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Abstract
Modern reinforcement learning (RL) methods have achieved phenomenal suc-

cess on various applications. However, reinforcement learning problems with large
state spaces and long planning horizons remain challenging due to the excessive
sample complexity burden, and our current understanding is rather limited for such
problems. Moreover, there are important problems in RL that cannot be addressed
by the classical frameworks. In this thesis, we study the above issues to build a better
understanding of modern RL methods.

This thesis is divided into the following three parts:

Part I: RL with Long Planning Horizons. Learning to plan for long horizons is a
central challenge in RL, and a fundamental question is to understand how the
difficulty of RL scales as the horizon increases. In the first part of this thesis, we
show that tabular reinforcement learning is possible with a sample complexity
that is completely independent of the planning horizon, and therefore, long
horizon RL is no more difficult than short horizon RL, at least in a minimax
sense.

Part II: RL with Large State Spaces. In modern RL methods, function approxi-
mation schemes are deployed to deal with large state spaces. Empirically,
combining RL algorithms with neural networks for feature extraction has led
to tremendous success on various tasks. However, these methods often require
a large amount of samples to learn a good policy, and it is unclear if there are
fundamental statistical limits on such methods. In the second part of this the-
sis, we study necessary and sufficient conditions on the representation power of
the features that permit sample-efficient reinforcement learning, through both
theoretical analysis and experiments.

Part III: RL in Other Settings. Classical reinforcement learning paradigms aim to
maximize the cumulative reward when the agent has access to the reward val-
ues. Despite being able to formulate a large family of sequential decision-
making problems, there are important applications that cannot be casted into
the classical frameworks. In the third part of this thesis, we study two new set-
tings, the reward-free exploration setting and planning with general objective
functions, that generalize the classical frameworks.
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Chapter 1

Introduction

In the past decade, by exploiting the power of deep neural networks, significant progress has
been made on static prediction problems such as image classification and natural language un-
derstanding. Recently, sequential decision-making problems have gained lots of interest from the
machine learning community due to their wide applications in robotics [46], game playing [58],
healthcare [106] and education [47]. In these problems, instead of making a single static predic-
tion, the agent decides a sequence of actions to maximize the cumulative utility. These problems
are challenging as we need to design a mechanism to balance exploration and exploitation, and
reinforcement learning (RL) is a framework to formalize these problems. In recent years, by
combining reinforcement learning algorithms with deep learning techniques (a.k.a. deep RL),
strong empirical success has been achieved on a wide variety of real-world problems.

Despite their great empirical performance, a major problem is that deep RL methods require
a large number of samples to learn a good policy. For example, deep Q-networks [58] require
millions of samples to play a simple Atari game. It is unclear if there are fundamental statistical
limits on these methods, or such sample complexity burden can be alleviated by a better algo-
rithm. When dealing with real-world problems, practitioners heavily rely on heuristics for better
sample efficiency, which limits the scope that RL algorithms can be applied to and also makes
RL systems less robust and less transparent.

There is still a significant gap between modern RL algorithms and existing theory. For exam-
ple, existing theory usually assumes a small state space. However, real-world decision-making
problems usually have huge or even continuous state spaces (e.g., images, languages, or rich sen-
sory inputs). Moreover, previous theoretical analysis usually assumes a short planning horizon,
and an algorithm is said to be efficient if its sample complexity is polynomial in the planning
horizon. However, in modern RL applications, the planning horizon could be as large as a few
thousand, and even polynomial dependence is unacceptable. Furthermore, there are emerging
settings in various applications (including unsupervised RL and general objective functions) that
cannot be addressed by standard RL frameworks where the unknown environment is often mod-
eled as a Markov decision process (MDP).

In this thesis, we propose to study the above issues to build a better understanding of modern
RL methods.
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1.1 Overview
In this section we give an overview of this thesis. This thesis is divided into the following three
parts.

1.1.1 Part I: RL with Long Planning Horizons
Long horizons is the differentiator between RL problems and simpler bandit problems. In RL,
actions taken at early stages could substantially impact the future. In contrast, for bandit prob-
lems, the action taken at each time step is independent of the future. Problems with long hori-
zons are also ubiquitous in real-world applications. Therefore, understanding the optimal sample
complexity dependence on the planning horizon is an important problem in RL.

In a COLT open problem [37], it was conjectured that for tabular episodic RL problems,
there exists a sample complexity lower bound which exhibits a polynomial dependence on the
planning horizon. In Chapter 3, we refute this conjecture by proving that tabular episodic RL
is possible with a sample complexity that scales only logarithmically with the planning horizon.
An informal statement of our main result is provided below.
Theorem 1.1.1 (Informal version of Theorem 3.1.1). There exists a RL algorithm that returns
an ε-optimal policy with probability at least 1− δ by sampling at most

poly (|S| , |A| , logH, 1/ε, log(1/δ))

episodes.
Although the conjecture in [37] has been refuted by Theorem 1.1.1, it is still unclear if tabular

RL is possible with a sample complexity that is completely independent of the planning horizon.
In Chapter 3, we further develop a new tabular RL algorithm whose sample complexity is com-
pletely independent of the planning horizon when the number of states and actions are constants,
and thus completely answer the open problem in [37].
Theorem 1.1.2 (Informal version of Theorem 3.1.2). There exists a RL algorithm that returns
an ε-optimal policy with probability at least 1− δ by sampling at most

(|S||A|)O(|S|) · log(1/δ)/ε5

episodes.

1.1.2 Part II: RL with Large State Spaces
The first part of this thesis is mainly concerned with the tabular setting where the number of
states is bounded. However, in practice, the state space could be huge or even continuous, and
function approximation schemes are deployed to deal with the curse of dimensionality. Despite
great empirical success [58, 74], a major drawback is that these methods often require a large
amount of samples to learn a good policy, and it is unclear if there are fundamental statistical
limits on such methods.

In the second part of this thesis, we study necessary and sufficient conditions on the repre-
sentation power of the features that permit sample-efficient reinforcement learning, in both the

2



online setting and the offline setting. Perhaps surprisingly, our theoretical results show that in
both settings, conditions that permit sample-efficient supervised learning are generally insuffi-
cient for sample-efficient RL. Therefore, successful RL requires conditions that are substantially
stronger that those sufficient for supervised learning.

Given these hardness results, it is natural to ask to what extent these worst-case charac-
terizations are reflective of the scenarios that arise in practical applications. In Chapter 6, we
provide a careful empirical investigation to understand these issues. Our experiments confirm
the phenomenon predicted by our theoretical analysis and demonstrate that even in practice, the
definition of a good representation in offline RL is more subtle than in supervised learning.

1.1.3 Part III: RL in Other Settings
Classical reinforcement learning paradigms aim to maximize the cumulative reward when the
agent has access to the reward distributions. Despite being able to formulate a large family
of sequential decision-making problems, there are important applications that cannot be casted
into this framework. In the third part of this thesis, we study two new settings, the reward-free
exploration setting and planning with general objective functions, to generalize the classical RL
frameworks.

Planning with General Objective Functions. Standard RL paradigms aim to maximize the
cumulative reward. However, this paradigm fails to model important practical applications. In
Chapter 7, we consider a class of general objective functions that map scalar reward values to
a real objective value, and give necessary and sufficient conditions on the objective function so
that the problem is tractable.

Reward-Free Exploration. Exploration is widely regarded as one of the most challenging
aspects of RL. To isolate the challenges of exploration, Jin et al. [39] propose a new reward-free
exploration framework. During the exploration phase, an agent collects samples without using
a pre-specified reward function. After the exploration phase, a reward function is given, and the
agent uses samples collected during the exploration phase to compute a near-optimal policy. Jin
et al. [39] show that in the tabular setting, the agent only needs to collect polynomial number of
samples (in terms of the number of states, the number of actions, and the planning horizon) for
reward-free exploration. However, in practice, the number of states and actions can be large, and
thus function approximation schemes are required for generalization. In Chapter 8, we give both
positive and negative results for reward-free exploration with linear function approximation. Our
results imply several interesting exponential separations on the sample complexity of reward-free
exploration.

1.2 Organization
The remaining part of this thesis is organized as follows.

0. Background

3



• In Chapter 2, we introduce notations and necessary background.

1. RL with Long Planning Horizons
• In Chapter 3, we present our results for RL with long horizons. This chapter is based

on a paper that appeared in NeurIPS 2020 [89] and another paper that appeared in
FOCS 2021 [52].

2. RL with Large State Spaces
• In Chapter 4, we present our upper bound for online RL with large state spaces. This

chapter is based on a paper that appeared in NeurIPS 2020 [92].
• In Chapter 5, we present our hardness results for online RL with large state spaces.

This chapter is based on a paper that appeared in ICLR 2020 [24].
• In Chapter 6, we present our results for offline RL with large state spaces. This

chapter is based on a paper that appeared in ICLR 2021 [91] and another paper that
appeared in ICML 2021 [94].

3. RL in Other Settings
• In Chapter 7, we present our results for planning with general objective functions.

This chapter is based on a paper that appeared in NeurIPS 2020 [95].
• In Chapter 8, we present our results for reward-free exploration. This chapter is based

on a paper that appeared in NeurIPS 2020 [90].

4. Conclusion and Future Directions
• In Chapter 9, we conclude the thesis and list future directions.

Excluded Research. In order to keep this thesis succinct and coherent, a significant portion of
the author’s Ph.D. work has been excluded. The excluded research includes:

• work on numerical linear algebra and sketching algorithms [18, 51, 53, 79, 87, 93];
• work on the neural tangent kernel theory [8, 9, 10, 22];
• work on other theoretical aspects of reinforcement learning [23, 25, 26, 30, 96, 97, 101].
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Chapter 2

Background and Notations

Notations. Throughout this thesis, for a given non-negative integerH , we use [H] to denote the
set {1, 2, . . . , H}. For a condition E , we use I[E ] to denote the indicator function, i.e., I[E ] = 1
if E holds and I[E ] = 0 otherwise. For a vector x ∈ Rd, we use ‖x‖p to denote its `p norm.
For a positive semidefinite matrix A, we use ‖A‖2 to denote its operator norm, and σmin(A) to
denote its smallest eigenvalue. For two positive semidefinite matrices A and B, we write A � B
to denote the Löwner partial ordering of matrices, i.e, A � B if and only if A − B is positive
semidefinite. For a vector x ∈ Rd and a positive semidefinite matrix A ∈ Rd×d, we use ‖x‖A to
denote

√
x>Ax. Throughout this thesis, we use Õ (·) to omit logarithmic factors.

Episodic Reinforcement Learning. Let M = (S,A, P,R,H, µ) be a Markov Decision Pro-
cess (MDP) where S is the state space, A is the action space, P : S × A → ∆ (S) is the
transition operator which takes a state-action pair as input and returns a distribution over states,
R : S ×A → ∆ (R) is the reward distribution, H ∈ Z+ is the planning horizon (episode length),
and µ ∈ ∆ (S) is the initial state distribution. We use contextual bandit problem to denote an
MDP with H = 1. We use deterministic system to denote an MDP when the rewards, the tran-
sition operators and the initial state distribution are all deterministic. Throughout this thesis, for
a state s ∈ S, we occasionally abuse notation and use s to denote the deterministic distribution
that always takes s.

A policy π chooses an action a based on the current state s ∈ S and the time step h ∈ [H].
Formally, π = {πh}Hh=1 where for each h ∈ [H], πh : S → A maps a given state to an action.
Given an MDP M = (S,A, P, R,H, µ), a policy π induces a (random) trajectory

(s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH), sH+1,

where s1 ∼ µ, a1 = π1(s1), r1 ∼ R(s1, a1), s2 ∼ P (s1, a1), a2 = π2(s2), etc. For a policy π and
h ∈ [H], we use µπh to denote the marginal distribution of sh under π, i.e.,

µπh(s) = Pr[sh = s | π].

An important concept in RL is the Q-function. Given a policy π, a level h ∈ [H] and a

5



state-action pair (s, a) ∈ S ×A, the Q-function is defined as

Qπ
h(s, a) = E

[
H∑

h′=h

rh′ | sh = s, ah = a, π

]
.

Similarly, the value function of a given state s ∈ S is defined as

V π
h (s) = E

[
H∑

h′=h

rh′ | sh = s, π

]
.

For a policy π, we write V π
M = E

[∑H
h=1 rh | π

]
to denote its value in an MDP M , i.e., the

expected total reward of π. We omit M from the subscript when it is clear from the context. For
a given MDP M = (S,A, P, R,H, µ) and an integer H ′, for a given policy π, we define V π

M,H to
be V π

M ′ where M ′ = (S,A, P, R,H ′, µ).
Throughout the thesis, we use π∗ to denote a policy that maximizes V π. It is well-known

(see e.g. [67]) that the optimal value of M can be achieved by a deterministic policy, and hence,
we only consider deterministic policies. For notational convenience, we also write Q∗h(s, a) =
Qπ∗

h (s, a) and V ∗h (s) = V π∗

h (s).
Here we discuss four possible query models when interacting with an MDP.
• Online RL: In the Online RL model, the agent can only interact with the MDP by choosing

actions and observe the next state and the reward.
• Offline RL: In the Offline RL model, the agent does not have direct access to the MDP

and instead is given access to data distributions {µh}Hh=1 where for each h ∈ [H], µh ∈
∆(S × A). The inputs of the agent are H datasets {Dh}Hh=1, and for each h ∈ [H], Dh

consists i.i.d. samples of the form (s, a, r, s′) ∈ S ×A×R×S tuples, where (s, a) ∼ µh,
r ∼ R(s, a), s′ ∼ P (s, a).

• Generative Model: Compared to the Online RL model, a stronger query model assumes
the agent can transit to any state [42, 44, 76]. This query model is available in certain
robotic applications where one can control the robot to reach the target state.

• Known Transition: Another query model considered here is that the agent can not only
transit to any state, but also knows the whole transition operator. In this model, only the
reward is unknown.

Now we discuss two possible goals in RL.

Policy Optimization. In the policy optimization problem, the goal is to find a policy π that
maximizes the expected total reward E

[∑H
h=1 rh | π

]
while minimizing the number of samples

queried. We say a policy π is ε-optimal if

E

[
H∑
h=1

rh | π

]
≥ E

[
H∑
h=1

rh | π∗
]
− ε.

Policy Evaluation. In the policy evaluation problem, the agent is given a policy π, and the goal
is to estimate the value of π, i.e., V π, while minimizing the number of samples queried.
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Part I

RL with Long Planning Horizons

7





Chapter 3

RL with Long Planning Horizons

3.1 Introduction
Long horizons, along with the state dependent transitions, is the differentiator between RL prob-
lems and simpler contextual bandit problems. In RL, actions taken at early stages could sub-
stantially impact the future. In contextual bandit problems, the action taken at each time step is
independent of the future. Jiang and Agarwal [37] proposed to study this distinction by examin-
ing how the sample complexity depends on the horizon length in a finite horizon episodic MDP.
Clearly, as the horizonH grows, we will observe more samples in each episode. To appropriately
measure the sample complexity, we consider a normalized notion: we are interested in the num-
ber of episodes it takes to provably discover an ε-optimal policy, where the value is measured
by the normalized cumulative reward in each episode (i.e., values are normalized to be bounded
between 0 and 1). Here, all existing sample complexity upper bounds depend polynomially on
the horizon H , while lower bounds do not provide any dependence on H . Motivated by these
observations, in a COLT 2018 open problem, Jiang and Agarwal [37] conjectured a sample com-
plexity lower bound with linear dependence on the horizon, which is consistent with all existing
upper bounds. In other words, the conjecture is that, even when the values are appropriately
normalized, long horizon RL is more difficult than short horizon RL.

In this chapter we resolve this question, with, perhaps surprisingly, negative answers. Here
we give an informal version of our first result.
Theorem 3.1.1. Suppose the reward values satisfy rh ≥ 0 and

∑H
h=1 rh ≤ 1 almost surely.

Given a target accuracy 0 < ε < 1, there is an algorithm that returns an ε-optimal policy with
probability at least 1− δ by sampling at most

O
(
|S|3|A|3 log2H/ε3 log(|S||A|/ε) ·

(
|S|2|A| log(H|S|/ε) + log(1/δ)

))
episodes.

Importantly, this sample complexity scales only logarithmically with H . Although the con-
jecture in [37] has been refuted by Theorem 3.1.1, it is still unclear if tabular RL is possible with
a sample complexity that is completely independent of the planning horizon. We further develop
an algorithm whose sample complexity is completely independent of the planning horizon, at the
cost of worse dependence on the number of states and actions.
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Theorem 3.1.2. Suppose the reward values satisfy rh ≥ 0 and
∑H

h=1 rh ≤ 1 almost surely.
Given a target accuracy 0 < ε < 1, there is an algorithm that returns an ε-optimal policy with
probability at least 1− δ by sampling at most

(|S||A|)O(|S|) · log(1/δ)/ε5

episodes.
In the context of the discussion in [37], these results suggest that perceived differences be-

tween long horizon RL and short horizon RL are not attributable to the horizon dependence, at
least in a minimax sense.

3.2 Preliminaries
Notations. Throughout this chapter, for a random variable X and a real number ε ∈ (0, 1], its
ε-quantile Qε(X) is defined so that

Qε(X) = sup{x | Pr[X ≥ x] ≥ ε}.

For a policy π, we define

Qπδ (s, a) = Qδ

[
H∑
t=1

I[(s, a) = (st, at)]

]

to be the δ-quantile of the visitation frequency of a state-action pair (s, a), where

(s1, a1), (s2, a2), . . . , (sH , aH), sH+1

is a random trajectory induced by executing π.

Markov Chains. Let C = (S, P, µ) be a Markov chain where S is the state space, P : S →
∆(S) is the transition operator and µ ∈ ∆(S) is the initial state distribution. A Markov chain C
induces a sequence of random states

s1, s2, . . .

where for each s1 ∼ µ and sh+1 ∼ P (sh) for each h ≥ 1.

Stationary Policies. For the sake of the analysis, we shall also consider stationary policies. A
stationary deterministic policy π chooses an action a solely based on the current state s ∈ S,
i.e, π1 = π2 = . . . = πH . We use Πst to denote the set of all stationary policies. Note that
|Πst| = |A||S|.

For an MDP M = (S,A, P, R,H, µ) and a stationary policy π : S → A, we use Mπ =
(S, P π, µ) to denote the Markov chain induced by M and π, where the transition operator P π is
defined so that

P π(s′ | s) = P (s′ | s, π(s)).
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Assumption on Rewards. Below, we introduce the bounded total reward assumption.
Assumption 3.2.1 (Bounded Total Reward). For any policy π, and a random trajectory

(s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH), sH+1

induced by π, we have rh ∈ [0, 1] for all h ∈ [H], and

H∑
h=1

rh ≤ 1

almost surely.
As discussed in [37], this assumption is more general than the standard assumption where

rh ∈ [0, 1/H] for all h ∈ [H].
The above assumption in fact implies a very interesting consequence.

Lemma 3.2.1. Under Assumption 3.2.1, for any M = (S,A, P, R,H, µ) with H ≥ |S|, for any
(s, a) ∈ S × A, if there exists a (possibly non-stationary) policy π such that for the random
trajectory

(s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH), sH+1

induced by executing π in M , we have

Pr

[
H∑
h=1

I[(sh, ah) = (s, a)] > 1

]
≥ ε

for some ε > 0, then R(s, a) ≤ 2|S|/H almost surely and therefore E[(R(s, a))2] ≤ 4|S|2/H2.

Proof. By the assumption, there exists a trajectory

(s1, a1), (s2, a2), . . . , (sH , aH), sH+1

such that there exists 1 ≤ h1 < h2 ≤ H with sh1 = sh2 . Moreover,

µ(s1)

h2−1∏
h=1

P (sh+1 | sh, ah) ≥ ε > 0.

We may assume h1 ≤ |S| and h2 − h1 ≤ |S|, since otherwise we can replace sub-trajectories
that start and end with the same state by that state, and the resulting trajectory still appears with
strictly positive probability. Now consider the policy π̂ which is defined so that for each h < h1,
π̂h(sh) = ah and for each 0 ≤ t < h2 − h1,

π̂h1+t(sh1+t) = π̂h1+(h2−h1)+t(sh1+t) = π̂h1+2(h2−h1)+t(sh1+t) = · · · = ah1+t,

i.e., repeating the trajectory’s actions in [h1, h2] indefinitely. π̂ is defined arbitrarily for other
states and time steps.

By executing π̂, with strictly positive probability, (s, a) is visited for bH/|S|c ≥ H/(2|S|)
times. Therefore, by Assumption 3.2.1, R(s, a) ≤ 2|S|/H with probability 1 and thus

E[(R(s, a))2] ≤ 4|S|2/H2.
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Discounted Markov Decision Processes. We also introduce another variant of MDP, dis-
counted MDP, which is specified by M = (S,A, P,R, γ, µ), where γ ∈ (0, 1) is a discount
factor and all other components have the same meaning as in an episodic MDP. The difference
between a discounted MDP and an episodic MDP is that discounted MDPs have an infinite hori-
zon length, i.e., the length of a trajectory can be infinite. To measure the value of a policy π in a
discounted MDP, suppose π induces a random trajectory

(s1, a1, r1), (s2, a2, r2), . . . ,

we define

V π
M,γ = E

[
∞∑
h=1

γh−1rh | π

]
as the discounted value of π. Throughout this chapter, for a (discounted or episodic) MDP
M = (S,A, P, R, ·, µ), we define V π

M,H to be the value of π in (S,A, P,R,H, µ) and V π
M,γ to be

the value of π in (S,A, P, R, γ, µ).

3.3 Technical Overview

3.3.1 Technical Overview of Theorem 3.1.1
An ε-net For Non-Stationary Policies. We first construct a set of polices Π which contains an
ε-optimal policy for any MDP. Importantly, the size of Π satisfies |Π| = (H/ε)poly(|S||A|), which
is acceptable since the overall sample complexity of our algorithm depends only logarithmically
on |Π|. To define such a set of policies, we consider all discretized MDPs whose transition prob-
abilities and reward values are integer multiples of poly(ε/(|S||A|H)). Clearly, there are most
(H/ε)poly(|S||A|) such discretized MDPs, and for each discretized MDP M , we add an optimal
policy of M into Π. It remains to show that for any M , there exists a policy π ∈ Π which is an ε-
optimal policy of M . This can be seen since there exists a discretized MDP M̂ whose transition
probabilities and reward values are close enough to those of M , and by standard perturbation
analysis, it can be easily shown that an optimal policy of M̂ is an ε-optimal policy of M .

The Trajectory Synthesis Method. Now we show how to evaluate values of all policies in the
policy set Π constructed above by sampling at most poly(|S|, |A|, 1/ε, log |Π|, logH) episodes.
To achieve this goal, we design a trajectory simulator, which, for every policy in the set, either
interacts with the environment to collect trajectories, or simulates trajectories using collected
samples. In either case, the simulator obtains trajectories of the policy with distribution close
enough to those sampled by interacting with the environment. The most natural idea is to col-
lect trajectories for each policy π separately by interacting with the environment. This method,
although is guaranteed to output “true” trajectories for every policy, has sample complexity at
least linear in the size of the policy set |Π| and is thus insufficient for our goal. Another possible
way to evaluate policies is to build an empirical model (an estimation of transition probability
and reward function) and evaluate policies on the empirical model (or to build a trajectory tree
as in [43]). However, we do not know how to deal with the dependency issue in building the
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empirical model and to prove a sample complexity bound that scales logarithmically with the
planning horizon. The analysis based on performance difference lemma can lead to polynomial
dependency on the planning horizon [42].

Reuse Samples. A key observation is that once we obtain a trajectory for a policy by interacting
with the environment, samples collected during this process can be used to simulate trajectories
for other policies. To better illustrate this idea, we use ΠD to denote the set of policies for which
we have obtained trajectories by interacting with the environment, and denote

Ds,a =
[(
s

(1)
(s,a), r

(1)
(s,a)

)
,
(
s

(2)
(s,a), r

(2)
(s,a)

)
, . . .

]
to be the sequence of samples obtained from P (s, a) and R(s, a). These samples are sorted in
chronological order. Suppose that now we are given a new policy π and for all (s, a) ∈ S × A,
|D(t)

s,a| ≥ H . Then it is easy to simulate a trajectory for π using the set of samples {Ds,a}s∈S,a∈A.
Indeed, we start from state s1 and set (s2, r2) to be the first pair in Ds1,π1(s1), and then set (s3, r3)
to be the first pair in Ds2,π2(s2) that has not been used, etc. In general, suppose we are at state
sh for some h < H , we set (sh+1, rh+1) to be the first pair in Dsh,πh(sh) that has not been used.
Note that such a procedure generates a trajectory for π with exactly the same distribution as that
generated by interacting with the environment.

Avoid Unnecessary Sampling. We have described the approach to reuse samples in the above
paragraph. Nevertheless, there is a problem intrinsic to the above approach: if the process of
simulating a policy π fails (i.e., some (sh, πh(s)) has been visited j ≤ H times but |Dsh,πh(s)| <
j), should we interact with the environment to generate a trajectory or simply claim failure? Note
that claiming failure is acceptable as long as the overall failure probability is small.

In order to decide when to interact with the environment, we design a procedure to estimate
the probability of simulation failure. If the failure probability is already small enough, there is
no need to interact with the environment. Otherwise, we interact with the environment to obtain
a trajectory. To bound the overall sample complexity, one key observation is that if the failure
probability is large, then the policy will visit some state-action pair more frequently than all
existing policies. In the formal analysis, we make this intuition rigorous by designing a potential
function to measure the overall progress made by our algorithm.

3.3.2 Technical Overview of Theorem 3.1.2
To introduce the high-level ideas, we first start with the simpler setting, the generative model,
where exploration is not a concern. We then switch to the more challenging RL setting, where
we need to carefully design policies to explore the state-action space so that a good policy can
be learned. For simplicity, throughout the discussion in this section, we assume |S|, |A| and 1/ε
are all constants.

Algorithm and Analysis in the Generative Model. Our algorithm in the generative model
is conceptually simple: for each state-action pair (s, a), we draw O(H) samples from P (s, a)
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and R(s, a) and then return the optimal policy with respect to the empirical model M̂ which
is obtained by using the empirical estimators for P and R (denoted as P̂ and R̂). Here for
simplicity, we assume R = R̂ which allows us to focus on the estimation error induced by the
transition probabilities. Moreover, we assume that P differs from P̂ only for a single state-action
pair (s, a). To further simplify the discussion, we assume that there are only two different states
on the support of P (s′ | s, a) (say s1 and s2).

In order to prove the correctness of the algorithm, we show that for any policy π, the value
of π in the empirical model M̂ is close to that in the true model M . However, standard analysis
based on dynamic progarmming shows that the difference between the value of π in M̂ and that
in M could be as large as H times the estimation error on P (s, a), which is clearly insufficient
for obtaining an algorithm which uses O(1) batches of queries. Our main idea here is to show
that for most trajectories T , the probability of T in the empirical model M̂ is a multiplicative
approximation to that in the true model M with constant approximation ratio.

To establish the multiplicative approximation guarantee, our observation is that one should
consider s1 and s2, the two states on the support of P (s, a), as a whole. To see this, consider
the case where P (s1 | s, a) = P (s2 | s, a) = 1/2. Again, the additive estimation errors on both
P (s1 | s, a) and P (s2 | s, a) are roughly O(1/

√
H). Now, consider a trajectory that visits both

(s, a, s1) and(s, a, s2) for H/2 times. Note that the multiplicative approximation ratio between
P̂ (s′ | s, a)H/2 and P (s′ | s, a)H/2 could be as large as exp(

√
H), for both s′ = s1 and s′ = s2.

However, since P̂ (s1 | s, a) + P̂ (s2 | s, a) = 1 as the empirical estimator P̂ (s, a) is still a
probability distribution, it must be the case that P̂ (s1 | s, a)/P (s1 | s, a) = 1 − 2δ and P̂ (s2 |
s, a)/P (s2 | s, a) = 1 + 2δ where δ = P (s1 | s, a) − P̂ (s1 | s, a) and thus |δ| ≤ O(1/

√
H).

Since (1 + 2δ)H/2(1− 2δ)H/2 = (1− 4δ2)H/2 is a constant, (P̂ (s1 | s, a))H/2(P̂ (s2 | s, a))H/2 is
a constant factor approximation to the true probability (P (s1 | s, a))H/2(P (s2 | s, a))H/2 due to
cancellation.

In our analysis, to formalize the above intuition, for each trajectory T , we take T into consid-
eration only when |mT (s, a, s′)−P (s′ | s, a)·mT (s, a)| ≤ O(

√
P (s′ | s, a) ·H) for both s′ = s1

and s′ = s2. HeremT (s, a) is the number of times that (s, a) is visited on T andmT (s, a, s′) is the
number of times that (s, a, s′) is visited on T . By Chebyshev’s inequality, we only ignore a small
subset of trajectories whose total probability can be upper bounded by a constant. For the remain-
ing trajectories, it can be shown that P̂ (s1 | s, a)mT (s,a,s1)·P̂ (s2 | s, a)mT (s,a,s2) is a constant factor
approximation to P (s1 | s, a)mT (s,a,s1)·P (s2 | s, a)mT (s,a,s2) so long as |P̂ (s, a, s′)−P (s, a, s′)| ≤
O(
√
P (s, a, s′)/H) for both s′ = s1 and s′ = s2 due to the cancellation mentioned above. Note

that using O(H) samples, |P̂ (s, a, s′) − P (s, a, s′)| ≤ O(
√
P (s, a, s′)/H) holds only when

P (s, a, s′) ≥ Ω(1/H). On the other hand, we can also ignore trajectories that visit (s, a, s′) with
P (s, a, s′) ≤ O(1/H) since such trajectories have negligible cumulative probability by Markov’s
inequality.

The above analysis can be readily generalized to handle perturbation on the transition prob-
abilities of multiple state-action pairs, and to handle the case when the transition operator P (· |
s, a) is not supported on two states. In summary, by using O(H) samples for each state-action
pair (s, a), the empirical model M̂ provides a constant factor approximation to the probabilities
of all trajectories, except for a small subset of them whose cumulative probability can be upper
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bounded by a constant. Hence, for all policies, the empirical model provides an accurate estimate
to its value and thus, the optimal policy with respect to the empirical model is near-optimal.

Exploration by Stationary Policies. In the discussion above, we heavily rely on the ability
of the generative model to obtain Ω(H) samples for each state-action pair. However, for the RL
setting, it is not possible to reach every state-action pair freely. Although each trajectory contains
H state-action-state tuples (corresponding to a batch of queries in the generative model), these
samples may not cover states that are crucial for learning an optimal policy. Indeed, one could
use all possible deterministic non-stationary policies to collect samples, which shall then cover
the whole state-action space. Unfortunately, such a naı̈ve method introduces a dependence on
the number of non-stationary policies which is exponential in H . The sample complexity of
other existing methods in the literature also inevitably depends on H as their sample complexity
intrinsically depends on the number of non-stationary policies.

In this work, we adopt a completely different approach for exploration. Our new idea is to
show that if there exists a non-stationary policy that visits (s, a) for f times in expectation, then
there exists a stationary policy that visit (s, a) for f/ exp (O(|S| log |S|)) times in expectation.
If the above claim is true, then intuitively, one can simply enumerate all stationary policies and
sample exp (O(|S| log |S|)) trajectories using each of them to obtain f samples of (s, a). Note
that there are only |A||S| stationary policies, which is completely independent of H . In order
to prove the above claim, we show that for any stationary policy π, its value in the infinite-
horizon discounted setting is close to that in the finite-horizon undiscounted setting (up to a
factor of exp (O(|S| log |S|))) by using a properly chosen discount factor. Note that this implies
the correctness of the above claim since there always exists a stationary optimal policy in the
infinite-horizon discounted setting.

In order to show the value of a stationary policy in the infinite-horizon discounted setting
is close to that in the finite-horizon setting, we study reaching probabilities in time invariant
Markov chains. In particular, we show that in a time invariant Markov chain, for any H ≥ |S|,
the probability of reaching a specific state s within H steps is close the probability of reaching
s within 4H steps, up to a factor of exp (O(|S| log |S|)). Previous literature on time invariant
Markov chains mostly focus on the asymptotic behavior, and as far as we are aware, we are the
first to prove the above claim. Note that this claim directly establishes a connection between the
value of a stationary policy in the infinite-horizon discounted setting and that in the finite-horizon
setting. Moreover, as a direct consequence of the above claim, we can show that if H > 2|S|, the
value of a stationary policy within H steps is close to that of the same policy within H/2 steps,
up to a factor of exp (O(|S| log |S|)). This consequence is crucial for later parts of the analysis.

From Expectation to Quantile. The above analysis shows that if there exists a non-stationary
policy that visits (s, a) for f times in expectation, then our algorithm, which uses all station-
ary policies to collect samples, visits (s, a) for f/ exp (O(|S| log |S|)) times in expectation.
However, this does not necessarily mean that one can obtain f samples of (s, a) by sampling
exp (O(|S| log |S|)) trajectories using our algorithm with good probability. To see this, consider
the case when our policy visits (s, a) for H times with probability 1/

√
H and does not visit

(s, a) with probability 1 − 1/
√
H . In this case, our policy may not obtain even a single sample
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for (s, a) unless one rollouts the policy for O(
√
H) times. Therefore, instead of obtaining a vis-

itation frequency guarantee which holds in expectation, it is more desirable to obtain a visitation
frequency guarantee that holds with good probability.

To resolve this issue, we establish a connection between the expectation and the ε-quantile
of the visitation frequency of a stationary policy. We note that such a connection could not
hold without any restriction. To see this, consider a policy that visits (s, a) for H times with
probability ε/2. In this case, the expected visitation frequency is εH/2 while the ε-quantile is
zero. On the other hand, suppose the initial state s1 = s almost surely, then such a connection is
easy to establish by using the Martingale Stopping Theorem. In particular, we show that if there
exists a non-stationary policy that visits (s, a) for f times with probability ε, then there exists
a stationary policy that visits (s, a) for εf/ exp (O(|S| log |S|)) times with constant probability,
when the initial state s1 = s almost surely.

In general, the initial state s1 comes from a distribution µ and could be different from s
with high probability. To tackle this issue, in our algorithm, we simultaneously enumerate two
stationary policies π1 and π2. π1 should be thought as the policy that visits (s, a) with high-
est probability within H/2 steps starting from the initial state distribution µ, and π2 should be
thought as the policy that maximizes the ε-quantile of the visitation frequency of (s, a) within
H/2 steps when s0 = s. In our algorithm, we execute π1 before (s, a) is visited for the first
time, and switch to π2 once (s, a) has been visited. Intuitively, we first use π1 to reach (s, a)
for the first time and then use π2 to collect as many samples as possible. As mentioned above,
the value of a stationary policy within H steps is close to the value of the same policy within
H/2 steps, up to a factor of exp (O(|S| log |S|)). Thus, by sampling the above policy (formed
by concatenating π1 and π2) for exp (O(|S| log |S|)) /ε2 times, we obtain at least f samples for
(s, a), if there exists a non-stationary policy that visits (s, a) for f times with probability ε.

Perturbation Analysis in the RL Setting. By the above analysis, suppose m(s, a) is the
largest integer such that there exists a non-stationary policy that visits (s, a) with probability ε for
m(s, a) times, then our dataset contains Ω(m(s, a)) samples of (s, a). However,m(s, a) could be
significantly smaller than H and therefore the perturbation analysis established in the generative
model no longer applies here. For example, previously we show that if |mT (s, a, s′) − P (s′ |
s, a) · mT (s, a)| ≤ O(

√
P (s′ | s, a) ·H), then P̂ (s1 | s, a)mT (s,a,s1) · P̂ (s2 | s, a)mT (s,a,s2) is a

constant factor approximation to P (s1 | s, a)mT (s,a,s1) · P (s2 | s, a)mT (s,a,s2) when |P̂ (s, a, s′)−
P (s, a, s′)| ≤ O(

√
P (s, a, s′)/H) for both s′ = s1 and s′ = s2. However, if m(s, a) � H , it is

hopeless to obtain an estimate P̂ (s, a, s′) with |P̂ (s, a, s′) − P (s, a, s′)| ≤ O(
√
P (s, a, s′)/H).

Fortunately, our perturbation analysis still goes through so long as mT (s, a, s′) ≤ P (s′ | s, a) ·
mT (s, a)+O(

√
P (s′ | s, a) ·m(s, a)) and |P̂ (s, a, s′)−P (s, a, s′)| ≤ O(

√
P (s, a, s′)/m(s, a)),

i.e., replacing all H appearances with m(s, a).
The above analysis introduces a final subtlety in our algorithm. In particular, m(s, a) in

the empirical model M̂ could be significantly larger than that in the true model. On the other
hand, the number of samples of (s, a) in our dataset is at most O(m(s, a)) where m(s, a) is
defined by the true model. This means the value estimated in the empirical model M̂ could be
significantly larger than that in the true model M . To resolve this issue, we employ the principle
of “pessimism in the face of uncertainty” and for each policy π, the estimated value of π is set
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to be the lowest value among all models that lie the confidence set. Since the true model always
lies in the confidence set, the estimated value is then guaranteed to be close to the true value.

3.4 Proof of Theorem 3.1.1

In this section, for the sake of presentation, we assume a fixed initial state s1. When the initial
state is sampled from a distribution µ, we may create a new state s0 and set s0 to be the initial
state. We set P (s0, a) = µ and r(s0, a) = 0 for all a ∈ A, and increase the planning horizon H
by 1. By doing so, now s1 is sampled from the initial state distribution µ.

3.4.1 An ε-net For Non-Stationary Policies

In this section, we construct a set of polices which contains a near-optimal policy for any MDP.
To define these policies, we first define a set of MDPs.

Throughout this section, without loss of genearlity, we assume 1/ε is a positive integer. In
general, we may decrease ε by a factor of at most two so that 1/ε is a positive integer.

The following definition is helpful in our analysis.
Definition 3.4.1. For an MDP M = (S,A, P, R,H, µ), we say a pair (s, h) ∈ S × [H] is
admissible with respect to M if there exists a policy π such that Pr[sh = s | π] > 0.

Before we being our analysis, we prove the following property regarding admissible pairs.
Lemma 3.4.1. For any admissible (s, h) ∈ S × [H], for any a ∈ A, the following hold:

• 0 ≤ R(s, a) ≤ 1 almost surely;
• 0 ≤ Qπ

h(s, a) ≤ 1 for any policy π;
• 0 ≤ V π

h (s) ≤ 1 for any policy π.

Proof. Here we only prove 0 ≤ R(s, a) ≤ 1. It can be similarly proved that 0 ≤ Qπ
h(s, a) ≤ 1

and 0 ≤ V π
h (s) ≤ 1. Suppose R(s, a) > 1 or R(s, a) < 0 with non-zero probability. Since (s, h)

is admissible, there exists a policy π such that Pr[sh = s | π] > 0. Consider the policy π′ defined
to be:

π′h′(s) =

{
πh′(s) h′ < h

a h′ ≥ h
.

Clearly, rh > 1 or rh < 0 with non-zero probability, which violates the assumption that∑H
h=1 rh ∈ [0, 1] and rh ≥ 0 for all h ∈ [H] almost surely.

Definition 3.4.2 (Discretized MDPs). For given S, A, H , s1 and ε > 0, defineMε to be the set
of MDPs M = (S,A, P, R,H, s1) such that

• Rewards are deterministic and for any (s, a) ∈ S ×A, R(s, a) ∈ {0, ε, 2ε, 3ε, . . . , 1};
• For each (s, a, s′) ∈ S ×A× S, P (s′ | s, a) ∈ {0, ε, 2ε, 3ε, . . . , 1};
The following lemma gives an upper bound on the size ofMε.

Lemma 3.4.2. |Mε| ≤ (1/ε+ 1)|S|
2|A|+|S||A|.
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Proof. Since each M ∈ Mε is uniquely defined by its R and P , below we count the number of
possible R and P respectively.

Since rewards are deterministic and for any (s, a) ∈ S ×A, R(s, a) ∈ {0, ε, 2ε, . . . , 1}, there
are (1/ε+ 1)|S||A| different rewards in total.

Since for each (s, a, s′) ∈ S × A × S , P (s′ | s, a) ∈ {0, ε, 2ε, . . . , 1}, there are at most
(1/ε+ 1)|S|

2|A| different transitions in total.
Therefore, |Mε| ≤ (1/ε+ 1)|S|

2|A|+|S||A|.

Definition 3.4.3 (ε-net for Non-stationary Policies). For given S, A, H and ε > 0, define Πε to
be the set of polices such that

Πε = {πM | πM is an optimal policy for M ∈Mε}.

For each M ∈Mε, when M has multiple optimal policies, we add an arbitrary one to Πε.

By construction of Πε and Lemma 3.4.2, it is clear that |Πε| ≤ (1/ε+ 1)|S|
2|A|+|S||A|

Now we prove that for any MDP M , there is a near-optimal policy π ∈ Πε.
Lemma 3.4.3. For any MDP M = (S,A, P, R,H, s1), there exists π ∈ Πε such that π is
8H|S|ε-optimal.

Proof. We first show that there exists M̂ =
(
S,A, P̂ , R̂, H, s1

)
∈ Mε such that the following

hold:

• For any (s, h) ∈ S × [H] admissible with respect to M , for any a ∈ A, |R̂(s, a) −
E[R(s, a)]| ≤ ε;

• For each (s, a, s′) ∈ S ×A× S,
∣∣∣P (s′ | s, a)− P̂ (s′ | s, a)

∣∣∣ ≤ ε;

• For each (s, a, s′) ∈ S ×A× S, if P (s′ | s, a) = 0 then P̂ (s′ | s, a) = 0;

Below we construct such P̂ and R̂. By Lemma 3.4.1 we have E[R(s, a)] ∈ [0, 1]. Therefore,
by setting R̂(s, a) to be closest real number in {0, ε, 2ε, . . . , 1}, we have |R̂(s, a)−E[R(s, a)]| ≤
ε. Furthermore, for each (s, a, s′) ∈ S ×A× S, we set

P ′(s′ | s, a) = min{p ∈ {0, ε, 2ε, . . . , 1} | p ≥ P (s′ | s, a)}.

Notice that P ′(s, a) may not always be a probability distribution. Clearly P ′(s′ | s, a) ≥ P (s′ |
s, a) for each (s, a, s′) ∈ S × A× S and

∑
s′∈S P

′(s′ | s, a) = 1 + kε for some positive integer
0 ≤ k ≤ |S|. Now for each (s, a), we set P̂ (s′ | s, a) = P ′(s′ | s, a)− ε for an arbitrary k states
s′ ∈ S with P (s′ | s, a) > 0, and set P̂ (s′ | s, a) = P ′(s′ | s, a) for all other states s′. Clearly,
P ′(s, a) is a probability distrbution for any (s, a) and satisfies the desired property.

Now for any policy π, we use V π to denote the V -value of π on MDPM , and use V̂ π to denote
the V -value of π on M̂ . Qπ and Q̂π are defined analogously. We prove that |V π− V̂ π| ≤ 4|S|Hε
for any policy π inductively by the following induction hypothesis:

• |V π
h (s)− V̂ π

h (s)| ≤ (1 + (H − h)(|S|+ 1))ε for any admissible (s, h);
• |Qπ

h(s, a)− Q̂π
h(s, a)| ≤ (1 + (H −h)(|S|+ 1))ε for any admissible (s, h) and any a ∈ A.
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When h = H , V π
H(s) = QH(s, π(s)) = E[R(s, π(s))] and V̂ π

H(s) = Q̂H(s, π(s)) =

R̂(s, π(s)). Therefore, the induction hypothesis holds when h = H since |R̂(s, a)−E[R(s, a)]| ≤
ε.

Now we show the induction hypothesis holds for any h < H . For any h < H , consider any
state s such that (s, h) is admissible. Notice that V π

h (s) = Qh(s, π(s)) and V̂ π
h (s) = Q̂h(s, π(s)),

and therefore |V π
h (s)− V̂ π

h (s)| = |Qπ
h(s, π(s))− Q̂π

h(s, π(s))|. Furthermore,

Qπ
h(s, a) = E[R(s, a)] +

∑
s′∈S

P (s′ | s, a)V π
h+1(s′)

and
Q̂π
h(s, a) = R̂(s, a) +

∑
s′∈S

P̂ (s′ | s, a)V π
h+1(s′).

