ 𝐸𝑃2 to be

∃𝑥′′, 𝑥′′′ :
(
C𝐸𝑃1 [𝑥′′/𝔼[𝑥′]] ∧ C𝐸𝑃2 [𝑥′′′/𝔼[𝑥′]] ∧

𝑛∧
𝑖=1

𝔼[𝑥′𝑖] = 𝑝 · 𝑥′′𝑖 + (1 − 𝑝) · 𝑥′′′𝑖
)
,
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and (𝑃1, 𝐸𝑃1) 𝑝⊕I (𝑃2, 𝐸𝑃2) def
= (𝑃1 ⊔ 𝑃2, 𝐸𝑃1 𝑝⊕ 𝐸𝑃2).

Nondeterministic-choice The nondeterministic-choice operations on both ordinary polyhedra
and expectation polyhedra can be defined as join. Hence, I define (𝑃1, 𝐸𝑃1) −−∪I (𝑃2, 𝐸𝑃2) def

=

(𝑃1 ⊔ 𝑃2, 𝐸𝑃1 ⊔ 𝐸𝑃2).

Bottom and Unit Element I define ⊥
I

def
= (false, 0), and 1

I

def
= ({𝑥′𝑖 = 𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑛}, {𝔼[𝑥′𝑖] =

𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑛}).

Semantic Function Some examples of the semantic mapping J·Kℐ are as follows, where min(𝒟)
and max(𝒟) represents the interval of the support of a distribution 𝒟, while mean(𝒟) stands for
its average. Note that LEIA does not support observation statements, which might change the
post-state probability distribution in almost arbitrary ways.

J𝑥𝑖 := EKℐ def
=

(
{𝑥′𝑖 = E (𝑥)} ∪ {𝑥′𝑗 = 𝑥 𝑗 | 𝑗 ≠ 𝑖}, {𝔼[𝑥′𝑖] = E (𝑥)} ∪ {𝔼[𝑥′𝑗] = 𝑥 𝑗 | 𝑗 ≠ 𝑖}

)
J𝑥𝑖 ∼ 𝒟Kℐ def

=

(
{min(𝒟) ≤ 𝑥′𝑖 ≤ max(𝒟)} ∪ {𝑥′𝑗 = 𝑥 𝑗 | 𝑗 ≠ 𝑖},
{𝔼[𝑥′𝑖] = mean(𝒟)} ∪ {𝔼[𝑥′𝑗] = 𝑥 𝑗 | 𝑗 ≠ 𝑖}

)
JskipKℐ def

= 1
I

Note I assume all expressions in the program are linear. For nonlinear arithmetic programs, one
can adopt some linearization techniques [54, 113].
Lemma 4.14. I is a PMA.

Proof. Most of the properties appeal to the properties of the polyhedron domain [38]. The only
nontrivial property is that 𝑎 𝑝⊕I 𝑏 ≤I 𝑎 −−∪I 𝑏 for abstract elements 𝑎, 𝑏 and 𝑝 ∈ [0, 1], where ≤I is
the semilattice ordering induced by −−∪I . It suffices to show that for any polyhedra 𝐸𝑃1 and 𝐸𝑃2, it
holds that 𝐸𝑃1 𝑝⊕ 𝐸𝑃2 ⊆ 𝐸𝑃1 ⊔ 𝐸𝑃2. By the properties of the polyhedron join, we know that

C𝐸𝑃1⊔𝐸𝑃2 ⇐= ∃𝑥′′, 𝑥′′′ : (C𝐸𝑃1 [𝑥′′/𝔼[𝑥′]] ∧ C𝐸𝑃2 [𝑥′′′/𝔼[𝑥′]] ∧
𝑛∧
𝑖=1
(𝔼[𝑥′𝑖] ≥ min(𝑥′′𝑖 , 𝑥′′′𝑖 ) ∧ 𝔼[𝑥′𝑖] ≤ max(𝑥′′𝑖 , 𝑥′′′𝑖 ))),

thus by the definition of polyhedron probabilistic-choice operator 𝑝⊕, 𝔼[𝑥′𝑖] is a convex combination
of 𝑥′′𝑖 and 𝑥′′′𝑖 thus must be included in the interval [min(𝑥′′𝑖 , 𝑥′′′𝑖 ),max(𝑥′′𝑖 , 𝑥′′′𝑖 )]. Therefore, we
have C𝐸𝑃1⊔𝐸𝑃2 ⇐= C𝐸𝑃1 𝑝⊕𝐸𝑃2 and 𝐸𝑃1 𝑝⊕ 𝐸𝑃2 ⊆ 𝐸𝑃1 ⊔ 𝐸𝑃2. □

Lemma 4.15. 𝛾I is a probabilistic over-abstraction from C to I.

Proof. By definition, we have

𝛾I (𝑃, 𝐸𝑃) = _𝑠. {` | `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃) = `(Ω) ∧ [
∫
𝑦𝑇 · `(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 𝐸𝑃},

where 𝑈 is the Scott-closure of 𝑈 in the convex powerdomain PD (Ω).
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• We want to show 1
C
⊑C 𝛾I (1I). Appeal to the fact that _𝑠.{𝛿(𝑠)} ∈ 𝛾I ({𝑥′𝑖 = 𝑥𝑖 | 1 ≤ 𝑖 ≤

𝑛}, {𝔼[𝑥′𝑖] = 𝑥𝑖 | 1 ≤ 𝑖 ≤ 𝑛}).
• We want to show for all (𝑃1, 𝐸𝑃1), (𝑃2, 𝐸𝑃2) ∈ I, it holds that 𝛾I (𝑃1, 𝐸𝑃1) ⊗C 𝛾I (𝑃1, 𝐸𝑃1) ⊑C
𝛾I ((𝑃1, 𝐸𝑃1) ⊗I (𝑃2, 𝐸𝑃2)). Let 𝑔 = 𝛾I (𝑃1, 𝐸𝑃1) and ℎ = 𝛾I (𝑃2, 𝐸𝑃2). Fix 𝑠 ∈ Ω. Then it
suffices to show ̂̂

ℎ(𝑔(𝑠)) ⊑𝑃 𝛾I ((𝑃1, 𝐸𝑃1) ⊗I (𝑃2, 𝐸𝑃2)) (𝑠) (recall Proposition 3.9). Because
𝛾I always maps to Scott-closed convex subsets, the ordering ⊑𝑃 can be reduced to set inclusion
⊆. Since ̂̂

ℎ is linear with respect to lifted probabilistic choices, it suffices to show that for any
` ∈ 𝑔(𝑠), the set ℎ̂(`) (the linear function ℎ̂ is obtained by [144, Thm. 2.11], which is similar
to Proposition 3.7) is contained as a subset in

𝛾I ((𝑃1, 𝐸𝑃1) ⊗I (𝑃2, 𝐸𝑃2)) (𝑠) = 𝛾I (𝑃1 ⊗ 𝑃2, 𝐸𝑃1 ⊗ 𝐸𝑃2) (𝑠).
Fix some ` ∈ 𝑔(𝑠).
First, we claim that for any a ∈ ℎ̂(`), it holds that a({𝑠′′ | [𝑠′′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊗ 𝑃2}) = a(Ω).
Because ℎ̂ is linear with respect to probabilistic choices, it suffices to show that for any
𝑠′ ∈ supp(`) and a ∈ ℎ(𝑠′), it holds that

a({𝑠′′ | [𝑠′′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊗ 𝑃2}) = a(Ω).
By the definition of ℎ, we have a({𝑠′′ | [𝑠′′𝑇 𝑠′𝑇 ]𝑇 ∈ 𝑃2}) = a(Ω). Because 𝑠′ ∈ supp(`),
` ∈ 𝑔(𝑠), and by the definition of 𝑔, we have [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1. Thus, for any 𝑠′′ satisfying
[𝑠′′𝑇 𝑠′𝑇 ]𝑇 ∈ 𝑃2, it holds that [𝑠′′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊗ 𝑃2. Therefore, we can conclude this claim by

a(Ω) = a({𝑠′′ | [𝑠′′𝑇 𝑠′𝑇 ]𝑇 ∈ 𝑃2}) ≤ a({𝑠′ | [𝑠′′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊗ 𝑃2}) ≤ a(Ω).

Second, we claim that for any a ∈ ℎ̂(`), it holds that [
∫
𝑦𝑇 · a(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0 ⊔ (𝐸𝑃1 ⊗ 𝐸𝑃2).

Because ℎ̂ is linear with respect to probabilistic choices, and by assuming the Axiom of Choice,
we can choose 𝜋𝑠′ ∈ ℎ(𝑠′) for each state 𝑠′ such that a =

∫
𝜋𝑠′ · `(𝑑𝑠′). By the definition of ℎ,

we know that for any state 𝑠′, it holds that [
∫
𝑦𝑇 · 𝜋𝑠′ (𝑑𝑦) 𝑠′𝑇 ]𝑇 ∈ 0 ⊔ 𝐸𝑃2. Because 𝐸𝑃2 is

convex, we have

[
∫
(
∫
𝑦𝑇 · 𝜋𝑠′ (𝑑𝑦)) · `(𝑑𝑠′)

∫
𝑠′𝑇 · `(𝑑𝑠′)]𝑇 ∈ 0 ⊔ 𝐸𝑃2

=⇒ [
∫
𝑦𝑇 · a(𝑑𝑦)

∫
𝑠′𝑇 · `(𝑑𝑠′)]𝑇 ∈ 0 ⊔ 𝐸𝑃2.

By the definition of 𝑔, we have [
∫
𝑠′𝑇 · `(𝑑𝑠′) 𝑠𝑇 ]𝑇 ∈ 0 ⊔ 𝐸𝑃1. Thus, by the definition of

polyhedron composition ⊗, we know that

[
∫
𝑦𝑇 · a(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ (0 ⊔ 𝐸𝑃1) ⊗ (0 ⊔ 𝐸𝑃2) ⊆ 0 ⊔ (𝐸𝑃1 ⊗ 𝐸𝑃2).

• We want to show for all (𝑃1, 𝐸𝑃1), (𝑃2, 𝐸𝑃2) ∈ I and 𝜑 ∈ L, it holds that 𝛾I (𝑃1, 𝐸𝑃1) 𝜑^C
𝛾I (𝑃2, 𝐸𝑃2) ⊑C 𝛾I ((𝑃1, 𝐸𝑃1) 𝜑^I (𝑃2, 𝐸𝑃2)). Let 𝑔 = 𝛾I (𝑃1, 𝐸𝑃1) and ℎ = 𝛾I (𝑃2, 𝐸𝑃2).
Fix 𝑠 ∈ Ω. Then it suffices to show 𝑔(𝑠) [J𝜑K(𝑠)]⊕𝑃 ℎ(𝑠) ⊑𝑃 𝛾I ((𝑃1, 𝐸𝑃1) 𝜑^I (𝑃2, 𝐸𝑃2)) (𝑠).
Because 𝛾I maps to Scott-closed convex subsets, the ordering ⊑𝑃 can be reduced to set
inclusion ⊆. Fix `1 ∈ 𝑔(𝑠) and `2 ∈ ℎ(𝑠). It then suffices to show that

`
def
= [J𝜑K(𝑠)] · `1 + (1 − [J𝜑K(𝑠)]) · `2 ∈ 𝛾I (𝑃, (𝐸𝑃1 ⊔ 𝐸𝑃2) ⊓ (0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′])) (𝑠),
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where 𝑃 def
= ({𝜑} ⊓ 𝑃1) ⊔ ({¬𝜑} ⊓ 𝑃2).

First, we claim that `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃}) = `(Ω). By the definition of 𝑔 and ℎ, we know that
`1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1}) = `1(Ω) and `2({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃2}) = `2(Ω). If J𝜑K(𝑠) = true,
we have

`(Ω) = `1(Ω) = `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1})
= `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ∧ J𝜑K(𝑠)})
≤ `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ {𝜑} ⊓ 𝑃1})
≤ `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃})
= `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃}) ≤ `(Ω).

Similarly, if J𝜑K(𝑠) = false, we also have `(Ω) = `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃}).
Second, we claim that

[
∫
𝑦𝑇 · `(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0 ⊔ ((𝐸𝑃1 ⊔ 𝐸𝑃2) ⊓ (0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′]))

= (0 ⊔ 𝐸𝑃1 ⊔ 𝐸𝑃2) ⊓ (0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′]).

The (0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′]) part appeals to the fact that `(Ω) = `({𝑦 | [𝑦𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃}) and 𝑃 is
convex. For the (0⊔ 𝐸𝑃1⊔ 𝐸𝑃2) part, if J𝜑K(𝑠) = true, then ` = `1, thus [

∫
𝑦𝑇 · `(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈

(0⊔𝐸𝑃1). Similarly, if J𝜑K(𝑠) = false, we have ` = `2 and thus [
∫
𝑦𝑇 ·`(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ (0⊔𝐸𝑃2).

Therefore, we conclude that [
∫
𝑦𝑇 · `(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0 ⊔ 𝐸𝑃1 ⊔ 𝐸𝑃2.

• We want to show for all (𝑃1, 𝐸𝑃1), (𝑃2, 𝐸𝑃2) ∈ I and 𝑝 ∈ [0, 1], it holds that 𝛾I (𝑃1, 𝐸𝑃1) 𝑝⊕C
𝛾I (𝑃2, 𝐸𝑃2) ⊑C 𝛾I ((𝑃1, 𝐸𝑃1) 𝑝⊕I (𝑃2, 𝐸𝑃2)). Let 𝑔 = 𝛾I (𝑃1, 𝐸𝑃1) and ℎ = 𝛾I (𝑃2, 𝐸𝑃2). Fix
𝑠 ∈ Ω. Then it is sufficient to show that 𝑔(𝑠) 𝑝⊕𝑃 ℎ(𝑠) ⊑𝑃 𝛾I ((𝑃1, 𝐸𝑃1) 𝑝⊕I (𝑃2, 𝐸𝑃2)) (𝑠).
Because 𝛾I maps to Scott-closed convex subsets, the ordering ⊑𝑃 can be reduced to set
inclusion ⊆. Fix `1 ∈ 𝑔(𝑠) and `2 ∈ ℎ(𝑠). It then suffices to show that

`
def
= 𝑝 · `1 + (1 − 𝑝) · `2 ∈ 𝛾I (𝑃1 ⊔ 𝑃2, 𝐸𝑃1 𝑝⊕ 𝐸𝑃2) (𝑠).

First, we claim that `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1⊔ 𝑃2) = `(Ω). By the definition of 𝑔 and ℎ, we know
that `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1}) = `1(Ω) and `2({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃2}) = `2(Ω). Thus, we have

`(Ω) = 𝑝 · `1(Ω) + (1 − 𝑝) · `2(Ω)
= 𝑝 · `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1}) + (1 − 𝑝) · `2({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃2})
≤ 𝑝 · `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊔ 𝑃2}) + (1 − 𝑝) · `2({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊔ 𝑃2})
= `({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊔ 𝑃2}) ≤ `(Ω).

Second, we claim that [
∫
𝑦𝑇 · `(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0⊔ (𝐸𝑃1 𝑝⊕ 𝐸𝑃2). By the definition of 𝑔 and ℎ, we

know that [
∫
𝑦𝑇 · `1(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0⊔ 𝐸𝑃1 and [

∫
𝑦𝑇 · `2(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0⊔ 𝐸𝑃2. By the definition

of the polyhedron probabilistic-choice operator 𝑝⊕, we have [(𝑝 ·
∫
𝑦𝑇 ·`1(𝑑𝑦) + (1− 𝑝) ·

∫
𝑦𝑇 ·

`2(𝑑𝑦)) 𝑠𝑇 ]𝑇 ∈ (0⊔𝐸𝑃1) 𝑝⊕(0⊔𝐸𝑃2), thus conclude that [
∫
𝑦𝑇 ·`(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0⊔(𝐸𝑃1 𝑝⊕𝐸𝑃2)

by the fact ` = 𝑝 · `1 + (1 − 𝑝) · `2 and (0 ⊔ 𝐸𝑃1) 𝑝⊕ (0 ⊔ 𝐸𝑃2) ⊆ 0 ⊔ (𝐸𝑃1 𝑝⊕ 𝐸𝑃2).
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• We want to show that for all (𝑃1, 𝐸𝑃1), (𝑃2, 𝐸𝑃2) ∈ I, it holds that 𝛾I (𝑃1, 𝐸𝑃1) −−∪C
𝛾I (𝑃2, 𝐸𝑃2) ⊑C 𝛾I ((𝑃1, 𝐸𝑃1) −−∪I (𝑃2, 𝐸𝑃2)). Note that 𝛾I maps to Scott-closed convex
subsets. Fix 𝑠 ∈ Ω. It then suffices to show that 𝛾I (𝑃1, 𝐸𝑃1) (𝑠) ∪ 𝛾I (𝑃2, 𝐸𝑃2) (𝑠) ⊆
𝛾I (𝑃1⊔ 𝑃2, 𝐸𝑃1⊔ 𝐸𝑃2) (𝑠). Without loss of generality, we show the proof for 𝛾I (𝑃1, 𝐸𝑃1) (𝑠) ⊆
𝛾I (𝑃1 ⊔ 𝑃2, 𝐸𝑃1 ⊔ 𝐸𝑃2) (𝑠). Fix `1 ∈ 𝛾I (𝑃1, 𝐸𝑃1) (𝑠).
First, we claim that `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊔ 𝑃2}) = `1(Ω). Appeal to the fact that

`1(Ω) = `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1}) ≤ `1({𝑠′ | [𝑠′𝑇 𝑠𝑇 ]𝑇 ∈ 𝑃1 ⊔ 𝑃2}) ≤ `1(Ω).

Second, we claim that [
∫
𝑦𝑇 · `1(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0 ⊔ 𝐸𝑃1 ⊔ 𝐸𝑃2. By the definition of `1, we can

conclude this claim by the fact that [
∫
𝑦𝑇 · `1(𝑑𝑦) 𝑠𝑇 ]𝑇 ∈ 0 ⊔ 𝐸𝑃1.

□

Widening Let ▽ be the standard widening operator on ordinary polyhedra [67]. Recall from
Observation 4.8 that whenever a widening operation 𝑎 ▽ 𝑏 is performed, the property 𝑎 ⊑A 𝑏
holds for an analysis A. There is a subtle issue with expectation invariants when dealing with
conditional or nondeterministic loops.
Observation 4.16. In a conventional program, if we have a loop “while 𝐵 do 𝑆 od,” and 𝐼

is a loop-invariant, then 𝐼 ∧ ¬𝐵 (which implies 𝐼) holds on exiting the loop. In contrast, for a
conditional or nondeterministic loop in a probabilistic program, an expectation-invariant that holds
at the beginning and end of the loop body does not necessarily hold on exiting the loop.
Example 4.17. Consider the following program:

while ¬(𝑥 = 𝑦) do
if prob(1/2) then 𝑥 B 𝑥 + 1 else 𝑦 B 𝑦 + 1 fi

od

For the loop body, we can derive an expectation invariant 𝔼[𝑥′ − 𝑦′] = 𝑥 − 𝑦; however, for the entire
loop this property does not hold: at the end of the loop 𝑥 = 𝑦 must hold, and hence 𝔼[𝑥′ − 𝑦′] should
be equal to 0.

Because of this issue, I use a pessimistic widening operator for conditional-choice and
nondeterministic-choice: the widening operator forgets the expectation invariants and rebuilds
them from standard invariants.

(𝑃1, 𝐸𝑃1) ▽𝑐 (𝑃2, 𝐸𝑃2) def
= (𝑃1 ▽ 𝑃2, 0 ⊔ 𝑃2 [𝔼[𝑥′]/𝑥′])

(𝑃1, 𝐸𝑃1) ▽𝑛 (𝑃2, 𝐸𝑃2) def
= (𝑃1 ▽ 𝑃2, 0 ⊔ 𝑃2 [𝔼[𝑥′]/𝑥′])

I do not have a good method for (𝑃1, 𝐸𝑃1) ▽𝑝 (𝑃2, 𝐸𝑃2). I found that the following approach loses
precision:

let 𝑃 = (𝑃1 ▽ 𝑃2) in (𝑃, (𝐸𝑃1 ▽ 𝐸𝑃2) ⊓ (0 ⊔ 𝑃 [𝔼[𝑥′]/𝑥′]))
In my experiments, I use (𝑃1, 𝐸𝑃1) ▽𝑝 (𝑃2, 𝐸𝑃2) def

= (𝑃1 ▽ 𝑃2, 𝐸𝑃2), which does no extrapolation in
the EP component.
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4.4 Evaluation
In this section, I first describe the implementation of PMAF, and the three instantiations introduced
in §4.3. Then, I evaluate the effectiveness and performance of the three analyses.

4.4.1 Implementation
PMAF is implemented in OCaml; the core framework consists of about 400 lines of code. The
framework is implemented as a functor parametrized by a module representing a PMA, with some
extra functions, such as widening and printing. This organization allows any analysis that can be
formulated in PMAF to be implemented as a plugin. Also, the core framework relies on control-flow
hyper-graphs, and provides users the flexibility to employ it with any front end. I use OCamlGraph
[32] as the implementation of fixed-point computation and Bourdoncle’s algorithm [18].
The plugin for Bayesian inference is about 400 lines of code, including a lexer and a parser

for the imperative language that I use in the examples of this paper. I use Lacaml [122] to
manipulate matrices. The plugins for the Markov decision problem with rewards and linear
expectation-invariant analysis are about 200 lines and 500 lines, respectively. I use APRON [80] for
polyhedron operations. Most of the code in the plugins is to implement the PMA structure of the
analysis domain.
Because of the numerical reasoning required when analyzing probabilistic programs, I need to be

concerned about finite numerical precision in my implementations of the instantiations (although
they are sound on a theoretical machine operating on reals). In my implementation, I use the fact
that ascending chains of floating numbers always converge in a finite number of steps. The user
could use the technique proposed by Darulova and Kuncak [42] to obtain a sound guarantee on
numerical precision.

4.4.2 Experiments Table 4.1: Top: Bayesian inference.Bottom: Markov decision problemwith rewards. (Time is in seconds.)
Program #loc rec? #call timecompare 17 n 0 2.22dice 12 n 0 0.02eg1 10 n 0 0.02eg1-tail 16 t 2 0.02eg2 10 n 0 0.02eg2-tail 16 t 2 0.01recursive 14 r 1 0.01binary10 184 n 90 0.03loop 10 n 0 0.03quicksort7 109 n 42 0.03recursive 13 t 1 0.03student 43 t 8 0.03

Evaluation Platform My experiments were performed on a
machine with an Intel Core i5 2.4 GHz processor and 8GB of
RAM under Mac OS X 10.13.4. A replication package for the
evaluation results in this section is publicly available [147].

Bayesian Inference and Markov Decision Problem with Re-
wards I tested my framework on Bayesian inference and
Markov decision problemwith rewards on handcrafted examples.
The results of the evaluation of the two analyses are described
in Table 4.1. The tables contains the number of lines; whether
the program is non-recursive, tail-recursive, or recursive; the
number of procedure calls; and the time taken by the imple-
mentation (measured by running each program 5 times and
computing the 20% trimmed mean).
My framework computed the same answer (modulo floating-point round-off errors) as PReMo
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Table 4.2: Linear expectation-invariant analysis.
Program Expectation invariants #loc rec? #call time2d-walk 𝔼[𝑥′] = 𝑥, 𝔼[𝑦′] = 𝑦, 𝔼[dist′] = dist, 47 n 0 0.24

𝔼[count′] ≤ count + 1, 𝔼[count′] ≥ countaggregate-rv 𝔼[2𝑥′ − 𝑖′] = 2𝑥 − 𝑖, 𝔼[𝑥′] ≤ 𝑥 + 1/2, 𝔼[𝑥′] ≥ 𝑥 11 n 0 0.06biased-coin 𝔼[𝑥′] ≤ 𝑥 + 1/2, 𝔼[𝑥′] ≥ 𝑥 − 1/2 25 n 0 0.06binom-update 𝔼[4𝑥′ − 𝑛′] = 4𝑥 − 𝑛, 𝔼[𝑥′] ≤ 𝑥 + 1/4, 𝔼[𝑥′] ≥ 𝑥 14 n 0 0.06
(𝑝 = 1/4)coupon5 𝔼[count′ − 𝑖′] = count − 𝑖 (1st), 58 n 0 0.07

𝔼[4count′ − 5𝑖′] = 4count − 5𝑖 (2nd),
𝔼[3count′ − 5𝑖′] = 3count − 5𝑖 (3rd),
𝔼[2count′ − 5𝑖′] = 2count − 5𝑖 (4th),
𝔼[count′ − 5𝑖′] = count − 5𝑖 (5th)dist 𝔼[𝑥′] = 𝑥, 𝔼[𝑦′] = 𝑦, 𝔼[𝑧′] = 1/2 · 𝑥 + 1/2 · 𝑦 5 n 0 0.05eg 𝔼[𝑥′ + 𝑦′] = 𝑥 + 𝑦 + 3, 𝔼[𝑧′] = 1/4 · 𝑧 + 3/4, 8 n 0 0.89
𝔼[𝑥′] ≤ 𝑥 + 3, 𝔼[𝑥′] ≥ 𝑥eg-tail 𝔼[𝑧′] ≥ 1/4 · 𝑧, 𝔼[𝑥′] ≥ 𝑥, 𝔼[𝑦′] ≥ 𝑦, 11 t 1 0.13
𝔼[𝑥′ + 𝑦′] ≥ 𝑥 + 𝑦 + 3/4hare-turtle 𝔼[2ℎ′ − 5𝑡′] = 2ℎ − 5𝑡, 𝔼[ℎ′] ≤ ℎ + 5/2, 𝔼[ℎ′] ≥ ℎ 15 n 0 0.06hawk-dove 𝔼[p1b′ − count′] = p1b − count, 29 n 0 0.08
𝔼[p2b′ − count′] = p2b − count,
𝔼[p1b′] ≤ p1b + 1, 𝔼[p1b′] ≥ p1bmot-ex 𝔼[2𝑥′ − 𝑦′] = 2𝑥 − 𝑦, 𝔼[4𝑥′ − 3count′] = 4𝑥 − 3count, 16 n 0 0.06
𝔼[𝑥′] ≤ 𝑥 + 3/4, 𝔼[𝑥′] ≥ 𝑥recursive 𝔼[𝑥′] = 𝑥 + 9 13 r 2 0.37uniform-dist 𝔼[𝑛′] ≤ 2𝑛, 𝔼[𝑛′] ≥ 𝑛, 𝔼[𝑔′] ≤ 2𝑔 + 1/2, 𝔼[𝑔′] ≥ 𝑔 14 n 0 0.06

[156], a tool for probabilistic recursive models. I did not compare with probabilistic abstract
interpretation [39] because its semantic foundation is substantially different from that of my
framework—as I mentioned in the beginning of this chapter, the order for resolving probabilistic
behavior and nondeterministic behavior is different.
The analysis time of Bayesian inference grows exponentially with respect to the number of

program variables.8 The time cost comes from the explicit matrix representation of domain
elements. One could use Algebraic Decision Diagrams [5] as a compact representation to improve
the efficiency.
The analyzer for the Markov decision problem with rewards works quickly and obtains some

interesting results. quicksort7 is a model of a randomized Quicksort algorithm on an array of size 7
(obtained from [156]), and my analysis results are consistent with the worst-case expected number
of comparisons being Θ(𝑛 log 𝑛).9 binary10 is a model of randomized binary search algorithm on
an array of size 10, and my analysis results are consistent with the worst-case expected number of
comparisons being Θ(log 𝑛).

8One should not assume that exponential growth makes the analysis useless; after all, predicate-abstraction domains
[65] also grow exponentially: the universe of assignments to a set of Boolean variables grows exponentially in the
number of variables. Finding useful coarser abstractions for Bayesian inference—by analogy with the techniques of
Ball et al. [6] for predicate abstraction—might be an interesting direction for future work.

9The analysis computes worst-case expected number because the underlying semantics resolves nondeterminism first
and probabilistic-choice second, and thus the analysis computes maxnondet. resolution 𝔼[#comparisons under resolution].
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Linear Expectation-Invariant Analysis I performed a more thorough evaluation of linear
expectation-invariant analysis. I collected several examples from the literature on probabilistic
invariant generation [25, 86], and handcrafted some new examples to demonstrate particular
capabilities of my domain, e.g., analysis of recursive programs. For the examples obtained from
the loop-invariant-generation benchmark, I extracted the loop body as my test programs. Also, I
performed a positive-negative decomposition to make sure all program variables are nonnegative.
That is, I represented each variable 𝑥 as 𝑥+ − 𝑥− where 𝑥+, 𝑥− ≥ 0, and replaced every operation
on variables with appropriate operations on the decomposed variables.
The results of the evaluation are shown in Table 4.2, which lists the expectation invariants

obtained, and the time taken by the implementation. In general, the analysis runs quickly—all the
examples are processed in less than one second. The analysis time mainly depends on the number
of program variables and the size of the control-flow hyper-graph.
As shown in Table 4.2, my analysis can derive nontrivial expectation invariants, e.g., relations

among different program variables such as 𝔼[𝑥′+ 𝑦′] = 𝑥+ 𝑦+3, 𝔼[2𝑥′− 𝑦′] = 2𝑥− 𝑦. In most cases,
my results are at least as precise as those in [25, 86]. Exceptions are biased-coin and uniform-dist,
collected from [86], where their invariant-generation algorithm uses a template-based approach
and the form of expectations can be more complicated, e.g., [𝑃1] · E1 + [𝑃2] · E2 where 𝑃1, 𝑃2 are
linear assertions and E1, E2 are linear expressions. Nevertheless, my analysis is fully automated
and applicable to general programs, while [86] requires interactive proofs for nested loops, and
[25] works only for single loops.

4.5 Discussion
In this section, I discuss some related work and limitations of PMAF.

Static Analysis for Standard Programs PMAF is an extension of interprocedural dataflow
analysis [94, 105, 123, 138] to probabilistic programs, but it does not support some language
features that standard dataflow analysis has been used to address, e.g., calls through function
pointers.
Compared to the Galois connections that are ordinarily used in abstract interpretation [35, 37],

my definition of probabilistic abstractions is based on just a concretization function, so PMAF does
not have the full power of standard abstract-interpretation machinery.

Static Analysis for Probabilistic Programs Most closely related to my work on PMAF is
probabilistic abstract interpretation [39, 118–120], which is discussed in the beginning of this
chapter. There is a long line of research on manual reasoning techniques for probabilistic
programs [55, 85, 99, 110, 126]. The main difference to this work is that I focus on the design and
implementation of automatic techniques that that rely on computing (and approximating) fixed
points.
Other work focuses on specialized automatic analyses for specific properties. Claret et al. [29]

proposed a dataflow analysis for Bayesian inference on Boolean programs that I have reformulated
in PMAF to lift it to the interprocedural level. There are different techniques for automatically
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proving probabilistic termination, such as probabilistic pushdown automata [19, 20] and martingales
and stochastic invariants [27, 28]. Martingales for automatic analysis of probabilistic programs
have been pioneered by Chakarov and Sankaranarayanan [24]. Compared with existing techniques
for probabilistic invariant generation [7, 24, 25, 28], the expectation-invariant analysis proposed
in §4.3.3 is designed as a two-vocabulary domain utilizing the well-studied polyhedral abstract
domain.

Other Analyses Based on Hyper-Graphs Hyper-graph-based analyses go back to the join-over-
all-hyper-path-valuations of Knuth [95]. Other analyses based on hyper-graphs includes Möncke
and Wilhelm [117] framework for finding join-over-all-hyper-path-valuations for partially ordered
abstract domains. In the hyper-paths in this chapter, I use simple edges to model calls, as well
as use binary hyper-edges to model conditional, probabilistic, and nondeterministic choice. For
acyclic hyper-graphs, Eisner has considered semirings for computing expectations and variances
of random variables [107]. He works with a discrete sample space: all hyper-paths in a given
hyper-graph, and the value of a random variable for a given hyper-path is built up as the sum of the
values contributed by each hyper-edge. In my work, I consider cyclic hyper-graphs, and the nature
of the computation that a hyper-path represents is more complex than that considered by Eisner.



Chapter 5

Central Moment Analysis of Cost
Accumulators in Probabilistic Programs

In this chapter, I propose a novel static analysis for deriving symbolic interval bounds on higher
central moments for cost accumulators in probabilistic programs. Cost accumulators are quantities
that can only be incremented or decremented through computation and do not influence the
control flow, such as termination time [11, 26, 27, 85, 126], rewards in Markov decision processes
(MDPs) [130], position information in control systems [10, 17, 136], and cash flow during bitcoin
mining [154]. In general, it is not tractable to compute the result distributions of probabilistic
programs automatically and precisely: Composing simple distributions can quickly complicate the
result distribution, and randomness in the control flow can easily lead to state-space explosion.
Monte-Carlo simulation [134] is a common approach to study the result distributions, but the
technique does not provide formal guarantees, and can sometimes be inefficient [11].
Existing work [17, 104, 124, 154] has proposed successful static-analysis approaches that leverage

aggregate information of a cost accumulator 𝑋 , such as 𝑋 ’s expected value 𝔼[𝑋] (i.e., 𝑋 ’s “first
moment”). The intuition why it is beneficial to compute aggregate information—in lieu of
distributions—is that aggregate measures like expectations abstract distributions to a single number,
while still indicating non-trivial properties. Moreover, expectations are transformed by statements in
a probabilistic program in a manner similar to the weakest-precondition transformation of formulas
in a non-probabilistic program [111]. One important kind of aggregate information is moments. In
this chapter, I focus on centralmoments (i.e., 𝔼[(𝑋 −𝔼[𝑋])𝑘] for any 𝑘 ≥ 2), whereas most previous
work focused on raw moments (i.e., 𝔼[𝑋𝑘] for any 𝑘 ≥ 1). Central moments can provide more
information about distributions. For example, the variance 𝕍 [𝑋] (i.e., 𝔼[(𝑋 − 𝔼[𝑋])2], 𝑋 ’s “second
central moment”) indicates how 𝑋 can deviate from its mean, the skewness (i.e., 𝔼[(𝑋−𝔼[𝑋])3]

(𝕍 [𝑋])3/2 , 𝑋 ’s
“third standardized moment”) indicates how lopsided the distribution of 𝑋 is, and the kurtosis
(i.e., 𝔼[(𝑋−𝔼[𝑋])4]

(𝕍 [𝑋])2 , 𝑋 ’s “fourth standardized moment”) measures the heaviness of the tails of the
distribution of 𝑋 . One application of moments is to answer queries about tail bounds, e.g., the
assertions about probabilities of the form ℙ[𝑋 ≥ 𝑑], via concentration-of-measure inequalities from
probability theory [47]. With central moments, one has an opportunity to obtain more precise tail
bounds of the form ℙ[𝑋 ≥ 𝑑], and becomes able to derive bounds on tail probabilities of the form
ℙ[|𝑋 − 𝔼[𝑋] | ≥ 𝑑].
Central moments 𝔼[(𝑋 − 𝔼[𝑋])𝑘] can be seen as polynomials of raw moments 𝔼[𝑋], · · · ,𝔼[𝑋𝑘],

69
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e.g., the variance 𝕍 [𝑋] = 𝔼[(𝑋 −𝔼[𝑋])2] can be rewritten as 𝔼[𝑋2] −𝔼2 [𝑋], where 𝔼𝑘 [𝑋] denotes
(𝔼[𝑋])𝑘. Central moments can usually provide more information about the distribution of 𝑋 than
raw moments 𝔼[𝑋𝑘]. To derive bounds on central moments, we need both upper and lower bounds
on the raw moments, because of the presence of subtraction. For example, to upper-bound 𝕍 [𝑋], a
static analyzer needs to have an upper bound on 𝔼[𝑋2] and a lower bound on 𝔼2 [𝑋].
In this chapter, I present the first fully automatic analysis for deriving symbolic interval bounds on

higher central moments for cost accumulators in probabilistic programs with general recursion and
continuous distributions. One challenge is to support interprocedural reasoning to reuse analysis
results for functions. My solution makes use of a “lifting” technique from the natural-language-
processing community. That technique derives an algebra for second moments from an algebra
for first moments [107]. I generalize the technique to develop moment semirings, and use them to
derive a novel frame rule to handle function calls with moment-polymorphic recursion (see §5.1.2).
Previous work has successfully automated inference of upper [124] or lower bounds [154] on

the expected cost of probabilistic programs. Kura et al. [104] developed a system to derive upper
bounds on higher raw moments of program runtimes. However, even in combination, existing
approaches cannot solve tasks such as deriving a lower bound on the second raw moment of
runtimes, or deriving an upper bound on the variance of accumulators that count live heap cells.
Fig. 5.1(a) summarizes the features of related work on moment inference for probabilistic programs.
To the best of my knowledge, my work is the first moment-analysis tool that supports all of the
listed programming and analysis features. Fig. 5.1(b) and (c) compare my work with related work
in terms of tail-bound analysis on a concrete program (see §5.4). The bounds are derived for the
cost accumulator tick in a random-walk program that I will present in §5.1. It can be observed
that for 𝑑 ≥ 20, the most precise tail bound for tick is the one obtained via an upper bound on the
variance 𝕍 [tick] (tick’s second central moment).
My work incorporates ideas known from the literature:
- Using the expected-potential method (or ranking super-martingales) to derive upper bounds
on the expected program runtimes or monotone costs [24, 26, 27, 55, 104, 124].

- Using the Optional Stopping Theorem from probability theory to ensure the soundness of
lower-bound inference for probabilistic programs [7, 68, 137, 154].

- Using linear programming (LP) to efficiently automate the (expected) potential method for
(expected) cost analysis [73, 75, 152].

The contributions of my work in this chapter are as follows:
• I develop moment semirings to compose the moments for a cost accumulator from two
computations, and to enable interprocedural reasoning about higher moments.

• I instantiate moment semirings with the symbolic interval domain, use that to develop a
derivation system for interval bounds on higher central moments for cost accumulators, and
automate the derivation via LP solving.

• I prove the soundness of my derivation system for programs that satisfy the criterion of my
extension to the Optional Stopping Theorem, and develop an algorithm for checking this
criterion automatically.
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feature [17] [124] [104] [154] my work
loop ✓ ✓ ✓ ✓

recursion ✓ ✓
continuous distributions ✓ ✓ ✓ ✓
non-monotone costs ✓ ✓ ✓
higher moments ✓ ✓ ✓
interval bounds ✓ ✓ ✓

(a)
[124, 154] [104] my work

Derived bound 𝔼[tick] ≤ 2𝑑 + 4 𝔼[tick2] ≤ 4𝑑2 + 22𝑑 + 28 𝕍 [tick] ≤ 22𝑑 + 28
Moment type raw raw central
Concentration Markov Markov Cantelliinequality (degree = 1) (degree = 2)
Tail bound ≈ 1

2 ≈ 1
4

𝑑→∞−−−−→ 0ℙ[tick ≥ 4𝑑]
(b)

20 40 60 80 𝑑

0.25
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0.75

[124, 154]

[104]
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ℙ
[ti
ck
≥

4𝑑
]

(c)
Fig. 5.1: (a) Comparison in terms of supporting features. (b) Comparison in terms of moment bounds for therunning example. (c) Comparison in terms of derived tail bounds.

• I implemented the analysis and evaluated it on a broad suite of benchmarks from the literature.
The experimental results show that on a variety of examples, my analyzer is able to use higher
central moments to obtain tighter tail bounds on program runtimes than the system of Kura
et al. [104], which uses only upper bounds on raw moments.

5.1 Overview
In this section, I demonstrate the expected-potential method for both first-moment analysis
(previous work) and higher central-moment analysis (my work) (§5.1.1), and discuss the challenges
to supporting interprocedural reasoning and to ensuring the soundness of my approach (§5.1.2).
Example 5.1. The program in Fig. 5.2 implements a bounded, biased random walk. The main

function consists of a single statement “call rdwalk” that invokes a recursive function. The variables
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1 func rdwalk() begin
2 { 2(𝑑 − 𝑥) + 4 }
3 if 𝑥 < 𝑑 then
4 { 2(𝑑 − 𝑥) + 4 }
5 𝑡 ∼ Uniform(−1, 2);
6 { 2(𝑑 − 𝑥 − 𝑡) + 5 }
7 𝑥 B 𝑥 + 𝑡;
8 { 2(𝑑 − 𝑥) + 5 }
9 call rdwalk;
10 { 1 }
11 tick(1)
12 { 0 }
13 fi
14 end

1 # VID def
= {𝑥, 𝑑, 𝑡}

2 # FID def
= {rdwalk}

3 # pre-condition: {𝑑 > 0}
4 func main() begin
5 𝑥 B 0;
6 call rdwalk
7 end

Fig. 5.2: A bounded, biased random walk, implemented using recursion. The annotations show the derivationof an upper bound on the expected accumulated cost.

𝑥 and 𝑑 represent the current position and the ending position of the random walk, respectively.
We assume that 𝑑 > 0 holds initially. In each step, the program samples the length of the current
move from a uniform distribution on the interval [−1, 2]. The statement tick(1) adds one to a cost
accumulator that counts the number of steps before the random walk ends. We denote this accumulator
by tick in the rest of this section. The program terminates with probability one and its expected
accumulated cost is bounded by 2𝑑 + 4.

5.1.1 The Expected-Potential Method for Higher-Moment Analysis
My approach to higher-moment analysis is inspired by the expected-potential method [124], which
is also known as ranking super-martingales [24, 26, 104, 154], for expected-cost bound analysis of
probabilistic programs.
The classic potential method of amortized analysis [143] can be automated to derive symbolic

cost bounds for non-probabilistic programs [73, 75]. The basic idea is to define a potential function
𝜙 : Σ → ℝ+ that maps program states 𝜎 ∈ Σ to nonnegative numbers, where we assume each
state 𝜎 contains a cost-accumulator component 𝜎.𝛼. If a program executes with initial state 𝜎
to final state 𝜎′, then it holds that 𝜙(𝜎) ≥ (𝜎′.𝛼 − 𝜎.𝛼) + 𝜙(𝜎′), where (𝜎′.𝛼 − 𝜎.𝛼) describes
the accumulated cost from 𝜎 to 𝜎′. The potential method also enables compositional reasoning:
if a statement 𝑆1 executes from 𝜎 to 𝜎′ and a statement 𝑆2 executes from 𝜎′ to 𝜎′′, then we
have 𝜙(𝜎) ≥ (𝜎′.𝛼 − 𝜎.𝛼) + 𝜙(𝜎′) and 𝜙(𝜎′) ≥ (𝜎′′.𝛼 − 𝜎′.𝛼) + 𝜙(𝜎′′); therefore, we derive
𝜙(𝜎) ≥ (𝜎′′.𝛼− 𝜎.𝛼) +𝜙(𝜎′′) for the sequential composition 𝑆1; 𝑆2. For non-probabilistic programs,
the initial potential provides an upper bound on the accumulated cost.
This approach has been adapted to reason about expected costs of probabilistic programs [124, 154].

To derive upper bounds on the expected accumulated cost of a program 𝑆 with initial state 𝜎, one
needs to take into consideration the distribution of all possible executions. More precisely, the
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potential function should satisfy the following property:

𝜙(𝜎) ≥ 𝔼𝜎′∼J𝑆K(𝜎) [𝐶(𝜎, 𝜎′) + 𝜙(𝜎′)], (5.1)

where the notation 𝔼𝑥∼` [ 𝑓 (𝑥)] represents the expected value of 𝑓 (𝑥), where 𝑥 is drawn from the
distribution `, J𝑆K(𝜎) is the distribution over final states of executing 𝑆 from 𝜎, and 𝐶(𝜎, 𝜎′) def

=

𝜎′.𝛼 − 𝜎.𝛼 is the execution cost from 𝜎 to 𝜎′.
Example 5.2. Fig. 5.2 annotates the rdwalk function from Example 5.1 with the derivation of an upper

bound on the expected accumulated cost. The annotations, taken together, define an expected-potential
function 𝜙 : Σ→ ℝ+ where a program state 𝜎 ∈ Σ consists of a program point and a valuation for
program variables. To justify the upper bound 2(𝑑 − 𝑥) + 4 for the function rdwalk, one has to show
that the potential right before the tick(1) statement should be at least 1. This property is established
by backward reasoning on the function body:

• For call rdwalk, we apply the “induction hypothesis” that the expected cost of the function rdwalk
can be upper-bounded by 2(𝑑− 𝑥) +4. Adding the 1 unit of potential needed by the tick statement,
we obtain 2(𝑑 − 𝑥) + 5 as the pre-annotation of the function call.

• For 𝑥 B 𝑥 + 𝑡, we substitute 𝑥 with 𝑥 + 𝑡 in the post-annotation of this statement to obtain the
pre-annotation.

• For 𝑡 ∼ Uniform(−1, 2), because its post-annotation is 2(𝑑 − 𝑥 − 𝑡) + 5, we compute its
pre-annotation as

𝔼𝑡∼Uniform(−1,2) [2(𝑑 − 𝑥 − 𝑡) + 5] = 2(𝑑 − 𝑥) + 5 − 2 · 𝔼𝑡∼Uniform(−1,2) [𝑡]
= 2(𝑑 − 𝑥) + 5 − 2 · 1

2
= 2(𝑑 − 𝑥) + 4,

which is exactly the upper bound we want to justify.