Therefore,∣∣∣Qπ
h(s, a)− Q̂π

h(s, a)
∣∣∣

≤
∣∣∣E[R(s, a)]− R̂(s, a)

∣∣∣+
∑

s′:P (s′|s,a)>0

∣∣∣P (s′ | s, a)V π
h+1(s′)− P̂ (s′ | s, a)V̂ π

h+1(s′)
∣∣∣

≤ε+
∑

s′:P (s′|s,a)>0

(∣∣∣P (s′ | s, a)− P̂ (s′ | s, a)
∣∣∣ · V π

h+1(s′) + P̂ (s′ | s, a) ·
∣∣∣V π
h+1(s′)− V̂ π

h+1(s′)
∣∣∣)

≤(|S|+ 1)ε+
∑

s′:P (s′|s,a)>0

P̂ (s′ | s, a) ·
∣∣∣V π
h+1(s′)− V̂ π

h+1(s′)
∣∣∣ (V π

h+1(s′) ≤ 1 by Lemma 3.4.1)

≤(|S|+ 1)ε+ (1 + (H − (h+ 1))(|S|+ 1))ε

(
∑

s′∈S P̂ (s′ | s, a) = 1 and induction hypothesis)

=(1 + (H − h)(|S|+ 1))ε.

Thus, we have ∣∣∣V π
1 (s1)− V̂ π

1 (s1)
∣∣∣ ≤ 4|S|Hε.

Finally, consider any optimal policy π̂ of M̂ and any optimal policy π of M , we have

V π̂
1 (s1) ≥ V̂ π̂

1 (s1)− 4|S|Hε ≥ V̂ π
1 (s1)− 4|S|Hε ≥ V π

1 (s1)− 8|S|Hε.

Since π̂ ∈ Πε, the lemma holds.

3.4.2 Evaluating Policies

As shown in Section 3.4.1, there exists a set of policies Π such that for any MDPM , there exists a
near-optimal policy π ∈ Π. In this section, we show how to approximately evaluate the values of
all policies in Π using at most poly(|S|, |A|, 1/ε, log |Π|, logH) episodes. We formally describe
our simulator in Section 3.4.2.1 and present its analysis in Section 3.4.2.2.
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Algorithm 1 SimAll
1: Input: failure probability δsim, policy set Π, number of trajectories F
2: τ ← 16|S|/δsim · log(4|S|/δsim)
3: for i ∈ [F ] do . Run F copies of Algorithm 2 in parallel
4: Set SOi to be the i-th independent copy of SimOne(τ) (Algorithm 2)
5: for π ∈ Π do
6: for i ∈ [F ] do
7: zπi ← SOi.SIMULATE(π)

8: if
∑F

i=1 I[zπi is Fail] > 3δsim/2 · F then
9: for i ∈ [F ] do

10: zπi ← SOi.ROLLOUT(π)

11: return {zπi }(i,π)∈[F ]×Π

3.4.2.1 The Trajectory Simulator

In this section, we describe our algorithm for simulating trajectories. The algorithm is formally
presented in Algorithm 1 and Algorithm 2. Algorithm 2 receives a parameter τ and uses a replay
buffer D to store samples. Formally, D = {Ds,a}s∈S,a∈A, where each Ds,a contains samples
associated with state-action pair (s, a), i.e.,

Ds,a =
[
(s(1)
s,a, r

(1)
s,a), (s

(2)
s,a, r

(2)
s,a), . . .

]
and samples are sorted in chronological order. We also maintain ΠD in Algorithm 2 which is the
set of policies used to generate D. There are two subroutines in Algorithm 2. Subrountine SIM-
ULATE takes an input policy π and outputs either Fail or a trajectory for policy π. Subroutine
ROLLOUT takes an input policy π, samples τ episodes for π by interacting with the environment
and stores all collected samples in the replay buffer D. It also returns one of the τ trajectories
sampled for for π. Moreover, whenever Subroutine ROLLOUT is invoked, samples in D are
recollected so that independence among samples in the replay buffer D is ensured.

Algorithm 1 receives a failure probability δsim and a policy set Π as inputs. In Algorithm 1,
we run F independent copies of Algorithm 2 in parallel. For each policy π, for the F independent
copies of Algorithm 2, Algorithm 1 checks whether Subroutine SIMULATE returns Fail for too
many times. If so, it calls Subroutine ROLLOUT for each copy of Algorithm 2 to collect samples
and produce trajectories for π. Otherwise, it directly returns trajectories returned by Subroutine
SIMULATE. The formal analysis of our algorithms will presented in Section 3.4.2.2.

3.4.2.2 Analysis

In this section, we present the formal analysis of Algorithm 1 and Algorithm 2. Before we
present our analysis, we first introduce some necessary notations.
Definition 3.4.4. For any policy π, for any state-action pair (s, a) ∈ S×A, define fπ(s, a) ∈ [H]
to be

fπ(s, a) =
H∑
h=1

I[(s, a) = (sh, ah) | π].
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Algorithm 2 SimOne
1: Input: number of repetitions τ
2: function SIMULATE(π):
3: for (s, a) ∈ S ×A do
4: Mark all elements in Ds,a as unused
5: for h ∈ {1, 2, . . . , H − 1} do
6: if all elements in Dsh,π(sh) are marked as used then
7: return Fail
8: else
9: Set (sh+1, rh) to be the first element in Dsh,π(sh) that is marked as unused

10: Mark (sh+1, rh) (the first unused element in Dsh,π(sh)) as used

11: return (s1, π(s1), r1), (s2, π(s2), r2), . . . , (sH , π(sH), rH)

12: function ROLLOUT(π)
13: Set Ds,a to be an empty sequence for all (s, a) ∈ S ×A
14: ΠD ← ΠD ∪ {π}
15: for π′ ∈ ΠD do
16: Sample τ trajectories for π′ by interacting with the environment
17: Add all collected samples to D
18: return one of the τ trajectories sampled for π

I.e., fπ(s, a) is the random variable which is the total number of times a trajectory induced by π
visits (s, a).

We additionally define the following quantity to characterize the number times a state-action
pair is visited by a set of policies. Intuitively, given a success probability δ, this quantity measures
the maximum number of times a policy within a given policy set can visit a particular (s, a) pair.
Definition 3.4.5. For a set of policies Π, for any (s, a) ∈ S ×A, define

µΠ
δ (s, a) = max

{
λ | λ ∈ [0, H],max

π∈Π
Pr[fπ(s, a) ≥ λ] ≥ δ

}
.

Note that µΠ
δ (s, a) is always a non-negative integer since for any state-action pair (s, a) ∈

S ×A, policy π and real number λ,

Pr [fπ(s, a) ≥ λ] = Pr [fπ(s, a) ≥ dλe] .

Our next lemma states that for some policy π, if SimOne fails with high probability, then
there exists a state-action pair that π visits more frequently than all previous policies.
Lemma 3.4.4. For a policy π ∈ Π, suppose Subroutine SIMULATE in Algorithm 2 returns Fail
with probability at least δsim over the randomness of the generating process of the replay buffer
D. There exists (s, a) ∈ S ×A such that

Pr
[
fπ(s, a) > τ · δsim

4|S|
· µΠD

δsim/(2|S|)(s, a)
]
≥ δsim

2|S|

where ΠD is the set of policies used to generate D.
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Proof. Suppose for the sake of contradiction that for all (s, a) ∈ S ×A,

Pr
[
fπ(s, a) > τ · δsim

4|S|
· µΠD

δsim/(2|S|)(s, a)
]
<
δsim
2|S|

.

Let us denote
Γ(s, a) = τ · δsim

4|S|
· µΠD

δsim/(2|S|)(s, a).

For all s ∈ S, we have

Pr
[
fπ(s, π(s)) > Γ(s, π(s))

]
<
δsim
2|S|

.

Therefore, by a union bound over all states S, with probability at least 1 − δsim/2, for all states
s ∈ S,

fπ(s, π(s)) ≤ Γ(s, π(s)) (3.1)

For each s ∈ S, define Es to be the event that

Es =
{∣∣Ds,π(s)

∣∣ ≥ Γ(s, π(s))
}
.

By Definition 3.4.5, there exists a policy π∗s ∈ ΠD such that

Pr[fπ
∗
s (s, π(s)) ≥ µΠD

δsim/(2|S|)(s, π(s))] ≥ δsim/(2|S|).

Now consider Line 16 in Subroutine ROLLOUT in Algortihm 2. Define

Xi =

{
1 if

∑H
h=1 I[(sh, ah) = (s, π(s))] ≥ µΠD

δsim/(2|S|)(s, π(s)) for the i-th trajectory of π∗s
0 otherwise

.

Note X1, . . . , Xδsim are i.i.d. random variables. By definition, E[Xi] ≥ δsim/(2|S|). Therefore,
since τ = 16|S|/δsim · log(4|S|/δsim), by Chernoff bound,

Pr

[
τ∑
i=1

Xi ≤ τ · δsim
4|S|

]
≤ exp

(
−τδsim/(2|S|)

8

)
≤ δsim

4|S|
.

Therefore,

Pr[Es] ≥ Pr

[
τ∑
i=1

Xi ≥ τ · δsim
4|S|

]
≥ 1− δsim

4|S|
.

It follows that with probability at least 1− δsim/4, for all s ∈ S,∣∣Ds,π(s)

∣∣ ≥ Γ(s, π(s)). (3.2)

By a union bound over (3.1) and (3.2), with probability at least 1− 3δsim
4

, for all s ∈ S,∣∣Ds,π(s)

∣∣ ≥ Γ(s, π(s)) ≥ fπ(s, π(s)),

in which case Subroutine ROLLOUT does not return Fail. This contradicts the assumption that
Subroutine ROLLOUT returns Fail with probability at least δsim.
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Now we discuss the implication of Lemma 3.4.4. Note that Algorithm 2 interacts with the en-
vironment to sample trajectories only when Subroutine SIMULATE fails with probability at least
δsim. By Lemma 3.4.4, when Algorithm 2 interacts with the environment to sample trajectories,
µΠD
δsim/(2|S|)(s, a) doubles or changes from 0 to 1 for some (s, a) ∈ S ×A since τδsim/(4|S|) > 2.

However, µΠD
δsim/(2|S|)(s, a) is always upper bounded by H . Therefore, the total number of calls to

Subrountine ROLLOUT in Algorithm 1 is upper bounded by O(|S||A| logH). Our next lemma
guarantees that whenever Algorithm 1 invokes Subroutine ROLLOUT, the probability that Sub-
routine SIMULATE returns Fail is at least δsim, and when Subroutine ROLLOUT is not invoked,
the probability that Subroutine SIMULATE returns Fail is at most 2δsim.
Lemma 3.4.5. Suppose F ≥ 24/δsim · log(2|Π|/δsim). With probability at least 1 − δsim

2|Π| , each
time Line 8 in Algorithm 1 is executed, the following hold:

• when
∑F

i=1 I[zπi is Fail] > 3δsim/2·F , the probability that Subroutine SIMULATE returns
Fail is at least δsim over the randomness of the generating process of the replay bufferD;

• when
∑F

i=1 I[zπi is Fail] ≤ 3δsim/2·F , the probability that Subroutine SIMULATE returns
Fail is at most 2δsim over the randomness of the generating process of the replay buffer
D.

Proof. Let Yi = I[zπi is Fail]. Note that each time Subroutine ROLLOUT is invoked, all samples
inD are recollected. Therefore, for any given time step of the algorithm, {Yi}Fi=1 are independent
random variables.

If Pr[Yi = 1] < δsim, by Chernoff bound,

Pr

[
F∑
i=1

Yi ≥ 3δsim/2 · F

]
≤ exp(−δsimF/24) ≤ δsim

2|Π|
.

On the other hand, if Pr[Yi = 1] ≥ 2δsim, by Chernoff bound,

Pr

[
F∑
i=1

Yi ≤ 3δsim/2 · F

]
≤ exp(−δsimF/16) ≤ δsim

2|Π|
.

Thus the lemma holds.

Now we bound the overall sample complexity of the algorithm.
Lemma 3.4.6. Suppose F ≥ 24/δsim · log(2|Π|/δsim). Let ΠD be the set of policies maintained
by Algorithm 2 before executing Line 14, and let Π̂D be the set of policies maintained after
executing Line 14, i.e., Π̂D = ΠD ∪ {π}. With probability at least 1 − δsim/(2|Π|), there exists
(s, a) ∈ S ×A, such that

µΠ̂D
δsim/(2|S|)(s, a) ≥ max

(
2 · µΠD

δsim/(2|S|)(s, a), 1
)
.

Proof. By Lemma 3.4.5, with probability at least 1 − δsim/(2|Π|), for the added policy π, the
probability that Subroutine SIMULATE returns Fail is at least δsim. By Lemma 3.4.4, there
exists (s, a) ∈ S ×A such that

Pr
[
fπ(s, a) > τ · δsim

4|S|
· µΠD

δsim/(2|S|)(s, a)
]
≥ δsim

2|S|
.
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If µΠD
δsim/(2|S|)(s, a) = 0, we have

Pr[fπ(s, a) > 0] = Pr[fπ(s, a) ≥ 1] ≥ δsim
2|S|

.

Otherwise, we have

Pr
[
fπ(s, a) ≥ 2 · µΠD

δsim/(2|S|)(s, a)
]
≥ δsim

2|S|
.

Lemma 3.4.7. Suppose F ≥ 24/δsim log(2|Π|/δsim). With probability at least 1 − δsim/2, Algo-
rithm 1 at most interacts

O

(
|S|
δsim

log(|S|/δsim) · |S|2|A|2 log2H · F
)

episodes with the environment.

Proof. Notice that our algorithm interacts with the environment only when Subroutine ROLL-
OUT in Algorithm 2 is invoked. By Lemma 3.4.6 and union bound, with probability at least
1 − δsim/2, whenever Subroutine ROLLOUT is invoked, there exists (s, a) ∈ S × A such that
µΠD
δsim/(2|S|)(s, a) is increased from 0 to 1, or µΠD

δsim/(2|S|)(s, a) is increased by a factor of 2. Since
µΠD
δsim/(2|S|)(s, a) ≤ H , with probability at least 1 − δsim/2, Subroutine ROLLOUT is invoked for

at most O(|S||A| logH) times. Hence |ΠD| = O(|S||A| logH). Finally, whenever Subrou-
tine ROLLOUT is invoked, the algorithm samples at most F |ΠD|τ trajectories by interacting with
the environment. Therefore, with probability at least 1− δsim/2, the total number of trajectories
sampled by the algorithm is upper bounded by O(Fτ · (|S||A| logH)2).

3.4.3 The Algorithm
In this section we present our final algorithm. The algorithm description is given in Algorithm 7.
Our algorithm invokes Algorithm 1 on the set of policies defined in in Definition 3.4.3 to ob-
tain trajectories for each policy, and simply returns the policy with largest empirical cumulative
reward. Now we give the formal analysis of our algorithm.
Lemma 3.4.8. For each policy π ∈ Πε/(32H|S|), for the value r̂(π) calculated in Line 7 of Algo-
rithm 7, with probability at least 1− δoverall/(2|Πε/(32H|S|)|),∣∣∣∣∣r̂(π)− E

[
H∑
h=1

rh | π

]∣∣∣∣∣ ≤ 5ε/16.

Proof. For those policies π ∈ ΠD, notice that {zπi }i∈[F ] are sampled by interacting with the
environment. Since all reward values are positive and cumulative reward is upper bounded by 1
almost surely, by Chernoff bound,

Pr

[∣∣∣∣∣r̂(π)− E

[
H∑
h=1

rh | π

]∣∣∣∣∣ ≤ ε/8

]
≥ 1− 2 exp(−Fε2/64) ≥ 1− δ/(2|Πε/(32H|S|)|).

24



Algorithm 3 Main
1: Input: failure probability δoverall, accuracy ε
2: Let Πε/(32H|S|) be the set of policies as defined in Definition 3.4.3
3: Invoke SimAll (Algorithm 2) with δsim = ε/8 and

F = max{64 log(4|Πε/(32H|S|)|/δoverall)/ε2, 192/ε log(16|Πε/(32H|S|)|/ε)}

4: for each trajectory z = (s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH) returned by SimAll do

5: Calculate r(z) =

{
0 z is Fail∑H

h=1 rh otherwise

6: for π ∈ Πε/(32H|S|) do
7: Calculate r̂(π) = 1

F

∑
i∈[F ] r(z

π
i )

8: return argmaxπ∈Πε/(32H|S|)
r̂(π)

For those policies π /∈ ΠD, notice that {zπi }i∈[F ] have the same distribution as F independent
trajectories sampled by interacting with the environment, except that at most 3δ/2·F = 3ε/16·F
trajectories are replaced with Fail. If all trajectories are independently sampled by interacting
with the environment, by Chernoff bound, with probability at least 1− δoverall/(2|Πε/(32H|S|)|),∣∣∣∣∣r̂(π)− E

[
H∑
h=1

rh | π

]∣∣∣∣∣ ≤ ε/8.

Since cumulative reward is in [0, 1] almost surely, by replacing at most 3ε/16 · F trajecto-
ries with Fail, r̂(π) is changed by at most 3ε/16. Therefore, with probability at least 1 −
δoverall/(2|Πε/(32H|S|)|), ∣∣∣∣∣r̂(π)− E

[
H∑
h=1

rh | π

]∣∣∣∣∣ ≤ 5ε/16.

Lemma 3.4.9. With probability at least 1− δoverall/2, Algorithm 7 returns an ε-optimal policy.

Proof. By Lemma 3.4.3, there exists a ε/4-optimal policy π′ ∈ Πε/(32H|S|). By Lemma 3.4.8 and
a union bound over Π, with probability at least 1− δoverall/2, for all policy π ∈ Πε/(32H|S|),∣∣∣∣∣r̂(π)− E

[
H∑
h=1

rh | π

]∣∣∣∣∣ ≤ 5ε/16.

Let π be the policy returned by algorithm. Conditioned on the event mentioned above, we have

E

[
H∑
h=1

rh | π

]
≥ r̂(π)−5ε/16 ≥ r̂(π′)−5ε/16 ≥ E

[
H∑
h=1

rh | π′
]
−5ε/8 ≥ E

[
H∑
h=1

rh | π∗
]
−ε.

Our main result, Theorem 3.1.1 is a direct implication of Lemma 3.4.7 and Lemma 3.4.9.
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3.5 Proof of Theorem 3.1.2

3.5.1 Properties of Stationary Policies
In this section, we prove several properties of stationary policies. In Section 3.5.1.1, we first
prove properties regarding reaching probabilities in Markov chains, and then use them to prove
properties for stationary policies in Section 3.5.1.2.

3.5.1.1 Reaching Probabilities in Markov Chains

Let C = (S, P, µ) be a Markov chain. For a positive integer L and a sequence of states T =
(s1, s1, . . . , sL) ∈ SL, we write

p(T,C) = µ(s1) ·
L−1∏
h=1

P (sh+1 | sh)

to denote the probability of T in C. For a state s ∈ S and an integer L ≥ 0, we also write

pL(s, C) =
∑

(s1,s1,...,sL)∈SL
p((s1, s2, . . . , sL, s), C)

to denote the probability of reaching s with exactly L steps.
Our first lemma shows that for any Markov chain C, for any sequence of L states T with

L > |S|, there exists a sequence of L′ states T ′ with L′ ≤ |S| so that p(T,C) ≤ p(T ′, C).
Lemma 3.5.1. Let C = (S, P, µ) be a Markov chain. For a sequence of L states

T = (s1, s1, . . . , sL) ∈ SL

with L > |S|, there exists a sequence of L′ states

T ′ = (s′1, s
′
2, . . . , s

′
L′) ∈ SL

′

with s′L′ = sL, L′ ≤ |S| and p(T,C) ≤ p(T ′, C).

Proof. By pigeonhole principle, since L > |S|, there exists 0 ≤ i < j < L such that si = sj .
Consider the sequence induced by removing si, si+1, si+2, . . . , sj−1 from T , i.e.,

T ′ = (s1, s2, . . . , si−1, sj, sj+1, . . . , sL).

Since si = sj , we have

p(T,C) = µ(s1) ·
L−1∏
h=1

P (sh+1 | sh).

and

p(T ′, C) = µ(s1) ·
i−2∏
h=1

P (sh+1 | sh) ·
L−1∏
h=j

P (sh+1 | sh).

Therefore, we have p(T,C) ≤ p(T ′, C). We continue this process until the length is at most
|S|.
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Combining Lemma 3.5.1 with a simple counting argument directly implies the following
lemma, which shows that

∑4|S|−1
h=0 ph(s, C) ≤ exp (O(|S| log |S|)) ·

∑|S|−1
h=0 ph(s, C).

Lemma 3.5.2. Let C = (S, P, µ) be a Markov chain. For any s ∈ S,

4|S|−1∑
h=0

ph(s, C) ≤ 4 · |S|4|S| ·
|S|−1∑
h=0

ph(s, C).

Proof. Consider a sequence of L + 1 states T = (s1, s2, . . . , sL+1) ∈ SL+1 with L ≥ |S| and
sL = s. By Lemma 3.5.1, there exists another sequence of L′ states T ′ = (s′1, s

′
2, . . . , s

′
L′) ∈ SL

′

with s′L′ = sL+1 = s and L′ ≤ |S| so that p(T,C) ≤ p(T ′, C). Therefore

p(T,C) ≤ p(T ′, C) ≤ pL′−1(s, C) ≤
|S|−1∑
h=0

ph(s, C),

which implies

pL(s, C) =
∑

(s1,s2,...,sL−1,sL)∈SL
p((s1, s2, . . . , sL−1, sL, s), C) ≤ |S|L

|S|−1∑
h=0

ph(s, C).

Therefore,

4|S|−1∑
h=0

ph(s, C) ≤ 4 · |S| · |S|4|S|−1 ·
|S|−1∑
h=0

ph(s, C) = 4 · |S|4|S| ·
|S|−1∑
h=0

ph(s, C).

By applying Lemma 3.5.2 in a Markov chain C ′ with modified initial state distribution and
transition operator, we can also prove that

4|S|−1∑
h=0

pβh+α(s, C) ≤ exp (O(|S| log |S|)) ·
|S|−1∑
h=0

pβh+α(s, C)

for any integer α ≥ 0 and integer β ≥ 1.
Lemma 3.5.3. Let C = (S, P, µ) be a Markov chain. For any integer α ≥ 0 and integer β ≥ 1,
for any s ∈ S,

4|S|−1∑
h=0

pβh+α(s, C) ≤ 4 · |S|4|S| ·
|S|−1∑
h=0

pβh+α(s, C).

Proof. We define a new Markov chain C ′ = (S, P ′, µ′) based on C = (S, P, µ). The state space
of C ′ is the same as that of C. The initial state distribution µ′ is the same as the distribution of
sα in C, i.e., the distribution after taking α steps in C. The transition operator is defined so that
taking one step in C ′ is equivalent to taking β steps in C, i.e.,

P ′(s′ | s) =
∑

s1,s2,...,sβ−1∈Sβ−1

P (s′ | sβ−1) · P (sβ−1 | sβ−2) · · · · · P (s1 | s).
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Clearly, for any state s ∈ S , pL(s, C ′) = pβL+α(s, C). By using Lemma 3.5.2 in C ′, for any
s ∈ S, we have

4|S|−1∑
h=0

ph(s, C
′) ≤ 4 · |S|4|S| ·

|S|−1∑
h=0

ph(s, C
′),

which implies
4|S|−1∑
h=0

pβh+α(s, C) ≤ 4 · |S|4|S| ·
|S|−1∑
h=0

pβh+α(s, C).

Finally, Lemma 3.5.3 implies the main result of this section, which shows that for any L ≥
|S|,

4L−1∑
h=0

ph(s, C) ≤ exp (O(|S| log |S|)) ·
L−1∑
h=0

ph(s, C).

Lemma 3.5.4. Let C = (S, P, µ) be a Markov chain. For any s ∈ S and L ≥ |S|,
2L∑
h=0

ph(s, C) ≤ 4 · |S|4|S| ·
L−1∑
h=0

ph(s, C).

Proof. Clearly,

L−1∑
h=0

ph(s, C) ≥
bL/|S|c·|S|−1∑

h=0

ph(s, C) =

bL/|S|c−1∑
i=0

|S|−1∑
j=0

pbL/|S|c·j+i(s, C).

For each 0 ≤ i < bL/|S|c, by Lemma 3.5.3, we have

|S|−1∑
j=0

pbL/|S|c·j+i(s, C) ≥ 1

4|S|4|S|

4|S|−1∑
j=0

pbL/|S|c·j+i(s, C).

On the other hand,

2L∑
h=0

ph(s, C) ≤
bL/|S|c−1∑

i=0

b(2L+1)/bL/|S|cc−1∑
j=0

pbL/|S|c·j+i(s, C).

Note that if |S| > L/2, then b(2L+ 1)/bL/|S|cc = 2L+ 1 < 4|S|. Moreover, if |S| ≤ L/2,
then we have bL/|S|c ≥ 2L/3|S|, which implies

b(2L+ 1)/bL/|S|cc ≤ b(2L+ 1)/L · 3|S|/2c ≤ b4|S|c = 4|S|.

Hence, we have

2L∑
h=0

ph(s, C) ≤
bL/|S|c−1∑

i=0

4|S|−1∑
j=0

pbL/|S|c·j+i(s, C) ≤ 4 · |S|4|S| ·
L−1∑
h=0

ph(s, C).
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3.5.1.2 Implications of Lemma 3.5.4

In this section, we list several implications of Lemma 3.5.4 which would be crucial for the
analysis in later sections.

Our first lemma shows that for any MDP M and any stationary policy π, for a properly
chosen discount factor γ, V π

M,γ is a multiplicative approximation to V π
M,H with approximation

ratio exp (O(|S| log |S|)).

Lemma 3.5.5. For any MDP M and any stationary policy π, if H ≥ 2 ln(8 · |S|4|S|), by taking
γ = 1− ln(8·|S|4|S|)

H
,

1

64 · |S|8|S|
V π
M,H ≤ V π

M,γ ≤ 2V π
M,H .

Proof.

V π
M,γ =

∑
s∈S

∞∑
h=0

γh · ph(s,Mπ) · E[R(s, π(s))]

≤
∑
s∈S

H−1∑
h=0

ph(s,M
π) +

∞∑
i=1

γH·2
i−1

2i·H−1∑
h=0

ph(s,M
π)

 · E[R(s, π(s))].

For each i ≥ 1, by Lemma 3.5.4, for any s ∈ S,

γH·2
i−1

2i·H−1∑
h=0

ph(s,M
π)

 ≤ γH·2
i−1 ·

(
4 · |S|4|S|

)i ·(H−1∑
h=0

ph(s,M
π)

)

≤
(
8 · |S|4|S|

)−2i−1

·
(
4 · |S|4|S|

)i ·(H−1∑
h=0

ph(s,M
π)

)

≤ 1/2i ·

(
H−1∑
h=0

ph(s,M
π)

)
.

Therefore,

V π
M,γ ≤

∑
s∈S

2 ·

(
H−1∑
h=0

ph(s,M
π)

)
· E[R(s, π(s))] = 2V π

M,H .
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On the other hand,

V π
M,γ =

∑
s∈S

∞∑
h=0

γh · ph(s,Mπ) · E[R(s, π(s))]

≥
∑
s∈S

H−1∑
h=0

γh · ph(s,Mπ) · E[R(s, π(s))]

≥ γH ·
∑
s∈S

H−1∑
h=0

ph(s,M
π) · E[R(s, π(s))]

= γH · V π
M,H =

(
1− ln(8 · |S|4|S|)

H

)H
· V π

M,H

≥ (1/4)ln(8·|S|4|S|) · V π
M,H ≥

1

64 · |S|8|S|
· V π

M,H .

As another implication of Lemma 3.5.4, for any MDP M and any stationary policy π, we
have

V π
M,bH/2c ≥ exp (−O(|S| log |S|))V π

M,H .

Lemma 3.5.6. For any MDP M and any stationary policy π : S → A, if H ≥ 2|S|,

V π
M,bH/2c ≥

1

4 · |S|4|S|
V π
M,H .

Proof. Note that

V π
M,bH/2c =

∑
s∈S

bH/2c−1∑
h=0

ph(s,M
π) · E[R(s, π(s))].

Since H ≥ 2|S|, by Lemma 3.5.4, for any s ∈ S,

bH/2c−1∑
h=0

ph(s,M
π) ≥ 1

4 · |S|4|S|

2bH/2c∑
h=0

ph(s,M
π) ≥ 1

4 · |S|4|S|
H−1∑
h=0

ph(s,M
π).

Therefore,

V π
M,bH/2c ≥

1

4 · |S|4|S|
∑
s∈S

H−1∑
h=0

ph(s,M
π) · E[R(s, π(s))] =

1

4 · |S|4|S|
V π
M,H .

As a corollary of Lemma 3.5.5, we show that for any episodic MDP M , there always exists
a stationary policy whose value is as large as the best non-stationary policy up to a factor of
exp (O(|S| log |S|)).
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Corollary 3.5.7. For any MDP M , if H ≥ 2 ln(8 · |S|4|S|), then there exists a stationary policy
π such that

V π
M,H ≥

1

128 · |S|8|S|
V π∗

M,H .

Proof. In this proof we fix γ = 1− ln(8·|S|4|S|)
H

. We also use π̃∗ to denote a non-stationary policy
such that π̃∗h = π∗h when h ∈ [H] and π̃∗h is defined arbitrarily when h ≥ H .

Clearly, there exists a stationary policy π such that for any (possibly non-stationary) policy
π′,

V π
M,γ ≥ V π′

M,γ.

For a proof, see Theorem 5.5.3 in [67]. Clearly,

V π̃∗

M,γ ≥ γH · V π∗

M,H .

Moreover, by Lemma 3.5.5,

V π
M,H ≥

1

2
V π
M,γ ≥

1

2
V π̃∗

M,γ ≥
1

2
· γH · V π∗

M,H ≥
1

128 · |S|8|S|
· V π∗

M,H .

By applying Corollary 3.5.7 in an MDP with an extra terminal state sterminal, we can show
that for any (s, a) ∈ S × A, there always exists a stationary policy that visits (s, a) in the first
H/2 time steps with probability as large as the probability that the best non-stationary policy
visits (s, a) in all the H time steps, up to a factor of exp (O(|S| log |S|)).
Corollary 3.5.8. For any MDP M , if H ≥ 2 ln(8 · (|S| + 1)4(|S|+1)), then for any z ∈ S × A,
there exists a stationary policy π, such that for any (possibly non-stationary) policy π′,

Pr

bH/2c∑
h=1

I[(sh, ah) = z] ≥ 1

 ≥ 1

512 · (|S|+ 1)12(|S|+1)
Pr

[
H∑
h=1

I[(s′h, a′h) = z] ≥ 1

]
,

where
(s1, a1), (s2, a2), . . . , (sH , aH), sH+1

is a random trajectory induced by executing π in M and

(s′1, a
′
1), (s′2, a

′
2), . . . , (s′H , a

′
H), s′H+1

is a random trajectory induced by executing π′ in M .

Proof. For the given MDP M = (S,A, P, R,H, µ), we create a new MDP

M ′ = (S ∪ {sterminal},A, P ′, R′, H, µ) ,

where sterminal is a state such that sterminal /∈ S. Moreover,

P ′(s, a) =

{
P (s, a) s 6= sterminal and (s, a) 6= z

sterminal s = sterminal or (s, a) = z
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and
R′(s, a) = I[(s, a) = z].

Clearly, for any policy π,

V π
M ′,H = Pr

[
H∑
h=1

I[(sh, ah) = (s, a)] ≥ 1

]

where
(s1, a1), (s2, a2), . . . , (sH , aH), sH+1

is a random trajectory induced by executing π in M . Therefore, by Corollary 3.5.7, there exists
a stationary policy π such that for any (possibly non-stationary) policy π′,

V π
M ′,H ≥

1

128 · (|S|+ 1)8(|S|+1)
V π′

M ′,H .

Moreover, by Lemma 3.5.6, for any (possibly non-stationary) policy π′,

V π
M ′,bH/2c ≥

1

512 · (|S|+ 1)12(|S|+1)
V π′

M ′,H ,

which implies the desired result.

Finally, by combining Lemma 3.5.6 and Corollary 3.5.7, we can show that for any (s, a) ∈
S × A, if the initial state distribution µ always takes s and there exists a non-stationary policy
that visits (s, a) for f times with probability ε in all the H steps, then there exists a stationary
policy that visits (s, a) for exp (−O(|S| log |S|)) · ε ·f times with constant probability in the first
H/2 steps.
Corollary 3.5.9. For a given MDP M and a state-action pair z = (sz, az) ∈ S × A, suppose
the initial state distribution µ = sz and H ≥ 2 ln(8 · |S|4|S|). If there exists a (possibly non-
stationary) policy π′ such that Qπ′ε (sz, az) ≥ f for some integer 0 ≤ f ≤ H , then there exists a
stationary policy π such that

Qπ1/2

bH/2c∑
h=1

I[(sh, ah) = z]

 ≥ ⌊ 1

2048 · |S|12|S| · ε · f
⌋

where
(s1, a1, r1), (s2, a2, r2) . . . , (sH , aH , rH), sH+1

is a trajectory induced by executing π in M .

Proof. If f = 0 then the lemma is clearly true. No consider the case f > 0. Consider a new
MDP M ′ = (S,A, P, R′, H, µ) where R′(s, a) = I[(s, a) = z]. Clearly, V π′

M ′,H ≥ ε · f . By
Corollary 3.5.7, there exists a stationary policy π such that

V π
M ′,H ≥

1

128 · |S|8|S|
· ε · f.
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By Lemma 3.5.6,

V π
M ′,bH/2c ≥

1

512 · |S|12|S| · ε · f.

This implies π(sz) = az.
Now we use X to denote a random variable which is defined to be

X = min{h ≥ 1 | (sh+1, ah+1) = z}.

Here the trajectory
(s1, a1), (s2, a2), . . .

is induced by executing the stationary policy π in M ′. We also write X̂ = min{bH/2c, X}. We
use {Xi}∞i=1 to denote a sequence of i.i.d. copies of X̂ . We use τ to denote a random variable
which is defined to be

τ = min

{
i ≥ 1 |

i∑
j=1

Xj ≥ bH/2c

}
.

Clearly, τ ≤ H/2 almost surely. Moreover, π is a stationary policy, the initial state distribution
µ = sz deterministically and π(sz) = az, which implies τ and

∑bH/2c
h=1 I[(sh, ah) = z] have the

same distribution. Indeed, whenever the trajectory (s1, a1), (s2, a2) . . . visits z, it corresponds to
a new copy of X̂ .

Now for each i > 0, we define Yi = Xi − E[X̂]. Clearly E[Yi] = 0. Let Si = 0 and
Si =

∑i
j=1 Yj for all i > 0. Clearly τ is a stopping time, and

τ∑
j=1

Xj ≤ H

since Xi ≤ bH/2c for all i > 0. By Martingale Stopping Theorem, we have

E[Sτ ] =
τ∑
j=1

E[Xj]− E[τ ] · E[X̂] = 0,

which implies E[τ ] · E[X̂] ≤ H and therefore

E[X̂] ≤ H/E[τ ] = H/V π
M ′,bH/2c ≤ 512 · |S|12|S|H/(ε · f),

where we use the fact that

V π
M ′,bH/2c = E

bH/2c∑
h=1

I[(sh, ah) = z]

 = E[τ ].

Let τ ′ =
⌊

1
2048·|S|12|S| · ε · f

⌋
. By Markov’s inequality, with probability at least 1/2,

τ ′∑
i=1

Xi ≤ 2τ ′E[X̂] ≤ H/2,
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in which case τ ≥ τ ′. Consequently,

Qπ1/2

bH/2c∑
h=1

I[(sh, ah) = z]

 = Q1/2(τ) ≥
⌊

1

2048 · |S|12|S| · ε · f
⌋
.

3.5.2 The Algorithm

In this section, we present our algorithm together with its analysis. Our algorithm is divided into
two parts. In Section 3.5.2.1, we first present the algorithm for collecting samples together with
its analysis. In Section 3.5.2.2, we establish a perturbation analysis on the value functions which
is crucial for the analysis in later proofs. Finally, in Section 3.5.2.3, we present the algorithm
for finding near-optimal policies based on the dataset found by the algorithm in Section 3.5.2.1,
together with its analysis based on the machinery developed in Section 3.5.2.2.

3.5.2.1 Collecting Samples

In this section, we present our algorithm for collecting samples. The algorithm is formally pre-
sented in Algorithm 4. The datasetD returned by Algorithm 4 consists ofN lists, where for each
list, elements in the list are tuples of the form (s, a, r, s′) ∈ S × A × [0, 1] × S. To construct
these lists, Algorithm 4 enumerates a state-action pair (s, a) ∈ S × A and a pair of stationary
policies (π1, π2), and then collects a trajectory using π1 and π2. More specifically, π1 is executed
until the trajectory visits (s, a), at which point π2 is executed until the last step.

Algorithm 4 Collect Samples
1: Input: number of repetitions N

2: Output: Dataset D where D =
(((

si,t, ai,t, ri,t, s
′
i,t

))|S||A|·|A|2|S|·H
t=1

)N
i=1

3: for i ∈ [N ] do
4: Let Ti be an empty list
5: for (s, a) ∈ S ×A do
6: for (π1, π2) ∈ Πst × Πst do
7: Receive s1 ∼ µ
8: for h ∈ [H] do
9: if (s, a) = (sh′ , ah′) for some h′ < h then

10: Take ah = π2(sh)
11: else
12: Take ah = π1(sh)

13: Receive rh ∼ R(sh, ah) and sh+1 ∼ P (sh, ah)
14: Append (sh, ah, rh, sh+1) to the end of Ti
15: return D where D = (Ti)

N
i=1
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Throughout this section, we use M = (S,A, P,R,H, µ) to denote the underlying MDP that
the agent interacts with. For each (s, a) ∈ S ×A and (π1, π2) ∈ Πst × Πst, let

(ss,a,π1,π21 , as,a,π1,π21 , rs,a,π1,π21 ), (ss,a,π1,π22 , as,a,π1,π22 , rs,a,π1,π22 ), . . . , (ss,a,π1,π2H , as,a,π1,π2H , rs,a,π1,π2H ), ss,a,π1,π2H+1

by a trajectory where ss,a,π1,π21 ∼ µ and ss,a,π1,π2h+1 ∼ P (ss,a,π1,π2h , as,a,π1,π2h ) for all 1 ≤ h ≤ H ,
rs,a,π1,π2h ∼ R(ss,a,π1,π2h , as,a,π1,π2h ) for all h ∈ [H], and

as,a,π1,π2h =

{
π2(ss,a,π1,π2h ) (s, a) = (ss,a,π1,π2h′ , as,a,π1,π2h′ ) for some h′ < h

π1(ss,a,π1,π2h ) otherwise

for all h ∈ [H]. Note that the above trajectory is the one collected by Algorithm 4 when a specific
state-action pair (s, a) and a specific pair of policies (π1, π2) are used.

For any ε ∈ (0, 1], define

Qst
ε (s, a) = Qε

 ∑
(s′,a′)∈S×A

∑
π1∈Πst

∑
π2∈Πst

H∑
h=1

I[(ss
′,a′,π1,π2
h , as

′,a′,π1,π2
h ) = (s, a)]

 .

Clearly, Qst
ε (s, a) is the ε-quantile of the frequency that (s, a) appears in each Ti.

In Lemma 3.5.10, we first show that for each (s, a) ∈ S × A, if there exists a policy π that
visits (s, a) for m(s, a) times with probability at least ε, then

Qst
ε/ exp(O(|S| log |S|))(s, a) ≥ m(s, a)/ exp(O(|S| log |S|)).

Lemma 3.5.10. Let ε ∈ (0, 1] be a given real number. For each (s, a) ∈ S × A, let mε(s, a)
be the largest integer such that there exists a (possibly non-stationary) policy πs,a such that
Qπs,aε (s, a) ≥ mε(s, a). For each (s, a) ∈ S ×A,

Qst
ε(|S|+1)−12(|S|+1)/1024(s, a) ≥ 1

4096 · |S|12|S| · ε ·mε(s, a).

Proof. For each (s, a) ∈ S × A, there exists a (possibly non-stationary) policy πs,a such that
Qπs,aε (s, a) ≥ mε(s, a). Here we consider the case that mε(s, a) ≥ 1, since otherwise the lemma
clearly holds. By Corollary 3.5.8, there exists a stationary policy π′s,a such that

Pr

bH/2c∑
h=1

I[(sh, ah) = (s, a)] ≥ 1

 ≥ ε

512 · (|S|+ 1)12(|S|+1)
,

where
(s1, a1), (s2, a2), . . . , (sH , aH), sH+1

is a random trajectory induced by executing π′s,a in M .
In the remaining part of the analysis, we consider two cases.
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Case I: mε(s, a) ≥ 4096 · |S|12|S|/ε. Let

(s1, a1), (s2, a2), . . . , (sH , aH), sH+1

be a random trajectory induced by executing πs,a in M . Let Xs,a be the random variable which
is defined to be

Xs,a =

{
min{h ∈ [H] | (sh, ah) = (s, a)} if there exists h ∈ [H] such that (sh, ah) = (s, a)

H + 1 otherwise
.

Clearly,

H∑
h′=1

Pr[Xs,a = h′] · Pr

[
H∑

h=h′

I[(sh, ah) = (s, a)] ≥ mε(s, a) | (sh′ , ah′) = (s, a)

]

= Pr

[
H∑
h=1

I[(sh, ah) = (s, a)] ≥ mε(s, a)

]
≥ ε.

Therefore, there exists h′ ∈ [H] such that

Pr[Xs,a = h′] > 0

and

Pr

[
H∑

h=h′

I[(sh, ah) = (s, a)] ≥ mε(s, a) | (sh′ , ah′) = (s, a)

]
≥ ε.

Note that we must have πh′(s) = a, since otherwise Pr[Xs,a = h′] = 0.
Now we consider a new MDP Ms = (S,A, P, R,H, µs) where µs = s. Let π̃ be an arbitrary

policy so that π̃h = (πs,a)h′+h for all h ∈ [H − h′]. Clearly,

Pr

[
H∑
h=1

I[(s′h, a′h) = (s, a)] ≥ mε(s, a)

]
≥ Pr

[
H−h′∑
h=1

I[(s′h, a′h) = (s, a)] ≥ mε(s, a)

]
≥ ε

where
(s′1, a

′
1), (s′2, a

′
2), . . . , (s′H , a

′
H), s′H+1

is a random trajectory induced by executing π̃ in Ms. Therefore, by Corollary 3.5.9, there exists
a stationary policy π̃s,a such that

Pr

bH/2c∑
h=1

I[(s′′h, a′′h) = (s, a)] ≥
⌊

1

2048 · |S|12|S| · ε ·mε(s, a)

⌋ ≥ 1/2

where
(s′′1, a

′′
1), (s′′2, a

′′
2), . . . , (s′′H , a

′′
H), s′′H+1
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is a random trajectory induced by executing π̃s,a in Ms. Since mε(s, a) ≥ 4096 · |S|12|S|/ε and

thus
⌊

1
2048·|S|12|S| · ε ·mε(s, a)

⌋
≥ 1, we must have π̃s,a(s) = a.

Now we consider the case when π1 = π′s,a and π2 = π̃s,a. Since π1 = π′s,a,

Pr

bH/2c∑
h=1

I[(ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)] ≥ 1

 ≥ ε

512 · (|S|+ 1)12(|S|+1)
.

Therefore, let X ′s,a be a random variable which is defined to be

X ′s,a =

{
min{h ∈ [bH/2c] | (ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)} if (sh, ah) = (s, a) for some h ∈ [bH/2c]
bH/2c+ 1 otherwise

.

We have that
Pr[X ′s,a ∈ [bH/2c]] ≥ ε

512 · (|S|+ 1)12(|S|+1)
.

Moreover, for each h′ ∈ [bH/2c], since π2 = π̃s,a,

Pr

[
H∑

h=h′

I[(ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)] ≥
⌊

1

2048 · |S|12|S| · ε ·mε(s, a)

⌋
| (ss,a,π1,π2h′ , as,a,π1,π2h′ ) = (s, a)

]
≥1/2.

Therefore,

Pr

[
H∑
h=1

I[(ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)] ≥
⌊

1

2048 · |S|12|S| · ε ·mε(s, a)

⌋]

≥
bH/2c∑
h′=1

Pr[X ′s,a = h′]

·Pr

[
H∑

h=h′

I[(ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)] ≥
⌊

1

2048 · |S|12|S| · ε ·mε(s, a)

⌋
| (ss,a,π1,π2h′ , as,a,π1,π2h′ ) = (s, a)

]
≥ ε

1024 · (|S|+ 1)12(|S|+1)
.