My Approach In this chapter, I focus on the derivation of higher central moments. Observing that a
central moment 𝔼[(𝑋−𝔼[𝑋])𝑘] can be rewritten as a polynomial of rawmoments 𝔼[𝑋], · · · ,𝔼[𝑋𝑘],
I reduce the problem of bounding central moments to reasoning about upper and lower bounds on
raw moments. For example, the variance can be written as 𝕍 [𝑋] = 𝔼[𝑋2] − 𝔼2 [𝑋], so it suffices to
analyze the upper bound of the second moment 𝔼[𝑋2] and the lower bound on the square of the
first moment 𝔼2 [𝑋]. For higher central moments, this approach requires both upper and lower
bounds on higher raw moments. For example, consider the fourth central moment of a nonnegative
random variable 𝑋: 𝔼[(𝑋 − 𝔼[𝑋])4] = 𝔼[𝑋4] − 4𝔼[𝑋3]𝔼[𝑋] + 6𝔼[𝑋2]𝔼2 [𝑋] − 3𝔼4 [𝑋]. Deriving
an upper bound on the fourth central moment requires lower bounds on the first (i.e., 𝔼[𝑋]) and
third (i.e., 𝔼[𝑋3]) raw moments.
I now sketch the development of moment semirings. I first consider only the upper bounds

on higher moments of nonnegative costs. To do so, I extend the range of the expected-potential
function 𝜙 to real-valued vectors (ℝ+)𝑚+1, where 𝑚 ∈ ℕ is the degree of the target moment. I
update the potential inequality (5.1) as follows:

𝜙(𝜎) ≥ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−→
⟨𝐶(𝜎, 𝜎′)𝑘⟩0≤𝑘≤𝑚 ⊗ 𝜙(𝜎′)], (5.2)
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1 func rdwalk() begin
2 { ⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩ }
3 if 𝑥 < 𝑑 then
4 { ⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩ }
5 𝑡 ∼ Uniform(−1, 2);
6 { ⟨1, 2(𝑑 − 𝑥 − 𝑡) + 5, 4(𝑑 − 𝑥 − 𝑡)2 + 26(𝑑 − 𝑥 − 𝑡) + 37⟩ }
7 𝑥 B 𝑥 + 𝑡;
8 { ⟨1, 2(𝑑 − 𝑥) + 5, 4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37⟩ }
9 call rdwalk;
10 { ⟨1, 1, 1⟩ }
11 tick(1)
12 { ⟨1, 0, 0⟩ }
13 fi
14 end

Fig. 5.3: Derivation of an upper bound on the first and second moment of the accumulated cost.

where −−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚 denotes an (𝑚+1)-dimensional vector, the order ≤ on vectors is defined pointwise,
and ⊗ is some composition operator. Recall that J𝑆K(𝜎) denotes the distribution over final states of
executing 𝑆 from 𝜎, and 𝐶(𝜎, 𝜎′) describes the cost for the execution from 𝜎 to 𝜎′. Intuitively, for
𝜙(𝜎) = −−−−−−−−−−−−→⟨𝜙(𝜎)𝑘⟩0≤𝑘≤𝑚 and each 𝑘, the component 𝜙(𝜎)𝑘 is an upper bound on the 𝑘-th moment of
the cost for the computation starting from 𝜎. The 0-th moment is the termination probability of
the computation, and I assume it is always one for now. We cannot simply define ⊗ as pointwise
addition because, for example, (𝑎 + 𝑏)2 ≠ 𝑎2 + 𝑏2 in general. If we think of 𝑏 as the cost for some
probabilistic computation, and we prepend a constant cost 𝑎 to the computation, then by linearity
of expectations, we have 𝔼[(𝑎 + 𝑏)2] = 𝔼[𝑎2 + 2𝑎𝑏 + 𝑏2] = 𝑎2 + 2 · 𝑎 · 𝔼[𝑏] + 𝔼[𝑏2], i.e., reasoning
about the second moment requires us to keep track of the first moment. Similarly, we should have

𝜙(𝜎)2 ≥ 𝔼𝜎′∼J𝑆K(𝜎) [𝐶(𝜎, 𝜎′)2 + 2 · 𝐶(𝜎, 𝜎′) · 𝜙(𝜎′)1 + 𝜙(𝜎′)2],

for the second-moment component, where 𝜙(𝜎′)1 and 𝜙(𝜎′)2 denote 𝔼[𝑏] and 𝔼[𝑏2], respectively.
Therefore, the composition operator ⊗ for second-moment analysis (i.e., 𝑚 = 2) should be defined
as

⟨1, 𝑟1, 𝑠1⟩ ⊗ ⟨1, 𝑟2, 𝑠2⟩ def
= ⟨1, 𝑟1 + 𝑟2, 𝑠1 + 2𝑟1𝑟2 + 𝑠2⟩. (5.3)

Example 5.3. Fig. 5.3 annotates the rdwalk function from Example 5.1 with the derivation of an
upper bound on both the first and second moment of the accumulated cost. To justify the first and
second moment of the accumulated cost for the function rdwalk, We again perform backward reasoning:

• For tick(1), it transforms a post-annotation 𝑎 by _𝑎.(⟨1, 1, 1⟩ ⊗ 𝑎); thus, the pre-annotation is
⟨1, 1, 1⟩ ⊗ ⟨1, 0, 0⟩ = ⟨1, 1, 1⟩.

• For call rdwalk, we apply the “induction hypothesis”, i.e., the upper bound shown on line 2. We
use the ⊗ operator to compose the induction hypothesis with the post-annotation of this function
call:
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⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩ ⊗ ⟨1, 1, 1⟩
= ⟨1, 2(𝑑 − 𝑥) + 5, (4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28) + 2 · (2(𝑑 − 𝑥) + 4) + 1⟩
= ⟨1, 2(𝑑 − 𝑥) + 5, 4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37⟩.

• For 𝑥 B 𝑥 + 𝑡, we substitute 𝑥 with 𝑥 + 𝑡 in the post-annotation of this statement to obtain the
pre-annotation.

• For 𝑡 ∼ Uniform(−1, 2), because the post-annotation involves both 𝑡 and 𝑡2, we compute from
the definition of uniform distributions that

𝔼𝑡∼Uniform(−1,2) [𝑡] =
1
2 , 𝔼𝑡∼Uniform(−1,2) [𝑡2] = 1.

Then the upper bound on the second moment is derived as follows:
𝔼𝑡∼Uniform(−1,2) [4(𝑑 − 𝑥 − 𝑡)2 + 26(𝑑 − 𝑥 − 𝑡) + 37]

= (4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37) − (8(𝑑 − 𝑥) + 26) · 𝔼𝑡∼Uniform(−1,2) [𝑡]
+ 4 · 𝔼𝑡∼Uniform(−1,2) [𝑡2]

= 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28,
which is the same as the desired upper bound on the second moment of the accumulated cost for
the function rdwalk. (See Fig. 5.3, line 2.)

I generalize the composition operator ⊗ to moments with arbitrarily high degrees, via a family of
algebraic structures, which I name moment semirings (see §5.2.2). These semirings are algebraic in
the sense that they can be instantiated with any partially ordered semiring, not just ℝ+.

Interval Bounds Moment semirings not only provide a general method to analyze higher
moments, but also enable reasoning about upper and lower bounds on moments simultaneously.
The simultaneous treatment is also essential for analyzing programs with non-monotone costs (see
§5.2.3).
I instantiate moment semirings with the standard interval semiring I = {[𝑎, 𝑏] | 𝑎 ≤ 𝑏}.

The algebraic approach allows me to systematically incorporate the interval-valued bounds, by
reinterpreting operations in eq. (5.3) under I:

⟨[1, 1], [𝑟L
1, 𝑟

U
1 ], [𝑠L

1, 𝑠
U
1 ]⟩ ⊗ ⟨[1, 1], [𝑟L
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U
2 ], [𝑠L

2, 𝑠
U
2 ]⟩

def
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U
1 ] +I [𝑟L
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U
2 ], [𝑠L
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U
2 ] +I 2 · ( [𝑟L
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U
1 ] ·I [𝑟L
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where 𝑆 def
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2 , 𝑟

U
1 𝑟

L
2, 𝑟

U
1 𝑟

U
2 }. I then update the potential inequality eq. (5.2) as follows:

𝜙(𝜎) ⊒ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝐶(𝜎, 𝜎′)𝑘, 𝐶(𝜎, 𝜎′)𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙(𝜎′)],

where the order ⊑ is defined as pointwise interval inclusion.
Example 5.4. Suppose that the interval bound on the first moment of the accumulated cost of therdwalk function from Example 5.1 is [2(𝑑 − 𝑥), 2(𝑑 − 𝑥) + 4]. We can now derive the upper bound on

the variance 𝕍 [tick] ≤ 22𝑑 + 28 shown in Fig. 5.1(b) (where we substitute 𝑥 with 0 because the main
function initializes 𝑥 to 0 on line 5 in Fig. 5.2):
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𝕍 [tick] = 𝔼[tick2] − 𝔼2 [tick]
≤ (upper bound on 𝔼[tick2]) − (lower bound on 𝔼[tick])2
= (4𝑑2 + 22𝑑 + 28) − (2𝑑)2
= 22𝑑 + 28.

In §5.4, I describe how to use moment bounds to derive the tail bounds shown in Fig. 5.1(c).

5.1.2 Two Major Challenges
Interprocedural Reasoning Recall that in the derivation of Fig. 5.3, I use the ⊗ operator to
compose the upper bounds on moments for call rdwalk and its post-annotation ⟨1, 1, 1⟩. However,
this approach does not work in general, because the post-annotation might be symbolic (e.g.,
⟨1, 𝑥, 𝑥2⟩) and the callee might mutate referenced program variables (e.g., 𝑥). One workaround is
to derive a pre-annotation for each possible post-annotation of a recursive function, i.e., the moment
annotations for a recursive function is polymorphic. This workaround would not be effective for
non-tail-recursive functions: for example, we need to reason about the rdwalk function in Fig. 5.3
with infinitely many post-annotations ⟨1, 0, 0⟩, ⟨1, 1, 1⟩, ⟨1, 2, 4⟩, . . . , i.e., ⟨1, 𝑖, 𝑖2⟩ for all 𝑖 ∈ ℤ+.
My solution to moment-polymorphic recursion is to introduce a combination operator ⊕ in a way

that if 𝜙1 and 𝜙2 are two expected-potential functions, then

𝜙1(𝜎) ⊕ 𝜙2(𝜎) ≥ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−→
⟨𝐶(𝜎, 𝜎′)𝑘⟩0≤𝑘≤𝑚 ⊗ (𝜙1(𝜎′) ⊕ 𝜙2(𝜎′))].

I then use the ⊕ operator to derive a frame rule:

{ 𝑄1 } 𝑆 { 𝑄′1 } { 𝑄2 } 𝑆 { 𝑄′2 }
{ 𝑄1 ⊕ 𝑄2 } 𝑆 { 𝑄′1 ⊕ 𝑄′2 }

I define ⊕ as pointwise addition, i.e., for second moments,

⟨𝑝1, 𝑟1, 𝑠1⟩ ⊕ ⟨𝑝2, 𝑟2, 𝑠2⟩ def
= ⟨𝑝1 + 𝑝2, 𝑟1 + 𝑟2, 𝑠1 + 𝑠2⟩, (5.4)

and because the 0-th-moment (i.e., termination-probability) component is no longer guaranteed to
be one, I redefine ⊗ to consider the termination probabilities:

⟨𝑝1, 𝑟1, 𝑠1⟩ ⊗ ⟨𝑝2, 𝑟2, 𝑠2⟩ def
= ⟨𝑝1𝑝2, 𝑝2𝑟1 + 𝑝1𝑟2, 𝑝2𝑠1 + 2𝑟1𝑟2 + 𝑝1𝑠2⟩. (5.5)

Remark 5.5. As I will show in §5.2.2, the composition operator ⊗ and combination operator ⊕ form
a moment semiring; consequently, we can use algebraic properties of semirings (e.g., distributivity) to
aid higher-moment analysis. For example, a vector ⟨0, 𝑟1, 𝑠1⟩ whose termination-probability component
is zero does not seem to make sense, because moments with respect to a zero distribution should also be
zero. However, by distributivity, we have

⟨1, 𝑟3, 𝑠3⟩ ⊗ ⟨1, 𝑟1 + 𝑟2, 𝑠1 + 𝑠2⟩
= ⟨1, 𝑟3, 𝑠3⟩ ⊗ (⟨0, 𝑟1, 𝑠1⟩ ⊕ ⟨1, 𝑟2, 𝑠2⟩)
= (⟨1, 𝑟3, 𝑠3⟩ ⊗ ⟨0, 𝑟1, 𝑠1⟩) ⊕ (⟨1, 𝑟3, 𝑠3⟩ ⊕ ⟨1, 𝑟2, 𝑠2⟩).
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If we think of ⟨1, 𝑟1 + 𝑟2, 𝑠1 + 𝑠2⟩ as a post-annotation of a computation whose moments are bounded
by ⟨1, 𝑟3, 𝑠3⟩, the equation above indicates that we can use ⊕ to decompose the post-annotation
into subparts, and then reason about each subpart separately. This fact inspires me to develop a
decomposition technique for moment-polymorphic recursion.
Example 5.6. With the ⊕ operator and the frame rule, we only need to analyze the rdwalk function

from Example 5.1 with three post-annotations: ⟨1, 0, 0⟩, ⟨0, 1, 1⟩, and ⟨0, 0, 2⟩, which form a kind of
“elimination sequence.” We construct this sequence in an on-demand manner; the first post-annotation
is the identity element ⟨1, 0, 0⟩ of the moment semiring.
For post-annotation ⟨1, 0, 0⟩, as shown in Fig. 5.3, we need to know the moment bound for rdwalk

with the post-annotation ⟨1, 1, 1⟩. Instead of reanalyzing rdwalk with the post-annotation ⟨1, 1, 1⟩,
We use the ⊕ operator to compute the “difference” between it and the previous post-annotation
⟨1, 0, 0⟩. Observing that ⟨1, 1, 1⟩ = ⟨1, 0, 0⟩ ⊕ ⟨0, 1, 1⟩, we now analyze rdwalk with ⟨0, 1, 1⟩ as the
post-annotation:

call rdwalk;
{ ⟨0, 1, 3⟩ } # = ⟨1, 1, 1⟩ ⊗ ⟨0, 1, 1⟩
tick(1)
{ ⟨0, 1, 1⟩ }

Again, because ⟨0, 1, 3⟩ = ⟨0, 1, 1⟩ ⊕ ⟨0, 0, 2⟩, we need to further analyze rdwalk with ⟨0, 0, 2⟩ as the
post-annotation:

call rdwalk;
{ ⟨0, 0, 2⟩ } # = ⟨1, 1, 1⟩ ⊗ ⟨0, 0, 2⟩
tick(1)
{ ⟨0, 0, 2⟩ }

With the post-annotation ⟨0, 0, 2⟩, we can now reason monomorphically without analyzing any new
post-annotation! We can perform a succession of reasoning steps similar to what we have done in
Example 5.2 to justify the following bounds (“unwinding” the elimination sequence):

• {⟨0, 0, 2⟩} rdwalk {⟨0, 0, 2⟩}: Directly by backward reasoning with the post-annotation ⟨0, 0, 2⟩.
• {⟨0, 1, 4(𝑑 − 𝑥) + 9⟩} rdwalk {⟨0, 1, 1⟩}: To analyze the recursive call with post-annotation
⟨0, 1, 3⟩, we use the frame rule with the post-call-site annotation ⟨0, 0, 2⟩ to derive ⟨0, 1, 4(𝑑 −
𝑥) + 11⟩ as the pre-annotation:

{ ⟨0, 1, 4(𝑑 − 𝑥) + 11⟩ } # = ⟨0, 1, 4(𝑑 − 𝑥) + 9⟩ ⊕ ⟨0, 0, 2⟩
call rdwalk;
{ ⟨0, 1, 3⟩ } # = ⟨0, 1, 1⟩ ⊕ ⟨0, 0, 2⟩

• {⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩} rdwalk {⟨1, 0, 0⟩}: To analyze the recursive
call with post-annotation ⟨1, 1, 1⟩, we use the frame rule with the post-call-site annotation
⟨0, 1, 1⟩ to derive ⟨1, 2(𝑑 − 𝑥) + 5, 4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37⟩ as the pre-annotation:

{ ⟨1, 2(𝑑 − 𝑥) + 5, 4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37⟩ }
# = ⟨1, 2(𝑑 − 𝑥) + 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28⟩ ⊕ ⟨0, 1, 4(𝑑 − 𝑥) + 9⟩
call rdwalk;
{ ⟨1, 1, 1⟩ } # = ⟨1, 0, 0⟩ ⊕ ⟨0, 1, 1⟩
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func geo() begin { ⟨1, 2𝑥⟩ }
𝑥 B 𝑥 + 1; { ⟨1, 2𝑥−1⟩ }
# expected-potential method for lower bounds:
# 2𝑥−1 < 1/2 · (2𝑥 + 1) + 1/2 · 0
if prob(1/2) then { ⟨1, 2𝑥 + 1⟩ }
tick(1); { ⟨1, 2𝑥⟩ }
call geo { ⟨1, 0⟩}

fi
end

Fig. 5.4: A purely probabilistic loop with annotations for a lower bound on the first moment of the accumulatedcost.
In §5.2.3, I present an automatic inference system for the expected-potential method that is

extended with interval-valued bounds on higher moments, with support for moment-polymorphic
recursion.

Soundness of the Analysis Unlike the classic potential method, the expected-potential method
is not always sound when reasoning about the moments for cost accumulators in probabilistic
programs.

Counterexample 5.7. Consider the program in Fig. 5.4 that describes a purely probabilistic loop that
exits the loop with probability 1/2 in each iteration. The expected accumulated cost of the program
should be one [68]. However, the annotations in Fig. 5.4 justify a potential function 2𝑥 as a lower
bound on the expected accumulated cost, no matter what value 𝑥 has at the beginning, which is
apparently unsound.

Why does the expected-potential method fail in this case? The short answer is that dualization
only works for some problems: upper-bounding the sum of nonnegative ticks is equivalent to
lower-bounding the sum of nonpositive ticks; lower-bounding the sum of nonnegative ticks—the
issue in Fig. 5.4—is equivalent to upper-bounding the sum of nonpositive ticks; however, the two
kinds of problems are inherently different [68]. Intuitively, the classic potential method for bounding
the costs of non-probabilistic programs is a partial-correctness method, i.e., derived upper/lower
bounds are sound if the analyzed program terminates [125]. With probabilistic programs, many
programs do not terminate definitely, but only almost surely, i.e., they terminate with probability
one, but have some execution traces that are non-terminating. The programs in Figures 5.2 and 5.4
are both almost-surely terminating. For the expected-potential method, the potential at a program
state can be seen as an average of potentials needed for all possible computations that continue
from the state. If the program state can lead to a non-terminating execution trace, the potential
associated with that trace might be problematic, and as a consequence, the expected-potential
method might fail.
Previous research [7, 68, 137, 154] has employed the Optional Stopping Theorem (OST) from

probability theory to address this soundness issue. The classic OST provides a collection of sufficient
conditions for reasoning about expected gain upon termination of stochastic processes, where
the expected gain at any time is invariant. By constructing a stochastic process for executions
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𝑆 F skip | tick(𝑐) | 𝑥 B 𝐸 | 𝑥 ∼ 𝐷 | call 𝑓 | while 𝐿 do 𝑆 od
| if prob(𝑝) then 𝑆1 else 𝑆2 fi | if 𝐿 then 𝑆1 else 𝑆2 fi | 𝑆1; 𝑆2

𝐿F true | not 𝐿 | 𝐿1 and 𝐿2 | 𝐸1 ≤ 𝐸2
𝐸 F 𝑥 | 𝑐 | 𝐸1 + 𝐸2 | 𝐸1 × 𝐸2
𝐷 F Uniform(𝑎, 𝑏) | · · ·

Fig. 5.5: Syntax of the probabilistic programming language, where 𝑝 ∈ [0, 1], 𝑎, 𝑏, 𝑐 ∈ ℝ, 𝑎 < 𝑏, 𝑥 ∈ VID is avariable, and 𝑓 ∈ FID is a function identifier.

of probabilistic programs and setting the expected-potential function as the invariant, one can
apply the OST to justify the soundness of the expected-potential function. In other article, I have
studied and proposed an extension to the classic OST with a new sufficient condition that is suitable
for reasoning about higher moments [150]. I then prove the soundness of my central-moment
inference for programs that satisfy this condition, and develop an algorithm to check this condition
automatically (see §5.3).

5.2 Derivation System for Higher Moments
In this section, I describe the inference system used by my analysis. I first present a probabilistic
programming language (§5.2.1). I then introduce moment semirings to compose higher moments
for a cost accumulator from two computations (§5.2.2). I use moment semirings to develop my
derivation system, which is presented as a declarative program logic (§5.2.3). Finally, I sketch how
I reduce the inference of a derivation to LP solving (§5.2.4).

5.2.1 A Probabilistic Programming Language
In this chapter, I use a syntactic representation of Appl—instead of using control-flow hyper-
graphs—to simplify the presentation of the derivation system. Recall that Appl supports general
recursion and continuous distributions. I also assume that all the program variables are real-valued
for brevity.
Fig. 5.5 presents the syntax as a grammar, where the metavariables 𝑆, 𝐿, 𝐸, and 𝐷 stand for

statements, conditions, expressions, and distributions, respectively. Each distribution 𝐷 is associated
with a probability measure `𝐷 ∈ 𝔻(ℝ). The statement “𝑥 ∼ 𝐷” is a random-sampling assignment,
which draws from the distribution `𝐷 to obtain a sample value and then assigns it to 𝑥. The
statement “if prob(𝑝) then 𝑆1 else 𝑆2 fi” is a probabilistic-branching statement, which executes 𝑆1
with probability 𝑝, or 𝑆2 with probability (1 − 𝑝).
The statement “call 𝑓 ” makes a (possibly recursive) call to the function with identifier 𝑓 ∈ FID.

In this chapter, I assume that the functions only manipulate states that consist of global program
variables. The statement tick(𝑐), where 𝑐 ∈ ℝ is a constant, is used to define the cost model.
It adds 𝑐 to an anonymous global cost accumulator. Note that my implementation supports
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local variables, function parameters, return statements, as well as accumulation of non-constant
costs; the restrictions imposed here are not essential, and are introduced solely to simplify the
presentation.
I use a pair ⟨𝒟, 𝑆main⟩ to represent a program, where 𝒟 is a finite map from function identifiers

to their bodies and 𝑆main is the body of the main function. In §5.3.2, I present an operational
semantics for Appl, which is similar to the operational semantics presented in §2.3. The reason not
to use a denotational semantics is to enable a direct adaptation of Optional Stopping Theorems
(see §5.3.3).

5.2.2 Moment Semirings
As discussed in §5.1.1, I want to design a composition operation ⊗ and a combination operation ⊕ to
compose and combine higher moments of accumulated costs such that

𝜙(𝜎) ⊒ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−→
⟨𝐶(𝜎, 𝜎′)𝑘⟩0≤𝑘≤𝑚 ⊗ 𝜙(𝜎′)],

𝜙1(𝜎) ⊕ 𝜙2(𝜎) ⊒ 𝔼𝜎′∼J𝑆K(𝜎) [
−−−−−−−−−−−−−−−→
⟨𝐶(𝜎, 𝜎′)𝑘⟩0≤𝑘≤𝑚 ⊗ (𝜙1(𝜎′) ⊕ 𝜙2(𝜎′))],

where the expected-potential functions 𝜙, 𝜙1, 𝜙2 map program states to interval-valued vectors,
𝐶(𝜎, 𝜎′) is the cost for the computation from 𝜎 to 𝜎′, and 𝑚 is the degree of the target moment.
In eqs. (5.4) and (5.5), I gave a definition of ⊗ and ⊕ suitable for first and second moments,
respectively. In this section, I generalize them to reason about upper and lower bounds of higher
moments. My approach is inspired by the work of Li and Eisner [107], which develops a method to
“lift” techniques for first moments to those for second moments. Instead of restricting the elements
of semirings to be vectors of numbers, I propose algebraic moment semirings that can also be
instantiated with vectors of intervals, which we need for the interval-bound analysis that was
demonstrated in §5.1.1.
Definition 5.8. The 𝑚-th order moment semiringM (𝑚)

R
= ( |R |𝑚+1, ⊕, ⊗, 0, 1) is parametrized by

a partially ordered semiring R = ( |R |, ≤, +, ·, 0, 1), where
−−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚 ⊕

−−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚 def
=
−−−−−−−−−−−−−→⟨𝑢𝑘 + 𝑣𝑘⟩0≤𝑘≤𝑚, (5.6)

−−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚 ⊗
−−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚 def

=
−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨∑𝑘

𝑖=0
(𝑘
𝑖

) × (𝑢𝑖 · 𝑣𝑘−𝑖)⟩0≤𝑘≤𝑚, (5.7)(𝑘
𝑖

)
is the binomial coefficient; the scalar product 𝑛×𝑢 is an abbreviation for∑𝑛

𝑖=1 𝑢, for 𝑛 ∈ ℤ+, 𝑢 ∈ R;
0 def
= ⟨0, 0, · · · , 0⟩; and 1 def

= ⟨1, 0, · · · , 0⟩. We define the partial order ⊑ as the pointwise extension
of the partial order ≤ on R.
Intuitively, the definition of ⊗ in eq. (5.7) can be seen as the multiplication of two moment-

generating functions for distributions with moments −−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚 and −−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚, respectively. I then
prove a composition property for moment semirings.
Lemma 5.9. For all 𝑢, 𝑣 ∈ R, it holds that

−−−−−−−−−−−−−−→
⟨(𝑢 + 𝑣)𝑘⟩0≤𝑘≤𝑚 =

−−−−−−−−→
⟨𝑢𝑘⟩0≤𝑘≤𝑚 ⊗

−−−−−−−−→
⟨𝑣𝑘⟩0≤𝑘≤𝑚,

where 𝑢𝑛 is an abbreviation for ∏𝑛
𝑖=1 𝑢, for 𝑛 ∈ ℤ+, 𝑢 ∈ R.
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Proof. Let 𝑅𝐻𝑆 denote the right-hand-side of the target equation. Observe that

𝑅𝐻𝑆𝑘 =
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖 · 𝑣𝑘−𝑖).

We prove by induction on 𝑘 that (𝑢 + 𝑣)𝑘 = 𝑅𝐻𝑆𝑘.
• Base case (i.e., 𝑘 = 0): We have (𝑢 + 𝑣)0 = 1. On the other hand, we have

𝑅𝐻𝑆0 =

(0
0

)
× (𝑢0 · 𝑣0) = 1 × (1 · 1) = 1.

• Suppose that (𝑢 + 𝑣)𝑘 = 𝑅𝐻𝑆𝑘 for some 𝑘. Then
(𝑢 + 𝑣)𝑘+1 = (𝑢 + 𝑣) · (𝑢 + 𝑣)𝑘

= (𝑢 + 𝑣) ·
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖 · 𝑣𝑘−𝑖)

=
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖+1 · 𝑣𝑘−𝑖) +

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖 · 𝑣𝑘−𝑖+1)

=
𝑘+1∑︁
𝑖=1

(
𝑘

𝑖 − 1

)
× (𝑢𝑖 · 𝑣𝑘−𝑖+1) +

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖 · 𝑣𝑘−𝑖+1)

=
𝑘+1∑︁
𝑖=0
(
(
𝑘

𝑖 − 1

)
+

(
𝑘

𝑖

)
) × (𝑢𝑖 · 𝑣𝑘−𝑖+1)

=
𝑘+1∑︁
𝑖=0

(
𝑘 + 1
𝑖

)
× (𝑢𝑘 · 𝑣𝑘−𝑖+1)

= 𝑅𝐻𝑆𝑘+1.

□

5.2.3 Inference Rules
I present the derivation system as a declarative program logic that uses moment semirings to enable
compositional reasoning and moment-polymorphic recursion.

Interval-Valued Moment Semirings My derivation system infers upper and lower bounds
simultaneously, rather than separately, which is essential for non-monotone costs. Consider a
program “tick(−1); 𝑆” and suppose that we have ⟨1, 2, 5⟩ and ⟨1,−2, 5⟩ as the upper and lower
bounds on the first two moments of the cost for 𝑆, respectively. If we only use the upper bound, we
derive ⟨1,−1, 1⟩ ⊗ ⟨1, 2, 5⟩ = ⟨1, 1, 2⟩, which is not an upper bound on the moments of the cost
for the program; if the actual moments of the cost for 𝑆 are ⟨1, 0, 5⟩, then the actual moments of
the cost for “tick(−1); 𝑆” are ⟨1,−1, 1⟩ ⊗ ⟨1, 0, 5⟩ = ⟨1,−1, 4⟩ ̸≤ ⟨1, 1, 2⟩. Thus, in the analysis, I
instantiatemoment semirings with the interval domainI. For the program “tick(−1); 𝑆”, its interval-
valued bound on the first two moments is ⟨[1, 1], [−1,−1], [1, 1]⟩ ⊗ ⟨[1, 1], [−2, 2], [5, 5]⟩ =
⟨[1, 1], [−3, 1], [2, 10]⟩.
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Template-Based Expected-Potential Functions The basic approach to automated inference
using potential functions is to introduce a template for the expected-potential functions. Let me
fix 𝑚 ∈ ℕ as the degree of the target moment. Because I use M (𝑚)

I
-valued expected-potential

functions whose range is vectors of intervals, the templates are vectors of intervals whose ends
are represented symbolically. In this chapter, I represent the ends of intervals by polynomials in
ℝ[VID] over program variables.
More formally, I lift the interval semiring I to a symbolic interval semiring PI by representing

the ends of the 𝑘-th interval by polynomials in ℝ𝑘𝑑 [VID] up to degree 𝑘𝑑 for some fixed 𝑑 ∈ ℕ.
LetM (𝑚)

PI
be the 𝑚-th order moment semiring instantiated with the symbolic interval semiring.

Then the potential annotation is represented as 𝑄 =
−−−−−−−−−−−−−−→⟨[𝐿𝑘, 𝑈𝑘]⟩0≤𝑘≤𝑚 ∈ M (𝑚)PI , where 𝐿𝑘’s and 𝑈𝑘’s

are polynomials in ℝ𝑘𝑑 [VID]. 𝑄 defines an M (𝑚)
I

-valued expected-potential function 𝜙𝑄 (𝜎) def
=

−−−−−−−−−−−−−−−−−−−−→⟨[𝜎(𝐿𝑘), 𝜎(𝑈𝑘)]⟩0≤𝑘≤𝑚, where 𝜎 is a program state, and 𝜎(𝐿𝑘) and 𝜎(𝑈𝑘) are 𝐿𝑘 and 𝑈𝑘 evaluated
over 𝜎, respectively.

Inference Rules I formalize my derivation system for moment analysis in a Hoare-logic style.
The judgment has the form Δ ⊢ℎ {Γ;𝑄} 𝑆 {Γ′;𝑄′}, where 𝑆 is a statement, {Γ;𝑄} is a precondition,
{Γ′;𝑄′} is a postcondition, Δ = ⟨Δ𝑘⟩0≤𝑘≤𝑚 is a context of function specifications, and ℎ ∈ ℤ+ specifies
some restrictions put on 𝑄, 𝑄′ that I will explain later. The logical context Γ : (VID→ ℝ) → {⊤,⊥}
is a predicate that describes reachable states at a program point. The potential annotation 𝑄 ∈ M (𝑚)

PI

specifies a map from program states to the moment semiring that is used to define interval-valued
expected-potential functions. The semantics of the triple {·;𝑄} 𝑆 {·;𝑄′} is that if the rest of the
computation after executing 𝑆 has its moments of the accumulated cost bounded by 𝜙𝑄′ , then the
whole computation has its moments of the accumulated cost bounded by 𝜙𝑄. The parameter ℎ
restricts all 𝑖-th-moment components in 𝑄, 𝑄′, such that 𝑖 < ℎ, to be [0, 0]. I call such potential
annotations ℎ-restricted; this construction is motivated by an observation from Example 5.6, where
I illustrated the benefits of carrying out interprocedural analysis using an “elimination sequence” of
annotations for recursive function calls, where the successive annotations have a greater number
of zeros, filling from the left. Function specifications are valid pairs of pre- and post-conditions
for all declared functions in a program. For each 𝑘, such that 0 ≤ 𝑘 ≤ 𝑚, and each function 𝑓 ,
a valid specification (Γ;𝑄, Γ′;𝑄′) ∈ Δ𝑘( 𝑓 ) is justified by the judgment Δ ⊢𝑘 {Γ;𝑄} 𝒟( 𝑓 ) {Γ′;𝑄′},
where 𝒟( 𝑓 ) is the function body of 𝑓 , and 𝑄, 𝑄′ are 𝑘-restricted. The validity of a context Δ for
function specifications is then established by the validity of all specifications in Δ, denoted by ⊢ Δ.
To perform context-sensitive interprocedural analysis, a function can have multiple specifications.
Fig. 5.6 presents the inference rules. The rule (Q-Tick) is the only rule that deals with costs in a

program. To accumulate the moments of the cost, I use the ⊗ operation in the moment semiring
M
(𝑚)
PI

. The rule (Q-Sample) accounts for sampling statements. Because “𝑥 ∼ 𝐷” randomly assigns
a value to 𝑥 in the support of distribution 𝐷, I quantify 𝑥 out universally from the logical context.
To compute 𝑄 = 𝔼𝑥∼`𝐷 [𝑄′], where 𝑥 is drawn from distribution 𝐷, I assume the moments for 𝐷
are well-defined and computable, and substitute 𝑥 𝑖, 𝑖 ∈ ℕ with the corresponding moments in 𝑄′.
I make this assumption because every component of 𝑄′ is a polynomial over program variables. For
example, if 𝐷 = Uniform(−1, 2), we know the following facts

𝔼𝑥∼`𝐷 [𝑥0] = 1,𝔼𝑥∼`𝐷 [𝑥1] = 1
2 ,𝔼𝑥∼`𝐷 [𝑥

2] = 1,𝔼𝑥∼`𝐷 [𝑥3] = 5
4 .
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(Valid-Ctx)
∀(ℎ, 𝑓 ) ∈ dom(Δ) : ∀(Γ;𝑄, Γ;𝑄′) ∈ Δ( 𝑓 ) : Δ ⊢ℎ {Γ;𝑄} 𝒟( 𝑓 ) {Γ′;𝑄′}

⊢ Δ
(Q-Skip)

Δ ⊢ℎ {Γ;𝑄} skip {Γ;𝑄}

(Q-Tick)
𝑄 =
−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝑄′

Δ ⊢ℎ {Γ;𝑄} tick(𝑐) {Γ;𝑄′}

(Q-Assign)
Γ = [𝐸/𝑥]Γ′ 𝑄 = [𝐸/𝑥]𝑄′
Δ ⊢ℎ {Γ;𝑄} 𝑥 B 𝐸 {Γ′;𝑄′}

(Q-Sample)
Γ = ∀𝑥 ∈ supp(`𝐷) : Γ′ 𝑄 = 𝔼𝑥∼`𝐷 [𝑄′]

Δ ⊢ℎ {Γ;𝑄} 𝑥 ∼ 𝐷 {Γ′;𝑄′}

(Q-Loop)
Δ ⊢ℎ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄}

Δ ⊢ℎ {Γ;𝑄} while 𝐿 do 𝑆 od {Γ ∧ ¬𝐿;𝑄}

(Q-Seq)
Δ ⊢ℎ {Γ;𝑄} 𝑆1 {Γ′;𝑄′} Δ ⊢ℎ {Γ′;𝑄′} 𝑆2 {Γ′′;𝑄′′}

Δ ⊢ℎ {Γ;𝑄} 𝑆1; 𝑆2 {Γ′′;𝑄′′}

(Q-Call-Mono)
(Γ;𝑄, Γ′;𝑄′) ∈ Δ𝑚 ( 𝑓 )

Δ ⊢𝑚 {Γ;𝑄} call 𝑓 {Γ′;𝑄′}

(Q-Call-Poly)
ℎ < 𝑚 Δℎ( 𝑓 ) = (Γ;𝑄1, Γ

′;𝑄′1) Δ ⊢ℎ+1 {Γ;𝑄2} 𝒟( 𝑓 ) {Γ′;𝑄′2}
Δ ⊢ℎ {Γ;𝑄1 ⊕ 𝑄2} call 𝑓 {Γ′;𝑄′1 ⊕ 𝑄′2}

(Q-Prob)
Δ ⊢ℎ {Γ;𝑄1} 𝑆1 {Γ′;𝑄′} Δ ⊢ℎ {Γ;𝑄2} 𝑆2 {Γ′;𝑄′} 𝑄 = 𝑃 ⊕ 𝑅

𝑃 = ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄1 𝑅 = ⟨[1 − 𝑝, 1 − 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄2

Δ ⊢ℎ {Γ;𝑄} if prob(𝑝) then 𝑆1 else 𝑆2 fi {Γ′;𝑄′}

(Q-Cond)
Δ ⊢ℎ {Γ ∧ 𝐿;𝑄} 𝑆1 {Γ′;𝑄′} Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝑆2 {Γ′;𝑄′}

Δ ⊢ {Γ;𝑄} if 𝐿 then 𝑆1 else 𝑆2 fi {Γ′;𝑄′}

(Q-Weaken)
Δ ⊢ℎ {Γ0;𝑄0} 𝑆 {Γ′0;𝑄′0} Γ |= Γ0 Γ′0 |= Γ′ Γ |= 𝑄 ⊒ 𝑄0 Γ′0 |= 𝑄′0 ⊒ 𝑄′

Δ ⊢ℎ {Γ;𝑄} 𝑆 {Γ′;𝑄′}

Fig. 5.6: Inference rules of the derivation system.
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Then for 𝑄′ = ⟨[1, 1], [1 + 𝑥2, 𝑥 𝑦2 + 𝑥3𝑦]⟩, by the linearity of expectations, we compute 𝑄 =

𝔼𝑥∼`𝐷 [𝑄′] as follows:
𝔼𝑥∼`𝐷 [𝑄′] = ⟨[1, 1], [𝔼𝑥∼`𝐷 [1 + 𝑥2],𝔼𝑥∼`𝐷 [𝑥 𝑦2 + 𝑥3𝑦]⟩

= ⟨[1, 1], [1 + 𝔼𝑥∼`𝐷 [𝑥2], 𝑦2𝔼𝑥∼`𝐷 [𝑥] + 𝑦𝔼𝑥∼`𝐷 [𝑥3]]⟩
= ⟨[1, 1], [2, 1

2 · 𝑦
2 + 5

4 · 𝑦]⟩.
The other probabilistic rule (Q-Prob) deals with probabilistic branching. Intuitively, if the moments
of the execution of 𝑆1 and 𝑆2 are 𝑞1 and 𝑞2, respectively, and those of the accumulated cost of
the computation after the branch statement is bounded by 𝜙𝑄′ , then the moments for the whole
computation should be bounded by a “weighted average” of (𝑞1 ⊗𝜙𝑄′) and (𝑞2 ⊗𝜙𝑄′), with respect
to the branching probability 𝑝. I implement the weighted average by the combination operator ⊕
applied to ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑞1 ⊗ 𝜙𝑄′ and ⟨[1− 𝑝, 1− 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑞2 ⊗ 𝜙𝑄′ ,
because the 0-th moments denote probabilities.
The rules (Q-Call-Poly) and (Q-Call-Mono) handle function calls. Recall that in Example 5.6, I

use the ⊕ operator to combine multiple potential functions for a function to reason about recursive
function calls. The restriction parameter ℎ is used to ensure that the derivation system only needs
to reason about finitely many post-annotations for each call site. In rule (Q-Call-Poly), where ℎ is
smaller than the target moment 𝑚, I fetch the pre- and post-condition 𝑄1, 𝑄′1 for the function 𝑓
from the specification context Δℎ. I then combine it with a frame of (ℎ + 1)-restricted potential
annotations 𝑄2, 𝑄′2 for the function 𝑓 . The frame is used to account for the interval bounds on the
moments for the computation after the function call for most non-tail-recursive programs. When ℎ
reaches the target moment 𝑚, I use the rule (Q-Call-Mono) to reason moment-monomorphically,
because setting ℎ to 𝑚 + 1 implies that the frame can only be ⟨[0, 0], [0, 0], · · · , [0, 0]⟩.
The structural rule (Q-Weaken) is used to strengthen the pre-condition and relax the post-

condition. The entailment relation Γ |= Γ′ states that the logical implication Γ =⇒ Γ′ is valid.
In terms of the bounds on higher moments for cost accumulators, if the triple {·;𝑄} 𝑆 {·;𝑄′} is
valid, then I can safely widen the intervals in the pre-condition 𝑄 and narrow the intervals in the
post-condition 𝑄′.

Example 5.10. Fig. 5.7 presents the logical context and the complete potential annotation for the first
and second moments for the cost accumulator tick of the rdwalk function from Example 5.1. Similar to
the reasoning in Example 5.6, we can justify the derivation using moment-polymorphic recursion and the
moment bounds for rdwalk with post-annotations ⟨[0, 0], [1, 1], [1, 1]⟩ and ⟨[0, 0], [0, 0], [2, 2]⟩.

5.2.4 Automatic Linear-Constraint Generation
I adapt existing techniques [21, 124] to automate my inference system by (i) using an abstract
interpreter to infer logical contexts, (ii) generating templates and linear constraints by inductively
applying the derivation rules to the analyzed program, and (iii) employing an off-the-shelf LP solver
to discharge the linear constraints. During the generation phase, the coefficients of monomials in
the polynomials from the ends of the intervals in every qualitative context 𝑄 ∈ M (𝑚)

PI
are recorded

as symbolic names, and the inequalities among those coefficients—derived from the inference rules
in Fig. 5.6—are emitted to the LP solver.
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1 func rdwalk() begin
2 { 𝑥 < 𝑑 + 2; ⟨[1, 1], [2(𝑑 − 𝑥), 2(𝑑 − 𝑥) + 4],
3 [4(𝑑 − 𝑥)2 + 6(𝑑 − 𝑥) − 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28]⟩ }
4 if 𝑥 < 𝑑 then
5 { 𝑥 < 𝑑; ⟨[1, 1], [2(𝑑 − 𝑥), 2(𝑑 − 𝑥) + 4],
6 [4(𝑑 − 𝑥)2 + 6(𝑑 − 𝑥) − 4, 4(𝑑 − 𝑥)2 + 22(𝑑 − 𝑥) + 28]⟩ }
7 𝑡 ∼ Uniform(−1, 2);
8 { 𝑥 < 𝑑 ∧ 𝑡 ≤ 2; ⟨[1, 1], [2(𝑑 − 𝑥 − 𝑡) + 1, 2(𝑑 − 𝑥 − 𝑡) + 5],
9 [4(𝑑 − 𝑥 − 𝑡)2 + 10(𝑑 − 𝑥 − 𝑡) − 3, 4(𝑑 − 𝑥 − 𝑡)2 + 26(𝑑 − 𝑥 − 𝑡) + 37)]⟩ }
10 𝑥 B 𝑥 + 𝑡;
11 { 𝑥 < 𝑑 + 2; ⟨[1, 1], [2(𝑑 − 𝑥) + 1, 2(𝑑 − 𝑥) + 5],
12 [4(𝑑 − 𝑥)2 + 10(𝑑 − 𝑥) − 3, 4(𝑑 − 𝑥)2 + 26(𝑑 − 𝑥) + 37]⟩ }
13 call rdwalk;
14 { ⊤; ⟨[1, 1], [1, 1], [1, 1]⟩ }
15 tick(1)
16 { ⊤; ⟨[1, 1], [0, 0], [0, 0]⟩ }
17 fi
18 end

Fig. 5.7: The rdwalk function with annotations for the interval-bounds on the first and second moments.

Generating Linear Constraints Fig. 5.8 demonstrates the generation process for some of the
bounds in Fig. 5.3. Let 𝐵𝑘 be a vector of monomials over program variables VID of degree up to 𝑘.
Then a polynomial ∑𝑏∈𝐵𝑘 𝑞𝑏 · 𝑏, where 𝑞𝑏 ∈ ℝ for all 𝑏 ∈ 𝐵𝑘, can be represented as a vector of its
coefficients (𝑞𝑏)𝑏∈𝐵𝑘 . I denote coefficient vectors by uppercase letters, while I use lowercase letters
as names of the coefficients. I also assume that the degree of the polynomials for the 𝑘-th moments
is up to 𝑘.
For (Q-Tick), I generate constraints that correspond to the composition operation ⊗ of the

𝑝𝑡𝑘1 = 𝑢𝑡𝑘1 𝑞𝑡𝑘1 = 𝑢𝑡𝑘1 + 𝑣𝑡𝑘1 𝑞𝑡𝑘𝑥 = 𝑣𝑡𝑘𝑥 𝑞𝑡𝑘𝑁 = 𝑣𝑡𝑘𝑁 𝑞𝑡𝑘𝑟 = 𝑣𝑡𝑘𝑟
𝑡𝑡𝑘1 = 𝑤𝑡𝑘

1 + 2𝑣𝑡𝑘1 + 𝑢𝑡𝑘1 𝑡𝑡𝑘𝑥 = 𝑤𝑡𝑘
𝑥 + 2𝑣𝑡𝑘𝑥 𝑡𝑡𝑘

𝑥2 = 𝑤𝑡𝑘
𝑥2 · · ·

Δ ⊢ {⊤; (𝑃𝑡𝑘, 𝑄𝑡𝑘, 𝑇 𝑡𝑘)} tick(1) {⊤; (𝑈𝑡𝑘, 𝑉 𝑡𝑘,𝑊 𝑡𝑘)}
(Q-Tick)

𝑝𝑠𝑎1 = 𝑢𝑠𝑎1 𝑞𝑠𝑎1 = 𝑣𝑠𝑎1 +
1
2 · 𝑣

𝑠𝑎
𝑟 𝑞𝑠𝑎𝑥 = 𝑣𝑠𝑎𝑥 𝑞𝑠𝑎𝑁 = 𝑣𝑠𝑎𝑁 𝑞𝑠𝑎𝑟 = 0

𝑡𝑠𝑎1 = 𝑤𝑠𝑎
1 +

1
2 · 𝑤

𝑠𝑎
𝑟 + 1 · 𝑤𝑠𝑎

𝑟2 𝑡𝑠𝑎𝑥 = 𝑤𝑠𝑎
𝑥 +

1
2 · 𝑤

𝑠𝑎
𝑟·𝑥 𝑡𝑠𝑎

𝑥2 = 𝑤𝑠𝑎
𝑥2 · · ·

Δ ⊢ {𝑥 < 𝑁; (𝑃𝑠𝑎, 𝑄𝑠𝑎, 𝑇 𝑠𝑎)} 𝑟 ∼ Uniform(−1, 2) {𝑥 < 𝑁 ∧ 𝑟 ≤ 2; (𝑈𝑠𝑎, 𝑉 𝑠𝑎,𝑊 𝑠𝑎)} (Q-Sample)

Fig. 5.8: Generate linear constraints, guided by inference rules.
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moment semiring. For example, the second-moment component should satisfy∑︁
𝑏∈𝐵2

𝑡𝑡𝑘𝑏 · 𝑏

= the second-moment component of
((1, 1, 1) ⊗ (∑︁

𝑏∈𝐵0

𝑢𝑡𝑘𝑏 · 𝑏,
∑︁
𝑏∈𝐵1

𝑣𝑡𝑘𝑏 · 𝑏,
∑︁
𝑏∈𝐵2

𝑤𝑡𝑘
𝑏 · 𝑏)

)
=

∑︁
𝑏∈𝐵2

𝑤𝑡𝑘
𝑏 · 𝑏 + 2 ·

∑︁
𝑏∈𝐵1

𝑣𝑡𝑘𝑏 · 𝑏 +
∑︁
𝑏∈𝐵0

𝑢𝑡𝑘𝑏 · 𝑏.