Since mε(s, a) ≥ 4096 · |S|12|S|/ε, we have

Pr

[
H∑
h=1

I[(ss,a,π1,π2h as,a,π1,π2h ) = (s, a)] ≥ 1

4096 · |S|12|S| · ε ·mε(s, a)

]
≥ ε

1024 · (|S|+ 1)12(|S|+1)

and thus
Qst
ε(|S|+1)−12(|S|+1)/1024(s, a) ≥ 1

4096 · |S|12|S| · ε ·mε(s, a).
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Case II: mε(s, a) < 4096 · |S|12|S|/ε. Consider the case when π1 = π2 = π′s,a. Clearly,

Pr

[
H∑
h=1

I[(ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)] ≥ 1

]

≥Pr

bH/2c∑
h=1

I[(ss,a,π1,π2h , as,a,π1,π2h ) = (s, a)] ≥ 1

 ≥ ε

512 · (|S|+ 1)12(|S|+1)

and thus
Qst
ε(|S|+1)−12(|S|+1)/1024(s, a) ≥ 1

4096 · |S|12|S| · ε ·mε(s, a).

Now we show that for a given percentile ε, for the dataset D returned by Algorithm 4, for
each (s, a) ∈ S × A, (s, a) appears for at least Qst

ε/4(s, a) times for at least Ω(N · ε) lists out of
the N lists returned by Algorithm 4.
Lemma 3.5.11. Let ε, δ ∈ (0, 1] be a given real number. Let D be the dataset returned by
Algorithm 4 where

D =
(((

si,t, ai,t, ri,t, s
′
i,t

))|S||A|·|A|2|S|·H
t=1

)N
i=1

.

Suppose N ≥ 16/ε · log(3|S||A|/δ). With probability at least 1− δ/3, for each (s, a) ∈ S ×A,
we have

N∑
i=1

I

|S||A|·|A|2|S|·H∑
t=1

I[(si,t, ai,t) = (s, a)] ≥ Qst
ε/4(s, a)

 ≥ Nε/8.

Proof. For each (s, a) ∈ S ×A, by the definition of Qst
ε/4(s, a), for each i ∈ [N ], we have

E

I
|S||A|·|A|2|S|·H∑

t=1

I[(si,t, ai,t) = (s, a)] ≥ Qst
ε/4(s, a)

 ≥ ε/4.

Hence, the desired result follows by Chernoff bound and a union bound over all (s, a) ∈ S ×
A.

We also need a subroutine to estimateQst
εest(s, a) for some εest to be decided. Such estimates

are crucial for building estimators for the transition probabilities and the rewards with bounded
variance, which we elaborate in later parts of this section.

Our algorithm for estimatingQst
εest(s, a) is described in Algorithm 5. Algorithm 5 collects N

lists, where for each list, elements in the list are tuples of the form (s, a, r, s′) ∈ S×A×[0, 1]×S .
These N lists are collected using the same approach as in Algorithm 4. Once these N lists are
collected, for each (s, a) ∈ S × A, our estimate (denoted as mst(s, a)) is then set to be the
dN · εest/2e-th largest element in Fs,a, where Fs,a is the set of the number of times (s, a) appear
in each of the N lists.

We now show that for each (s, a) ∈ S ×A, mst(s, a) is an accurate estimate of Qst
εest(s, a).
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Algorithm 5 Estimate Quantiles
1: Input: Percentile εest, failure probability δest

2: Output: Estimates mst : S ×A → N
3: Let N = d300 log(6|S||A|/δest)/εeste
4: Let Fs,a be an empty multiset for all (s, a) ∈ S ×A
5: for i ∈ [N ] do
6: Let Ti be an empty list
7: for (s, a) ∈ S ×A do
8: for (π1, π2) ∈ Πst × Πst do
9: Receive s1 ∼ µ

10: for h ∈ [H] do
11: if (s, a) = (sh′ , ah′) for some 0 ≤ h′ < h then
12: Take ah = π2(sh)
13: else
14: Take ah = π1(sh)

15: Receive rh ∼ R(sh, ah) and sh+1 ∼ P (sh, ah)
16: Append (sh, ah, rh, sh+1) to the end of Ti
17: for (s, a) ∈ S ×A do
18: Add

∑|Ti|
t=1 I[(st, at) = (s, a)] into Fs,a where

Ti = ((s1, a1, r1, s
′
1), (s2, a2, r2, s

′
2), . . . , (s|Ti|, a|Ti|, r|Ti|, s

′
|Ti|))

19: for (s, a) ∈ S ×A do
20: Set mst(s, a) be the dN · εest/2e-th largest element in Fs,a
21: return mst

Lemma 3.5.12. Let mst be the function returned by Algorithm 5. With probability at least 1 −
δest/3, for all (s, a) ∈ S ×A,

Qst
εest(s, a) ≤ mst(s, a) ≤ Qst

εest/4(s, a).

Proof. Fix a state-action pair (s, a) ∈ S ×A. For each i ∈ [N ], define

X i = I

 |Ti|∑
t=1

I[(st, at) = (s, a)] > Qst
εest/4(s, a)


where

Ti = ((s1, a1, r1, s
′
1), (s2, a2, r2, s

′
2), . . . , (s|Ti|, a|Ti|, r|Ti|, s

′
|Ti|)).

For each i ∈ [N ], by the definition of Qst
εest/4

(s, a), we have E[X i] ≤ εest/4 and thus∑N
i=1 E[X i] ≤ N · εest/4. By Chernoff bound, with probability at most δest/(6|S||A|),

N∑
i=1

X i ≥ N · εest/3.
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On the other hand, for each i ∈ [N ], define

X i = I

 |Ti|∑
t=1

I[(si,t, ai,t) = (s, a)] ≥ Qst
εest(s, a)

 .
where

Ti = ((s1, a1, r1, s
′
1), (s2, a2, r2, s

′
2), . . . , (s|Ti|, a|Ti|, r|Ti|, s

′
|Ti|)).

For each i ∈ [N ], by the definition ofQst
εest(s, a), we have E[X i] ≥ εest and thus

∑N
i=1 E[X i] ≥

N · εest. By Chernoff bound, with probability at most δest/(6|S||A|),

N∑
i=1

X i ≤ 2N · εest/3.

Hence, by union bound, with probability at least 1− δest/(3|S||A|),

N∑
i=1

X i < N · εest/3.

and
N∑
i=1

X i > 2N · εest/3,

in which case the dN · εest/2e-th largest element in Fs,a is in
[
Qst
εest(s, a),Qst

εest/4
(s, a)

]
. We

finish the proof by a union bound over all (s, a) ∈ S ×A.

In Lemma 4.4.5, we show that using the dataset D returned by Algorithm 4, and the esti-
mates of quantiles returned by Algorithm 5, we can compute accurate estimates of the transition
probabilities and rewards. The estimators used in Lemma 4.4.5 are the empirical estimators, with
proper truncation if a list Ti contains too many samples (i.e., more thanmst(·, ·)). As will be made
clear in the proof, such truncation is crucial for obtaining estimators with bounded variance.
Lemma 3.5.13. Suppose Algorithm 5 is invoked with the percentile set to be εest and the failure
probability set to be δ, and Algorithm 4 is invoked with N ≥ 16/εest · log(3|S||A|/δ). Let
mst : S × A → N be the estimates returned by Algorithm 5. Let D be the dataset returned by
Algorithm 4 where

D =
(((

si,t, ai,t, ri,t, s
′
i,t

))|S||A|·|A|2|S|·H
t=1

)N
i=1

.

For each (s, a) ∈ S ×A, for each i ∈ [N ] and t ∈
[
|S||A| · |A|2|S| ·H

]
, define

Trunci,t(s, a) = I

[
t∑

t′=1

I [(si,t′ , ai,t′) = (s, a)] < mst(s, a)

]
.
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For each (s, a, s′) ∈ S ×A× S , define

mD(s, a) =
N∑
i=1

|S||A|·|A|2|S|·H∑
t=1

I [(si,t, ai,t) = (s, a)] · Trunci,t(s, a),

P̂ (s′ | s, a) =

∑N
i=1

∑|S||A|·|A|2|S|·H
t=1 I

[
(si,t, ai,t, s

′
i,t) = (s, a, s′)

]
· Trunci,t(s, a)

max{1,mD(s, a)}
,

R̂(s, a) =

∑N
i=1

∑|S||A|·|A|2|S|·H
t=1 I [(si,t, ai,t) = (s, a)] · ri,t · Trunci,t(s, a)

max{1,mD(s, a)}
and

µ̂(s) =

∑N
i=1 I[si,1 = s]

N
.

Then with probability at least 1− δ, for all (s, a, s′) ∈ S ×A× S with Qst
εest(s, a) > 0, we have

∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤max

512 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

, 32

√
P̂ (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest


≤max

{
512 log(18|S|2|A|/δ)
Qst
εest(s, a) ·N · εest

, 64

√
P (s′ | s, a) · log(18|S|2|A|/δ)

Qst
εest(s, a) ·N · εest

}
,

∣∣∣R̂(s′ | s, a)− E[R(s, a)]
∣∣∣ ≤ 8

√
E [(R(s, a))2] · log(18|S||A|/δ)

Qst
εest(s, a) ·N · εest

+
8 log(18|S||A|/δ)
Qst
εest(s, a) ·N · εest

,

and

|µ̂(s)− µ(s)| ≤
√

log(18|S|/δ)
N

.

Proof. Fix a state-action pair (s, a) ∈ S×A and s′ ∈ S. For each i ∈ [N ] and t ∈
[
|S||A| · |A|2|S| ·H

]
,

let Fi,t be the filtration induced by{(
si,t′ , ai,t′ , ri,t′ , s

′
i,t′

)}t−1

t′=1
.

For each i ∈ [N ] and t ∈
[
|S||A| · |A|2|S| ·H

]
, define

Xi,t =
(
I
[
(si,t, ai,t, s

′
i,t) = (s, a, s′)

]
− P (s′ | s, a)I [(si,t, ai,t) = (s, a)]

)
· Trunci,t(s, a)

and
Yi,t = I [(si,t, ai,t) = (s, a)] · (ri,t − E[R(s, a)]) · Trunci,t(s, a).

Clearly,

E
[
I
[
(si,t, ai,t, s

′
i,t) = (s, a, s′)

]
· Trunci,t(s, a) | Fi,t

]
=P (s′ | s, a) · E [I [(si,t, ai,t) = (s, a)] · Trunci,t(s, a) | Fi,t]
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and

E [I [(si,t, ai,t) = (s, a)] · ri,t · Trunci,t(s, a) | Fi,t]
=E [I [(si,t, ai,t) = (s, a)] · E[R(s, a)] · Trunci,t(s, a) | Fi,t] ,

which implies

E
[
I
[
(si,t, ai,t, s

′
i,t) = (s, a, s′)

]
· Trunci,t(s, a)

]
=P (s′ | s, a) · E [I [(si,t, ai,t) = (s, a)] · Trunci,t(s, a)] ,

and

E [I [(si,t, ai,t) = (s, a)] · ri,t · Trunci,t(s, a)]

=E [I [(si,t, ai,t) = (s, a)] · E[R(s, a)] · Trunci,t(s, a)] ,

and thus
E [Xi,t] = E [Yi,t] = 0.

Moreover, for any i ∈ [N ] and 1 ≤ t′ < t ≤ |S||A| · |A|2|S| ·H , we have

E [Xi,t′ ·Xi,t] = E [E [Xi,t′ ·Xi,t | Fi,t]] = E [Xi,t′ · E [Xi,t | Fi,t]] = 0

and
E [Yi,t′ · Yi,t] = E [E [Yi,t′ · Yi,t | Fi,t]] = E [Yi,t′ · E [Yi,t | Fi,t]] = 0.

Note that for each i ∈ [N ],

E

|S||A|·|A|2|S|·H∑
t=1

Xi,t

2 =

|S||A|·|A|2|S|·H∑
t=1

E
[
(Xi,t)

2]
and

E

|S||A|·|A|2|S|·H∑
t=1

Yi,t

2 =

|S||A|·|A|2|S|·H∑
t=1

E
[
(Yi,t)

2] .
Furthermore, for each i ∈ [N ] and t ∈

[
|S||A| · |A|2|S| ·H

]
,

E
[
X2
i,t

]
≤E

[
I
[
(si,t, ai,t, s

′
i,t) = (s, a, s′)

]
· Trunci,t(s, a)

]
+E

[
(P (s′ | s, a))

2 · I [(si,t, ai,t) = (s, a)] · Trunci,t(s, a)
]

≤2P (s′ | s, a) · E [I [(si,t, ai,t) = (s, a)] · Trunci,t(s, a)]

and

E
[
Y 2
i,t

]
≤E

[
I [(si,t, ai,t) = (s, a)] · (ri,t − E[R(s, a)])2 · Trunci,t(s, a)

]
≤E

[
I [(si,t, ai,t) = (s, a)] · E

[
(R(s, a))2

]
· Trunci,t(s, a)

]
.
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Since
|S||A|·|A|2|S|·H∑

t=1

I [(si,t, ai,t) = (s, a)] · Trunci,t(s, a) ≤ mst(s, a),

we have

E

|S||A|·|A|2|S|·H∑
t=1

Xi,t

2 ≤ 2P (s′ | s, a) ·mst(s, a)

and

E

|S||A|·|A|2|S|·H∑
t=1

Yi,t

2 ≤ E
[
(R(s, a))2

]
·mst(s, a).

Now, for each i ∈ [N ], define

Xi =

|S||A|·|A|2|S|·H∑
t=1

Xi,t

and

Yi =

|S||A|·|A|2|S|·H∑
t=1

Yi,t.

We have E[Xi] = E[Yi] = 0,

E[X 2
i ] ≤ 2P (s′ | s, a) ·mst(s, a)

and
E[Y2

i ] ≤ E
[
(R(s, a))2

]
·mst(s, a).

Also note that

N∑
i=1

Xi =
N∑
i=1

|S||A|·|A|2|S|·H∑
t=1

I
[
(si,t, ai,t, s

′
i,t) = (s, a, s′)

]
· Trunci,t(s, a)− P (s′ | s, a) ·mD(s, a)

and

N∑
i=1

Yi =
N∑
i=1

|S||A|·|A|2|S|·H∑
t=1

I [(si,t, ai,t) = (s, a)] · ri,t · Trunci,t(s, a)− E[R(s, a)] ·mD(s, a).

By Bernstein’s inequality,

Pr

[∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−t2

2 ·mst(s, a) ·N · P (s′ | s, a) + t/3

)
.
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Thus, by setting t = 2
√
mst(s, a) ·N · P (s′ | s, a) · log(18|S|2|A|/δ) + log(18|S|2|A|/δ), we

have

Pr

[∣∣∣∣∣
N∑
i=1

Xi

∣∣∣∣∣ ≥ t

]
≤ δ/(9|S|2|A|).

By applying a union bound over all (s, a, s′) ∈ S ×A×S, with probability at least 1− δ/9, for
all (s, a, s′) ∈ S ×A× S,∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)

∣∣∣ ≤ 2
√
mst(s, a) ·N · P (s′ | s, a) · log(18|S|2|A|/δ)

mD(s, a)
+

log(18|S|2|A|/δ)
mD(s, a)

,

which we define to be event EP . Note that conditioned on EP and the events in Lemma 3.5.12
and Lemma 3.5.11, we have

Qst
εest(s, a) ≤ mst(s, a) ≤ Qst

εest/4(s, a),

which implies

mD(s, a) ≥ N · εest/8 · Qst
εest/4(s, a) ≥ N · εest/8 ·mst(s, a) ≥ N · εest/8 · Qst

εest(s, a),

and thus∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤8

√
P (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest

+
8 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

≤8

√
P (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest

+
64 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

≤max

{
16

√
P (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest

,
512 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

}

for all (s, a, s′) ∈ S ×A× S .
When

P (s′ | s, a) ≤ 1024 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

,

we have

16

√
P (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest

≤ 512 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

,

and therefore∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤ 512 log(18|S|2|A|/δ)

mst(s, a) ·N · εest

≤ 512 log(18|S|2|A|/δ)
Qst
εest(s, a) ·N · εest

.

When

P (s′ | s, a) ≥ 1024 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

,
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we have∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤ 16

√
P (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest

≤ P (s′ | s, a)/2

and thus
P (s′ | s, a)/2 ≤ P̂ (s′ | s, a) ≤ 2P (s′ | s, a),

which implies

∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤ 32

√
P̂ (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest

≤ 64

√
P (s′ | s, a) · log(18|S|2|A|/δ)

Qst
εest(s, a) ·N · εest

.

Hence, conditioned on EP and the events in Lemma 3.5.12 and Lemma 3.5.11, for all (s, a, s′) ∈
S ×A× S,

∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤max

512 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

, 32

√
P̂ (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest


≤max

{
512 log(18|S|2|A|/δ)
Qst
εest(s, a) ·N · εest

, 64

√
P (s′ | s, a) · log(18|S|2|A|/δ)

Qst
εest(s, a) ·N · εest

}
.

By Bernstein’s inequality,

Pr

[∣∣∣∣∣
N∑
i=1

Yi

∣∣∣∣∣ ≥ t

]
≤ 2 exp

(
−t2

E [(R(s, a))2] ·mst(s, a) ·N + t/3

)
.

Thus, by setting t = 2
√

E [(R(s, a))2] ·mst(s, a) ·N · log(18|S||A|/δ) + log(18|S||A|/δ), we
have

Pr

[∣∣∣∣∣
N∑
i=1

Yi

∣∣∣∣∣ ≥ t

]
≤ δ/(9|S||A|).

By applying a union bound over all (s, a, s′) ∈ S × A, with probability at least 1 − δ/9, for all
(s, a) ∈ S ×A,∣∣∣R̂(s′ | s, a)− E[R(s, a)]

∣∣∣ ≤ 2
√

E [(R(s, a))2] ·mst(s, a) ·N · log(18|S||A|/δ)
mD(s, a)

+
log(18|S||A|/δ)

mD(s, a)
,

which we define to be event ER. Note that conditioned on ER and the events in Lemma 3.5.12
and Lemma 3.5.11, we have∣∣∣R̂(s′ | s, a)− E[R(s, a)]

∣∣∣ ≤ 8

√
E [(R(s, a))2] · log(18|S||A|/δ)

Qst
εest(s, a) ·N · εest

+
8 log(18|S||A|/δ)
Qst
εest(s, a) ·N · εest

.

Finally, for each s ∈ S, for each i ∈ [N ], define

Zi = I[si,1 = s]− µ(s).

45



Note that
N∑
i=1

Zi =
N∑
i=1

I[s1,i = s]−N · µ(s).

Therefore, by Chernoff bound, with probability at least 1− δ/(9|S|) we have

|µ̂(s)− µ(s)| ≤
√

log(18|S|/δ)
K

.

Hence, with probability at least 1− δ/9, for all s ∈ S, we have

|µ̂(s)− µ(s)| ≤
√

log(18|S|/δ)
N

which we define to be event Eµ.
We finish the proof by applying a union bound over EP , ER, Eµ and the events in Lemma 3.5.12

and Lemma 3.5.11.

3.5.2.2 Perturbation Analysis

In this section, we establish a perturbation analysis on the value functions which is crucial for
the analysis in the next section. We first recall a few basic facts.
Fact 3.5.1. Let |x| ≤ 1/2 be a real number, we have

1. x− x2 ≤ log(1 + x) ≤ x;
2. 1 + x ≤ ex ≤ 1 + 2|x|.
We now prove the following lemma using the above facts.

Lemma 3.5.14. Let m ≥ 1, n̄ ≥ n ≥ 1 be positive integers. Let ε ∈ [0, 1/(8n̄)] be some real
numbers. Let p ∈ [1/m, 1]n be a vector with

∑n
i=1 pi ≤ 1. Let δ ∈ Rn be a vector such that

for each 1 ≤ i ≤ n, |δi| ≤ ε
√
pi/m and |

∑n
i=1 δi| ≤ εn̄/m. For every m ∈ [0,m] and every

Γ ∈ Rn such that |Γi| ∈ [−
√
pim,

√
pim] for all 1 ≤ i ≤ n, we have

(1− 8n̄ε)
n∏
i=1

ppim+Γi
i ≤

n∏
i=1

(pi + δi)
pim+Γi ≤ (1 + 8n̄ε)

n∏
i=1

ppim+Γi
i .

Proof. Note that
n∏
i=1

(pi + δi)
pim+Γi =

n∏
i=1

(pi)
pim+Γi · F

where

F =
n∏
i=1

(
1 +

δi
pi

)pim+Γi

.

Clearly,

logF =
n∑
i=1

(pim+ Γi) log

(
1 +

δi
pi

)
.
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By the choice of δ, we have ∣∣∣∣δipi
∣∣∣∣ ≤ ε ≤ 1

2
.

Using Fact 3.5.1, for all 1 ≤ i ≤ n, we have

δi
pi
− δ2

i

p2
i

≤ log

(
1 +

δi
pi

)
≤ δi
pi
.

Hence we,

| logF | ≤

∣∣∣∣∣
n∑
i=1

mδi

∣∣∣∣∣+
n∑
i=1

(
|Γi||δi|
pi

+
|Γi|δ2

i

p2
i

+
mδ2

i

pi

)
.

Note that |
∑n

i=1mδi| ≤ εn̄, |Γi||δi| ≤ εpi, |Γi|δ2
i ≤ εpi · ε

√
pi/m ≤ ε2p2

i , and mδ2
i ≤ ε2pi. We

have,

| logF | ≤ εn̄+ εn+ ε2n+ ε2n ≤ 4n̄ε.

By the choice of ε, we have 4n̄ε ≤ 1/2, and therefore

1− 8n̄ε ≤ exp(logF ) ≤ 1 + 8n̄ε.

In the following lemma, we show that for any (s, a, s′) ∈ S×A×S , with probability at least
1− δ, the number of times (s, a, s′) is visited can be upper bounded in terms of the δ/2-quantile
of the number of times (s, a) is visited and P (s′ | s, a).
Lemma 3.5.15. For a given MDP M . Suppose a random trajectory

T = ((s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH), sH+1)

is obtained by executing a (possibly non-stationary) policy π inM . For any (s, a, s′) ∈ S×A×S,
with probability at least 1− δ, we have

H∑
h=1

I [(s, a, s′) = (sh, ah, sh+1)] ≤
2Qδ/2

(∑H
h=1 I [(s, a) = (sh, ah)]

)
+ 4

δ
· P (s′ | s, a).

Proof. For each h ∈ [H], define

Ih =

{
1 h = 1

I
[∑h−1

t=1 I [(st, at) = (s, a)] ≤ Qδ/2
(∑H

h=1 I [(sh, ah) = (s, a)]
)

+ 1
]

h > 1
.

Let E1 be the event that for all h ∈ [H], Ih = 1. By definition ofQδ/2, we have Pr [E1] ≥ 1−δ/2.
For each h ∈ [H], let Fh be the filtration induced by {(s1, a1, r1), . . . , (sh, ah, rh)}. For each

h ∈ [H], define
Xh = I [(s, a, s′) = (sh, ah, sh+1)] · Ih
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and
Yh = I [(s, a) = (sh, ah)] · Ih.

When h = 1, we have

E[Xh] = E[I [(s, a) = (s1, a1)] · P (s′ | s, a) = E[Yh] · P (s′ | s, a).

When h ∈ [H] \ {1}, we have

E[Xh | Fh−1] =E[I [(s, a, s′) = (sh, ah, sh+1)] · Ih | Fh−1]

=E[I [(s, a) = (sh, ah)] · Ih | Fh−1] · P (s′ | s, a),

which implies

E[Xh] = E[I [(s, a) = (sh, ah)] · Ih] · P (s′ | s, a) = E[Yh] · P (s′ | s, a).

Note that
H∑
h=1

Yh ≤ Qδ/2

(
H∑
h=1

I [(s, a) = (sh, ah)]

)
+ 2,

which implies

E

[
H∑
h=1

Xh

]
≤

(
Qδ/2

(
H∑
h=1

I [(s, a) = (sh, ah)]

)
+ 2

)
· P (s′ | s, a).

By Markov’s inequality, with probability at least 1− δ/2,

H∑
h=1

Xh ≤
2Qδ/2

(∑H
h=1 I [(s, a) = (sh, ah)]

)
+ 4

δ
· P (s′ | s, a).

which we denote as event E2.
Conditioned on E1 ∩ E2 which happens with probability 1− δ, we have

H∑
h=1

I [(s, a, s′) = (sh, ah, sh+1)] =
H∑
h=1

Xh ≤
2Qδ/2

(∑H
h=1 I [(s, a) = (sh, ah)]

)
+ 4

δ
·P (s′ | s, a).

In the following lemma, we show that for any (s, a, s′) ∈ S × A × S , the number of times
(s, a, s′) is visited should be close to the number of times (s, a) is visited times P (s′ | s, a).
Lemma 3.5.16. For a given MDP M . Suppose a random trajectory

T = ((s1, a1, r1), (s2, a2, r2), . . . , (sH , aH , rH), sH+1)
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is obtained by executing a policy π in M . For any (s, a, s′) ∈ S × A × S , with probability at
least 1− δ, we have∣∣∣∣∣

H∑
h=1

I [(s, a, s′) = (st, at, st+1)]− P (s′ | s, a) ·
H∑
h=1

I [(s, a) = (st, at)]

∣∣∣∣∣
≤

√√√√4Qδ/2
(∑H

h=1 I [(s, a) = (st, at)]
)

+ 8

δ
· P (s′ | s, a).

Proof. For each h ∈ [H], define

Ih =

{
1 h = 1

I
[∑h−1

t=1 I [(s, a) = (st, at)] ≤ Qδ/2
(∑H

h=1 I [(s, a) = (sh, ah)]
)

+ 1
]

h > 1
.

Let E1 be the event that for all h ∈ [H], Ih = 1. By definition ofQδ/2, we have Pr [E1] ≥ 1−δ/2.
For each h ∈ [H], let Fh be the filtration induced by {(s1, a1, r1), . . . , (sh, ah, rh)}. For each

h ∈ [H], define

Xh = I [(s, a, s′) = (sh, ah, sh+1)] · Ih − P (s′ | s, a)I [(s, a) = (sh, ah)] · Ih.

As we have shown in the proof of Lemma 3.5.15, for each h ∈ [H], E[Xh] = 0. Moreover, for
any 1 ≤ h′ < h ≤ H , we have

E[XhXh′ ] = E[E[XhXh′ |Fh−1]] = E[Xh′E[Xh|Fh−1]] = 0.

Therefore,

E

( H∑
h=1

Xh

)2
 = E

[
H∑
h=1

X2
h

]
.

Note that for each h ∈ [H].

X2
h = (I [(s, a, s′) = (sh, ah, sh+1)] · Ih − P (s′ | s, a)I [(s, a) = (sh, ah)] · Ih)2

≤ Ih ·
(
I [(s, a, s′) = (sh, ah, sh+1)] + (P (s′ | s, a))

2 · I [(s, a) = (sh, ah)]
)
.

As we have shown in the proof of Lemma 3.5.15, for each h ∈ [H],

E[Ih · I [(s, a, s′) = (sh, ah, sh+1)]] = E[Ih · I [(s, a) = (sh, ah)]] · P (s′ | s, a),
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which implies

E

( H∑
h=1

Xh

)2
 = E

[
H∑
h=1

X2
h

]

≤
H∑
h=1

E
[
Ih ·

(
I [(s, a, s′) = (sh, ah, sh+1)] + (P (s′ | s, a))

2 · I [(s, a) = (sh, ah)]
)]

≤ 2P (s′ | s, a) ·
H∑
h=1

E [Ih · I [(s, a) = (sh, ah)]]

≤ 2P (s′ | s, a) ·

(
Qδ/2

(
H∑
h=1

I [(s, a) = (sh, ah)]

)
+ 2

)
.

By Chebyshev’s inequality, we have with probability at least 1− δ/2,

∣∣∣∣∣
H∑
h=1

Xh

∣∣∣∣∣ ≤
√√√√4Qδ/2

(∑H
h=1 I [(s, a) = (sh, ah)]

)
+ 8

δ
· P (s′ | s, a),

which we denote as event E2.
Conditioned on E1 ∩ E2 which happens with probability 1− δ, we have∣∣∣∣∣

H∑
h=1

I [(s, a, s′) = (st, at, st+1)]− P (s′ | s, a) ·
H∑
h=1

I [(s, a) = (st, at)]

∣∣∣∣∣
≤

√√√√4Qδ/2
(∑H

h=1 I [(s, a) = (st, at)]
)

+ 8

δ
· P (s′ | s, a).

Using Lemma 3.5.14, Lemma 3.5.15 and Lemma 3.5.16, we now present the main result in
this section, which shows that for two MDPs M and M̂ that are close enough in terms of rewards
and transition probabilities, for any policy π, its value in M̂ should be lower bounded by that in
M up to an error of ε.
Lemma 3.5.17. Let M = (S,A, P, R,H, µ) be an MDP and π be a policy. Let 0 < ε ≤ 1/2

be a parameter. For each (s, a) ∈ S × A, define m(s, a) = Qπε/(12|S||A|)(s, a). Let M̂ =

(S,A, P̂ , R̂, H, µ̂) be another MDP. If for all (s, a, s′) ∈ S ×A× S with m(s, a) ≥ 1, we have

|P̂ (s′|s, a)− P (s′|s, a)| ≤ ε

96|S|2|A|
·max

(√
εP (s′|s, a)

72 ·m(s, a) · |S||A|
,

ε

72 ·m(s, a) · |S||A|

)
,

∣∣∣E[R̂|s, a]− E[R|s, a]
∣∣∣ ≤ ε

24|S||A|
·max

{√
E[(R(s, a))2]

m(s, a)
,

1

m(s, a)

}
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and
|µ(s)− µ̂(s)| ≤ ε/(6|S|),

then
V π
M̂,H
≥ V π

M,H − ε.

Proof. Define T = (S × A)H × S be set of all possible trajectories, where for each T ∈ T , T
has the form

((s1, a1), (s2, a2), . . . , (sH , aH), sH+1).

For a trajectory T ∈ T , for each (s, a, s′) ∈ S ×A× S, we write

mT (s, a) =
H∑
h=1

I[(sh, ah) = (s, a)]

as the number times (s, a) is visited and

mT (s, a, s′) =
H∑
h=1

I[(sh, ah, sh+1) = (s, a, s′)]

as the number of times (s, a, s′) is visited. We say a trajectory

T = ((s1, a1), (s2, a2), . . . , (sH , aH), sH+1) ∈ T

is compatible with a (possibly non-stationary) policy π if for all h ∈ [H],

ah = πh(sh).

For a (possibly non-stationary) policy π, we use T π ⊆ T to denote the set of all trajectories that
are compatible with π.

For an MDPM = (S,A, P, R,H, µ) and a (possibly non-stationary) policy π, for a trajectory
T that is compatible with π, we write

p(T,M, π) = µ(s1) ·
H∏
h=1

P (sh+1 | sh, ah) = µ(s1) ·
∏

(s,a,s′)∈S×A×S

P (s′ | s, a)mT (s,a,s′)

to be the probability of T when executing π in M . Here we assume 00 = 1.
Using these definitions, we have

V π
M,H =

∑
T∈T π

p(T,M, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R(s, a)]

 .

Note that for any trajectory T = ((s1, a1), (s2, a2), . . . , (sH , aH), sH+1) ∈ T π, if p(T,M, π) >
0, by Assumption 3.2.1, ∑

(s,a)∈S×A

mT (s, a) · E[R(s, a)] ≤ 1.
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We define T π1 ⊆ T π be the set of trajectories that for each T ∈ T π1 , for each (s, a) ∈ S ×A,

mT (s, a) ≤ m(s, a).

By a union bound over all (s, a) ∈ S ×A, we have∑
T∈T π\T π1

p(T,M, π) ≤ ε/6.

We also define T π2 ⊆ T π be the set of trajectories that for each T ∈ T π2 , for each (s, a, s′) ∈
S ×A× S,

|mT (s, a, s′)−mT (s, a) · P (s′|s, a)| ≤
√

6P (s′|s, a)(4m(s, a) + 8)|S||A|
ε

.

By Lemma 3.5.16 and a union bound over all (s, a) ∈ S ×A, we have∑
T∈T π\T π2

p(T,M, π) ≤ ε/6.

Finally, we define T π3 ⊆ T π be the set of trajectories such that for each T ∈ T π3 , for each
(s, a, s′) ∈ S ×A× S ,

mT (s, a, s′) ≤ 6|S||A|(2m(s, a) + 4)

ε
· P (s′|s, a).

By Lemma 3.5.15 and a union bound over all (s, a) ∈ S ×A, we have∑
T∈T π\T π3

p(T,M, π) ≤ ε/6.

Thus, by defining T πpruned = T π1 ∩ T π2 ∩ T π3 , we have

∑
T∈T πpruned

p(T,M, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R(s, a)]

 ≥ V π
M,H − ε/2.

Note that for each T ∈ T πpruned with

T = ((s1, a1), (s2, a2), . . . , (sH , aH), sH+1),

for each state-action (s, a) ∈ S×A , we must havemT (s, a) ≤ m(s, a). This is because T ∈ T π1
Moreover, for any (s, a, s′) ∈ S ×A× S , if mT (s, a, s′) ≥ 1, then

P (s′ | s, a) ≥ ε

36|S||A|m(s, a)
.

This is because T ∈ T π3 , and if

P (s′ | s, a) <
ε

36|S||A|m(s, a)
,
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then

mT (s, a, s′) ≤ 6|S||A|(2m(s, a) + 4)

ε
· P (s′|s, a) ≤ 36|S||A|m(s, a)

ε
· P (s′|s, a) < 1.

For each (s, a) ∈ S ×A, define

Ss,a =

{
s′ ∈ S | P (s′|s, a) ≥ ε

36|S||A|m(s, a)

}
.

Therefore, for each (s, a) ∈ S ×A,∏
s′∈S

P (s′ | s, a)mT (s,a,s′) =
∏

s′∈Ss,a

P (s′ | s, a)mT (s,a,s′)

and ∏
s′∈S

P̂ (s′ | s, a)mT (s,a,s′) =
∏

s′∈Ss,a

P̂ (s′ | s, a)mT (s,a,s′)

with

|mT (s, a, s′)−mT (s, a) · P (s′|s, a)| ≤
√

6P (s′|s, a)(4m(s, a) + 8)|S||A|
ε

≤
√

72P (s′|s, a)m(s, a)|S||A|
ε

.

Note that
∑

s′∈S P̂ (s′|s, a)− P (s′|s, a) = 0, which implies∣∣∣∣∣∣
∑
s′∈Ss,a

P̂ (s′|s, a)− P (s′|s, a)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑
s′ 6∈Ss,a

P (s′|s, a)− P̂ (s′|s, a)

∣∣∣∣∣∣ ≤ ε

96|S||A|
· ε

72 ·m(s, a) · |S||A|
.

By applying Lemma 3.5.14 and settting n̄ to be |S|, n to be |Ss,a|, ε to be ε/(96|S|2|A|), and
m to be 72 ·m(s, a) · |S||A|/ε, we have∏

s′∈Ss,a

P̂ (s′ | s, a)mT (s,a,s′) ≥
(

1− ε

12|S||A|

) ∏
s′∈Ss,a

P (s′ | s, a)mT (s,a,s′).

Therefore,

∏
(s,a)∈S×A

∏
s′∈S

P̂ (s′ | s, a)mT (s,a,s′) ≥
(

1− ε

12|S||A|

)|S||A| ∏
(s,a)∈S×A

∏
s′∈S

P (s′ | s, a)mT (s,a,s′),

which implies∏
(s,a)∈S×A

∏
s′∈S

P̂ (s′ | s, a)mT (s,a,s′) ≥ (1− ε/6)
∏

(s,a)∈S×A

∏
s′∈S

P (s′ | s, a)mT (s,a,s′).
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For the summation of rewards, we have∑
(s,a)∈S×A

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣
=

∑
(s,a)∈S×A|mT (s,a)=1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣
+

∑
(s,a)∈S×A|mT (s,a)>1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ .
For those (s, a) ∈ S ×A with mT (s, a) > 1, we have m(s, a) > 1. By Lemma 3.2.1, we have

|E[R̂(s, a)]− E[R(s, a)]|

≤ ε

24|S||A|
·max

{√
E[(R(s, a))2]

m(s, a)
,

1

m(s, a)

}
≤ max

{
ε

12H
,

ε

24|S||A|m(s, a)

}
.

Since
∑

(s,a)∈S×AmT (s, a) ≤ H and mT (s, a) ≤ m(s, a), we have∑
(s,a)∈S×A|mT (s,a)>1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ ≤ ε

8
.

For those (s, a) ∈ S ×A with mT (s, a) = 1, we have∑
(s,a)∈S×A|mT (s,a)=1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ ≤ ε

24
.

Thus, ∑
(s,a)∈S×A

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ ≤ ε

6
.

For each T ∈ T πpruned with

T = ((s1, a1), (s2, a2), . . . , (sH , aH), sH+1),

we have

p(T, M̂, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R̂(s, a)]


=µ̂(s0) ·

∏
(s,a)∈S×A

∏
s′∈S

P̂ (s′ | s, a)mT (s,a,s′) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R̂(s, a)]


≥(µ(s0)− ε/(6|S|)) · (1− ε/6)

∏
(s,a)∈S×A

∏
s′∈S

P (s′ | s, a)mT (s,a,s′) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R(s, a)]− ε/6

 .
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Since

∑
T∈T πpruned

p(T,M, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R(s, a)]

 ≥ V π
M,H − ε/2,

we have

V π
M̂,H
≥

∑
T∈T πpruned

p(T, M̂, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R̂(s, a)]

 ≥ V π
M,H − ε.

Now we show that for two MDPs M and M̂ with the same transition probabilities and close
enough rewards, for any policy π, its value in M̂ should be upper bounded by that in M̂ up to an
error of ε.
Lemma 3.5.18. Let M = (S,A, P, R,H, µ) be an MDP and π be a policy. Let 0 < ε ≤ 1/2

be a parameter. For each (s, a) ∈ S × A, define m(s, a) = Qπε/(12|S||A|)(s, a). Let M̂ =

(S,A, P, R̂,H, µ) be another MDP. If for all (s, a) ∈ S ×A with m(s, a) ≥ 1, we have

∣∣∣E[R̂|s, a]− E[R|s, a]
∣∣∣ ≤ ε

24|S||A|
·max

{√
E[(R(s, a))2]

m(s, a)
,

1

m(s, a)

}
.

then
V π
M̂,H
≤ V π

M,H + ε.

Proof. We adopt the same notations as in the proof of Lemma 3.5.17. Recall that

V π
M,H =

∑
T∈T π

p(T,M, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R(s, a)]

 .

and ∑
T∈T π\T π1

p(T,M, π) ≤ ε/6.

As in the proof of Lemma 3.5.17, for the summation of rewards, we have∑
(s,a)∈S×A

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣
=

∑
(s,a)∈S×A|mT (s,a)=1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣
+

∑
(s,a)∈S×A|mT (s,a)>1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ .
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For each T ∈ T π1 , for each (s, a) ∈ S × A, we must have mT (s, a) ≤ m(s, a). Therefore,
for those (s, a) ∈ S ×A with mT (s, a) > 1, by Lemma 3.2.1, we have

|E[R̂(s, a)]− E[R(s, a)]|

≤ ε

24|S||A|
·max

{√
E[(R(s, a))2]

m(s, a)
,

1

m(s, a)

}
≤ max

{
ε

12H
,

ε

24|S||A|m(s, a)

}
.

Since
∑

(s,a)∈S×AmT (s, a) ≤ H and mT (s, a) ≤ m(s, a), we have∑
(s,a)∈S×A|mT (s,a)>1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ ≤ ε

8
.

For those (s, a) ∈ S ×A with mT (s, a) = 1, we have∑
(s,a)∈S×A|mT (s,a)=1

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ ≤ ε

24
.

Thus, ∑
(s,a)∈S×A

mT (s, a) ·
∣∣∣E [R(s, a)]− E

[
R̂(s, a)

]∣∣∣ ≤ ε

6
.

Hence,

V π
M̂,H
≤

∑
T∈T π\T π1

p(T,M, π) +
∑
T∈T π1

p(T,M, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R̂(s, a)]


≤ ε/6 +

∑
T∈T π1

p(T,M, π) ·

 ∑
(s,a)∈S×A

mT (s, a) · E[R(s, a)] + ε/6


≤ V π

M,H + ε.

3.5.2.3 Pessimistic Planning

We now present our final algorithm in the RL setting. The formal description is provided in
Algorithm 6. In our algorithm, we first invoke Algorithm 4 to collect a dataset D and then
invoke Algorithm 5 to estimateQst

ε (s, a) for some properly chosen ε. We then use the estimators
in Lemma 4.4.5 to define P̂ , R̂ and µ̂. Note that Lemma 4.4.5 not only provides an estimator
but also provides a computable confidence interval for P̂ and µ̂, which we also utilize in our
algorithm.

At this point, a natural idea is to find the optimal policy with respect to the MDP M̂ de-
fined by P̂ , R̂ and µ̂. However, our Lemma 3.5.17 only provides a lower bound guarantee for
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Algorithm 6 Pessimistic Planning
1: Input: desired accuracy ε, failure probability δ
2: Output: ε-optimal policy π
3: Invoke Algorithm 4 with

N = 266 · (|S|+ 1)24(|S|+1) · log(18|S|2|A|/δ) · |S|7|A|5/ε5

and receive
D =

(((
si,t, ai,t, ri,t, s

′
i,t

))|S||A|·|A|2|S|·H
t=1

)N
i=1

4: Invoke Algorithm 5 with

εest =
ε

32768 · |S||A|(|S|+ 1)12(|S|+1)

and δ = δ, and receive estimates mst : S ×A → N
5: For each (s, a, s′) ∈ S × A × S , for each i ∈ [N ] and t ∈

[
|S||A| · |A|2|S| ·H

]
. define

Trunci,t(s, a), P̂ (s′ | s, a), R̂(s, a) and µ̂(s) as in Lemma 3.5.13
6: DefineM to be a set of MDPs where for each M = (S,A, P̃ , R̂, H, µ̃) ∈M,

∣∣∣P̂ (s′ | s, a)− P̃ (s′ | s, a)
∣∣∣ ≤ max

512 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

, 32

√
P̂ (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest


and

|µ̂(s)− µ̃(s)| ≤
√

log(18|S|/δ)
N

for all (s, a, s′) ∈ S ×A× S
7: For each (possibly non-stationary) policy π, define V π = minM∈M V π

M,H

8: return armgaxπV
π

V π
M̂,H

without any upper bound guarantee. We resolve this issue by pessimistic planning. More
specifically, for any policy π, we define its pessimistic value to be

V π = min
M∈M

V π
M,H

where M includes all MDPs whose transition probabilities are within the confidence interval
provided in Lemma 4.4.5. We simply return the policy π that maximizes V π. Since the true
MDP lies in M, V π is never an overestimate. On the other hand, Lemma 3.5.17 guarantees
that V π is also lower bounded by V π

M,H up to an error of ε. Therefore, V π provides an accurate
estimate to the true value of π. However, note that Lemma 4.4.5 does not provide a computable
confidence interval for the rewards. Fortunately, as we have shown in Lemma 3.5.18, perturba-
tion on the rewards will not significantly increase the value of the policy and thus the estimate is
still accurate.

We now present the formal analysis for our algorithm.
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Theorem 3.5.19. With probability at least 1− δ, for any (possibly non-stationary) policy π,∣∣V π − V π
M,H

∣∣ ≤ ε/2

where V π is defined in Line 7 of Algorithm 6. Moreover, Alogrithm 6 samples at most

266 · (|S|+ 1)24(|S|+1) · |A|2|S| · log(12|S|2|A|/δ) · |S|8|A|6/ε5.

trajectories.

Proof. By Lemma 3.5.13, with probability at least 1− δ, for all (s, a, s′) ∈ S ×A×S, we have

∣∣∣P̂ (s′ | s, a)− P (s′ | s, a)
∣∣∣ ≤max

512 log(18|S|2|A|/δ)
mst(s, a) ·N · εest

, 32

√
P̂ (s′ | s, a) · log(18|S|2|A|/δ)

mst(s, a) ·N · εest


≤max

{
512 log(18|S|2|A|/δ)
Qst
εest(s, a) ·N · εest

, 64

√
P (s′ | s, a) · log(18|S|2|A|/δ)

Qst
εest(s, a) ·N · εest

}
,

∣∣∣R̂(s′ | s, a)− E[R(s, a)]
∣∣∣ ≤ 8

√
E [(R(s, a))2] · log(18|S||A|/δ)

Qst
εest(s, a) ·N · εest

+
8 log(18|S||A|/δ)
Qst
εest(s, a) ·N · εest

,

and

|µ̂(s)− µ(s)| ≤
√

log(18|S|/δ)
N

.

In the remaining part of the analysis, we condition on the above event.
by Lemma 3.5.10, for any (possibly non-stationary) policy π,

Qst
εest(s, a) ≥ 1

4096 · |S|12|S| · ε/(24|S||A|) · Qπε/(24|S||A|)(s, a).

LetM = (S,A, P, R,H, µ) be the true MDP. By Lemma 3.5.17, for any (possibly non-stationary)
policy π, for any M ∈M, we have

V π
M,H
≥ V π

M,H − ε/2.

Moreover, M ′ = (S,A, P, R̂,H, µ) ∈M. Therefore, by Lemma 3.5.18,

V π
M ′,H ≤ V π

M,H + ε/2.

Consequently, ∣∣V π − V π
M,H

∣∣ ≤ ε/2.

Finally, the algorithm samples at most

(N + d300 log(6|S||A|/δ)/εeste)× |S| × |A| × |A|2|S|

≤266 · (|S|+ 1)24(|S|+1) · |A|2|S| · log(18|S|2|A|/δ) · |S|8|A|6/ε5.

trajectories.

Theorem 3.5.19 immediately implies Theorem 3.1.2.
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Part II

RL with Large State Spaces
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Chapter 4

RL with Large State Spaces: Upper Bound
in the Online Setting

4.1 Introduction

In online RL, the agent interacts with the environment episodically, where each episode consists
ofH steps. The goal of the agent is to interact with the environment strategically such that after a
certain number of interactions, sufficient information is collected so that the agent can act nearly
optimally afterward. The performance of an agent is measured by the regret, which is defined as
the difference between the total rewards collected by the agent and those a best possible agent
would collect.

Without additional assumptions on the structure of the MDP, the best possible algorithm
achieves a regret bound of Θ̃(

√
H|S||A|T ) [11], where T is the total number of steps the agent

interacts with the environment. In other words, the algorithm learns to interact with the envi-
ronment nearly as well as an optimal agent after roughly H|S||A| steps. This regret bound,
however, can be unacceptably large in practice. E.g., the game of Go has a state space with size
3361, and the state space of certain robotics applications can even be continuous. Practitioners
apply function approximation schemes to tackle this issue, i.e., the value of a state-action pair is
approximated by a function which is able to predict the value of unseen state-action pairs given
a few training samples. The most commonly used function approximators are deep neural net-
works (DNN) which have achieved remarkable success in playing video games [58], the game
of Go [77], and controlling robots [4]. Nevertheless, despite the outstanding achievements in
solving real-world problems, no convincing theoretical guarantees were known about RL with
general value function approximators like DNNs.

Recently, there is a line of research trying to understand RL with simple function approx-
imators, e.g. linear functions. For instance, given a feature extractor which maps state-action
pairs to d-dimensional feature vectors, [15, 25, 26, 40, 59, 96, 102, 103, 108, 109] developed
algorithms with regret bound proportional to poly(dH)

√
T which is independent of the size of

S × A. Although being much more efficient than algorithms for the tabular setting, these al-
gorithms require a well-designed feature extractor and also make restricted assumptions on the
transition model. This severely limits the scope that these approaches can be applied to, since
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obtaining a good feature extractor is by no means easy.
In this section, we develop a provably efficient (both computationally and statistically) Q-

learning algorithm that works with general value function approximators. We show that our
algorithm enjoys a regret bound of Õ(poly(dH)

√
T ) where d is a complexity measure of the

function class that depends on the eluder dimension [73] and log-covering numbers. Our theory
generalizes the linear MDP assumption in [40, 102] to general function classes, and our algorithm
provides comparable regret bounds when applied to the linear case.

4.2 Notations and Assumptions
Episodic Markov Decision Process. In this section, we assume the reward R : S×A → [0, 1]
is deterministic. In the online RL setting, the agent aims to learn the optimal policy by interacting
with the environment during a number of episodes. For each k ∈ [K], at the beginning of the
k-th episode, the agent chooses a policy πk which induces a trajectory, based on which the agent
chooses policies for later episodes. Throughout this section, we define T := KH to be the total
number of steps that the agent interacts with the environment.

We adopt the following regret definition in this section.
Definition 4.2.1. The regret of an algorithm A after K episodes is defined as

Reg(K) =
K∑
k=1

V ∗1
(
sk1
)
− V πk

1

(
sk1
)

where πk is the policy played by algorithm A at the k-th episode.

Additional Notations. For a function f : S ×A → R, define

‖f‖∞ = max
(s,a)∈S×A

|f(s, a)|.

Similarly, for a function v : S → R, define

‖v‖∞ = max
s∈S
|v(s)|.

Given a dataset
D = {(si, ai, qi)}|D|i=1 ⊆ S ×A× R,

for a function f : S ×A → R, define

‖f‖D =

 |D|∑
t=1

(f(st, at)− qt)2

1/2

.

For a set of state-action pairs Z ⊆ S ×A, for a function f : S ×A → R, define

‖f‖Z =

 ∑
(s,a)∈Z

(f(s, a))2

1/2

.
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For a set of functions F ⊆ {f : S ×A → R}, we define the width function of a state-action pair
(s, a) as

w(F , s, a) = max
f,f ′∈F ′

f(s, a)− f ′(s, a).

Our Assumptions. We make the following assumption throughout this chapter.
Assumption 4.2.1. There exists a set of functions F ⊆ {f : S ×A → [0, H + 1]}, such that for
any V : S → [0, H], there exists fV ∈ F which satisfies

fV (s, a) = R(s, a) +
∑
s′∈S

P (s′ | s, a)V (s′) ∀(s, a) ∈ S ×A. (4.1)

Intuitively, Assumption 4.2.1 requires that for any V : S → [0, H], after applying the Bell-
man backup operator, the resulting function lies in the function class F . We note that Assump-
tion 4.2.1 is very general and includes many previous assumptions as special cases. For instance,
for the tabular RL setting, F can be the entire function space of S ×A → [0, H + 1]. For linear
MDPs [40, 96, 102, 103] where both the reward function R : S × A → [0, 1] and the transition
operator P : S × A → ∆ (S) are linear functions of a given feature extractor φ : S × A → Rd,
F can be defined as the class of linear functions with respect to φ. In practice, when F is a
function class with sufficient expressive power (e.g. deep neural networks), Assumption 4.2.1
(approximately) holds.

The complexity of F determines the learning complexity of the RL problem under consider-
ation. To characterize the complexity of F , we use the following definition of eluder dimension
which was first introduced in [73] to characterize the complexity of function classes in bandits
problems.
Definition 4.2.2 (Eluder dimension). Let ε ≥ 0 and Z = {(si, ai)}ni=1 ⊆ S × A be a sequence
of state-action pairs.

• A state-action pair (s, a) ∈ S ×A is ε-dependent on Z with respect to F if any f, f ′ ∈ F
satisfying ‖f − f ′‖Z ≤ ε also satisfies |f(s, a)− f ′(s, a)| ≤ ε.

• An (s, a) is ε-independent of Z with respect to F if (s, a) is not ε-dependent on Z .
• The ε-eluder dimension dimE(F , ε) of a function class F is the length of the longest

sequence of elements in S ×A such that, for some ε′ ≥ ε, every element is ε′-independent
of its predecessors.

It has been shown in [73] that dimE(F , ε) ≤ |S||A| when S and A are finite. When F is
the class of linear functions, i.e., fθ(s, a) = θ>φ(s, a) for a given feature extractor φ : S ×
A → Rd, dimE(F , ε) = O(d log(1/ε)). When F is the class generalized linear functions of
the form fθ(s, a) = g(θ>φ(s, a)) where g is an increasing continuously differentiable function,
dimE(F , ε) = O(dr2 log(h/ε)) where

r =
supθ,(s,a)∈S×A g

′(θ>φ(s, a))

infθ,(s,a)∈S×A g′(θ>φ(s, a))

and
h = sup

θ,(s,a)∈S×A
g′(θ>φ(s, a)).
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In [63], it has been shown that when F is the class of quadratic functions, i.e., fΛ(s, a) =
φ(s, a)>Λφ(s, a) where Λ ∈ Rd×d, dimE(F , ε) = O(d2 log(1/ε)).

We further assume the function class F and the state-action pairs S × A have bounded
complexity in the following sense.
Assumption 4.2.2. For any ε > 0, the following holds:

1. there exists an ε-cover C(F , ε) ⊆ F with size |C(F , ε)| ≤ N (F , ε), such that for any
f ∈ F , there exists f ′ ∈ C(F , ε) with ‖f − f ′‖∞ ≤ ε;

2. there exists an ε-cover C(S×A, ε) with size |C(S×A, ε)| ≤ N (S×A, ε), such that for any
(s, a) ∈ S ×A, there exists (s′, a′) ∈ C(S ×A, ε) with maxf∈F |f(s, a)− f(s′, a′)| ≤ ε.

Assumption 4.2.2 requires both the function class F and the state-action pairs S × A have
bounded covering numbers. Since our regret bound depends logarithmically on N (F , ·) and
N (S ×A, ·), it is acceptable for the covers to have exponential size. In particular, when S andA
are finite, it is clear that logN (F , ε) = Õ(|S||A|) and logN (S × A, ε) = log(|S||A|). For the
case of d-dimensional linear functions and generalized linear functions, logN (F , ε) = Õ(d) and
logN (S ×A, ε) = Õ(d). For quadratic functions, logN (F , ε) = Õ(d2) and logN (S ×A, ε) =

Õ(d).

4.3 Algorithm
Overview. The algorithm is formally presented in Algorithm 7. At the beginning of each
episode k ∈ [K], we maintain a replay buffer {(sτh, aτh, rτh)}(h,τ)∈[H]×[k−1] which contains all
existing samples. We set Qk

H+1 = 0, and calculate Qk
H , Q

k
H−1, . . . , Q

k
1 iteratively as follows. For

each h = H,H − 1, . . . , 1,

fkh (·, ·)← argminf∈F

k−1∑
τ=1

H∑
h′=1

(
f(sτh′ , a

τ
h′)−

(
rτh′ + max

a∈A
Qk
h+1(sτh′+1, a)

))2

(4.2)

and
Qk
h(·, ·) = min

{
fkh (·, ·) + bkh(·, ·), H

}
.

Here, bkh(·, ·) is a bonus function to be defined shortly.

Stable Upper-Confidence Bonus Function. With more collected data, the least squares pre-
dictor is expected to return a better approximate the true Q-function. To encourage explo-
ration, we carefully design a bonus function bkh(·, ·) which guarantees that, with high probability,
Qk
h+1(s, a) is an overestimate of the one-step backup. The bonus function bkh(·, ·) is guaranteed

to tightly characterize the estimation error of the one-step backup

R(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V k
h+1(s′),

where V k
h+1(·) = maxa∈AQ

k
h+1(·, a) is the value function of the next step.
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Algorithm 7 F-LSVI(δ)

1: Input: failure probability δ ∈ (0, 1) and number of episodes K
2: for episode k = 1, 2, . . . , K do
3: Receive initial state sk1 ∼ µ
4: Qk

H+1(·, ·)← 0 and V k
H+1(·)← 0

5: Zk ← {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H]

6: for h = H, . . . , 1 do
7: Dkh ←

{(
sτh′ , a

τ
h′ , r

τ
h′ + V k

h+1(sτh′+1, a)
)}

(τ,h′)∈[k−1]×[H]

8: fkh ← argminf∈F ‖f‖2
Dkh

9: bkh(·, ·)← Bonus(F , fkh , Zk, δ) (Algorithm 9)
10: Qk

h(·, ·)← min{fkh (·, ·) + bkh(·, ·), H} and V k
h (·) = maxa∈AQ

k
h(·, a)

11: πkh(·)← argmaxa∈AQ
k
h(·, a)

12: for h = 1, 2, . . . , H do
13: Take action akh ← πkh(skh) and observe skh+1 ∼ P (· | skh, akh) and rkh = R(skh, a

k
h)

4.3.1 Stable UCB via Importance Sampling

In this section, we formally define the bonus function bkh(·, ·) used in Algorithm 7. The bonus
function is designed to estimate the confidence interval of our estimate of the Q-function. In
our algorithm, we define the bonus function to be the width function bkh(·, ·) = w(Fkh , ·, ·) where
the confidence region Fkh is defined so that R(·, ·) +

∑
s′∈S P (s′ | ·, ·)V k

h+1(s′) ∈ Fkh with high
probability. By definition of the width function, bkh(·, ·) gives an upper bound on the confidence
interval of the estimate of the Q-function, since the width function maximizes the difference
between all pairs of Q-functions that lie in the confidence region.

To define the confidence region Fkh , a natural definition would be

Fkh =
{
f ∈ F | ‖f − fkh‖2

Zk ≤ β
}

where β is defined so that R(·, ·) +
∑

s′∈S P (s′ | ·, ·)V k
h+1(s′) ∈ Fkh with high probability,

and recall that Zk = {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H] is the set of state-action pairs defined in Line 5.
However, as one can observe, the complexity of such a bonus function could be extremely high
as it is defined by a dataset Zk whose size can be as large as T = KH . A high-complexity bonus
function could potentially introduce instability issues in the algorithm. Technically, we require
a stable bonus function to allow for highly concentrated estimate of the one-step backup so that
the confidence region Fkh is accurate. Our strategy to “stabilize” the bonus function is to reduce
the size of the dataset by importance sampling, so that only important state-action pairs are kept.

Sensitivity Sampling. Here we present a framework to subsample a dataset, so that the confi-
dence region is approximately preserved while the size of the dataset is reduced. Our framework
is built upon the sensitivity sampling technique introduced in a different context [28, 29, 49].
Definition 4.3.1. For a given set of state-action pairs Z ⊆ S × A and a function class F , for
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Algorithm 8 Sensitivity-Sampling(F , Z , λ, ε, δ)
1: Input: function class F , set of state-action pairs Z ⊆ S ×A, accuracy parameters λ, ε > 0

and failure probability δ ∈ (0, 1)
2: Initialize Z ′ ← {}
3: For each z ∈ Z , let pz to be smallest real number such that 1/pz is an integer and

pz ≥ min{1, sensitivityZ,F ,λ(z) · 72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2} (4.3)

4: For each z ∈ Z , independently add 1/pz copies of z into Z ′ with probability pz
5: return Z ′

each z ∈ Z , define the λ-sensitivity of (s, a) with respect to Z and F to be

sensitivityZ,F ,λ(s, a) = max
f,f ′∈F

‖f−f ′‖2Z≥λ

(f(s, a)− f ′(s, a))2

‖f − f ′‖2
Z

.

Sensitivity measures the importance of each data point z in Z by considering the pair of
functions f, f ′ ∈ F such that z contributes the most to ‖f − f ′‖2

Z . In Algorithm 8, we de-
fine a procedure to sample each state-action pair with sampling probability proportional to the
sensitivity. In the analysis, we show that after applying Algorithm 8 on the input dataset Z ,
the confidence region

{
f ∈ F | ‖f − fkh‖2

Z ≤ β
}

is approximately preserved, while the size of
the subsampled dataset is upper bounded by the eluder dimension of F times the log-covering
number of F .

The Stable Bonus Function. With the above sampling procedure, we are now ready to obtain a
stable bonus function. In Algorithm 9, we first subsample the given dataset Z and then round the
reference function f̄ and all data points in the subsampled dataset Z to their nearest neighbors in
a 1/(8

√
4T/δ)-cover. We discard the subsampled dataset if its size is too large, and then define

the confidence region using the new dataset and the rounded reference function.

4.4 Theoretical Guarantee
In this section we provide the theoretical guarantee of Algorithm 7, which is stated in Theo-
rem 8.3.1.
Theorem 4.4.1. Under Assumption 4.2.1, after interacting with the environment for T = KH
steps, with probability 1− δ, Algorithm 7 achieves a a regret bound of

Reg(K) ≤
√
ι ·H2 · T ,

where

ι ≤ C · log2 (T/δ) · dim2
E

(
F , δ/T 3

)
· ln
(
N
(
F , δ/T 2

)
/δ
)
· log (N (S ×A, δ/T ) · T/δ)

for some constant C > 0.
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Algorithm 9 Bonus(F , f̄ , Z , δ)
1: Input: function class F , reference function f̄ ∈ F , state-action pairs Z ⊆ S×A and failure

probability δ ∈ (0, 1)
2: Z ← Sensitivity-Sampling

(
F ,Z, δ/(16T ), 1/2, δ

)
. Subsample the dataset

3: Z ← {} if |Z| ≥ 4T/δ or the number of distinct elements in Z exceeds

6912dimE(F , δ/(16T 2)) log(64H2T 2/δ) lnT ln(4N (F , δ/(566T ))/δ)

4: Let f̂ ∈ C(F , 1/(8
√

4T/δ)) be such that ‖f̄ − f̂‖∞ ≤ 1/(8
√

4T/δ) . Round f̄
5: Ẑ ← {}
6: for z ∈ Z do . Round state-action pairs
7: Let ẑ ∈ C(S ×A, 1/(8

√
4T/δ)) be such that supf∈F |f(z)− f(ẑ))| ≤ 1/(8

√
4T/δ)

8: Ẑ ← Ẑ ∪ {ẑ}
9: return ŵ(·, ·) := w(F̂ , ·, ·), where F̂ =

{
f ∈ F | ‖f − f̂‖2

Ẑ ≤ 3β(F , δ) + 2
}

and

β(F , δ) = c′H2·log2(T/δ)·dimE(F , δ/T 3)·ln(N (F , δ/T 2)/δ)·log (N (S ×A, δ/T )) · T/δ)
(4.4)

for some absolute constants c′ > 0.

Remark 4.4.1. For the tabular setting, we may set F to be the entire function space of S ×
A → [0, H + 1]. Recall that when S and A are finite, for any ε > 0, dimE(F , ε) ≤ |S||A|,
log(N (F , ε)) = Õ(|S||A|) and log(N (S × A, ε)) = O(log(|S||A|)), and thus the regret bound
in Theorem 8.3.1 is Õ(

√
|S|3|A|3H2T ) which is worse than the near-optimal bound in [11].

However, when applied to the tabular setting, our algorithm is similar to the algorithm in [11].
By a more refined analysis specialized to the tabular setting, the regret bound of our algorithm
can be improved using techniques in [11]. We would like to stress that our algorithm and analysis
tackle a much more general setting and recovering the optimal regret bound for the tabular setting
is not the focus of this chapter.
Remark 4.4.2. When F is the class of d-dimensional linear functions, we have dimE(F , ε) =

Õ(d), log(N (F , ε)) = Õ(d) and log(N (S × A, ε)) = Õ(d) and thus the regret bound in The-
orem 8.3.1 is Õ(

√
d4H2T ), which is worse by a Õ(

√
d) factor when compared to the bound

in [40, 96], and is worse by a Õ(d) factor when compared to the bound in [108]. Note that
for our algorithm, a regret bound of Õ(

√
d3H2T ) is achievable using a more refined analysis

(see Remark 4.4.3). Moreover, unlike our algorithm, the algorithm in [108] requires solving the
Planning Optimization Program and is thus computationally intractable. Finally, we would like
to stress that our algorithm and analysis tackle the case that F is a general function class which
contains the linear case studied in [40, 96, 108] as a special case.

Here we provide an overview of the proof to highlight the technical novelties in the analysis.

The Stable Bonus Function. Similar to the analysis in [40, 96], to account for the dependency
structure in the data sequence, we need to bound the complexity of the bonus function bkh(·, ·).
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When F is the class of d-dimensional linear functions (as in [40, 96]), b(·, ·) = ‖φ(·, ·)‖Λ−1

for a covariance matrix Λ ∈ Rd×d, whose complexity is upper bounded by d2 which is the
number of entries in the covariance matrix Λ. However, such simple complexity upper bound
is no longer available for the class of general functions considered in this chapter. Instead, we
bound the complexity of the bonus function by relying on the fact that the subsampled dataset
has bounded size. Scrutinizing the sampling algorithm (Algorithm 8), it can be seen that the size
of the subsampled dataset is upper bounded by the sum of the sensitivity of the data points in
the given dataset times the log-convering number of the function class F . To upper bound the
sum of the sensitivity of the data points in the given dataset, we rely on a novel combinatorial
argument which establishes a surprising connection between the sum of the sensitivity and the
eluder dimension of the function class F . We show that the sum of the sensitivity of data points
is upper bounded by the eluder dimension of the dataset up to logarithm factors. Hence, the
complexity of the subsampled dataset, and therefore, the complexity of the bonus function, is
upper bound by the log-covering number of S × A (the complexity of each state-action pair)
times the product of the eluder dimension of the function class and the log-covering number of
the function class (the number of data points in the subsampled dataset).

In order to show that the confidence region is approximately preserved when using the sub-
sampled dataset Z ′, we show that for any f, f ′ ∈ F , ‖f − f ′‖2

Z′ is a good approximation to
‖f − f ′‖2

Z . To show this, we apply a union bound over all pairs of functions on the cover of F
which allows us to consider fixed f, f ′ ∈ F . For fixed f, f ′ ∈ F , note that ‖f − f ′‖2

Z′ is an
unbiased estimate of ‖f − f ′‖2

Z , and importance sampling proportinal to the sensitivity implies
an upper bound on the variance of the estimator which allows us to apply concentration bounds
to prove the desired result. We note that the sensitivity sampling framework used here is very
crucial to the theoreical guarantee of the algorithm. If one replaces sensitivity sampling with
more naı̈ve sampling approaches (e.g. uniform sampling), then the required sampling size would
be much larger, which does not give any meaningful reduction on the size of the dataset and also
leads to a high complexity bonus function.

Remark 4.4.3. When F is the class of d-dimensional linear functions, our upper bound on the
size of the subsampled dataset is Õ(d2). However, in this case, our sampling algorithm (Algo-
rithm 8) is equivalent to the leverage score sampling [21] and therefore the sample complexity
can be further improved to Õ(d) using a more refined analysis [80]. Therefore, our regret bound
can be improved to Õ(

√
d3H2T ), which matches the bounds in [40, 96]. However, the Õ(d)

sample bound is specialized to the linear case and heavily relies on the matrix Chernoff bound
which is unavailable for the class of general functions considered in this chapter. This also ex-
plains why our regret bound in Theorem 8.3.1, when applied to the linear case, is larger by a√
d factor when compared to those in [40, 96]. We leave it as an open question to obtain more

refined bound on the size of the subsampled dataset and improve the overall regret bound of our
algorithm.

The Confidence Region. Our algorithm applies the principle of optimism in the face of un-
certainty (OFU) to balance exploration and exploitation. Note that V k

h+1 is the value function
estimated at step h + 1. In our analysis, we require the Q-function Qk

h estimated at level h to
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satisfy
Qk
h(·, ·) ≥ R(·, ·) +

∑
s′∈S

P (s′|·, ·)V k
h+1(s′)

with high probability. To achieve this, we optimize the least squares objective to find a solution
fkh ∈ F using collected data. We then show that fkh is close to R(·, ·) +

∑
s′∈S P (s′|·, ·)V k

h+1(s′).
This would follow from standard analysis if the collected samples were independent of V k

h+1.
However, V k

h+1 is calculated using the collected samples and thus they are subtly dependent on
each other. To tackle this issue, we notice that V k

h+1 is computed by using fkh+1 and the bonus
function bkh+1, and both fkh+1 and the bonus function bkh+1 have bounded complexity, thanks to
the design of bonus function. Hence, we can construct a 1/T -cover to approximate V k

h+1. By
doing so, we can now bound the fitting error of fkh by replacing V k

h+1 with its closest neighbor in
the 1/T -cover which is independent of the dataset. By a union bound over all functions in the
1/T -cover, it follows that with high probability,

R(·, ·) +
∑
s′∈S

P (s′|·, ·)V k
h+1(s′) ∈

{
f ∈ F | ‖f − fkh‖2

Zk ≤ β
}

for some β that depends only on the complexity of the bonus function and the function class F .

Regret Decomposition and the Eluder Dimension. By standard regret decomposition for
optimistic algorithms, the total regret is upper bounded by the summation of the bonus function∑K

k=1

∑H
h=1 b

k
h

(
skh, a

k
h

)
. To bound the summation of the bonus function, we use an argument

similar to that in [73], which shows that the summation of the bonus function can be upper
bounded in terms of the eluder dimension of the function class F , if the confidence region is
defined using the original dataset. In the formal analysis, we adapt the argument in [73] to show
that even if the confidence region is defined using the subsampled dataset, the summation of the
bonus function can be bounded in a similar manner.

4.4.1 Analysis of the Stable Bonus Function
Our first lemma gives an upper bound on the sum of the sensitivity in terms of the eluder dimen-
sion of the function class F .
Lemma 4.4.2. For a given set of state-action pairs Z ,∑

z∈Z

sensitivityZ,F ,λ(z) ≤ 4dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln |Z|.

Proof. For each z ∈ Z , let f, f ′ ∈ F be an arbitrary pair of functions such that ‖f − f ′‖2
Z ≥ λ

and
(f(z)− f ′(z))2

‖f − f ′‖2
Z

is maximized, and we define L(z) = (f(z) − f ′(z))2 for such f and f ′. Note that 0 ≤ L(z) ≤
(H + 1)2. Let Z =

⋃log((H+1)2|Z|/λ)−1
α=0 Zα∪Z∞ be a dyadic decomposition with respect to L(·),

where for each 0 ≤ α < log((H + 1)2|Z|/λ), define

Zα = {z ∈ Z | L(z) ∈ ((H + 1)2 · 2−α−1, (H + 1)2 · 2−α]}

69



and
Z∞ = {z ∈ Z | L(z) ≤ λ/|Z|}.

Clearly, for any z ∈ Z∞, sensitivityZ,F ,λ(z) ≤ 1/|Z| and thus∑
z∈Z∞

sensitivityZ,F ,λ(z) ≤ 1.

Now we bound
∑

z∈Zα sensitivityZ,F ,λ(z) for each 0 ≤ α < log((H + 1)2|Z|/λ) separately.
For each α, let

Nα = |Zα|/dimE(F , (H + 1)2 · 2−α−1)

and we decomposeZα intoNα+1 disjoint subsets, i.e., Zα =
⋃Nα+1
j=1 Zαj , by using the following

procedure. Let Zα = {z1, z2, . . . , z|Zα|} and we consider each zi sequentially. Initially Zαj = {}
for all j. Then, for each zi, we find the largest 1 ≤ j ≤ Nα such that zi is (H + 1)2 · 2−α−1-
independent of Zαj with respect to F . We set j = Nα + 1 if such j does not exist, and use
j(zi) ∈ [Nα + 1] to denote the choice of j for zi. By the design of the algorithm, for each zi, it is
clear that zi is dependent on each of Zα1 ,Zα2 , . . . ,Zαj(zi)−1.

Now we show that for each zi ∈ Zα,

sensitivityZ,F ,λ(zi) ≤ 2/j(zi).

For any zi ∈ Zα, we use f, f ′ ∈ F to denote the pair of functions in F such that ‖f − f ′‖2
Z ≥ λ

and
(f(zi)− f ′(zi))2

‖f − f ′‖2
Z

is maximized. Since zi ∈ Zα, we must have (f(zi) − f ′(zi))2 > (H + 1)2 · 2−α−1. Since zi is
dependent on each of Zα1 ,Zα2 , . . . ,Zαj(zi)−1, for each 1 ≤ k < j(zi), we have

‖f − f ′‖Zαk ≥ (H + 1)2 · 2−α−1,

which implies

sensitivityZ,F ,λ(zi) =
(f(zi)− f ′(zi))2

‖f − f ′‖2
Z

≤ (H + 1)2 · 2−α

‖f − f ′‖2
Z

≤ (H + 1)2 · 2−α∑j(zi)−1
k=1 ‖f − f ′‖Zαk + (f(zi)− f ′(zi))2

≤ 2/j(zi).

Moreover, by the definition of (H + 1)2 · 2−α−1-independence, we have |Zαj | ≤ dimE(F , (H +
1)2 · 2−α−1) for all 1 ≤ j ≤ Nα. Therefore,∑

z∈Zα
sensitivityZ,F ,λ(z) ≤

∑
1≤j≤Nα

|Zαj | · 2/j +
∑

z∈ZαNα+1

2/Nα

≤2dimE(F , (H + 1)2 · 2−α−1) ln(Nα) + |Zα| · 2dimE(F , (H + 1)2 · 2−α−1)

|Zα|
≤3dimE(F , (H + 1)2 · 2−α−1) ln(|Z|).
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By the monotonicity of eluder dimension, it follows that∑
z∈Z

sensitivityZ,F ,λ(z)

≤
log((H+1)2|Z|/λ)−1∑

α=0

∑
z∈Zα

sensitivityZ,F ,λ(z) +
∑
z∈Z∞

sensitivityZ,F ,λ(z)

≤3 log((H + 1)2|Z|/λ)dimE(F , λ/|Z|) ln(|Z|) + 1

≤4 log((H + 1)2|Z|/λ)dimE(F , λ/|Z|) ln(|Z|).

Using Lemma 4.4.2, we can prove an upper bound on the number of distinct elements in Z ′
returned by the sampling algorithm (Algorithm 8).
Lemma 4.4.3. With probability at least 1− δ/4, the number of distinct elements in Z ′ returned
by Algorithm 8 is at most

1728dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2.

Proof. Note that

pz ≤ min{1, 2 · sensitivityZ,F ,λ(z) · 72 ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2},

since for any real number x < 1, there always exists x̂ ∈ [x, 2x] such that 1/x̂ is an integer. Let
Xz be a random variable defined as

Xz =

{
1 z ∈ Z ′

0 z /∈ Z ′
.

Clearly, the number of distinct elements in Z ′ is upper bounded by
∑

z∈Z Xz and E[Xz] = pz.
By Lemma 4.4.2,∑
z∈Z

E[Xz] ≤ 576dimE(F , λ/|Z|) log((H+1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72·
√
λδ/(|Z|))/δ)/ε2.

By Chernoff bound, with probability at least 1− δ/4, we have∑
z∈Z

Xz ≥ 1728dimE(F , λ/|Z|) log((H+1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72·
√
λδ/(|Z|))/δ)/ε2.

Our second lemma upper bounds the number of elements in Z ′ returned by Algorithm 8.
Lemma 4.4.4. With probability at least 1− δ/4, |Z ′| ≤ 4|Z|/δ.
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Proof. Let Xz be the random variable which is defined as

Xz =

{
1/pz z is added into Z ′

0 otherwise
.

Note that |Z ′| =
∑

z∈Z Xz and E[Xz] = 1. By Markov inequality, with probability 1 − δ/4,
|Z ′| ≤ 4|Z|/δ.

Our third lemma shows that for the given set of state-action pairs Z and function class F ,
Algorithm 8 returns a set of state-action pairs Z ′ so that ‖f − f ′‖2

Z is approximately preserved
for all f, f ′ ∈ F .
Lemma 4.4.5. With probability at least 1− δ/2, for any f, f ′ ∈ F ,

(1− ε)‖f − f ′‖2
Z − 2λ ≤ ‖f − f ′‖2

Z′ ≤ (1 + ε)‖f − f ′‖2
Z + 8|Z|λ/δ.

Proof. In our proof, we separately consider two cases: ‖f − f ′‖2
Z < 2λ and ‖f − f ′‖2

Z ≥ 2λ.

Case I: ‖f − f ′‖2
Z < 2λ. Consider f, f ′ ∈ F with ‖f − f ′‖2

Z < 2λ. Conditioned on the event
defined in Lemma 4.4.4 which holds with probability at least 1 − δ/4, we have ‖f − f ′‖2

Z′ ≤
|Z ′| · ‖f − f ′‖2

Z ≤ 8|Z|λ/δ. Moreover, we always have ‖f − f ′‖Z′ ≥ 0. In summary, we have

‖f − f ′‖2
Z − 2λ ≤ ‖f − f ′‖2

Z′ ≤ ‖f − f ′‖2
Z + 8|Z|λ/δ.

Case II: ‖f − f ′‖2
Z ≥ 2λ. We first show that for any fixed f, f ′ ∈ F with ‖f − f ′‖2

Z ≥ λ, with
probability at least 1− δ/(4N (F , ε/72 ·

√
λδ/(|Z|))), we have

(1− ε/4)‖f − f ′‖2
Z ≤ ‖f − f ′‖2

Z′ ≤ (1 + ε/4)‖f − f ′‖2
Z .

To prove this, for each z ∈ Z , define

Xz =

{
1
pz

(f(z)− f ′(z))2 z is added into Z ′ for 1/pz times
0 otherwise

.

Clearly, ‖f − f ′‖Z′ =
∑

z∈Z Xz and E[Xz] = (f(z)− f ′(z))2. Moreover, since ‖f − f ′‖2
Z ≥ λ,

by (4.3) and Definition 4.3.1, we have

max
z∈Z

Xz ≤ ‖f − f ′‖2
Z · ε2/(72 ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ).

Moreover, E[X2
z ] ≤ (f(z)− f ′(z))4/pz. Therefore, by Hölder’s inequality,∑

z∈Z

Var[Xz] ≤
∑
z∈Z

E[X2
z ] ≤

∑
z∈Z

(f(z)− f ′(z))2 ·max
z∈Z

(f(z)− f ′(z))2/pz

≤‖f − f ′‖4
Z · ε2/(72 ln(4N (F , ε/72 ·

√
λδ/(|Z|))/δ).
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Therefore, by Bernstein inequality,

Pr
[
|‖f − f ′‖2

Z − ‖f − f ′‖2
Z′ | ≥ ε/4 · ‖f − f ′‖2

Z
]

= Pr

[∣∣∣∣∣∑
z∈Z

E[Xz]−
∑
z∈Z

Xz

∣∣∣∣∣ ≥ ε/4 · ‖f − f ′‖2
Z

]

≤2 exp

(
− ε2/16 · ‖f − f ′‖4

Z
2
∑

z∈Z Var[Xz] + 2 maxz∈Z Xz · ε/4 · ‖f − f ′‖2
Z/3

)
≤(δ/4)/

(
N (F , ε/72 ·

√
λδ/(|Z|))

)2

.

By union bound, the above inequality implies that with probability at least 1 − δ/4, for any
(f, f ′) ∈ C(F, ε/72 ·

√
λδ/(|Z|))× C(F, ε/72 ·

√
λδ/(|Z|)) with ‖f − f ′‖2

Z ≥ λ,

(1− ε/4)‖f − f ′‖2
Z ≤ ‖f − f ′‖2

Z′ ≤ (1 + ε/4)‖f − f ′‖2
Z′ .

Now we condition on the event defined above and the event defined in Lemma 4.4.4. Consider
f, f ′ ∈ F with ‖f − f ′‖2

Z ≥ 2λ. Recall that there exists

(f̂ , f̂ ′) ∈ C(F, ε/72 ·
√
λδ/(|Z|))× C(F, ε/72 ·

√
λδ/(|Z|))

such that ‖f − f̂‖∞ ≤
√
λ/(25|Z|) and ‖f ′ − f̂ ′‖∞ ≤

√
λ/(25|Z|). Therefore,

‖f̂ − f̂ ′‖2
Z =

∑
z∈Z

(f̂(z)− f̂ ′(z))2

=
∑
z∈Z

(f(z)− f ′(z) + (f̂(z)− f(z)) + (f ′(z)− f̂ ′(z)))2

≥
(
‖f − f ′‖Z − ‖f̂ − f‖Z − ‖f ′ − f̂ ′‖Z

)2

≥
(√

2λ− 2
√
λ/25

)2

≥ λ.

Therefore, conditioned on the event defined above, we have

(1− ε/4)‖f̂ − f̂ ′‖2
Z ≤ ‖f̂ − f̂ ′‖2

Z′ ≤ (1 + ε/4)‖f̂ − f̂ ′‖2
Z′ .

Conditioned on the event defined in Lemma 4.4.4 which holds with probability at least 1− δ/4,
we have

‖f − f ′‖2
Z′ ≤

(
‖f̂ − f̂ ′‖Z′ + ‖f − f̂‖Z′ + ‖f ′ − f̂ ′‖Z′

)2

≤
(
‖f̂ − f̂ ′‖Z′ + 2

√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≤
(

(1 + ε/6)‖f̂ − f̂ ′‖Z + 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≤
(

(1 + ε/6)‖f − f‖Z + 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|) + 4

√
|Z| · ε/72 ·

√
λδ/(|Z|)

)2

≤(1 + ε)‖f − f‖2
Z ,
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where the last inequality holds since ‖f − f‖Z ≥
√
λ.

Similarly,

‖f − f ′‖2
Z′ ≥

(
‖f̂ − f̂ ′‖Z′ − ‖f − f̂‖Z′ − ‖f ′ − f̂ ′‖Z′

)2

≥
(
‖f̂ − f̂ ′‖Z′ − 2

√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≥
(

(1− ε/6)‖f̂ − f̂ ′‖Z − 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)

)2

≥
(

(1− ε/6)‖f − f‖Z − 2
√
|Z ′| · ε/72 ·

√
λδ/(|Z|)− 2

√
|Z| · ε/72 ·

√
λδ/(|Z|)

)2

≥(1− ε)‖f − f‖2
Z .

Combining Lemma 4.4.3, Lemma 4.4.4 and Lemma 4.4.5 with a union bound, we have the
following proposition.
Proposition 4.4.6. With probability at least 1−δ, the size of Z ′ returned by Algorithm 8 satisfies
|Z ′| ≤ 4|Z|/δ, the number of distinct elements in Z is at most

1728dimE(F , λ/|Z|) log((H + 1)2|Z|/λ) ln(|Z|) ln(4N (F , ε/72 ·
√
λδ/(|Z|))/δ)/ε2,

and for any f, f ′ ∈ F ,

(1− ε)‖f − f ′‖2
Z − 2λ ≤ ‖f − f ′‖2

Z′ ≤ (1 + ε)‖f − f ′‖2
Z + 8|Z|λ/δ.

Proposition 4.4.7. For Algorithm 9, suppose |Z| ≤ KH = T , the following holds.
1. With probability at least 1− δ/(16T ),

w(F , s, a) ≤ ŵ(s, a) ≤ w(F , s, a)

where F = {f ∈ F | ‖f − f̄‖2
Z ≤ β(F , δ)}, and F = {f ∈ F | ‖f − f̄‖2

Z ≤
9β(F , δ) + 12}.

2. ŵ(·, ·) ∈ W for a function setW with

log |W| ≤ 6912dimE(F , δ/(16T 2)) log(16(H + 1)2T 2/δ) lnT ln(4N (F , δ/(566T ))/δ)

· log
(
N (S ×A, 1/(8

√
4T/δ)) · 4T/δ

)
+ log(N (F , 1/(8

√
4T/δ)))

≤ C · dimE(F , δ/T 3) · log(H2T 2/δ) · lnT · ln(N (F , δ/T 2)/δ)

· log (N (S ×A, δ/T )) · T/δ) ,

for some absolute constant C > 0 if T is sufficiently large.

Proof. For the first part, conditioned on the event defined in Proposition 4.4.6, for any f ∈ F ,
we have

‖f − f̄‖2
Z/2− 1/2 ≤ ‖f − f̄‖2

Z ≤ 3‖f − f̄‖2
Z/2 + 1/2.
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Therefore, we have

‖f − f̂‖2
Ẑ ≤ (‖f − f̂‖Z +

√
4T/δ/(8

√
4T/δ))2

≤(‖f − f̄‖Z +
√

4T/δ/(8
√

4T/δ) +
√

4T/δ/(8
√

4T/δ))2

≤2‖f − f̄‖2
Z + 2(

√
4T/δ/(8

√
4T/δ) +

√
4T/δ/(8

√
4T/δ))2 ≤ 3‖f − f̄‖2

Z + 2

and

‖f − f̂‖2
Ẑ ≥ (‖f − f̂‖Z −

√
4T/δ/(8

√
4T/δ))2

≥(‖f − f̄‖Z −
√

4T/δ/(8
√

4T/δ)−
√

4T/δ/(8
√

4T/δ))2

≥‖f − f̄‖2
Z/2− (

√
4T/δ/(8

√
4T/δ) +

√
4T/δ/(8

√
4T/δ))2 ≥ ‖f − f̄‖2

Z/3− 2.

Therefore, for any f ∈ F , we have ‖f−f̄‖2
Z ≤ β(F , δ), which implies ‖f−f̂‖2

Ẑ ≤ 3β(F , δ)+2

and thus f ∈ F̂ . Moreover, for any f ∈ F̂ , we have ‖f − f̂‖2
Ẑ ≤ 3β(F , δ) + 2, which implies

‖f − f̄‖2
Z ≤ 9β(F , δ) + 12.

For the second part, note that ŵ(·, ·) is uniquely defined by F̂ . When |Z| ≥ 4T/δ or the
number of distinct elements in Z exceeds

6912dimE(F , δ/(16T 2)) log(16(H + 1)2T 2/δ) lnT ln(4N (F , δ/(566T ))/δ),

we have |Ẑ| = 0 and thus F̂ = F . Otherwise, F̂ is defined by f̂ and Ẑ . Since f̂ ∈
C(F , 1/(8

√
4T/δ)), the total number of distinct f̂ is upper bounded by N (F , 1/(8

√
4T/δ)).

Since there are at most

6912dimE(F , δ/(16T 2)) log(16(H + 1)2T 2/δ) lnT ln(4N (F , δ/(566T ))/δ)

distinct elements in Ẑ , while each of them belongs to C(S ×A, 1/(8
√

4T/δ)) and |Ẑ| ≤ 4T/δ,
the total number of distinct Ẑ is upper bounded by(
N (S ×A, 1/(8

√
4T/δ)) · 4T/δ

)6912dimE(F ,δ/(16T 2)) log(16(H+1)2T 2/δ) lnT ln(4N (F ,δ/(566T ))/δ)

.

4.4.2 Analysis of the Algorithm
We are now ready to prove the regret bound of Algorithm 7. The next lemma establishes a bound
on the estimate of a single backup.
Lemma 4.4.8 (Single Step Optimization Error). Consider a fixed k ∈ [K]. Let

Zk = {(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H]

as defined in Line 5 in Algorithm 7. For any V : S → [0, H], define

DkV :=
{(
sτh′ , a

τ
h′ , r

τ
h′ + V (sτh′+1)

)}
(τ,h′)∈[k−1]×[H]
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and
f̂V := arg min

f∈F
‖f‖2

DkV
.

For any V : S → [0, H] and δ ∈ (0, 1), there is an event EV,δ which holds with probability at
least 1− δ, such that conditioned on EV,δ, for any V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T , we
have∥∥∥∥∥f̂V ′(·, ·)−R(·, ·)−

∑
s′∈S

P (s′ | ·, ·)V ′(s′)

∥∥∥∥∥
Zk

≤ c′ ·
(
H
√

log(2/δ) + logN (F , 1/T )
)

for some absolute constant c′ > 0.

Proof. In our proof, we consider a fixed V : S → [0, H], and define

fV (·, ·) := R(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V (s′).

For any f ∈ F , we consider
∑

(τ,h)∈[k−1]×[H] ξ
τ
h(f) where

ξτh(f) := 2(f(sτh, a
τ
h)− fV (sτh, a

τ
h)) · (fV (sτh, a

τ
h)− rτh − V (sτh+1)).

For any (τ, h) ∈ [k − 1]× [H], define Fτh as the filtration induced by the sequence

{(sth′ , ath′)}(t,h′)∈[τ−1]×[H] ∪ {(sτ1, aτ1), (sτ2, a
τ
2), . . . , (sτh−1, a

τ
h−1)}.

Then E [ξτh(f) | Fτh] = 0 and

|ξτh(f)| ≤ 2(H + 1) |f(sτh, a
τ
h)− fV (sτh, a

τ
h)| .

By Azuma-Hoeffding inequality, we have

Pr

∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≥ ε

 ≤ 2 exp

(
− ε2

8(H + 1)2‖f − fV ‖2
Zk

)
.

Let

ε =

(
8(H + 1)2 log

(
2N (F , 1/T )

δ

)
· ‖f − fV ‖2

Zk

)1/2

≤ 4(H + 1)‖f − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T ).