Then we extract 𝑡𝑡𝑘1 = 𝑤𝑡𝑘
1 + 2𝑣𝑡𝑘1 + 𝑢𝑡𝑘1 for 𝑏 = 1, and 𝑡𝑡𝑘𝑥 = 𝑤𝑡𝑘

𝑥 + 2𝑣𝑡𝑘𝑥 for 𝑏 = 𝑥, etc. For (Q-Sample),
I generate constraints to perform “partial evaluation” on the polynomials by substituting 𝑟 with
the moments of Uniform(−1, 2). As I discussed in §5.2.3, let 𝐷 denote Uniform(−1, 2), then
𝔼𝑟∼𝐷 [𝑤𝑠𝑎

𝑟 · 𝑟] = 𝑤𝑠𝑎
𝑟 ·𝔼𝑟∼𝐷 [𝑟] = 1

2 ·𝑤𝑠𝑎
𝑟 , 𝔼𝑟∼𝐷 [𝑤𝑠𝑎

𝑟2 · 𝑟2] = 𝑤𝑠𝑎
𝑟2 ·𝔼𝑟∼𝐷 [𝑟2] = 1 ·𝑤𝑠𝑎

𝑟2 . Then we generate
a constraint 𝑡𝑠𝑎1 = 𝑤𝑠𝑎

1 + 1
2 · 𝑤𝑠𝑎

𝑟 + 1 · 𝑤𝑠𝑎
𝑟2 for 𝑡𝑠𝑎1 .

The loop rule (Q-Loop) involves constructing loop invariants 𝑄, which is in general a nontrivial
problem for automated static analysis. Instead of computing the loop invariant 𝑄 explicitly,
my system represents 𝑄 directly as a template with unknown coefficients, then uses 𝑄 as the
post-annotation to analyze the loop body and obtain a pre-annotation, and finally generates linear
constraints that indicate the pre-annotation equals to 𝑄.
The structural rule (Q-Weaken) can be applied at any point during the derivation. In my

implementation, I apply it where the control flow has a branch, because different branches might
have different costs. To handle the judgment Γ |= 𝑄 ⊒ 𝑄′, i.e., to generate constraints that ensure
one interval is always contained in another interval, where the ends of the intervals are polynomials,
I adapt the idea of rewrite functions [21, 124]. Intuitively, to ensure that [𝐿1, 𝑈1] ⊒ [𝐿2, 𝑈2], i.e.,
𝐿1 ≤ 𝐿2 and 𝑈2 ≤ 𝑈1, under the logical context Γ, I generate constraints indicating that there exist
two polynomials 𝑇1, 𝑇2 that are always nonnegative under Γ, such that 𝐿1 = 𝐿2+𝑇1 and𝑈1 = 𝑈2−𝑇2.
Here, 𝑇1 and 𝑇2 are like slack variables, except that because all quantities are polynomials, they are
too (i.e., slack polynomials). In my implementation, Γ is a set of linear constraints over program
variables of the form E ≥ 0 , then I can represent 𝑇1, 𝑇2 by conical combinations (i.e., linear
combinations with nonnegative scalars) of expressions E in Γ.

Solving Linear Constraints The LP solver not only finds assignments to the coefficients that
satisfy the constraints, it can also optimize a linear objective function. In the central-moment
analysis, I construct an objective function that tries to minimize imprecision. For example, let
us consider upper bounds on the variance. I randomly pick a concrete valuation of program
variables that satisfies the pre-condition (e.g., 𝑑 > 0 in Fig. 5.2), and then substitute program
variables with the concrete valuation in the polynomial for the upper bound on the variance
(obtained from bounds on the raw moments). The resulting linear combination of coefficients,
which I set as the objective function, stands for the variance under the concrete valuation. Thus,
minimizing the objective function produces the most precise upper bound on the variance under
the specific concrete valuation. Also, I can extract a symbolic upper bound on the variance using
the assignments to the coefficients. Because the derivation of the bounds only uses the given
pre-condition, the symbolic bounds apply to all valuations of program variables that satisfy the
pre-condition.
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5.3 Soundness of Higher-Moment Analysis
In this section, I study the soundness of the derivation system for higher-moment analysis. I first
present a small-step operational cost semantics for the probabilistic programming language (§5.3.1).
I then develop a Markov-chain semantics to reason about how stepwise costs contribute to the global
accumulated cost (§5.3.2). With the Markov-chain semantics, I formulate higher-moment analysis
with respect to the semantics and prove the soundness of my derivation system for higher-moment
analysis based on a recent extension to the Optional Stopping Theorem (§5.3.3). Finally, I sketch
the algorithmic approach for ensuring the soundness of my analysis (§5.3.4).

5.3.1 A Small-Step Operational Semantics
I start with a small-step operational semantics with continuations, which I will use later to construct
the Markov-chain semantics. Similarly to §2.3, I follow a distribution-based approach [16, 98] to
define an operational cost semantics. A probabilistic semantics steps a program configuration to a
probability distribution on configurations. A program configuration 𝜎 ∈ Σ is a quadruple ⟨𝛾, 𝑆, 𝐾, 𝛼⟩
where 𝛾 : VID → ℝ is a program state that maps variables to values, 𝑆 is the statement being
executed, 𝐾 is a continuation that describes what remains to be done after the execution of 𝑆, and
𝛼 ∈ ℝ is the global cost accumulator. To describe these distributions formally, I need to construct a
measurable space of program configurations. My approach is to construct a measurable space for
each of the four components of configurations, and then use their product measurable space as the
semantic domain.

• Valuations 𝛾 : VID→ ℝ are finite real-valued maps, so I define (𝑉,V) def
= (ℝVID,B(ℝVID)) as

the canonical structure on a finite-dimensional space.

• The executing statement 𝑆 can contain real numbers, so I need to “lift” the Borel 𝜎-algebra
on ℝ to program statements. Intuitively, statements with exactly the same structure can be
treated as vectors of parameters that correspond to their real-valued components. Formally, I
achieve this by constructing a metric space on statements and then extracting a Borel 𝜎-algebra
from the metric space. Fig. 5.9 presents an inductively defined metric 𝑑𝑆 on statements, as
well as metrics 𝑑𝐸, 𝑑𝐿, and 𝑑𝐷 on expressions, conditions, and distributions, respectively, as
they are required by 𝑑𝑆. I denote the result measurable space by (𝑆,S).

• A continuation 𝐾 is either an empty continuation Kstop, a loop continuation Kloop 𝐿 𝑆 𝐾,
or a sequence continuation Kseq 𝑆 𝐾. Similarly, I construct a measurable space (𝐾,K ) on
continuations by extracting from a metric space. Fig. 5.9 shows the definition of a metric 𝑑𝐾
on continuations.

• The cost accumulator 𝛼 ∈ ℝ is a real number, so I define (𝑊,W) def
= (ℝ,B(ℝ)) as the

canonical measurable space on ℝ.
Then the semantic domain is defined as the product measurable space of the four components:
(Σ, O) def

= (𝑉,V) ⊗ (𝑆,S) ⊗ (𝐾,K ) ⊗ (𝑊,W).
An execution of an Appl program ⟨𝒟, 𝑆main⟩ is initialized with ⟨__.0, 𝑆main,Kstop, 0⟩, and the

termination configurations have the form ⟨_, skip,Kstop, _⟩. Different from a standard semantics
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𝑑𝐸 (𝑥, 𝑥) def
= 0

𝑑𝐸 (𝑐1, 𝑐2) def
= |𝑐1 − 𝑐2 |

𝑑𝐸 (𝐸11 + 𝐸12, 𝐸21 + 𝐸22) def
= 𝑑𝐸 (𝐸11, 𝐸21) + 𝑑𝐸 (𝐸12, 𝐸22)

𝑑𝐸 (𝐸11 × 𝐸12, 𝐸21 × 𝐸22) def
= 𝑑𝐸 (𝐸11, 𝐸21) + 𝑑𝐸 (𝐸12, 𝐸22)

𝑑𝐸 (𝐸1, 𝐸2) def
= ∞ otherwise

𝑑𝐿(true, true) def
= 0

𝑑𝐿 (not 𝐿1, not 𝐿2) def
= 𝑑𝐿(𝐿1, 𝐿2)

𝑑𝐿(𝐿11 and 𝐿12, 𝐿21 and 𝐿22) def
= 𝑑𝐿(𝐿11, 𝐿21) + 𝑑𝐿(𝐿12, 𝐿22)

𝑑𝐿(𝐸11 ≤ 𝐸12, 𝐸21 ≤ 𝐸22) def
= 𝑑𝐸 (𝐸11, 𝐸21) + 𝑑𝐸 (𝐸12, 𝐸22)

𝑑𝐿(𝐿1, 𝐿2) def
= ∞ otherwise

𝑑𝐷 (Uniform(𝑎1, 𝑏1),Uniform(𝑎2, 𝑏2)) def
= |𝑎1 − 𝑎2 | + |𝑏1 − 𝑏2 |

𝑑𝐷 (𝐷1, 𝐷2) def
= ∞ otherwise

𝑑𝑆 (skip, skip) def
= 0

𝑑𝑆 (tick(𝑐1), tick(𝑐2)) def
= |𝑐1 − 𝑐2 |

𝑑𝑆 (𝑥 B 𝐸1, 𝑥 B 𝐸2) def
= 𝑑𝐸 (𝐸1, 𝐸2)

𝑑𝑆 (𝑥 ∼ 𝐷1, 𝑥 ∼ 𝐷2) def
= 𝑑𝐷 (𝐷1, 𝐷2)

𝑑𝑆 (call 𝑓 , call 𝑓 ) def
= 0

𝑑𝑆 (if prob(𝑝1) then 𝑆11 else 𝑆12 fi, if prob(𝑝2) then 𝑆21 else 𝑆22 fi) def
= |𝑝1 − 𝑝2 | + 𝑑𝑆 (𝑆11, 𝑆21) + 𝑑𝑆 (𝑆12, 𝑆22)

𝑑𝑆 (if 𝐿1 then 𝑆11 else 𝑆12 fi, if 𝐿2 then 𝑆21 else 𝑆22 fi) def
= 𝑑𝐿(𝐿1, 𝐿2) + 𝑑𝑆 (𝑆11, 𝑆21) + 𝑑𝑆 (𝑆12, 𝑆22)

𝑑𝑆 (while 𝐿1 do 𝑆1 od,while 𝐿2 do 𝑆2 od) def
= 𝑑𝐿(𝐿1, 𝐿2) + 𝑑𝑆 (𝑆1, 𝑆2)

𝑑𝑆 (𝑆11; 𝑆12, 𝑆21; 𝑆22) def
= 𝑑𝑆 (𝑆11, 𝑆21) + 𝑑𝑆 (𝑆12, 𝑆22)

𝑑𝑆 (𝑆1, 𝑆2) def
= ∞ otherwise

𝑑𝐾 (Kstop,Kstop) def
= 0

𝑑𝐾 (Kloop 𝐿1 𝑆1 𝐾1,Kloop 𝐿2 𝑆2 𝐾2) def
= 𝑑𝐿(𝐿1, 𝐿2) + 𝑑𝑆 (𝑆1, 𝑆2) + 𝑑𝐾 (𝐾1, 𝐾2)

𝑑𝐾 (Kseq 𝑆1 𝐾1,Kseq 𝑆2 𝐾2) def
= 𝑑𝑆 (𝑆1, 𝑆2) + 𝑑𝐾 (𝐾1, 𝐾2)

𝑑𝐾 (𝐾1, 𝐾2) def
= ∞ otherwise

Fig. 5.9: Metrics for expressions, conditions, distributions, statements, and continuations.
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where each program configuration steps to at most one new configuration, a probabilistic semantics
may pick several different new configurations. The evaluation relation has the form 𝜎 ↦→ ` where
` ∈ 𝔻(Σ) is a probability measure over configurations. Fig. 5.10 presents the rules of the evaluation
relation. Note that expressions 𝐸 and conditions 𝐿 are deterministic, so I define a standard big-step
evaluation relation for them, written 𝛾 ⊢ 𝐸 ⇓ 𝑟 and 𝛾 ⊢ 𝐿 ⇓ 𝑏, where 𝛾 is a valuation, 𝑟 ∈ ℝ, and
𝑏 ∈ {⊤,⊥}. Most of the rules in Fig. 5.10, except (E-Sample) and (E-Prob), are also deterministic
as they step to a Dirac measure. The rule (E-Prob) constructs a distribution whose support has
exactly two elements, which stand for the two branches of the probabilistic choice. The rule
(E-Sample) “pushes” the probability distribution of 𝐷 to a distribution over post-sampling program
configurations.

Example 5.11. Suppose that a random sampling statement is being executed, i.e., the current
configuration is

⟨{𝑡 ↦→ 𝑡0}, (𝑡 ∼ Uniform(−1, 2)), 𝐾0, 𝛼0⟩.
The probability measure for the uniform distribution is _𝑂.

∫
𝑂
[−1≤𝑥≤2]

3 𝑑𝑥. Thus, by the rule (E-
Sample), we derive the post-sampling probability measure over configurations as _𝐴.

∫
ℝ
[⟨{𝑡 ↦→

𝑟}, skip, 𝐾0, 𝛼0⟩ ∈ 𝐴] · [−1≤𝑟≤2]
3 𝑑𝑟.

5.3.2 A Markov-Chain Semantics
In this section, I harness Markov-chain-based reasoning [85, 126] to develop a Markov-chain cost
semantics, based on the evaluation relation 𝜎 ↦→ `. An advantage of this approach is that it allows
me to study how the cost of every single evaluation step contributes to the accumulated cost at the
exit of the program and later adapt Optional Stopping Theorems to reason about soundness in
§5.3.3.
First, I prove that the evaluation relation ↦→ can be interpreted as a probability kernel.

Lemma 5.12. Let 𝛾 : VID→ ℝ be a valuation.
• Let 𝐸 be an expression. Then there exists a unique 𝑟 ∈ ℝ such that 𝛾 ⊢ 𝐸 ⇓ 𝑟.
• Let 𝐿 be a condition. Then there exists a unique 𝑏 ∈ {⊤,⊥} such that 𝛾 ⊢ 𝐿 ⇓ 𝑏.

Proof. By induction on the structure of 𝐸 and 𝐿. □

Lemma 5.13. For every configuration 𝜎 ∈ Σ, there exists a unique ` ∈ 𝔻(Σ, O) such that 𝜎 ↦→ `.

Proof. Let 𝜎 = ⟨𝛾, 𝑆, 𝐾, 𝛼⟩. Then by case analysis on the structure of 𝑆, followed by a case
analysis on the structure of 𝐾 when 𝑆 = skip. The rest of the proof appeals to Lemma 5.12. □

Theorem 5.14. The evaluation relation ↦→ defines a probability kernel on program configurations.

Proof. Lemma 5.13 tells me that ↦→ can be seen as a function ˆ↦→ defined as follows:

ˆ↦→(𝜎, 𝐴) def
= `(𝐴) where 𝜎 ↦→ `.



90 CHAPTER 5. CENTRAL MOMENT ANALYSIS

𝛾 ⊢ 𝐸 ⇓ 𝑟 “the expression 𝐸 evaluates to a real value 𝑟 under the valuation 𝛾”

(E-Var)
𝛾(𝑥) = 𝑟

𝛾 ⊢ 𝑥 ⇓ 𝑟
(E-Const)
𝛾 ⊢ 𝑐 ⇓ 𝑐

(E-Add)
𝛾 ⊢ 𝐸1 ⇓ 𝑟1 𝛾 ⊢ 𝐸2 ⇓ 𝑟2 𝑟 = 𝑟1 + 𝑟2

𝛾 ⊢ 𝐸1 + 𝐸2 ⇓ 𝑟

(E-Mul)
𝛾 ⊢ 𝐸1 ⇓ 𝑟1 𝛾 ⊢ 𝐸2 ⇓ 𝑟2 𝑟 = 𝑟1 · 𝑟2

𝛾 ⊢ 𝐸1 × 𝐸2 ⇓ 𝑟

𝛾 ⊢ 𝐿 ⇓ 𝑏 “the condition 𝐿 evaluates to a Boolean value 𝑏 under the valuation 𝛾”

(E-Top)
𝛾 ⊢ true ⇓ ⊤

(E-Neg)
𝛾 ⊢ 𝐿 ⇓ 𝑏

𝛾 ⊢ not 𝐿 ⇓ ¬𝑏

(E-Conj)
𝛾 ⊢ 𝐿1 ⇓ 𝑏1 𝛾 ⊢ 𝐿2 ⇓ 𝑏2

𝛾 ⊢ 𝐿1 and 𝐿2 ⇓ 𝑏1 ∧ 𝑏2

(E-Le)
𝛾 ⊢ 𝐸1 ⇓ 𝑟1 𝛾 ⊢ 𝐸2 ⇓ 𝑟2
𝛾 ⊢ 𝐸1 ≤ 𝐸2 ⇓ [𝑟1 ≤ 𝑟2]

⟨𝛾, 𝑆, 𝐾, 𝛼⟩ ↦→ ` “the configuration ⟨𝛾, 𝑆, 𝐾, 𝛼⟩ steps to a probability distribution ` on ⟨𝛾′, 𝑆′, 𝐾′, 𝛼′⟩’s”

(E-Skip-Stop)
⟨𝛾, skip,Kstop, 𝛼⟩ ↦→ 𝛿(⟨𝛾, skip,Kstop, 𝛼⟩)

(E-Skip-Loop)
𝛾 ⊢ 𝐿 ⇓ 𝑏

⟨𝛾, skip,Kloop 𝑆 𝐿 𝐾, 𝛼⟩ ↦→ [𝑏] · 𝛿(⟨𝛾, 𝑆,Kloop 𝑆 𝐿 𝐾, 𝛼⟩) + [¬𝑏] · 𝛿(⟨𝛾, skip, 𝐾, 𝛼⟩)

(E-Skip-Seq)
⟨𝛾, skip,Kseq 𝑆 𝐾, 𝛼⟩ ↦→ 𝛿(⟨𝛾, 𝑆, 𝐾, 𝛼⟩)

(E-Tick)
⟨𝛾, tick(𝑐), 𝐾, 𝛼⟩ ↦→ 𝛿(⟨𝛾, skip, 𝐾, 𝛼 + 𝑐⟩)

(E-Assign)
𝛾 ⊢ 𝐸 ⇓ 𝑟

⟨𝛾, 𝑥 B 𝐸, 𝐾, 𝛼⟩ ↦→ 𝛿(⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩)
(E-Sample)
⟨𝛾, 𝑥 ∼ 𝐷, 𝐾, 𝛼⟩ ↦→ `𝐷 ≫= _𝑟.𝛿(⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩)

(E-Call)
⟨𝛾, call 𝑓 , 𝐾, 𝛼⟩ ↦→ 𝛿(⟨𝛾,𝒟( 𝑓 ), 𝐾, 𝛼⟩)

(E-Prob)
⟨𝛾, if prob(𝑝) then 𝑆1 else 𝑆2 fi, 𝐾, 𝛼⟩ ↦→ 𝑝 · 𝛿(⟨𝛾, 𝑆1, 𝐾, 𝛼⟩) + (1 − 𝑝) · 𝛿(⟨𝛾, 𝑆2, 𝐾, 𝛼⟩)

(E-Cond)
𝛾 ⊢ 𝐿 ⇓ 𝑏

⟨𝛾, if 𝐿 then 𝑆1 else 𝑆2 fi, 𝐾, 𝛼⟩ ↦→ [𝑏] · 𝛿(⟨𝛾, 𝑆1, 𝐾, 𝛼⟩) + [¬𝑏] · 𝛿(⟨𝛾, 𝑆2, 𝐾, 𝛼⟩)

(E-Loop)
⟨𝛾,while 𝐿 do 𝑆 od, 𝐾, 𝛼⟩ ↦→ 𝛿(⟨𝛾, skip,Kloop 𝐿 𝑆 𝐾, 𝛼⟩)

(E-Seq)
⟨𝛾, 𝑆1; 𝑆2, 𝐾, 𝛼⟩ ↦→ 𝛿(⟨𝛾, 𝑆1,Kseq 𝑆2 𝐾, 𝛼⟩)

Fig. 5.10: Rules of the operational semantics of APPL.
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It is clear that _𝐴. ˆ↦→(𝜎, 𝐴) is a probability measure. On the other hand, to show that _𝜎. ˆ↦→(𝜎, 𝐴)
is measurable for any 𝐴 ∈ O, we need to prove that for 𝐵 ∈ B(ℝ), it holds that 𝒪(𝐴, 𝐵) def

=

(_𝜎. ˆ↦→(𝜎, 𝐴))−1(𝐵) ∈ O.
We introduce skeletons of programs to separate real numbers from discrete structures.

𝑆 F skip | tick(□ℓ) | 𝑥 B 𝐸 | 𝑥 ∼ �̂� | call 𝑓 | while 𝐿 do 𝑆 od
| if prob(□ℓ) then 𝑆1 else 𝑆2 fi | if 𝐿 then 𝑆1 else 𝑆2 fi | 𝑆1; 𝑆2

𝐿F true | not 𝐿 | 𝐿1 and 𝐿2 | 𝐸1 ≤ 𝐸2

𝐸 F 𝑥 | □ℓ | 𝐸1 + 𝐸2 | 𝐸1 × 𝐸2

�̂� F Uniform(□ℓ𝑎 ,□ℓ𝑏) | · · ·
�̂� F Kstop | Kloop 𝐿 𝑆 �̂� | Kseq 𝑆 �̂�

The holes □ℓ are placeholders for real numbers parameterized by locations ℓ ∈ LOC. We assume
that the holes in a program structure are always pairwise distinct. Let [ : LOC→ ℝ be a map from
holes to real numbers and [(𝑆) (resp., [(𝐿), [(𝐸), [(�̂�), [( �̂�)) be the instantiation of a statement
(resp., condition, expression, distribution, continuation) skeleton by substituting [(ℓ) for □ℓ. One
important property of skeletons is that the “distance” between any concretizations of two different
skeletons is always infinity with respect to the metrics in Fig. 5.9.
Observe that

𝒪(𝐴, 𝐵) =
⋃̂
𝑆,�̂�

𝒪(𝐴, 𝐵) ∩ {⟨𝛾, [(𝑆), [( �̂�), 𝛼⟩ | any 𝛾, 𝛼, [}

and that 𝑆, �̂� are countable families of statement and continuation skeletons. Thus it suffices to
prove that every set in the union, which we denote by 𝒪(𝐴, 𝐵) ∩ 𝒞(𝑆, �̂�) later in the proof, is
measurable. Note that 𝒞(𝑆, �̂�) itself is indeed measurable. Further, the skeletons 𝑆 and �̂� are able
to determine the evaluation rule for all concretized configurations. Thus we can proceed by a case
analysis on the evaluation rules.
To aid the case analysis, we define a deterministic evaluation relation det↦−−→ by getting rid of

the 𝛿(·) notations in the rules in Fig. 5.10 except probabilistic ones (E-Sample) and (E-Prob).
Obviously, det↦−−→ can be interpreted as a measurable function on configurations.

• If the evaluation rule is deterministic, then we have

𝒪(𝐴, 𝐵) ∩𝒞(𝑆, �̂�) = {𝜎 | 𝜎 ↦→ `, `(𝐴) ∈ 𝐵} ∩𝒞(𝑆, �̂�)
= {𝜎 | 𝜎 det↦−−→ 𝜎′, [𝜎′ ∈ 𝐴] ∈ 𝐵} ∩𝒞(𝑆, �̂�)

=



𝒞(𝑆, �̂�) if {0, 1} ⊆ 𝐵,
det↦−−→
−1
(𝐴) ∩𝒞(𝑆, �̂�) if 1 ∈ 𝐵 and 0 ∉ 𝐵,

det↦−−→
−1
(𝐴𝑐) ∩𝒞(𝑆, �̂�) if 0 ∈ 𝐵 and 1 ∉ 𝐵,

∅ if {0, 1} ∩ 𝐵 = ∅.

The sets in all the cases are measurable, so is the set 𝒪(𝐴, 𝐵) ∩𝒞(𝑆, �̂�).
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• Rule (E-Prob): Consider 𝐵 with the form (−∞, 𝑡] with 𝑡 ∈ ℝ. If 𝑡 ≥ 1, then 𝒪(𝐴, 𝐵) = Σ.
Otherwise, let us assume 𝑡 < 1. Let 𝑆 = if prob(□) then 𝑆1 else 𝑆2 fi. Then we have

𝒪(𝐴, 𝐵) ∩𝒞(𝑆, �̂�) = {𝜎 | 𝜎 ↦→ `, `(𝐴) ∈ 𝐵} ∩𝒞(𝑆, �̂�)
= {𝜎 | 𝜎 ↦→ 𝑝 · 𝛿(𝜎1) + (1 − 𝑝) · 𝛿(𝜎2),

𝑝 · [𝜎1 ∈ 𝐴] + (1 − 𝑝) · [𝜎2 ∈ 𝐴] ∈ 𝐵} ∩𝒞(𝑆, �̂�)
= 𝒞(𝑆, �̂�) ∩ {⟨𝛾, if prob(𝑝) then 𝑆1 else 𝑆2 fi, 𝐾, 𝛼⟩ |

𝑝 · [⟨𝛾, 𝑆1, 𝐾, 𝛼⟩ ∈ 𝐴] + (1 − 𝑝) · [⟨𝛾, 𝑆2, 𝐾, 𝛼⟩ ∈ 𝐴] ≤ 𝑡}
= 𝒞(𝑆, �̂�) ∩
{⟨𝛾, if prob(𝑝) then 𝑆1 else 𝑆2 fi, 𝐾, 𝛼⟩ |
(⟨𝛾, 𝑆1, 𝐾, 𝛼⟩ ∈ 𝐴, ⟨𝛾, 𝑆2, 𝐾, 𝛼⟩ ∉ 𝐴, 𝑝 ≤ 𝑡) ∨
(⟨𝛾, 𝑆2, 𝐾, 𝛼⟩ ∈ 𝐴, ⟨𝛾, 𝑆1, 𝐾, 𝛼⟩ ∉ 𝐴, 1 − 𝑝 ≤ 𝑡)}.

The set above is measurable because 𝐴 and 𝐴𝑐 (i.e., the complement of 𝐴) are measurable, as
well as {𝑝 | 𝑝 ≤ 𝑡} and {𝑝 | 𝑝 ≥ 1 − 𝑡} are measurable in ℝ.

• Rule (E-Sample): Consider 𝐵 with the form (−∞, 𝑡] with 𝑡 ∈ ℝ. Similar to the previous case,
we assume that 𝑡 < 1. Let 𝑆 = 𝑥 ∼ Uniform(□ℓ𝑎 ,□ℓ𝑏), without loss of generality. Then we
have

𝒪(𝐴, 𝐵) ∩𝒞(𝑆, �̂�) = {𝜎 | 𝜎 ↦→ `, `(𝐴) ∈ 𝐵} ∩𝒞(𝑆, �̂�)
= {𝜎 | 𝜎 ↦→ `𝐷 ≫= ^𝜎,

∫
^𝜎(𝑟) (𝐴)`𝐷(𝑑𝑟) ≤ 𝑡} ∩𝒞(𝑆, �̂�)

= 𝒞(𝑆, �̂�) ∩ {𝜎 | 𝜎 ↦→ `𝐷 ≫= ^𝜎,
`𝐷({𝑟 | ⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩ ∈ 𝐴}) ≤ 𝑡}

= 𝒞(𝑆, �̂�) ∩ {⟨𝛾, 𝑥 ∼ uniform(𝑎, 𝑏), 𝐾, 𝛼⟩ | 𝑎 < 𝑏,

`Uniform(𝑎,𝑏) ({𝑟 | ⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩ ∈ 𝐴}) ≤ 𝑡},

where ^⟨𝛾,𝑆,𝐾,𝛼⟩
def
= _𝑟.𝛿(⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩). For fixed 𝛾, 𝐾, 𝛼, the set {𝑟 | ⟨𝛾[𝑥 ↦→

𝑟], skip, 𝐾, 𝛼⟩ ∈ 𝐴} is measurable in ℝ. For the distributions considered in this chapter, there
is a sub-probability kernel ^𝐷 : ℝar(𝐷) ⇝ ℝ, where ar(𝐷) is the number of parameters of 𝐷.
For example, ^Uniform(𝑎, 𝑏) is defined to be `Uniform(𝑎,𝑏) if 𝑎 < 𝑏, or 0 otherwise. Therefore,
_ (𝑎, 𝑏).^Uniform(𝑎, 𝑏) ({𝑟 | ⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩ ∈ 𝐴}) is measurable, and its inversion
on (−∞, 𝑡] is a measurable set on distribution parameters (𝑎, 𝑏). Hence the set above is
measurable.

□

I now review a standard mechanism in measure theory that constructs a probability measure by
composing probability kernels. If ` is a probability measure on (𝑆,S) and ^ : (𝑆,S) ⇝ (𝑇, T )
is a probability kernel, then we can construct the a probability measure on (𝑆,S) ⊗ (𝑇, T ) that
captures all transitions from ` through ^: ` ⊗ ^ def

= _ (𝐴, 𝐵).
∫
𝐴
^(𝑥, 𝐵)`(𝑑𝑥). If ` is a probability

measure on (𝑆0,S0) and ^𝑖 : (𝑆𝑖−1,S𝑖−1) ⇝ (𝑆𝑖,S𝑖) is a probability kernel for 𝑖 = 1, · · · , 𝑛,where
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𝑛 ∈ ℤ+, then we can construct a probability measure on ⊗𝑛
𝑖=0(𝑆𝑖,S𝑖), i.e., the space of sequences

of 𝑛 transitions by iteratively applying the kernels to `:

` ⊗
⊗0

𝑖=1 ^𝑖
def
= `,

` ⊗
⊗𝑘+1

𝑖=1 ^𝑖
def
= (` ⊗

⊗𝑘

𝑖=1 ^𝑖) ⊗ ^𝑘+1, 0 ≤ 𝑘 < 𝑛.

Let (𝑆𝑖,S𝑖), 𝑖 ∈ I be a family of measurable spaces. Their product, denoted by ⊗
𝑖∈I (𝑆𝑖,S𝑖) =

(∏𝑖∈I 𝑆𝑖,
⊗

𝑖∈I S𝑖), is the product space with the smallest 𝜎-algebra such that for each 𝑖 ∈ I, the
coordinate map 𝜋𝑖 is measurable. The theorem below is widely used to construct a probability
measures on an infinite product via probability kernels.
Proposition 5.15 (Ionescu-Tulcea). Let (𝑆𝑖,S𝑖), 𝑖 ∈ ℤ+ be a sequence of measurable spaces.

Let `0 be a probability measure on (𝑆0,S0). For each 𝑖 ∈ ℕ, let ^𝑖 : ⊗𝑖−1
𝑘=0(𝑆𝑘,S𝑘) ⇝ (𝑆𝑖,S𝑖)

be a probability kernel. Then there exists a sequence of probability measures `𝑖 def
= `0 ⊗⊗𝑖

𝑘=1 ^𝑘,
𝑖 ∈ ℤ+, and there exists a uniquely defined probability measure ` on ⊗∞

𝑘=0(𝑆𝑘,S𝑘) such that
`𝑖(𝐴) = `(𝐴 ×∏∞

𝑘=𝑖+1 𝑆𝑘) for all 𝑖 ∈ ℤ+ and 𝐴 ∈
⊗𝑖

𝑘=0 S𝑖.

Let (Ω, F ) def
=

⊗∞
𝑛=0(Σ, O) be a measurable space of infinite traces on program configurations.

Let {F𝑛}𝑛∈ℤ+ be a filtration, i.e., an increasing sequence F0 ⊆ F1 ⊆ · · · ⊆ F of sub-𝜎-algebras in
F , generated by coordinate maps 𝑋𝑛(𝜔) def

= 𝜔𝑛 for 𝑛 ∈ ℤ+. Let ⟨𝒟, 𝑆main⟩ be an Appl program.
Let `0

def
= 𝛿(⟨__.0, 𝑆main,Kstop, 0⟩) be the initial distribution. Let ℙ be the probability measure on

infinite traces induced by Proposition 5.15 and Theorem 5.14. Then (Ω, F ,ℙ) forms a probability
space on infinite traces of the program. Intuitively, ℙ specifies the probability distribution over all
possible executions of a probabilistic program. The probability of an assertion \ with respect to ℙ,
written ℙ[\], is defined as ℙ({𝜔 | \(𝜔) is true}).
To formulate the accumulated cost at the exit of the program, I define the stopping time

𝑇 : Ω → ℤ+ ∪ {∞} of a probabilistic program as a random variable on the probability space
(Ω, F ,ℙ) of program traces:

𝑇 (𝜔) def
= inf{𝑛 ∈ ℤ+ | 𝜔𝑛 = ⟨_, skip,Kstop, _⟩},

i.e., 𝑇 (𝜔) is the number of evaluation steps before the trace 𝜔 reaches some termination configura-
tion ⟨_, skip,Kstop, _⟩. I define the accumulated cost 𝐴𝑇 : Ω → ℝ with respect to the stopping
time 𝑇 as

𝐴𝑇 (𝜔) def
= 𝐴𝑇 (𝜔) (𝜔),

where 𝐴𝑛 : Ω→ ℝ captures the accumulated cost at the 𝑛-th evaluation step for 𝑛 ∈ ℤ+, which is
defined as

𝐴𝑛(𝜔) def
= 𝛼𝑛 where 𝜔𝑛 = ⟨_, _, _, 𝛼𝑛⟩.

The 𝑚-th moment of the accumulated cost is given by the expectation 𝔼[𝐴𝑚𝑇 ] with respect to ℙ.

5.3.3 Soundness of the Derivation System
The Expected-Potential Method for Moment Analysis I fix a degree 𝑚 ∈ ℕ and letM (𝑚)

I
be

the 𝑚-th order moment semiring instantiated with the interval semiring I. I now formally define
M
(𝑚)
I

-valued expected-potential functions.
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Definition 5.16. A measurable map 𝜙 : Σ→M (𝑚)
I

is said to be an expected-potential function if
(i) 𝜙(𝜎) = 1 if 𝜎 = ⟨_, skip,Kstop, _⟩, and

(ii) 𝜙(𝜎) ⊒ 𝔼𝜎′∼↦→(𝜎) [
−−−−−−−−−−−−−−−−−−−−−−−−−−−→([(𝛼′ − 𝛼)𝑘, (𝛼′ − 𝛼)𝑘])0≤𝑘≤𝑚 ⊗ 𝜙(𝜎′)] where 𝜎 = ⟨_, _, _, 𝛼⟩, 𝜎′ =

⟨_, _, _, 𝛼′⟩ for all 𝜎 ∈ Σ.

Intuitively, 𝜙(𝜎) is an interval bound on the moments for the accumulated cost of the computation
that continues from the configuration 𝜎. I define Φ𝑛 and Y𝑛, where 𝑛 ∈ ℤ+, to beM (𝑚)

I
-valued

random variables on the probability space (Ω, F ,ℙ) of the Markov-chain semantics as

Φ𝑛(𝜔) def
= 𝜙(𝜔𝑛), Y𝑛(𝜔) def

=
−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[𝐴𝑛(𝜔)𝑘, 𝐴𝑛(𝜔)𝑘]⟩0≤𝑘≤𝑚 ⊗ Φ𝑛(𝜔).

In the definition of Y𝑛, I use ⊗ to compose the powers of the accumulated cost at step 𝑛 and the
expected potential function that stands for the moments of the accumulated cost for the rest of the
computation.
Lemma 5.17. By the properties of potential functions, we can prove that 𝔼[Y𝑛+1 | Y𝑛] ⊑ Y𝑛 almost

surely, for all 𝑛 ∈ ℤ+.
To prove Lemma 5.17, I first investigate several properties of the interval-valued moment semiring.

I show that ⊗ and ⊕ are monotone if the operations of the underlying semiring are monotone.
Lemma 5.18. Let R = ( |R |, ≤, +, ·, 0, 1) be a partially ordered semiring. If + and · are monotone

with respect to ≤, then ⊗ and ⊕ in the moment semiringM (𝑚)
R

are also monotone with respect to ⊑.

Proof. It is straightforward to show ⊕ is monotone. For the rest of the proof, without loss of
generality, we show that−−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚⊗

−−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚 ⊑
−−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚⊗

−−−−−−−−−→⟨𝑤𝑘⟩0≤𝑘≤𝑚 if−−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚 ⊑
−−−−−−−−−→⟨𝑤𝑘⟩0≤𝑘≤𝑚.

By the definition of ⊑, we know that 𝑣𝑘 ≤ 𝑤𝑘 for all 𝑘 = 0, 1, · · · , 𝑚. Then for each 𝑘, we have

(−−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚 ⊗
−−−−−−−−→⟨𝑣𝑘⟩0≤𝑘≤𝑚)𝑘 =

𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖 · 𝑣𝑘−𝑖)

≤
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
× (𝑢𝑖 · 𝑤𝑘−𝑖)

= (−−−−−−−−→⟨𝑢𝑘⟩0≤𝑘≤𝑚 ⊗
−−−−−−−−−→⟨𝑤𝑘⟩0≤𝑘≤𝑚)𝑘.

Then we conclude by the definition of ⊑. □

As I allow potential functions to be interval-valued, I show that the interval semiring I satisfies
the monotonicity required in Lemma 5.18.
Lemma 5.19. The operations +I and ·I are monotone with respect to ≤I .

Proof. It is straightforward to show +I is monotone. For the rest of the proof, it suffices to show
that [𝑎, 𝑏] ·I [𝑐, 𝑑] ≤I [𝑎′, 𝑏′] ·I [𝑐, 𝑑] if [𝑎, 𝑏] ≤I [𝑎′, 𝑏′], i.e., [𝑎, 𝑏] ⊆ [𝑎′, 𝑏′] or 𝑎 ≥ 𝑎′, 𝑏 ≤ 𝑏′.
We claim that min 𝑆𝑎,𝑏,𝑐,𝑑 ≥ min 𝑆𝑎′,𝑏′,𝑐,𝑑 , i.e., min{𝑎𝑐, 𝑎𝑑, 𝑏𝑐, 𝑏𝑑} ≥ min{𝑎′𝑐, 𝑎′𝑑, 𝑏′𝑐, 𝑏′𝑑}.
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• If 0 ≤ 𝑐 ≤ 𝑑: Then 𝑎𝑐 ≤ 𝑏𝑐, 𝑎𝑑 ≤ 𝑏𝑑, 𝑎′𝑐 ≤ 𝑏′𝑐, 𝑎′𝑑 ≤ 𝑏′𝑑. It then suffices to show that
min{𝑎𝑐, 𝑎𝑑} ≥ min{𝑎′𝑐, 𝑎′𝑑}. Because 𝑑 ≥ 𝑐 ≥ 0 and 𝑎 ≥ 𝑎′, we conclude that 𝑎𝑐 ≥ 𝑎′𝑐 and
𝑎𝑑 ≥ 𝑎′𝑑.

• If 𝑐 < 0 ≤ 𝑑: Then 𝑎𝑐 ≥ 𝑏𝑐, 𝑎𝑑 ≤ 𝑏𝑑, 𝑎′𝑐 ≥ 𝑏′𝑐, 𝑎′𝑑 ≥ 𝑏′𝑑. It then suffices to show that
min{𝑏𝑐, 𝑎𝑑} ≥ min{𝑏′𝑐, 𝑎′𝑑}. Because 𝑑 ≥ 0 > 𝑐 and 𝑎 ≥ 𝑎′, 𝑏 ≤ 𝑏′, we conclude that
𝑏𝑐 ≥ 𝑏′𝑐 and 𝑎𝑑 ≤ 𝑎′𝑑.

• If 𝑐 ≤ 𝑑 < 0: Then 𝑎𝑐 ≥ 𝑏𝑐, 𝑎𝑑 ≥ 𝑏𝑑, 𝑎′𝑐 ≥ 𝑏′𝑐, 𝑎′𝑑 ≥ 𝑏′𝑑. It then suffices to show that
min{𝑏𝑐, 𝑏𝑑} ≥ min{𝑏′𝑐, 𝑏′𝑑}. Because 0 > 𝑑 ≥ 𝑐 and 𝑏 ≤ 𝑏′, we conclude that 𝑏𝑐 ≥ 𝑏′𝑐 and
𝑏𝑑 ≥ 𝑏′𝑑.

In a similar way, we can also prove that max 𝑆𝑎,𝑏,𝑐,𝑑 ≤ max 𝑆𝑎′,𝑏′,𝑐,𝑑 . Therefore, we conclude that
·I is monotone. □

Lemma 5.20. If {[𝑎𝑛, 𝑏𝑛]}𝑛∈ℤ+ is a montone sequence in I, i.e., [𝑎0, 𝑏0] ≤I [𝑎1, 𝑏1] ≤I · · · ≤I
[𝑎𝑛, 𝑏𝑛] ≤I · · · , and [𝑎𝑛, 𝑏𝑛] ≤I [𝑐, 𝑑] for all 𝑛 ∈ ℤ+. Let [𝑎, 𝑏] = lim𝑛→∞ [𝑎𝑛, 𝑏𝑛] (the limit is
well-defined by the monotone convergence theorem for series). Then [𝑎, 𝑏] ≤I [𝑐, 𝑑].

Proof. By the definition of ≤I, we know that {𝑎𝑛}𝑛∈ℤ+ is non-increasing and {𝑏𝑛}𝑛∈ℤ+ is non-
decreasing. Because 𝑎𝑛 ≥ 𝑐 for all 𝑛 ∈ ℤ+, we conclude that lim𝑛→∞ 𝑎𝑛 ≥ 𝑐. Because 𝑏𝑛 ≤ 𝑑 for all
𝑛 ∈ ℤ+, we conclude that lim𝑛→∞ 𝑏𝑛 ≤ 𝑑. Thus we conclude that [𝑎, 𝑏] ≤I [𝑐, 𝑑]. □

Lemma 5.21. Let 𝑋, 𝑌 : Ω→M (𝑚)
I

be integrable. Then 𝔼[𝑋 ⊕ 𝑌 ] = 𝔼[𝑋] ⊕ 𝔼[𝑌 ].

Proof. Appeal to linearity of expectations and the fact that ⊕ is the pointwise extension of +I ,
as well as +I is the pointwise extension of numeric addition. □

Lemma 5.22. If 𝑋 : Ω → M
(𝑚)
I

is G-measurable and bounded, a.s., as well as 𝑋 (𝜔) =
−−−−−−−−−−−−−−−−−−−−−→⟨[𝑎𝑘(𝜔), 𝑎𝑘(𝜔)]⟩0≤𝑘≤𝑚 for all 𝜔 ∈ Ω, then 𝔼[𝑋 ⊗ 𝑌 | G] = 𝑋 ⊗ 𝔼[𝑌 | G] almost surely.