We have, with probability at least 1− δ, for all f ∈ C(F , 1/T ),∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≤ 4(H + 1)‖f − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T ).

We define the above event to be EV,δ, and we condition on this event for the rest of the proof.
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For all f ∈ F , there exists g ∈ C(F , 1/T ), such that ‖f − g‖∞ ≤ 1/T , and we have∣∣∣∣∣∣
∑

(τ,h)∈[k−1]×[H]

ξτh(f)

∣∣∣∣∣∣ ≤
∣∣∣∣∣∣

∑
(τ,h)∈[k−1]×[H]

ξτh(g)

∣∣∣∣∣∣+ 2(H + 1)

≤ 4(H + 1)‖g − fV ‖Zk ·
√

log(2/δ) + logN (F , 1/T ) + 2(H + 1)

≤ 4(H + 1)(‖f − fV ‖Zk + 1) ·
√

log(2/δ) + logN (F , 1/T ) + 2(H + 1).

Consider V ′ : S → [0, H] with ‖V ′ − V ‖∞ ≤ 1/T . We have

‖fV ′ − fV ‖∞ ≤ ‖V ′ − V ‖∞ ≤ 1/T.

For any f ∈ F ,

‖f‖2
Dk
V ′
− ‖fV ′‖2

Dk
V ′

=‖f − fV ′‖2
Zk + 2

∑
(sτ
h′ ,a

τ
h′ )∈Z

k

(f(sτh′ , a
τ
h′)− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1)).

For the second term, we have,

2
∑

(sτ
h′ ,a

τ
h′ )∈Z

k

(f(sτh′ , a
τ
h′)− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1))

≥2
∑

(sτ
h′ ,a

τ
h′ )∈Z

k

(f(sτh′ , a
τ
h′)− fV (sτh′ , a

τ
h′)) · (fV (sτh′ , a

τ
h′)− rτh′ − V (sτh′+1))− 4(H + 1) · ‖V ′ − V ‖∞ · |Zk|

=
∑

(τ,h)∈[k−1]×[H]

ξτh(f)− 4(H + 1) · ‖V ′ − V ‖∞ · |Zk|

≥ − 4(H + 1)(‖f − fV ‖Zk + 1) ·
√

log(2/δ) + logN (F , 1/T )− 2(H + 1)− 4(H + 1) · ‖V ′ − V ‖∞ · |Zk|
≥ − 4(H + 1)(‖f − fV ′‖Zk + 2) ·

√
log(2/δ) + logN (F , 1/T )− 6(H + 1).

Recall that f̂V ′ = arg minf∈F ‖f‖2
Dk
V ′

. We have ‖f̂V ′‖2
Dk
V ′
− ‖fV ′‖2

Dk
V ′
≤ 0, which implies,

0 ≥ ‖f̂V ′‖2
Dk
V ′
− ‖fV ′‖2

Dk
V ′

= ‖f̂V ′ − fV ′‖2
Zk + 2

∑
(sτ
h′ ,a

τ
h′ )∈Z

k

(f̂(sτh′ , a
τ
h′)− fV ′(sτh′ , aτh′)) · (fV ′(sτh′ , aτh′)− rτh′ − V ′(sτh′+1))

≥ ‖f̂V ′ − fV ′‖2
Zk − 4(H + 1)(‖f̂V ′ − fV ′‖Zk + 2) ·

√
log(2/δ) + logN (F , 1/T )− 6(H + 1).

Solving the above inequality, we have,

‖f̂V ′ − fV ′‖Zk ≤ c′ ·
(
H ·

√
log δ−1 + logN (F , 1/T )

)
for an absolute constant c′ > 0.
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Lemma 4.4.9 (Confidence Region). In Algorithm 7, let Fkh be a confidence region defined as

Fkh =
{
f ∈ F | ‖f − fkh‖2

Zk ≤ β(F , δ)
}
.

Then with probability at least 1− δ/8, for all k, h ∈ [K]× [H],

R(·, ·) +
∑
s′∈S

P (s′ | ·, ·)V k
h+1(s′) ∈ Fkh ,

provided

β(F , δ) ≥ c′ ·
(
H
√

log(T/δ) + log(|W|) + logN (F , 1/T )
)2

for some absolute constant c′ > 0. HereW is given as in Propostion 4.4.7.

Proof. For all (k, h) ∈ [K]× [H], the bonus function bkh(·, ·) ∈ W . Note that

Q := {min {f(·, ·) + w(·, ·), H} | w ∈ W , f ∈ C(F , 1/T )} ∪ {0}

is a (1/T )-cover of

Qk
h+1(·, ·) =

{
min

{
fkh+1(·, ·) + bkh+1(·, ·), H

}
h < H

0 h = H
.

I.e., there exists q ∈ Q such that ‖q −Qk
h+1‖∞ ≤ 1/T . This implies

V :=

{
max
a∈A

q(·, a) | q ∈ Q
}

is a (1/T )-cover of V k
h+1 with log(|V|) ≤ log |W| + logN (F , 1/T ) + 1. For each V ∈ V , let

EV,δ/(8|V|T ) be the event defined in Lemma 4.4.8. By Lemma 4.4.8, we have Pr
[⋂

V ∈V EV,δ/(8|V|T )

]
≥

1− δ/(8T ). We condition on
⋂
V ∈V EV,δ/(8|V|T ) in the rest part of the proof.

Recall that fkh is the solution of the optimization problem in Line 8 of Algorithm 7, i.e.,
fkh = argminf∈F ‖f‖2

Dkh
. Let V ∈ V such that ‖V − V k

h+1‖∞ ≤ 1/T . Thus, by Lemma 4.4.8, we
have∥∥∥∥∥fkh (·, ·)−

(
R(·, ·) +

∑
s′∈S

P (s′ | ·, ·)V k
h+1(s′)

)∥∥∥∥∥
Zk

≤ c′ ·
(
H
√

log(T/δ) + logN (F , 1/T ) + log |W|
)

for some absolute constant c′. Therefore, by a union bound, for all (k, h) ∈ [K]× [H], we have
fkh (·, ·)−

(
R(·, ·) +

∑
s′∈S P (s′ | ·, ·)V k

h+1(s′)
)
∈ Fkh with probability at least 1− δ/8.

The above lemma guarantees that, with high probability, R(·, ·) +
∑

s′∈S P (s′ | ·, ·)V k
h+1(·, ·)

lies in the confidence region. With this, it is guaranteed that
{
Qk
h

}
(h,k)∈[H]×[K]

are all optimistic,
with high probability. This is formally presented in the next lemma.
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Lemma 4.4.10. With probability at least 1−δ/4, for all (k, h) ∈ [K]×[H], for all (s, a) ∈ S×A,

Q∗h(s, a) ≤ Qk
h(s, a) ≤ R(s, a) +

∑
s′∈S

P (s′|s, a)V k
h+1(s′) + 2bkh(s, a).

Proof. For each (k, h) ∈ [K]× [H], define

Fkh =
{
f ∈ F | ‖f − fkh‖2

Zk ≤ β(F , δ)
}
.

Let E be the event that for all (k, h) ∈ [K] × [H], R(·, ·) +
∑

s′∈S P (s′ | ·, ·)V k
h+1(s′) ∈ Fkh .

By Lemma 4.4.9, Pr[E ] ≥ 1 − δ/8. Let E ′ be the event that for all (k, h) ∈ [K] × [H] and
(s, a) ∈ S × A, bkh(s, a) ≥ w(Fkh , s, a). By Proposition 4.4.7 and union bound, E ′ holds failure
probability at most δ/8. In the rest part of the proof we condition on E and E ′.

Note that
max
f∈Fkh

|f(s, a)− fkh (s, a)| ≤ w(Fkh , s, a) ≤ bkh(s, a).

Since
R(·, ·) +

∑
s′∈S

P (s′ | ·, ·)V k
h+1(s′) ∈ Fkh ,

for any (s, a) ∈ S ×A we have∣∣∣∣∣R(s, a) +
∑
s′∈S

P (s′ | s, a)V k
h+1(s′)− fkh (s, a)

∣∣∣∣∣ ≤ bkh(s, a).

Hence,

Qk
h(s, a) ≤ fkh (s, a) + bkh(s, a) ≤ R(s, a) +

∑
s′∈S

P (s′|s, a)V k
h+1(s′) + 2bkh(s, a).

Now we prove Q∗h(s, a) ≤ Qk
h(s, a) by induction on h. When h = H + 1, the desired

inequality clearly holds. Now we assume Q∗h+1(·, ·) ≤ Qk
h+1(·, ·) for some h ∈ [H]. Clearly we

have V ∗h+1(·) ≤ V k
h+1(·). Therefore, for all (s, a) ∈ S ×A,

Q∗h(s, a) = R(s, a) +
∑
s′∈S

P (s′|s, a)V ∗h+1(s′)

≤ min

{
H,R(s, a) +

∑
s′∈S

P (s′|s, a)V k
h+1(s′)

}
≤ min

{
H, fkh (s, a) + bkh(s, a)

}
= Qk

h(s, a).

The next lemma upper bounds the regret of the algorithm by the sum of bkh(·, ·).
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Lemma 4.4.11. With probability at least 1− δ/2,

Reg(K) ≤ 2
K∑
k=1

H∑
h=1

bkh
(
skh, a

k
h

)
+ 4H

√
KH · log(8/δ).

Proof. In our proof, for any (k, h) ∈ [K]× [H − 1] define

ξkh =
∑
s′∈S

P (s′ | skh, akh)
(
V k
h+1(s′)− V πk

h+1(s′)
)
−
(
V k
h+1(skh+1)− V πk

h+1(skh+1)
)

and define Fkh as the filtration induced by the sequence

{(sτh′ , aτh′)}(τ,h′)∈[k−1]×[H] ∪ {(sk1, ak1), (sk2, a
k
2), . . . , (skh, a

k
h)}.

Then
E
[
ξkh | Fkh

]
= 0 and |ξkh| ≤ 2H.

By Azuma-Hoeffding inequality, with probability at least 1− δ/4,

K∑
k=1

H−1∑
h=1

ξkh ≤ 4H
√
KH · log(8/δ).

We condition on the above event in the rest of the proof. We also condition on the event defined
in Lemma 4.4.10 which holds with probability 1− δ/4.

Recall that

Reg(K) =
K∑
k=1

(
V ∗1 (sk1)− V πk

1 (sk1)
)
≤

K∑
k=1

V k
1 (sk1)− V πk

1 (sk1).

We have

Reg(K) ≤
K∑
k=1

(
R(sk1, a

k
1) +

∑
s′∈S

P (s′ | sk1, ak1)V k
2 (s′) + 2bk1(sk1, a

k
1)−R(sk1, a

k
1)−

∑
s′∈S

P (s′ | sk1, ak1)V πk
2 (s′)

)

=
K∑
k=1

∑
s′∈S

P (s′ | sk1, ak1)(V k
2 (s′)− V πk

2 (s′)) + 2bk1(sk1, a
k
1)

=
K∑
k=1

V k
2 (sk2)− V πk

2 (sk2) + ξk1 + 2bk1(sk1, a
k
1)

≤
K∑
k=1

V k
3 (sk3)− V πk

3 (sk3) + ξk1 + ξk2 + 2bk1(sk1, a
k
1) + 2bk2(sk2, a

k
2)

≤
K∑
k=1

H−1∑
h=1

ξkh +
K∑
k=1

H∑
h=1

2bkh(s
k
h, a

k
h).
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Therefore,

Reg(K) ≤ 2
K∑
k=1

H∑
h=1

bkh(s
k
h, a

k
h) + 4H

√
KH · log(8/δ).

It remains to bound
∑K

k=1

∑H
h=1 b

k
h(s

k
h, a

k
h), for which we will exploit fact thatF has bounded

eluder dimension.
Lemma 4.4.12. With probability at least 1− δ/4, for any ε > 0,

K∑
k=1

H∑
h=1

I
(
bkh(s

k
h, a

k
h

)
> ε
)
≤
(
cβ(F , δ)

ε2
+H

)
· dimE(F , ε)

for some absolute constant c > 0. Here β(F , δ) is as defined in (4.4).

Proof. Let E be the event that or all (k, h) ∈ [K]× [H],

bkh(·, ·) ≤ w(Fkh, ·, ·)

where
Fkh = {f ∈ F : ‖f − fkh‖2

Zk ≤ 9β + 12}.

By Proposition 4.4.7, E holds with probability at least 1 − δ/4. In the rest of the proof, we
condition on E .

Let L = {(skh, akh) | bkh(skh, akh) > ε} with |L| = L. We show that there exists (skh, a
k
h) ∈

L such that (skh, a
k
h) is ε-dependent on at least L/ dimE(F , ε) − H disjoint subsequences in

Zk ∩ L. We demonstrate this by using the following procedure. Let L1,L2, . . . ,LL/dimE(F ,ε)−1

be L/ dimE(F , ε)− 1 disjoint subsequences of L which are initially empty. We consider

{(sk1, ak1), (sk2, a
k
2), . . . , (skH , a

k
H)} ∩ L

for each k ∈ [K] sequentially. For each k ∈ [K], for each z ∈ {(sk1, ak1), (sk2, a
k
2), . . . , (skH , a

k
H)}∩

L, we find j ∈ [L/ dimE(F , ε) − 1] such that z is ε-independent of Lj and then add z into Lj .
By the definition of ε-independence, |Lj| ≤ dimE(F , ε) for all j and thus we will eventually
find some (skh, a

k
h) ∈ L such that (skh, a

k
h) is ε-dependent on each of L1,L2, . . . ,LL/dimE(F ,ε)−1.

Among L1,L2, . . . ,LL/dimE(F ,ε)−1, there are at most H − 1 of them that contain an element in

{(sk1, ak1), (sk2, a
k
2), . . . , (skH , a

k
H)} ∩ L,

and all other subsequences only contain elements in Zk ∩ L. Therefore, (skh, a
k
h) is ε-dependent

on at least L/ dimE(F , ε)−H disjoint subsequences in Zk ∩ L.
On the other hand, since (skh, a

k
h) ∈ L, we have bkh(s

k
h, a

k
h) > ε, which implies there exists

f, f ′ ∈ F with ‖f − fkh‖2
Zk ≤ 9β + 12 and ‖f ′ − fkh‖2

Zk ≤ 9β + 12 such that f(z)− f ′(z) > ε.
By triangle inequality, we have ‖f − f ′‖2

Zk ≤ 36β + 48. On the other hand, since (skh, a
k
h) is

ε-dependent on at least L/ dimE(F , ε)−H disjoint subsequences in Zk ∩ L, we have

(L/ dimE(F , ε)−H)ε2 ≤ ‖f − f‖2
Zk ≤ 36β + 48,

81



which implies

L ≤
(

36β + 48

ε2
+H

)
dimE(F , ε).

Lastly, we apply the above lemma to bound the overall regret.
Lemma 4.4.13. With probability at least 1− δ/4,

K∑
k=1

H∑
1

bkh(s
k
h, a

k
h

)
≤ 1 + 4H2dimE(F , 1/T ) +

√
c · dimE(F , 1/T ) · T · β(F , δ),

for some absolute constant c > 0. Here β(F , δ) is as defined in (4.4).

Proof. In the proof we condition on the event defined in Lemma 4.4.12. We define wkh :=
bkh
(
skh, a

k
h

)
. Let w1 ≥ w2 ≥ . . . ≥ wT be a permutation of {wkh}(k,h)∈[K]×[H]. By the event

defined in Lemma 4.4.12, for any wt ≥ 1/T , we have

t ≤
(
cβ(F , δ)
w2
t

+H

)
dimE(F , wt) ≤

(
cβ(F , δ)
w2
t

+H

)
dimE(F , 1/T ),

which implies

wt ≤
(

t

dimE(F , 1/T )
−H

)−1/2

·
√
cβ(F , δ).

Moreover, we have wt ≤ 4H . Therefore,

T∑
t=1

wt ≤1 + 4H2 dimE(F , 1/T ) +
∑

H dimE(F ,1/T )<t≤T

(
t

dimE(F , 1/T )
−H

)−1/2

·
√
cβ(F , δ)

≤1 + 4H2 dimE(F , 1/T ) + 2
√
c · dimE(F , 1/T ) · T · β(F , δ).

We are now ready to prove our main theorem.

Proof of Theorem 8.3.1. By Lemma 4.4.11 and Lemma 4.4.13, with probability at least 1− δ,

Reg(K) ≤ min

{
KH,

K∑
k=1

H∑
h=1

2bkh
(
skh, a

k
h

)
+ 4H

√
KH · log(8/δ)

}
≤ c ·min

{
KH,

(
dimE(F , 1/T ) ·H2 +

√
dimE(F , 1/T ) · T · β(F , δ) +H

√
KH · log δ−1

)}
for some absolute constants c > 0. Substituting the value of β(F , δ) completes the proof.
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Chapter 5

RL with Large State Spaces: Lower
Bounds in the Online Setting

5.1 Introduction

Modern reinforcement learning (RL) problems are often challenging due to the huge state space.
To tackle this challenge, function approximation schemes are often employed to provide a com-
pact representation, so that reinforcement learning can generalize across states. Empirically,
combining various RL function approximation algorithms with neural networks for feature ex-
traction has lead to tremendous successes on various tasks [58, 74]. A major problem, however,
is that these methods often require a large amount of samples to learn a good policy. For exam-
ple, deep Q-network requires millions of samples to solve certain Atari games [58]. Here, one
may wonder if there are fundamental statistical limitations on such methods, and, if so, under
what conditions it would be possible to efficiently learn a good policy?

In the supervised learning context, it is well-known that empirical risk minimization is a
statistically efficient method when using a low-complexity hypothesis space [75], e.g. a hypoth-
esis space with bounded VC dimension. For example, polynomial number of samples suffice for
learning a near-optimal d-dimensional linear classifier, even in the agnostic setting. In contrast, in
the more challenging RL setting, we seek to understand if efficient learning is possible (say from
a sample complexity perspective) when we have access to an accurate (and compact) parametric
representation — e.g. our policy class contains a near-optimal policy or our hypothesis class
accurately approximates the optimal value function. In particular, in this section, we explore if
a good representation is sufficient for sample-efficient reinforcement learning. This question has
largely been studied only with respect to approximation error in the more classical approximate
dynamic programming literature, where it is known that algorithms are stable to certain worst-
case approximation errors. With regards to sample efficiency, this question is largely unexplored,
where the extant body of literature mainly focuses on conditions which are sufficient for efficient
reinforcement learning though there is little understanding of what are necessary conditions for
efficient reinforcement learning.

Many recent works have provided polynomial upper bounds under various sufficient condi-
tions (including the one in Chapter 4), and in what follows we list a few examples (other than
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the one that appears in Chapter 4). For value-based learning, the work of [98] showed that for
deterministic systems, if the optimal Q-function can be perfectly predicted by linear functions of
the given features, then the agent can learn the optimal policy exactly with polynomial number
of samples. Recent work [38] further showed that if certain complexity measure called Bellman
rank is bounded, then the agent can learn a near-optimal policy efficiently. For policy-based
learning, [3] gave polynomial upper bounds which depend on a parameter that measures the
difference between the initial distribution and the distribution induced by the optimal policy.

Our Results. In this section, we give, perhaps surprisingly, strong negative results to this ques-
tion. The main results are exponential lower bounds in terms of planning horizon H for value-
based, model-based, and policy-based algorithms with given good representations. Notably, the
requirements on the representation that suffice for sample efficient RL are even more stringent
than the more traditional approximation viewpoint. Here we briefly summarize our hardness
results.

1. For value-based learning, we show even if Q-functions of all policies can be approximated

by linear functions of the given representation with approximation error δ = Ω
(√

H
d

)
where d is the dimension of the representation and H is the planning horizon, then the
agent still needs to sample exponential number of trajectories to find a near-optimal policy.

2. We show even if optimal policy can be perfectly predicted by a linear function of the given
representation with a strictly positive margin, the agent still requires exponential number
of trajectories to find a near-optimal policy.

These lower bounds hold even in deterministic systems and even if the agent knows the transition
model (i.e., in the Known Transition model). Note these negative results apply to the case where
the Q-function, the model, or the optimal policy can be predicted well by a linear function of the
given representation. Our results highlight that the requirements on the representation that suffice
for sample efficient RL are significantly more stringent than the more traditional approximation
viewpoint and those in supervised learning.

Furthermore, our work implies several interesting exponential separations on the sample
complexity between: 1) value-based learning with perfect representation and value-based learn-
ing with a good-but-not-perfect representation, 2) value-based learning and policy-based learn-
ing, 3) policy-based learning and supervised learning and 4) reinforcement learning and imitation
learning. More details will be given in Section 5.3.

5.2 Main Results
In this section we formally present our lower bounds. To streamline our analysis, in this chapter,
for each h ∈ [H], we use Sh ⊆ S to denote the set of states at level h, and we assume Sh do not
intersect with each other. We also assume

∑H
h=1 rh ∈ [0, 1] almost surely.

Before stating our results, we first list an important assumption, the optimality gap assump-
tion, which is widely used in reinforcement learning and bandit literature. To state the assump-
tion, we first define the function gap : S ×A → R as gap(s, a) = maxa′∈AQ

∗
h(s, a

′)−Q∗h(s, a)
suppose s ∈ Sh. Now we formally state the assumption.
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Assumption 5.2.1 (Optimality Gap). There exists ρ > 0 such that ρ ≤ gap(s, a) for all (s, a) ∈
S ×A with gap(s, a) > 0.

Here, ρ is the smallest reward-to-go difference between the best set of actions and the rest.
Recently, [26] gave a provably efficient Q-learning algorithm based on this assumption, and [78]
showed that with this condition, the agent only incurs logarithmic regret in the tabular setting.

5.2.1 Lower Bound for Value-Based Learning
We first present our lower bound for value-based learning. A common assumption is that the
Q-function can be predicted well by a linear function of the given features (representation).
Formally, the agent is given a feature extractor φ : S × A → Rd which can be hand-crafted or a
pre-trained neural network that transforms a state-action pair to a d-dimensional embedding. The
following assumption states that the given feature extractor can be used to predict the Q-function
with approximation error at most δ using a linear function.
Assumption 5.2.2. There exists δ > 0 and θ1, θ2, . . . , θH ∈ Rd such that for any h ∈ [H] and
any (s, a) ∈ Sh ×A, |Q∗h (s, a)− 〈θh, φ (s, a)〉| ≤ δ.

Here δ is the approximation error, which indicates the quality of the representation. If δ = 0,
then Q-function can be perfectly predicted by a linear function of φ (·, ·). In general, δ becomes
smaller as we increase the dimension of φ, since larger dimension usually has more expressive
power. When the feature extractor is strong enough, previous papers [16] assume that linear
functions of φ can approximate the Q-function of any policy.
Assumption 5.2.3. There exists δ > 0, such that for any h ∈ [H] and any policy π, there exists
θπh ∈ Rd such that for any (s, a) ∈ Sh ×A, |Qπ

h (s, a)− 〈θh, φ (s, a)〉| ≤ δ.

In the reinforcement learning literature, Assumption 5.2.3 is crucial in proving polynomial
sample complexity guarantee for value iteration type of algorithms [16].

The following theorem shows when δ = Ω
(√

H
d

)
, the agent needs to sample exponential

number of trajectories to find a near-optimal policy.
Theorem 5.2.1 (Exponential Lower Bound for Value-Based Learning). There exists a family
of MDPs with |A| = 2 and a feature extractor φ that satisfy Assumption 5.2.3, such that any
algorithm that returns a 1/2-optimal policy with probability 0.9 needs to sample

Ω
(
min{|S|, 2H , exp(dδ2/16)}

)
trajectories.

Note this lower bound also applies to MDPs that satisfy Assumption 5.2.2, since Assump-
tion 5.2.3 is strictly stronger. We would like to emphasize that since linear functions is a subclass
of more complicated function classes, e.g., neural networks, our lower bound also holds for these
function classes. Moreover, in many scenarios, the feature extractor φ is the last layer of a neural
network. Modern neural networks are often over-parameterized, which makes d large. In this
case, d is much larger than H . Thus, our lower bound holds even if the representation has small
approximation error. Furthermore, the assumption that |A| = 2 is only for simplicity. Our lower
bound can be easily generalized to the case that |A| > 2, in which case the sample complexity
lower bound is Ω

(
min{|S|, |A|H , exp(dδ2/16)}

)
.
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5.2.2 Lower Bound for Policy-Based Learning
Next we present our lower bound for policy-based learning. This class of methods use function
approximation on the policy and use optimization techniques, e.g., policy gradient, to find the
optimal policy. In this section, we focus on linear policies on top of a given representation. A
linear policy π is a policy of the form π(sh) = arg maxa∈A 〈θh, φ(sh, a)〉 where sh ∈ Sh, φ (·, ·)
is a given feature extractor and θh ∈ Rd is the linear coefficient. Note that applying policy
gradient on softmax parameterization of the policy is indeed trying to find the optimal policy
among linear policies.

Similar to value-based learning, a natural assumption for policy-based learning is that the
optimal policy is realizable, i.e., the optimal policy is linear.
Assumption 5.2.4. For any h ∈ [H], there exists θh ∈ Rd that satisfies for any s ∈ Sh, we have
π∗ (s) ∈ argmaxa 〈θh, φ (s, a)〉 .

Here we discuss another assumption. For learning a linear classifier in the supervised learning
setting, one can reduce the sample complexity significantly if the optimal linear classifier has a
margin.
Assumption 5.2.5. We assume φ (s, a) ∈ Rd satisfies ‖φ(s, a)‖2 = 1 for any (s, a) ∈ S × A.
For any h ∈ [H], there exists θh ∈ Rd with ‖θh‖2 = 1 and4 > 0 such that for any s ∈ Sh, there
is a unique optimal action π∗(s), and for any a 6= π∗(s), 〈θh, φ (s, π∗(s))〉 − 〈θh, φ (s, a)〉 ≥ 4.

Here we restrict the linear coefficients and features to have unit norm for normalization. Note
that Assumption 5.2.5 is strictly stronger than Assumption 5.2.4. Now we present our result for
linear policy.
Theorem 5.2.2 (Exponential Lower Bound for Policy-based Learning). There exists an absolute
constant 40, such that for any 4 ≤ 40, there exists a family of MDPs with |A| = 2 and a
feature extractor φ that satisfy Assumption 5.2.1 with ρ = 1

2 min{H,d} and Assumption 5.2.5, such
that any algorithm that returns a 1/4-optimal policy with probability at least 0.9 needs to sample
Ω
(
min{2H , 2d}

)
trajectories.

Again, our lower bound can be easily generalized to the case that |A| > 2.
Compared with Theorem 5.2.1, Theorem 5.2.2 is even more pessimistic, in the sense that

even with perfect representation with benign properties (gap and margin), the agent still needs to
sample exponential number of samples. It also suggests that policy-based learning could be very
different from supervised learning.

5.2.3 Proof Ideas
The Binary Tree Hard Instance. All our lower bound are proved based on reductions from
the binary tree instance. In this instance, both the transition P and the rewardR are deterministic.
There are H levels of states, which form a full binary tree of depth H . There are 2h−1 states in
level h, and thus 2H − 1 states in total. Among all the 2H−1 states in level H , there is only one
state with reward R = 1, and for all other states in the MDP, the corresponding reward value
R = 0. Intuitively, to find a 1/2-optimal policy for such MDPs, the agent must enumerate all
possible states in level H to find the state with reward R = 1. Doing so intrinsically induces a
sample complexity of Ω(2H). This intuition is formalized in Theorem 5.4.1 using Yao’s minimax
principle [104].
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Lower Bound for Value-Based Learning We now show how to construct a set of features
so that Assumption 5.2.3 holds. Our main idea is to the utilize the following fact regarding
the identity matrix: ε-rank(I2H ) ≤ O(H/ε2). Here for a matrix A ∈ Rn×n, its ε-rank (a.k.a
approximate rank) is defined to be min{rank(B) : B ∈ Rn×n, ‖A − B‖∞ ≤ ε}, where we use
‖·‖∞ to denote the entry-wise `∞ norm of a matrix. The upper bound ε-rank(In) ≤ O(log n/ε2)
was first proved in [5] using the Johnson-Lindenstrauss Lemma [41], and we also provide a proof
in Lemma 5.4.2.

This fact can be alternatively stated as follow: there exists Φ ∈ R2H×O(H/ε2) such that
‖I2H − ΦΦ>‖∞ ≤ ε. We interpret each row of Φ as the feature of a state in the binary tree.
By construction of Φ, now features of states in the binary tree have a nice property that (i) each
feature vector has approximately unit norm and (ii) different feature vector are nearly orthogonal.
Using this set of features, we can now show that Assumption 5.2.3 hold. Here we prove Assump-
tion 5.2.3 holds as an example and prove other assumptions also hold in the appendix. To prove
Assumption 5.2.3, we note that in the binary tree hard instance, for each level h, only a single
state satisfies Q∗ = 1, and all other states satisfy Q∗ = 0. We simply take θh to be the feature of
the state with Q∗ = 1. Since all feature vectors are nearly orthogonal, Assumption 5.2.3 holds.

Since the above fact regarding the ε-rank of the identity matrix can be proved by simply
taking each row of Φ to be a random unit vector, our lower bound reveals another intriguing
(yet pessimistic) aspect of Assumption 5.2.3: for the binary tree instance, almost all feature
extractors induce a hard MDP instance. This again suggests that a good representation itself may
not necessarily lead to efficient RL and additional assumptions (e.g. on the reward distribution)
could be crucial.

Lower Bound for Policy-Based Learning. It is straightfoward to construct a set of feature
vectors for the binary tree instance so that Assumption 5.2.4 holds, even if d = 1. We set
φ(s, a) to be +1 if a = a1 and −1 if a = a2. For each level h, for the unique state s in level
h with Q∗ = 1, we set θh to be 1 if π∗(s) = a1 and −1 if π∗(s) = a2. With this construction,
Assumption 5.2.4 holds.

To prove that the lower bound under Assumption 5.2.5, we use a new reward function for
states in level H in the binary tree instance above so that there exists a unique optimal action for
each state in the MDP. See Figure 5.2 for an example with H = 3 levels of states. Another nice
property of the new reward function is that for all states s we always have π∗(s) = a1. Now,
we define 2H−1 different new MDPs as follow: for each state in level H , we change its original
reward (defined in Figure 5.2) to 1. An exponential sample complexity lower bound for these
MDPs can be proved using the same argument as the original binary tree hard instance, and now
we show this set of MDPs satisfy Assumption 5.2.5. We first show in Lemma 5.4.4 that there
exists a set N ⊆ Sd−1 with |N | = (1/4)Ω(d), so that for each p ∈ N , there exists a hyperplane
L that separates p andN \ {p}, and all vectors inN have distance at least4 to L. Equivalently,
for each p ∈ N ,we can always define a linear function fp so that fp(p) ≥ 4 and fp(q) ≤ −4 for
all q ∈ N \ {p}. This can be proved using standard lower bounds on the size of ε-nets. Now we
simply use vectors in N as features of states. By construction of the reward function, for each
level h, there could only be two possible cases for the optimal policy π∗. I.e., either π∗(s) = a1

for all states in level h, or π∗(s) = a2 for a unique state s and π∗(s′) = a1 for all s 6= s′. In both
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cases, we can easily define a linear function with margin4 to implement the optimal policy π∗,
and thus Assumption 5.2.5 holds. Notice that in this proof, we critically relies on d = Θ(H), so
that we can utilize the curse of dimensionality to construct a large set of vectors as features.

5.3 Separations

Perfect Representation vs. Good-But-Not-Perfect Representation. For value-based learn-
ing in deterministic systems, [98] showed polynomial sample complexity upper bound when the
representation can perfectly predict the Q-function. In contrast, if the representation is only able
to approximate the Q-function, then the agent requires exponential number of trajectories. This
exponential separation demonstrates a provable exponential benefit of better representation.

Value-Based Learning vs. Policy-Based Learning. Note that if the optimalQ-function can be
perfectly predicted by the provided representation, then the optimal policy can also be perfectly
predicted using the same representation. Since [98] showed polynomial sample complexity upper
bound when the representation can perfectly predict the Q-function, our lower bound on policy-
based learning, which applies to perfect representations, thus demonstrates that the ability of
predicting the Q-function is much stronger than that of predicting the optimal policy.

Supervised Learning vs. Reinforcement Learning. For policy-based learning, if the planning
horizon H = 1, the problem becomes learning a linear classifier, for which there are polynomial
sample complexity upper bounds. For policy-based learning, the agent needs to learn H linear
classifiers sequentially. Our lower bound on policy-based learning shows the sample complexity
dependency on H is exponential.

Imitation Learning vs. Reinforcement Learning. In imitation learning (IL), the agent can
observe trajectories induced by the optimal policy (expert). If the optimal policy is linear in the
given representation, it can be shown that the simple behavior cloning algorithm only requires
polynomial number of samples to find a near-optimal policy [72]. Our Theorem 5.2.2 shows
if the agent cannot observe expert’s behavior, then it requires exponential number of samples.
Therefore, our lower bound shows there is an exponential separation between policy-based RL
and IL when function approximation is used.

5.4 Proofs of Lower Bounds

In this section we present the proof of our lower bounds. Throughout this section, for the Q-
function Qπ

h and Q∗h and the value function V π
h and V ∗h , we may omit h from the subscript when

it is clear from the context.
We first introduce the INDEX-QUERY problem, which will be useful in our lower bound

arguments.
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Definition 5.4.1 (INDEX-QUERY). In the INDQn problem, there is an underlying integer i∗ ∈
[n]. The algorithm sequentially (and adaptively) outputs guesses i ∈ [n] and queries whether
i = i∗. The goal is to output i∗, using as few queries as possible.
Definition 5.4.2 (δ-correct algorithms). For a real number δ ∈ (0, 1), we say a randomized
algorithm A is δ-correct for INDQn, if for any underlying integer i∗ ∈ [n], with probability at
least 1− δ, A outputs i∗.

The following theorem states the query complexity of INDQn for 0.1-correct algorithms.
Theorem 5.4.1. Any 0.1-correct algorithm A for INDQn requires at least 0.9n queries in the
worst case.

Proof. The proof is a straightforward application of Yao’s minimax principle [104]. We provide
the full proof for completeness.

Consider an input distribution where i∗ is drawn uniformly at random from [n]. Suppose there
is a 0.1-correct algorithm for INDQn with worst-case query complexity T such that T < 0.9n.
By averaging, there is a deterministic algorithm A′ with worst-case query complexity T , such
that

Pr
i∼[n]

[A′ correctly outputs i when i∗ = i] ≥ 0.9.

We may assume that the sequence of queries made by A′ is fixed. This is because (i) A′ is
deterministic and (ii) before A′ correctly guesses i∗, all responses that A′ receives are the same
(i.e., all guesses are incorrect). We use S = {s1, s2, . . . , sm} to denote the sequence of queries
made by A′. Notice that m is the worst-case query complexity of A′. Suppose m < 0.9n, there
exist 0.1n distinct i ∈ [n] such that A′ will never guess i, and will be incorrect if i∗ equals i,
which implies

Pr
i∼[n]

[A′ correctly outputs i when i∗ = i] < 0.9.

5.4.1 Proof of Lower Bound for Value-Based Learning

In this section we prove Theorem 5.2.1. We need the following existential result.
Lemma 5.4.2. For any n > 2, there exists a set of vectors P = {p1, p2, . . . , pn} ⊂ Rd with
d = d8 lnn/ε2e such that

1. ‖pi‖2 = 1 for all i ∈ [n];
2. |〈pi, pj〉| ≤ ε for any i, j ∈ [n] with i 6= j.
In order to prove Lemma 5.4.2, we need the following tail inequality for random unit vectors.

Lemma 5.4.3 (Lemma 2.2 in [19]). For a random unit vector u in Rd and β > 1, we have

Pr
[
u2

1 ≥ β/d
]
≤ exp((1 + ln β − β)/2).

In particular, when β ≥ 6,we have

Pr
[
u2

1 > β/d
]
≤ exp(−β/4).
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Proof of Lemma 5.4.2. Let Q = {q1, q2, . . . , qn} be a set of n independent random unit vectors
in Rd with d = d8 lnn/ε2e. We will prove that with probability at least 1/2, Q satisfies the two
desired properties as stated in Lemma 5.4.2. This implies the existence of such set P .

It is clear that ‖qi‖2 = 1 for all i ∈ [n], since each qi is drawn from the unit sphere. We now
prove that for any i, j ∈ [n] with i 6= j, with probability at least 1 − 1

n2 , we have |〈qi, qj〉| ≤ ε.
Notice that this is sufficient to prove the lemma, since by a union bound over all the

(
n
2

)
=

n(n − 1)/2 possible pairs of (i, j), this implies that Q satisfies the two desired properties with
probability at least 1/2.

Now, we prove that for two independent random unit vectors u and v in Rd with d =
d8 lnn/ε2e, with probability at least 1 − 1

n2 , |〈u, v〉| ≤ ε. By rotational invariance, we assume
that v is a standard basis vector. I.e., we assume v1 = 1 and vi = 0 for all 1 < i ≤ d. Notice
that now 〈u, v〉 is the magnitude of the first coordinate of u. We finish the proof by invoking
Lemma 5.4.3 and taking β = 8 lnn > 6.

Now we give the construction of the hard MDP instances. We first define the transitions and
the reward functions. In the hard instances, both the rewards and the transitions are deterministic.
There are H levels of states, and level h ∈ [H] contains 2h−1 distinct states. Thus we have
|S| = 2H − 1. If |S| > 2H − 1 we simply add dummy states to the state space S. We use
s1, s2, . . . , s2H−1 to name these states. Here, s1 is the unique state in level h = 1, s2 and s3 are
the two states in level h = 2, s4, s5, s6 and s7 are the four states in level h = 3, etc. There are
two different actions, a1 and a2, in the MDPs. For a state si in level h with h ≤ H − 1, playing
action a1 transits state si to state s2i and playing action a2 transits state si to state s2i+1, where
s2i and s2i+1 are both states in level h+ 1. See Figure 5.1 for an example with H = 3.

In our hard instances, R(s, a) = 0 for all (s, a) pairs except for a unique state s in levelH−1
and a unique action a ∈ {a1, a2}. It is convenient to define r(s′) = R(s, a), if choosing action
a transits s to s′. For our hard instances, we have r(s) = 1 for a unique state s in level H and
r(s) = 0 for all other states.

Now we define the features map φ(·, ·). Here we assume d ≥ 2 · d8 ln 2 · H/δ2e, since
otherwise we can simply decrease the planning horizon so that d ≥ 2 · d8 ln 2 ·H/δ2e. We invoke
Lemma 5.4.2 to get a set P = {p1, p2, . . . , p2H} ⊂ Rd/2. For each state si, φ(si, a1) ∈ Rd is
defined to be [pi; 0], and φ(si, a2) ∈ Rd is defined to be [0; pi]. This finishes the definition of the
MDPs. We now show that no matter which state s in level H satisfies r(s) = 1, the resulting
MDP always satisfies Assumption 5.2.3.

Verifying Assumption 5.2.3. By construction, for each level h ∈ [H], there is a unique state
sh in level h and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For all other (s, a) such that
s 6= sh or a 6= ah we have Q∗(s, a) = 0. For a given level h and policy π, we take θπh to be
Qπ(sh, ah) · φ(sh, ah). Now we show that |Qπ(s, a) − 〈θπh , φ(s, a)〉| ≤ δ for all states s in level
h and a ∈ {a1, a2}.
Case I: a 6= ah. In this case, we have Qπ(s, a) = 0 and 〈θπh , φ(s, a)〉 = 0, since θπh and φ(s, a)

do not have a common non-zero coordinate.

Case II: a = ah and s 6= sh. In this case, by the second property of P in Lemma 5.4.2 and the
fact that Qπ(sh, ah) ≤ 1, we have |〈θπh , φ(s, a)〉| ≤ δ. Meanwhile, we have Qπ(s, a) = 0.
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s1

s2

s4

Q∗(s2, a1) = 0

s5

Q∗(s2, a2) = 0

Q∗(s1, a1) = 0

s3

s6

Q∗(s3, a1) = 1

s7

Q∗(s3, a2) = 0

Q∗(s1, a2) = 1

Figure 5.1: An example with H = 3. For this example, we have r(s6) = 1 and r(s) = 0 for all
other states s. The unique state s6 which satisfies r(s) = 1 is marked as dash in the figure. The
induced Q∗ function is marked on the edges.

Case III: a = ah and s = sh. In this case, we have 〈θπh , φ(s, a)〉 = Qπ(sh, ah).
Finally, we prove any algorithm that solves these MDP instances and succeeds with proba-

bility at least 0.9 needs to sample at least 9
20
· 2H trajectories. We do so by providing a reduction

from INDQ2H−1 to solving MDPs. Suppose we have an algorithm for solving these MDPs, we
show that such an algorithm can be transformed to solve INDQ2H−1 . For a specific choice of i∗

in INDQ2H−1 , there is a corresponding MDP instance with

r(s) =

{
1 if s = si∗+2H−1−1

0 otherwise
.

Notice that for all MDPs that we are considering, the transition and features are always the
same. Thus, the only thing that the learner needs to learn by interacting with the environment
is the reward value. Since the reward value is non-zero only for states in level H , each time
the algorithm for solving MDP samples a trajectory that ends at state si where si is a state in
level H , we query whether i∗ = i − 2H−1 + 1 or not in INDQ2H−1 , and return reward value 1 if
i∗ = i− 2H−1 + 1 and 0 otherwise. If the algorithm is guaranteed to return a 1/2-optimal policy,
then it must be able to find i∗.

5.4.2 Proof of Lower Bound for Policy-Based Learning
In this section, we present our hardness results for linear policy learning. In order to prove
Theoerem 5.2.2, we need the following geometric lemma.
Lemma 5.4.4. Let d ∈ N+ be a positive integer and ε ∈ (0, 1) be a real number. Then there
exists a set of points N ⊂ SSd−1 with size |N | = Ω(1/εd/2) such that for every point x ∈ N ,

inf
y∈conv(N\{x})

‖x− y‖2 ≥ ε/2. (5.1)
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Proof. Consider a
√
ε-packing N with size Ω(1/εd/2) on the d-dimensional unit sphere. For the

existence of such a packing, see, e.g., [54]. Let o be the origin. For two points x, x′ ∈ Rd, we
denote |xx′| := ‖x − x′‖2 the length of the line segment between x, x′. Note that every two
points x, x′ ∈ N satisfy |xx′| ≥

√
ε.

To prove the lemma, it suffices to show that N satisfies the property (5.1). Consider a point
x ∈ N , let A be a hyperplane that is perpendicular to x (notice that x is a also a vector) and
separates x and every other points in N . We let the distance between x and A be the largest
possible, i.e., A contains a point inN\{x}. Since x is on the unit sphere andN is a

√
ε-packing,

we have that x is at least
√
ε away from every point on the spherical cap not containing x, defined

by the cutting plane A. More formally, let b be the intersection point of the line segment ox and
A. Then

∀y ∈
{
y′ ∈ SSd−s : 〈b, y′〉 ≤ ‖b‖2

2

}
: ‖x− y‖2 ≥

√
ε.

Indeed, by symmetry, ∀y ∈ {y′ ∈ SSd−1 : 〈b, y′〉 ≤ ‖b‖2
2

}
,

‖x− y‖2 ≥ ‖x− z‖2 ≥
√
ε.

where z ∈ N ∩ A. Notice that the distance between x and the convex hull of N\{x} is lower
bounded by the distance between x and A, which is given by |bx|. Consider the triangles defined
by x, z, o, b. We have bz ⊥ ox (note that bz lies inside A). By Pythagorean theorem, we have

|bz|2 + |bx|2 = |xz|2;

|bx|+ |bo| = |xo| = 1;

|bz|2 + |bo|2 = |oz|2 = 1.

Solve the above three equations for |bx|, we have

|bx| = |xz|2/2 ≥ ε/2

as desired.

Now we are ready to prove Theorem 5.2.2. In the proof we assume H = d, since otherwise
we can take H and d to be min{H, d} by decreasing the planning horizon H or adding dummy
dimensions to the feature extractor φ.

Proof of Theorem 5.2.2. We define a set of 2H−1 deterministic MDPs. The transitions of these
hard instances are exactly the same as those in Section 5.4.1. The main difference is in the defini-
tion of the feature map φ(·, ·) and the reward function. Again in the hard instances, R(s, a) = 0
for all s in the first H − 2 levels. Using the terminology in Section 5.4.1, we have r(s) = 0
for all states in the first H − 1 levels. Now we define r(s) for states s in level H . We do so
by recursively defining the optimal value function V ∗(·). The initial state s1 in level 1 satis-
fies V ∗(s1) = 1/2. For each state si in the first H − 1 levels, we have V ∗(s2i) = V ∗(si) and
V ∗(s2i+1) = V ∗(si)− 1/2H . For each state si in the level h = H , we have r(s2i) = V ∗(si) and
r(s2i+1) = V ∗(si)− 1/2H . This implies that ρ = 1/2H . In fact, this implies a stronger property
that each state has a unique optimal action. See Figure 5.2 for an example with H = 3.

To define 2H−1 different MDPs, for each state s in level H of the MDP defined above, we
define a new MDP by changing r(s) from its original value to 1. This also affects the definition of

92



V ∗(s1) = 1/2

V ∗(s2) = 1/2

r(s4) = 1/2 r(s5) = 1/3

V ∗(s3) = 1/3

r(s6) = 1/3 r(s7) = 1/6

Figure 5.2: An example with H = 3.

V ∗(s1) = 1

V ∗(s2) = 1/2

r(s4) = 1/2 r(s5) = 1/3

V ∗(s3) = 1

r(s6) = 1 r(s7) = 1/6

Figure 5.3: An example with H = 3. Here we define a new MDP by changing r(s6) from its
original value 1/3 to 1. This also affects the value of V (s3) and V (s1).

the optimal V function for states in the firstH−1 levels. In particular, for each level i ∈ [H−1],
we have changed the V ∗ value of a unique state in level i from its original value (at most 1/2)
to 1. By doing so we have defined 2H−1 different MDPs. See Figure 5.3 for an example with
H = 3.

Now we define the feature map φ(·, ·). We invoke Lemma 5.4.4 with ε = 84 and d = H/2−
1. Since 4 is sufficiently small, we have |N | ≥ 2H . We use P = {p1, p2, . . . , p2H} ⊂ RH/2−1

to denote an arbitrary subset of N with cardinality 2H . By Lemma 5.4.4, for any p ∈ P , the
distance between p and the convex hull of P \ {p} is at least 44. Thus, there exists a hyperplane
L which separates p and P \ {p}, and for all points q ∈ P , the distance between q and L is
at least 24. Equivalently, for each point p ∈ P , there exists np ∈ RH/2−1 and op ∈ R such
that ‖np‖2 = 1, |op| ≤ 1 and the linear function fp(q) = 〈q, np〉 + op satisfies fp(p) ≥ 24
and fp(q) ≤ −24 for all q ∈ P \ {p}. Given the set P = {p1, p2, . . . , p2H} ⊂ RH/2−1,
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we construct a new set P = {p1, p2, . . . , p2H} ⊂ RH/2, where pi = [pi; 1] ∈ RH/2. Thus
‖pi‖2 =

√
2 for all pi ∈ P . Clearly, for each p ∈ P , there exists a vector ωp ∈ RH/2 such that

〈ωp, p〉 ≥ 24 and 〈ωp, q〉 ≤ −24 for all q ∈ P \ {p}. It is also clear that ‖ωp‖2 ≤
√

2. We take
φ(si, a1) = [0; pi] ∈ RH and φ(si, a2) = [pi; 0] ∈ RH .

We now show that all the 2H−1 MDPs constructed above satisfy Assumption 5.2.5. Namely,
we show that for any state s in level H , after changing r(s) to be 1, the resulting MDP satisfies
Assumption 5.2.5. As in Section 5.4.1, for each level h ∈ [H], there is a unique state sh in level
h and action ah ∈ {a1, a2}, such that Q∗(sh, ah) = 1. For each level h, if ah = a1, then we take
(θh)H/2 = 1 and (θh)H = −1, and all other entries in θh are zeros. If ah = a2, we use p to denote
the vector formed by the first H/2 coordinates of φ(sh, a2). By construction, we have p ∈ P .
We take θh = [ωp; 0] in this case. In any case, we have ‖θh‖2 ≤

√
2. Now for each level h, if

ah = a1, then for all states s in level h, we have π∗(s) = a1. In this case, 〈φ(s, a1), θh〉 = 1 and
〈φ(s, a2), θh〉 = −1 for all states in level h, and thus Assumption 5.2.5 is satisfied. If ah = a2,
then π∗(sh) = a2 and π∗(s) = a1 for all states s 6= sh in level h. By construction, we have
〈θh, φ(s, a1)〉 = 0 for all states s in level h, since θh and φ(s, a1) do not have a common non-zero
entry. We also have 〈θh, φ(sh, a2)〉 ≥ 24 and 〈θh, φ(s, a2)〉 ≤ −24 for all states s 6= sh in level
h. We further normalize all θh and φ(s, a) so that they all have unit norm. Since ‖φ(s, a)‖2 =

√
2

for all (s, a) pairs before normalization, Assumption 5.2.5 is still satisfied after normalization.
Finally, we prove any algorithm that solves these MDP instances and succeeds with proba-

bility at least 0.9 needs to sample at least Ω(2H) trajectories. We do so by providing a reduction
from INDQ2H−1 to solving MDPs. Suppose we have an algorithm for solving these MDPs, we
show that such an algorithm can be transformed to solve INDQ2H−1 . For a specific choice of i∗

in INDQ2H−1 , there is a corresponding MDP instance with

r(s) =

{
1 if s = si∗+2H−1−1

the original (recursively defined) value otherwise
.

Notice that for all MDPs that we are considering, the transition and features are always the
same. Thus, the only thing that the learner needs to learn by interacting with the environment
is the reward value. Since the reward value is non-zero only for states in level H , each time the
algorithm for solving MDP samples a trajectory that ends at state si where si is a state in level
H , we query whether i∗ = i − 2H−1 + 1 or not in INDQ2H−1 . If i∗ = i − 2H−1 + 1, we return
a reward value of 1, and return the original (recursively defined) reward value otherwise. If the
algorithm is guaranteed to return a 1/4-optimal policy, then it must be able to find i∗.
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Chapter 6

RL with Large State Spaces: the Offline
Setting

6.1 Introduction

Offline methods (also known as off-policy methods or batch methods) are a promising method-
ology to alleviate the sample complexity burden in challenging reinforcement learning (RL) set-
tings, particularly those where sample efficiency is paramount [55, 88, 107]. Off-policy methods
are often applied together with function approximation schemes; such methods take sample tran-
sition data and reward values as inputs, and approximate the value of a target policy or the value
function of the optimal policy. Indeed, many practical deep RL algorithms find their prototypes
in the literature of offline RL. For example, when running on off-policy data (sometimes termed
as “experience replay”), deep Q-networks (DQN) [58] can be viewed as an analog of Fitted Q-
Iteration [33] with neural networks being the function approximators. More recently, there are an
increasing number of both model-free [32, 48, 50] and model-based [45, 71] offline RL methods,
with steady improvements in performance [32, 45, 48, 99].

However, despite the importance of these methods, the extent to which data reuse is possi-
ble, especially when off-policy methods are combined with function approximation, is not well
understood. For example, deep Q-network requires millions of samples to solve certain Atari
games [58]. Also important is that in some safety-critical settings, we seek guarantees when
offline-trained policies can be effective [84, 85]. A basic question here is that if there are fun-
damental statistical limits on such methods, where sample-efficient offline RL is simply not
possible without further restrictions on the problem.

In supervised learning, it is well-known that empirical risk minimization is sample-efficient
if the hypothesis class has bounded complexity. For example, suppose the agent is given a
d-dimensional feature extractor, and the ground truth labeling function is a (realizable) linear
function with respect to the feature mapping. Here, it is well-known that a polynomial number
of samples in d suffice for a given target accuracy. Furthermore, in this realizable case, provided
the training data has a good feature coverage, then we will have good accuracy against any test
distribution.

In the more challenging offline RL setting, it is unclear if sample-efficient methods are pos-
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sible, even under analogous assumptions. Here, one may hope that value estimation for a given
policy is possible in the offline RL setting under the analogous set of assumptions that enable
sample-efficient supervised learning, i.e., 1) (realizability) the features can perfectly represent
the value functions and 2) (good coverage) the feature covariance matrix of our off-policy data
has lower bounded eigenvalues.

The extant body of provable methods on offline RL either make representational assumptions
that are far stronger than realizability or assume distribution shift conditions that are far stronger
than having coverage with regards to the spectrum of the feature covariance matrix of the data
distribution. For example, [62] analyze offline RL methods by assuming a representational con-
dition where the features satisfy (approximate) closedness under Bellman updates, which is a
far stronger representation condition than realizability. Recently, [100] propose a offline RL al-
gorithm that only requires realizability as the representation condition. However, the algorithm
in [100] requires a more stringent data distribution condition. Whether it is possible to design
a sample-efficient offline RL method under the realizability assumption and a reasonable data
coverage assumption — an open problem in [16] — is the focus of this section.

Theoretical Results. Perhaps surprisingly, our main result shows that, under only the above
two assumptions, it is information-theoretically not possible to design a sample-efficient algo-
rithm to non-trivially estimate the value of a given policy. The following theorem is an informal
version of the result in Section 6.3.

Theorem 6.1.1 (Informal). In the offline setting, suppose the data distributions have (polynomi-
ally) lower bounded eigenvalues, and the Q-functions of every policy are linear with respect to a
given feature mapping. Any algorithm requires an exponential number of samples in the horizon
H to output a non-trivially accurate estimate of the value of any given policy π, with constant
probability.

This hardness result states that even if the Q-functions of all polices are linear with respect
to the given feature mapping, we still require an exponential number of samples to evaluate any
policy. Note that this representation condition is significantly stronger than assuming realizability
with regards to a single target policy; it assumes realizability for all policies. Even under this
stronger representation condition, it is hard to evaluate any policy, as specified in our hardness
result.

This result also formalizes a key issue in offline reinforcement learning with function approx-
imation: geometric error amplification. To better illustrate the issue, in Section 6.4, we analyze
the classical Least-Squares Policy Evaluation (LSPE) algorithm under the realizability assump-
tion, which demonstrates how the error propagates as the algorithm proceeds. Here, our analysis
shows that, if we only rely on the realizability assumption, then a far more stringent condition
is required for sample-efficient offline policy evaluation: the off-policy data distribution must be
quite close to the distribution induced by the policy to be evaluated.

Our results highlight that sample-efficient offline RL is simply not possible unless either the
distribution shift condition is sufficiently mild or we have stronger representation conditions that
go well beyond realizability. See Section 6.4 for more details.
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Experiments. From a practical point of view, it is natural to ask to what extent the above worst-
case characterizations are reflective of the scenarios that arise in practical applications because,
in fact, modern deep learning methods often produce representations that are extremely effec-
tive, say for transfer learning (computer vision [105] and NLP [20, 64] have both witnessed
remarkable successes using pre-trained features on downstreams tasks of interest). Further-
more, there are number of offline RL methods with promising performance on certain benchmark
tasks [32, 45, 48, 50, 71, 99].

In this chapter we provide a careful empirical investigation to further understand how sensi-
tive offline RL methods are to distribution shift. Along this line of inquiry, one specific question
to answer is to what extent we should be concerned about the error amplification effects as sug-
gested by worst-case theoretical considerations.

We study these questions on a range of standard tasks (6 tasks from the OpenAI gym bench-
mark suite), using offline datasets with features from pre-trained neural networks trained on the
task itself. Our offline datasets are a mixture of trajectories from the target policy itself, along
the data from other policies (random or lower performance policies). Note that this is favorable
setting in that we would not expect realistic offline datasets to have a large number of trajectories
from the target policy itself.

The motivation for using pre-trained features are both conceptual and technical. First, we
may hope that such features are powerful enough to permit sample-efficient offline RL because
they were learned in an online manner on the task itself. Also, practically, while we are not able
to verify if certain theoretical assumptions hold, we may optimistically hope that such pre-trained
features will perform well under distribution shift (indeed, as discussed earlier, using pre-trained
features has had remarkable successes in other domains). Second, using pre-trained features
allows us to decouple practical representational learning questions from the offline RL question,
where we can focus on offline RL with a given representation.

The main conclusion of this chapter, through extensive experiments on a number of tasks,
is that: we do in fact observe substantial error amplification, even when using pre-trained rep-
resentations, even we tune hyper-parameters, regardless of what the distribution was shifted to;
furthermore, this amplification even occurs under relatively mild distribution shift.

These experiments also complement our theoretical results showing the issue of error ampli-
fication is a real practical concern. From a practical point of view, our experiments demonstrate
that the definition of a good representation is more subtle than in supervised learning.

6.2 Preliminaries

Episodic Reinforcement Learning. In this section, for simplicity, we assume a fixed initial
state s1 ∈ S. To streamline our analysis, for each h ∈ [H], we use Sh ⊆ S to denote the set of
states at level h, and we assume Sh do not intersect with each other. We assume, almost surely,
that rh ∈ [−1, 1] for all h ∈ [H].

Linear Function Approximation. When applying linear function approximation schemes, it
is commonly assumed that the agent is given a feature extractor φ : S × A → Rd which can
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either be hand-crafted or a pre-trained neural network that transforms a state-action pair to a d-
dimensional embedding, and theQ-functions can be predicted by linear functions of the features.
In this section, we are interested in the following realizability assumption.
Assumption 6.2.1 (Realizable Linear Function Approximation). For every policy π : S →
∆(A), there exists θπ1 , . . . θ

π
H ∈ Rd such that for all h ∈ [H] and (s, a) ∈ Sh × A, Qπ

h(s, a) =

(θπh)> φ(s, a).
Note that our assumption is much stronger than assuming realizability with regards to a single

policy π (say the policy that we wish to evaluate); our assumption imposes realizability for all
policies.

6.3 The Lower Bound: Realizability and Coverage are Insuf-
ficient

We now present our main hardness result for offline policy evaluation with linear function ap-
proximation. It should be evident that without feature coverage in our dataset, realizability alone
is clearly not sufficient for sample-efficient estimation. Here, we will make the strongest possible
assumption, with regards to the conditioning of the feature covariance matrix.
Assumption 6.3.1 (Feature Coverage). For all (s, a) ∈ S × A, assume our feature map is
bounded such that ‖φ(s, a)‖2 ≤ 1. Furthermore, suppose for each h ∈ [H], the data distributions
µh satisfy the following minimum eigenvalue condition:

σmin

(
E(s,a)∼µh [φ(s, a)φ(s, a)>]

)
= 1/d.1

Clearly, for the case where H = 1, the realizability assumption (Assumption 6.2.1), and
feature coverage assumption (Assumption 6.3.1) imply that the ordinary least squares estimator
will accurately estimate θ1.2 Our main result now shows that these assumptions are not sufficient
for offline policy evaluation for long horizon problems.
Theorem 6.3.1. Suppose Assumption 6.3.1 holds. Fix an algorithm that takes as input both a
policy and a feature mapping. There exists a (deterministic) MDP satisfying Assumption 6.2.1,
such that for any policy π : S → ∆(A), the algorithm requires Ω((d/2)H) samples to output the
value of π up to constant additive approximation error with probability at least 0.9.
Remark 6.3.1 (Least-Squares Policy Evaluation (LSPE) has exponential variance). For offline
policy evaluation with linear function approximation, the most naı̈ve algorithm here would be
LSPE, i.e., using ordinary least squares (OLS) to estimate θπ, starting at level h = H and then
proceeding backwards to level h = 1, using the plug-in estimator from the previous level. Here,
LSPE will provide an unbiased estimate (provided the feature covariance matrices are full rank,
which will occur with high probability). As a direct corollary, the above theorem implies that
LSPE has exponential variance in H . See Section 6.4 for a more detailed discussion on LSPE.

1Note that 1/d is the largest possible minimum eigenvalue due to that, for any data distribution µ̃h,
σmin(E(s,a)∼µ̃h

[φ(s, a)φ(s, a)>]) ≤ 1/d since ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A.
2For H = 1, the ordinary least squares estimator will satisfy that ‖θ1− θ̂OLS‖22 ≤ O(d/n) with high probability.

See e.g. [35].
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Figure 6.1: An illustration of the hard instance. Recall that d̂ = d/2. States on the top are those
in the first level (h = 1), while states at the bottom are those in the last level (h = H). Solid line
(with arrow) corresponds to transitions associated with action a1, while dotted line (with arrow)
corresponds to transitions associated with action a2. For each level h ∈ [H], reward values and
Q-values associated with s1

h, s
2
h, . . . , s

d̂
h are marked on the left, while reward values and Q-values

associated with sd̂+1
h are mark on the right. Rewards and transitions are all deterministic, except

for the reward distributions associated with s1
H , s

2
H , . . . , s

d̂
H . We mark the expectation of the

reward value when it is stochastic. For each level h ∈ [H], for the data distribution µh, the state is
chosen uniformly at random from those states in the dashed rectangle, i.e., {s1

h, s
2
h, . . . , s

d̂
h}, while

the action is chosen uniformly at random from {a1, a2}. Suppose the initial state is sd̂+1
1 . When

r0 = 0, the value of the policy is 0. When r0 = d̂−H/2, the value of the policy is r0 · d̂H/2 = 1.

More generally, our theorem implies that there is no estimator that can avoid such exponential
dependence in the offline setting.

In the remaining part of this section, we give the hard instance construction and the proof
of Theorem 6.3.1. We use d the denote the feature dimension, and we assume d is even for
simplicity. We use d̂ to denote d/2 for convenience. We also provide an illustration of the
construction in Figure 6.1.

State Space, Action Space and Transition Operator. The action space A = {a1, a2}. For
each h ∈ [H], Sh contains d̂ + 1 states s1

h, s
2
h, . . . , s

d̂
h and sd̂+1

h . For each h ∈ [H − 1], for each
c ∈ {1, 2, . . . , d̂+ 1}, we have P (sch, a1) = sd̂+1

h+1 and P (sch, a1) = sch+1.
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Reward Distributions. Let 0 ≤ r0 ≤ d̂−H/2 be a parameter to be determined. For each
(h, c) ∈ [H−1]×[d̂] and a ∈ A, we setR(sch, a) = 0 andR(sd̂+1

h , a) = r0·(d̂1/2−1)·d̂(H−h)/2. For

the last level, for each c ∈ [d̂] and a ∈ A, we set R(scH , a) =

{
1 with probability (1 + r0)/2

−1 with probability (1− r0)/2

so that E[R(scH , a)] = r0. Moreover, for all actions a ∈ A, R(sd̂+1
H , a) = r0 · d̂1/2.

Feature Mapping. Let e1, e2, . . . , ed be a set of orthonormal vectors in Rd. Here, one possible
choice is to set e1, e2, . . . , ed to be the standard basis vectors. For each (h, c) ∈ [H]× [d̂], we set
φ(sch, a1) = ec, φ(sch, a2) = ec+d̂, and φ(sd̂+1

h , a) =
∑

c∈d̂ ec/d̂
1/2 for all a ∈ A.

Verifying Assumption 6.2.1. The following lemma shows that Assumption 6.2.1 holds for our
construction.
Lemma 6.3.2. For every policy π : S → ∆(A), for each h ∈ [H], for all (s, a) ∈ Sh × A, we
have Qπ

h(s, a) = (θπh)> φ(s, a) for some θπh ∈ Rd.

Proof. We first verify Qπ is linear for the first H − 1 levels. For each (h, c) ∈ [H − 1]× [d̂], we
have

Qπ
h(sch, a1) =R(sch, a1) +R(sd̂+1

h+1, a1) +R(sd̂+1
h+2, a1) + . . .+R(sd̂+1

H , a1) = r0 · d̂(H−h)/2.

Moreover, for all a ∈ A,

Qπ
h(sd̂+1

h , a) =R(sd̂+1
h , a) +R(sd̂+1

h+1, a1) +R(sd̂+1
h+2, a1) + . . .+R(sd̂+1

H , a1) = r0 · d̂(H−h+1)/2.

Therefore, if we define

θπh =
d̂∑
c=1

r0 · d̂(H−h)/2 · ec +
d̂∑
c=1

Qπ
h(sch, a2) · ec+d̂,

then Qπ
h(s, a) = (θπh)> φ(s, a) for all (s, a) ∈ Sh ×A.

Now we verify that the Q-function is linear for the last level. Clearly, for all c ∈ [d̂] and

a ∈ A, Qπ
H(scH , a) = r0 and Qπ

H(sd̂+1
H , a) = r0 ·

√
d̂. Thus by defining θπH =

∑d
c=1 r0 · ec, we

have Qπ
H(s, a) = (θπH)> φ(s, a) for all (s, a) ∈ SH ×A.

The Data Distributions. For each level h ∈ [H], the data distribution µh is a uniform dis-
tribution over {(s1

h, a1), (s1
h, a2), (s2

h, a1), (s2
h, a2), . . . , (sd̂h, a1), (sd̂h, a2)}. Notice that (sd̂+1

h , a)
is not in the support of µh for all a ∈ A. It can be seen that, E(s,a)∼µh

[
φ(s, a)φ(s, a)>

]
=

1
d

∑d
c=1 ece

>
c = 1

d
I .
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The Lower Bound. We show that it is information-theoretically hard for any algorithm to
distinguish the case r0 = 0 and r0 = d̂−H/2. We fix the initial state to be sd̂+1

1 , and consider any
policy π. When r0 = 0, all reward values will be zero, and thus the value of π is zero. On the
other hand, when r0 = d̂−H/2, the value of π would be r0 · d̂H/2 = 1. Thus, if the algorithm
approximates the value of the policy up to an error of 1/2, then it must distinguish the case that
r0 = 0 and r0 = d̂−H/2.

We first notice that for the case r0 = 0 and r0 = d̂−H/2, the data distributions {µh}Hh=1, the
feature mapping φ : S ×A → Rd, the policy π to be evaluated and the transition operator P are
the same. Thus, in order to distinguish the case r0 = 0 and r0 = d̂−H/2, the only way is to query
the reward distribution by using sampling taken from the data distributions. For all state-action
pairs (s, a) in the support of the data distributions of the firstH−1 levels, the reward distributions
will be identical. This is because for all s ∈ Sh \ {sd̂+1

h } and a ∈ A, we have R(s, a) = 0. For
the case r0 = 0 and r0 = d̂−H/2, for all state-action pairs (s, a) in the support of the data distri-

bution of the last level, R(s, a) =

{
1 with probability (1 + r0)/2

−1 with probability (1− r0)/2
. Therefore, to distinguish

the case that r0 = 0 and r0 = d̂−H/2, the agent needs to distinguish two reward distributions

r1 =

{
1 with probability 1/2

−1 with probability 1/2
and r2 =

{
1 with probability (1 + d̂−H/2)/2

−1 with probability (1− d̂−H/2)/2
. In order to

distinguish r1 and r2 with probability at least 0.9, any algorithm requires Ω(d̂H) samples.
Remark 6.3.2. The key in our construction is the state sd̂+1

h in each level, whose feature vector is
defined to be

∑
c∈d̂ ec/d̂

1/2. In each level, sd̂+1
h amplifies the Q-value by a d̂1/2 factor, due to the

linearity of the Q-function. After all the H levels, the value will be amplified by a d̂H/2 factor.
Since sd̂+1

h is not in the support of the data distribution, the only way to estimate the value of
the policy is to estimate the expected reward value in the last level. Our construction forces the
estimation error of the last level to be amplified exponentially and thus implies an exponential
lower bound.

6.4 Upper Bounds: Low Distribution Shift or Policy Com-
pleteness are Sufficient

In order to illustrate the error amplification issue and discuss conditions that permit sample-
efficient offline RL, in this section, we analyze Least-Squares Policy Evaluation when applied
to the offline policy evaluation problem under the realizability assumption. The algorithm is
presented in Algorithm 10. For simplicity here we assume the policy π to be evaluated is deter-
ministic.

Notation. For each h ∈ [H], define Λh = E(s,a)∼µh
[
φ(s, a)φ(s, a)>

]
to be the feature co-

variance matrix of the data distribution at level h. Moreover, for each h ∈ [H − 1], define
Λh+1 = E(s,a)∼µh,s∼P (·|s,a)

[
φ(s, π(s))φ(s, π(s))>

]
to be the feature covariance matrix of the

one-step lookahead distribution induced by the data distribution at level h and π. Moreover,
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Algorithm 10 Least-Squares Policy Evaluation
1: Input: policy π to be evaluated, number of samples N , regularization parameter λ > 0
2: Let QH+1(·, ·) = 0 and VH+1(·) = 0
3: for h = H,H − 1, . . . , 1 do
4: Take samples (sih, a

i
h) ∼ µh, rih ∼ R(sih, a

i
h) and sih ∼ P (sih, a

i
h) for each i ∈ [N ]

5: Let Λ̂h =
∑

i∈[N ] φ(sih, a
i
h)φ(sih, a

i
h)
> + λI

6: Let θ̂h = Λ̂−1
h

(∑N
i=1 φ(sih, a

i
h) · (rih + V̂h+1(sih))

)
7: Let Q̂h(·, ·) = φ(·, ·)>θ̂h and V̂h(·) = Q̂h(·, π(·))

define Λ1 = φ(s1, π(s1))φ(s1, π(s1))>. We define Φh to be a N × d matrix, whose i-th row is
φ(sih, a

i
h), and define Φh+1 to be another N × d matrix whose i-th row is φ(sih, π(sih)). For each

h ∈ [H] and i ∈ [N ], define ξih = rih + Vh(s
i
h)−Qh(s

i
h, a

i
h). We use ξh to denote a vector whose

i-th entry is ξih.

Now we present a general lemma that characterizes the estimation error of Algorithm 10 by
an equality. Later, we apply this general lemma to special cases.

Lemma 6.4.1. Suppose λ > 0 in Algorithm 10, and for the given policy π, there exists θ1, θ2, . . . , θd ∈
Rd such that for each h ∈ [H], Qπ

h(s, a) = φ(s, a)>θh for all (s, a) ∈ Sh ×A. Then we have

(Qπ(s1, π(s1))− Q̂(s1, π(s1)))2 =

∥∥∥∥∥
H∑
h=1

Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 · · · (Λ̂−1
h Φ>h ξh − λΛ̂−1

h θh)

∥∥∥∥∥
2

Λ1

. (6.1)

Proof. Clearly,

θ̂h = Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + V̂h+1(sih))

)

= Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + Q̂h+1(sih, π(sih)))

)

= Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + φ(sih, π(sih))

>θ̂h+1)

)

= Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + φ(sih, π(sih))

>θh+1) +
N∑
i=1

φ(sih, a
i
h) · φ(sih, π(sih))

>(θ̂h+1 − θh+1)

)

= Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + φ(sih, π(sih))

>θh+1)

)
+ Λ̂−1

h

(
N∑
i=1

φ(sih, a
i
h) · φ(sih, π(sih))

>(θ̂h+1 − θh+1)

)
.
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For the first term, we have

Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + φ(sih, π(sih))

>θh+1)

)

=Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih +Qπ(sih, π(sih)))

)

=Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (rih + V π(sih))

)

=Λ̂−1
h

(
N∑
i=1

φ(sih, a
i
h) · (Qπ(sih, a

i
h) + ξih)

)

=Λ̂−1
h

N∑
i=1

φ(sih, a
i
h) · ξih + Λ̂−1

h

N∑
i=1

φ(sih, a
i
h) · φ(sih, a

i
h)
>θh

=Λ̂−1
h

N∑
i=1

φ(sih, a
i
h) · ξih + Λ̂−1

h (Φ>h Φh)θh

=Λ̂−1
h Φhξh + θh − λΛ̂−1

h θh.

Therefore,

θ̂1 − θ1 = (Λ̂−1
1 Φ1ξ1 − λΛ̂−1

1 θ1) + Λ̂−1
1 Φ>1 Φ2(θ2 − θ̂2)

= (Λ̂−1
1 Φ1ξ1 − λΛ̂−1

1 θ1) + Λ̂−1
1 Φ>1 Φ2(Λ̂−1

2 Φ>2 ξ2 − λΛ̂−1
2 θ2)

+ Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3(θ3 − θ̂3)

= . . .

=
H∑
h=1

Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · · (Λ̂−1
h Φ>h ξh − λΛ̂−1

h θh).

Also note that
(Qπ(s1, π(s1))− Q̂(s1, π(s1)))2 = ‖θ1 − θ̂1‖2

Λ1
.

Now we consider two special cases where the estimation error in Equation (6.1) can be upper
bounded.

Low Distribution Shift. The first special we focus on is the case where the distribution shift
between the data distributions and the distribution induced by the policy to be evaluated is low.
To measure the distribution shift formally, our main assumption is as follows.
Assumption 6.4.1. We assume that for each h ∈ [H], there exists Ch ≥ 1 such that Λh � ChΛh.
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Remark 6.4.1. For each h ∈ [H], if σmin(Λh) � 1
Ch
I for some Ch ≥ 1, then we have

Λh � I � ChΛh. Therefore, Assumption 6.4.1 can be replaced with the assumption that
ChΛh � I . However, we stick to the original version of Assumption 6.4.1, since it gives a
tighter characterization of the distribution shift when applying Algorithm 10 to off-policy evalu-
ation under the realizability assumption.

Now we state the theoretical guarantee of Algorithm 10.
Theorem 6.4.2. Suppose for the given policy π, there exists θ1, θ2, . . . , θd ∈ Rd such that for
each h ∈ [H], Qπ

h(s, a) = φ(s, a)>θh for all (s, a) ∈ Sh × A and ‖θh‖2 ≤ H
√
d.3 Let λ =

CH
√
d log(dH/δ)N for some C > 0. With probability at least 1− δ, for some c > 0,

(Qπ
1 (s1, π(s1))− Q̂1(s1, π(s1)))2 ≤ c ·

H∏
h=1

Ch · dH5 ·
√
d log(dH/δ)/N.

Proof. By matrix concentration inequality [86], we have the following lemma.

Lemma 6.4.3. For each h ∈ [H], with probability 1 − δ/(4H), for some universal constant C,
we have ∥∥∥∥ 1

N
Φ>h Φh − Λh

∥∥∥∥
2

≤ C
√
d log(dH/δ)/N.

and ∥∥∥∥ 1

N
Φh+1Φh+1 − Λh+1

∥∥∥∥
2

≤ C
√
d log(dH/δ)/N.

Therefore, since λ = CH
√
d log(dH/δ)N , with probability 1− δ/(4H), we have

Λ̂h = Φ>h Φh + λI � NΛh.

Note that

(Qπ(s1, π(s1))− Q̂(s1, π(s1)))2

≤H ·

(
H∑
h=1

∥∥∥Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · · (Λ̂−1
h Φ>h ξh − λΛ̂−1

h θh)
∥∥∥2

Λ1

)

≤2H ·

(
H∑
h=1

∥∥∥Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · · Λ̂−1
h Φ>h ξh

∥∥∥2

Λ1

+
H∑
h=1

∥∥∥Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · ·λΛ̂−1
h θh

∥∥∥2

Λ1

)
.

For each h ∈ [H],

‖Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · · Λ̂−1
h Φ>h ξh‖2

Λ1

≤‖Φ1Λ̂−1
1 Λ1Λ̂−1

1 Φ>1 ‖2 · ‖Φ2Λ̂−1
2 Φ>2 Φ3 · · · Λ̂−1

h Φ>h ξh‖2
2

≤‖Λ̂−1/2
1 Λ1Λ̂

−1/2
1 ‖2 · ‖Φ1Λ̂−1

1 Φ>1 ‖2 · ‖Φ2Λ̂−1
2 Φ>2 Φ2 · · · Λ̂−1

h Φ>h ξh‖2
2

≤‖Λ̂−1/2
1 Λ1Λ̂

−1/2
1 ‖2 ·

h−1∏
h′=1

(
‖Φh′Λ̂

−1
h′ Φ>h′‖2 · ‖Λ̂−1/2

h′+1 (Φ
>
h′+1Φh′+1)Λ̂

−1/2
h′+1‖2

)
· ‖ξh‖2

ΦhΛ̂−1
h Φ>h

.

3Without loss of generality, we can work in a coordinate system such that ‖θh‖2 ≤ H
√
d and ‖φ(s, a)‖2 ≤ 1

for all (s, a) ∈ S ×A. This follows due to John’s theorem (e.g. see [14]).

104



Similarly,

‖Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · ·λΛ̂−1
h θh‖2

Λ1

≤‖Λ̂−1/2
1 Λ1Λ̂

−1/2
1 ‖2 ·

h−1∏
h′=1

(
‖Φh′Λ̂

−1
h′ Φ>h′‖2 · ‖Λ̂−1/2

h′+1 (Φ
>
h′+1Φh′+1)Λ̂

−1/2
h+1 ‖2

)
· λ2 · ‖θh‖2

Λ̂−1
h

≤‖Λ̂−1/2
1 Λ1Λ̂

−1/2
1 ‖2 ·

h−1∏
h′=1

(
‖Φh′Λ̂

−1
h′ Φ>h′‖2 · ‖Λ̂−1/2

h′+1 (Φ
>
h′+1Φh′+1)Λ̂

−1/2
h′+1‖2

)
· λ ·H2d.

For all h ∈ [H], we have
‖ΦhΛ̂

−1
h Φ>h ‖2 ≤ 1

and

‖Λ̂−1/2
h (Φ

>
h Φh)Λ̂

−1/2
h ‖2 ≤ ‖N Λ̂

−1/2
h ΛhΛ̂

−1/2
h ‖2 + ‖Λ̂−1/2

h (Φ
>
h Φh −NΛh)Λ̂

−1/2
h ‖2.

Conditioned on the event in Lemma 8.3.5,

Λ̂h � NΛh �
N

Ch
Λh,

which implies ‖N Λ̂
−1/2
h ΛhΛ̂

−1/2
h ‖ ≤ Ch. Moreover, conditioned on the event in Lemma 8.3.5,

‖Λ̂−1/2
h (Φ

>
h Φh −NΛh)Λ̂

−1/2
h ‖2 ≤ C

√
d log(dH/δ)N/λ.

Thus,
‖Λ̂−1/2

1 Λ1Λ̂
−1/2
1 ‖2 ≤ C1/N.

and
‖Λ̂−1/2

h (Φ
>
h Φh)Λ̂

−1/2
h ‖2 ≤ Ch + C

√
d log(dH/δ)N/λ.

Finally, by Theorem 1.2 in [36], with probability 1− δ/(4H), for some constant C ′, we have

‖ξh‖2
ΦhΛ̂−1

h Φ>h
≤ C ′H2d log(H/δ).

Therefore,∥∥∥Λ̂−1
1 Φ>1 Φ2Λ̂−1

2 Φ>2 Φ3 · · · Λ̂−1
h Φ>h ξh

∥∥∥2

Λ1

+
∥∥∥Λ̂−1

1 Φ>1 Φ2Λ̂−1
2 Φ>2 Φ3 · · ·λΛ̂−1

h θh

∥∥∥2

Λ1

≤C1

N
(C2 + C

√
d log(d/δ)N/λ)× · · · × (Ch + C

√
d log(d/δ)N/λ)× (C ′H2d log(H/δ) + λH2d)

≤C1

N
(C2 + 1/H)× · · · × (Ch + 1/H)× (C ′H2d log(H/δ) + λH2d)

≤ e

N
C1 × C2 × · · · × Ch × (C ′H2d log(H/δ) + CdH3

√
d log(dH/δ)N).

Let c > 0 be a large enough constant. We now have

Es1 [(Qπ
1 (s1, π(s1))− Q̂1(s1, π(s1)))2] ≤ c ·

(
H∏
h=1

Ch

)
· dH5 ·

√
d log(dH/δ)

N
.
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Remark 6.4.2. The factor
∏H

h=1Ch in Theorem 6.4.2 implies that the estimation error will be
amplified geometrically as the algorithm proceeds. Now we briefly discuss how the error is
amplified when running Algorithm 10 on the instance in Section 6.3 to better illustrate the issue.
If we run Algorithm 10 on the hard instance in Section 6.3, when h = H , the estimation error
on V π

H(scH) would be roughly N−1/2 for each c ∈ [d̂]. When using the linear predictor at level
H to predict the value of s∗H , the error will be amplified by d̂1/2. When h = H − 1, the dataset
contains only scH−1 for c ∈ [d̂], and the estimation error on the value of scH−1 will be the same
as that of s∗H , which is roughly (d̂/N)1/2. Again, the estimation error on the value of s∗H−1 will
be (d̂2/N)1/2 when using the linear predictor at level H − 1. As the algorithm proceeds, the
error will eventually be amplified by a factor of d̂H/2, which corresponds to the factor

∏H
h=1Ch

in Theorem 6.4.2.

Policy Completeness. In the offline RL literature, another common representation condition is
closedness under Bellman update [16, 27, 62], which is stronger than realizability. In the context
of offline policy evaluation, we have the following policy completeness assumption.
Assumption 6.4.2. For the given policy π, for any h > 1 and θh ∈ Rd, there exists θ′ ∈ Rd such
that for any (s, a) ∈ Sh−1 ×A, E[R(s, a)] +

∑
s′∈Sh P (s′ | s, a)φ(s′, π(s′))>θh = φ(s, a)>θ′.

Under Assumption 6.4.2 and the additional assumption that the feature covariance matri-
ces of the data distributions have lower bounded eigenvalue, i.e., σmin(Λh) ≥ λ0 for all h ∈
[H] for some λ0 > 0, prior work [27] has shown that for Algorithm 10, by taking N =

poly(H, d, 1/ε, 1/λ0) samples, we have (Qπ
1 (s1, π(s1))− Q̂1(s1, π(s1)))2 ≤ ε. We omit such an

analysis and refer interested readers to [27].
Before ending this section, we would like to note that the above analysis again implies that

geometric error amplification is a real issue in offline RL, and sample-efficient offline RL is
impossible unless the distribution shift is sufficiently low, i.e.,

∏H
h=1Ch is bounded, or stronger

representation condition such as policy completeness as assumed in prior work.

6.5 Experiments
The goal of our experimental evaluation is to understand whether offline RL methods are sensi-
tive to distribution shift in practical tasks, given a good representation (features extracted from
pre-trained neural networks or random features). Our experiments are performed on a range of
challenging tasks from the OpenAI gym benchmark suite, including two environments with dis-
crete action space (MountainCar-v0, CartPole-v0) and four environments with continuous action
space (Ant-v2, HalfCheetah-v2, Hopper-v2, Walker2d-v2).

6.5.1 Experimental Methodology

Our methodology proceeds according to the following steps:

1. We decide on a (target) policy to be evaluated, along with a good feature mapping for this
policy.
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2. Collect offline data using trajectories that are a mixture of the target policy along with
another distribution.

3. Run offline RL methods to evaluate the target policy using the feature mapping found in
Step 1 and the offline data obtained in Step 2.

We now give a detailed description for each step.

Step 1: Determine the Target Policy. To find a policy to be evaluated together with a good
representation, we run classical online RL methods. For environments with discrete action space
(MountainCar-v0, CartPole-v0), we run Deep Q-learning (DQN) [58], while for environments
with continuous action space (Ant-v2, HalfCheetah-v2, Hopper-v2, Walker2d-v2), we run Twin
Delayed Deep Deterministic policy gradient (TD3) [31]. The target policy is set to be the final
policy output by DQN or TD3. We also set the feature mapping to be the output of the last
hidden layer of the learned value function networks, extracted in the final stage of the online RL
methods. Since the target policy is set to be the final policy output by the online RL methods,
such feature mapping contains sufficient information to represent the value functions of the target
policy. We also perform experiments using random Fourier features [69].

Step 2: Collect Offline Data. We consider two styles of shifted distributions: distributions
induced by random policies and by lower performance policies. When the data collection policy
is the same as the target policy, we will see that offline methods achieve low estimation error, as
expected. In our experiments, we use the target policy to generate a dataset D? with 1 million
samples. We then consider two types of datasets induced by shifted distributions: adding random
trajectories into D?, and adding samples induced by lower performance policies into D?. In both
cases, the amount of data from the target policy remains unaltered (fixed to be 1 million). For the
first type of dataset, we add 0.5 million, 1 million, or 2 million samples from random trajecto-
ries into D?. For the second type of dataset, we manually pick four lower performance policies
π1

sub, π
2
sub, π

3
sub, π

4
sub with V π1

sub > V π2
sub > V π3

sub > V π4
sub , and use each of them to collect 1 mil-

lion samples. We call these four datasets (each with 1 million samples) D1
sub, D

2
sub, D

3
sub, D

4
sub,

and we run offline RL methods on D? ∪Di
sub for each i ∈ {1, 2, 3, 4}.

Step 3: Run Offline RL Methods. With the collected offline data and the target policy
(together with a good representation), we can now run offline RL methods to evaluate the (dis-
counted) value of the target policy. In our experiments, we run FQI and Least-Squares Tem-
poral Difference(LSTD, a temporal difference offline RL method) [13]. For both algorithms,
the only hyperparameter is the regularization parameter λ (cf. Algorithm 10), which we choose
from {10−1, 10−2, 10−3, 10−4, 10−8}. In our experiments, we report the performance of the best-
performing λ (measured in terms of the square root of the mean squared estimation error in the
final stage of the algorithm, taking average over all repetitions of the experiment); such favorable
hyperparameter tuning is clearly not possible in practice (unless we have interactive access to the
environment).

In our experiments, we repeat this whole process 5 times. For each FQI round, we report
the square root of the mean squared evaluation error, taking average over 100 randomly chosen
states. We also report the values (V π(s)) of those randomly chosen states in Table 6.1. We
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Environment Discounted Value
Ant-v2 411.77± 96.824
CartPole-v0 90.17± 20.61
HalfCheetah-v2 1053.71± 121.74
Hopper-v2 321.42± 30.26
MountainCar-v0 −26.16± 17.83
Walker2d-v2 336.64± 49.80

Table 6.1: Mean value of the 100 randomly chosen states (used for evaluating the estimations),
± standard deviation.

note that in our experiments, the randomness combines both from the feature generation process
(representation uncertainty, Step 1) and the dataset (Step 2). Even though we draw millions of
samples in Step 2, the estimation of FQI could still have high variance.

6.5.2 Results and Analysis

Distributions Induced by Random Policies. We first present the performance of FQI with
features from pre-trained neural networks and distributions induced by random policies. The
results are reported in Figure 6.2. Perhaps surprisingly, compared to the result on D?, adding
more data (from random trajectories) into the dataset generally hurts the performance. With more
data added into the dataset, the performance generally becomes worse. Thus, even with features
from pre-trained neural networks, the performance of offline RL methods is still sensitive to data
distribution.

Distributions Induced by Lower Performance Polices. Now we present the performance
of FQI with features from pre-trained neural networks and datasets with samples from lower
performance policies. The results are reported in Figure 6.3. Similar to Figure 6.2, adding
more data into the dataset could hurt performance, and the performance of FQI is sensitive to
the quality of the policy used to generate samples. Moreover, the estimation error increases
exponentially in some cases, showing that geometric error amplification is not only a theoretical
consideration, but could occur in practical tasks when given a good representation as well.

Random Fourier Features. Now we present the performance of FQI with random Fourier
features and distributions induced by random policies. The results are reported in Figure 6.4.
Here we tune the hyperparameters of the random Fourier features so that FQI achieves reasonable
performance on D?. Again, with more data from random trajectories added into the dataset, the
performance generally becomes worse. This implies our observations above hold not only for
features from pre-trained neural networks, but also for random features. On the other hand,
it is known random features achieve reasonable performance in policy gradient methods [70]
in the online setting. This suggests that the representation condition required by offline policy
evaluation could be stronger than that of policy gradient methods in online setting.
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Environment
π1

sub π2
sub π3

sub π4
sub

RMSE / Gap between target policy and comparison policy
Ant-v2 >1000 / 26.18 >1000 / 35.07 >1000 / 145.83 >1000 / 146.15
CartPole-v0 6.58 / 4.18 >1000 / 7.04 9.16 / 8.10 15.08 / 12.86
HalfCheetah-v2 35.54 / 118.29 36.45 / 166.31 36.81 / 346.05 86.31 / 482.80
Hopper-v2 36.22 / -4.84 35.54 / -4.37 165.11 / 5.97 >1000 / 17.43
MountainCar-v0 1.46 / 0.74 2.19 / 1.54 2.43 / 2.64 >1000 / 3.98
Walker2d-v2 121.35 / 5.28 >1000 / 34.48 43.47 / 35.30 >1000 / 107.93

Table 6.2: We seek to determine if FQI succeeds in comparing policies (with using features from
pre-trained neural networks) with datasets induced by lower performing policies. Roughly, a red
entry can be viewed as a failure (ideally, we would hope that the gap is at least a factor of 2 larger
than the RMSE). For each entry, the first number is the root mean squared error of the estimation
of the target policy of FQI, over 5 repetitions and 100 randomly chosen initial states. The second
number is the average gap between the value of the target policy and that of the lower performing
policy (π1

sub, π2
sub, π3

sub, or π4
sub), over 5 repetitions and evaluated using 100 trajectories. An entry

is marked red if the root mean squared error is larger than the average gap, and is marked blue
otherwise. We write > 1000 when the root mean squared error is larger than 1000.