Proof. Fix 𝜔 ∈ Ω. Let 𝑌 (𝜔) = −−−−−−−−−−−−−−−−−−−−→⟨[𝑏𝑘(𝜔), 𝑐𝑘(𝜔)]⟩0≤𝑘≤𝑚. Then we have

𝔼[𝑋 ⊗ 𝑌 | G] (𝜔) = 𝔼[−−−−−−−−−−−−−→⟨[𝑎𝑘, 𝑎𝑘]⟩0≤𝑘≤𝑚 ⊗
−−−−−−−−−−−−−→⟨[𝑏𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 | G] (𝜔)

= 𝔼[
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨∑I𝑘𝑖=0

(𝑘
𝑖

) ×I ( [𝑎𝑖, 𝑎𝑖] ·I [𝑏𝑘−𝑖, 𝑐𝑘−𝑖])⟩0≤𝑘≤𝑚 | G] (𝜔)
=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨𝔼[∑I𝑘𝑖=0

(𝑘
𝑖

) ×I ( [𝑎𝑖, 𝑎𝑖] ·I [𝑏𝑘−𝑖, 𝑐𝑘−𝑖]) | G] (𝜔)⟩0≤𝑘≤𝑚
=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨∑I𝑘𝑖=0

(𝑘
𝑖

) ×I 𝔼[[𝑎𝑖, 𝑎𝑖] ·I [𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] (𝜔)⟩0≤𝑘≤𝑚.
On the other hand, we have

𝑋 (𝜔) ⊗ 𝔼[𝑌 | G] (𝜔) = ⟨𝑋0(𝜔), · · · , 𝑋𝑚(𝜔)⟩ ⊗ 𝔼[⟨𝑌0, · · · , 𝑌𝑚⟩ | G] (𝜔)
= ⟨𝑋0(𝜔), · · · , 𝑋𝑚(𝜔)⟩ ⊗ ⟨𝔼[𝑌0 | G] (𝜔), · · · ,𝔼[𝑌𝑚 | G] (𝜔)⟩
=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨∑I𝑘𝑖=0

(𝑘
𝑖

) ×I (𝑋𝑖(𝜔) ·I 𝔼[𝑌𝑘−𝑖 | G] (𝜔))⟩0≤𝑘≤𝑚
=
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨∑I𝑘𝑖=0

(𝑘
𝑖

) ×I ( [𝑎𝑖(𝜔), 𝑎𝑖(𝜔)] ·I 𝔼[[𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] (𝜔))⟩0≤𝑘≤𝑚.
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Thus, it suffices to show that for each 𝑖, 𝔼[[𝑎𝑖, 𝑎𝑖] ·I [𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] = [𝑎𝑖, 𝑎𝑖] ·I 𝔼[[𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G]
almost surely.
For 𝜔 such that 𝑎𝑖(𝜔) ≥ 0:

𝔼[[𝑎𝑖, 𝑎𝑖] ·I [𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] (𝜔) = 𝔼[[𝑎𝑖𝑏𝑘−𝑖, 𝑎𝑖𝑐𝑘−𝑖] | G] (𝜔)
= [𝔼[𝑎𝑖𝑏𝑘−𝑖 | G] (𝜔),𝔼[𝑎𝑖𝑐𝑘−𝑖 | G] (𝜔)]
= [𝑎𝑖(𝜔) · 𝔼[𝑏𝑘−𝑖 | G] (𝜔), 𝑎𝑖(𝜔) · 𝔼[𝑐𝑘−𝑖 | G] (𝜔)], 𝑎.𝑠.,
= [𝑎𝑖(𝜔), 𝑎𝑖(𝜔)] ·I 𝔼[[𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] (𝜔).

For 𝜔 such that 𝑎𝑖(𝜔) < 0:

𝔼[[𝑎𝑖, 𝑎𝑖] ·I [𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] (𝜔) = 𝔼[[𝑎𝑖𝑐𝑘−𝑖, 𝑎𝑖𝑏𝑘−𝑖] | G] (𝜔)
= [𝔼[𝑎𝑖𝑐𝑘−𝑖 | G] (𝜔),𝔼[𝑎𝑖𝑏𝑘−𝑖 | G] (𝜔)]
= [𝑎𝑖(𝜔) · 𝔼[𝑐𝑘−𝑖 | G] (𝜔), 𝑎𝑖(𝜔) · 𝔼[𝑏𝑘−𝑖 | G] (𝜔)], 𝑎.𝑠.,
= [𝑎𝑖(𝜔), 𝑎𝑖(𝜔)] ·I 𝔼[[𝑏𝑘−𝑖, 𝑐𝑘−𝑖] | G] (𝜔).

□

Proof of Lemma 5.17. A sequence of random variables {𝑋𝑛}𝑛∈ℤ+ is said to be adapted to a
filtration {F𝑛}𝑛∈ℤ+ if for each 𝑛 ∈ ℤ+, 𝑋𝑛 is F𝑛-measurable. Then {Φ𝑛}𝑛∈ℤ+ and {𝐴𝑛}𝑛∈ℤ+ are
adapted to the coordinate-generated filtration {F𝑛}𝑛∈ℤ+ as Φ𝑛(𝜔) and 𝐴𝑛(𝜔) depend on 𝜔𝑛. By
the property of the operational semantics, we know that 𝛼𝑛(𝜔) ≤ 𝐶 · 𝑛 almost surely for some
𝐶 ≥ 0. Then using Lemma 5.22, we have

𝔼[𝑌𝑛+1 | F𝑛] (𝜔) = 𝔼[𝐴𝑛+1 ⊗ Φ𝑛+1 | F𝑛] (𝜔)
= 𝔼[𝐴𝑛 ⊗

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[(𝛼𝑛+1 − 𝛼𝑛)𝑘, (𝛼𝑛+1 − 𝛼𝑛)𝑘]⟩0≤𝑘≤𝑚 ⊗ Φ𝑛+1 | F𝑛] (𝜔)

= 𝐴𝑛(𝜔) ⊗ 𝔼[
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[(𝛼𝑛+1 − 𝛼𝑛)𝑘, (𝛼𝑛+1 − 𝛼𝑛)𝑘]⟩0≤𝑘≤𝑚 ⊗ Φ𝑛+1 | F𝑛] (𝜔), 𝑎.𝑠.,

= 𝐴𝑛(𝜔) ⊗ 𝔼[
−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[(𝛼𝑛+1 − 𝛼𝑛)𝑘, (𝛼𝑛+1 − 𝛼𝑛)𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙(𝜔𝑛+1) | F𝑛].

Recall the property of the expected-potential function 𝜙 in Defintion 5.16. Then by Lemma 5.18
with Lemma 5.19, we have

𝔼[𝑌𝑛+1 | F𝑛] (𝜔) ⊑ 𝐴𝑛(𝜔) ⊗ 𝜙(𝜔𝑛), 𝑎.𝑠.,
= 𝐴𝑛(𝜔) ⊗ Φ𝑛(𝜔)
= 𝑌𝑛.

As a corollary, we have 𝔼[𝑌𝑛] ⊑ 𝔼[𝑌0] for all 𝑛 ∈ ℤ+. □

I call {Y𝑛}𝑛∈ℤ+ a moment invariant. My goal is to establish that 𝔼[Y𝑇 ] ⊑ 𝔼[Y0], i.e., the
initial interval-valued potential 𝔼[Y0] = 𝔼[1 ⊗ Φ0] = 𝔼[Φ0] brackets the higher moments of the
accumulated cost 𝔼[Y𝑇 ] = 𝔼[

−−−−−−−−−−−−−−→
⟨[𝐴𝑘𝑇 , 𝐴𝑘𝑇 ]⟩0≤𝑘≤𝑚 ⊗ 1] =

−−−−−−−−−−−−−−−−−−−−−→
⟨[𝔼[𝐴𝑘𝑇 ],𝔼[𝐴𝑘𝑇 ]]⟩0≤𝑘≤𝑚.
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Soundness The soundness of the derivation system is proved with respect to the Markov-chain
semantics. Let ∥−−−−−−−−−−−−−→⟨[𝑎𝑘, 𝑏𝑘]⟩0≤𝑘≤𝑚∥∞ def

= max0≤𝑘≤𝑚{max{|𝑎𝑘 |, |𝑏𝑘 |}}.
Theorem 5.23. Let ⟨𝒟, 𝑆main⟩ be a probabilistic program. Suppose Δ ⊢ {Γ;𝑄} 𝑆main {Γ′; 1}, where

𝑄 ∈ M (𝑚)
PI

and the ends of the 𝑘-th interval in 𝑄 are polynomials in ℝ𝑘𝑑 [VID]. Let {Y𝑛}𝑛∈ℤ+ be
the moment invariant extracted from the Markov-chain semantics with respect to the derivation of
Δ ⊢ {Γ;𝑄} 𝑆main {Γ′; 1}. If the following conditions hold:
(i) 𝔼[𝑇𝑚𝑑] < ∞, and
(ii) there exists 𝐶 ≥ 0 such that for all 𝑛 ∈ ℤ+, ∥Y𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)𝑚𝑑 almost surely,

Then
−−−−−−−−−−−−−−−−−−−−−→
⟨[𝔼[𝐴𝑘𝑇 ],𝔼[𝐴𝑘𝑇 ]]⟩0≤𝑘≤𝑚 ⊑ 𝜙𝑄 (__.0).

The intuitive meaning of
−−−−−−−−−−−−−−−−−−−−−→
⟨[𝔼[𝐴𝑘𝑇 ],𝔼[𝐴𝑘𝑇 ]]⟩0≤𝑘≤𝑚 ⊑ 𝜙𝑄 (__.0) is that the moment 𝔼[𝐴𝑘𝑇 ] of

the accumulated cost upon program termination is bounded by the interval in the 𝑘th-moment
component of 𝜙𝑄 (__.0), where 𝑄 is the quantitative context and __.0 is the initial state.
As I discussed in §5.1.2 and Counterexample 5.7, the expected-potential method is not always

sound for deriving bounds on higher moments for cost accumulators in probabilistic programs.
The extra conditions Theorem 5.23(i) and (ii) impose constraints on the analyzed program and
the expected-potential function, which allow me to reduce the soundness to the optional stopping
problem from probability theory.

Optional Stopping Let me represent the moment invariant {Y𝑛}𝑛∈ℤ+ as

{⟨[𝐿(0)𝑛 , 𝑈 (0)𝑛 ], [𝐿(1)𝑛 , 𝑈 (1)𝑛 ], · · · , [𝐿(𝑚)𝑛 , 𝑈 (𝑚)𝑛 ]⟩}𝑛∈ℤ+ ,

where 𝐿(𝑘)𝑛 , 𝑈 (𝑘)𝑛 : Ω→ ℝ are real-valued random variables on the probability space (Ω, F ,ℙ) of
the Markov-chain semantics, for 𝑛 ∈ ℤ+, 0 ≤ 𝑘 ≤ 𝑚. I then have the observations below as direct
corollaries of Lemma 5.17:

• For any 𝑘, the sequence {𝑈 (𝑘)𝑛 }𝑛∈ℤ+ satisfies 𝔼[𝑈 (𝑘)𝑛+1 | 𝑈 (𝑘)𝑛 ] ≤ 𝑈 (𝑘)𝑛 almost surely, for all 𝑛 ∈ ℤ+,
and we want to find sufficient conditions for 𝔼[𝑈 (𝑘)𝑇 ] ≤ 𝔼[𝑈 (𝑘)0 ].

• For any 𝑘, the sequence {𝐿(𝑘)𝑛 }𝑛∈ℤ+ satisfies 𝔼[𝐿(𝑘)𝑛+1 | 𝐿(𝑘)𝑛 ] ≥ 𝐿(𝑘)𝑛 almost surely, for all 𝑛 ∈ ℤ+,
and we want to find sufficient conditions for 𝔼[𝐿(𝑘)𝑇 ] ≥ 𝔼[𝐿(𝑘)0 ].

These kinds of questions can be reduced to optional stopping problem from probability theory.
Recent research [7, 68, 137, 154] has used and extended the Optional Stopping Theorem (OST) from
probability theory to establish sufficient conditions for the soundness for analysis of probabilistic
programs. However, the classic OST turns out to be not suitable for higher-moment analysis. I extend
OST with a new sufficient condition that allows me to prove Theorem 5.23. In another article [150],
I presented details of such OST extensions; in this section, I only sketch the development that is
sufficient for my thesis. I first review an important convergence theorem for series of random
variables.
Proposition 5.24 (Dominated convergence theorem). If { 𝑓𝑛}𝑛∈ℤ+ is a sequence of measurable

functions on a measure space (𝑆,S, `), { 𝑓𝑛}𝑛∈ℤ+ converges to 𝑓 pointwise, and { 𝑓𝑛}𝑛∈ℤ+ is dominated
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by a nonnegative integrable function 𝑔 (i.e., | 𝑓𝑛(𝑥) | ≤ 𝑔(𝑥) for all 𝑛 ∈ ℤ+, 𝑥 ∈ 𝑆), then 𝑓 is integrable
and lim𝑛→∞ `( 𝑓𝑛) = `( 𝑓 ).
Further, the theorem still holds if 𝑓 is chosen as a measurable function and “{ 𝑓𝑛}𝑛∈ℤ+ converges to 𝑓

pointwise and is dominated by 𝑔” holds almost everywhere.

Now I prove the following extension of OST to deal with interval-valued potential functions.
Theorem 5.25. If 𝔼[∥𝑌𝑛∥∞] < ∞ for all 𝑛 ∈ ℤ+, then 𝔼[𝑌𝑇 ] exists and 𝔼[𝑌𝑇 ] ⊑ 𝔼[𝑌0] in the

following situation:
There exist ℓ ∈ ℕ and 𝐶 ≥ 0 such that 𝔼[𝑇 ℓ] < ∞ and for all 𝑛 ∈ ℤ+, ∥𝑌𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)ℓ almost

surely.

Proof. By 𝔼[𝑇 ℓ] < ∞ where ℓ ≥ 1, we know that ℙ[𝑇 < ∞] = 1. By the property of the
operational semantics, for 𝜔 ∈ Ω such that 𝑇 (𝜔) < ∞, we have 𝑌𝑛(𝜔) = 𝑌𝑇 (𝜔) for all 𝑛 ≥ 𝑇 (𝜔).
Then we have

ℙ[ lim
𝑛→∞𝑌𝑛 = 𝑌𝑇 ] = ℙ({𝜔 | lim

𝑛→∞𝑌𝑛(𝜔) = 𝑌𝑇 (𝜔)})
≥ ℙ({𝜔 | lim

𝑛→∞𝑌𝑛(𝜔) = 𝑌𝑇 (𝜔) ∧ 𝑇 (𝜔) < ∞})
= ℙ({𝜔 | 𝑌𝑇 (𝜔) (𝜔) = 𝑌𝑇 (𝜔) ∧ 𝑇 (𝜔) < ∞})
= ℙ({𝜔 | 𝑇 (𝜔) < ∞})
= 1.

On the other hand, 𝑌𝑛(𝜔) can be treated as a vector of real numbers. Let 𝑎𝑛 : Ω → ℝ be a
real-valued component in 𝑌𝑛. Because 𝔼[∥𝑌𝑛∥∞] < ∞ and ∥𝑌𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)ℓ almost surely, we
know that 𝔼[|𝑎𝑛 |] ≤ 𝔼[∥𝑌𝑛∥∞] < ∞ and |𝑎𝑛 | ≤ ∥𝑌𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)ℓ almost surely. Therefore,

|𝑎𝑛 | = |𝑎min(𝑇,𝑛) | ≤ 𝐶 · (min(𝑇, 𝑛) + 1)ℓ ≤ 𝐶 · (𝑇 + 1)ℓ, a.s.

Recall that 𝔼[𝑇 ℓ] < ∞. Then 𝔼[(𝑇 + 1)ℓ] = 𝔼[𝑇 ℓ + 𝑂(𝑇 ℓ−1)] < ∞. By Proposition 5.24, with
the function 𝑔 set to _𝜔.𝐶 · (𝑇 (𝜔) + 1)ℓ, we know that lim𝑛→∞ 𝔼[𝑎𝑛] = 𝔼[𝑎𝑇 ]. Because 𝑎𝑛 is an
arbitrary real-valued component in 𝑌𝑛, we know that lim𝑛→∞ 𝔼[𝑌𝑛] = 𝔼[𝑌𝑇 ]. By Lemma 5.17, we
know that 𝔼[𝑌𝑛] ⊑ 𝔼[𝑌0] for all 𝑛 ∈ ℤ+. By Lemma 5.20, we conclude that lim𝑛→∞ 𝔼[𝑌𝑛] ⊑ 𝔼[𝑌0],
i.e., 𝔼[𝑌𝑇 ] ⊑ 𝔼[𝑌0]. □

Proof of Theorem 5.23 To reduce the soundness proof to the extended OST for interval-
valued bounds, I construct an annotated transition kernel from validity judgements ⊢ Δ and
Δ ⊢ {Γ;𝑄} 𝑆main {Γ′;𝑄′}. Before proceeding to the proof, I extend the derivation system with rules
for program configurations and include them in Fig. 5.11. Moreover, I use a more declarative rule
shown below for function calls that merges the two rules for function calls in Fig. 5.6 into one:

(Q-Call)
∀𝑖 ∈ 𝐼 : (Γ;𝑄𝑖, Γ

′;𝑄′𝑖) ∈ Δ( 𝑓 )
Δ ⊢ {Γ; ⊕𝑖∈𝐼 𝑄𝑖} call 𝑓 {Γ′; ⊕𝑖∈𝐼 𝑄′𝑖}
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(Valid-Cfg)
𝛾 |= Γ Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′} Δ ⊢ {Γ′;𝑄′} 𝐾

Δ ⊢ {Γ;𝑄} ⟨𝛾, 𝑆, 𝐾, 𝛼⟩
(QK-Stop)

Δ ⊢ {Γ;𝑄} Kstop

(QK-Loop)
Δ ⊢ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄} Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝐾

Δ ⊢ {Γ;𝑄} Kloop 𝐿 𝑆 𝐾

(QK-Seq)
Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′} Δ ⊢ {Γ′;𝑄′} 𝐾

Δ ⊢ {Γ;𝑄} Kseq 𝑆 𝐾

(QK-Weaken)
Δ ⊢ {Γ′;𝑄′} 𝐾 Γ |= Γ′ Γ |= 𝑄 ⊒ 𝑄′

Δ ⊢ {Γ;𝑄} 𝐾

Fig. 5.11: Extra inference rules of the derivation system.
Lemma 5.26. Suppose ⊢ Δ and Δ ⊢ {Γ;𝑄} 𝑆main {Γ′;𝑄′}. An annotated program configuration

has the form ⟨Γ, 𝑄, 𝛾, 𝑆, 𝐾, 𝛼⟩ such that Δ ⊢ {Γ;𝑄} ⟨𝛾, 𝑆, 𝐾, 𝛼⟩. Then there exists a probability kernel
^ over annotated program configurations such that:
For all 𝜎 = ⟨Γ, 𝑄, 𝛾, 𝑆, 𝐾, 𝛼⟩ ∈ dom(^), it holds that
(i) ^ is the same as the evaluation relation ↦→ if the annotations are omitted, i.e.,

^(𝜎) ≫= _⟨_, _, 𝛾′, 𝑆′, 𝐾′, 𝛼′⟩.𝛿(⟨𝛾′, 𝑆′, 𝐾′, 𝛼′⟩) = ↦→(⟨𝛾, 𝑆, 𝐾, 𝛼⟩),

and

(ii) 𝜙𝑄 (𝛾) ⊒ 𝔼𝜎′∼^(𝜎) [
−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[(𝛼′ − 𝛼)𝑘, (𝛼′ − 𝛼)𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙𝑄′ (𝛾′)] where 𝜎′ = ⟨_, 𝑄′, 𝛾′, _, _, 𝛼′⟩.

Before proving the soundness lemma, I show that the derivation system for bound inference
admits a relaxation rule.
Lemma 5.27. Suppose that ⊢ Δ. If Δ ⊢ {Γ;𝑄1} 𝑆 {Γ′;𝑄′1} and Δ ⊢ {Γ;𝑄2} 𝑆 {Γ′;𝑄′2}, then the

judgment Δ ⊢ {Γ;𝑄1 ⊕ 𝑄2} 𝑆 {Γ′;𝑄′1 ⊕ 𝑄′2} is derivable.

Proof. By nested induction on the derivation of the judgment Δ ⊢ {Γ;𝑄1} 𝑆 {Γ′;𝑄′1}, followed
by inversion on Δ ⊢ {Γ;𝑄2} 𝑆 {Γ′;𝑄′2}. We assume the derivations have the same shape and the
same logical contexts; in practice, we can ensure this by explicitly inserting weakening positions,
e.g., all the branching points, and by doing a first pass to obtain logical contexts.

•
(Q-Skip)

Δ ⊢ {Γ;𝑄1} skip {Γ;𝑄1}
By inversion, we have 𝑄2 = 𝑄′2.
Then by (Q-Skip), we immediately have Δ ⊢ {Γ;𝑄1 ⊕ 𝑄2} skip {Γ;𝑄1 ⊕ 𝑄2}.

•

(Q-Tick)
𝑄1 =

−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝑄′1

Δ ⊢ {Γ;𝑄1} tick(𝑐) {Γ;𝑄′1}
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By inversion, we have 𝑄2 =
−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝑄′2.

By distributivity, we have
−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ (𝑄′1 ⊕ 𝑄′2) = (

−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝑄′1) ⊕

(
−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊕ 𝑄′2) = 𝑄1 ⊕ 𝑄2.

Then we conclude by (Q-Tick).

•

(Q-Assign)
Γ = [𝐸/𝑥]Γ′ 𝑄1 = [𝐸/𝑥]𝑄′1
Δ ⊢ {Γ;𝑄1} 𝑥 B 𝐸 {Γ′;𝑄′1}

By inversion, we have 𝑄2 = [𝐸/𝑥]𝑄′2.
Then we know that [𝐸/𝑥] (𝑄′1 ⊕ 𝑄′2) = [𝐸/𝑥]𝑄′1 ⊕ [𝐸/𝑥]𝑄′2 = 𝑄1 ⊕ 𝑄2.
Then we conclude by (Q-Assign).

•

(Q-Sample)
Γ = ∀𝑥 ∈ supp(`𝐷) : Γ′ 𝑄1 = 𝔼𝑥∼`𝐷 [𝑄′1]

Δ ⊢ {Γ;𝑄1} 𝑥 ∼ 𝐷 {Γ′;𝑄′1}
By inversion, we have 𝑄2 = 𝔼𝑥∼`𝐷 [𝑄′2].
By Lemma 5.21, we know that 𝔼𝑥∼`𝐷 [𝑄′1 ⊕ 𝑄′2] = 𝔼𝑥∼`𝐷 [𝑄′1] ⊕ 𝔼𝑥∼`𝐷 [𝑄′2] = 𝑄1 ⊕ 𝑄2.
Then we conclude by (Q-Sample).

•

(Q-Call)
∀𝑖 ∈ 𝐼 : (Γ;𝑄1𝑖, Γ

′;𝑄′1𝑖) ∈ Δ( 𝑓 )
Δ ⊢ {Γ; ⊕𝑖∈ 𝐼 𝑄1𝑖} call 𝑓 {Γ′; ⊕𝑖∈ 𝐼 𝑄′1𝑖}
By inversion, there exists 𝐽 such that 𝑄2 =

⊕
𝑗∈𝐽 𝑄2 𝑗 and 𝑄′2 =

⊕
𝑗∈𝐽 𝑄′2 𝑗 where

(Γ;𝑄2 𝑗, Γ′;𝑄′2 𝑗) ∈ Δ( 𝑓 ) for each 𝑗 ∈ 𝐽.
Then by (Q-Call), we have Δ ⊢ {Γ; ⊕𝑖∈𝐼 𝑄1𝑖 ⊕⊕

𝑗∈𝐽 𝑄2 𝑗} call 𝑓 {Γ′; ⊕𝑖∈𝐼 𝑄′1𝑖 ⊕
⊕

𝑗∈𝐽 𝑄′2 𝑗}.

•

(Q-Prob)
Δ ⊢ {Γ;𝑄11} 𝑆1 {Γ′;𝑄′1} Δ ⊢ {Γ;𝑄12} 𝑆2 {Γ′;𝑄′1} 𝑄1 = 𝑃1 ⊕ 𝑅1

𝑃1 = ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄11 𝑅1 = ⟨[1 − 𝑝, 1 − 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄12

Δ ⊢ {Γ;𝑄1} if prob(𝑝) then 𝑆1 else 𝑆2 fi {Γ′;𝑄′1}
By inversion, we know that 𝑄2 = 𝑃2 ⊕ 𝑅2 for some 𝑄21, 𝑄22 such that Δ ⊢ {Γ;𝑄21} 𝑆1 {Γ′;𝑄′2},
Δ ⊢ {Γ;𝑄22} 𝑆2 {Γ′;𝑄′2}, 𝑃2 = ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄21, and 𝑅2 = ⟨[1 − 𝑝, 1 −
𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄22.
By induction hypothesis, we have Δ ⊢ {Γ;𝑄11 ⊕ 𝑄21} 𝑆1 {Γ′;𝑄′1 ⊕ 𝑄′2} and Δ ⊢ {Γ;𝑄12 ⊕
𝑄22} 𝑆2 {Γ′;𝑄′1 ⊕ 𝑄′2}.
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Then we have

⟨[𝑝, 𝑝], · · · , [0, 0]⟩ ⊗ (𝑄11 ⊕ 𝑄21)
= (⟨[𝑝, 𝑝], · · · , [0, 0]⟩ ⊗ 𝑄11) ⊕ (⟨[𝑝, 𝑝], · · · , [0, 0]⟩ ⊕ 𝑄21)
= 𝑃1 ⊕ 𝑃2,

⟨[1 − 𝑝, 1 − 𝑝], · · · , [0, 0]⟩ ⊗ (𝑄12 ⊕ 𝑄22)
= (⟨[1 − 𝑝, 1 − 𝑝], · · · , [0, 0]⟩ ⊗ 𝑄12) ⊕ (⟨[1 − 𝑝, 1 − 𝑝], · · · , [0, 0]⟩ ⊗ 𝑄22)
= 𝑅1 ⊕ 𝑅2,

(𝑃1 ⊕ 𝑃2) ⊕ (𝑅1 ⊕ 𝑅2)
= (𝑃1 ⊕ 𝑅1) ⊕ (𝑃2 ⊕ 𝑅2) = 𝑄1 ⊕ 𝑄2.

Thus we conclude by (Q-Prob).

•

(Q-Cond)
Δ ⊢ {Γ ∧ 𝐿;𝑄1} 𝑆1 {Γ′;𝑄′1} Δ ⊢ {Γ ∧ ¬𝐿;𝑄1} 𝑆2 {Γ′;𝑄′1}

Δ ⊢ {Γ;𝑄1} if 𝐿 then 𝑆1 else 𝑆2 fi {Γ′;𝑄′1}
By inversion, we have Δ ⊢ {Γ ∧ 𝐿;𝑄2} 𝑆1 {Γ′;𝑄′2}, and Δ ⊢ {Γ ∧ ¬𝐿;𝑄2} 𝑆2 {Γ′;𝑄′2}.
By induction hypothesis, we have Δ ⊢ {Γ∧ 𝐿;𝑄1 ⊕𝑄2} 𝑆1 {Γ′;𝑄′1 ⊕𝑄′2} and Δ ⊢ {Γ∧¬𝐿;𝑄1 ⊕
𝑄2} 𝑆2 {Γ′;𝑄′1 ⊕ 𝑄′2}.
Then we conclude by (Q-Cond).

•

(Q-Loop)
Δ ⊢ {Γ ∧ 𝐿;𝑄1} 𝑆 {Γ;𝑄1}

Δ ⊢ {Γ;𝑄1} while 𝐿 do 𝑆 od {Γ ∧ ¬𝐿;𝑄1}
By inversion, we have Δ ⊢ {Γ ∧ 𝐿;𝑄2} 𝑆 {Γ;𝑄2}.
By induction hypothesis, we have Δ ⊢ {Γ ∧ 𝐿;𝑄1 ⊕ 𝑄2} 𝑆 {Γ;𝑄1 ⊕ 𝑄2}.
Then we conclude by (Q-Loop).

•

(Q-Seq)
Δ ⊢ {Γ;𝑄1} 𝑆1 {Γ′′;𝑄′′1 } Δ ⊢ {Γ′′;𝑄′′1 } 𝑆2 {Γ′;𝑄′1}

Δ ⊢ {Γ;𝑄1} 𝑆1; 𝑆2 {Γ′;𝑄′1}
By inversion, there exists 𝑄′′2 such that Δ ⊢ {Γ;𝑄2} 𝑆1 {Γ′′;𝑄′′2}, and Δ ⊢ {Γ′′;𝑄′′2} 𝑆2 {Γ′;𝑄′2}.
By induction hypothesis, we have Δ ⊢ {Γ;𝑄1 ⊕ 𝑄2} 𝑆1 {Γ′′;𝑄′′1 ⊕ 𝑄′′2} and Δ ⊢ {Γ′′;𝑄′′1 ⊕
𝑄′′2} 𝑆2 {Γ′;𝑄′1 ⊕ 𝑄′2}.
Then we conclude by (Q-Seq).

•

(Q-Weaken)
Δ ⊢ {Γ0;𝑄0} 𝑆 {Γ′0;𝑄′0} Γ |= Γ0 Γ′0 |= Γ′ Γ |= 𝑄1 ⊒ 𝑄0 Γ′0 |= 𝑄′0 ⊒ 𝑄′1

Δ ⊢ {Γ;𝑄1} 𝑆 {Γ′;𝑄′1}
By inversion, there exist 𝑄3, 𝑄′3 such that Γ |= 𝑄2 ⊒ 𝑄3, Γ′0 |= 𝑄′3 ⊒ 𝑄′2, and
Δ ⊢ {Γ0;𝑄3} 𝑆 {Γ′0;𝑄′3}.
By induction hypothesis, we have Δ ⊢ {Γ0;𝑄0 ⊕ 𝑄3} 𝑆 {Γ′0;𝑄′0 ⊕ 𝑄′3}.
To apply (Q-Weaken), we need to show that Γ |= 𝑄1 ⊕ 𝑄2 ⊒ 𝑄0 ⊕ 𝑄3 and Γ′0 |= 𝑄′0 ⊕ 𝑄′3 ⊒
𝑄′1 ⊕ 𝑄′2.
Then appeal to Lemmas 5.18 and 5.19.
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□

Now I can construct the annotated transition kernel to reduce the proof of the soundness lemma
to OST.

Proof of Lemma 5.26. Let a def
= ↦→(⟨𝛾, 𝑆, 𝐾, 𝛼⟩). By inversion on Δ ⊢ {Γ;𝑄} ⟨𝛾, 𝑆, 𝐾, 𝛼⟩, we

know that 𝛾 |= Γ, Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′}, and Δ ⊢ {Γ′;𝑄′} 𝐾 for some Γ′, 𝑄′. We now construct a
probability measure ` as ^(⟨Γ, 𝑄, 𝛾, 𝑆, 𝐾, 𝛼⟩) by induction on the derivation of Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′}.

•
(Q-Skip)

Δ ⊢ {Γ;𝑄} skip {Γ;𝑄}
By induction on the derivation of Δ ⊢ {Γ;𝑄} 𝐾.

–
(QK-Stop)

Δ ⊢ {Γ;𝑄} Kstop
We have a = 𝛿(⟨𝛾, skip,Kstop, 𝛼⟩).
Then we set ` = 𝛿(⟨Γ, 𝑄, 𝛾, skip,Kstop, 𝛼⟩).
It is clear that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄 (𝛾).

–

(QK-Loop)
Δ ⊢ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄} Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝐾

Δ ⊢ {Γ;𝑄} Kloop 𝐿 𝑆 𝐾
Let 𝑏 ∈ {⊥,⊤} be such that 𝛾 ⊢ 𝐿 ⇓ 𝑏.
If 𝑏 = ⊤, then a = 𝛿(⟨𝛾, 𝑆,Kloop 𝐿 𝑆 𝐾, 𝛼⟩).
We set ` = 𝛿(⟨Γ ∧ 𝐿, 𝑄, 𝛾, 𝑆,Kloop 𝐿 𝑆 𝐾, 𝛼⟩).
In this case, we know that 𝛾 |= Γ ∧ 𝐿.
By the premise, we know that Δ ⊢ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄}.
It then remains to show that Δ ⊢ {Γ;𝑄} Kloop 𝐿 𝑆 𝐾.
By (QK-Loop), it suffices to show that Δ ⊢ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄} and Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝐾.
Then appeal to the premise.
If 𝑏 = ⊥, then ` = 𝛿(⟨𝛾, skip, 𝐾, 𝛼⟩).
We set ` = 𝛿(⟨Γ ∧ ¬𝐿, 𝑄, 𝛾, skip, 𝐾, 𝛼⟩).
In this case, we know that 𝛾 |= Γ ∧ ¬𝐿.
By (Q-Skip), we have Δ ⊢ {Γ ∧ ¬𝐿;𝑄} skip {Γ ∧ ¬𝐿;𝑄}.
It then remains to show that Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝐾.
Then appeal to the premise.
In both cases, 𝛾 and 𝑄 do not change, thus we conclude that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄 (𝛾).

–

(QK-Seq)
Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′} Δ ⊢ {Γ′;𝑄′} 𝐾

Δ ⊢ {Γ;𝑄} Kseq 𝑆 𝐾
We have a = 𝛿(⟨𝛾, 𝑆, 𝐾, 𝛼⟩).
Then we set ` = 𝛿(⟨Γ, 𝑄, 𝛾, 𝑆, 𝐾, 𝛼⟩).
By the premise, we know that Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′} and Δ ⊢ {Γ′;𝑄′} 𝐾.
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Because 𝛾 and 𝑄 do not change, we conclude that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄 (𝛾).

–

(QK-Weaken)
Δ ⊢ {Γ′;𝑄′} 𝐾 Γ |= Γ′ Γ |= 𝑄 ⊒ 𝑄′

Δ ⊢ {Γ;𝑄} 𝐾
Because 𝛾 |= Γ and Γ |= Γ′, we know that 𝛾 |= Γ′.
Let `′ be obtained from the induction hypothesis on Δ ⊢ {Γ′;𝑄′} 𝐾.
Then 𝜙𝑄′ (𝛾) ⊒ 𝔼𝜎′∼`′ [

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[(𝛼′ − 𝛼)𝑘, (𝛼′ − 𝛼)𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙𝑄′′ (𝛾′)], where 𝜎′ =

⟨_, 𝑄′′, 𝛾′, _, _, 𝛼′⟩.
We set ` = `′.
Because Γ |= 𝑄 ⊒ 𝑄′ and 𝛾 |= Γ, we conclude that 𝜙𝑄 (𝛾) ⊒ 𝜙𝑄′ (𝛾).

•

(Q-Tick)
𝑄 =
−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝑄′

Δ ⊢ {Γ;𝑄} tick(𝑐) {Γ;𝑄′}
We have a = 𝛿(⟨𝛾, skip, 𝐾, 𝛼 + 𝑐⟩).
Then we set ` = 𝛿(⟨Γ, 𝑄′, 𝛾, skip, 𝐾, 𝛼 + 𝑐⟩).
By (Q-Skip), we have Δ ⊢ {Γ;𝑄′} skip {Γ;𝑄′}.
Then by the assumption, we have Δ ⊢ {Γ;𝑄′} 𝐾.
It remains to show that 𝜙𝑄 (𝛾) ⊒

−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙𝑄′ (𝛾).

Indeed, we have 𝜙𝑄 (𝛾) =
−−−−−−−−−−−−−→
⟨[𝑐𝑘, 𝑐𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙𝑄′ (𝛾) by the premise.

•

(Q-Assign)
Γ = [𝐸/𝑥]Γ′ 𝑄 = [𝐸/𝑥]𝑄′
Δ ⊢ {Γ;𝑄} 𝑥 B 𝐸 {Γ′;𝑄′}

Let 𝑟 ∈ ℝ be such that 𝛾 ⊢ 𝐸 ⇓ 𝑟.
We have a = 𝛿(⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩).
Then we set ` = 𝛿(⟨Γ′, 𝑄′, 𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩).
Because 𝛾 ⊢ Γ, i.e., 𝛾 ⊢ [𝐸/𝑥]Γ′, we know that 𝛾[𝑥 ↦→ 𝑟] ⊢ Γ′.
By (Q-Skip), we have Δ ⊢ {Γ′;𝑄′} skip {Γ′;𝑄′}.
Then by the assumption, we have Δ ⊢ {Γ′;𝑄′} 𝐾.
It remains to show that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄′ (𝛾[𝑥 ↦→ 𝑟]).
By the premise, we have 𝑄 = [𝐸/𝑥]𝑄′, thus 𝜙𝑄 (𝛾) = 𝜙[𝐸/𝑥]𝑄′ (𝛾) = 𝜙𝑄′ (𝛾[𝑥 ↦→ 𝑟]).

•

(Q-Sample)
Γ = ∀𝑥 ∈ supp(`𝐷) : Γ′ 𝑄 = 𝔼𝑥∼`𝐷 [𝑄′]

Δ ⊢ {Γ;𝑄} 𝑥 ∼ 𝐷 {Γ′;𝑄′}
We have a = `𝐷 ≫= _𝑟.𝛿(⟨𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩).
Then we set ` = `𝐷 ≫= _𝑟.𝛿(⟨Γ′, 𝑄′, 𝛾[𝑥 ↦→ 𝑟], skip, 𝐾, 𝛼⟩).
For all 𝑟 ∈ supp(`𝐷), because 𝛾 |= ∀𝑥 ∈ supp(`𝐷) : Γ′, we know that 𝛾[𝑥 ↦→ 𝑟] |= Γ′.
By (Q-Skip), we have Δ ⊢ {Γ′;𝑄′} skip {Γ′;𝑄′}.
Then by the assumption, we have Δ ⊢ {Γ′;𝑄′} 𝐾.
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It remains to show that 𝜙𝑄 (𝛾) ⊒ 𝔼𝑟∼`𝐷 [1 ⊗ 𝜙𝑄′ (𝛾[𝑥 ↦→ 𝑟])].
Indeed, because 𝑄 = 𝔼𝑥∼`𝐷 [𝑄′], we know that 𝜙𝑄 (𝛾) = 𝜙𝔼𝑥∼`𝐷 [𝑄′] (𝛾) = 𝔼𝑟∼`𝐷 [𝜙𝑄′ (𝛾[𝑥 ↦→
𝑟])].

•

(Q-Call)
∀𝑖 ∈ 𝐼 : (Γ;𝑄𝑖, Γ

′;𝑄′𝑖) ∈ Δ( 𝑓 )
Δ ⊢ {Γ; ⊕𝑖∈ 𝐼 𝑄𝑖} call 𝑓 {Γ′; ⊕𝑖∈ 𝐼 𝑄′𝑖 }
We have a = 𝛿(⟨𝛾,𝒟( 𝑓 ), 𝐾, 𝛼⟩).
Then we set ` = 𝛿(⟨Γ,⊕𝑖∈𝐼 𝑄𝑖, 𝛾,𝒟( 𝑓 ), 𝐾, 𝛼⟩).
By the premise, we know that Δ ⊢ {Γ;𝑄𝑖} 𝒟( 𝑓 ) {Γ′;𝑄′𝑖} for each 𝑖 ∈ 𝐼.
By Lemma 5.27 and simple induction, we know that Δ ⊢ {Γ; ⊕𝑖∈𝐼 𝑄𝑖} 𝒟( 𝑓 ) {Γ′; ⊕𝑖∈𝐼 𝑄′𝑖}.
Because 𝛾 and ⊕

𝑖 𝑄𝑖 do not change, we conclude that 𝜙⊕
𝑖 𝑄𝑖 (𝛾) = 1 ⊗ 𝜙⊕

𝑖 𝑄𝑖 (𝛾).

•

(Q-Prob)
Δ ⊢ {Γ;𝑄1} 𝑆1 {Γ′;𝑄′} Δ ⊢ {Γ;𝑄2} 𝑆2 {Γ′;𝑄′}

𝑄 = 𝑃 ⊕ 𝑅 𝑃 = ⟨[𝑝, 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄1 𝑅 = ⟨[1 − 𝑝, 1 − 𝑝], [0, 0], · · · , [0, 0]⟩ ⊗ 𝑄2

Δ ⊢ {Γ;𝑄} if prob(𝑝) then 𝑆1 else 𝑆2 fi {Γ′;𝑄′}
We have a = 𝑝 · 𝛿(⟨𝛾, 𝑆1, 𝐾, 𝛼⟩) + (1 − 𝑝) · 𝛿(⟨𝛾, 𝑆2, 𝐾, 𝛼⟩).
Then we set ` = 𝑝 · 𝛿(⟨Γ, 𝑄1, 𝛾, 𝑆1, 𝐾, 𝛼⟩ + (1 − 𝑝) · 𝛿(⟨Γ, 𝑄2, 𝛾, 𝑆2, 𝐾, 𝛼⟩).
From the assumption and the premise, we know that 𝛾 |= Γ, Δ ⊢ {Γ′;𝑄′} 𝐾, and Δ ⊢
{Γ;𝑄1} 𝑆1 {Γ′;𝑄′}, Δ ⊢ {Γ;𝑄2} 𝑆2 {Γ′;𝑄′}.
It remains to show that 𝜙𝑄 (𝛾)𝑘 ≥I (𝑝 · 𝜙𝑄1 (𝛾)𝑘) +I ((1 − 𝑝) · 𝜙𝑄2 (𝛾)𝑘), where the scalar
product 𝑝 · [𝑎, 𝑏] def

= [𝑝𝑎, 𝑝𝑏] for 𝑝 ≥ 0.
On the other hand, from the premise, we have 𝑄𝑘 = 𝑃𝑘+PI 𝑅𝑘 and 𝑃𝑘 = (( [𝑝, 𝑝], · · · , [0, 0]) ⊗
𝑄1)𝑘 =

(𝑘
0
) ×PI ( [𝑝, 𝑝] ·PI (𝑄1)𝑘) = 𝑝 · (𝑄1)𝑘, as well as 𝑅𝑘 = (1 − 𝑝) · (𝑄2)𝑘.

Therefore, we have 𝜙𝑄 (𝛾)𝑘 = 𝜙−−−−−−−−−−−−−−−→⟨𝑃𝑘+PI𝑅𝑘⟩0≤𝑘≤𝑚 (𝛾)𝑘 = 𝑝 · 𝜙𝑄1 (𝛾)𝑘 +I (1 − 𝑝) · 𝜙𝑄2 (𝛾)𝑘.

•

(Q-Cond)
Δ ⊢ {Γ ∧ 𝐿;𝑄} 𝑆1 {Γ′;𝑄′} Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝑆2 {Γ′;𝑄′}

Δ ⊢ {Γ;𝑄} if 𝐿 then 𝑆1 else 𝑆2 fi {Γ′;𝑄′}
Let 𝑏 ∈ {⊤,⊥} be such that 𝛾 ⊢ 𝐿 ⇓ 𝑏.
If 𝑏 = ⊤, then a = 𝛿(⟨𝛾, 𝑆1, 𝐾, 𝛼⟩).
We set ` = 𝛿(⟨Γ ∧ 𝐿, 𝑄, 𝛾, 𝑆1, 𝐾, 𝛼⟩).
In this case, we know that 𝛾 |= Γ ∧ 𝐿.
By the premise and the assumption, we know that Δ ⊢ {Γ∧𝐿;𝑄} 𝑆1 {Γ′;𝑄′} and Δ ⊢ {Γ′;𝑄′} 𝐾.
If 𝑏 = ⊥, then a = 𝛿(⟨𝛾, 𝑆2, 𝐾, 𝛼⟩).
We set ` = 𝛿(⟨Γ ∧ ¬𝐿, 𝑄, 𝛾, 𝑆2, 𝐾, 𝛼⟩).
In this case, we know that 𝛾 |= Γ ∧ ¬𝐿.
By the premise and the assumption, we know that Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝑆2 {Γ′;𝑄′} and Δ ⊢
{Γ′;𝑄′} 𝐾.
In both cases, 𝛾 and 𝑄 do not change, thus we conclude that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄 (𝛾).
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•

(Q-Loop)
Δ ⊢ {Γ ∧ 𝐿;𝑄} 𝑆 {Γ;𝑄}

Δ ⊢ {Γ;𝑄} while 𝐿 do 𝑆1 od {Γ ∧ ¬𝐿;𝑄}
We have a = 𝛿(⟨𝛾, skip,Kloop 𝐿 𝑆 𝐾, 𝛼⟩).
Then we set ` = 𝛿(⟨Γ, 𝑄, 𝛾, skip,Kloop 𝐿 𝑆 𝐾, 𝛼⟩).
By (Q-Skip), we have Δ ⊢ {Γ;𝑄} skip {Γ;𝑄}.
Then by the assumption Δ ⊢ {Γ ∧ ¬𝐿;𝑄} 𝐾 and the premise, we know that Δ ⊢
{Γ;𝑄} Kloop 𝐿 𝑆 𝐾 by (QK-Loop).
Because 𝛾 and 𝑄 do not change, we conclude that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄 (𝛾).

•

(Q-Seq)
Δ ⊢ {Γ;𝑄} 𝑆1 {Γ′;𝑄′} Δ ⊢ {Γ′;𝑄′} 𝑆2 {Γ′′;𝑄′′}

Δ ⊢ {Γ;𝑄} 𝑆1; 𝑆2 {Γ′′;𝑄′′}
We have a = 𝛿(⟨𝛾, 𝑆1,Kseq 𝑆2 𝐾, 𝛼⟩).
Then we set ` = 𝛿(⟨Γ, 𝑄, 𝛾, 𝑆1,Kseq 𝑆2 𝐾, 𝛼⟩).
By the first premise, we have Δ ⊢ {Γ;𝑄} 𝑆1 {Γ′;𝑄′}.
By the assumption Δ ⊢ {Γ′′;𝑄′′} 𝐾 and the second premise, we know that Δ ⊢
{Γ′;𝑄′} Kseq 𝑆2 𝐾 by (QK-Seq).
Because 𝛾 and 𝑄 do not change, we conclude that 𝜙𝑄 (𝛾) = 1 ⊗ 𝜙𝑄 (𝛾).