Policy Comparison. We further study whether it is possible to compare the value of the target
policy and that of the lower performing policies using FQI. In Table 6.2, we present the policy
comparison results of FQI with features from pre-trained neural networks and datasets induced
by lower performing policies. For each lower performing policy πisub where i ∈ {1, 2, 3, 4}, we
report the root mean squared error of FQI when evaluating the target policy using D?∪Di

sub, and
the average gap between the value of the target policy and that of πisub. If the root mean squared
error is less than the average gap, then we mark the corresponding entry to be green (meaning
that FQI can distinguish between the target policy and the lower performing policy). If the root
mean squared error is larger than the average gap, then we mark the corresponding entry to be
red (meaning that FQI cannot distinguish between the target policy and the lower performing
policy). From Table 6.2, it is clear that for most settings, FQI cannot distinguish between the
target policy and the lower performing policy.

Sensitivity to Hyperparameters. In previous experiments, we tune the regularization param-
eter λ and report the performance of the best-performing λ. However, we remark that in practice,
without access to online samples, hyperparameter tuning is hard in offline RL. Here we inves-
tigate how sensitive FQI is to different regularization parameters λ. The results are reported in
Figure 6.5-6.10. Here, for each environment, we vary the number of additional samples from
random trajectories and the regularization parameter λ. As observed in experiments, the regu-
larization parameter λ significantly affects the performance of FQI, as long as there are random
trajectories added into the dataset.

Performance of LSTD. Finally, we present the performance of LSTD with features from pre-
trained neural networks and distributions induced by random policies. The results are reported
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Dataset D? D? + 0.5x random D? + 1x random D?+ 2x random
Ant-v2 44.03± 8.98 48.05± 8.03 57.90± 13.30 72.80± 16.87
HalfCheetah-v2 24.86± 3.39 27.54± 6.63 30.14± 11.60 36.66± 21.32
Hopper-v2 2.18± 1.14 9.38± 3.84 13.18± 2.77 16.86± 2.84
Walker2d-v2 13.88± 11.22 32.73± 11.05 45.61± 17.06 67.78± 24.77

Table 6.3: Performance of LSTD with features from pre-trained neural networks and distributions
induced by random policies. Each number of is the square root of the mean squared error of the
estimation, taking average over 5 repetitions, ± standard deviation.
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(f) Walker2d-v2

Figure 6.2: Performance of FQI with features from pre-trained neural networks and datasets
induced by random policies.

in Table 6.3. With more data from random trajectories added into the dataset, the performance
of LSTD becomes worse. This means the sensitivity to distribution shift is not specific to FQI,
but also holds for LSTD.
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Figure 6.3: Performance of FQI with features from pre-trained neural networks and datasets
induced by lower performance policies.
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Figure 6.4: Performance of FQI with random Fourier features and datasets induced by random
policies.
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Figure 6.5: Performance of FQI on Ant-v2, with features from pre-trained neural networks,
datasets induced by random policies, and different regularization parameter λ.
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Figure 6.6: Performance of FQI on CartPole-v0, with features from pre-trained neural networks,
datasets induced by random policies, and different regularization parameter λ.
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Figure 6.7: Performance of FQI on HalfCheetah-v2, with features from pre-trained neural net-
works, datasets induced by random policies, and different regularization parameter λ.
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Figure 6.8: Performance of FQI on Hopper-v2, with features from pre-trained neural networks,
datasets induced by random policies, and different regularization parameter λ.
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Figure 6.9: Performance of FQI on MountainCar-v0, with features from pre-trained neural net-
works, datasets induced by random policies, and different regularization parameter λ.
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Figure 6.10: Performance of FQI on Walker2d-v2, with features from pre-trained neural net-
works, datasets induced by random policies, and different regularization parameter λ.
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Part III

RL in Other Settings
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Chapter 7

Planning with General Objective Functions

7.1 Introduction
Markov decision process (MDP) is arguably the most popular paradigm for modeling sequential
decision-making problems. In this paradigm, it is assumed that the reward values depend only
on the current state-action pair, and the objective of the agent is to maximize the summation of
all rewards

∑H
h=1 rh. The drawback of the standard MDP model is that it even fails to capture

some simple sequential decision-making tasks. For example, in self-driving, the goal is not to
maximize the total reward but to maximize the minimum reward on the trajectory, say if one
models a car crash as −1 reward and 0 reward otherwise. Note that in this simple example,
the state transition function T and the reward function r still satisfy the Markov property. The
only difference is that the objective changes from maximizing the sum of rewards

∑H
r=1 rh to

maximizing the minimum of rewards minHh=1 rh.
This difference requires the agent to change the planning strategy significantly because the

agent needs to look at the full history of rewards. This gives rise the following natural prob-
lem: Can we design a provably efficient algorithm for general objective functions? This is a
challenging question as existing approaches for the MDP model cannot be applied here.

In this chapter, we give a positive answer to the above question by designing an efficient al-
gorithm for objective functions f(r1, r2, . . . , rH) that satisfy certain technical conditions. Below
we list several motivating examples of objective functions that satisfy these conditions.

1. f(r1, r2, . . . , rH) = min {r1, r2, . . . , rh}: this objective function naturally formalizes se-
quential decision-making problems related to safety concerns, which we have discussed
above.

2. f(r1, r2, . . . , rH) = max {r1, r2, . . . , rh}: this objective function models the maximum
reward-oriented behavior, which has been explicitly studied in the reinforcement learning
literature, e.g., in [68], where the authors used this objective function to model certain
financial problems.

3. f(r1, r2, . . . , rH) = median {r1, r2, . . . , rh}: maximizing cumulative rewards is equiva-
lent to maximizing the mean of the reward values, which is not robust to adversarial per-
turbations and outliers. Maximizing the median or other quantiles of the reward values is
a much more robust objective function, which is often used in situations where one seeks
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a robust solution. For instance, if each reward is collected by a noisy sensor, the median
objective gives a much more robust solution than the mean objective.

4. f(r1, r2, . . . , rH) =
∑K

k=1 r(k) where r(k) represents the k-th largest reward in {rh}Hh=1:
this objective function naturally models problems where the agent has a capacity constraint
so that the agent can only keep the largest K rewards.

Other objective functions have also appeared in previous work [12, 17, 34, 56, 60, 61, 65, 66,
81, 82]. We stress that the goal of this section is not to study specific objective functions, but to
give a characterization on the class of objective functions that admits provably efficient planning
algorithms.

7.1.1 Our Results
Our main result is an efficient algorithm that finds near-optimal policies in tabular deterministic
systems for a wide range of objective functions. We assume there is an objective function f :
RH → R, such that for a sequence of reward values r1, r2, . . . , rH , the objective function f maps
the reward values to an objective value f(r1, r2, . . . , rH). Here H is the planning horizon. We
assume all reward values rh ∈ [0, 1] and the objective value f(r1, r2, . . . , rH) ∈ [0, 1]. Therefore,
we may assume f is a function that maps a vector in [0, 1]H to an objective value in [0, 1].

We focus on the planning problem in tabular deterministic systems with general reward func-
tions, i.e., given a deterministic system, our goal is to output a policy which (approximately)
maximizes the objective function.1 Before stating our results, we first give three conditions on
the objective function that our algorithm requires.
Definition 7.1.1 (Symmetry). For a function f ∈ [0, 1]H → [0, 1], we say f is symmetric if for
any permutation (i1, i2, . . . , iH) of (1, 2, . . . , H) and x ∈ [0, 1]H , we have f(x1, x2, · · · , xH) =
f(xi1 , xi2 , . . . , xiH ).
Definition 7.1.2 (Approximate Homogeneity). Let ε̄, δ̄ ∈ (0, 1). For a function f ∈ [0, 1]H →
[0, 1], we say f satisfies (ε̄, δ̄)-approximate homogeneity if for any x, y ∈ [0, 1]H such that xh ∈
[yh, (1 + δ̄)yh] for all 1 ≤ h ≤ H , we have f(y) ∈ [f(x)− ε̄, f(x) + ε̄].2

Definition 7.1.3 (Insensitivity to Small Entries). Let ε̂, δ̂ ∈ (0, 1). For a function f ∈ [0, 1]H →
[0, 1], we say f is (ε̂, δ̂)-insensitive to small entires if for any x ∈ [0, 1]H we have f(x) ∈

[f(x)− ε̂, f(x) + ε̂], where x is a vector in [0, 1]H such that xh =

{
xh if xh ≥ δ̂

0 otherwise
.

Now we briefly discuss the three conditions that our algorithm requires. The first condition
requires that the objective function f is symmetric under permutation of coordinates. The second
condition requires that, for any input x ∈ [0, 1]H , if one increases each coordinate in x multi-
plicatively by a factor of at most (1 + δ̄), then the error on the objective function f is bounded
by ε̄. The final condition states that, for any input x ∈ [0, 1]H , truncating all entries smaller than

1We remark that in deterministic systems, the planning problem is almost equivalent to the learning problem
(i.e., the agent needs to interact with the environment to learn the transition and the reward), since the agent can
readily reach all state-action pairs and learn the transition and reward using linear number of samples.

2We remark that the condition f(y) ∈ [f(x)− ε̄, f(x) + ε̄] can be changed to f(y) ∈ [(1− ε̄)f(x), (1 + ε̄)f(x)]
so that the error on the objective function value is also multiplicative. Note that the later condition is strictly stronger
since f(x) ≤ 1 for any x ∈ [0, 1]H .
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δ̂ to zero leads to an approximation error of at most ε̂. Given these conditions, now we state our
main algorithmic result.

Theorem 7.1.1 (Informal). Given an objective function f which is symmetric, (ε/4, δ̂)-insensitive
to small entries, and satisfies (ε/4, δ̄)-approximate homogeneity, there is an algorithm that finds
an ε-optimal policy in deterministic systems with time complexityO((|S||A|+T ) ·HΘ(log(1/δ̂)/δ̄))
if evaluating the objective function f on a single input costs T time.

As stated in the theorem, the running time of our algorithm exponentially depends on log(1/δ̂)/δ̄.
However, as we will show in examples given below, δ̂ and δ̄ are often constants if one aims at a
policy with constant additive error, and therefore, our algorithm runs in polynomial time in those
cases. Moreover, Our algorithm accesses the objective function f in a black-box manner and
thus automatically handles a large class of loss functions.

One may ask whether it is possible to remove those conditions in Definition 7.1.1-7.1.3. We
further show that removing any of the three conditions will induce an exponential lower bound
and makes the problem intractable in the worst-case. Therefore, all of our three conditions are
necessary.

Below we give two large families of objective functions that can be handled by our algo-
rithm. We note that these two families of objective functions have already included all examples
mentioned in the introduction.

Symmetric Norm. A symmetric norm is a norm that satisfies the additional property that for
any x ∈ RH , any permutation σ and any assignment of si ∈ {−1, 1}, f(x1, x2, . . . , xn) =
f(s1xσ1 , s2xσ2 , . . . , snxσn). Symmetric norm includes a large class of norms, for example the
`p norm, the top-k norm (the sum of absolute values of the leading k coordinates of a vector),
max-mix of `p norms (e.g. max{‖x‖2, c‖x‖1} for some c > 0), and sum-mix of `p norms (e.g.
‖x‖2 + c‖x‖1 for some c > 0), as special cases. More complicated examples include the k-
support norm [7] and the box-norm [57], which have found applications in sparse recovery.

For any symmetric norm f that satisfies f(x) ∈ [0, 1] for any x ∈ [0, 1]H , f is symmetric,
(ε, ε)-insensitive to small entries and satisfies (ε, ε)-approximate homogeneity. Therefore, when
applying our algorithm to such an objective function f , our algorithm finds an ε-optimal policy in
timeO((|S||A|+T )·HΘ(log(1/ε)/ε)). Thus, our algorithm gives a polynomial-time approximation
scheme (PTAS), i.e., the algorithm runs in polynomial time for any constant ε > 0.

Lipschitz Functions. Recall that a function f : [0, 1]H → [0, 1] is Lipschitz continuous with
respect to the `∞ norm with Lipschitz constant L if for any x, y ∈ RH , |f(x) − f(y)| ≤ L‖x −
y‖∞. Clearly, such function f is (ε, ε/L)-insensitive to small entries and satisfies (ε, ε/L)-
approximate homogeneity. If f is additionally symmetric, then our algorithm finds an ε-optimal
policy in time O((|S||A|+ T ) ·HΘ(log(L/ε)L/ε)). Therefore, for constant L and ε, our algorithm
runs in polynomial time. An important example that satisfies the above conditions is the median
function (or the k-th largest reward for any k), where we have L = 1 and thus our algorithm
gives a PTAS.
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7.2 Algorithm for General Objective Functions
In this section, we present our algorithm which finds an ε-optimal policy for deterministic sys-
tems with general reward functions. Here we assume the objective function f is symmetric,
(ε/4, δ̂)-insensitive to small entries, and satisfies (ε/4, δ̄)-approximate homogeneity. We first
give the high-level ideas of our algorithm. The formal description is given in Algorithm 11. In
Section 7.4, we give the formal analysis of our algorithm.

High-level Ideas. We discretize the reward values, and then find an optimal policy for the
discretized reward values using dynamic programming with augmented state space. Below we
give more details for these two main components of our algorithm.

Discretization. We discretize reward values so that all rewards values are in

{δ̂, δ̂ · (1 + δ̄), δ̂ · (1 + δ̄)2, . . .}

and truncate all reward values less than δ̂ to zero. Formally, for a state-action pair (s, a), the
discretized reward value r̂(s, a) is defined as

r̂(s, a) =

{
0 R(s, a) < δ̂

δ̂ · (1 + δ̄)j R(s, a) ∈ [δ̂ · (1 + δ̄)j, δ̂ · (1 + δ̄)j+1)
. (7.1)

There are two advantages of using such a discretization approach. First of all, there are only
log1+δ̄(1/δ̂) = Θ(log(1/δ̂)/δ̄) different reward values after discretization. Since the running time
of our dynamic programming algorithm depends exponentially on the number of different reward
values, such a discretization approach significantly improves the efficiency of our algorithm.
Moreover, since the reward function f is assumed to be (ε/4, δ̂)-insensitive to small entries
and satisfy (ε/4, δ̄)-approximate homogeneity, the additive error induced by the discretization
approach is upper bounded by ε/2. Therefore, we can find an ε-optimal policy for the original
problem if we can find an optimal policy for the deterministic system with discretized reward
values.

Dynamic Programming. After the discretization step, the state space for possible reward val-
ues has been significantly reduced, and we use a dynamic programming approach to find the
optimal policy. For a policy π and a state s ∈ S , we use V π

h (s) to denote the multiset of reward
values on the trajectory starting from state s induced by policy π at level h. We use V ∗h (s) to
denote the set of all possible multisets of reward values on trajectories induced by all policies at
level h, i.e.,

V ∗h (s) = ∪π{V π
h (s)}.

Qπ
h(s, a) and Q∗h(s, a) are defined analogously. Here, we may safely ignore the order of the

reward values since the objective function f is assumed to be symmetric. Moreover, for each
s ∈ S, the size of V ∗h (s) is upper bounded by HΘ(log(1/δ̂)/δ̄), since for each discretized reward
value r, there are at most H rewards with discretized value r on a trajectory, and there are
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only log1+δ̄(1/δ̂) = Θ(log(1/δ̂)/δ̄) different reward values after the discretization. As shown
in Algorithm 11, V ∗(·) and Q∗(·, ·) can be efficiently calculated, using a Bellman-type dynamic
programming algorithm.

Output the Policy. In order to find a policy for the discretized reward values, we enumerate all
multisets of reward values R ∈ V ∗1 (s1), and find the one with the largest objective value f(R).
In order to output the policy, we start from the initial state s1, find an action a ∈ A such that
R ∈ Q∗h(s, a), remove r̂(s, a) fromR and continue this procedure inductively.

Running Time. The time complexity of our algorithm is dominated by the dynamic program-
ming part for calculating V ∗(·) and Q∗(·, ·). As mentioned above, for each state-action pair
(s, a), the size of Q∗h(s, a) and V ∗h (s) is upper bounded by HΘ(log(1/δ̂)/δ̄). Therefore, the running
time of the dynamic programming part is at mostO(|S||A|·HΘ(log(1/δ̂)/δ̄)). Moreover, in order to
output the policy, we evaluate the objective function f on HΘ(log(1/δ̂)/δ̄) different inputs. Suppose
evaluating the objective function f on a single input costs T time, the total running time of our
algorithm will be

O((|S||A|+ T ) ·HΘ(log(1/δ̂)/δ̄)).

Approximation Guarantee. Under the assumption that the objective function f is symmet-
ric, (ε/4, δ̂)-insensitive to small entries, and satisfies (ε/4, δ̄)-approximate homogeneity, for any
vector r ∈ [0, 1]H , we have

|f(r1, r2, . . . , rH)− f(r̂1, r̂2, . . . , r̂H)| ≤ ε/2,

where for each h ∈ [H], r̂h is the discretized value of rh as defined in Equation (7.1). Since
our algorithm finds the optimal policy with respect to the discretized reward values, the policy π
returned by our algorithm satisfies f(π) ≥ f(π∗)− ε where π∗ is the optimal policy.

7.3 Hardness Results
In this section, we present hardness results to demonstrate the necessity of our assumptions
on the objective function f . Here, we prove that without any of the three assumptions, any
algorithm needs to query the values of f(·) for exponential many different inputs vectors to
find a near-optimal policy. For an algorithm that can handle a family of objective functions,
the query complexity lower bounds the running time of the algorithm. Therefore, our hardness
results demonstrate that all of our three assumptions are necessary to ensure that the problem is
efficiently solvable. Here we provide the high-level ideas of our hardness results, and the formal
proof will be given in later sections.

Hard Instance. In our hard instances, in each level h ∈ [H], there is a single state sh. There
are two actions a1 and a2 in the action space A, and P (sh, a1) = P (sh, a2) = sh+1 for any
1 ≤ h < H .
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Algorithm 11 Deterministic Systems with General Reward Functions
1: for h ∈ [H] do
2: for (s, a) ∈ S ×A do

3: Let Q∗h(s, a) =

{
{{r̂(s, a)}} if h = H

{R ∪ {r̂(s, a)} | R ∈ V ∗h+1(P (s, a))} otherwise
4: Let V ∗h (s) = ∪a∈AQ∗h(s, a)

5: Initialize policy π̄ arbitrarily
6: forR ∈ V ∗1 (s1) do
7: Initialize policy πR arbitrarily
8: LetR1 = R
9: for h ∈ [H] do

10: Let πRh (sh) = a ∈ A such thatRh ∈ Q∗h(sh, a)
11: LetRh+1 = Rh \ {r̂(sh, a)}
12: Let sh+1 = P (sh, π

R(sh))

13: Let π̄ = πR if f(πR) > f(π̄)

14: Return π̄

Necessity of Symmetry. We first show that if the objective function f is insensitive to small
entries, satisfies approximate homogeneity but is not symmetric, then any algorithm still needs to
query exponential number of values of f to find a near-optimal policy, and thus demonstrate the
necessity of the assumption that f is symmetric. Here we have R(s, a1) = 1/2 and R(s, a2) = 1
for any s ∈ S . Now we define the objective function f , which is parameterized by a vector
θ ∈ {1/2, 1}H .

For a vector θ ∈ {1/2, 1}H , we define a function fθ : [0, 1]H → [0, 1]. For a vector x ∈
[0, 1]H , if there exists xh = 0 for some h ∈ [H] then we define fθ(x) = 0. Otherwise,

fθ(x) = min
h∈[H]

min{xh/θh, θh/xh}.

It is easy to verify that for any ε > 0, f satisfies (ε, ε)-approximate homogeneity and is (2ε, ε)-
insensitive to small entries. In the hard instance, the objective function f is set to be fθ, where θ
is one of the 2H vectors in {1/2, 1}H .

Recall that in our hard instance, all rewards values are in {1/2, 1}, and for any x ∈ {1/2, 1}H ,
fθ(x) = 1 if x = θ, and fθ(x) = 1/2 if x 6= θ. Therefore, in order to receive an objective value
of 1, the agent must choose the correct actions for all the H steps, and otherwise the agent will
always receive an objective value of 1/2. Here, the optimal policy is π(sh) = a1 if θh = 1/2 and
π(sh) = a2 if θh = 1. Therefore, the correct actions are fully encoded in the vector θ. However,
there are 2H possible vectors for θ. Therefore, intuitively, in order to find the correct actions for
all the H steps, the agent must enumerate all the 2H possible combinations of actions to figure
out the underlying vector θ, which inevitably induces an exponential query complexity. This
intuition is made formal is the supplementary material using Yao’s minimax principle [104].

Necessity of Approximate Homogeneity. Here we show that if the objective function f is
symmetric, insensitive to small entries but does not satisfy approximate homogeneity, then any
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algorithm still needs to query exponential number of values of f to find a near-optimal policy, and
thus demonstrate the necessity of approximate homogeneity. Here we have R(sh, a1) = (2h +
2H−1)/4H andR(s, a2) = (h+H)/2H for any h ∈ [H]. Now we define the objective function
f , which is parameterized by a vector θ ∈ RH where θh ∈ {(2h + 2H − 1)/4H, (h + H)/2H}
for all h ∈ [H].

For any vector x ∈ [0, 1]H , we use i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H)
such that 0 ≤ xi1 ≤ xi2 ≤ . . . ≤ xiH ≤ 1. We define fθ(x) = 1 if xih = θh for all h ∈ [H],
and fθ(x) = 0 otherwise. Clearly, f is symmetric and (0, ε)-insensitive to small entries for any
ε ≤ 1/2, but does not satisfy approximate homogeneity. In the hard instance, the objective
function f is set to be fθ, where θ is one of the 2H vectors defined above.

In order to receive an objective value of 1, the agent must choose the correct actions for all
the H steps, and otherwise the agent will always receive an objective value of 0, which implies
an exponential query lower bound using the same argument mentioned above.

Necessity of Insensitivity to Small Entries. Here we show that if the objective function f is
symmetric, satisfies approximate homogeneity but is not insensitive to small entries, then any
algorithm still needs to query exponential number of values of f to find a near-optimal policy,
and thus demonstrate the necessity of insensitivity to small entries.

Here we have R(sh, a1) = 2−H(2h−1) and R(sh, a2) = 2−2Hh for any h ∈ [H]. Now we
define the objective function f , which is parameterized by a vector θ ∈ RH where

θh ∈ {2−H(2h−1), 2−2Hh}
for all h ∈ [H].

For a vector θ satisfies the above condition, we define a function fθ : [0, 1]H → [0, 1]. For a
vector x ∈ [0, 1]H , if there exists xh = 0 for some h ∈ [H] then we define fθ(x) = 0. Otherwise,
we use i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H) such that

1 ≥ xi1 ≥ xi2 ≥ . . . ≥ xiH ≥ 0,

and we define
fθ(x) = min

h∈[H]
min{xih/θh, θh/xih}.

It is easy to verify that for any ε > 0, f satisfies (ε, ε)-approximate homogeneity. It is also clear
that f is symmetric. In the hard instance, the objective function f is set to be fθ, where θ is one
of the 2H vectors defined above.

In order to receive an objective value of 1, the agent must choose the correct actions for all
the H steps, and otherwise the agent will receive an objective value of 1/2. The lower bound can
be proved using the same argument as above.

7.4 Proof of Theorem 7.1.1
Recall that for a reward value r, the discretized reward value r̂ is defined as

r̂ =

{
0 r < δ̂

δ̂ · (1 + δ̄)j r ∈ [δ̂ · (1 + δ̄)j, δ̂ · (1 + δ̄)j+1)
.
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We restate Theorem 7.1.1 as follow.
Theorem 7.4.1. Given an objective function f : [0, 1]H → [0, 1] which is symmetric, (ε/4, δ̂)-
insensitive to small entries, and satisfies (ε/4, δ̄)-approximate homogeneity, Algorithm 11 finds
an ε-optimal policy in deterministic systems with time complexity

O((|S||A|+ T ) ·HΘ(log(1/δ̂)/δ̄))

if evaluating the objective function f of a single policy costs T time.

Proof. Let us first consider the running time of Algorithm 11. For each state-action pair (s, a) ∈
S ×A and h ∈ [h], each elementR in Q∗h(s, a) is a multiset of discretized reward values. Since
we only have log(1/δ̂)/δ̄ different discretized reward values and the size of R is at most H ,
the size of Q∗h(s, a) is at most HO(log(1/δ̂)/δ̄). Thus, the running time of the first loop is at most
|S| · |A| ·HO(log(1/δ̂)/δ̄). Since the number of different multisetsR is at mostHO(log(1/δ̂)/δ̄) and we
needH · |A|+T time for each iteration of the second loop of Algorithm 11, we needO(H · |A|+
T ) ·HΘ(log(1/δ̂)/δ̄) time to find π̄. Thus, the total running time is O((|S||A|+ T ) ·HΘ(log(1/δ̂)/δ̄)).

Next, we prove the correctness of the algorithm.

Claim 7.4.1. For any state s ∈ S and h ∈ [H], a multiset R belongs to V ∗h (s) if and only if
there is a trajectory starting from state s at level h whose multiset of discretized reward values is
exactlyR.

Proof. Suppose R ∈ V ∗h (s). We want to show that there is a trajectory starting from s at
level h whose multiset of discretized reward values is exactly R. The proof is by induction
on h ∈ [H]. Consider the base case when h = H . For any sH ∈ S , we have that V ∗H(sH) =⋃
a∈AQ

∗
H(sH , a) =

⋃
a∈A{{r̂(sH , a)}} = {{r̂(sH , a)} | a ∈ A}. Thus, for any R ∈ V ∗H(sH),

there is a trajectory starting from sH whose multiset of discretized reward values is exactly R.
Suppose the claim is true for level h+ 1. Consider a level h and a state s ∈ S . LetR ∈ V ∗h (sh).
According to Algorithm 11, there exists a ∈ A such that R ∈ Q∗h(sh, a). Let sh+1 = P (sh, a).
We know that R \ {r̂(sh, a)} ∈ V ∗h+1(sh+1). By the induction hypothesis, there is a trajectory
starting from sh+1 whose multiset of discretized reward values is exactly R \ {r̂(sh, a)}. Thus,
there exists a trajectory starting from sh whose multiset of discretized reward values is exactly
R.

Suppose there exists a trajectory starting from state s and level hwhose multiset of discretized
reward values is exactly R. We want to show that R ∈ V ∗h (s). The proof is by induction on
h ∈ [H]. Consider the base case when h = H . For any sH ∈ S, we have that V ∗H(sH) =⋃
a∈AQ

∗
H(sH , a) =

⋃
a∈A{{r̂(sH , a)}} = {{r̂(sH , a)} | a ∈ A}. Thus, for any trajectory

starting from sH whose multiset of discretized reward values is exactlyR, we haveR ∈ V ∗H(sH).
Suppose the claim is true for level h + 1. Consider a level h and a state sh ∈ S and a trajectory
sh, ah, r̂h, sh+1, ah+1, r̂h+1, · · · , sH , aH , r̂H starting from sh. Let R = {r̂h, r̂h+1, · · · , r̂H}. By
induction hypothesis, we have R \ {r̂h} ∈ V ∗h+1(sh+1). According to Algorithm 11, we have
R ∈ Q∗h(sh, ah). Thus, we haveR ∈ V ∗h (sh).

Claim 7.4.2. Let s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH be the trajectory induced by policy πR. We
haveR = {r̂1, r̂2, · · · , r̂H}.
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Proof. We prove that for any h ∈ [H], we have Rh ∪ {r̂(si, πR(si)) | i ∈ [h − 1]} = R. The
proof is by induction. For h = 1, it is true sinceR1 = R. Furthermore, by Claim 7.4.1, we know
that there exists a ∈ A such that R1 ∈ Q∗1(s1, a). Suppose the desired claim is true for level
h− 1. In the h-th iteration, we haveRh−1 ∈ Q∗h(sh, πR(sh)) andRh = Rh−1 \ {r̂(sh, πR(sh))}.
Thus, we have R = Rh−1 ∪ {r̂(si, πR(si)) | i ∈ [h − 1]} = Rh ∪ {r̂(si, πR(si)) | i ∈
[h − 1]} ∪ {r̂(sh, πR(sh))} = Rh ∪ {r̂(si, πR(si)) | i ∈ [h]}. Furthermore, by Claim 7.4.1, we
haveRh ∈ V ∗h+1(sh+1).

Notice thatRH = ∅ and thus the desired claim is proved.

Now we formally prove Theorem 7.4.1.
Let s∗1, a

∗
1, r
∗
1, s
∗
2, a
∗
2, r
∗
2, · · · , s∗H , a∗H , r∗H be the trajectory induced by the optimal policy. Let

R∗ = {r∗h | h ∈ [H]}, and R̂ = {r̂h | h ∈ [H]} be the discretized version of R∗. According to
Claim 7.4.1, we know that R̂ ∈ V ∗1 (s1). Let ŝ1, â1, r̂1, ŝ2, â2, r̂2, · · · , ŝH , âH , r̂H be the trajectory
induced by the policy πR̂ with discretized reward values. According to Claim 7.4.2, we have
R̂ = {r̂1, r̂2, · · · , r̂H}. Let ŝ1, â1, r̃1, ŝ2, â2, r̃2, · · · , ŝH , âH , r̃H be the trajectory induced by the
policy πR̂ with original (undiscretized) reward values. Let R̃ = {r̃1, r̃2, · · · , r̃H}. By the choice
of π̄ outputted by Algorithm 11, we have:

f(π̄) ≥ f(πR̂)

= f({r̃1, r̃2, · · · , r̃H})
≥ f

({
r̃h · I[(r̃h ≥ δ̄] | h ∈ [H]

})
− ε/4

≥ f(R̂)− ε/2
≥ f

({
r∗h · I[r∗h ≥ δ̄] | h ∈ [H]

})
− 3 · ε/4

≥ f(R∗)− ε,

where the first step follows from R̂ ∈ V ∗(s1) and the choice of π̄, the third step follows from
that f(·) is (ε/4, δ̄)-insensitive to small entries, the fourth step follows from that f(·) is (ε/4, δ̂)-
approximate homogeneous, the fifth step follows from that f(·) is (ε/4, δ̂)-approximate homo-
geneous and the last step follows from that f(·) is (ε/4, δ̄)-insensitive to small entries.

Thus, π̄ is an ε-optimal policy.

7.5 Proof of Lower Bounds
In this section, we formally prove our lower bounds.
Theorem 7.5.1. There is a family F of objective functions which are (ε, ε)-approximate homo-
geneous and are (2ε, ε)-insensitive to small entires but are not necessarily symmetric, such that
any algorithm which can output a 0.49-optimal policy for any objective function f ∈ F with
probability at least 0.9 needs to query the objective values of at least 0.9 · 2H policies in the
worst case.

Proof. We describe our deterministic system as the following. For each h ∈ [H], there is a state
sh ∈ S. There are two actions, a1 and a2, in the action space A, and P (sh, a1) = P (sh, a2) =
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sh+1 for any 1 ≤ h < H . The reward function satisfies that R(sh, a1) = 1/2 and R(sh, a2) = 1
for h ∈ [H].

For a vector θ ∈ RH , we define a function fθ : [0, 1]H → [0, 1]H , if there exists xh = 0 for
some h ∈ [H] then we define fθ(x) = 0. Otherwise,

fθ(x) = min
h∈[H]

min{xh/θh, θh/xh}.

Let F = {fθ | θ ∈ {1/2, 1}H}. Firstly, we show that for any f ∈ F , f is (ε, ε)-approximate
homogeneous for any ε ≥ 0. Let ε ≥ 0. Consider two vectors x, y ∈ [0, 1]H such that for any
h ∈ [H], xh ∈ [yh, (1 + ε)yh]. For h ∈ [H], if xh ≤ θh, then yh/θh ≤ xh/θh,

yh/θh ≥ xh/θh/(1 + ε) ≥ (1− ε) · (xh/θh) ≥ xh/θh − ε,

and θh/yh ≥ θh/xh ≥ 1. If xh ≥ θh, then θh/yh ≥ θh/xh,

θh/yh ≤ (1 + ε) · θh/xh ≤ θh/xh + ε,

and yh/θh ≥ 1/(1 + ε) ≥ 1 − ε. Thus, fθ(y) ∈ [fθ(x) − ε, fθ(x) + ε]. Next, we show that for
any f ∈ F , f is (2ε, ε)-insensitive to small entries. Let ε ≥ 0. Consider any fθ ∈ F , and any
x ∈ [0, 1]H , h ∈ [H] with xh ≤ ε. If θh = 1, then min{xh/θh, θh/xh} ≤ ε. If θh = 1/2, then
min{xh/θh, θh/xh} ≤ 2ε. Thus, fθ is (2ε, ε)-insensitive to small entries.

Consider an arbitrary vector x ∈ {1/2, 1}H and a function fθ ∈ F . If x = θ, then by the
definition of fθ, we know that fθ(x) = 1. If x 6= θ, let us consider any h ∈ [H] such that
xh 6= θh. If xh = 1/2 and θh = 1, then min{xh/θh, θh/xh} = 1/2. If xh = 1 and θh = 1/2, then
min{xh/θh, θh/xh} = 1/2. Thus, fθ(x) = 1/2 when x 6= θ.

Now consider a policy π and an objective function fθ ∈ F . Let

s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH

be the trajectory induced by π. Let x = (r1, r2, · · · , rH). We know that the optimal policy for fθ
is the policy with x = θ, and in that case we have fθ(π) = 1. For any non-optimal policy π we
know that fθ(π) = 1/2.

Now we prove the desired result. Our proof is by reduction from INDQ2H . Suppose we have
an algorithmM which outputs 0.49-optimal policy for any f ∈ F . We will show that there is a
query algorithm for INDQ2H . In problem INDQ2H , there is an underlying θ∗ ∈ {1/2, 1}H and we
want to find θ∗. We can imagine that the deterministic system has objective function fθ∗ ∈ F and
then we simulateM. Suppose the i-th query policy ofM is π, then we let x = (r1, r2, · · · , rH)
be the reward values induced by π. Then we query whether x = θ∗. If the answer is yes, then
we are done. Otherwise, since fθ∗(x) = 1/2 for x 6= θ∗, we can return an objective value of 1/2
for the i-th query ofM and continue the simulation ofM. SinceM can output a 0.49-optimal
policy with probability at least 0.9, it must output the optimal policy with probability at least
0.9 which means that it can eventually find x = θ∗ with probability at least 0.9. According to
Theorem 5.4.1,M must query at least 0.9 · 2H policies for the worst f ∈ F .

Theorem 7.5.2. There is a family F of objective functions which are symmetric and are (0, ε)-
insensitive to small entires for any ε ≤ 1/2 but are not necessarily approximate homogeneous,
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such that any algorithm which can output a 0.99-optimal policy for any objective function f ∈ F
with probability at least 0.9 needs to query the objective values of at least 0.9 · 2H policies in the
worst case.

Proof. We describe our deterministic system as the following. For each h ∈ [H], there is a state
sh ∈ S. There are two actions, a1 and a2, in the action space A, and P (sh, a1) = P (sh, a2) =
sh+1 for any 1 ≤ h < H . The reward function satisfies that R(sh, a1) = (2H + 2h− 1)/4H and
R(sh, a2) = (2H + 2h)/4H for h ∈ [H].

Now we define fθ, which is parameterized by a vector θ ∈ RH . For any vector x ∈ [0, 1]H ,
we use i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H) such that

0 ≤ xi1 ≤ xi2 ≤ . . . ≤ xiH ≤ 1.

We define fθ(x) = 1 if xih = θh for all h ∈ [H], and fθ(x) = 0 otherwise. Let

F =
{
fθ | θ ∈ RH ,∀h ∈ [H], θh ∈ {(2h+ 2H − 1)/4H, (h+H)/2H}

}
.

By construction, fθ is clearly symmetric. Since for any fθ ∈ F , each entry of θ is greater than
1/2, fθ(x) must be 0 if x has any entry at most 1/2 which implies that fθ is (0, ε)-insensitive to
small entries for any ε ≤ 1/2.

Consider an arbitrary vector x ∈ RH and a function fθ ∈ F . Without loss of generality, we
can assume x1 ≤ x2 ≤ · · · ≤ xH . If x = θ, then fθ(x) = 1. Otherwise, fθ(x) = 0 according to
the definition of fθ.

Now consider a policy π and an objective function fθ ∈ F . Let

s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH
be the trajectory induced by π. Let x = (r1, r2, · · · , rH). We know that the optimal policy for fθ
is the policy with x = θ. For any non-optimal policy π we know that fθ(π) = 0.

Now we prove the desired result. Our proof is by reduction from INDQ2H . Suppose we have
an algorithmM which outputs 0.99-optimal policy for any f ∈ F . We will show that there is a
query algorithm for INDQ2H . In problem INDQ2H , there is an underlying θ∗ ∈ RH satisfying for
any h ∈ [H], θh ∈ {(2H + 2h− 1)/4H, (H + h)/2H} and we want to find θ∗. We can imagine
that the deterministic system has objective function fθ∗ ∈ F and then we simulateM. Suppose
the i-th query policy ofM is π, then we let x = (r1, r2, · · · , rH) be the reward values induced by
π. Due to the construction of our deterministic system, we have r1 ≤ r2 ≤ · · · ≤ rH . Then we
query whether x = θ∗. If the answer is yes, then we are done. Otherwise, since fθ∗(x) = 0 for
x 6= θ∗, we can return an objective value of 0 for the i-th query ofM and continue the simulation
ofM. SinceM can output a 0.99-optimal policy with probability at least 0.9, it must output the
optimal policy with probability at least 0.9 which means that it can eventually find x = θ∗ with
probability at least 0.9. According to Theorem 5.4.1,M must query at least 0.9 · 2H policies for
the worst f ∈ F .

Theorem 7.5.3. There is a family F of objective functions which are symmetric and are (ε, ε)-
approximate homogeneous for any ε ≥ 0 but are not necessarily insensitive to small entries, such
that any algorithm which can output a 0.49-optimal policy for any objective function f ∈ F with
probability at least 0.9 needs to query the objective values of at least 0.9 ·2H policies in the worst
case.
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Proof. We describe our deterministic system as the following. For each h ∈ [H], there is
a state sh ∈ S . There are two actions, a1 and a2, in the action space A, and P (sh, a1) =
P (sh, a2) = sh+1 for any 1 ≤ h < H . The reward function satisfies that R(sh, a1) = 2−H(2h−1)

and R(sh, a2) = 2−2Hh for h ∈ [H].
Now we define fθ, which is parameterized by a vector θ ∈ RH . For any vector x ∈ [0, 1]H ,

we use i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H) such that

1 ≥ xi1 ≥ xi2 ≥ . . . ≥ xiH ≥ 0.

We define

fθ(x) = min
h∈[H]

min(xih/θh, θh/xih).

Let

F =
{
fθ | θ ∈ RH ,∀h ∈ [H], θh ∈ {2−H(2h−1), 2−2Hh}

}
.

By construction, fθ is symmetric. Next, we show that for any f ∈ F , f is (ε, ε)-approximate
homogeneous for any ε ≥ 0. Consider two vectors x, y ∈ [0, 1]H such that for any h ∈ [H], xh ∈
[yh, (1 + ε)yh]. We use i1, i2, . . . , iH to denote a permutation of (1, 2, . . . , H) such that

1 ≥ xi1 ≥ xi2 ≥ . . . ≥ xiH ≥ 0.

We use i′1, i
′
2, . . . , i

′
H to denote a permutation of (1, 2, . . . , H) such that

1 ≥ yi′1 ≥ yi′2 ≥ . . . ≥ yi′H ≥ 0.

We claim that for any h ∈ [H], we have xih ∈ [yi′h , (1+ε)yi′h ]. The reason is as follows. Because

xi′1 ≥ yi′1 ≥ yi′h , xi′2 ≥ yi′2 ≥ yi′h , · · · , xi′h ≥ yi′h ,

the h-th largest value xih in x1, x2, · · · , xH must be at least yi′h . Because

xi′H/(1 + ε) ≤ yi′H ≤ yi′h , xi′H−1
/(1 + ε) ≤ yi′H−1

≤ yi′h , · · · , xi′h/(1 + ε) ≤ yi′h ,

the (H −h+ 1)-th smallest value xih in x1, x2, · · · , xH must be at most (1 + ε)yi′h . For h ∈ [H],
if xih ≤ θh, then yi′h/θh ≤ xih/θh,

yi′h/θh ≥ xih/θh/(1 + ε) ≥ (1− ε) · (xih/θh) ≥ xih/θh − ε,

and θh/yi′h ≥ θh/xih ≥ 1. If xih ≥ θh, then θh/yi′h ≥ θh/xih ,

θh/yi′h ≤ (1 + ε) · θh/xih ≤ θh/xih + ε,

and yi′h/θh ≥ 1/(1 + ε) ≥ 1− ε. Thus, fθ(y) ∈ [fθ(x)− ε, fθ(x) + ε].
Consider an arbitrary vector x ∈ RH satisfying for any h ∈ [H], xh ∈ {2−H(2h−1), 2−2Hh}

and a function fθ ∈ F . It is easy to see that we always have

1 ≥ x1 ≥ x2 ≥ · · · ≥ xH ≥ 0.
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If x = θ, then fθ(x) = 1. Otherwise, consider any h ∈ [H] such that xh 6= θh. If xh =
2−H(2h−1), θh = 2−2Hh, then min(xh/θh, θh/xh) = 2−H . If θh = 2−H(2h−1), xh = 2−2Hh, then
min(xh/θh, θh/xh) = 2−H . Thus, fθ(x) = 2−H if x 6= θ.

Now consider a policy π and an objective function fθ ∈ F . Let

s1, a1, r1, s2, a2, r2, · · · , sH , aH , rH

be the trajectory induced by π. Let x = (r1, r2, · · · , rH). We know that the optimal policy for fθ
is the policy with x = θ. For any non-optimal policy π we know that fθ(π) = 2−H .

Now we prove the desired result. Our proof is by reduction from INDQ2H . Suppose we have
an algorithmM which outputs 0.49-optimal policy for any f ∈ F . We will show that there is
a query algorithm for INDQ2H . In problem INDQ2H , there is an underlying θ∗ ∈ RH satisfying
for any h ∈ [H], θh ∈ {2−H(2h−1), 2−2Hh} and we want to find θ∗. We can imagine that the
deterministic system has objective function fθ∗ ∈ F and then we simulateM. Suppose the i-th
query policy ofM is π, then we let x = (r1, r2, · · · , rH) be the reward values induced by π. By
our construction of the deterministic system we have 1 ≥ r1 ≥ r2 ≥ · · · ≥ rH ≥ 0. Then we
query whether x = θ∗. If the answer is yes, then we are done. Otherwise, since fθ∗(x) = 2−H for
x 6= θ∗, we return an objective value of 2−H for the i-th query ofM and continue the simulation
ofM. SinceM can output a 0.49-optimal policy with probability at least 0.9, it must output the
optimal policy with probability at least 0.9 which means that it can eventually find x = θ∗ with
probability at least 0.9. According to Theorem 5.4.1,M must query at least 0.9 · 2H policies for
the worst f ∈ F .
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Chapter 8

Reward-Free Exploration with Linear
Function Approximation

8.1 Introduction

In RL, an agent repeatedly interacts with an unknown environment to maximize the cumulative
reward. To achieve this goal, RL algorithms must be equipped with exploration mechanisms to
effectively solve tasks with long horizons and sparse reward signals. Empirically, there is a host
of success by combining deep RL methods with different exploration strategies. However, the
theoretical understanding of exploration in RL by far is rather limited.

In this section we study the reward-free exploration setting which was formalized in the
recent work by [39]. There are two phases in the reward-free setting: the exploration phase
and the planning phase. During the exploration phase, the agent collects trajectories from an
unknown environment without any pre-specified reward function. Then, in the planning phase,
a specific reward function is given to the agent, and the goal is to use samples collected during
the exploration phase to output a near-optimal policy for the given reward function. From a
practical point of view, this paradigm is particularly suitable for 1) the offline RL setting where
data collection and planning are explicitly separated and 2) the setting where there are multiple
reward function of interest, e.g., constrained RL [2, 83]. From a theoretical point view, this
setting separates the exploration problem and the planning problem which allows one to handle
them in a theoretically principled way, in contrast to the standard RL setting where one needs to
deal with both problems simultaneously.

Key in this framework is to collect a dataset with sufficiently good coverage over the state
space during the exploration phase, so that one can apply a offline RL algorithm on the dataset [3,
6, 16, 62] during the planning phase. For the reward-free exploration setting, existing theoretical
works only apply to the tabular RL setting. [39] showed that in the tabular setting where the
state space has bounded size, Õ(poly(|S||A|H)/ε2) samples during the exploration phase is
necessary and sufficient in order to output ε-optimal policies in the planning phase. Here, |S| is
the number of states, |A| is the number of actions and H is the planning horizon.

The sample complexity bound in [39], although being near-optimal in the tabular setting,
can be unacceptably large in practice due to the polynomial dependency on the size of the state
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space. For environments with a large state space, function approximation schemes are needed
for generalization. RL with linear function approximation is arguably the simplest yet most
fundamental setting. Clearly, in order to understand more general function classes, e.g., deep
neural networks, one must understand the class of linear functions first. In this section, we
study RL with linear function approximation in the reward-free setting, and our goal is to answer
the following question: is it possible to design provably efficient RL algorithms with linear
function approximation in the reward-free setting? We obtain both a polynomial upper bound
and a hardness result to the above question.

Our Results. Our first contribution is a provably efficient algorithm for reward-free exploration
under the linear MDP assumption [40, 102], which, roughly speaking, requires both the transition
operators and the reward functions to be linear functions of a d-dimensional feature extractor
given to the agent. See Assumption 8.2.1 for the formal statement of the linear MDP assumption.
Our algorithm, formally presented in Section 8.3, samples Õ(poly(H, d, 1/ε)) trajectories during
the exploration phase, and outputs ε-optimal policies for an arbitrary number of reward functions
satisfying Assumption 8.2.1 during the planning phase with high probability. Here d is the feature
dimension, H is the planning horizon and ε is the desired accuracy.

One may wonder whether is possible to further weaken the linear MDP assumption, since
it requires the feature extractor to encode model information, and such feature extractor might
be hard to construct in practice. Our second contribution is a hardness result for reward-free
exploration under the linear Q∗ assumption, which only requires the optimal value function to
be a linear function of the given feature extractor and thus weaker than the linear MDP assump-
tion. Our hardness result shows that under the linear Q∗ assumption, any algorithm requires
exponential number of samples during the exploration phase, so that the agent could output a
near-optimal policy during the planning phase with high probability. The hardness result holds
even when the MDP is deterministic.

Our results highlight the following conceptual insights.
• Reward-free exploration might require the feature to encode model information. Un-

der model-based assumption (linear MDP assumption), there exists a polynomial sample
complexity upper bound for reward-free exploration, while under value-based assumption
(linear Q∗ assumption), there is an exponential sample complexity lower bound. There-
fore, the linear Q∗ assumption is strictly weaker than the linear MDP assumption in the
reward-free setting.

• Reward-free exploration could be exponentially harder than standard RL. For deter-
ministic systems, under the assumption that the optimal Q-function is linear, there exists
a polynomial sample complexity upper bound [98] in the standard RL setting. However,
our hardness result demonstrates that under the same assumption, any algorithm requires
exponential number of samples in the reward-free setting.

• Simulators could be exponentially more powerful. In the setting where the agent has
sampling access to a generative model (a.k.a. simulator) of the MDP, the agent can query
the next state s′ sampled from the transition operator given any state-action pair as input.
In the supplementary material, we show that for deterministic systems, under the linear Q∗

assumption, there exists a polynomial sample complexity upper bound in the reward-free
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setting when the agent has sampling access to a generative model. Compared with the
hardness result above, this upper bound demonstrates an exponential separation between
the sample complexity of reward-free exploration in the generative model and that in the
standard RL model. To the best our knowledge, this is the first exponential separation
between the standard RL model and the generative model for a natural question.

8.2 Notations and Background

8.2.1 Notations
In this chapter, for a specific set of reward functions r = {rh}Hh=1 where rh : S × A → [0, 1]
for each h ∈ [H], given a policy π, a level h ∈ [H] and a state-action pair (s, a) ∈ S × A, the
Q-function is defined as

Qπ
h(s, a, r) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, ah = a, π

]
.

Similarly, the value function of a given state s ∈ S is defined as

V π
h (s, r) = E

[
H∑

h′=h

rh′(sh′ , ah′) | sh = s, π

]
.

For a specific set of reward functions r = {rh}Hh=1 where rh : S × A → [0, 1] for each h ∈ [H],
We use π∗r to denote an optimal policy with respect to r, i.e., π∗r is a policy that maximizes

E

[
H∑
h=1

rh(sh, ah) | π

]
.

We also denote Q∗h(s, a, r) = Q
π∗r
h (s, a, r) and V ∗h (s, r) = V

π∗r
h (s, r). We say a policy π is

ε-optimal with respect to r if

E

[
H∑
h=1

rh(sh, ah) | π

]
≥ E

[
H∑
h=1

rh(sh, ah) | π∗r

]
− ε.

Throughout this chapter, when r is clear from the context, we may omit r from Qπ
h(s, a, r),

V π
h (s, r), Q∗h(s, a, r), V ∗h (s, r) and π∗r .

8.2.2 Linear Function Approximation
When applying linear function approximation schemes, it is commonly assumed that the agent
is given a feature extractor φ : S × A → Rd which can either be hand-crafted or a pre-trained
neural network that transforms a state-action pair to a d-dimensional embedding, and the model
or theQ-function can be predicted by linear functions of the features. In this section, we consider
two different kinds of assumptions: a model-based assumption (linear MDP) and a value-based
assumption (linear Q∗).
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Linear MDP. The following linear MDP assumption, which was first introduced in [40, 102],
states that the model of the MDP can be predicted by linear functions of the given features.
Assumption 8.2.1 (Linear MDP). An MDP is said to be a linear MDP if the followings hold:

1. there are d unknown signed measures µ = (µ(1), µ(2), . . . , µ(d)) such that for any (s, a, s′) ∈
S ×A× S, P (s′ | s, a) = 〈µ(s′), φ (s, a)〉;

2. there exists an unknown vector η ∈ Rd such that for any (s, a) ∈ S × A, R(s, a) =
〈φ(s, a), η〉.

As in [40], we assume ‖φ(s, a)‖2 ≤ 1 for all (s, a) ∈ S ×A, ‖µ(S)‖2 ≤
√
d, and ‖η‖2 ≤

√
d.

Linear Q∗. The following linear Q∗ assumption, which is a common assumption in the the-
oretical RL literature (see e.g. [24, 26]), states that the optimal Q-function can be predicted by
linear functions of the given features.
Assumption 8.2.2 (Linear Q∗). An MDP M satisfies the linear Q∗ assumption if there exist H
unknown vectors θ1, θ2, . . . , θH ∈ Rd such that for any (s, a) ∈ S ×A, Q∗h(s, a) = 〈φ(s, a), θh〉.
We assume ‖φ(s, a)‖2 ≤ 1 and ‖θh‖2 ≤

√
d for all (s, a) ∈ S ×A and h ∈ [H].

We note that Assumption 8.2.2 is weaker than Assumption 8.2.1. Under Assumption 8.2.1,
it can be shown that for any policy π, Qπ

h(·, ·) is a linear function of the given feature extractor
φ(·, ·). In this section, we show that Assumption 8.2.2 is strictly weaker than Assumption 8.2.1
in the reward-free setting, meaning that reward-free exploration under Assumption 8.2.2 is expo-
nentially harder than that under Assumption 8.2.1.

8.2.3 Reward-Free Exploration

In the reward-free setting, the goal is to design an algorithm that efficiently explore the state space
without the guidance of reward information. Formally, there are two phases in the reward-free
setting: exploration phase and planning phase.

Exploration Phase. During the exploration phase, the agent interacts with the environment
for K episodes. In the k-th episode, the agent chooses a policy πk which induces a trajectory.
The agent observes the states and actions sk1, a

k
1, s

k
2, a

k
2, . . . , s

k
h, a

k
h as usual, but does not observe

any reward values. After K episodes, the agent collects a dataset of visited state-actions pairs
D = {(skh, akh)}(k,h)∈[K]×[H] which will be used in the planning phase.

Planning Phase. During the planning phase, the agent is no longer allowed to interact with
the MDP. Instead, the agent is given a reward function R : S × A → [0, 1] is the deterministic
reward function, and the goal here is to output an ε-optimal policy with respect to R using the
collected dataset D.

To measure the performance of an algorithm, we define the sample complexity to be the
number of episodes K required in the exploration phase to output an ε-optimal policy in the
planning phase.
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Algorithm 12 Reward-Free Exploration for Linear MDPs: Exploration Phase
1: Input: Failure probability δ > 0 and target accuracy ε > 0
2: β ← cβ · dH

√
log(dHδ−1ε−1) for some cβ > 0

3: K ← cK · d3H6 log(dHδ−1ε−1)/ε2 for some cK > 0
4: for k = 1, 2, . . . K do
5: Qk

H+1(·, ·)← 0 and V k
H+1(·) = 0

6: for h = H,H − 1, . . . , 1 do
7: Λk

h ←
∑k−1

τ=1 φ(sτh, a
τ
h)φ(sτh, a

τ
h)
> + I

8: ukh(·, ·)← min
{
β ·
√
φ(·, ·)>(Λk

h)
−1φ(·, ·), H

}
9: Define the exploration-driven reward function rkh(·, ·)← ukh(·, ·)/H

10: wkh ← (Λk
h)
−1
∑k−1

τ=1 φ(sτh, a
τ
h) · V k

h+1(sτh+1)
11: Qk

h(·, ·)← min{(wkh)>φ(·, ·) + rkh(·, ·) + ukh(·, ·), H} and V k
h (·) = maxa∈AQ

k
h(·, a)

12: πkh(·)← argmaxa∈AQ
k
h(·, a)

13: Receive initial state sk1 ∼ µ
14: for h = 1, 2, . . . H do
15: Take action akh ← πk(skh) and observe skh+1 ∼ P (skh, a

k
h)

16: return D ← {(skh, akh)}(k,h)∈[K]×[H]

Algorithm 13 Reward-Free Exploration for Linear MDPs: Planning Phase
1: Input: Dataset D = {(skh, akh)}(k,h)∈[K]×[H], reward function R
2: QH+1(·, ·)← 0 and VH+1(·) = 0
3: for step h = H,H − 1, . . . , 1 do
4: Λh ←

∑K
τ=1 φ(sτh, a

τ
h)φ(sτh, a

τ
h)
> + I

5: Let uh(·, ·)← min
{
β ·
√
φ(·, ·)>(Λh)−1φ(·, ·), H

}
6: wh ← (Λh)

−1
∑K

τ=1 φ(sτh, a
τ
h) · Vh+1(sτh+1, a)

7: Qh(·, ·)← min{(wh)>φ(·, ·) +R(·, ·) + uh(·, ·), H} and Vh(·) = maxa∈AQh(·, a)
8: πh(·)← argmaxa∈AQh(·, a)

9: Return π = {πh}h∈[H]

8.3 Reward-Free Exploration for Linear MDPs

In this section, we present our reward-free exploration algorithm under the linear MDP assump-
tion. The exploration phase of the algorithm is presented in Algorithm 12, and the planning
phase is presented in Algorithm 13.

Exploration Phase. During the exploration phase of the algorithm, we employ the least-square
value iteration (LSVI) framework introduced in [40]. In each episode, we first update the param-
eters (Λh, wh) that are used to calculate the Q-functions, and then execute the greedy policy
with respect to the updated Q-function to collect samples. As in [40], to encourage exploration,
Algorithm 12 adds an upper-confidence bound (UCB) bonus function uh.
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The main difference between Algorithm 12 and the one in [40] is the definition of the
exploration-driven reward function. Since the algorithm in [40] is designed for the standard
RL setting, the agent can obtain reward values by simply interacting with the environment. On
the other hand, in the exploration phase of the reward-free setting, the agent does not have
any knowledge about the reward function. In our algorithm, in each episode, we design an
exploration-driven reward function which is defined to be rh(·, ·) = uh(·, ·)/H , where uh(·, ·) is
the UCB bonus function defined in Line 8. Note that we divide uh(·, ·) by H so that rh(·, ·) al-
ways lies in [0, 1]. Intuitively, such a reward function encourages the agent to explore state-action
pairs where the amount of uncertainty (quantified by uh(·, ·)) is large. After sufficient number of
episodes, the uncertainty of all state-action pairs should be low on average, since otherwise the
agent would have visited those state-action pairs with large uncertainty as guided by the reward
function.

Planning Phase. After the exploration phase, the returned dataset contains sufficient amount
of information for the planning phase. In the planning phase (Algorithm 13), for each step
h = H,H − 1, . . . , 1, we optimize a least squares predictor to predict the Q-function, and return
the greedy policy with respect to the predicted Q-function. During the planning phase, we still
add an UCB bonus function uh(·, ·) to guarantee optimism and thus correctness of the algorithm.
However, as mentioned above and will be made clear in the analysis, since the agent has acquired
sufficient information during the exploration phase, uh(·, ·) should be small on average, which
implies the returned policy is near-optimal.

8.3.1 Analysis
In this section we present the analysis of our algorithm. We first give the formal theoretical
guarantee of our algorithm.
Theorem 8.3.1. After collectingO (d3H6 log(dHδ−1ε−1)/ε2) trajectories during the exploration
phase, with probability 1− δ, our algorithm outputs an ε-optimal policy for an arbitrary number
of reward functions satisfying Assumption 8.2.1 during the planning phase.

Now we show how to prove Theorem 8.3.1. Our first lemma shows that the estimated value
functions V k are optimistic with high probability, and the summation of V k

1 (sk1) should be small.
Lemma 8.3.2. With probability 1− δ/2, for all k ∈ [K],

V ∗1 (sk1, r
k) ≤ V k

1 (sk1)

and
K∑
k=1

V k
1 (sk1) ≤ c

√
d3H4K · log(dKH/δ)

for some constant c > 0 where V k
1 (·) is as defined in Algorithm 12.

Note that the definition of the exploration driven reward function rk used in the k-th episode
depends only on samples collected during the first k− 1 episodes. Therefore, the first part of the
proof is nearly identical to that of Theorem 3.1 in [40]. To prove the second part of the lemma, we
first recursively decompose V k

1 (sk1) (similar to the standard regret decomposition for optimistic
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algorithms), and then use the fact that rh(·) = uh(·)/H and the elliptical potential lemma in [1]
to given an upper bound on

∑K
k=1 V

k
1 (sk1). The formal proof is provided in the supplementary

material.
Our second lemma shows that with high probability, if one divides the bonus function uh(·, ·)

(defined in Line 5 in Algorithm 13) byH and uses it as a reward function, then the optimal policy
has small cumulative reward on average.
Lemma 8.3.3. With probability 1−δ/4, for the function uh(·, ·) defined in Line 5 in Algorithm 13,
we have

Es∼µ [V ∗1 (s, uh/H)] ≤ c′
√
d3H4 · log(dKH/δ)/K

for some absolute constant c′ > 0.

To prove Lemma 8.3.3, we first note that Es∼µ
[∑K

k=1 V
∗

1 (s, rk)
]

is close to
∑K

k=1 V
∗

1 (sk1, r
k)

by Azuma–Hoeffding inequality and
∑K

k=1 V
∗

1 (sk1, r
k) can be bounded by using Lemma 8.3.2.

Moreover, for Λh defined in Line 4 in Algorithm 13, we have Λh � Λk
h for all k ∈ [K] where

Λk
h is defined in Line 7 in Algorithm 12, which implies uh(·, ·)/H ≤ rkh(·, ·) for all k ∈ [K].

Therefore, we have
Es∼µ [V ∗1 (s, uh/H)] ≤ Es∼µ

[
V ∗1 (s, rk)

]
for all k ∈ [K], which implies the desired result.

Our third lemma states the estimated Q-function is always optimistic, and is upper bounded
by R(·, ·) +

∑
s′ P (s′ | ·, ·)Vh+1(s′) plus the UCB bonus function uh(·, ·). The lemma can be

proved using the same concentration argument as in [40].
Lemma 8.3.4. With probability 1− δ/2, for any reward function R satisfying Assumption 8.2.1
and all h ∈ [H], we have

Q∗h(·, ·, R) ≤ Qh(·, ·) ≤ R(·, ·) +
∑
s′

P (s′ | ·, ·)Vh+1(s′) + 2uh(·, ·).

Now we sketch how to prove Theorem 8.3.1 by combining Lemma 8.3.3 and Lemma 8.3.4.
Note that With probability 1− δ, the events defined in Lemma 8.3.3 and Lemma 8.3.4 both hold.
Conditioned on both events, we have

Es∼µ[V ∗1 (s, R)− V π
1 (s, R)] ≤ Es∼µ[V1(s)− V π

1 (s, R)]

≤Es∼µ[V π
1 (s, u)] ≤ Es∼µ[V ∗1 (s, u)] ≤ c′H

√
d3H4 · log(dKH/δ)/K,

where the first inequality follows by Lemma 8.3.4, the second inequality follows by Lemma 8.3.4
and decomposing the V -function recursively, the third inequality follows by the definition of V ∗,
and the last inequality follows by Lemma 8.3.3.

8.3.2 Missing Proofs in Section 8.3.1
In this section, for all (k, h) ∈ [K]× [H], we denote

φkh := φ(skh, a
k
h).
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In Algorithm 12 and 13, we recall that

β = cβdH
√

log(dH/δ/ε).

Since K = cK · d3H6 log(dHδ−1ε−1)/ε2, we have

β ≥ cβdH
√

log(dHK/δ)

for appropriate choices of cβ and cK .

8.3.2.1 Proof of Lemma 8.3.2

To prove Lemma 8.3.2, we need a concentration lemma similar to Lemma B.3 in [40].
Lemma 8.3.5. Suppose Assumption 8.2.1 holds. Let E be the event that for all (k, h) ∈ [K]×[H],∥∥∥∥∥

k−1∑
τ=1

φτh

(
V k
h+1(sτh+1)−

∑
s′∈S

P (s′|sτh, aτh)V k
h+1(s′)

)∥∥∥∥∥
(Λkh)−1

≤ c · dH
√

log(dKH/δ)

for some absolute constant c > 0. Then Pr[E ] ≥ 1− δ/4.

Proof. The proof is nearly identical to that of Lemma B.3 in [40]. The only deference in our
case is that we have a different reward functions at different episodes. However, note that in our
case

rkh(·, ·) = ukh(·, ·)/H

and hence

rkh(·, ·) + ukh(·, ·) = (1 + 1/H) ·min

{
β ·
√
φ(·, ·)>(Λk

h)
−1φ(·, ·), H

}
.

Thus our value function V k
h+1 is of the form

V (·) := min
{

max
a
w>φ(·, a) + β · (1 + 1/H) ·

√
φ(·, a)>Λ−1φ(·, a), H

}
for some Λ ∈ Rd×d, and w ∈ Rd. Therefore, the value function shares exactly the same function
class as that in Lemma D.6 in [40]. The rest of the proof follow similarly.

We are now ready to prove Lemma 8.3.2.

Proof of Lemma 8.3.2. In our proof, we condition on the event E defined in Lemma 8.3.5, which
holds with probability at least 1− δ/4. Since P (s′|s, a) = φ(s, a)>µh(s

′), we have∑
s′∈S

P (s′|s, a)V k
h+1(s′) = φ(s, a)>w̃kh

where
w̃kh :=

∑
s′∈S

µh(s
′)V k

h+1(s′)
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is an unknown vector. By Assumption 8.2.1,
∑

s′∈S µh(s
′) ≤
√
d. Therefore,

‖w̃kh‖2 ≤ H
√
d.

We thus have, for all (h, k) ∈ [H]× [K] and (s, a) ∈ S ×A,

φ(s, a)>wkh −
∑
s′∈S

P (s′ | s, a)>V k
h+1(s′)

=φ(s, a)>(Λk
h)
−1

k−1∑
τ=1

φτh · V k
h+1(sτh+1)−

∑
s′∈S

P (s′|s, a)V k
h+1(s′)

=φ(s, a)>(Λk
h)
−1

(
k−1∑
τ=1

φτhV
k
h+1(sτh+1)− Λk

hw̃
k
h

)

=φ(s, a)>(Λk
h)
−1

(
k−1∑
τ=1

φτhV
k
h+1(sτh+1)− w̃kh −

k−1∑
τ=1

φτh(φ
τ
h)
>w̃kh

)

=φ(s, a)>(Λk
h)
−1

(
k−1∑
τ=1

φτh

(
V k
h+1(sτh+1)−

∑
s′

P (s′|sτh, aτh)V k
h+1(s′)

)
− w̃kh

)
.

We have,∣∣∣∣∣φ(s, a)>(Λk
h)
−1

(
k−1∑
τ=1

φτh

(
V k
h+1(sτh+1)−

∑
s′

P (s′|sτh, aτh)V k
h+1(s′)

))∣∣∣∣∣
=

∣∣∣∣∣φ(s, a)>(Λk
h)
−1/2(Λk

h)
−1/2

(
k−1∑
τ=1

φτh

(
V k
h+1(sτh+1)−

∑
s′

P (s′|sτh, aτh)V k
h+1(s′)

))∣∣∣∣∣
≤‖φ(s, a)‖(Λkh)−1 ·

∥∥∥∥∥
k−1∑
τ=1

φτh

(
V k
h+1(sτh+1)−

∑
s′

P (s′|sτh, aτh)V k
h+1(s′)

)∥∥∥∥∥
(Λkh)−1

.

By Lemma 8.3.5, we have

∣∣∣∣∣φ(s, a)>(Λk
h)
−1

(
k−1∑
τ=1

φτh

(
V k
h+1(sτh+1)−

∑
s′

P (s′|sτh, aτh)V k
h+1(s′)

))∣∣∣∣∣
≤cdH

√
log(dKH/δ) · ‖φ(s, a)‖(Λkh)−1 .

Moreover, we have

∣∣φ(s, a)>(Λk
h)
−1w̃kh

∣∣ ≤ ‖φ(s, a)‖(Λkh)−1 · ‖w̃kh‖(Λkh)−1 ≤ ‖φ(s, a)‖(Λkh)−1 ·H
√
d.
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Therefore, we have∣∣∣∣∣φ(s, a)>wkh −
∑
s′∈S

P (s′ | s, a)V k
h+1(s′)

∣∣∣∣∣
≤cdH

√
log(dKH/δ) · ‖φ(s, a)‖(Λkh)−1 + ‖φ(s, a)‖(Λkh)−1 ·H

√
d

≤cβdH
√

log(dKH/δ) · ‖φ(s, a)‖(Λkh)−1

=β · ‖φ(s, a)‖(Λkh)−1 .

Now we prove the first part of the lemma.

First Part. Our proof is by induction on h. Indeed, for h = H + 1, it holds that for all s ∈ S,

V ∗H+1(s, rk) ≤ V k
H+1(s)

since V ∗H+1 = V k
H+1 = 0. Suppose for some h ∈ [H], it holds that for all s ∈ S,

V ∗h+1(s, rk) ≤ V k
h+1(s).

Then we have

V ∗h (s, rk) = max
a∈A

(
rkh(s, a) +

∑
s′∈S

P (s′ | s, a)V ∗h+1(·, rk)

)

≤max
a∈A

(
rkh(s, a) +

∑
s′∈S

P (s′ | s, a)V k
h+1(s′, rk)

)
.

Notice that for all (s, a) ∈ S ×A,∑
s′∈S

P (s′ | s, a)>V k
h+1(s′, rk) ≤ φ(s, a)>wkh + β · ‖φ(s, a)‖(Λkh)−1 .

We have

V ∗h (s, rk) ≤ min

{
max
a∈A

(
rkh(s, a) + φ(s, a)>wkh + β · ‖φ(s, a)‖(Λkh)−1

)
, H

}
= V k

h (s)

as desired.

Second Part. To prove the second part, for all (k, h) ∈ [K]× [H − 1], we denote

ξkh =
∑
s′∈S

P (s′|skh, akh)V k
h+1(s′)− V k

h+1(skh+1).
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Conditioned on E ,

K∑
k=1

V k
1 (sk1) ≤

K∑
k=1

(
rk1(sk1, a

k
1) + φ(sk1, a

k
1)>wkh + β · ‖φ(sk1, a

k
1)‖(Λk1)−1

)
=

K∑
k=1

(
φ(sk1, a

k
1)>wkh + (1 + 1/H) · β · ‖φ(sk1, a

k
1)‖(Λk1)−1

)
≤

K∑
k=1

(∑
s′∈S

P (s′|sk1, ak1)V k
2 (s′) + (2 + 1/H) · β · ‖φ(sk1, a

k
1)‖(Λk1)−1

)

≤
K∑
k=1

(
ξk1 + V k

2 (sk2) + (2 + 1/H) · β · ‖φ(sk1, a
k
1)‖(Λk1)−1

)
≤ . . .

≤
K∑
k=1

H−1∑
h=1

ξkh +
K∑
k=1

H∑
h=1

(2 + 1/H) · β · ‖φ(skh, a
k
h)‖(Λkh)−1 .

Note that for each h ∈ [H − 1], {ξkh}Kk=1 is a martingale difference sequence with |ξkh| ≤ H .
Define E ′ to be the even that ∣∣∣∣∣

K∑
k=1

H−1∑
h=1

ξkh

∣∣∣∣∣ ≤ c′H2
√
K log(KH/δ).

By Azuma–Hoeffding inequality, we have Pr[E ′] ≥ 1− δ/4.
Next, we have,

K∑
k=1

H∑
h=1

‖φ(skh, a
k
h)‖(Λkh)−1 ≤

√√√√KH
K∑
k=1

H∑
h=1

φ(skh, a
k
h)
>(Λk

h)
−1φ(skh, a

k
h).

By Lemma D.2 in [40], we have

H∑
h=1

K∑
k=1

φ(skh, a
k
h)
>(Λk

h)
−1φ(skh, a

k
h) ≤ 2dH log(K).

Conditioned on E ∩ E ′ which holds with probability at least 1− δ/2, we have

K∑
k=1

V k
1 (sk1) ≤ c′H2

√
K log(KH/δ) + (2 + 1/H) · β ·

√
KH · 2dH log(K)

≤ c
√
d3H4K · log(dKH/δ)

for some absolute constant c > 0.
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8.3.2.2 Proof of Lemma 8.3.3

Proof of Lemma 8.3.3. We denote ∆k = V ∗1 (sk1, r
k)−Es∼µ[V ∗1 (s, rk)]. Since rk depends only on

data collected during the first k−1 episodes, {∆k}Kk=1 is a martingale difference sequence. More-
over, |∆k| ≤ H almost surely. Thus, by Azuma-Hoeffding inequality, we have, with probability
at least 1− δ/8, there exists an absolute constant c1 > 0, such that∣∣∣∣∣

K∑
k=1

∆k

∣∣∣∣∣ ≤ c1H
√
K log(1/δ),

which we condition on in the rest of the proof. Therefore, we have,

Es∼µ

[
K∑
k=1

V ∗1 (s, rk)

]
≤

K∑
k=1

V ∗1 (s, rk) + c1H
√
K log(1/δ).

Next, we notice that for all k ∈ [K],
Λh � Λk

h.

Hence we have for all (k, h) ∈ [K]× [H],

rkh(·, ·) ≥ uh(·, ·)/H.

Hence
V ∗1 (·, uh/H) ≤ V ∗1 (·, rkh).

Together with Lemma 8.3.2, we have

Es∼µ
[
V ∗1 (s, uh/H)

]
≤ Es∼µ

[
K∑
k=1

V ∗1 (s, rk)/K

]
≤ K−1

K∑
k=1

V ∗1 (sk1, r
k) + c1H

√
log(1/δ)/K

≤ c′
√
d3H4 · log(dKH/δ)/K

for some absolute constant c′ > 0.

8.3.2.3 Proof of Lemma 8.3.4

Proof of Lemma 8.3.4. Using the same argument in the proof of Lemma 8.3.2, with probability
at least 1− δ/4, for all h ∈ [H] and (s, a) ∈ S ×A, we have∣∣∣∣∣φ(s, a)>wh −

∑
s′∈S

P (s′ | s, a)Vh+1(s′)

∣∣∣∣∣ ≤ β · ‖φ(s, a)‖(Λh)−1 .

Therefore, for all h ∈ [H] and (s, a) ∈ S ×A,

Qh(s, a) ≤ (wh)
>φ(s, a) +R(s, a) + uh(s, a)

≤R(s, a) +
∑
s′∈S

P (s′ | s, a)Vh+1(s′) + 2β · ‖φ(s, a)‖(Λh)−1 .
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Moreover, Qh(s, a) ≤ H . Since uh(·, ·) = min
{
β ·
√
φ(·, ·)>(Λh)−1φ(·, ·), H

}
, we have

Qh(s, a) ≤ R(s, a) +
∑
s′

P (s′ | s, a)Vh+1(s′) + 2uh(s, a).

Now we prove for all h ∈ [H] and (s, a) ∈ S × A, Q∗h(s, a, R) ≤ Qh(s, a). We prove by
induction on h. When h = H+1 this is clearly true. Suppose for some h ∈ [H],Q∗h+1(s, a, R) ≤
Qh+1(s, a) for all (s, a) ∈ S ×A. We have

Qh(s, a) = min{(wh)>φ(s, a) +R(s, a) + uh(s, a), H}.

Since Q∗h+1(s, a, R) ≤ H and uh(·, ·) = min
{
β ·
√
φ(·, ·)>(Λh)−1φ(·, ·), H

}
, it suffices to

prove that
Q∗h+1(s, a, R) ≤ (wh)

>φ(s, a) +R(s, a) + β · ‖φ(s, a)‖(Λh)−1 .

By the induction hypothesis,

φ(s, a)>wh ≥
∑
s′∈S

P (s′ | s, a)Vh+1(s′)− β · ‖φ(s, a)‖(Λh)−1

≥
∑
s′∈S

P (s′ | s, a)V ∗h+1(s′, r)− β · ‖φ(s, a)‖(Λh)−1 .

Therefore,

Q∗h(s, a, R) = R(s, a) +
∑
s′∈S

P (s′ | s, a)V ∗h+1(s′, R)

≥ (wh)
>φ(s, a) +R(s, a) + β · ‖φ(s, a)‖(Λh)−1 .

8.3.2.4 Proof of Theorem 8.3.1

Proof of Theorem 8.3.1. In our proof we condition on the events defined in Lemma 8.3.3 and
Lemma 8.3.4 which hold with probability at least 1− δ. By Lemma 8.3.4, for any s ∈ S,

V1(s) = max
a∈A

Q1(s, a) ≥ max
a∈A

Q∗1(s, a, R) = V ∗1 (s, R),

which implies

Es1∼µ[V ∗1 (s1, R)− V π
1 (s1, R)] ≤ Es1∼µ[V1(s1)− V π

1 (s1, R)].

Note that

Es1∼µ[V1(s1)− V π
1 (s1, R)]

=Es1∼µ[Q(s1, π1(s1))−Qπ
1 (s1, π1(s1), R)]

=Es1∼µ,s2∼P (·|s1,π1(s1))[R(s1, π1(s1)) + V2(s2) + u1(s1, π(s1))−R(s1, π1(s1))− V π
2 (s2)]

=Es1∼µ,s2∼P (·|s1,π1(s1))[V2(s2) + u1(s1, π(s1))− V π
2 (s2)]

=Es1∼µ,s2∼P (·|s1,π1(s1)),s3∼P (·,|s2,π2(s2))[u1(s1, π(s1)) + u2(s2, π(s2)) + V3(s3)− V π
3 (s3)]

= . . .

=Es∼µ[V π
1 (s, u)].
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By definition of V ∗1 (s, u), we have

Es∼µ[V π
1 (s, u)] ≤ Es∼µ[V ∗1 (s, u)].

By Lemma 8.3.3,

Es∼µ[V ∗1 (s, u)] = H · Es∼µ[V ∗1 (s, u/H)] ≤ c′H
√
d3H4 · log(dKH/δ)/K.

By taking K = cK · d3H6 log(dHδ−1ε−1)/ε2 for a sufficiently large constant cK > 0, we have

Es1∼µ[V ∗1 (s1, R)− V π
1 (s1, R)] ≤ H · Es∼µ[V ∗1 (s, u/H)] ≤ c′H

√
d3H4 · log(dKH/δ)/K ≤ ε,

which implies π is ε-optimal with respect to R.

8.4 Lower Bound for Reward-Free Exploration under Linear
Q∗ Assumption

Now we focus on hardness results for reward-free exploration under the linear Q∗ assumption.
We show that there exists a class of MDPs which satisfies Assumption 8.2.2, such that any
reward-free exploration algorithm requires exponential number of samples during the exploration
phase in order to find a near-optimal policy during the planning phase. In particular, we prove
the following theorem.
Theorem 8.4.1. There exists a class of deterministic systems that satisfy Assumption 8.2.2 with
d = poly(H), such that any reward-free algorithm requires at least Ω(2H) samples during the
exploration phase in order to find a 0.1-optimal policy with probability at least 0.9 during the
planning phase for a given reward function R.

Since deterministic systems are special cases of general MDPs, the hardness result in Theo-
rem 8.4.1 applies to general MDPs as well. In the remaining part of this section, we describe the
construction of the hard instance and outline the proof of Theorem 8.4.1.

1

2 3

6 74 5

+ -

+ -

Figure 8.1: An illustration of the hard instance with H = 5. Black states and dashed transitions
are those on the optimal trajectory s∗1, a

∗
1, s
∗
2, a
∗
2, . . . , s

∗
H−1, a

∗
H−1, s

∗
H , a

∗
H .
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State Space and Action Space. In the hard instance, there are H levels of states

S = S1 ∪ S2 ∪ . . . ∪ SH

where Sh contains all states that can be reached in level h. The action space A = {0, 1}. For
each h ∈ [H − 2], we represent each state in Sh by an integer in [2h−1, 2h), i.e., S1 = {1},
S2 = {2, 3}, S3 = {4, 5, 6, 7}, etc. We also have SH−1 = {s+

H−1, s
−
H−1} and SH = {s+

H , s
−
H}.

The initial states is 1 ∈ S1.

Transition. For each h ∈ [H − 3], for each s ∈ Sh, P (s, a) is fixed and thus known to the
algorithm. In particular, for each h ∈ [H−3], for each s ∈ Sh, we define P (s, a) = 2s+a ∈ Sh+1

where a ∈ {0, 1}. We will define the transition operator for those states s ∈ SH−2∪SH−1 shortly.

Feature Extractor. For each h ∈ [H − 2], for each (s, a) ∈ Sh×A, we define φ(s, a) ∈ Rd so
that ‖φ(s, a)‖2 = 1 and for any (s′, a′) ∈ Sh×A\{(s, a)}, we have | (φ(s, a))> φ(s′, a′)| ≤ 0.01.
In the formal proof, we use the Johnson–Lindenstrauss Lemma [41] to show that such feature
extractor exists if d = poly(H).

For all states s ∈ SH−1, we define

φ(s, a) =


[1, 0, 0, . . . , 0]> s = s+

H−1, a = 0

[0, 1, 0, . . . , 0]> s = s+
H−1, a = 1

[0, 0, 0, . . . , 0]> s = s−H−1

.

Finally, for all states s ∈ SH , we define

φ(s, a) =

{
[1, 0, 0, . . . , 0]> s = s+

H , a = 0

[0, 0, 0, . . . , 0]> otherwise
.

The Hard MDPs. By Yao’s minimax principle [104], to prove a lower bound for randomized
algorithms, it suffices to define a hard distribution and show that any deterministic algorithm fails
for the hard distribution. We now define the hard distribution. We first define the transition oper-
ator P (s, a) for those states s ∈ SH−2. To do this, we first pick a state-action pair (s∗H−2, a

∗
H−2)

from SH−2 ×A uniformly at random, and define

P (s, a) =

{
s+
H−1 s = s∗H−2, a = a∗H−2

s−H−1 otherwise
.

To define the transition function P (s, a) for those states s ∈ SH−1, we pick a random action
a∗H−1 from {0, 1} uniformly at random, and define

P (s, a) =

{
s+
H s = s+

H−1, a = a∗H−1

s−H otherwise
.
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The Reward Function. We now define the optimal Q-function which automatically implies a
reward function R. During the planning phase, the agent will receive R as the reward function.
By construction, there exists a unique trajectory

s∗1, a
∗
1, s
∗
2, a
∗
2, . . . , s

∗
H−1, a

∗
H−1, s

∗
H , a

∗
H

with (s∗H , a
∗
H) = (s+

H , 0). For each h ∈ [H], we define θh in Assumption 8.2.2 as φ(s∗h, a
∗
h)/2.

This implies that for each (s, a) ∈ SH ×A,

R(s, a) = Q∗H(s, a) =

{
0.5 s = s∗H , a = a∗H
0 otherwise

.

For each (s, a) ∈ SH−1 ×A, we have

Q∗H−1(s, a) =

{
0.5 s = s∗H−1, a = a∗H−1

0 otherwise
,

which implies that R(s, a) = 0 for all (s, a) ∈ SH−1 × A. Now for each h ∈ [H − 2], for each
(s, a) ∈ Sh ×A, we define

R(sh, ah) = Q∗h(sh, ah)−max
a∈A

Q∗h+1(P (sh, ah), a)

so that the Bellman equations hold. Moreover, by construction, for each h ∈ [H], we have
Q∗h(s, a) = 0.5 when (s, a) = (s∗h, a

∗
h), and |Q∗h(s, a)| ≤ 0.01 when (s, a) 6= (s∗h, a

∗
h) and thus

R(·, ·) ∈ [−0.02, 0.5].1

Proof of Hardness. Now we sketch the final proof of the hardness result. We define E to be
the event that for all (s, a) ∈ D where D are the state-action pairs collected by the algorithm,
we have s 6= s∗H−1 = s+

H−1. For any deterministic algorithm, we claim that if the algorithm
samples at most 2H/100 trajectories during the exploration phase, with probability at least 0.9
over the randomness of the distribution of MDPs, E holds. This is because the feature extractor
is fixed and thus the algorithm receives the same feedback before reaching s+

H−1. Since there are
2H−2 state-action pairs (s, a) ∈ SH−2 × A and only one of them satisfies P (s, a) = s+

H−1, and
the algorithm samples at most 2H/100 trajectories during the exploration phase, E holds with
probability at least 0.9.

Now during the planning phase, by construction of the optimal Q-function, the only 0.1-
optimal policy is πh(s∗h) = a∗h. However, conditioned on E , any deterministic algorithm correctly
output πH−1(s∗H−1) = a∗H−1 with probability at most 0.5, since conditioned on E , D does not
contain s∗H−1, and the reward function R also does not depend on a∗H−1. Therefore, during the
planning phase of the algorithm, a 0.1-optimal policy is found with probability at most 0.6 < 0.9.

1Note that this is slightly different from the assumption that R(·, ·) ∈ [0, 1]. However, this can be readily fixed
by shifting all reward values by 0.02.
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8.4.1 Missing Proofs
In the hard instance construction, for each h ∈ [H − 2], for each (s, a) ∈ Sh × A, we de-
fine φ(s, a) ∈ Rd so that ‖φ(s, a)‖2 = 1 and for any (s′, a′) ∈ Sh × A \ {(s, a)}, we have
| (φ(s, a))> φ(s′, a′)| ≤ 0.01. The following lemma demonstrates the existence of such feature
extractor.
Lemma 8.4.2. There exists a set of vectors {φ1, φ2, . . . , φ2H} ⊂ Rd with d = poly(H) such that

1. ‖φi‖ = 1 for all i ∈ [2H ];
2. |φ>i φj| ≤ 0.01 for all i, j ∈ [2H ] with i 6= j.

Proof. This is a direct implication of Lemma 5.4.2 by setting n = 2H and ε = 0.01.

Note that the above lemma implies the existence of the required feature exactor, since for
each h ∈ [H − 2], there are less than 2H state-action pairs in Sh × A. We simply define the
feature of the i-th state-action pair in Sh ×A to be φi in the above lemma.

Proof of Theorem 8.4.1. In order to prove Theorem 8.4.1, by Yao’s minimax principle [104], it
suffices to prove that for the hard distribution constructed in Section 8.4, for any deterministic
algorithm A that samples at most 2H/100 trajectories during the exploration phase, the proba-
bility (over the randomness of the hard distribution) that A outputs a 0.1-optimal policy in the
planning phase is at most 0.9.

We first show that for the deterministic algorithmA, among all the 2H−2 choices for (s∗H−2, a
∗
H−2),

s+
H−1 is in the collected dataset D for at most 2H/100 choices for (s∗H−2, a

∗
H−2) during the ex-

ploration phase. Note that whenever (sH−2, aH−2) 6= (s∗H−2, a
∗
H−2), we must have sH−1 = s−H−1

and sH = s−H . Therefore, the feedback received by A is always the same unless (sH−2, aH−2) =
(s∗H−2, a

∗
H−2). However, since A samples at most 2H/100 trajectories during the exploration

phase, there are most 2H/100 choices for (s∗H−2, a
∗
H−2) during the exploration phase for which

s+
H−1 is in the collected dataset D.

Recall thatA is deterministic. For any choice of (s∗H−2, a
∗
H−2), if s+

H−1 is not in the collected
dataset D, the collected dataset D is always the same, no matter a∗H−1 = 0 or a∗H−1 = 1. More-
over, for any fixed choice of (s∗H−2, a

∗
H−2), it can be verified that the reward function R does

not depend on the choice of a∗H−1. Note that during the planning phase, algorithm A determin-
istically maps the collected dataset D and the reward function R to a policy. Furthermore, the
only 0.1-optimal policy must satisfy π(s∗h) = a∗h. However, for any choice of (s∗H−2, a

∗
H−2), if

s+
H−1 is not in the collected datasetD, π(s∗H−1) does not depend on a∗H−1 since both the collected

dataset D and the reward function R does not depend on a∗H−1. Therefore, for those choices
of (s∗H−2, a

∗
H−2), A outputs a 0.1-optimal policy with probability at most 0.5. Therefore, the

probability that A outputs a 0.1-optimal policy is at most

2H/100

2H−2
+

(
1− 2H/100

2H−2

)
/2 ≤ 0.6.
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Part IV

Conclusion
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Chapter 9

Conclusion and Future Directions

In this thesis, to build a better understanding of modern RL methods, we studied three challenges
in RL problems. Below we describe a list of interesting questions that remain open given our
results.

Theory of RL. While we have made progress towards understanding the theory of RL, there
are still many unsolved fundamental questions. For example, although we have shown that tab-
ular RL is possible with a sample complexity that is independent of the planning horizon, to
achieve such a result, the sample complexity will be exponential in the number of states. Is that
possible to design a tabular RL algorithm whose sample complexity is completely independent
of the planning horizon and also depends only polynomially on the number of states, or there
are statistical limits that prevent us from doing that? For RL with large state spaces, all existing
positive results rely on assumptions that are hard to verify in practice. Is that possible to design
algorithms that only rely on assumptions that can be easily verified? Answering such a question
might require first understanding the properties of features learned by practical RL algorithms.

Theoretically-Principled RL Systems and Benchmark Suites. We plan to build more ef-
ficient and more robust RL systems and benchmark suites based on the theoretical insights.
Currently, we are investigating how to design a better representation learning process for RL.
Existing RL algorithms largely treat deep neural networks as black-boxes and use the same set
of training algorithms as in supervised learning. However, as demonstrated in this thesis, the
definition of a good representation in RL could be significantly different from that in super-
vised learning. Thus, better representation learning methods could be beneficial for practical RL
systems. Moreover, many existing offline RL datasets are collected under a distribution that con-
tains a large fraction from the target policy itself. As demonstrated by our theoretical analysis
and experimental results, such a dataset may substantially limit the methodology to only testing
algorithms in a low distribution shift regime. We are currently building a new dataset that has
example transitions from a diverse set of states, while trajectories in the dataset do not resemble
the target policy. With such a dataset, we can now test existing algorithms in a more realistic
setting. We believe such a benchmark suite could be beneficial for future offline RL research.
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