•

(Q-Weaken)
Δ ⊢ {Γ0;𝑄0} 𝑆 {Γ′0;𝑄′0} Γ |= Γ0 Γ′0 |= Γ′ Γ |= 𝑄 ⊒ 𝑄0 Γ′0 |= 𝑄′0 ⊒ 𝑄′

Δ ⊢ {Γ;𝑄} 𝑆 {Γ′;𝑄′}
By 𝛾 |= Γ and Γ |= Γ0, we know that 𝛾 |= Γ0.
By the assumption Δ ⊢ {Γ′;𝑄′} 𝐾 and the premise Γ′0 |= Γ′, Γ′0 |= 𝑄′0 ⊒ 𝑄′, we derive
Δ ⊢ {Γ′0;𝑄′0} 𝐾 by (QK-Weaken).
Thus let `0 be obtained by the induction hypothesis on Δ ⊢ {Γ0;𝑄0} 𝑆 {Γ′0;𝑄′0}.
Then 𝜙𝑄0 (𝛾) ⊒ 𝔼𝜎′∼`0 [

−−−−−−−−−−−−−−−−−−−−−−−−−−−→
⟨[(𝛼′ − 𝛼)𝑘, (𝛼′ − 𝛼)𝑘]⟩0≤𝑘≤𝑚 ⊗ 𝜙𝑄′′ (𝛾′)], where 𝜎′ =

⟨_, 𝑄′′, 𝛾′, _, _, 𝛼′⟩.
We set ` = `0.
By the premise Γ |= 𝑄 ⊒ 𝑄0 and 𝛾 |= Γ, we conclude that 𝜙𝑄 (𝛾) ⊒ 𝜙𝑄0 (𝛾).

□

Therefore, I can use the annotated kernel ^ above to re-construct the trace-based moment
semantics in §5.3.2. Then I can define the potential function on annotated program configurations
as 𝜙(𝜎) def

= 𝜙𝑄 (𝛾) where 𝜎 = ⟨_, 𝑄, 𝛾, _, _, _⟩.
The next step is to apply the extended OST for interval bounds (Theorem 5.25). Recall that

the theorem requires that for some ℓ ∈ ℕ and 𝐶 ≥ 0, ∥𝑌𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)ℓ almost surely for all
𝑛 ∈ ℤ+. One sufficient condition for the requirement is to assume the bounded-update property, i.e.,
every (deterministic or probabilistic) assignment to a program variable updates the variable with a
bounded change. As observed by Wang et al. [154], bounded updates are common in practice. I
formulate the idea as follows.
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Lemma 5.28. If there exists 𝐶0 ≥ 0 such that for all 𝑛 ∈ ℤ+ and 𝑥 ∈ VID, it holds that
ℙ[|𝛾𝑛+1(𝑥) − 𝛾𝑛(𝑥) | ≤ 𝐶0] = 1 where 𝜔 is an infinite trace, 𝜔𝑛 = ⟨𝛾𝑛, _, _, _⟩, and 𝜔𝑛+1 =

⟨𝛾𝑛+1, _, _, _⟩, then there exists 𝐶 ≥ 0 such that for all 𝑛 ∈ ℤ+, ∥𝑌𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)𝑚𝑑 almost surely.

Proof. Let 𝐶1 ≥ 0 be such that for all tick(𝑐) statements in the program, |𝑐| ≤ 𝐶1. Then for all
𝜔, if 𝜔𝑛 = ⟨_, _, _, 𝛼𝑛⟩, then |𝛼𝑛 | ≤ 𝑛 · 𝐶1. On the other hand, we know that ℙ[|𝛾𝑛(𝑥) − 𝛾0(𝑥) | ≤
𝐶0 · 𝑛] = 1 for any variable 𝑥. As we assume all the program variables are initialized to zero, we
know that ℙ[|𝛾𝑛(𝑥) | ≤ 𝐶0 · 𝑛] = 1. From the construction in the proof of Lemma 5.26, we know
that all the templates used to define the interval-valued potential function should have almost
surely bounded coefficients. Let 𝐶2 ≥ 0 be such a bound. Also, the 𝑘-th component in a template
is a polynomial in ℝ𝑘𝑑 [VID]. Therefore, Φ𝑛(𝜔) = 𝜙(𝜔𝑛) = 𝜙𝑄𝑛 (𝛾𝑛), and

|𝜙𝑄𝑛 (𝛾𝑛)𝑘 | ≤
𝑘𝑑∑︁
𝑖=0

𝐶2 · |VID|𝑖 · |𝐶0 · 𝑛|𝑖 ≤ 𝐶3 · (𝑛 + 1)𝑘𝑑 , a.s.,

for some sufficiently large constant 𝐶3. Thus

| (𝑌𝑛)𝑘 | = | (𝐴𝑛 ⊗ Φ𝑛)𝑘 | = |
𝑘∑︁
I

𝑖=0

(
𝑘

𝑖

)
×I ((𝐴𝑛)𝑖 ·I (Φ𝑛)𝑘−𝑖) |

≤
𝑘∑︁
𝑖=0

(
𝑘

𝑖

)
· (𝑛 · 𝐶1) 𝑖 · (𝐶3 · (𝑛 + 1)) (𝑘−𝑖)𝑑

≤ 𝐶4 · (𝑛 + 1)𝑘𝑑 , a.s.,
for some sufficiently large constant 𝐶4. Therefore ∥𝑌𝑛∥∞ ≤ 𝐶5 · (𝑛 + 1)𝑚𝑑 , a.s., for some sufficiently
large constant 𝐶5. □

Now I prove the soundness of the bound inference for central moment analysis.

Proof of Theorem 5.23. By Lemma 5.28, there exists 𝐶 ≥ 0 such that ∥𝑌𝑛∥∞ ≤ 𝐶 · (𝑛 + 1)𝑚𝑑
almost surely for all 𝑛 ∈ ℤ+. By the assumption, we also know that 𝔼[𝑇𝑚𝑑] < ∞. Thus by
Theorem 5.25, we conclude that 𝔼[𝑌𝑇 ] ⊑ 𝔼[𝑌0], i.e., 𝔼[𝐴𝑇 ] ⊑ 𝔼[Φ0] = 𝜙𝑄 (__.0). □

5.3.4 An Algorithm for Checking Soundness Criteria
Termination Analysis I reuse my system for automatically deriving higher moments, which I
developed in §5.2.3 and §5.2.4, for checking if 𝔼[𝑇𝑚𝑑] < ∞ (Theorem 5.23(i)). To reason about
termination time, I assume that every program statement increments the cost accumulator by one.
For example, the inference rule (Q-Sample) becomes

Γ = ∀𝑥 ∈ supp(`𝐷) : Γ′ 𝑄 = ⟨1, 1, · · · , 1⟩ ⊗ 𝔼𝑥∼`𝐷 [𝑄′]
Δ ⊢ {Γ;𝑄} 𝑥 ∼ 𝐷 {Γ′;𝑄′}

However, I cannot apply Theorem 5.23 for the soundness of the termination-time analysis, because
that would introduce a circular dependence. Instead, I use a different proof technique to reason
about 𝔼[𝑇𝑚𝑑], taking into account the monotonicity of the runtimes. My upper-bound analysis of
higher moments of runtimes is similar to the approach of Kura et al. [104]. In this section, I assume
R = (ℝ+∞, ≤, +, ·, 0, 1) to be a partially ordered semiring on extended nonnegative real numbers.
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Definition 5.29. A map 𝜓 : Σ → M (𝑚)
R

is said to be an expected-potential function for upper
bounds on stopping time if
(i) 𝜓(𝜎)0 = 1 for all 𝜎 ∈ Σ,
(ii) 𝜓(𝜎) = 1 if 𝜎 = ⟨_, skip,Kstop, _⟩, and
(iii) 𝜓(𝜎) ⊒ 𝔼𝜎′∼↦→(𝜎) [⟨1, 1, · · · , 1⟩ ⊗ 𝜓(𝜎′)] for all non-terminating configuration 𝜎 ∈ Σ.

Intuitively, 𝜓(𝜎) is an upper bound on the moments of the evaluation steps upon termination for
the computation that continues from the configuration 𝜎. I define 𝐴𝑛 and Ψ𝑛 where 𝑛 ∈ ℤ+ to be
random variables on the probability space (Ω, F ,ℙ) of the trace semantics as 𝐴𝑛(𝜔) def

=
−−−−−−−−→
⟨𝑛𝑘⟩0≤𝑘≤𝑚

and Ψ𝑛(𝜔) def
= 𝜓(𝜔𝑛). Then I define 𝐴𝑇 (𝜔) def

= 𝐴𝑇 (𝜔) (𝜔). Note that 𝐴𝑇 =
−−−−−−−−→
⟨𝑇𝑘⟩0≤𝑘≤𝑚.

I now show that a valid potential function for stopping time always gives a sound upper bound
by applying the Monotone Convergence Theorem reviewed below.

Proposition 5.30 (Monotone convergence theorem). If { 𝑓𝑛}𝑛∈ℤ+ is a non-decreasing sequence
of nonnegative measurable functions on a measure space (𝑆,S, `), and { 𝑓𝑛}𝑛∈ℤ+ converges to 𝑓
pointwise, then 𝑓 is measurable and lim𝑛→∞ `( 𝑓𝑛) = `( 𝑓 ) ≤ ∞.
Further, the theorem still holds if 𝑓 is chosen as a measurable function and “{ 𝑓𝑛}𝑛∈ℤ+ converges to 𝑓

pointwise” holds almost everywhere, rather than everywhere.
Theorem 5.31. 𝔼[𝐴𝑇 ] ⊑ 𝔼[Ψ0].

Proof. Let 𝐶𝑛(𝜔) def
= ⟨1, 1, · · · , 1⟩ if 𝑛 < 𝑇 (𝜔), otherwise 𝐶𝑛(𝜔) def

= ⟨1, 0, · · · , 0⟩. Then 𝐴𝑇 =⊗∞
𝑖=0 𝐶𝑖. By Proposition 5.30, we know that 𝔼[𝐴𝑇 ] = lim𝑛→∞ 𝔼[⊗𝑛

𝑖=0 𝐶𝑖]. Thus it suffices to show
that for all 𝑛 ∈ ℤ+, 𝔼[⊗𝑛

𝑖=0 𝐶𝑖] ⊑ 𝔼[Ψ0].
Observe that {𝐶𝑛}𝑛∈ℤ+ is adapted to {F𝑛}𝑛∈ℤ+ , because the event {𝑇 ≤ 𝑛} is F𝑛-measurable.

Then we have

𝔼[
⊗𝑛

𝑖=0 𝐶𝑖 ⊗ Ψ𝑛+1 | F𝑛] =
⊗𝑛−1

𝑖=0 𝐶𝑖 ⊗ 𝔼[𝐶𝑛 ⊗ Ψ𝑛+1 | F𝑛], 𝑎.𝑠.,
⊑

⊗𝑛−1
𝑖=0 𝐶𝑖 ⊗ Ψ𝑛.

Therefore, 𝔼[⊗𝑛
𝑖=0 𝐶𝑖 ⊗ Ψ𝑛+1] ⊑ 𝔼[Ψ0] for all 𝑛 ∈ ℤ+ by a simple induction. Because Ψ𝑛+1 ⊒ 1, we

conclude that
𝔼[

⊗𝑛

𝑖=0 𝐶𝑖] ⊑ 𝔼[
⊗𝑛

𝑖=0 𝐶𝑖 ⊗ Ψ𝑛+1] ⊑ 𝔼[Ψ0].
□

Boundedness of ∥𝑌𝑛∥∞, 𝑛 ∈ ℤ+ To ensure that the condition in Theorem 5.23(ii) holds, I check if
the analyzed program satisfies the bounded-update property: every (deterministic or probabilistic)
assignment to a program variable updates the variable with a change bounded by a constant 𝐶
almost surely. Then the absolute value of every program variable at evaluation step 𝑛 can be
bounded by 𝐶 · 𝑛 = 𝑂(𝑛). Thus, a polynomial up to degree ℓ ∈ ℕ over program variables can be
bounded by 𝑂(𝑛ℓ) at evaluation step 𝑛. As observed by Wang et al. [154], bounded updates are
common in practice.



108 CHAPTER 5. CENTRAL MOMENT ANALYSIS

5.4 Tail-Bound Analysis
One application of the central-moment analysis is to bound the probability that the accumulated
cost deviates from some given quantity. In this section, I sketch how I produce the tail bounds
shown in Fig. 5.1(c).
There are a lot of concentration-of-measure inequalities in probability theory [47]. Among those,

one of the most important is Markov’s inequality:

Proposition 5.32. If 𝑋 is a nonnegative random variable and 𝑎 > 0, then ℙ[𝑋 ≥ 𝑎] ≤ 𝔼[𝑋𝑘]
𝑎𝑘

for
any 𝑘 ∈ ℕ.
Recall that Fig. 5.1(b) presents upper bounds on the raw moments 𝔼[tick] ≤ 2𝑑 + 4 and

𝔼[tick2] ≤ 4𝑑2 + 22𝑑 + 28 for the cost accumulator tick. With Markov’s inequality, I derive the
following tail bounds:

ℙ[tick ≥ 4𝑑] ≤ 𝔼[tick]
4𝑑 ≤ 2𝑑 + 4

4𝑑
𝑑→∞−−−−→ 1

2 , (5.8)

ℙ[tick ≥ 4𝑑] ≤ 𝔼[tick2]
(4𝑑)2 ≤

4𝑑2 + 22𝑑 + 28
16𝑑2

𝑑→∞−−−−→ 1
4 . (5.9)

Note that (5.9) provides an asymptotically more precise bound on ℙ[tick ≥ 4𝑑] than (5.8) does,
when 𝑑 approaches infinity.
Central-moment analysis can obtain an even more precise tail bound. As presented in Fig. 5.1(b),

my analysis derives 𝕍 [tick] ≤ 22𝑑 + 28 for the variance of tick. We can now employ concentration
inequalities that involve variances of random variables. Recall Cantelli’s inequality:
Proposition 5.33. If 𝑋 is a random variable and 𝑎 > 0, then ℙ[𝑋 − 𝔼[𝑋] ≥ 𝑎] ≤ 𝕍 [𝑋]

𝕍 [𝑋]+𝑎2 and
ℙ[𝑋 − 𝔼[𝑋] ≤ −𝑎] ≤ 𝕍 [𝑋]

𝕍 [𝑋]+𝑎2 .

With Cantelli’s inequality, I obtain the following tail bound, where I assume 𝑑 ≥ 2:

ℙ[tick ≥ 4𝑑] = ℙ[tick − (2𝑑 + 4) ≥ 2𝑑 − 4]
≤ ℙ[tick − 𝔼[tick] ≥ 2𝑑 − 4] ≤ 𝕍 [tick]

𝕍 [tick] + (2𝑑 − 4)2

= 1 − (2𝑑 − 4)2
𝕍 [tick] + (2𝑑 − 4)2 ≤

22𝑑 + 28
4𝑑2 + 6𝑑 + 44

𝑑→∞−−−−→ 0.

(5.10)

For all 𝑑 ≥ 15, (5.10) gives a more precise bound than both (5.8) and (5.9). It is also clear from
Fig. 5.1(c), where I plot the three tail bounds (5.8), (5.9), and (5.10), that the asymptotically most
precise bound is the one obtained via variances.
In general, for higher central moments, I employ Chebyshev’s inequality to derive tail bounds:

Proposition 5.34. If 𝑋 is a random variable and 𝑎 > 0, then ℙ[|𝑋 − 𝔼[𝑋] | ≥ 𝑎] ≤ 𝔼[(𝑋−𝔼[𝑋])2𝑘]
𝑎2𝑘

for any 𝑘 ∈ ℕ.
In my experiments, I use Chebyshev’s inequality to derive tail bounds from the fourth central

moments. I will show in Fig. 5.14 that these tail bounds can be more precise than those obtained
from both raw moments and variances.
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5.5 Evaluation
In this section, I first describe the implementation of the automatic moment-analysis tool in §5.5.1.
I then evaluate the performance of the tool in §5.5.2, compared with state-of-the-art analysis tools
for higher moments.

5.5.1 Implementation
The prototype implementation of my moment-analysis tool is open-source and publicly available.10
The tool is still under active development; thus, in this section, I first describe the implementation
that produced the evaluation results in my paper [149] on which this chapter is based, and then
discuss some enhancements I have implemented to improve the usability and efficiency of the tool.
The pldi21 branch of my open-source tool retains the version used by my paper [149]. I

implemented the central moment analysis in OCaml, and the implementation consists of about
5,300 LOC. The tool works on imperative arithmetic probabilistic programs. The language supports
recursive functions, continuous distributions, unstructured control-flow, and local variables. To
infer the bounds on the central moments for a cost accumulator in a program, the user needs to
specify the order of the analyzed moment, and a maximal degree for the polynomials to be used
in potential-function templates. Using APRON [80], I implemented an interprocedural numeric
analysis to infer the logical contexts used in the derivation. My tool relies on the inferred logical
contexts to implement the weakening rule (Q-Weaken) in Fig. 5.6. Recall that if we want to relax
a symbolic interval, we need to find two nonnegative polynomials: one is subtracted from the
lower bound; the other is added to the upper bound. For example, if 𝑛 ≥ 𝑥 and 𝑚 ≥ 𝑦 hold at a
program point, then we can use (𝑛− 𝑥), (𝑚− 𝑦), (𝑛− 𝑥) (𝑚− 𝑦), etc. as the candidate nonnegative
polynomials. The bound-inference rules are implemented in a syntax-directed manner, except that
I apply weakening rules only at branch statements. Intuitively, the two branches of a conditional
statement have different logical contexts, so we might need different nonnegative polynomials to
relax the bounds of two branches. I use the off-the-shelf solver Gurobi [66] for LP solving, and the
SMT solver Z3 [43] to generate a concrete input that satisfies a given pre-condition. (Recall that in
§5.2.4, I described how to use the concrete input to construct an objective function for LP solving.)
In the master branch of the tool repo, I have implemented some enhancements towards better

usability and efficiency. The usability of the pldi21 version is not satisfactory because it can
only handle arithmetic probabilistic programs with real-valued program variables. For example,
to analyze programs that involve array manipulation, the user had to reimplement a purely
arithmetic program that over-approximates the behavior of the original program. Besides, a
usable programming language should usually support multiple data types, such as real numbers,
integers, Booleans, etc. It is already nontrivial to support those features in a static analyzer for
non-probabilistic programs, and probabilities may pose new challenges; for example, as discussed
in §5.3.3, probabilistic termination is very different from and much trickier than non-probabilistic
termination. Another concern is efficiency: despite the fact that my prototype implementation in the
pldi21 version achieved reasonable efficiency and scalability in the experimental evaluation (see
§5.5.2), the worst-case time complexity can become exponential in terms of the number of program
variables and the depth of the call graph. In the rest of this section, I describe my implementation

10https://bitbucket.org/probabilistic/ginfer/

https://bitbucket.org/probabilistic/ginfer/
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1 func compare(guess, secret)
2 //@auxiliary 𝑘 s.t. 1 ≤ 𝑘 ≤ 𝑁 ∧∧𝑁

𝑗=𝑘+1(secret[ 𝑗] = guess[ 𝑗]) ∧ (secret[𝑘] < guess[𝑘]);
3 begin
4 𝑖 B 𝑁; cmp B 0;
5 while 𝑖 > 0 do
6 tick(2);
7 while 𝑖 > 0 do
8 if prob(0.5) then break fi;
9 tick(5);
10 if cmp > 0 ∨ (cmp = 0 ∧ guess[𝑖] > secret[𝑖]) then
11 //@assert(𝑖 ≤ 𝑘);
12 cmp B 1
13 else
14 //@assert(𝑖 > 𝑘);
15 tick(5);
16 if cmp < 0 ∨ (cmp = 0 ∧ guess[𝑖] < secret[𝑖]) then
17 //@assert(false);
18 cmp B −1
19 fi
20 fi;
21 tick(1); 𝑖 B 𝑖 − 1
22 od
23 od;
24 return cmp
25 end

Fig. 5.12: Assisted moment-bound derivation using a logical state. The derived upper bound on the variance ofthe accumulated cost is 26𝑁2 + 42𝑁 − 10𝑘2 − 10𝑘.

strategies for supporting array manipulation, more basic data types, probability encapsulation, an
analysis for neededness of variables, and tunable context sensitivity.

Array Manipulation Soundly and precisely handling the program heap in static analysis is a
hard problem and researchers have proposed many techniques to analyze heap manipulation
(e.g., [64, 79]). In my implementation, I use a relatively lightweight semi-automatic approach
that is first used by Carbonneaux et al. [22]; the idea is to introduce a logical state using auxiliary
variables that are used in bound derivation but do not influence program behavior. The auxiliary
variables provide a mechanism for users to specify logical or quantitative invariants, which can
reflect properties of the heap contents and thus aid the moment-bound derivation. I introduce
special syntactic forms for annotations of the declaration, manipulation, and assertion of auxiliary
variables, and then implemented in the type checker a pass to make sure that the normal part of a
program cannot refer to any auxiliary variables. In this way, the user does not need to reimplement
a program; instead, they just need to add annotations, which can be treated as comments by a
compiler.
Fig. 5.12 illustrates the idea on the compare function that compares two 𝑁-bit vectors guess
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and secret. Note that I will later use this function in §5.6 to demonstrate an application of using
central-moment analysis to reason about timing attacks. The function iterates over the bits from
high-index to low-index, and it introduces some random delays (by the probabilistic branching on
line 8) to add noise to its accumulated cost. Intuitively, the cost accumulator models the running
time of the function. Suppose that for some fixed 𝑘, we want to analyze the compare function under
the condition that the highest (𝑁 − 𝑘) bits of guess and secret are identical, and secret[𝑘] < guess[𝑘].
The analysis result on moments of the running time can then indicate how the length of the
common prefix of the two input vectors would influence the running time. In Fig. 5.12, the parts of
the code marked in blue are user-provided annotations. The auxiliary variable 𝑘 is introduced to
specify a complicated array-related pre-condition. Because the program never mutates secret or
guess, the assertions on lines 11, 14, and 17 can be directly justified using the logical-state invariant
specified on line 2. With the extra information, the central-moment analysis tool is able to derive
a fine-grained upper bound (which involves 𝑘) on the variance of the accumulated cost. Note
that although the user just needs to add annotations about the logical state, they must verify the
annotations are consistent on themselves. Integrating the moment-analysis tool with verification
tools that can justify program variants is interesting future work.

More Basic Data Types It is often more desirable to support multiple data types in a programming
language than just allowing real-valued program variables. Once one has multiple types in the
system, the moment-bound analysis tool must find a proper way to reference program variables of
different types in symbolic bounds. For example, consider the function f below with a Boolean-
valued variable 𝑏:

func f(𝑏) begin
if 𝑏 then
if prob(0.4) then tick(1) else tick(2) fi

else
if prob(0.6) then tick(1) else tick(2) fi

fi
end

Instead of using 1.6 as an upper bound on the expected accumulated cost of the function, my tool
is able to derive a more precise bound that involves 𝑏 as [𝑏] · 1.6 + [¬𝑏] · 1.4, where [𝜑] is the
Iverson bracket which evaluates to 1 if 𝜑 is true, and to 0 otherwise. To support such reasoning, I
adapt a systematic approach proposed by Hoffmann et al. [72] to express resource bounds in terms
of values of different types for functional programs. The basic idea is to introduce for each type 𝜏 a
set of base monomials that map inhabitants of type 𝜏 to real numbers, and then use those base
monomials to construct polynomials that express moment bounds. I implemented the following
simple type system:

𝜏F real | int | bool | 𝜏[],
where inhabitants of the type 𝜏[] are arrays whose elements are of type 𝜏. I now define base
monomials B(𝜏) for each type 𝜏:

B(real) def
= {_𝑣. 𝑣}, B(int) def

= {_𝑣. 𝑣},
B(bool) def

= {_𝑣. [𝑣], _𝑣. [¬𝑣]}, B(𝜏[]) def
= {_𝑣. 1}.
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Note that the only base monomial for an array is the constant-one function; as a consequence,
the moment analysis would not investigate the values in an array. Then, for a context Γ = 𝑥1 :
𝜏1, · · · , 𝑥𝑛 : 𝜏𝑛 of variable-type bindings, I define the set of monomials over program variables
𝑥1, · · · , 𝑥𝑛 as follows, where 𝑉 is a map from variables to values:

M (Γ) def
= {_𝑉.

𝑛∏
𝑖=1

𝑏𝑖(𝑉 (𝑥𝑖))𝑑𝑖 | 𝑏𝑖 ∈ B(𝜏𝑖), 𝑑𝑖 ∈ ℤ+},

and thus the polynomial moment bounds over Γ can be expressed as linear combinations of finitely
many monomials fromM (Γ). Because my tool requires the user to provide a maximal degree for
the polynomials to be used in the potential-function templates, I simply use monomials whose
degree does not exceed the maximal degree.

Probability Encapsulation Another interesting direction for extending the type system is to add
a type that encapsulates probabilities [152]; that is, the programming language has a type for non-
constant probabilities and programs can manipulate those probabilities and flip a coin with respect
to them in probabilistic branching. The motivation for supporting a probability-encapsulation type
is that although most of the static analyzers for probabilistic programs assume that probabilistic
branches are of constant probabilities, non-constant probabilities can become useful in verification
tasks. For example, let us consider the following function that simulates a fair coin using a coin that
shows heads with probability 𝑝 and we want to verify the function is correct for any 𝑝 ∈ [0, 1]:

func fair(𝑝) begin
if prob(𝑝) then
if prob(𝑝) then call fair(𝑝)
else tick(1) fi # In this case, the outcome should be heads.

else
if prob(𝑝) then tick(0) # In this case, the outcome should be tails.
else call fair(𝑝) fi

fi
end

Because there is exactly one unit of cost when the simulation function decides to return heads as
the coin-flip outcome, the expected accumulated cost is exactly the probability that the function
returns heads. Indeed, my moment-bound analysis tool is able to derive 1/2 as both the lower and
the upper bounds on the expected accumulated cost for any possible coin-flip probability 𝑝.
To achieve this, I adapt the approach by Wang et al. [152] that adds a probability-encapsulation

type to a functional programming language. I extend the simple type system mentioned earlier in
this section with a primitive probability type as follows:

𝜏F real | int | bool | 𝜏[] | prob,
where the introduction form P(𝑐) for values of type prob simply takes a real number 𝑐 ∈ [0, 1],
and the elimination form “if prob(𝑝) then · · · else · · · fi” is a probabilistic branch on a value 𝑝 of
type prob. I then define the set of base monomials for prob by

B(prob) def
= {_P(𝑐). 𝑐, _P(𝑐). (1 − 𝑐)}.
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Furthermore, it is convenient to incorporate the ability to multiply and invert encapsulated
probabilities in the programming language. The major challenge was to add inference rules for
those new program constructs, as well as effectively automate newly added rules in the moment
analysis tool. I implemented the following two rules for probability multiplication and probability
inversion, where for a program variable 𝑥 of type prob, I write 𝑥 for the base monomial _P(𝑐). 𝑐
and 𝑥 for the base monomial _P(𝑐). (1 − 𝑐). Meanwhile, because the set of base monomials is not
necessarily linearly independent, (e.g., {1, 𝑥, 𝑥} is not linearly independent as 𝑥 = 1 + (−1) · 𝑥), I
also took care of canonical representations of polynomial templates in my implementation.

(Prob-Mult)
𝑄 = [(𝑦 · 𝑧, 1 − (1 − 𝑦) · (1 − 𝑧))/(𝑥, 𝑥)]𝑄′
Δ ⊢ℎ {Γ;𝑄} 𝑥 B prob_mul(𝑦, 𝑧) {Γ;𝑄′}

(Prob-Inv)
𝑄 = [(𝑦, 𝑦)/(𝑥, 𝑥)]𝑄′

Δ ⊢ℎ {Γ;𝑄} 𝑥 B prob_inv(𝑦) {Γ;𝑄′}

Analysis of Neededness Besides the analysis capability, the analysis efficiency is also an important
aspect to evaluate a static analyzer. Recall that my central-moment analysis framework uses
polynomials over program variables as the templates for moment bounds; therefore, even with a
fixed maximal degree on the polynomials, the number of possible monomials grows exponentially
in terms of the number of program variables. It is obviously redundant to use all program variables
to express the moment bound at every program point. For example, consider the program below:

1 while 𝑥 < 𝑑 do
2 𝑡 ∼ Uniform(−1, 2);
3 𝑥 B 𝑥 + 𝑡;
4 tick(1)
5 od

There are three program variables 𝑥, 𝑑, and 𝑡, but not all variables are needed to encode the moment
bound at every program location; for example, the variable 𝑡 is just used to save a temporary value
drawn from a distribution, so it is only needed between the time it is created and the time it is
used, i.e., between line 2 and line 3 of the code.
Inspired by the liveness analysis, I implemented a intra-procedural data-flow analysis to evaluate

the neededness of every program variable at every program point for expressing moment bounds.
Fig. 5.13 presents the neededness analysis as an inference system. The judgement ⊢ {𝑈} 𝑆 {𝑈′}
should be read in a backward manner: if the continuation after a statement 𝑆 needs a set 𝑈′ of
program variables in the moment bounds, then a set 𝑈 of program variables is needed before the
statement 𝑆. Thus, the rules formulate a backward data-flow analysis. I denote by FV(𝐸) and
FV(𝐿) the set of free variables that appear in the expression 𝐸 and the condition 𝐿, respectively.
The interesting cases are the rule (N-Loop) and (N-Cond). As I described earlier in this section, my
tool would apply the weakening rule (Q-Weaken) at the branching statements. For a conditional
branch whose predicate is 𝐿, the set of nonnegative polynomials that can be used for weakening
might be different in different branches, and such a difference depends on 𝐿. Thus, I enforce that
the free variables of the branch predicate 𝐿 are needed at the beginning of succeeding branches.

Tunable Context Sensitivity Another source of the exponential time complexity of the moment
analysis is the treatment of context sensitivity, i.e., function calls to the same function at different
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(N-Skip)

⊢ {𝑈} skip {𝑈}
(N-Tick)

⊢ {𝑈} tick(𝑐) {𝑈}

(N-Assign)
𝑈 = if 𝑥 ∈ 𝑈′ then (𝑈′ \ {𝑥}) ∪ FV(𝐸) else 𝑈′

⊢ {𝑈} 𝑥 B 𝐸 {𝑈′}

(N-Sample)
𝑈 = if 𝑥 ∈ 𝑈′ then 𝑈′ \ {𝑥} else 𝑈′

⊢ {𝑈} 𝑥 ∼ 𝐷 {𝑈′}

(N-Loop)
⊢ {𝑈} 𝑆 {𝑈} FV(𝐿) ⊆ 𝑈
⊢ {𝑈} while 𝐿 do 𝑆 od {𝑈}

(N-Call)

⊢ {𝑈} call 𝑓 {𝑈}

(N-Seq)
⊢ {𝑈} 𝑆1 {𝑈′} ⊢ {𝑈′} 𝑆2 { 𝑈′′}

⊢ {𝑈} 𝑆1; 𝑆2 {𝑈′′}

(N-Prob)
⊢ {𝑈1} 𝑆1 {𝑈′} ⊢ {𝑈2} 𝑆2 {𝑈′} 𝑈 = 𝑈1 ∪ 𝑈2

⊢ {𝑈} if prob(𝑝) then 𝑆1 else 𝑆2 fi {𝑈′}

(N-Cond)
⊢ {𝑈1} 𝑆1 {𝑈′} ⊢ {𝑈2} 𝑆2 {𝑈′} 𝑈 = 𝑈1 ∪ 𝑈2

FV(𝐿) ⊆ 𝑈1 FV(𝐿) ⊆ 𝑈2

⊢ {𝑈} if 𝐿 then 𝑆1 else 𝑆2 fi {𝑈′}

(N-Weaken)
⊢ {𝑈0} 𝑆 {𝑈′0} 𝑈0 ⊆ 𝑈 𝑈′ ⊆ 𝑈′0

⊢ {𝑈} 𝑆 {𝑈′}

Fig. 5.13: Inference rules of the neededness analysis.

call sites can use different function specifications in the bound derivation. More specifically, in my
prototype implementation of the pldi21 version, I collapse the cycles in the call graph and analyze
each function at least once for every path in the resulting graph. This implementation strategy can
make the moment analysis extremely slow when the call graph has a complex structure.
To tackle this problem, I adapt different treatments for context sensitivity of static analysis, and

in the moment-analysis tool, I allow the user to specify the granularity of the context sensitivity.
I implemented 𝑘-limiting context sensitivity [138], i.e., the static analysis does not distinguish
two function calls if both have the same 𝑘 immediate call sites. I also reimplemented the built-in
context sensitivity of the pldi21 version as the acyclic context sensitivity, i.e., the static analysis
only remembers the longest prefix of the call stack such that no call sites can appear twice in the
prefix. My preliminary experiments have shown that 0-limiting context sensitivity is sufficient for
many recursive probabilistic programs, but a thorough evaluation on a broader suite of recursive
benchmarks is left for future work. Before ending this section, I demonstrate an example that
indeed requires 𝑘-limiting context sensitivity for 𝑘 > 0.

Example 5.35. Consider the following probabilistic variant of the McCarthy 91 function:
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func f91(𝑥) begin
if 𝑥 > 100 then
𝑥 B 𝑥 − 10; return 𝑥

else
𝑥 B 𝑥 + 11;
𝑥 B call f91(𝑥); tick(1);
if prob(1/3) then
𝑥 B call f91(𝑥); tick(1)

fi;
return 𝑥

fi
end

I assume the pre-condition 𝑥 ≤ 100 in the analysis. Using 0-limiting context sensitivity, my tool cannot
derive an upper bound on the expected accumulated cost. With 1- and 2-limiting context sensitivity, my
tool is able to derive 55.5 − 0.5𝑥 and 54.5 − 0.5𝑥 as the upper bounds, respectively. With the acyclic
context sensitivity, my tool derives the bound 55 − 0.5𝑥. The results meet my expectation: 𝑘-limiting
sensitivity with larger 𝑘 should yield (not strictly) more precise bounds. Also, for the f91 function above,
there are two recursive call sites, so with the acyclic context sensitivity, the analyzer handles call stacks
whose length is at most two, thus the result cannot be more precise than the analysis result under
2-limiting sensitivity.

5.5.2 Experiments
Evaluation Setup I evaluated my tool to answer the following three research questions:

1. How does the raw-moment inference part of my tool compare to existing techniques for
expected-cost bound analysis [124, 154]?

2. How does my tool compare to the state of the art in tail-probability analysis (which is based
only on higher raw moments [104])?

3. How scalable is my tool? Can it analyze programs with many recursive functions?
A replication package for the evaluation results in this section is publicly available [151].
For the first question, I collected a broad suite of challenging examples from related work [104,

124, 154] with different loop and recursion patterns, as well as probabilistic branching, discrete
sampling, and continuous sampling. My tool achieved comparable precision and efficiency with
the prior work on expected-cost bound analysis [124, 154]. The details are included in Tables 5.4
and 5.5.
For the second question, I evaluated my tool on the complete benchmarks from Kura et al. [104].

I also conducted a case study of a timing-attack analysis for a program provided by DARPA during
engagements of the STAC program [41], where central moments are more useful than raw moments
to bound the success probability of an attacker. I include the case study in §5.6.
For the third question, I conducted case studies on two sets of synthetic benchmark programs:
• coupon-collector programs with 𝑁 coupons (𝑁 ∈ [1, 103]), where each program is im-
plemented as a set of tail-recursive functions, each of which represents a state of coupon
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collection, i.e., the number of coupons collected so far; and

• random-walk programs with 𝑁 consecutive one-dimensional random walks (𝑁 ∈ [1, 103]),
each of which starts at a position that equals the number of steps taken by the previous
random walk to reach the ending position (the origin). Each program is implemented as a set
of non-tail-recursive functions, each of which represents a random walk. The random walks
in the same program can have different transition probabilities.

The largest synthetic program has nearly 16,000 LOC. I then ran my tool to derive an upper bound
on the fourth (resp., second) central moment of the runtime for each coupon-collector (resp.,
random-walk) program.
The experiments were performed on a machine with an Intel Core i7 3.6GHz processor and 16GB

of RAM under macOS Catalina 10.15.7.

Results Some of the evaluation results to answer the second research question are presented
in Table 5.1. The programs (1-1) and (1-2) are coupon-collector problems with a total of two
and four coupons, respectively. The other five are variants of random walks. The first three
are one-dimensional random walks: (2-1) is integer-valued, (2-2) is real-valued with continuous
sampling, and (2-3) exhibits adversarial nondeterminism. The programs (2-4) and (2-5) are
two-dimensional random walks. The table contains the inferred upper bounds on the moments
for runtimes of these programs, and the running times of the analyses. I compared my results
with Kura et al. [104]’s inference tool for raw moments. My tool is as precise as, and sometimes
more precise than the prior work on all the benchmark programs. Meanwhile, my tool is able to
infer an upper bound on the raw moments of degree up to four on all the benchmarks, while the
prior work reports failure on some higher moments for the random-walk programs. In terms of
efficiency, my tool completed each example in less than 10 seconds, while the prior work took more
than a few minutes on some programs. One reason why my tool is more efficient is that I always
reduce higher-moment inference with non-linear polynomial templates to efficient LP solving, but
the prior work requires semidefinite programming (SDP) for polynomial templates.
Besides raw moments, my tool is also capable of inferring upper bounds on the central moments

of runtimes for the benchmarks. To evaluate the quality of the inferred central moments, Fig. 5.14
plots the upper bounds of tail probabilities on runtimes 𝑇 obtained by Kura et al. [104], and those by
my central-moment analysis. Specifically, the prior work uses Markov’s inequality (Proposition 5.32),
while I am also able to apply Cantelli’s and Chebyshev’s inequality (Propositions 5.33 and 5.34)
with central moments. My tool outperforms the prior work on programs (1-1), (1-2), (2-3), and
(2-5), and derives better tail bounds when 𝑑 is large on programs (2-2) and (2-4), while it obtains
similar curves on program (2-1).

Scalability In Fig. 5.15, I demonstrate the running times of my tool on the two sets of synthetic
benchmark programs; Fig. 5.15a plots the analysis times for coupon-collector programs as a function
of the independent variable 𝑁 (the total number of coupons), and Fig. 5.15b plots the analysis
times for random-walk programs as a function of 𝑁 (the total number of random walks). The
evaluation statistics show that my tool achieves good scalability in both case studies: the runtime
is almost a linear function of the program size, which is the number of recursive functions for both
case studies. Two reasons why my tool is scalable on the two sets of programs are (i) my analysis
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Table 5.1: Inferred upper bounds on the raw/central moments of runtimes, with comparison to Kura et al. [104].“T/O” stands for timeout after 30 minutes. “N/A” means that the tool is not applicable. “-” indicates that thetool fails to infer a bound. Entries with more precise results or less analysis time are marked in bold.
program moment my work Kura et al. [104]

upper bnd. time (sec) upper bnd. time (sec)

(1-1)

2nd raw 201 0.019 201 0.015
3rd raw 3,829 0.019 3,829 0.020
4th raw 90,705 0.023 90,705 0.027

2nd central 32 0.029 N/A N/A
4th central 9,728 0.058 N/A N/A

(1-2)

2nd raw 2,357 1.068 3,124 0.037
3rd raw 148,847 1.512 171,932 0.062
4th raw 11,285,725 1.914 12,049,876 0.096

2nd central 362 3.346 N/A N/A
4th central 955,973 9.801 N/A N/A

(2-1)

2nd raw 2,320 0.016 2,320 11.380
3rd raw 691,520 0.018 - 16.056
4th raw 340,107,520 0.021 - 23.414

2nd central 1,920 0.026 N/A N/A
4th central 289,873,920 0.049 N/A N/A

(2-2)

2nd raw 8,375 0.022 8,375 38.463
3rd raw 1,362,813 0.028 - 73.408
4th raw 306,105,209 0.035 - 141.072

2nd central 5,875 0.029 N/A N/A
4th central 447,053,126 0.086 N/A N/A

(2-3)

2nd raw 3,675 0.039 6,710 48.662
3rd raw 618,584 0.049 19,567,045 0.039
4th raw 164,423,336 0.055 - T/O

2nd central 3,048 0.053 N/A N/A
4th central 196,748,763 0.123 N/A N/A

(2-4)

2nd raw 6,625 0.035 10,944 216.352
3rd raw 742,825 0.048 - 453.435
4th raw 101,441,320 0.072 - 964.579

2nd central 6,624 0.051 N/A N/A
4th central 313,269,063 0.215 N/A N/A

(2-5)

2nd raw 21,060 0.045 - 216.605
3rd raw 9,860,940 0.063 - 467.577
4th raw 7,298,339,760 0.101 - 1133.947

2nd central 20,160 0.068 N/A N/A
4th central 8,044,220,161 0.271 N/A N/A
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Fig. 5.14: Upper bound of the tail probability ℙ[𝑇 ≥ 𝑑] as a function of 𝑑, with comparison to Kura et al. [104].Each gray line is the minimum of tail bounds obtained from the raw moments of degree up to four inferred byKura et al. [104]. Green lines and red lines are the tail bounds given by 2nd and 4th central moments inferredby my tool, respectively.
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(b) Random Walk
Fig. 5.15: Running times of my tool on two sets of synthetic benchmark programs. Each figure plots the runtimesas a function of the size of the analyzed program.

is compositional and uses function summaries to analyze function calls, and (ii) for a fixed set of
templates and a fixed diameter of the call graph, the number of linear constraints generated by my
tool grows linearly with the size of the program, and the LP solvers available nowadays can handle
large problem instances efficiently.

Table 5.2: Skewness & kurtosis.
program skewness kurtosisrdwalk-1 2.1362 10.5633rdwalk-2 2.9635 17.5823

Discussion Higher central moments can also provide more infor-
mation about the shape of a distribution, e.g., the skewness (i.e.,
𝔼[(𝑇−𝔼[𝑇])3]
(𝕍 [𝑇])3/2 ) indicates how lopsided the distribution of 𝑇 is, and the

kurtosis (i.e., 𝔼[(𝑇−𝔼[𝑇])4]
(𝕍 [𝑇])2 ) measures the heaviness of the tails of the

distribution of 𝑇 . I used my tool to analyze two variants of the
random-walk program (2-1). The two random walks have different
transition probabilities and step lengths, but they have the same expected runtime 𝔼[𝑇]. Table 5.2
presents the skewness and kurtosis derived from the moment bounds inferred by my tool. A positive
skew indicates that the mass of the distribution is concentrated on the left, and larger skew means
the concentration is more left. A larger kurtosis, on the other hand, indicates that the distribution
has fatter tails. Therefore, as the derived skewness and kurtosis indicate, the distribution of the
runtime 𝑇 for rdwalk-2 should be more left-leaning and have fatter tails than the distribution forrdwalk-1. Density estimates for the runtime 𝑇 , obtained by simulation, are shown in Fig. 5.16.
My tool can also derive symbolic bounds on higher moments. Table 5.3 presents the inferred

upper bounds on the variances for the random-walk benchmarks, where I replace the concrete
inputs with symbolic pre-conditions.
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Fig. 5.16: Density estimation for the runtime 𝑇 of two variants rdwalk-1 and rdwalk-2 of (2-1).
Table 5.3: Inferred symbolic upper bounds on the variances.
program pre-condition upper bound on the variance

(2-1) 𝑥 ≥ 0 1920𝑥
(2-2) 𝑥 ≥ 0 2166.6667𝑥 + 1541.6667
(2-3) 𝑥 ≥ 0 284.2060𝑥2 + 955.25𝑥
(2-4) 𝑥 ≥ 0 ∧ 𝑦 > 0 144(𝑥 + 𝑦)2 + 816(𝑥 + 𝑦) + 1056
(2-5) 𝑥 ≥ 𝑦 7920(𝑥 − 𝑦) + 12240

5.6 Case Study: Timing Attack

In the case study, I motivate the use of central-moment analysis on a probabilistic program with a
timing-leak vulnerability, and demonstrate how the results from an analysis can be used to bound
the success rate of an attack program that attempts to exploit the vulnerability. The program is
extracted and modified from a web application provided by DARPA during engagements as part
of the STAC program [41]. In essence, the program models a password checker that compares
an input guess with an internally stored password secret, represented as two 𝑁-bit vectors. The
program in Fig. 5.17(a) is the interface of the checker, and Fig. 5.17(b) is the comparison functioncompare, which carries out most of the computation. The statements of the form “tick(·)” represent
a cost model for the running time of compare, which is assumed to be observable by the attacker.compare iterates over the bits from high-index to low-index, and the running time expended during
the processing of bit 𝑖 depends on the current comparison result (stored in cmp), as well as on
the values of the 𝑖-th bits of guess and secret. Because the running time of compare might leak
information about the relationship between guess and secret, compare introduces some random
delays to add noise to its running time. However, we will see shortly that such a countermeasure
does not protect the program from a timing attack.
I now show how the moments of the running time of compare—the kind of information provided

by my central-moment analysis (§5.2)—are useful for analyzing the success probability of the
attack program given in Fig. 5.17(c). Let 𝑇 be the random variable for the running time of compare.
A standard timing attack for such programs is to guess the bits of secret successively. The idea is
the following: Suppose that we have successfully obtained the bits secret[𝑖 + 1] through secret[𝑁];
we now guess that the next bit, secret[𝑖], is 1 and set guess[𝑖] B 1. Theoretically, if the following
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1 func compare(guess, secret) begin
2 𝑖 B 𝑁; cmp B 0;
3 while 𝑖 > 0 do
4 tick(2);
5 while 𝑖 > 0 do
6 if prob(0.5) then break fi;
7 tick(5);
8 if cmp > 0 ∨ (cmp = 0 ∧ guess[𝑖] > secret[𝑖])
9 then cmp B 1
10 else
11 tick(5);
12 if cmp < 0 ∨ (cmp = 0 ∧ guess[𝑖] < secret[𝑖])
13 then cmp B −1
14 fi
15 fi;
16 tick(1);
17 𝑖 B 𝑖 − 1
18 od
19 od;
20 return cmp
21 end

(b)

1 func check(guess) begin
2 cmp B compare(guess, secret);
3 if cmp = 0 then
4 login()
5 fi
6 end

(a)

1 guess B ®0;
2 𝑖 B 𝑁;
3 while 𝑖 > 0 do
4 next B guess;
5 next[𝑖] B 1;
6 est B estimateTime(𝐾, check(next));
7 if est ≤ 14𝑁 − 2.5𝑖 then
8 guess[𝑖] B 0
9 else
10 guess[𝑖] B 1
11 fi;
12 𝑖 B 𝑖 − 1
13 od

(c)

Fig. 5.17: (a) The interface of the password checker. (b) A function that compares two bit vectors, adding somerandom noise. (c) An attack program that attempts to exploit the timing properties of compare to find thevalue of the password stored in secret.
two conditional expectations

𝔼[𝑇1] def
= 𝔼[𝑇 | ∧𝑁

𝑗=𝑖+1(secret[ 𝑗] = guess[ 𝑗]) ∧ (secret[𝑖] = 1 ∧ guess[𝑖] = 1)] (5.11)

𝔼[𝑇0] def
= 𝔼[𝑇 | ∧𝑁

𝑗=𝑖+1(secret[ 𝑗] = guess[ 𝑗]) ∧ (secret[𝑖] = 0 ∧ guess[𝑖] = 1)] (5.12)

have a significant difference, then there is an opportunity to check our guess by running the
program multiple times, using the average running time as an estimate of 𝔼[𝑇], and choosing the
value of guess[𝑖] according to whichever of (5.11) and (5.12) is closest to our estimate. However, if
the difference between 𝔼[𝑇1] and 𝔼[𝑇0] is not significant enough, or the program produces a large
amount of noise in its running time, the attack might not be realizable in practice. To determine
whether the timing difference represents an exploitable vulnerability, we need to reason about the
attack program’s success rate.
Toward this end, we can analyze the failure probability for setting guess[𝑖] incorrectly, which

happens when, due to an unfortunate fluctuation, the running-time estimate est is closer to one of
𝔼[𝑇1] and 𝔼[𝑇0], but the truth is actually the other. For instance, suppose that 𝔼[𝑇0] < 𝔼[𝑇1] and
𝑒𝑠𝑡 < 1

2 (𝔼[𝑇0] + 𝔼[𝑇1]); the attack program would pick 𝑇0 as the truth, and set guess[𝑖] to 0. If
such a choice is incorrect, then the actual distribution of est on the 𝑖-th round of the attack program
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satisfies 𝔼[est] = 𝔼[𝑇1], and the probability of this failure event is

ℙ

[
est < 𝔼[𝑇0] + 𝔼[𝑇1]

2

]
= ℙ

[
est − 𝔼[𝑇1] < 𝔼[𝑇0] − 𝔼[𝑇1]

2

]
= ℙ

[
est − 𝔼[est] < 𝔼[𝑇0] − 𝔼[𝑇1]

2

]
under the condition given by the conjunction in (5.11). This formula has exactly the same shape
as a tail probability, which makes it possible to utilize moments and concentration-of-measure
inequalities [47] to bound the probability.
The attack program is parameterized by 𝐾 > 0, which represents the number of trials it performs

for each bit position to obtain an estimate of the running time. I have applied the central-moment-
analysis technique developed in this chapter, and obtained the following inequalities on the mean
(i.e., the first moment), the second moment, and the variance (i.e., the second central moment) of
the quantities (5.11) and (5.12).

𝔼[𝑇1] ≥ 13𝑁, 𝔼[𝑇1] ≤ 15𝑁, 𝕍 [𝑇1] ≤ 26𝑁2 + 42𝑁, (5.13)
𝔼[𝑇0] ≥ 13𝑁 − 5𝑖, 𝔼[𝑇0] ≤ 15𝑁 − 5𝑖, 𝕍 [𝑇0] ≤ 26𝑁2 + 42𝑁 − 10𝑖2 − 10𝑖. (5.14)

To bound the probability that the attack program makes an incorrect guess for the 𝑖-th bit, I
continue with a case analysis:

• Suppose that secret[𝑖] = 1, but the attack program assigns guess[𝑖] B 0. The truth—with
respect to the actual distribution of the running time 𝑇 of compare for the 𝑖-th bit—is
that 𝔼[est] = 𝔼[𝑇1], but the attack program in Fig. 5.17(c) executes the then-branch of the
conditional statement. Thus, our task reduces to that of bounding ℙ[est < 14𝑁 − 2.5𝑖]. The
estimate est is the average of 𝐾 i.i.d. random variables drawn from a distribution with mean
𝔼[𝑇1] and variance 𝕍 [𝑇1]. I derive the following, using the inequalities from (5.13):

𝔼[est] = 𝔼[𝑇1] ≥ 13𝑁, 𝕍 [est] = 𝕍 [𝑇1]
𝐾
≤ 26𝑁2 + 42𝑁

𝐾
. (5.15)

I am now able to derive an upper bound on ℙ[est < 14𝑁 − 2.5𝑖] using Cantelli’s inequality,
where I assume 𝑁 < 2.5𝑖:

ℙ[est ≤ 14𝑁 − 2.5𝑖]
= ℙ[est − 13𝑁 ≤ 𝑁 − 2.5𝑖]
≤ ℙ[est − 𝔼[est] ≤ 𝑁 − 2.5𝑖] † 𝔼[est] ≥ 13𝑁 by (5.15) †
≤ 𝕍 [est]

𝕍 [est] + (𝑁 − 2.5𝑖)2 † Proposition 5.33 †

=
26𝑁2 + 42𝑁

26𝑁2 + 42𝑁 + 𝐾 (𝑁 − 2.5𝑖)2 .

• The other case, in which secret[𝑖] = 0 but the attack program chooses to set guess[𝑖] B 1, can
be analyzed in a similar way to the previous case, and the bound obtained is the following,
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where I assume 𝑁 < 2.5𝑖:

ℙ[est > 14𝑁 − 2.5𝑖] ≤ ℙ[est ≥ 14𝑁 − 2.5𝑖]

≤ 26𝑁2 + 42𝑁 − 10𝑖2 − 10𝑖
26𝑁2 + 42𝑁 − 10𝑖2 − 10𝑖 + 𝐾 (𝑁 − 2.5𝑖)2 .

Let 𝐹 𝑖1 and 𝐹 𝑖0, respectively, denote the two upper bounds on the failure probabilities for the 𝑖-th bit.
Note that both cases require 𝑁 < 2.5𝑖.
For the attack program to succeed, it has to succeed for all bits. Let us consider fix the number of

bits 𝑁 = 32. Solving 𝑁 < 2.5𝑖 yields 𝑖 ≥ 13; thus, for 𝑖 = 1, · · · , 12, we cannot rely on the tail
bounds above. Luckily, the attack program can enumerate all the possibilities to resolve the last 12
bits (i.e., 212 = 4,096 trials). If in each iteration the number of trials that the attack program uses
to estimate the running time is 𝐾 = 104, I derive a lower bound on the success rate of the attack
program from the upper bounds on the failure probabilities derived above:

ℙ[Success for all but the last 12 bits] ≥
32∏
𝑖=13
(1 −max(𝐹 𝑖1, 𝐹 𝑖0)) ≥ 0.049833,

which is low, but not insignificant. However, the somewhat low probability is caused by a property
of compare: if guess and secret share a very long prefix, then the running-time behavior on different
values of 𝑔𝑢𝑒𝑠𝑠 becomes indistinguishable. However, if I increase the number of bits for the
brute-force enumeration, for example, the attack program enumerates all the possibilities to resolve
the last 14 bits (i.e., 214 = 16,384 trials), and I obtain:

ℙ[Success for all but the last 14 bits] ≥ 0.796052,

which is a much higher probability! In this way, the attack program needs to perform a total of
10,000 × 18 + 16,384 = 196,384 calls to check.
Overall, the analysis above concludes that the check and compare procedures in Fig. 5.17 are

vulnerable to a timing attack.
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Table 5.4: Inferred upper bounds of the expectations of monotone costs, with comparison to Ngo et al. [124].ABSYNTH uses a finer-grained set of base functions, and it supports bounds of the form | [𝑥, 𝑦] |, which isdefined as max(0, 𝑦 − 𝑥).
program pre-condition upper bound by my tool upper bound by Absynth [124]2drdwalk 𝑑 <𝑛 2(𝑛 − 𝑑 + 1) (deg 1, 0.269s) 2 | [𝑑, 𝑛 + 1] | (deg 1, 0.170s)C4B_t09 𝑥 >0 17𝑥 (deg 1, 0.061s) 17 | [0, 𝑥 ] | (deg 1, 0.014s)C4B_t13 𝑥 >0∧ 𝑦 >0 1.25𝑥 + 𝑦 (deg 1, 0.060s) 1.25 | [0, 𝑥 ] | + | [0, 𝑦 ] | (deg 1, 0.008s)C4B_t15 𝑥 > 𝑦∧ 𝑦 >0 1.1667𝑥 (deg 1, 0.072s) 1.3333 | [0, 𝑥 ] | (deg 1, 0.014s)C4B_t19 𝑖 >100∧𝑘>0 𝑘 + 2𝑖 − 49 (deg 1, 0.059s) | [0, 51 + 𝑖 + 𝑘] | + 2 | [0, 𝑖] | (deg 1, 0.010s)C4B_t30 𝑥 >0∧ 𝑦 >0 0.5𝑥 + 0.5𝑦 + 2 (deg 1, 0.044s) 0.5 | [0, 𝑥 + 2] | + 0.5 | [0, 𝑦 + 2] | (deg 1, 0.007s)C4B_t61 𝑙 ≥ 8 1.4286𝑙 (deg 1, 0.046s) | [0, 𝑙] | + 0.5 | [1, 𝑙] | (deg 1, 0.007s)bayes_net 𝑛>0 4𝑛 (deg 1, 0.264s) 4 | [0, 𝑛] | (deg 1, 0.057s)ber 𝑥 <𝑛 2(𝑛 − 𝑥 ) (deg 1, 0.035s) 2 | [𝑥, 𝑛] | (deg 1, 0.004s)bin 𝑛>0 0.2(𝑛 + 9) (deg 1, 0.036s) 0.2 | [0, 𝑛 + 9] | (deg 1, 0.030s)condand 𝑛>0∧𝑚>0 2𝑚 (deg 1, 0.042s) 2 | [0, 𝑚] | (deg 1, 0.004s)cooling 𝑚𝑡> 𝑠𝑡∧𝑡 >0 𝑚𝑡 − 𝑠𝑡 + 0.42𝑡 + 2.1 (deg 1, 0.071s) 0.42 | [0, 𝑡 + 5] | + | [𝑠𝑡, 𝑚𝑡] | (deg 1, 0.017s)coupon ⊤ 11.6667 (deg 4, 0.066s) 15 (deg 1, 0.016s)cowboy_duel ⊤ 1.2 (deg 1, 0.030s) 1.2 (deg 1, 0.004s)cowboy_duel_3 ⊤ 2.0833 (deg 1, 0.110s) 2.0833 (deg 1, 0.142s)fcall 𝑥 <𝑛 2(𝑛 − 𝑥 ) (deg 1, 0.053s) 2 | [𝑥, 𝑛] | (deg 1, 0.004s)

filling_vol 𝑣𝑜𝑙𝑇𝐹 >0 0.6667𝑣𝑜𝑙𝑇𝐹 + 7 (deg 1, 0.082s) 0.3333( | [0, 𝑣𝑜𝑙𝑇𝐹 + 10] | + | [0, 𝑣𝑜𝑙𝑇𝐹 + 11] | )
(deg 1, 0.079s)

geo ⊤ 5 (deg 1, 0.061s) 5 (deg 1, 0.003s)hyper 𝑥 <𝑛 5(𝑛 − 𝑥 ) (deg 1, 0.035s) 5 | [𝑥, 𝑛] | (deg 1, 0.005s)linear01 𝑥 >2 0.6𝑥 (deg 1, 0.034s) 0.6 | [0, 𝑥 ] | (deg 1, 0.008s)prdwalk 𝑥 <𝑛 1.1429(𝑛 − 𝑥 + 4) (deg 1, 0.037s) 1.1429 | [𝑥, 𝑛 + 4] | (deg 1, 0.011s)

prnes 𝑦 >0∧𝑛<0 −68.4795𝑛 + 0.0526(𝑦 − 1) 68.4795 | [𝑛, 0] | + 0.0526 | [0, 𝑦 ] |
(deg 1, 0.071s) (deg 1, 0.016s)

prseq 𝑦 >9∧𝑥− 𝑦 >2 1.65𝑥 − 1.5𝑦 (deg 1, 0.061s) 1.65 | [ 𝑦, 𝑥 ] | + 0.15 | [0, 𝑦 ] | (deg 1, 0.011s)

prspeed 𝑥+1<𝑛∧ 𝑦 <𝑚 2(𝑚 − 𝑦) + 0.6667(𝑛 − 𝑥 ) 2 | [ 𝑦, 𝑚] | + 0.6667 | [𝑥, 𝑛] | (deg 1, 0.010s)(deg 1, 0.065s)
race ℎ< 𝑡 0.6667(𝑡 − ℎ + 9) (deg 1, 0.039s) 0.6667 | [ℎ, 𝑡 + 9] | (deg 1, 0.027s)rdseql 𝑥 >0∧ 𝑦 >0 2.25𝑥 + 𝑦 (deg 1, 0.059s) 2.25 | [0, 𝑥 ] | + | [0, 𝑦 ] | (deg 1, 0.008s)

rdspeed 𝑥+1<𝑛∧ 𝑦 <𝑚 2(𝑚 − 𝑦) + 0.6667(𝑛 − 𝑥 ) 2 | [ 𝑦, 𝑚] | + 0.6667 | [𝑥, 𝑛] | (deg 1, 0.010s)(deg 1, 0.062s)
rdwalk 𝑥 <𝑛 2(𝑛 − 𝑥 + 1) (deg 1, 0.035s) 2 | [𝑥, 𝑛 + 1] | (deg 1, 0.004s)reject_sampl 𝑛>0 2𝑛 (deg 2, 0.071s) 2 | [0, 𝑛] | (deg 1, 0.350s)rfind_lv ⊤ 2 (deg 1, 0.033s) 2 (deg 1, 0.004s)rfind_mc 𝑘>0 2 (deg 1, 0.047s) | [0, 𝑘] | (deg 1, 0.007s)robot 𝑛>0 0.2778(𝑛 + 7) (deg 1, 0.047s) 0.3846 | [0, 𝑛 + 6] | (deg 1, 0.017s)roulette 𝑛<10 −4.9333𝑛 + 98.6667 (deg 1, 0.057s) 4.9333 | [𝑛, 20] | (deg 1, 0.073s)sprdwalk 𝑥 <𝑛 2(𝑛 − 𝑥 ) (deg 1, 0.036s) 2 | [𝑥, 𝑛] | (deg 1, 0.004s)trapped_miner 𝑛>0 7.5𝑛 (deg 1, 0.081s) 7.5 | [0, 𝑛] | (deg 1, 0.015s)

complex 𝑦, 𝑤, 𝑛, 𝑚>0 4𝑚𝑛 + 2𝑛 + 𝑤 + 0.6667(𝑦 + 1) ( | [0, 𝑤] | + 0.3333 | [0, 𝑦 ] | ) | [0, 𝑦 + 1] | + 0.6667
(deg 2, 0.142s) + (4 | [0, 𝑚] | + 2) | [0, 𝑛] | (deg 2, 0.451s)

multirace 𝑛>0∧𝑚>0 2𝑚𝑛 + 4𝑛 (deg 2, 0.080s) 2 | [0, 𝑚] | | [0, 𝑛] | + 4 | [0, 𝑛] | (deg 2, 0.692s)

pol04 𝑥 >0 4.5𝑥2 + 10.5𝑥 (deg 2, 0.052s) 1.5 | [0, 𝑥 ] |2 + 3 | [1, 𝑥 ] | | [0, 𝑥 ] | + 10.5 | [0, 𝑥 ] |
(deg 2, 0.101s)

pol05 𝑥 >0 0.6667(𝑥2 + 3𝑥 ) (deg 2, 0.059s) 2 | [0, 𝑥 + 1] | | [0, 𝑥 ] | (deg 2, 0.133s)pol07 𝑛>1 1.5𝑛2 − 4.5𝑛 + 3 (deg 2, 0.057s) 1.5 | [1, 𝑛] | | [2, 𝑛] | (deg 2, 0.203s)rdbub 𝑛>0 3𝑛2 (deg 2, 0.055s) 3 | [0, 𝑛] |2 (deg 2, 0.030s)

recursive 𝑙 < ℎ
0.25(ℎ − 𝑙)2 + 1.75(ℎ − 𝑙) 0.25 | [ 𝑙, ℎ] |2 + 1.75 | [ 𝑙, ℎ] |

(deg 2, 0.313s) (deg 2, 0.398s)

trader 𝑚𝑃>0∧𝑠𝑃 >𝑚𝑃 1.5(𝑠𝑃2 − 𝑚𝑃2 + 𝑠𝑃 − 𝑚𝑃) 1.5 | [𝑚𝑃, 𝑠𝑃 ] |2 + 3 | [𝑚𝑃, 𝑠𝑃 ] | | [0, 𝑚𝑃 ] |
(deg 2, 0.073s) + 1.5 | [𝑚𝑃, 𝑠𝑃 ] | (deg 2, 0.192s)
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Table 5.5: Inferred upper and lower bounds of the expectation of (possibly) non-monotone costs, withcomparison to Wang et al. [154]. To ensure soundness, my tool has to perform an extra termination checkrequired by Theorem 5.23.
program pre-cond. termination bounds by my tool bounds by Wang et al. [154]
Bitcoin

𝑥 ≥ 1 𝔼[𝑇 ] < ∞ ub. −1.475𝑥 (deg 1, 0.078s) −1.475𝑥 + 1.475 (deg 2, 3.705s)
Mining (deg 1, 0.080s) lb. −1.5𝑥 (deg 1, 0.088s) −1.5𝑥 (deg 2, 3.485s)
Bitcoin

𝑦 ≥ 0 𝔼[𝑇2 ] < ∞ ub. −7.375𝑦2 − 66.375𝑦 (deg 2, 0.127s) −7.375𝑦2 − 41.625𝑦 + 49 (deg 2, 5.936s)
Pool (deg 4, 0.168s) lb. −7.5𝑦2 − 67.5𝑦 (deg 2, 0.134s) −7.5𝑦2 − 67.5𝑦 (deg 2, 6.157s)

Queueing
𝑛 > 0 𝔼[𝑇2 ] < ∞ ub. 0.0531𝑛 (deg 2, 0.134s) 0.0492𝑛 (deg 3, 69.669s)

Network (deg 2, 0.208s) lb. 0.028𝑛 (deg 2, 0.139s) 0.0384𝑛 (deg 3, 68.849s)
Running

𝑥 ≥ 0 𝔼[𝑇2 ] < ∞ ub. 0.3333(𝑥2 + 𝑥 ) (deg 2, 0.063s) 0.3333(𝑥2 + 𝑥 ) (deg 2, 3.766s)
Example (deg 2, 0.064s) lb. 0.3333(𝑥2 + 𝑥 ) (deg 2, 0.059s) 0.3333(𝑥2 + 𝑥 ) − 0.6667 (deg 2, 3.555s)
Nested

𝑖 ≥ 0 𝔼[𝑇2 ] < ∞ ub. 0.3333𝑖2 + 𝑖 (deg 2, 0.117s) 0.3333𝑖2 + 𝑖 (deg 2, 28.398s)
Loop (deg 4, 0.127s) lb. 0.3333𝑖2 + 𝑖 (deg 2, 0.115s) 0.3333𝑖2 − 𝑖 (deg 2, 7.299s)

Random
𝑥 ≤ 𝑛

𝔼[𝑇 ] < ∞ ub. 2.5𝑥 − 2.5𝑛 − 2.5 (deg 1, 0.064s) 2.5𝑥 − 2.5𝑛 (deg 2, 4.536s)
Walk (deg 1, 0.063s) lb. 2.5𝑥 − 2.5𝑛 − 2.5 (deg 1, 0.068s) 2.5𝑥 − 2.5𝑛 − 2.5 (deg 2, 4.512s)

2D Robot 𝑥 ≥ 𝑦
ub. 1.7280(𝑥 − 𝑦)2 + 31.4539(𝑥 − 𝑦) 1.7280(𝑥 − 𝑦)2 + 31.4539(𝑥 − 𝑦)

𝔼[𝑇2 ] < ∞ + 126.5167 (deg 2, 0.132s) + 126.5167 (deg 2, 7.133s)
(deg 2, 0.145s) lb. 1.7280(𝑥 − 𝑦)2 + 31.4539(𝑥 − 𝑦) 1.7280(𝑥 − 𝑦)2 + 31.4539(𝑥 − 𝑦)

+ 29.7259 (deg 2, 0.121s) (deg 2, 7.040s)
ub. −0.5𝑛 − 3.6667𝑑 + 117.3333 0.0067𝑑𝑛 − 0.7𝑛 − 3.8035𝑑

Good 𝑑 ≤ 30 ∧ 𝔼[𝑇2 ] < ∞ (deg 2, 0.093s) + 0.0022𝑑2 + 119.4351 (deg 2, 5.272s)
Discount 𝑛 ≥ 1 (deg 2, 0.093s) lb. −0.005𝑛2 − 0.5𝑛 0.0067𝑑𝑛 − 0.7133𝑛 − 3.8123𝑑

(deg 2, 0.092s) + 0.0022𝑑2 + 112.3704 (deg 2, 5.323s)

𝑛 ≥ 0
ub. −0.2𝑛2 + 50.2𝑛 −0.2𝑛2 + 50.2𝑛

Pollutant 𝔼[𝑇2 ] < ∞ (deg 2, 0.092s) (deg 2, 5.851s)
Disposal (deg 2, 0.091s) lb. −0.2𝑛2 + 50.2𝑛 − 435.6 −0.2𝑛2 + 50.2𝑛 − 482

(deg 2, 0.094s) (deg 2, 5.215s)
ub. 40𝑎𝑏 − 180𝑎 − 180𝑏 + 810 40𝑎𝑏 − 180𝑎 − 180𝑏 + 810

Species 𝑎 ≥ 5 ∧ 𝔼[𝑇2 ] < ∞ (deg 2, 0.045s) (deg 3, 5.545s)
Fight 𝑏 ≥ 5 (deg 2, 0.042s) lb. N/A N/A
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Chapter 6

DMKAT: Deterministic Markov-Kleene
Algebra with Tests

In Chapter 4, I have proposed a general framework PMAF for static analysis of probabilistic
programs, but later in Chapter 5 I did not use PMAF in the development of the central-moment
analysis framework. One reason for this is that the analysis algorithm of PMAF (see §4.2.3) is
iteration based, whereas the central-moment analysis algorithm (see §5.2.4) is constraint based.
In this chapter, I summarize my progress towards bridging the gap between PMAF and central
moment reasoning, namely the Deterministic Markov-Kleene Algebra with Tests (DMKAT) framework,
which can be seen as a conservative extension of PMAF, except that I get rid of nondeterminism and
procedure calls from the framework. I also discuss some avenues for future research on enhancing
the DMKAT framework.
The linear expectation-invariant analysis (LEIA)—presented in §4.3.3 as an instantiation of

PMAF—is able to derive expectation invariants over program variables, thus it is already able to
reason about moments, by instrumenting a program with auxiliary variables that track powers
of variables. For example, Fig. 6.1(a) presents a simple one-dimensional biased random walk
program, where the tick(1) statement indicates that the accumulated cost is the number of steps
before the random walk terminates. Fig. 6.1(b) then instruments the program by explicitly using
a program variable tick to accumulate costs, as well as introducing 𝑥2, tick2, and 𝑥𝑡 to reflect
the values of 𝑥2, tick2, and 𝑥 · tick, respectively. Note that the instrumented program—which
keeps track of values of nonlinear expressions—is actually linear, in the sense that all arithmetic
expressions are linear. Interestingly, such an instrumentation technique can linearize nonlinear
programs in a way that one can apply static analysis for linear programs (e.g., [44]). Two linear
expectation invariants for Fig. 6.1(b), where variables with primes denote their values at the end of
the program, are 𝔼[tick′] ≤ tick + 20 and 𝔼[tick′2] ≤ tick2 + 40 · tick + 460, which give bounds to
the first and second moments of the accumulated cost, respectively. However, LEIA cannot derive
the desired expectation invariants about 𝔼[tick′] or 𝔼[tick′2], because, as I discussed in §4.3.3 and
also elaborated in §5.3.3, probabilistic termination complicates the analysis of expectations and I
have to make many conservative design choices for LEIA.
Inspired by the development of central moment analysis, especially the use of Optional Stopping

Theorems that reason about expectation invariants through stochastic processes (e.g., a Markov
chain whose transitions are determined by a loop body), I observe that it is more natural to think
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𝑥 B 0;
while 𝑥 < 10 do
if prob(0.75) then
𝑥 B 𝑥 + 1

else
𝑥 B 𝑥 − 1

fi;
tick(1)

od

(a)

(𝑥, 𝑥2, 𝑥𝑡) B (0, 0, 0);
while 𝑥 < 10 do
if prob(0.75) then
(𝑥, 𝑥2, 𝑥𝑡) B (𝑥 + 1, 𝑥2 + 2𝑥 + 1, 𝑥𝑡 + tick)

else
(𝑥, 𝑥2, 𝑥𝑡) B (𝑥 − 1, 𝑥2 − 2𝑥 + 1, 𝑥𝑡 − tick)

fi;
(tick, tick2, 𝑥𝑡) B (tick + 1, tick2 + 2tick + 1, 𝑥𝑡 + 𝑥)

od

(b)
Fig. 6.1: (a) A simple one-dimensional biased random walk program, and (b) its instrumented version formoment tracking.

of summarizing loops directly instead of iterating the loop-body transformer to obtain a fixed
point. For non-probabilistic programs, people have been successful to avoid iteration-based solving
algorithms by using Kleene algebras—rather than lattices—as the algebraic foundation of the static
analysis (e.g., [53, 54, 89, 92, 133, 157]). The intuition is that a Kleene algebra is equipped explicitly
with a Kleene-star operation that corresponds to loops; in this way, the analysis designer has the
opportunity to develop a non-iterative loop summarization algorithm to abstract Kleene-stars. Even
better, for non-probabilistic programs represented as control-flow graphs, one can apply Tarjan’s
path-expression algorithm [142] to obtain a regular expression (i.e., an expression in a semantic
Kleene algebra) that encodes all possible program executions.
However, I cannot directly adapt existing results on algebraic static analysis for non-probabilistic

programs. The major gap here is that PMAF uses hyper-graphs to encode control-flow graphs,
and Kleene algebras, in essence, provide a theory on regular sets of execution paths, rather than
execution hyper-paths. Therefore, in this chapter, I first develop a theory on regular hyper-paths
(see §6.1). The intuition is that a hyper-path is a concatenation of hyper-edges—each of which has
one source node and multiple destination nodes—thus represents a tree, on which every root-to-leaf
path corresponds to a program execution path. Thus, I adapt and adopt the theory on regular-tree
languages and regular-tree expressions [31], as a generalization of the theory on regular languages
and regular expressions. The key challenge is that for probabilistic programs, I have to consider
infinite execution paths (to account for probabilistic termination), so a hyper-path might have an
infinite height. My solution is to model hyper-paths as possibly-infinite trees and develop a theory
on possibly-infinite trees based on coinduction.
Using the theory on regular hyper-paths, I am able to extract a regular hyper-path expression—as

a finite representation—of a possibly-infinite hyper-path that leads from the entry node of a
control-flow hyper-graph. Following the recipe of algebraic static analysis, in §6.2, I develop a
new family of algebraic structures that can be used to reinterpret regular hyper-path expressions,
namely the Deterministic Markov-Kleene Algebra with Tests (DMKAT). As the name suggests, I
integrate a deterministic fragment of the Markov Algebra framework (developed in §3.3) with ideas
from Kleene Algebra with Tests (KAT) framework [101]. A KAT combines a Kleene algebra with a
Boolean algebra, thus enables algebraic reasoning of programs with sequencing, branching, and
iteration constructs. I then formulate an algebraic interpretation of regular hyper-path expressions
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with respect to DMKATs, and prove that the tree-based model (i.e., the interpretation of regular
hyper-path expressions as possibly-infinite trees) is sound for any DMKAT. I also demonstrate two
concrete DMKATs for reasoning about probabilistic programs (without nondeterminism): one for
the relations among input and output states, and the other for transition kernels on states.
Finally, in §6.3, I present some preliminary results on building a static-analysis framework for

probabilistic programs based on DMKAT. The first direction is to adapt existing abstract domains
for analyzing non-probabilistic programs. The intuition is that if we are not concerned about the
probabilities (i.e., probabilistic branching is treated as nondeterministic branching), we can achieve
a hyper-path analysis by decomposing the hyper-path as a collection of rooted paths (recall that
a hyper-path is a possibly-infinite tree), abstracting each rooted path, and joining the path-wise
analysis results. Thus, I sketch an algorithm for computing an abstraction of a regular hyper-path
expression, with respect to any non-probabilistic abstract domain that can be formulated as a
regular algebra. The second direction is to consider the probabilistic aspects in analyses, e.g., the
expectation-invariant analysis. When I developed PMAF in §4.2, I introduced Pre-Markov Algebras
(PMAs) that are very similar to the Markov Algebras (which are usually used as concrete semantic
algebras), but PMAs admit a different set of axioms that are more suitable for static analysis.
Similarly, I provide a family of algebraic structures, namely Deterministic Pre-Markov Algebras
(DPMAs), which are very similar to DMKATs, but DPMAs admit a different set of axioms. Instead of
relying on iteration-until-fixed-point algorithms (which PMAF is based on), I argue that the use of
regular hyper-path expressions enables the flexibility of adapting loop-summarization techniques.
Intuitively, when abstracting a regular hyper-path expression that stands for a loop, my approach is
to let the static-analysis developer determine how to discover an invariant for the loop. To achieve
this, I sketch a declarative derivation system for abstract interpretations of regular hyper-path
expressions. The actual theoretical development for §6.3 is left for future work, but I show some
examples that demonstrate how DPMA-based analyses would work, including an analysis of the
moment-tracking program in Fig. 6.1(b).

6.1 A Theory on Regular Hyper-Paths
My development in this section is largely inspired by the theory on regular-tree languages and
regular-tree expressions [31]. However, I have to tackle a technical challenge that a hyper-path
can correspond to a tree with an infinite height. Induction is a well-established proof principle
for reasoning about inductively defined datatypes (e.g., finite lists and finite trees), but does not
work for infinite datatypes in general. Thus, in this section, I rely on a principle of coinduction,
which, as shown in prior work (e.g. [81, 102]), is indeed a well-founded principle for reasoning
about coinductive datatypes (e.g., infinite streams and infinite trees).

6.1.1 Possibly-Infinite Trees
A ranked alphabet is a pair (F , Arity) where F is a finite set and Arity is a map from F to ℤ+. The
arity of a symbol 𝑓 ∈ F is Arity( 𝑓 ). The set of symbols of arity 𝑛 is denoted by F𝑛. For simplicity,
we use parentheses and commas to specify symbols with their arity; for example, 𝑓 (, ) specifies a
binary symbol 𝑓 .
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Let K be a set of constants (i.e., symbols with arity zero) called holes. I assume that the sets K
and F0 are disjoint, and there is a distinguished symbol ⊖ ∉ F0 ∪ K with arity zero. Intuitively,
a hole symbol in K represents a placeholder for later substitution with trees, and the ⊖ symbol
indicates a “yet unknown subtree.” A possibly-infinite tree 𝑡 ∈ Tree∞(F ,K ) over the ranked
alphabet F and the set of variables K is a partial map 𝑡 : ℕ∗ ⇀ F ∪ K ∪ {⊖} with domain
dom(𝑡) ⊆ ℕ∗ satisfying the following property:
Property 6.1.
(i) dom(𝑡) is non-empty and prefix-closed (thus 𝜖 ∈ dom(𝑡));
(ii) for any 𝑝 ∈ dom(𝑡), if 𝑡(𝑝) ∈ F𝑛 for some 𝑛 > 0, then { 𝑗 | 𝑝 𝑗 ∈ dom(𝑡)} = {1, · · · , 𝑛};
(iii) for any 𝑝 ∈ dom(𝑡), if 𝑡(𝑝) ∈ F0 ∪ K ∪ {⊖}, then { 𝑗 | 𝑝 𝑗 ∈ dom(𝑡)} = ∅.
For brevity, we denote by 𝑎 the finite tree {𝜖 ↦→ 𝑎}, for any 𝑎 ∈ F0 ∪ K ∪ {⊖}. We also denote

by 𝑓 (𝑠1, · · · , 𝑠𝑛) the possibly-infinite tree
{𝜖 ↦→ 𝑓 } ∪⋃

𝑗∈{1,··· ,𝑛}{ 𝑗𝑝 ↦→ 𝑠 𝑗(𝑝) | 𝑝 ∈ dom(𝑠 𝑗)},
for any 𝑓 ∈ F𝑛 with 𝑛 > 0 and 𝑠1, · · · , 𝑠𝑛 are possibly-infinite trees.
Example 6.2. Let F = {seq[𝑥 B 𝑥 + 1] (), cond[𝑥 < 0] (, ), 1}. Recall the definition of control-

flow hyper-graphs and control-flow actions in §2.2. Intuitively, seq[𝑥 B 𝑥 + 1] is a unary symbol,
representing the composition of the statement 𝑥 B 𝑥 + 1 and the only argument of the symbol;
cond[𝑥 < 0] is a binary symbol, representing a conditional branch with predicate 𝑥 < 0, such that the
first and second arguments correspond to the then and else branches, respectively; and 1 is a constant,
representing program termination. For example, the program “if 𝑥 < 0 then 𝑥 B 𝑥 + 1 fi” can be
encoded as the following finite tree:

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

1

1

Encoding loops—for example, “while 𝑥 < 0 do 𝑥 B 𝑥 + 1 od”—requires infinite trees. Intuitively,
the loop can be encoded as the following infinite tree:

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

. . .

1

1

Formally, the tree 𝑡 for the loop is defined in a way that dom(𝑡) = 1∗ ∪ (11)∗2, and
𝑡(12𝑘) = cond[𝑥 < 0] for any 𝑘 ∈ ℤ+,
𝑡(12𝑘+1) = seq[𝑥 B 𝑥 + 1] for any 𝑘 ∈ ℤ+,
𝑡((11)𝑘2) = 1 for any 𝑘 ∈ ℤ+.
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In §6.1.2, I will develop a mechanism to finitely represent such infinite trees.

Let 𝑡 ∈ Tree∞(F ,K ) be a possibly-infinite tree. Every element in dom(𝑡) is called a position. A
leaf position is a position 𝑝 such that 𝑝 𝑗 ∉ dom(𝑡) for any 𝑗 ∈ ℕ. We denote by root(𝑡) the root
symbol of 𝑡, defined by root(𝑡) def

= 𝑡(𝜖). A subtree 𝑡 |𝑝 of a tree 𝑡 at position 𝑝 is the tree defined by
the following:

• dom(𝑡 |𝑝) = {𝑞 | 𝑝𝑞 ∈ dom(𝑡)}, and
• ∀𝑞 ∈ dom(𝑡 |𝑝) : 𝑡 |𝑝(𝑞) = 𝑡(𝑝𝑞).

A tree 𝑡 can then be decomposed as 𝑓 (𝑡 |1, · · · , 𝑡 |𝑛), where 𝑓 = root(𝑡) with arity 𝑛.
To compare two possibly-infinite trees, I define a refinement relation ⊑𝒯⊆ Tree∞(F ,K ) ×Tree∞(F ,K ) as the maximum binary relation satisfying the following property:
Property 6.3. If 𝑡1 ⊑𝒯 𝑡2, then either
(i) 𝑡1 = ⊖, or
(ii) root(𝑡1) = 𝑓 and root(𝑡2) = 𝑓 for some 𝑓 ∈ F ∪ K , and for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, it holds

that 𝑡1 |𝑖 ⊑𝒯 𝑡2 |𝑖.
This property formulates the idea that the symbol ⊖ indicates a “yet unknown subtree.” Because

the relation ⊑𝒯 is maximum, the converse of the Property 6.3 also holds. Therefore, the relation
⊑𝒯 can be characterized by the greatest fixed point of the operator below.

𝑇⊑𝒯 (𝑅)
def
= {⟨⊖, 𝑡⟩ | 𝑡 ∈ Tree∞(F ,K )} ∪

{⟨ 𝑓 (𝑠1,· · ·, 𝑠𝑛), 𝑓 (𝑡1,· · ·, 𝑡𝑛)⟩ | 𝑓 ∈ F ∪K , Arity( 𝑓 )=𝑛,∀ 𝑗 ∈ {1,· · ·, 𝑛} : ⟨𝑠 𝑗, 𝑡 𝑗⟩ ∈ 𝑅}.
Lemma 6.4. The relation ⊑𝒯 is a partial order on Tree∞(F ,K ).
Proof. The relation ⊑𝒯 is reflexive because {⟨𝑡, 𝑡⟩ | 𝑡 ∈ Tree∞(F ,K )} satisfies Property 6.3,

and the relation ⊑𝒯 is maximum by definition.
We claim that ⊑𝒯 is antisymmetric, i.e., if 𝑡1 ⊑𝒯 𝑡2 and 𝑡2 ⊑𝒯 𝑡1, then 𝑡1 = 𝑡2. If root(𝑡1) = ⊖,

then by 𝑡2 ⊑𝒯 𝑡1 we also have root(𝑡2) = ⊖, thus 𝑡1 = 𝑡2. Otherwise, we know that root(𝑡1) = 𝑓 for
some 𝑓 ∈ F ∪K , then by 𝑡1 ⊑𝒯 𝑡2 we have root(𝑡2) = 𝑓 , and for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, it holds
that 𝑡1 |𝑖 ⊑𝒯 𝑡2 |𝑖. By 𝑡2 ⊑𝒯 𝑡1, we also have 𝑡2 |𝑖 ⊑𝒯 𝑡1 |𝑖 for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}. Therefore, by
coinduction hypothesis11, we have 𝑡1 |𝑖 = 𝑡2 |𝑖 for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, thus 𝑡1 = 𝑡2.
We claim that ⊑𝒯 is transitive, i.e., if 𝑡1 ⊑𝒯 𝑡2 and 𝑡2 ⊑𝒯 𝑡3, then 𝑡1 ⊑𝒯 𝑡3. If root(𝑡1) = ⊖,

then we have 𝑡1 ⊑𝒯 𝑡3 by definition. Otherwise, we know that root(𝑡1) = 𝑓 for some 𝑓 ∈ F ∪ K .
By 𝑡1 ⊑𝒯 𝑡2, we know that root(𝑡2) = 𝑓 and for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, it holds that 𝑡1 |𝑖 ⊑𝒯 𝑡2 |𝑖.
By 𝑡2 ⊑𝒯 𝑡3, we know that root(𝑡3) = 𝑓 and for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, it holds that 𝑡2 |𝑖 ⊑𝒯 𝑡3 |𝑖.
Thus, by coinduction hypothesis, for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, it holds that 𝑡1 |𝑖 ⊑𝒯 𝑡3 |𝑖. Therefore,
by definition, we conclude that 𝑡1 ⊑𝒯 𝑡3. □

The next lemma justifies that the order ⊑𝒯 stands for refinements, in the sense that if 𝑡1 ⊑𝒯 𝑡2,
it must hold that 𝑡2 is obtained by substituting some ⊖ symbols in 𝑡1 with trees.

11As pointed out by Kozen and Silva [102], we can use the coinduction hypothesis as long as there is progress in
observing the roots of trees, and there is no further investigation of the children of the trees.
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Lemma 6.5. If 𝑡1 ⊑𝒯 𝑡2, then dom(𝑡1) ⊆ dom(𝑡2), and for all 𝑝 ∈ dom(𝑡1), it holds that 𝑡1(𝑝) = ⊖
or 𝑡1(𝑝) = 𝑡2(𝑝).

Proof. If root(𝑡1) = ⊖, then dom(𝑡1) = {𝜖} and the lemma holds obviously. Otherwise, we
know that root(𝑡1) = 𝑓 for some 𝑓 ∈ F ∪ K , and by 𝑡1 ⊑𝒯 𝑡2, we have root(𝑡2) = 𝑓 and
for all 𝑖 ∈ {1, · · · , Arity( 𝑓 )}, it holds that 𝑡1 |𝑖 ⊑𝒯 𝑡2 |𝑖. By coninduction hypothesis, for all
𝑖 ∈ {1, · · · , Arity( 𝑓 )}, we know that the lemma holds for 𝑡1 |𝑖 ⊑𝒯 𝑡2 |𝑖. Thus, we have

dom(𝑡1) = ⋃
𝑖∈{1,··· ,Arity( 𝑓 )}{𝑖𝑝 | 𝑝 ∈ dom(𝑡1 |𝑖)}

⊆ ⋃
𝑖∈{1,··· ,Arity( 𝑓 )}{𝑖𝑝 | 𝑝 ∈ dom(𝑡2 |𝑖)}

= dom(𝑡2).

For any 𝑝 ∈ dom(𝑡1), either 𝑝 = 𝜖, or there exists 𝑖 such that 𝑝 = 𝑖𝑝′ and 𝑝′ ∈ dom(𝑡1 |𝑖). In
the former case, we have 𝑡1(𝜖) = 𝑓 = 𝑡2(𝜖). In the latter case, we know that either 𝑡1 |𝑖(𝑝′) = ⊖
or 𝑡1 |𝑖(𝑝′) = 𝑡2 |𝑖(𝑝′). Therefore, we conclude that either 𝑡1(𝑝) = 𝑡1(𝑖𝑝′) = 𝑡1 |𝑖(𝑝′) = ⊖, or
𝑡1(𝑝) = 𝑡1(𝑖𝑝′) = 𝑡1 |𝑖(𝑝′) = 𝑡2 |𝑖(𝑝′) = 𝑡2(𝑖𝑝′) = 𝑡2(𝑝). □

Lemma 6.6. The relation ⊑𝒯 is an 𝜔-continuous partial order on Tree∞(F ,K ) with ⊖ as the least
element.

Proof. Fix an 𝜔-chain {𝑡𝑘}𝑘∈ℕ of possibly-infinite trees with respect to the partial order ⊑𝒯
(Lemma 6.4). We then try to construct the least upper bound of the chain, and call it 𝑡′. We
set dom(𝑡′) to be ⋃

𝑘∈ℕ dom(𝑡𝑘). By Lemma 6.5, we know that {dom(𝑡𝑘)}𝑘∈ℕ is a ⊆-chain. For a
position 𝑝 ∈ dom(𝑡′), we set 𝑡′(𝑝) to be

• ⊖, if there exists 𝐾 ∈ ℕ such that 𝑡𝑘(𝑝) = ⊖ for all 𝑘 ≥ 𝐾;

• 𝑡𝑘𝑝 (𝑝), if there exists 𝑘𝑝 ∈ ℕ satisfying 𝑝 ∈ dom(𝑡𝑘𝑝) and 𝑡𝑘𝑝 (𝑝) ≠ ⊖.
The well-definedness of 𝑡′ is guaranteed by Lemma 6.5. If 𝑡′ is an upper bound on {𝑡𝑘}𝑘∈ℕ, then 𝑡′
is the least one as dom(𝑡′) is the least upper bound on {dom(𝑡𝑘)}𝑘∈ℕ. Thus, it remains to prove
that 𝑡′ is indeed an upper bound.
We then proceed the proof by coinduction. For any ℓ ∈ ℕ, if root(𝑡ℓ) = ⊖, then 𝑡ℓ ⊑𝒯 𝑡′. Thus,

without loss of generality, we can assume that 𝑡1 ≠ ⊖. Let 𝑓 = root(𝑡1) ∈ F ∪ K . Thus, by
definition, we know that root(𝑡𝑘) = 𝑓 for all 𝑘 ∈ ℕ, and also root(𝑡′) = 𝑓 . Let 𝑛 = Arity( 𝑓 ). Then
for each 𝑗 ∈ {1, · · · , 𝑛}, it holds that {𝑡𝑘 | 𝑗}𝑘∈ℕ is an 𝜔-chain, and by coinduction hypothesis, we
know that 𝑡′| 𝑗 is an upper bound on {𝑡𝑘 | 𝑗}𝑘≥ℕ. Therefore, 𝑓 (𝑡′|1, · · · , 𝑡′|𝑛) is an upper bound of
{ 𝑓 (𝑡𝑘 |1, · · · , 𝑡𝑘 |𝑛)}𝑘∈ℕ. □

I now formulate a mechanism to define functions on possibly-infinite trees. Note that the
standard definition of inductive functions does not work because of the existence of infinite trees.
Let (𝐷, ⊑𝐷) be an 𝜔-cpo with a least element ⊥𝐷. To define a function from possibly-infinite trees
in Tree∞(F ,K ) to 𝐷, I require a map base : F0 ∪ K → 𝐷 and a family of maps into 𝜔-continuous
functions ind𝑛 : F𝑛 → [𝐷𝑛 → 𝐷] for all 𝑛 > 0 such that F𝑛 ≠ ∅. I then introduce an 𝜔-chain of
functions {ℎ𝑖}𝑖≥0 as follows, and define the target function by ℎ def

=
⊔

𝑖≥0 ℎ𝑖 with respect to the
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pointwise extension of ⊑𝐷.

ℎ0
def
= _𝑡. ⊥,

ℎ𝑖+1
def
= _𝑡.


⊥ if root(𝑡) = ⊖,
base(root(𝑡)) if root(𝑡) ∈ F0 ∪ K ,
ind𝑛(root(𝑡)) (ℎ𝑖(𝑡 |1), · · · , ℎ𝑖(𝑡 |𝑛)) if root(𝑡) ∈ F𝑛 for some 𝑛 > 0.

Lemma 6.7. Let ℎ : Tree∞(F ,K ) → 𝐷 be a function from possibly-infinite trees to an 𝜔-cpo
(𝐷, ⊑𝐷) with a least element ⊥𝐷. Then ℎ(⊖) = ⊥𝐷.

Proof. By definition, we know that there exists an 𝜔-chain of functions {ℎ 𝑗} 𝑗≥0 defined as above
such that ℎ =

⊔
𝑗≥0 ℎ 𝑗. Also, it is obvious that for each 𝑗 ≥ 0, ℎ 𝑗(⊖) = ⊥𝐷. Thus, we conclude that

ℎ(⊖) = ⊔
𝑗≥0 ℎ 𝑗(⊖) = ⊔

𝑗≥0⊥𝐷 = ⊥𝐷. □

Lemma 6.8. Let ℎ : Tree∞(F ,K ) → 𝐷 be a function from possibly-infinite trees to an 𝜔-cpo
(𝐷, ⊑𝐷) with a least element ⊥𝐷, induced by maps base and ind𝑛 for 𝑛 > 0. Then ℎ is 𝜔-continuous
with respect to the pointwise extension of ⊑𝐷.

Proof. We know that there exists an 𝜔-chain of functions {ℎ 𝑗} 𝑗≥0 defined as above such that
ℎ =

⊔
𝑗≥0 ℎ 𝑗. We claim that for each 𝑗 ≥ 0, the function ℎ 𝑗 is 𝜔-continuous. We proceed by

induction on 𝑗.
When 𝑗 = 0:

By definition, we have ℎ0
def
= _𝑡. ⊥, which is obviously 𝜔-continuous.

When 𝑗 = 𝑘 + 1:
By definition, we have

ℎ 𝑗
def
= _𝑡.


⊥ if root(𝑡) = ⊖,
base(root(𝑡)) if root(𝑡) ∈ F0 ∪ K ,
ind𝑛(root(𝑡)) (ℎ𝑘(𝑡 |1), · · · , ℎ𝑘(𝑡 |𝑛)) if root(𝑡) ∈ F𝑛 for some 𝑛 > 0.

.

Consider an 𝜔-chain of trees {𝑡𝑖}𝑖≥0. Without loss of generality, we assume that root(𝑡0) ≠ ⊖
(because ℎ 𝑗({𝜖 ↦→ ⊖}) = ⊥).
Then by the definition of the refinement order ⊑𝒯, we know that {root(𝑡𝑖) | 𝑖 ≥ 0} is a
singleton set.
If the singleton set contains a symbol 𝑎 ∈ F0 ∪K , we know that ℎ 𝑗(𝑡𝑖) = base(𝑎) for all 𝑖 ≥ 0,
thus ℎ 𝑗(⊔𝑖≥0 𝑡𝑖) = ℎ 𝑗(𝑎) = ⊔

𝑖≥0 ℎ 𝑗(𝑎) = ⊔
𝑖≥0 ℎ 𝑗(𝑡𝑖).

If the singleton set contains a symbol 𝑓 ∈ F𝑛 for some 𝑛 > 0, then by the assumption that
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ind𝑛( 𝑓 ) is 𝜔-continuous and by induction hypothesis that ℎ𝑘 is 𝜔-continuous, we can derive

ℎ 𝑗(⊔𝑖≥0 𝑡𝑖) = ind𝑛( 𝑓 ) (ℎ𝑘((⊔𝑖≥0 𝑡𝑖) |1), · · · , ℎ𝑘((⊔𝑖≥0 𝑡𝑖) |𝑛))
= ind𝑛( 𝑓 ) (ℎ𝑘(⊔𝑖≥0(𝑡𝑖 |1)), · · · , ℎ𝑘(⊔𝑖≥0(𝑡𝑖 |𝑛)))
= ind𝑛( 𝑓 ) (⊔𝑖≥0 ℎ𝑘(𝑡𝑖 |1), · · · ,⊔𝑖≥0 ℎ𝑘(𝑡𝑖 |𝑛))
=

⊔
𝑖1≥0 · · ·⊔𝑖𝑛≥0 ind𝑛( 𝑓 ) (ℎ𝑘(𝑡𝑖1 |1), · · · , ℎ𝑘(𝑡𝑖𝑛 |𝑛))

(⊒: obvious)
(⊑: ∀𝑖1, · · · 𝑖𝑛, the LHS item is bounded by the max(𝑖1, · · · , 𝑖𝑛)-th RHS item)

=
⊔

𝑖≥0 ind𝑛( 𝑓 ) (ℎ𝑘(𝑡𝑖 |1), · · · , ℎ𝑘(𝑡𝑖 |𝑛))
=

⊔
𝑖≥0 ℎ 𝑗(𝑡𝑖).

Thus, we conclude the proof of the claim that ℎ 𝑗 is 𝜔-continuous for all 𝑗 ≥ 0.
Let us now consider an 𝜔-chain of trees {𝑡𝑖}𝑖≥0. Then we can conclude the proof by

ℎ(⊔𝑖≥0 𝑡𝑖) = (⊔ 𝑗≥0 ℎ 𝑗) (⊔𝑖≥0 𝑡𝑖)
=

⊔
𝑗≥0 ℎ 𝑗(⊔𝑖≥0 𝑡𝑖)

=
⊔

𝑗≥0
⊔

𝑖≥0 ℎ 𝑗(𝑡𝑖)
=

⊔
𝑖≥0

⊔
𝑗≥0 ℎ 𝑗(𝑡𝑖)

=
⊔

𝑖≥0(⊔ 𝑗≥0 ℎ 𝑗) (𝑡𝑖)
=

⊔
𝑖≥0 ℎ(𝑡𝑖).

□

I end this section by demonstrating a function that maps possibly-infinite trees to collections
of rooted paths on trees. I define paths(𝑡) ⊆ Path∞(F ,K ) def

= (F ∪ K ) · (ℕ · (F ∪ K ))∞ with the
following base and induction steps:

paths : Tree∞(F ,K ) → Path∞(F ,K )
paths(𝑎) def

= {𝑎} for 𝑎 ∈ F0 ∪ K
paths( 𝑓 (𝑠1, · · · , 𝑠𝑛)) def

= { 𝑓 𝑗𝑤 | 𝑗 = 1, . . . , 𝑛 ∧ 𝑤 ∈ paths(𝑠 𝑗)} for 𝑓 ∈ F𝑛 for some 𝑛 > 0

Note that the set Path∞(F ,K ) of possibly-infinite paths admits an 𝜔-cpo with the following
ordering

𝐴 ⊑P 𝐵
def
= (𝐴 ∩ Path+(F ,K ) ⊆ 𝐵 ∩ Path+(F ,K )) ∧ (𝐴 ∩ Path𝜔 (F ,K ) ⊇ 𝐵 ∩ Path𝜔 (F ,K )),

and the least element ⊥P def
= Path𝜔 (F ,K ), where Path+(F ,K ) def

= (F ∪K ) · (ℕ · (F ∪K ))∗ is the
set of finite paths, and Path𝜔 (F ,K ) def

= (F ∪ K ) · (ℕ · (F ∪ K ))𝜔 is the set of infinite paths. We
can again see that the ⊖ symbol indicates a “yet unknown tree,” because paths(⊖), by Lemma 6.7,
equals ⊥P, i.e., the set of all infinite paths.
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(Leaf)
𝑎 ∈ F0 ∪ K

𝑎 ∈ RegExp∞(F ,K )
(Node)
𝑓 ∈ F𝑛 𝑛 > 0 ∀𝑖 = 1, · · · , 𝑛 : 𝐸𝑖 ∈ RegExp∞(F ,K )

𝑓 (𝐸1, · · · , 𝐸𝑛) ∈ RegExp∞(F ,K )
(Concatenation)
𝐸1 ∈ RegExp∞(F ,K ∪ {□}) 𝐸2 ∈ RegExp∞(F ,K )

(𝐸1 ·□ 𝐸2) ∈ RegExp∞(F ,K )
(Iteration)
𝐸 ∈ RegExp∞(F ,K ∪ {□})
𝐸∞□ ∈ RegExp∞(F ,K )

Fig. 6.2: Generation rules for regular hyper-path expressions.
6.1.2 Regular Hyper-Path Expressions
Recall that a regular expression gives a finite representation of a (possibly infinite) regular set
of finite words, and a regular-tree expression gives a finite representation of a (possibly infinite)
regular set of finite trees [31]. Because in this chapter, I focus on probabilistic programs without
nondeterminism, each program should correspond to exactly one hyper-path (recall Example 6.2).
As a consequence, instead of identifying regular sets of hyper-paths, I identify regular hyper-paths in
this section. Intuitively, a hyper-path is a possibly-infinite tree, and my goal in this section is develop
a finite representation for such possibly-infinite trees, namely regular hyper-path expressions.
Let RegExp∞(F ,K ) denote the set of regular hyper-path expressions over a ranked alphabet F

and a set K of holes symbols. The set is defined to be inductively generated from the inference
rules listed in Fig. 6.2. In other words, a regular hyper-path expression in RegExp∞(F ,K ) takes
one of the syntactic forms: 𝑎, 𝑓 (𝐸1, · · · , 𝐸𝑛), (𝐸1 ·□ 𝐸2), and 𝐸∞□ , where 𝐸’s are regular hyper-path
expressions. Each regular hyper-path expression should correspond to exactly one hyper-path, i.e.,
one possibly-infinite tree in Tree∞(F ,K ). The rules (Leaf) and (Node) are the basic operations
for constructing leaf nodes and internal nodes of a tree, respectively. Intuitively, a hole □ ∈ K
represents a substitution placeholder: (𝐸1 ·□ 𝐸2) represents a tree obtained by substituting the
tree encoded by 𝐸2 for the any leaf with symbol □ in the tree encoded by 𝐸1. Then the iteration
operator 𝐸□∞ represents a tree obtained by (𝐸 ·□ 𝐸 ·□ · · · ·□ 𝐸 ·□ · · · ), i.e., self-substituting 𝐸 for the
hole □ for an infinite number of times.
To formally interpret regular hyper-path expressions as possibly-infinite trees, I first introduce a

substitution operator, defined as a function on possibly-infinite trees with the following base and
induction steps, where −1 and −2 indicates the two arguments of the substitution operator, and
the function is defined coinductively on the first argument:

(−1){□ {−2} : Tree∞(F ,K ) × Tree∞(F ,K \ {□}) → Tree∞(F ,K \ {□})
□{□ {𝑡} def

= 𝑡

𝑎{□ {𝑡} def
= 𝑎 for 𝑎 ≠ □

𝑓 (𝑠1, · · · , 𝑠𝑛){□ {𝑡} def
= 𝑓 (𝑠1{□ {𝑡}, · · · , 𝑠𝑛{□ {𝑡})

Example 6.9. Let F = {seq[𝑥 B 𝑥+1] (), cond[𝑥 < 0] (, ), 1} andK = {□1,□2}. Let 𝑡 = cond[𝑥 <
0] (□1,□2) and 𝑠 = seq[𝑥 B 𝑥 + 1] (1). Then
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𝑡{□1 {𝑠} =

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

1

□2 ; 𝑡{□2 {𝑠} =

cond[𝑥 < 0]

□1 seq[𝑥 B 𝑥 + 1]

1

.

Proposition 6.10. The substitution operator is 𝜔-continuous in its second argument.

I now define an interpretation from regular hyper-path expressions to possibly-infinite trees via
the map 𝒯K J−K inductively defined on the structure of regular hyper-path expressions as follows.

𝒯K J−K : RegExp∞(F ,K ) → Tree∞(F ,K )
𝒯K J𝑎K def

= 𝑎

𝒯K J 𝑓 (𝐸1, · · · , 𝐸𝑛)K def
= 𝑓 (𝒯K J𝑠1K, · · · ,𝒯K J𝑠𝑛K)

𝒯K J𝐸1 ·□ 𝐸2K
def
= 𝒯K∪{□}J𝐸1K{□ {𝒯K J𝐸2K}

𝒯K J𝐸∞□K def
= lfp⊑𝒯⊖ _𝑋. (𝒯K∪{□}J𝐸K{□ {𝑋})

Example 6.11. The regular hyper-path expression 𝐸
def
= (cond[𝑥 < 0] (seq[𝑥 B 𝑥 + 1] (□), 1))∞□

gives a finite representation of the infinite hyper-path presented in Example 6.2, i.e., the loop “while
𝑥 < 0 do 𝑥 B 𝑥 + 1 od.” Intuitively, the map 𝒯∅J𝐸K constructs the following 𝜔-chain of trees and
obtains the least upper bound as the interpretation of 𝐸:

⊖ ⊑𝒯

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

⊖

1 ⊑𝒯

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

cond[𝑥 < 0]

seq[𝑥 B 𝑥 + 1]

⊖

1

1

⊑𝒯 · · · .

6.1.3 Solving Regular Equations
In this section, I study the correspondence between regular hyper-path expressions and control-flow
hyper-graphs without nondeterminism, i.e., hyper-graphs where every non-exit node has exactly
one outgoing hyper-edge. Recall that a hyper-graph 𝐻 is a quadruple (𝑉, 𝐸, 𝑣entry, 𝑣exit), where
each hyper-edge 𝑒 ∈ 𝐸 is associated with a control-flow action 𝐶𝑡𝑟𝑙(𝑒). Consider a ranked alphabet
F

def
= {𝐶𝑡𝑟𝑙(𝑒) | 𝑒 ∈ 𝐸} ∪ {1} with a distinguished symbol 1 with arity zero, where for each

𝑒 = (𝑣, {𝑢1, · · · , 𝑢𝑘}) ∈ 𝐸, the arity of 𝑒 is Arity(𝑒) = 𝑘. Let 𝑋𝑣 for each 𝑣 ∈ 𝑉 be a variable denoting
some possibly-infinite tree. Intuitively, we can treat each hyper-edge 𝑒 = (𝑣, {𝑢1, · · · , 𝑢𝑘}) ∈ 𝐸 as
an equation 𝑋𝑣 = 𝑒(𝑋𝑢1 , · · · , 𝑋𝑢𝑘), where the right-hand-side is a regular hyper-path expression
in RegExp∞(F , {𝑋𝑣 | 𝑣 ∈ 𝑉}). Thus, we can extract the following equation system from a
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Algorithm 1 Gaussian elimination for regular hyper-path equations
Input: An equation system {𝑋𝑖 = 𝑅𝑖}𝑛𝑖=1 where each 𝑅𝑖 ∈ RegExp∞(F , {𝑋𝑖 | 𝑖 = 1, · · · , 𝑛})
Output: A closed-form solution {𝑋𝑖 = 𝐸𝑖}𝑛𝑖=1 where each 𝐸𝑖 ∈ RegExp∞(F , ∅)
for 𝑖← 1 to 𝑛 do ⊲ Front-solving
if 𝑋𝑖 appears in 𝑅𝑖 then

Let 𝑅′𝑖 be such that 𝑅′𝑖{□𝑖 {𝑋𝑖} = 𝑅𝑖 and 𝑋𝑖 does not appear in 𝑅′𝑖
𝑅𝑖 ← (𝑅′𝑖)∞□𝑖 ⊲ Loop-solving

end if
for each 𝑗 > 𝑖 do

𝑅 𝑗 ← 𝑅 𝑗{𝑋𝑖 {𝑅𝑖}
end for

end for
for 𝑖← 𝑛 to 2 do ⊲ Back-solving
for each 𝑗 < 𝑖 do

𝑅 𝑗 ← 𝑅 𝑗{𝑋𝑖 {𝑅𝑖}
end for

end for
return {𝑋𝑖 = 𝑅𝑖}𝑛𝑖=1

hyper-graph:

𝑋𝑣 = 𝐶𝑡𝑟𝑙(𝑒) (𝑋𝑢1 , · · · , 𝑋𝑢𝑘), 𝑒 = (𝑣, {𝑢1, · · · , 𝑢𝑘}) ∈ 𝐸,
𝑋𝑣exit = 1,

where each variable 𝑋𝑣 appears exactly once as a left-hand-side, because every non-exit node has
exactly one outgoing edge. In the rest of this section, I outline an algorithm for computing a regular
hyper-path expression 𝐸𝑣 ∈ RegExp∞(F , ∅) for each variable 𝑋𝑣 (𝑣 ∈ 𝑉), such that

𝒯∅J𝐸𝑣K = 𝒯∅J𝐶𝑡𝑟𝑙(𝑒) (𝐸𝑢1 , · · · , 𝐸𝑢𝑘)K, 𝑒 = (𝑣, {𝑢1, · · · , 𝑢𝑘}) ∈ 𝐸,
𝒯∅J𝐸𝑣exitK = 𝒯∅J1K,

as well as {𝑋𝑣 = 𝐸𝑣}𝑣∈𝑉 is a least solution to the equation system with respect to the tree refinement
order ⊑𝒯.
The algorithm can be seen as a variation of Gaussian elimination, given in Algorithm 1. The

front-solving phase eliminates variables in {𝑋𝑖 | 𝑖 = 1, · · · , 𝑛} one-by-one, in the sense that after
the 𝑖-th step, the variable 𝑋𝑖 does not appear in the right-hand-side of any equation 𝑋 𝑗 = 𝑅 𝑗 for
𝑗 ≥ 𝑖. The back-solving phase then eliminates all variable occurrences from right-hand-sides by, at
the 𝑖-th step, substituting the closed-form 𝑅𝑖 for the symbol 𝑋𝑖 in the equation 𝑋 𝑗 = 𝑅 𝑗 for 𝑗 < 𝑖. The
key ingredient of this algorithm is the loop-solving step, which solves a single recursive equation
𝑋𝑖 = 𝑅′𝑖{□𝑖 {𝑋𝑖} using the iteration operator and takes (𝑅′𝑖)∞□𝑖 to be the solution.

Example 6.12. Consider the unstructured probabilistic program in Fig. 6.3(a), whose corresponding
control-flow hyper-graph is presented in Fig. 6.3(b), where 𝑣1 is the entry node and 𝑣4 is the
exit node. We can extract an equation system from the CFHG as follows, using the ranked alphabet
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while prob(0.5) do
𝑥 B 𝑥 + 1;
if 𝑥 > 0 then break
else continue
fi

od

(a)

𝑣4

𝑣1

𝑣2 𝑣3
𝑥 B 𝑥 + 1prob(0.5)

false

false
true𝑥 > 0true

(b)
Fig. 6.3: (a) An example unstructured probabilistic program and (b) its CFHG.

F
def
= {prob[0.5] (, ), seq[𝑥 B 𝑥+1] (), cond[𝑥 > 0] (, ), 1} and hole symbolsK def

= {𝑋𝑣1 , 𝑋𝑣2 , 𝑋𝑣3 , 𝑋𝑣4}.
𝑋𝑣1 = prob[0.5] (𝑋𝑣2 , 𝑋𝑣4), 𝑋𝑣2 = seq[𝑥 B 𝑥 + 1] (𝑋𝑣3),
𝑋𝑣3 = cond[𝑥 > 0] (𝑋𝑣4 , 𝑋𝑣1), 𝑋𝑣4 = 1.

Solving the equation system via Algorithm 1 leads to the following closed-form solution:
𝑋𝑣1 = prob[0.5] (seq[𝑥 B 𝑥 + 1] ( (cond[𝑥 > 0] (1, prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1)))∞□ ) , 1) ,
𝑋𝑣2 = seq[𝑥 B 𝑥 + 1] ( (cond[𝑥 > 0] (1, prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1)))∞□ ) ,
𝑋𝑣3 =

(cond[𝑥 > 0] (1, prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1)))∞□ ,
𝑋𝑣4 = 1.

The Gaussian-elimination-based Algorithm 1 on a CFHG has a cubic time complexity in terms of
the size of the CFHG. In the non-probabilistic case, i.e., where control flow graphs and standard
directed graphs, the connection between Gaussian elimination and graph algorithms inspired
Tarjan’s path-expression algorithm [142], which can achieve a nearly linear time complexity on
reducible control-flow graphs. Designing a more efficient algorithm to solve regular hyper-path
equations is an interesting future research direction.

6.2 Deterministic Markov-Kleene Algebra with Tests
Recall that for a control-flow hyper-graph, its algebraic denotational semantics is obtained by
composing 𝐶𝑡𝑟𝑙(𝑒) (the control action associated with 𝑒) operations along hyper-edges. The
semantics of a program is determined by an interpretation, which consists of (i) a semantic algebra,
which defines a set of possible program meanings, and which is equipped with operators to
compose these meanings, and (ii) a semantic function, which assigns a meaning to each data
action act ∈ Act. As I discussed in §6.1, a hyper-graph (without nondeterminism) can be finitely
represented by a regular hyper-path expression with the alphabet set to be the control-flow actions
attached to the hyper-edges in the graph, plus a distinguished constant 1 standing for program
termination. Thus, in this section, I assume the ranked alphabet F is a finite subset of

{1} ∪ {seq[act] () | act ∈ Act} ∪ {cond[𝜑] (, ) | 𝜑 ∈ L} ∪ {prob[𝑝] (, ) | 𝑝 ∈ [0, 1]},
where Act is the set of data actions (assignments, sampling, etc.), and L is the set of logical
conditions. Note that I followed a similar setup to §4.2 to distinguish standard logical conditions
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and purely probabilistic conditions. Meanwhile, I also remove procedure calls because I do not
consider multiple procedures in this chapter.
I now define the Deterministic Markov-Kleene Algebra with Tests (DMKAT), which can be seen as a

variant of the Markov algebra developed in §3.3.
Definition 6.13. A DMKAT over a set L of logical conditions (also called tests) is a 7-tuple
M = (𝑀, ⊑𝑀 , ⊗𝑀 , 𝜑^𝑀

, 𝑝⊕𝑀 ,⊥𝑀 , 1𝑀), where (𝑀, ⊑𝑀) forms a dcpo with ⊥𝑀 as its least element;
(𝑀, ⊗𝑀 , 1𝑀) forms a monoid (i.e., ⊗𝑀 is an associative binary operator with 1𝑀 as its identity
element); 𝜑^𝑀

is a binary operator parametrized by a condition 𝜑 ∈ L; 𝑝⊕𝑀 is a binary operator
parameterized by 𝑝 ∈ [0, 1]; and ⊗𝑀 , 𝜑^𝑀

, 𝑝⊕𝑀 are Scott-continuous.
Definition 6.14. An interpretation is a pair ℳ = (M, J·Kℳ), where M is a DMKAT and

J·Kℳ : Act → M. We call M the semantic algebra of the interpretation and J·Kℳ the semantic
function.
Given a regular hyper-path expression 𝐸 ∈ RegExp∞(F ,K ), an interpretation ℳ = (M, J·Kℳ),

and a hole-valuation 𝛾 : K →M (which, intuitively, gives an interpretation for each hole symbol),
I define the interpretation of 𝐸 under 𝛾, denoted by ℳ𝛾J𝐸K, as follows.

ℳ𝛾J−K : RegExp∞(F ,K ) →M
ℳ𝛾J1K def

= 1𝑀
ℳ𝛾Jseq[act] (𝐸1)K def

= JactKℳ ⊗𝑀 ℳ𝛾J𝐸1K

ℳ𝛾Jcond[𝜑] (𝐸1, 𝐸2)K def
= ℳ𝛾J𝐸1K 𝜑^𝑀

ℳ𝛾J𝐸2K

ℳ𝛾Jprob[𝑝] (𝐸1, 𝐸2)K def
= ℳ𝛾J𝐸1K 𝑝⊕𝑀 ℳ𝛾J𝐸2K

ℳ𝛾J□K
def
= 𝛾(□), where □ ∈ K

ℳ𝛾J𝐸1 ·□ 𝐸2K
def
= ℳ𝛾[□ ↦→ℳ𝛾J𝐸2K]J𝐸1K

ℳ𝛾J(𝐸1)∞□K def
= lfp⊑𝑀⊥𝑀 _𝑋. ℳ𝛾[□ ↦→𝑋]J𝐸1K

The interesting cases are the rules for interpreting concatenation (𝐸1 ·□ 𝐸2) and iteration (𝐸1)∞□ .
For (𝐸1 ·□ 𝐸2), by the rule (Concatenation) in Fig. 6.2, we can see that the hole symbol □ does not
appear in 𝐸2, but it might appear in 𝐸1. Thus, we can already interpret 𝐸2 under the hole-valuation
𝛾, and to interpret 𝐸1, we need to extend 𝛾 with an interpretation for the hole □. Recall the
interpretation of regular hyper-path expressions as possibly-infinite trees: (𝐸1 ·□ 𝐸2) is intended
to represent a tree obtained by substituting 𝐸2 for □ in 𝐸1. Thus, to interpret 𝐸1, we extend 𝛾 by
mapping □ to the interpretation of 𝐸2. For (𝐸1)∞□ , by the rule (Iteration) in Fig. 6.2, we can see
that the hole symbol □ might appear in 𝐸1. In this case, we should find an interpretation 𝑋 for the
iteration expression, in a way that 𝑋 = ℳ𝛾[□ ↦→𝑋]J𝐸1K. Because the semantic algebraM admits a
dcpo, I define the interpretation for iteration expressions using fixed points.
The key theoretical result I will establish in this section is that the tree-based interpretation

(developed in §6.1.2) is sound for any DMKAT interpretation, i.e., regular hyper-path expressions
with the same tree-based interpretation also yield the same interpretation under any DMKAT.
Theorem 6.15. Let 𝐸, 𝐹 ∈ RegExp∞(F ,K ). If 𝒯K J𝐸K = 𝒯K J𝐹K, then for any DMKAT interpreta-

tion ℳ = (M, J·Kℳ) and any hole-valuation 𝛾 : K →M, it holds that ℳ𝛾J𝐸K = ℳ𝛾J𝐹K.
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Before proving the theorem, I define an interpretation map from possibly-infinite treesTree∞(F ,K ) into a semantic algebra M equipped with an interpretation ℳ = (M, J·Kℳ). Be-
causeM admits a dcpo, thus it also admits an 𝜔-cpo, I can follow the coinductive principle for
function definitions on trees (developed in §6.1.1). Below gives the base and induction steps for
an interpretation map 𝑟ℳ𝛾 , parameterized by a hole-valuation 𝛾 : K → M. The interpretation
is well-defined because the operators ⊗𝑀 , 𝜑^𝑀

, 𝑝⊕𝑀 are all Scott-continuous, thus they are also
𝜔-continuous.

𝑟ℳ𝛾 (1) def
= 1𝑀

𝑟ℳ𝛾 (seq[act] (𝑠1)) def
= JactKℳ ⊗𝑀 𝑟ℳ𝛾 (𝑠1)

𝑟ℳ𝛾 (cond[𝜑] (𝑠1, 𝑠2)) def
= 𝑟ℳ𝛾 (𝑠1) 𝜑^𝑀

𝑟ℳ𝛾 (𝑠2)
𝑟ℳ𝛾 (prob[𝑝] (𝑠1, 𝑠2)) def

= 𝑟ℳ𝛾 (𝑠1) 𝑝⊕𝑀 𝑟ℳ𝛾 (𝑠2)
𝑟ℳ𝛾 (□) def

= 𝛾(□)
I then prove the following property of 𝑟ℳ𝛾 about substitutions.
Lemma 6.16. For any 𝑡 ∈ Tree∞(F ,K ∪ {□}), 𝑢 ∈ Tree∞(F ,K ), and 𝛾 : K →M, it holds that

𝑟ℳ
𝛾[□ ↦→𝑟ℳ𝛾 (𝑢)]

(𝑡) = 𝑟ℳ𝛾 (𝑡{□ {𝑢}).

Proof. Let 𝛾′ def
= 𝛾[□ ↦→ 𝑟ℳ𝛾 (𝑢)]. Then 𝛾′ : (K ∪ {□}) →M.

We proceed by induction on the structure of 𝑡.
Case 𝑡 = 1:

By definition, we have 𝑟ℳ𝛾′ (1) = 1𝑀 .
By definition, we have 1{□ {𝑢} = 1, and also 𝑟ℳ𝛾 (1) = 1𝑀 .
Thus, we conclude that 𝑟ℳ𝛾′ (1) = 𝑟ℳ𝛾 (1{□ {𝑢}).

Case 𝑡 = seq[act] (𝑠):
By induction hypothesis, we have 𝑟ℳ𝛾′ (𝑠) = 𝑟ℳ𝛾 (𝑠{□ {𝑢}).
By definition, we have 𝑟ℳ𝛾′ (seq[act] (𝑠)) = JactKℳ ⊗𝑀 𝑟ℳ𝛾′ (𝑠).
By definition, we have seq[act] (𝑠){□ {𝑢} = seq[act] (𝑠{□ {𝑢}), and also
𝑟ℳ𝛾 (seq[act] (𝑠{□ {𝑢})) = JactKℳ ⊗𝑀 𝑟ℳ𝛾 (𝑠{□ {𝑢}).
Thus, we conclude that 𝑟ℳ𝛾′ (seq[act] (𝑠)) = 𝑟ℳ𝛾 (seq[act] (𝑠){□ {𝑢}).

Case 𝑡 = cond[𝜑] (𝑠1, 𝑠2):
By induction hypothesis on 𝑠1 and 𝑠2, respectively, we have 𝑟ℳ𝛾′ (𝑠1) = 𝑟ℳ𝛾 (𝑠1{□ {𝑢}) and
𝑟ℳ𝛾′ (𝑠2) = 𝑟ℳ𝛾 (𝑠2{□ {𝑢}), respectively.
By definition, we have 𝑟ℳ𝛾′ (cond[𝜑] (𝑠1, 𝑠2)) = 𝑟ℳ𝛾′ (𝑠1) 𝜑^𝑀

𝑟ℳ𝛾′ (𝑠2).
By definition, we have cond[𝜑] (𝑠1, 𝑠2){□ {𝑢} = cond[𝜑] (𝑠1{□ {𝑢}, 𝑠2{□ {𝑢}), and
also

𝑟ℳ𝛾 (cond[𝜑] (𝑠1{□ {𝑢}, 𝑠2{□ {𝑢})) = 𝑟ℳ𝛾 (𝑠1{□ {𝑢}) 𝜑^𝑀
𝑟ℳ𝛾 (𝑠2{□ {𝑢}).

Thus, we conclude that 𝑟ℳ𝛾′ (cond[𝜑] (𝑠1, 𝑠2)) = 𝑟ℳ𝛾 (cond[𝜑] (𝑠1, 𝑠2){□ {𝑢}).
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Case 𝑡 = prob[𝑝] (𝑠1, 𝑠2):
By induction hypothesis on 𝑠1 and 𝑠2, respectively, we have 𝑟ℳ𝛾′ (𝑠1) = 𝑟ℳ𝛾 (𝑠1{□ {𝑢}) and
𝑟ℳ𝛾′ (𝑠2) = 𝑟ℳ𝛾 (𝑠2{□ {𝑢}), respectively.
By definition, we have 𝑟ℳ𝛾′ (prob[𝑝] (𝑠1, 𝑠2)) = 𝑟ℳ𝛾′ (𝑠1) 𝑝⊕𝑀 𝑟ℳ𝛾′ (𝑠2).
By definition, we have prob[𝑝] (𝑠1, 𝑠2){□ {𝑢} = prob[𝑝] (𝑠1{□ {𝑢}, 𝑠2{□ {𝑢}), and also

𝑟ℳ𝛾 (prob[𝑝] (𝑠1{□ {𝑢}, 𝑠2{□ {𝑢})) = 𝑟ℳ𝛾 (𝑠1{□ {𝑢}) 𝑝⊕𝑀 𝑟ℳ𝛾 (𝑠2{□ {𝑢}).

Thus, we conclude that 𝑟ℳ𝛾′ (prob[𝑝] (𝑠1, 𝑠2)) = 𝑟ℳ𝛾 (prob[𝑝] (𝑠1, 𝑠2){□ {𝑢}).
Case 𝑡 = □:

By definition, we have 𝑟ℳ𝛾′ (□) = 𝛾′(□) = 𝑟ℳ𝛾 (𝑢).
By definition, we have □{□ {𝑢} = 𝑢.
Thus, we conclude that 𝑟ℳ𝛾′ (□) = 𝑟ℳ𝛾 (□{□ {𝑢}).

Case 𝑡 = □′ where □′ ≠ □:
By definition, we have 𝑟ℳ𝛾′ (□′) = 𝛾′(□′) = 𝛾(□′).
By definition, we have □′{□ {𝑢} = □′, and also 𝑟ℳ𝛾 (□′) = 𝛾(□′).
Thus, we conclude that 𝑟ℳ𝛾′ (□′) = 𝑟ℳ𝛾 (□′{□ {𝑢}).

□

I can now present the proof of Theorem 6.15.

Proof of Theorem 6.15. Fix 𝐸, 𝐹 ∈ RegExp∞(F ,K ) such that 𝒯K J𝐸K = 𝒯K J𝐹K. Fix an inter-
pretation ℳ = (M, J·Kℳ) and a hole-valuation 𝛾 : K →M. The theorem requires us to show that
ℳ𝛾J𝐸K = ℳ𝛾J𝐹K. We claim that for any expression 𝐸, it holds that ℳ𝛾J𝐸K = 𝑟ℳ𝛾 (𝒯K J𝐸K). If this is
true, we can conclude the proof by

ℳ𝛾J𝐸K = 𝑟ℳ𝛾 (𝒯K J𝐸K) = 𝑟ℳ𝛾 (𝒯K J𝐹K) = ℳ𝛾J𝐹K.

To prove the claim, we fix an expression 𝐸 and proceed by induction on the structure of 𝐸.
Case 𝐸 = 1:

By definition, we have ℳ𝛾J1K = 1𝑀 .
By definition, we have 𝒯K J1K = 1, and also 𝑟ℳ𝛾 (1) = 1𝑀 .
Thus, we conclude that ℳ𝛾J1K = 𝑟ℳ𝛾 (𝒯K J1K).

Case 𝐸 = seq[act] (𝐸1):
By induction hypothesis, we have ℳ𝛾J𝐸1K = 𝑟ℳ𝛾 (𝒯K J𝐸1K).
By definition, we have ℳ𝛾Jseq[act] (𝐸1)K = JactKℳ ⊗𝑀 ℳ𝛾J𝐸1K.
By definition, we have 𝒯K Jseq[act] (𝐸1)K = seq[act] (𝑠1), where 𝑠1

def
= 𝒯K J𝐸1K, and also

𝑟ℳ𝛾 (seq[act] (𝑠1)) = JactKℳ ⊗𝑀 𝑟ℳ𝛾 (𝑠1).
Thus, we conclude that ℳ𝛾Jseq[act] (𝐸1)K = 𝑟ℳ𝛾 (𝒯K Jseq[act] (𝐸1)K).
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Case 𝐸 = cond[𝜑] (𝐸1, 𝐸2):
By induction hypothesis on 𝐸1 and 𝐸2, respectively, we have ℳ𝛾J𝐸1K = 𝑟ℳ𝛾 (𝒯K J𝐸1K) and
ℳ𝛾J𝐸2K = 𝑟ℳ𝛾 (𝒯K J𝐸2K), respectively.
By definition, we have ℳ𝛾Jcond[𝜑] (𝐸1, 𝐸2)K = ℳ𝛾J𝐸1K 𝜑^𝑀

ℳ𝛾J𝐸2K.
By definition, we have 𝒯K Jcond[𝜑] (𝐸1, 𝐸2)K = cond[𝜑] (𝑠1, 𝑠2), where 𝑠1 def

= 𝒯K J𝐸1K, 𝑠2 def
=

𝒯K J𝐸1K, and also 𝑟ℳ𝛾 (cond[𝜑] (𝑠1, 𝑠2)) = 𝑟ℳ𝛾 (𝑠1) 𝜑^𝑀
𝑟ℳ𝛾 (𝑠2).

Thus, we conclude that ℳ𝛾Jcond[𝜑] (𝐸1, 𝐸2)K = 𝑟ℳ𝛾 (𝒯K Jcond[𝜑] (𝐸1, 𝐸2)K).
Case 𝐸 = prob[𝑝] (𝐸1, 𝐸2):

By induction hypothesis on 𝐸1 and 𝐸2, respectively, we have ℳ𝛾J𝐸1K = 𝑟ℳ𝛾 (𝒯K J𝐸1K) and
ℳ𝛾J𝐸2K = 𝑟ℳ𝛾 (𝒯K J𝐸2K), respectively.
By definition, we have ℳ𝛾Jprob[𝑝] (𝐸1, 𝐸2)K = ℳ𝛾J𝐸1K 𝑝⊕𝑀 ℳ𝛾J𝐸2K.
By definition, we have 𝒯K Jprob[𝑝] (𝐸1, 𝐸2)K = prob[𝑝] (𝑠1, 𝑠2), where 𝑠1 def

= 𝒯K J𝐸1K, 𝑠2 def
=

𝒯K J𝐸1K, and also 𝑟ℳ𝛾 (prob[𝑝] (𝑠1, 𝑠2)) = 𝑟ℳ𝛾 (𝑠1) 𝑝⊕𝑀 𝑟ℳ𝛾 (𝑠2).
Thus, we conclude that ℳ𝛾Jprob[𝑝] (𝐸1, 𝐸2)K = 𝑟ℳ𝛾 (𝒯K Jprob[𝑝] (𝐸1, 𝐸2)K).

Case 𝐸 = □ for some □ ∈ K :
By definition, we have ℳ𝛾J□K = 𝛾(□).
By definition, we have 𝒯K J□K = □, and also 𝑟ℳ𝛾 (□) = 𝛾(□).
Thus, we conclude that ℳ𝛾J□K = 𝑟ℳ𝛾 (𝒯K J□K).

Case 𝐸 = 𝐸1 ·□ 𝐸2:
By induction hypothesis on 𝐸2, we have ℳ𝛾J𝐸2K = 𝑟ℳ𝛾 (𝒯K J𝐸2K).
Let 𝛾′ def

= 𝛾[□ ↦→ℳ𝛾J𝐸2K]. Then 𝛾′ : (K ∪ {□}) →M.
By induction hypothesis on 𝐸1 (which is an expression in RegExp∞(F ,K ∪ {□})), we have
ℳ𝛾′J𝐸1K = 𝑟ℳ𝛾′ (𝒯K∪{□}J𝐸1K).
By definition, we have ℳ𝛾J𝐸1 ·□ 𝐸2K = ℳ𝛾′J𝐸1K.
By definition, we have 𝒯K J𝐸1 ·□ 𝐸2K = 𝒯K∪{□}J𝐸1K{□ {𝒯K J𝐸2K}.
By Lemma 6.16, we know that for any 𝑠 ∈ Tree∞(F ,K ∪{□}), it holds that 𝑟ℳ𝛾′ (𝑠) = 𝑟𝛾 (𝑠{□ {
𝒯K J𝐸2K}). Therefore, we have

𝑟ℳ𝛾 (𝒯K∪{□}J𝐸1K{□ {𝒯K J𝐸2K}) = 𝑟ℳ𝛾′ (𝒯K∪{□}J𝐸1K).

Thus, we conclude that ℳ𝛾J𝐸1 ·□ 𝐸2K = 𝑟ℳ𝛾 (𝒯K J𝐸1 ·□ 𝐸2K).
Case 𝐸 = (𝐸1)∞□:

By definition, we have ℳ𝛾J(𝐸1)∞□K = lfp⊑𝑀⊥𝑀 _𝑋. ℳ𝛾[□ ↦→𝑋]J𝐸1K.
By definition, we have 𝒯K J(𝐸1)∞□K = lfp⊑𝒯⊖ _𝑋. (𝒯K∪{□}J𝐸1K{□ {𝑋}).
Let 𝐹 def

= _𝑋. ℳ𝛾[□ ↦→𝑋]J𝐸1K and 𝐺 def
= _𝑋. (𝒯K∪{□}J𝐸1K{□ {𝑋}). By the Kleene fixed-point

theorem (Proposition 3.4), it suffices to show that for any 𝑛 ≥ 0, 𝐹𝑛(⊥𝑀) = 𝑟ℳ𝛾 (𝐺𝑛(⊖)). We
prove the claim by induction on 𝑛.
When 𝑛 = 0:
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By definition, we have 𝐹0(⊥𝑀) = ⊥𝑀 .
By definition, we have 𝐺0(⊖) = ⊖, and also 𝑟ℳ𝛾 (⊖) = ⊥𝑀 .
Thus, we conclude this that 𝐹0(⊥𝑀) = 𝑟ℳ𝛾 (𝐺0(⊖)).
When 𝑛 = 𝑘 + 1:
By induction hypothesis (on 𝑛), we have 𝐹𝑘(⊥𝑀) = 𝑟ℳ𝛾 (𝐺𝑘(⊖)).
Let 𝛾′ def

= 𝛾[□ ↦→ 𝐹𝑘(⊥𝑀)]. Then 𝛾′ : (K ∪ {□}) →M.
By definition, we have 𝐹𝑛(⊥𝑀) = ℳ𝛾′J𝐸1K.
By definition, we have 𝐺𝑛(⊖) = 𝒯K∪{□}J𝐸1K{□ ← 𝐺𝑘(⊖)}, and also by Lemma 6.16, we
have 𝑟ℳ𝛾 (𝒯K∪{□}J𝐸1K{□← 𝐺𝑘(⊖)}) = 𝑟ℳ𝛾′ (𝒯K∪{□}J𝐸1K).
By induction hypothesis (on 𝐸1), we have ℳ𝛾′J𝐸1K = 𝑟ℳ𝛾′ (𝒯K∪{□}J𝐸1K).
Thus, we conclude that 𝐹𝑛(⊥𝑀) = 𝑟ℳ𝛾 (𝐺𝑛(⊖)).

□

In the rest of §6.2, I demonstrate two concrete DMKAT-based interpretations for reasoning about
probabilistic programs.

6.2.1 A Relational Interpretation
This subsection gives a DMKAT-based interpretation as binary relations, a common model of
input-output behavior for a probabilistic programming language. Note that this interpretation
does not keep track of probabilities; instead, it treats probabilistic branching as nondeterministic
branching. Let ] = (Σ, eval, sat) be a triple of a set Σ of states, a binary relation eval(act) ⊆ Σ × Σ
for each data action act ∈ Act, and a set of states sat(𝜑) ⊆ Σ for each logical condition 𝜑 ∈ L.
Intuitively, the set of states that satisfy 𝜑 is given by sat(𝜑), and it holds that sat(¬𝜑) = Σ \ sat(𝜑).
To reason about divergence, I assume there is a symbol⟲ such that⟲ ∉ Σ.
The DMKAT R = (𝑅, ⊑𝑅, ⊗𝑅, 𝜑^𝑅, 𝑝⊕𝑅,⊥𝑅, 1𝑅) for the relational interpretation ℛ = (R, J·Kℛ)

with respect to ] is defined as follows.

• 𝑅
def
= Σ × (Σ ∪ {⟲}).

• 𝐴 ⊑𝑅 𝐵 def
= (𝐴 ∩ (Σ × Σ) ⊆ 𝐵 ∩ (Σ × Σ)) ∧ (𝐴 ∩ (Σ × {⟲}) ⊇ 𝐵 ∩ (Σ × {⟲})).

• 𝐴 ⊗𝑅 𝐵 def
= {⟨𝜎,⟲⟩ | ⟨𝜎,⟲⟩ ∈ 𝐴} ∪ {⟨𝜎, 𝜎′′⟩ | ∃𝜎′ : ⟨𝜎, 𝜎′⟩ ∈ 𝐴 ∧ ⟨𝜎′, 𝜎′′⟩ ∈ 𝐵}.

• 𝐴 𝜑^𝑅 𝐵
def
= {⟨𝜎, 𝜎′⟩ | 𝜎 ∈ sat(𝜑) ∧ ⟨𝜎, 𝜎′⟩ ∈ 𝐴} ∪ {⟨𝜎, 𝜎′⟩ | 𝜎 ∈ sat(¬𝜑) ∧ ⟨𝜎, 𝜎′⟩ ∈ 𝐵}.

• 𝐴 𝑝⊕𝑅 𝐵 = 𝐴 ∪ 𝐵.

• ⊥𝑅 def
= {⟨𝜎,⟲⟩ | 𝜎 ∈ Σ}.

• 1𝑅 def
= {⟨𝜎, 𝜎⟩ | 𝜎 ∈ Σ}.

I then define the semantic function for the relational interpretation as JactKℛ = eval(act).
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Proposition 6.17. R is a DMKAT.

Example 6.18. Consider the simple program “while prob(0.5) do 𝑥 B 𝑥 + 1 od.” One regular
hyper-path expression encoding the program is (prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1))∞□ . We can then
interpret the expression under the relational interpretation ℛ to extract the input-output behavior of
the program, with Σ

def
= Var→ ℝ:

ℛ{}J(prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1))∞□K
= lfp⊑𝑅⊥𝑅 _𝐴. ℛ{□ ↦→𝐴}Jprob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1)K
= lfp⊑𝑅⊥𝑅 _𝐴.

(
ℛ{□ ↦→𝐴}Jseq[𝑥 B 𝑥 + 1] (□)K ∪ {⟨𝜎, 𝜎⟩ | 𝜎 ∈ Σ})

= lfp⊑𝑅⊥𝑅 _𝐴. (({⟨𝜎, 𝜎[𝑥 ↦→ 𝜎(𝑥) + 1]⟩ | 𝜎 ∈ Σ} ⊗𝑅 𝐴) ∪ {⟨𝜎, 𝜎⟩ | 𝜎 ∈ Σ})
= {⟨𝜎, 𝜎[𝑥 ↦→ 𝜎(𝑥) + 𝑘]⟩ | 𝜎 ∈ Σ ∧ 𝑘 ∈ ℤ+} ∪ {⟨𝜎,⟲⟩ | 𝜎 ∈ Σ}.

6.2.2 A Kernel Interpretation
This subsection gives a DMKAT-based interpretation in terms of sub-probability kernels (reviewed
in §2.1), a common model for probabilistic programming languages without nondeterminism. This
interpretation is intended to define a denotational semantics that is equivalent to the operational
semantics developed in §2.3. Let ] = ((Σ, O), eval, sat) be a triple of a measurable space (Σ, O)
of states, a probability kernel eval(act) : (Σ, O) ⇝ (Σ, O) for each data action act ∈ Act, and a
measurable map sat(𝜑) : Σ→ 𝟚 for each logical condition 𝜑 ∈ L, where 𝟚 = {⊤,⊥} is the set of
Boolean values, equipped with a standard 𝜎-algebra ℘({⊤,⊥}). Intuitively, sat evaluates logical
conditions, and it holds that sat(¬𝜑) (𝜎) = ¬sat(𝜑) (𝜎) for any 𝜑 ∈ L and 𝜎 ∈ Σ.
The DMKAT 𝒫 = (P, ⊑𝑃, ⊗𝑃, 𝜑^𝑃

, 𝑝⊕𝑃,⊥𝑃, 1𝑃) for the kernel interpretation 𝒫 = (P, J·K𝒫) with
respect to ] is defined as follows.

• P is the set of sub-probability kernels on the state space (Σ, O).

• ^ ⊑𝑃 𝜌 def
= ∀𝜎 ∈ Σ, 𝑈 ∈ O : ^(𝜎,𝑈) ≤ 𝜌(𝜎,𝑈).

• ^ ⊗𝑃 𝜌 def
= ^ # 𝜌, i.e., kernel composition.

• ^ 𝜑^𝑃
𝜌

def
= _ (𝜎,𝑈). [sat(𝜑) (𝜎)] · ^(𝜎,𝑈) + [sat(¬𝜑) (𝜎)] · 𝜌(𝜎,𝑈).

• ^ 𝑝⊕𝑃 𝜌
def
= _ (𝜎,𝑈). 𝑝 · ^(𝜎,𝑈) + (1 − 𝑝) · 𝜌(𝜎,𝑈).

• ⊥𝑃 def
= _ (𝜎,𝑈). 0.

• 1𝑃 def
= _ (𝜎,𝑈). [𝜎 ∈ 𝑈].

I then define the semantic function for the kernel interpretation as JactK𝒫 def
= eval(act).

Proposition 6.19. P is a DMKAT.
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Example 6.20. Consider the simple program “while prob(0.5) do 𝑥 B 𝑥 + 1 od,” which can be
encoded as the regular hyper-path expression (prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1))∞□ . We can then
interpret the expression under the kernel interpretation 𝒫 to extract the transition kernel of the
program, with Σ

def
= Var→ ℝ:

𝒫{}J(prob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1))∞□K
= lfp⊑𝑃⊥𝑃 _^. 𝒫{□ ↦→^}Jprob[0.5] (seq[𝑥 B 𝑥 + 1] (□), 1)K
= lfp⊑𝑃⊥𝑃 _^.

(
0.5 ·𝒫{□ ↦→^}Jseq[𝑥 B 𝑥 + 1] (□)K + 0.5 · _𝜎. 𝛿(𝜎))

= lfp⊑𝑃⊥𝑃 _^. (0.5 · (_𝜎.𝛿(𝜎[𝑥 ↦→ 𝜎(𝑥) + 1]) ≫= ^) + 0.5 · _𝜎. 𝛿(𝜎))
=

∑
𝑘∈ℤ+ 0.5𝑘 · (1 − 0.5) · _𝜎. 𝛿(𝜎[𝑥 ↦→ 𝜎(𝑥) + 𝑘]).

Note that ℤ+ includes 0 and I use the curried version of kernels in the derivation. We can see that the
program terminates with probability one by the fact that ∑𝑘∈ℤ+ 0.5𝑘 · (1 − 0.5) = 1.

6.3 Towards Abstract Interpretations for DMKAT
In §6.1 and §6.2, I have developed an algebraic foundation for reasoning about probabilistic
programs without nondeterminism. In this section, I present my progress towards building a
static-analysis framework based on DMKAT. Kincaid et al. [92] summarized a recipe for algebraic
static analysis, which consists of the following three steps:

1. (Modeling) Express the concrete semantics as the least solution to an equation system. In
this chapter, the modeling step amounts to extracting an equation system from a control-flow
hyper-graph (§6.1.3) and designing a DMKAT for concrete semantics (e.g., the relational
interpretation in §6.2.1 or the kernel interpretation in §6.2.2).

2. (Closed forms) Design a language for “closed-form solutions” and an algorithm for computing
them. In this chapter, I use regular hyper-path expressions (§6.1.2) as the closed forms and
develop a Gaussian-elimination algorithm to solve a regular equation system (Algorithm 1).

3. (Interpretation) Design an abstract interpretation of the closed-form language and a soundness
relation between the concrete and abstract interpretations. Thus, in this section, I focus on
building abstract interpretations for DMKAT.

6.3.1 Non-Probabilistic Abstract Interpretations
To show that the DMKAT framework is a generalization of the KAT framework, in this section, I
sketch an approach for adapting existing algebraic abstract domains for analyzing non-probabilistic
programs to the DMKAT framework. Recall that in the Kleene-algebra-based framework, the
building blocks are regular languages and regular expressions, thus the abstract interpretation
happens at the path level rather than the hyper-path level. Intuitively, to abstract the meaning of a
hyper-path, i.e., a possibly-infinite tree, we can abstract each rooted path on the tree individually,
and then join all the path abstractions to obtain an abstraction of the hyper-path.
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To demonstrate the idea, I use the transition-formula abstraction as an example in this section.
Consider a finite set of program variables Var. A transition formula is then a two-vocabulary
logical formula 𝐹(Var, Var′) over Var and a set Var′ of “primed” versions of the program variables. A
transition formula is intended to approximate the input-output behavior of a program by expressing
a relation between the input states (the Var variables) and the output states (the Var′ variables).
For example, the transition formula (𝑥 < 0 ∧ 𝑥′ = 𝑥 + 1 ∧ tick′ = tick) asserts that a program has
a pre-condition 𝑥 < 0, and if the program terminates, the value of 𝑥 is incremented by one and
the value of tick is unchanged. We can define a regular algebra T = (𝑇, +𝑇 , ·𝑇 , ∗𝑇 , 0𝑇 , 1𝑇 ) on the
universe 𝑇 of transition-formulas as follows (note that this algebra is not a Kleene algebra):

𝐹 +𝑇 𝐺 def
= 𝐹 ∨ 𝐺

𝐹 ·𝑇 𝐺 def
= ∃Var′′ : 𝐹(Var, Var′′) ∧ 𝐺(Var′′, Var′)

0𝑇 def
= false

1𝑇 def
=

∧
𝑥∈Var
(𝑥′ = 𝑥)

The notation 𝐹(Var, Var′′) denotes the formula obtained by substituting all the Var′ variables with
“double primed” versions in Var′′. Thus, the composition 𝐹 ·𝑇 𝐺 performs a relational composition of
the input-output behavior specified by 𝐹 and the input-output behavior specified by 𝐺. To compute
𝐹∗𝑇 , which encodes a loop whose body is expressed as the transition formula 𝐹, there are many
techniques for approximating the reflexive transitive closure of 𝐹 (e.g., [3, 54, 90, 91, 103, 121]).
In this section, I use a technique based on recurrence analysis [54]. Let us consider arithmetic
programs and denote by x and x′ the vectors for the program variables Var and Var′, respectively.
For a transition formula 𝐹, a linear recurrence inequality of 𝐹 takes the form a𝑇x′ ≤ a𝑇x + 𝑏 and
is entailed by 𝐹. To compute 𝐹∗𝑇 , the idea is to extract a collection of recurrence inequalities
{a𝑇𝑖 x′ ≤ a𝑇𝑖 x + 𝑏𝑖}𝑖∈I of 𝐹, and then use the closed form of the recurrence relations to approximate
the reflexive transitive closure of 𝐹, where 𝑘 stands for the number of loop iterations:

𝐹∗𝑇 def
= ∃𝑘 ∈ ℤ : 𝑘 ≥ 0 ∧

∧
𝑖∈I

a𝑇𝑖 x′ ≤ a𝑇𝑖 x + 𝑘𝑏𝑖

Example 6.21. Consider the following non-probabilistic program:
while 𝑖 > 0 do
if 𝑥 < 𝑦 then 𝑥 B 𝑥 + 1 else 𝑦 B 𝑦 + 1 fi;
𝑖 B 𝑖 − 1

od
The loop exhibits the following linear recurrence inequalities

𝑖′ ≤ 𝑖 − 1 −𝑖′ ≤ −𝑖 + 1
(𝑥′ + 𝑦′) ≤ (𝑥 + 𝑦) + 1 (−𝑥′ − 𝑦′) ≤ (−𝑥 − 𝑦) − 1

𝑥′ ≤ 𝑥 + 1 𝑦′ ≤ 𝑦 + 1

which yield the following transition formula that summarizes the loop:

∃𝑘 ∈ ℤ : 𝑘 ≥ 0 ∧ 𝑖′ = 𝑖 − 𝑘 ∧ (𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 𝑘 ∧ 𝑥′ ≤ 𝑥 + 𝑘 ∧ 𝑦′ ≤ 𝑦 + 𝑘.
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Taking the loop guard 𝑖 > 0 into account, we can simplify the transition formula above to a formula
that approximates the whole program:
(𝑖 ≤ 0∧ 𝑖′ = 𝑖∧ 𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦) ∨ (𝑖 > 0∧ 𝑖′ = 0∧ (𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 𝑖∧ 𝑥′ ≤ 𝑥 + 𝑖∧ 𝑦′ ≤ 𝑦 + 𝑖).
I now lift the transition-formula domain from path-level abstractions to hyper-path-level abstrac-

tions. The idea is that we can obtain a transition formula 𝐹𝑝 for each rooted path 𝑝 on a hyper-path
(i.e., a possibly-infinite tree), then take their join ∨

𝑝 𝐹𝑝 as an abstraction for the hyper-path. For
example, the finite tree below corresponds to the program “if 𝑥 < 𝑦 then 𝑥 B 𝑥 +1 else 𝑦 B 𝑦+1.”

cond[𝑥 < 𝑦]

seq[𝑥 B 𝑥 + 1]

1

seq[𝑦 B 𝑦 + 1]

1
For the rooted path to the left leaf, the transition formula is 𝐹1

def
= (𝑥 < 𝑦 ∧ 𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦).

For the rooted path to the right leaf, the transition formula is 𝐹2
def
= (𝑥 ≥ 𝑦 ∧ 𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 + 1).

Their join 𝐹1 ∨ 𝐹2 then entails ((𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 1 ∧ 𝑥′ ≤ 𝑥 + 1 ∧ 𝑦′ ≤ 𝑦 + 1), which leads to
some of the recurrence inequalities shown in Example 6.21.
Based on the hyper-path-as-a-collection-of-paths approach, I can apply a non-probabilistic

abstract domain in the DMKAT framework. Let A = (𝐴, +𝐴, ·𝐴, ∗𝐴 , 0𝐴, 1𝐴) be a regular algebra that
represents an abstract domain, and 𝒜 = (A, J·K𝒜) be an abstract interpretation with a semantic
function J·K𝒜 : Act ∪ L → A that abstracts data actions and logical conditions. Using the same
setup for DMKAT (§6.2), to analyze a probabilistic program, I extract a ranked alphabet F to
be the collection of control-flow actions in the program. For a regular hyper-path expression
𝐸 ∈ RegExp∞(F ,K ), I use the judgment ⊢K 𝐸 : 𝑎 | 𝛾 to express that the abstract interpretation of
𝐸 is a pair of 𝑎 ∈ A and 𝛾 : K → A. The element 𝑎 is intended to abstract all the rooted paths of
the tree represented by 𝐸 that do not end with a hole leaf. The map 𝛾 is then intended to abstract
rooted paths ending with hole symbols, i.e., for □ ∈ K , the element 𝛾(□) abstracts all the rooted
paths of 𝐸 ending with □. Fig. 6.4 presents the syntax-directed rules for deriving ⊢K 𝐸 : 𝑎 | 𝛾. One
interesting rule is the (Iteration) rule. Consider the closure expression (𝐸1)∞□ ∈ RegExp∞(F ,K ).
The premise ⊢K∪{□} 𝐸1 : 𝑎1 | 𝛾1 computes an abstraction for 𝐸1. Intuitively, the closure expression
represents a loop with □ as the self-concatenation point, thus the element 𝑎1 abstracts all paths
that lead to non-hole leaves, i.e., that exit the loop. Also, the element 𝛾1(□) abstracts all paths
that lead to □, i.e., that express the loop body. Therefore, to summarize the loop, I use the closure
operator ∗𝐴 on the loop body (𝑏 = 𝛾1(□)) and then extend it with the loop-exit abstraction (𝑎1),
i.e., I use 𝑏∗𝐴 ·𝐴 𝑎1 as the loop summarization.
Example 6.22. Consider the following probabilistic program:

while 𝑖 > 0 do
if prob(0.5) then 𝑥 B 𝑥 + 1 else 𝑦 B 𝑦 + 1 fi;
𝑖 B 𝑖 − 1

od
A regular hyper-path expression that encodes the program above could be
(cond[𝑖 > 0] (prob[0.5] (seq[𝑥 B 𝑥 + 1] (□2), seq[𝑦 B 𝑦 + 1] (□2)) ·□2 seq[𝑖 B 𝑖 − 1] (□1), 1))∞□1 .
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(Skip)
⊢K 1 : 1𝐴 | {□ ↦→ 0𝐴}□∈K

(Action)
⊢K 𝐸1 : 𝑎1 | 𝛾

⊢K seq[act] (𝐸1) : JactK𝒜 ·𝐴 𝑎1 | {□ ↦→ JactK𝒜 ·𝐴 𝛾(□)}□∈K
(Condition)

⊢K 𝐸1 : 𝑎1 | 𝛾1 ⊢K 𝐸2 : 𝑎2 | 𝛾2

⊢K cond[𝜑] (𝐸1, 𝐸2) : (J𝜑K𝒜 ·𝐴 𝑎1) +𝐴 (J¬𝜑K𝒜 ·𝐴 𝑎2) | {□ ↦→ (J𝜑K𝒜 ·𝐴 𝛾1 (□)) +𝐴 (J¬𝜑K𝒜 ·𝐴 𝛾2 (□))}□∈K

(Probability)
⊢K 𝐸1 : 𝑎1 | 𝛾1 ⊢K 𝐸2 : 𝑎2 | 𝛾2

⊢K prob[𝑝] (𝐸1, 𝐸2) : 𝑎1 +𝐴 𝑎2 | {□ ↦→ 𝛾1 (□) +𝐴 𝛾2 (□)}□∈K

(Concatenation)
⊢K∪{□} 𝐸1 : 𝑎1 | 𝛾1 𝑏 = 𝛾1 (□) ⊢K 𝐸2 : 𝑎2 | 𝛾2

⊢K 𝐸1 ·□ 𝐸2 : 𝑎1 +𝐴 (𝑏 ·𝐴 𝑎2) | {□′ ↦→ 𝛾1 (□′) +𝐴 (𝑏 ·𝐴 𝛾2 (□′))}□′∈K

(Iteration)
⊢K∪{□} 𝐸1 : 𝑎1 | 𝛾1 𝑏 = 𝛾1 (□)

⊢K (𝐸1)∞□ : 𝑏∗𝐴 ·𝐴 𝑎1 | {□′ ↦→ 𝑏∗𝐴 ·𝐴 𝛾1 (□′)}□′∈K

(Hole)
⊢K □ : 0𝐴 | {□ ↦→ 1𝐴} ∪ {□′ ↦→ 0𝐴}□′∈K \{□}

Fig. 6.4: The non-probabilistic abstract interpretation of regular hyper-path expressions.
First, for the three assignments, we can interpret them under the transition-formula domain as

⊢{□1,□2} seq[𝑥 B 𝑥 + 1] (□2) : false | {□1 ↦→ false,□2 ↦→ (𝑥′ = 𝑥 + 1 ∧ 𝑦′ = 𝑦 ∧ 𝑖′ = 𝑖)},
⊢{□1,□2} seq[𝑦 B 𝑦 + 1] (□2) : false | {□1 ↦→ false,□2 ↦→ (𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 + 1 ∧ 𝑖′ = 𝑖)},

⊢{□1} seq[𝑖 B 𝑖 − 1] (□1) : false | {□1 ↦→ (𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 ∧ 𝑖′ = 𝑖 − 1)}.

Let us denote the three assignment statements by 𝑆1, 𝑆2, 𝑆3, respectively. Let 𝑆4
def
= prob[0.5] (𝑆1, 𝑆2).

By the (Probability) rule, we have
⊢{□1,□2} 𝑆4 : false | {□1 ↦→ false,□2 ↦→ ((𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 1∧ 𝑥′ ≤ 𝑥 + 1∧ 𝑦′ ≤ 𝑦 + 1∧ 𝑖′ = 𝑖)}.
Then by the (Concatenation) rule, we can derive
⊢{□1} 𝑆4 ·□2 𝑆3 : false | {□1 ↦→ ((𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 1 ∧ 𝑥′ ≤ 𝑥 + 1 ∧ 𝑦′ ≤ 𝑦 + 1 ∧ 𝑖′ = 𝑖 − 1)}.

Let 𝑆5
def
= cond[𝑖 > 0] (𝑆4 ·□2 𝑆3, 1). By the (Condition) rule, we obtain a loop-body summary:
⊢{□1} 𝑆5 : (𝑖 ≤ 0 ∧ 𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 ∧ 𝑖′ = 𝑖)

| {□1 ↦→ (𝑖 > 0 ∧ (𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 1 ∧ 𝑥′ ≤ 𝑥 + 1 ∧ 𝑦′ ≤ 𝑦 + 1 ∧ 𝑖′ = 𝑖 − 1)}

Let 𝐹1
def
= (𝑖 ≤ 0 ∧ 𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦 ∧ 𝑖′ = 𝑖) and 𝐹2

def
= (𝑖 > 0 ∧ (𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 1 ∧ 𝑥′ ≤

𝑥 + 1 ∧ 𝑦′ ≤ 𝑦 + 1 ∧ 𝑖′ = 𝑖 − 1). Finally, by the (Iteration) rule, we know that the transition formula
for (𝑆5)∞□1 is 𝐹∗𝑇2 ·𝑇 𝐹1. Recall the recurrence-based analysis in Example 6.21. In the same way, we
obtain the formula below that approximates the whole program:
(𝑖 ≤ 0∧ 𝑖′ = 𝑖∧ 𝑥′ = 𝑥 ∧ 𝑦′ = 𝑦) ∨ (𝑖 > 0∧ 𝑖′ = 0∧ (𝑥′ + 𝑦′) = (𝑥 + 𝑦) + 𝑖∧ 𝑥′ ≤ 𝑥 + 𝑖∧ 𝑦′ ≤ 𝑦 + 𝑖).
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Proving the soundness of the rules in Fig. 6.4 is left for future work.

6.3.2 Probabilistic Abstract Interpretations
One major principle in my thesis is that probabilistic programs are naturally represented by control-
flow hyper-graphs, and this principle indicates that a static analysis of probabilistic programs is
essentially a hyper-path analysis. For static analyses that take probabilities into consideration,
e.g., the expectation-invariant analysis, the method sketched in §6.3.1 does not work, because
in general, it might be intractable to obtain the analysis result of a hyper-path as the join of the
analysis results of the rooted paths on the hyper-path. In this section, I discuss some preliminary
results on probabilistic abstract interpretations for the DMKAT framework.
Recall the definition of Pre-Markov Algebras (PMAs) that I developed in §4.2. I use a variant of

PMAs below, where the nondeterministic operator is removed.
Definition 6.23. A deterministic pre-Markov algebra (DPMA) over a set of logical conditions
L (also called tests) is a 7-tuple M = (𝑀, ⊑𝑀 , ⊗𝑀 , 𝜑^𝑀

, 𝑝⊕𝑀 ,⊥𝑀 , 1𝑀), where (𝑀, ⊑𝑀) forms a
complete lattice with⊥𝑀 as its least element; (𝑀, ⊗𝑀 , 1𝑀) forms a monoid (i.e., ⊗𝑀 is an associative
binary operator with 1𝑀 as its identity element); 𝜑^𝑀

is a binary operator parameterized by a
condition 𝜑 ∈ L; 𝑝⊕𝑀 is a binary operator parameterized by 𝑝 ∈ [0, 1]; and ⊗𝑀 , 𝜑^𝑀

, 𝑝⊕𝑀 are
monotone with respect to ⊑𝑀 .
Definition 6.24. An abstract interpretation is a pair ℳ = (M, J·Kℳ), whereM is a DPMA for an

abstract domain and J·Kℳ : Act→M. We callM the semantic algebra of the interpretation and
J·Kℳ the semantic function.
Note that the structure of DPMAs is almost the same as the structure of DMKATs; the different is

only that I use a different set of axioms for DPMAs. In this way, it is straightforward to develop an
iteration-based analysis framework based on the fixed-point-based interpretation of DMKATs (§6.2).
However, the whole development around regular hyper-path expressions in this chapter allows
me to apply loop-summarization techniques. To see this, let 𝐸 ∈ RegExp∞(F ,K ) be a regular
hyper-path expression. I use the judgment 𝛾 ⊢K 𝐸 : 𝑎 to express that the abstract interpretation
of 𝐸 is an abstract element 𝑎 ∈ M, given that all the hole symbols in K are interpreted with
respect to the map 𝛾 : K → M. Fig. 6.5 presents the rules of a declarative derivation system
for 𝛾 ⊢K 𝐸 : 𝑎. Most of the rules are syntax-directed, except (Iteration) and (Relax). The
(Iteration) rule works very similarly to loop-invariant verification. For an iteration expression
(𝐸1)∞□ ∈ RegExp∞(F ,K ), we know that the hole □ is the self-concatenation point in the tree of
𝐸1. We say 𝑎 ∈ M is an invariant for the iteration expression, if assuming the abstraction for □ is 𝑎
leads to that the abstraction of the loop body 𝐸1 is also 𝑎. The advantage of such a (Iteration)
rule is that it allows the analysis developer to implement an algorithm to discover such invariants,
whereas the original PMAF framework always uses an iteration-until-fixed-point algorithm for loops
(see §4.2). The (Relax) rule can apply to any regular hyper-path expression, and it essentially
strengthens the hole-abstraction map 𝛾 and weakens the analysis result of the expression 𝐸.
I will end this section by two examples showing that different loop-invariant-generation strategies

for the (Iteration) rule can lead to better analysis results than PMAF. The proof of the soundness
for the rules in Fig. 6.5 and a complete development of an expectation-invariant abstract domain
for DMKAT are left for future work.
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(Skip)

𝛾 ⊢K 1 : 1𝑀

(Action)
𝛾 ⊢K 𝐸1 : 𝑎

𝛾 ⊢K seq[act] (𝐸1) : JactKℳ ⊗𝑀 𝑎

(Condition)
𝛾 ⊢K 𝐸1 : 𝑎1 𝛾 ⊢K 𝐸2 : 𝑎2

𝛾 ⊢K cond[𝜑] (𝐸1, 𝐸2) : 𝑎1 𝜑^𝑀
𝑎2

(Probability)
𝛾 ⊢K 𝐸1 : 𝑎1 𝛾 ⊢K 𝐸2 : 𝑎2

𝛾 ⊢K prob[𝑝] (𝐸1, 𝐸2) : 𝑎1 𝑝⊕𝑀 𝑎2

(Concatenation)
𝛾{□ ↦→ 𝑎2} ⊢K∪{□} 𝐸1 : 𝑎1 𝛾 ⊢K 𝐸2 : 𝑎2

𝛾 ⊢K 𝐸1 ·□ 𝐸2 : 𝑎1

(Iteration)
𝛾{□ ↦→ 𝑎} ⊢K∪{□} 𝐸1 : 𝑎

𝛾 ⊢K (𝐸1)∞□ : 𝑎

(Hole)

𝛾 ⊢K □ : 𝛾(□)

(Relax)
𝛾′ ⊢K 𝐸 : 𝑎′ 𝑎′ ⊑𝑀 𝑎 𝛾 ¤⊑𝑀 𝛾′

𝛾 ⊢K 𝐸 : 𝑎

Fig. 6.5: The probabilistic abstract interpretation of regular hyper-path expressions.
Example 6.25. Consider the one-dimensional random-walk program in Fig. 6.1(b), which can be

expressed by the following regular hyper-path expression:

seq[𝑆1] ((cond[𝑥 < 10] (prob[0.75] (seq[𝑆2] (□2), seq[𝑆3] (□2)) ·□2 seq[𝑆4] (□1), 1))∞□1 ),

where the assignment statements are defined as 𝑆1
def
= (𝑥, 𝑥2, 𝑥𝑡) B (0, 0, 0), 𝑆2

def
= (𝑥, 𝑥2, 𝑥𝑡) B

(𝑥+1, 𝑥2+2𝑥+1, 𝑥𝑡+tick), 𝑆3
def
= (𝑥, 𝑥2, 𝑥𝑡) B (𝑥−1, 𝑥2−2𝑥+1, 𝑥𝑡−tick), and 𝑆4

def
= (tick, tick2, 𝑥𝑡) B

(tick + 1, tick2 + 2tick + 1, 𝑥𝑡 + 𝑥). Imagine that we have a DPMA that keeps track of expectation
invariants (like the LEIA domain developed in §4.3.3 or the modular expected-value analysis proposed
by Avanzini et al. [4]). Inspired by Optional Stopping Theorems (recall that I used them to prove
soundness of central moment analysis in §5.3.3), we now extract expectation invariants of the form
𝔼[E′] ≤ E for the loop, where E is an arithmetic expression on variables.
For the loop body, we temporarily set the interpretation of □1 (i.e., the self-concatenation point for

the loop) to be the identity element, which should consist of the following invariants:

𝔼[𝑥′] = 𝑥 ∧ 𝔼[𝑥′2] = 𝑥2 ∧ 𝔼[tick′] = tick ∧ 𝔼[tick′2] = tick2 ∧ 𝔼[𝑥𝑡′] = 𝑥𝑡.

Following the rules in Fig. 6.5, we might derive the following abstraction for the loop body:

(𝑥 ≥ 10 ∧ 𝔼[𝑥′] = 𝑥 ∧ 𝔼[𝑥′2] = 𝑥2 ∧ 𝔼[tick′] = tick ∧ 𝔼[tick′2] = tick2 ∧ 𝔼[𝑥𝑡′] = 𝑥𝑡)
∨ (𝑥 < 10 ∧ 𝔼[𝑥′] = 𝑥 + 0.5 ∧ 𝔼[𝑥′2] = 𝑥2 + 𝑥 + 1 ∧ 𝔼[tick′] = tick + 1
∧ 𝔼[tick′2] = tick2 + 2tick + 1 ∧ 𝔼[𝑥𝑡′] = 𝑥𝑡 + 𝑥 + 0.5 · tick + 0.5).

Intuitively, because we set the interpretation of □1 to identity, the invariants above should hold for
zero iterations as well as for one iteration. We then extract linear inequalities of the form 𝔼[E′] ≤ E,
using linearity of expectations:

𝔼[tick′ − 2𝑥′] ≤ tick − 2𝑥 ∧ 𝔼[tick′2 + 4𝑥′2 − 4𝑥𝑡′ − 6𝑥′] ≤ tick2 + 4𝑥2 − 4𝑥𝑡 − 6𝑥. (6.1)

To establish that those inequalities in (6.1) are expectation invariants of the entire loop, the imple-
mentation of the (Iteration) rule should consider the termination behavior of the loop (possibly via
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Optional Stopping Theorems). In this example, the loop simulates a biased one-dimensional random
walk, which has been shown to have a finite expected termination time. Therefore, the inequalities
in (6.1) hold for the whole loop, and taking the initial value 𝑥 = 0 and the final value 𝑥 = 10 into
consideration, we know 𝑥′ = 10, 𝑥′2 = 100, 𝑥𝑡′ = 10 · tick′, and derive the following expectation
invariants for the whole program:

𝔼[tick′] ≤ 2 · 𝔼[𝑥′] + tick − 2𝑥
= 2 · 10 + tick − 2 · 0
= tick + 20,

𝔼[tick′2] ≤ −4 · 𝔼[𝑥′2] + 4 · 𝔼[𝑥𝑡′] + 6 · 𝔼[𝑥′] + tick2 + 4𝑥2 − 4𝑥𝑡 − 6𝑥
= −4 · 100 + 4 · 10 · 𝔼[tick′] + 6 · 10 + tick2 + 4 · 0 − 4 · 0 − 6 · 0
≤ −400 + 40 · (tick + 20) + 60 + tick2
= tick2 + 40 · tick + 460.

Example 6.26. Consider the following probabilistic program:
1 \ B 0;
2 𝑖 B 0;
3 while 𝑖 < 𝑛 do
4 tick B tick + 0.1 · \;
5 𝑧 ∼ a distribution whose first moment is 0 and second moment is 0.001;
6 \ B 0.8 · \ + 𝑧;
7 𝑖 B 𝑖 + 1
8 od

The program is intended to model a simple lane-keeping controller: the cost accumulator keeps track
of the distance between the vehicle and the middle of the lane, and in each iteration (i.e., a time unit),
the vehicle changes its position with respect to an angle \, and then updates the angle in a stochastic
way. Probabilistic programs have been used to model other cyber-physical systems [17]. The loop can
be expressed by the following regular hyper-path expression:

(cond[𝑖 < 𝑛] (seq[𝑆4] (seq[𝑆5] (seq[𝑆6] (seq[𝑆7] (□2)))),□1))∞□2 ·□1 1,
where 𝑆ℓ represents the statement on line ℓ of the program.
Because the termination behavior of the loop is totally deterministic, i.e., the number of loop

iterations before termination does not depend on the probabilistic aspect of the program. Thus, to
analyze expectation invariants of this program, we can try a method that is similar to the non-
probabilistic abstraction domain on transition formulas (see §6.3.1). For example, for the regular
hyper-path expression above, we first set the interpretations of □1 and □2 in the loop body to be
the bottom element and the identity element, respectively. In this way, we can obtain the following
abstraction for one loop iteration:

𝐹1
def
= 𝑖 < 𝑛 ∧ 𝑖′ = 𝑖 + 1 ∧ 𝔼[\′] = 0.8 · \ ∧ 𝔼[\′2] = 0.64 · \2 + 0.001
∧ 𝔼[tick′] = tick + 0.1 · \ ∧ 𝔼[tick′2] = tick2 + 0.2 · tick · \ + 0.01 · \2,

where we implicitly instrument the program with \2, tick2 tracking the values of nonlinear terms \2,
tick2, respectively. Because of the deterministic termination behavior, it should be sound for us to
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apply the recurrence analysis (similar to Example 6.21), in the sense that we treat a variable 𝔼[𝑥′]
exactly the same as 𝑥′. Therefore, applying recurrence solving techniques that are capable of deriving
nonlinear solutions (e.g., [90, 91]) can lead to the following loop summarization:

𝐹∗1 =⇒ ∃𝑘 ∈ ℤ : 𝑘 ≥ 0 ∧ 𝑖′ = 𝑖 + 𝑘 ∧ 𝔼[\′] = (45 )
𝑘 · \ ∧ 𝔼[\′2] =

1
360 + (

16
25 )

𝑘 · (\2 − 1
360 )

∧ 𝔼[tick′] = tick + (12 −
1
2 (

4
5 )

𝑘) · \

∧ 𝔼[tick′2] = tick2 + (1 − (45 )
𝑘) · tick · \ + ( 1

36 −
1

36 (
16
25 )

𝑘) · \2

+ (29 +
5

18 (
16
25 )

𝑘 − 1
2 (

4
5 )

𝑘) · \2

+ ( 1
36000𝑘 +

1
12960 (

16
25 )

𝑘 − 1
12960 ).

We now go back to the original regular hyper-path expression with □1 and □2. We set the
interpretation of □1 and □2 in the loop body to be the identity element and the bottom element,
respectively. In this way, we can obtain the following abstraction for the case when the loop terminates:

𝐹2
def
= 𝑖 ≥ 𝑛 ∧ 𝑖′ = 𝑖 ∧ 𝔼[\′] = \ ∧ 𝔼[\′2] = \2 ∧ 𝔼[tick′] = tick ∧ 𝔼[tick′2] = tick2.

Therefore, the abstraction for the whole program can be obtained by 𝐹0 · 𝐹∗1 · 𝐹2, where 𝐹0 abstracts two
assignment statements before the loop. The whole-program abstraction can then yield the following
expectation invariants:

𝔼[\′] = 0, 𝔼[\′2] =
1

360 −
1

360 (
16
25 )

𝑛,

𝔼[tick′] = tick, 𝔼[tick′2] = tick2 + 1
36000𝑛 +

1
12960 (

16
25 )

𝑛 − 1
12960 .

6.4 Discussion
In this section, I discuss some related work of the DMKAT framework.

Regular Tree Expressions and Finite Tree Automata Comon et al. [31] compiled a book on
the theory and application of finite tree automata. They presented some fundamental properties
about finite tree automata: (i) a tree language 𝐿, i.e., a set of finite trees over a fixed ranked
alphabet, is recognizable by some finite tree automaton if and only if 𝐿 is a regular tree language,
and (ii) a tree language 𝐿 is regular if and only if 𝐿 can be finitely represented by a regular tree
expression. Therefore, a finite tree automaton that recognizes a tree language 𝐿 can be translated
to a regular tree expression representing 𝐿, and vice versa. My development in this chapter follows
a similar methodology; intuitively, a control-flow hyper-graph can be thought as an automaton,
the language it recognizes it the control-flow hyper-path on the graph, and the possibly-infinite
hyper-path can be finitely represented by a regular hyper-path expression. I take inspiration from
regular tree expressions to develop regular hyper-path expressions; in particular, regular tree
expressions can take the iteration form 𝐸∗□ , which means self-substituting 𝐸 for the hole □ for a
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finite number of times. However, my work involves infinite trees, and the iteration operator 𝐸∞□
denotes infinite self-substitution, thus most results in the book [31] do not necessarily carry over to
my development.
There are multiple future directions for extending the theory of regular hyper-path expressions.

First, I do not consider nondeterminism in this chapter, so each regular hyper-path expression
correspond to exactly one hyper-path. It would be interesting research to add a combination
operator (like the ones in regular expressions and regular tree expressions that denote set union)
to regular hyper-path expressions, and as a result support finite representations of sets of possibly-
infinite hyper-paths. Second, devising a suitable family of automata that recognize regular
hyper-paths and establishing a formal correspondence between automata and regular hyper-path
expressions would also be an interesting direction for theoretical research. Third, similar to Tarjan’s
path-expression algorithm [142] and its application to algebraic static analysis [92], it would be
interesting research to develop an efficient algorithm that constructs regular hyper-path expressions
from control-flow hyper-graphs and apply the algorithm to algebraic static analysis of probabilistic
programs.

𝜔-Regular Expressions and Büchi Automata The theory of regular (word) languages has been
lifted to languages that can contain infinite words and different kinds of automata. (Interested
readers can referred to textbooks, e.g., the book by Pin and Perrin [129], for more details.) Regular
languages for infinite words are called 𝜔-regular languages, and their fundamental properties can
be summarized as follows: (i) an 𝜔-language 𝐿, i.e., a set of infinite words over a fixed alphabet,
is recognizable by some Büchi automaton if and only if 𝐿 is an 𝜔-regular language, and (ii) an
𝜔-language 𝐿 is regular if and only if 𝐿 can be finitely represented by an 𝜔-regular expression.
In the common formalism, an 𝜔-regular expression is of the form 𝑟1 · 𝑠𝜔1 + · · · + 𝑟𝑛 · 𝑠𝜔𝑛 , where
𝑟𝑖, 𝑠𝑖’s are standard regular expressions and each 𝑠𝑖 denotes a nonempty language. The class of
𝜔-regular expressions can also be defined inductively over standard regular expressions; that is,
every 𝜔-regular expression is either 𝐸𝜔, 𝐸 · 𝐹, or 𝐹1 + 𝐹2, where 𝐸’s are standard regular expressions
and 𝐹’s are 𝜔-regular expressions. The capability of describing sets of infinite words makes
𝜔-regular expressions suitable for reasoning about program termination. Zhu and Kincaid [157]
proposed an algebraic termination analysis (for non-probabilistic programs) that uses 𝜔-regular
path expressions to represent sets of infinite execution paths in a control-flow graph.
My work in this chapter focuses on hyper-paths, i.e., possibly-infinite trees, which can be seen as

a generalization of infinite words, so I need to develop a more general theory (i.e., §6.1) to handle
infinite objects. On the other hand, for a probabilistic program without nondeterminism, i.e., the
class of the programs considered in this chapter, one can extract an 𝜔-regular expression that
encodes all non-terminating execution paths, each of which is annotated with a probability. Such
an approach would be a suitable basis for analyzing the termination probability of a probabilistic
program without nondeterminism; however, static analyses that leverage aggregate information
(e.g., the central-moment analysis developed in Chapter 5) need to consider both the terminating
and non-terminating execution paths in a program. In addition, there seems to be an interesting
connection between regular hyper-paths and 𝜔-regular languages: I conjecture that the set of
infinite rooted paths on a regular hyper-path can always be characterized by an 𝜔-regular language.
A more thorough and formal investigation is left for future work.
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∞-Regular Expressions and Parity Automata Recently, Löding and Tollkötter [108] proposed
∞-regular expressions, which encode mixed sets of finite and infinite words. Their ∞-regular
expressions are defined as standard regular expression plus one extra syntactic form 𝐸∞, which
means iterating 𝐸 for a possibly infinite number of times. They proved that an ∞-regular language
can always be separated into a regular language and an 𝜔-regular language, and that a language
𝐿 of both finite and infinite words can be recognized by a parity automaton if and only if 𝐿 can be
encoded as an ∞-regular expression.
The reason why I need a different theory for hyper-paths is exactly the same as my argument in

the discussion about 𝜔-regular expressions. On the other hand, for non-probabilistic programs
(and also probabilistic programs without nondeterminism), it would be interesting future research
to use ∞-regular path expressions to represent sets of both finite and infinite execution paths in a
control-flow graph, and develop algebraic static analyses that account for total-correctness properties,
because both the termination and non-termination behavior are captured by the ∞-regular path
expressions.



Chapter 7

Conclusion

In this chapter, I reiterate the main contributions of the thesis and offer some concluding remarks.

7.1 Contributions
The main contributions of the research covered by this thesis are as follows.

• I developed a novel hyper-graph-based program model for low-level probabilistic programs
with unstructured control-flow, general recursion, and nondeterminism. (See §2.2.) Control-
flow hyper-graphs (CFHGs) turn out to be a natural representation of probabilistic programs
with nondeterminism, because CFHGs allow different treatment for indeterminacy caused
by probabilistic-branching (encoded as a hyper-edge with multiple destinations) and that
caused by nondeterministic-branching (encoded as a bunch of hyper-edges starting from one
source). In this sense, CFHGs precisely correspond to the intended meaning of a probabilistic
program as a collection of probability distributions on executions. (See also the discussion at
the beginning of Chapters 3 and 6.)

• I developed Markov algebras, which can describe the algebraic structure for control-flow
hyper-graphs of probabilistic programs in a natural and general way. Based on Markov
algebras, I devised an algebraic denotational semantics for low-level probabilistic programs.
One notable advantage of the framework is that it can be instantiated with different models
of nondeterminism. (See §3.3.)

• I presented a domain-theoretic development of a newmodel of nondeterminism for probabilistic
programming, which is called nondeterminism-first and resolves nondeterminacy prior to
program inputs, and thus achieves state-transformer-level nondeterminism, rather than the
standard state-level nondeterminism. A potential application of nondeterminism-first would
be refinement-based reasoning about relational properties. (See §3.2 and §3.4.3.)

• Based on the hyper-graph programmodel and the algebraic denotational semantics, I presented
a new algebraic framework, which I call PMAF, for static analysis of probabilistic programs.
The framework uses a variant of Markov algebras, namely the pre-Markov algebras, as the
interface between the analysis framework and the abstract domains for concrete analyses.
(See §4.1 and §4.2.)
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• I demonstrated that PMAF can be instantiated to perform interprocedural versions of existing
analyses such as Bayesian-inference analysis and expected-reward analysis for MDPs, as well
as perform a novel linear expectation-invariant analysis. (See §4.3 and §4.4.)

• I developed the first fully automated analysis for deriving symbolic interval bounds on higher
central moments for cost accumulators (such as running time) in probabilistic programs with
general recursion and continuous distributions. For compositional derivation, I presented a
new family of algebraic structures, namely the moment semirings, and a novel frame rule to
handle procedure calls with moment-polymorphic recursion. (See §5.2.)

• I proved the (non-trivial) soundness of the central-moment analysis, incorporating Markov-
chain-based semantics and Optional Stopping Theorems from probability theory. The proof
establishes a general method to apply mathematical results about stochastic processes to
analyses of probabilistic programs. (See §5.3.)

• I implemented the central-moment analysis, together with many practical enhancements, as
an open-source tool and evaluated it on a broad suite of benchmark programs. (See §5.5.)

• I applied the central-moment analysis to tail-bound analysis via concentration inequalities.
I also performed a case study on using tail bounds on program running time to analyze
timing-leak vulnerabilities. (See §5.4 and §5.6.)

• I developed regular hyper-path expressions, which provide a finite representation of the
possibly-infinite hyper-path obtained by composing hyper-edges on a control-flow hyper-
graph for a probabilistic program without nondeterminism. My approach followed the
“Kleene Algebras interpret regular expressions extracted from control-flow graphs” approach
for algebraic static analysis of non-probabilistic programs. Notably, regular hyper-path
expressions allow an iteration operator, which is similar to the Kleene-star. (See §6.1.)

• I presented some preliminary results on extending PMAF by using regular hyper-path
expressions as the representation of probabilistic programs. To this end, I devised Deterministic
Markov-Kleene Algebras with Tests (DMKATs) and developed a “DMKATs interpret regular
hyper-path expressions extracted from control-flow hyper-graphs” approach. In this way, the
analysis developer has an opportunity to specify how loops should be summarized via the
iteration operator, rather than uses the built-in iteration algorithm of PMAF. I demonstrated
how a DMKAT-based static-analysis framework would derive invariants on higher moments of
program variables, including the cost accumulators. (See §6.2 and §6.3.)

7.2 Concluding Remarks
In this thesis, I have presented an algebraic approach for static analysis of probabilistic programs.
Probabilistic programs are programs that can draw random samples from probability distributions
and change the control flow at random. Probabilistic programs provide a general and flexible tool to
implement and analyze probabilistic systems, which can be found in various applications including
algorithm design, cryptographic protocols, uncertainty modeling, and statistical inference. The
quantitative nature of probabilistic programs leads to non-trivial challenges to the development of
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formal methods, including static analysis. Algebraic static analysis—the focus of the thesis—helps
people reason about probabilistic programs at compile time in a compositional and versatile way,
via a powerful framework based on the hyper-graph-based program model, the algebraic framework
for denotational semantics and static analysis, as well as other techniques developed in this thesis.
This thesis also leaves and opens many directions for future research on static analysis of

probabilistic programs. Besides those that are already mentioned in the discussion sections, I
would like to emphasize extending the DMKAT framework. Recall that I proposed the DMKAT
framework, mainly because the constraint-based central-moment analysis does not fit into the
iteration-based analysis framework PMAF. I hope that in the future, DMKAT will be extended to
a general, systematic, flexible, efficient, and non-iteration-based algebraic framework for static
analysis of probabilistic programs, just like the algebraic framework for analyzing non-probabilistic
programs developed by Kincaid et al. [92].
As probabilistic programming becomes increasingly popular in recent days, there are many

opportunities to carry out impactful research on static analysis of probabilistic programs. Notably,
probabilistic programs have been used for expressing and performing probabilistic inference, a
method of inferring a statistical model from observed data, which is good at capturing uncertainty
in model parameters and integrating domain knowledge. However, probabilistic inference requires
considerable expertise from the practitioner [62], and it is not uncommon that people incorrectly
program inference in a way that breaks convergence and leads to unsound learned model. Verifying
properties of probabilistic programs that are used for data modeling, especially some statistical
properties (such as convergence), brings new angles and challenges for programming-language
research on static analysis of probabilistic programs. I hope that in the future more static-analysis
techniques (ideally algebraic), which helps people diagnose inference-related bugs or optimize
inference performance, can be developed and integrated in the toolchain of probabilistic inference
to create a more reliable and efficient probabilisitic programming system.
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