
Equilibrium Finding for Large Adversarial
Imperfect-Information Games

Noam Brown

CMU-CS-20-132

September 2020

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee:
Tuomas Sandholm, Chair

Geoff Gordon
Ariel Procaccia

Satinder Singh, University of Michigan
Michael Wellman, University of Michigan

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy.

Copyright c© 2020 Noam Brown

This research was sponsored by Facebook, the US army under grant number W911NF1610061, the Open Philan-
thropy Fellowship, the Tencent Fellowship, and the National Science Foundation under grant numbers IIS-0964579,
CCF-1101668, IIS-1320620, IIS-1546752, IIS-1617590, and IIS-1718457. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Keywords: Artificial Intelligence, Machine Learning, Game Theory, Equilibrium Find-
ing, Regret Minimization, No-Regret Learning, Imperfect-Information Games, Reinforcement
Learning, Deep Reinforcement Learning, Multi-Agent Reinforcement Learning

To my family.

iv

Abstract
Imperfect-information games model strategic interactions involving multiple

agents with private information. A typical goal in this setting is to approximate
an equilibrium in which all agents’ strategies are optimal. This thesis describes a
number of advances in the computation of equilibria in large adversarial imperfect-
information games. Together, these new techniques made it possible for the first time
for an AI agent to defeat top human professionals in full-scale poker, which had for
decades served as a grand challenge problem in the fields of AI and game theory.

We begin by introducing faster equilibrium-finding algorithms based on coun-
terfactual regret minimization (CFR), an iterative algorithmic framework that con-
verges to a Nash equilibrium in two-player zero-sum games. We describe new
variants of CFR that use discounting to dramatically speed up convergence. These
discounting variants are now the state-of-the-art equilibrium-finding algorithms for
large adversarial imperfect-information games. We also describe theoretically sound
pruning techniques that can speed up CFR by orders of magnitude in large games.
Additionally, we introduce the first general technique for warm starting CFR.

Next, we describe new ways to scale CFR to extremely large games via au-
tomated abstraction and function approximation. In particular, we introduce the
first provably locally optimal algorithm for discretizing continuous action spaces in
imperfect-information games. We extend this into an algorithm that converges to an
equilibrium even in games with continuous action spaces. We also introduce Deep
CFR, a form of CFR that uses neural network function approximation rather than
bucketing-based abstractions. Deep CFR was the first non-tabular form of CFR to
scale to large games and enables CFR to be deployed in settings with little domain
knowledge.

We also present new search techniques for imperfect-information games that en-
sure the agent’s search strategy cannot be exploited by an adversary. These new
forms of search outperform past approaches both in theory and in practice. We
describe how these search techniques were used in the construction of Libratus to
defeat top humans in two-player no-limit poker for the first time. Additionally, we
introduce a method for depth-limited search that is orders of magnitude more effi-
cient than prior approaches. We describe how this depth-limited search technique
was incorporated into Pluribus, which defeated top human professionals in multi-
player poker for the first time. Finally, we present an algorithm that combines deep
reinforcement learning with search at both training and test time, which takes a ma-
jor step toward bridging the gap between research on perfect-information games and
imperfect-information games.

vi

Preface
Section 3.4 on dynamic thresholding was a collaboration with Christian Kroer.

Christian Kroer conducted experiments on dynamic thresholding with the excessive
gap technique.

Section 4.1 on Deep CFR was a collaboration with Adam Lerer and Sam Gross.
Adam Lerer and Sam Gross designed the architecture for the neural network used in
the experiments, handled the training of the neural network based on the generated
data, contributed key improvements to the Deep CFR algorithm, proved Theorem 13,
and helped with running the experiments.

Section 5.2 on depth-limited search via multi-valued states was a collaboration
with Brandon Amos. Brandom Amos designed the architecture for the neural net-
work used in the experiments and handled the training of the neural network based
on the generated data.

Section 5.3 on ReBeL was a collaboration with Anton Bakhtin, Adam Lerer,
and Qucheng Gong. Anton Bakhtin designed the architecture for the neural network
used in the experiments, handled the training of the neural network for poker based
on the generated data, developed the infrastructure for scaling the experiments to
multiple machines, wrote the entirety of the open-sourced code for Liar’s Dice, and
contributed key improvements to the ReBeL algorithm. Adam Lerer contributed
key improvements to the ReBeL algorithm and proved Theorem 23, Theorem 24,
and Theorem 25. Qucheng Gong developed the initial neural network architecture
and developed the initial neural network training framework for poker given the
generated data.

Tartanian7 and Claudico were both collaborations with Sam Ganzfried. Sam
Ganzfried developed the abstractions, the endgame solver, the client-server interface,
and contributed to the planning for both agents.

Tartanian7 and Claudico were developed on the Blacklight Supercomputer at
the Pittsburgh Supercomputing Center, with key support provided by John Urbanic.
Baby Tartanian8 was developed using the Comet Supercomputer at the San Diego
Supercomputer Center. Libratus and Pluribus were developed on the Bridges Super-
computer at the Pittsburgh Supercomputing Center.

All of the research in this thesis, with the exception of ReBeL in Section 5.3,
was a collaboration with my advisor Tuomas Sandholm.

viii

Acknowledgments
I would first like to thank my advisor Tuomas Sandholm. Tuomas patiently

guided me through the research process, including several late-night pizza-fueled
paper writing sessions. Without that guidance, my PhD would surely not have been
as successful.

I am also fortunate to have collaborated with several others throughout my PhD:
Sam Ganzfried, Christian Kroer, Gabriele Farina, Brandom Amos, Adam Lerer, Sam
Gross, Anton Bakhtin, and Qucheng Gong. Without them, this research would not
be possible.

I would also like to thank the wider computer poker research community, whose
research forms the foundation on which this thesis is built and who have been more
than happy to help me become familiar with the background material: Michael
Bowling, Johnny Hawkin, Michael Johanson, Neil Burch, Nolan Bard, Kevin Waugh,
Marc Lanctot, Eric Jackson, Tim Reiff, and many others. Thank you also to Jimmy
Chou, Dong Kim, Jason Les, Bjorn Li, Daniel MacAulay, Doug Polk, Seth Davies,
Michael Gagliano, Anthony Gregg, Linus Loeliger, Greg Merson, Nicholas Pe-
trangelo, Sean Ruane, Trevor Savage, and Jacob Toole for your years of studying
poker and effort in battling against Claudico, Libratus, and Pluribus, which allowed
us to measure our bots against the best of what humanity has to offer.

I am grateful for the help that Rob Fergus, Geoff Gordon, Zico Kolter, Ariel
Procaccia, Satinder Singth, and Michael Wellman provided in navigating the chal-
lenges of academia. I also greatly appreciate the flexibility and responsiveness of
Deb Cavlovich, Catherine Copetas, and the rest of the CMU administrative staff
during my time at CMU.

During my several years in Pittsburgh, I was lucky to have been surrounded by
wonderful colleagues and friends. Thank you all for sharing afternoon tea with me,
for the many games of Avalon and Hanabi, for the Canadian Thanksgiving celebra-
tions, and for the summer twilight barbecues. All of you made my time in Pittsburgh
a wonderful experience.

I was very fortunate to have worked with Jason Solomon and Matthew Urbaniak
during and after my undergraduate education. The financial security I gained from
that job allowed me to make the risky choice of pursuing a career in research, and
allowed me to pay tuition for my first semester as a Masters student at Carnegie
Mellon. Without that financial security, I would have chosen a different path.

Finally, a very special thank you to my parents Michael and Nurit, and to my
whole family, for always supporting me and for always encouraging me to pursue
my passion.

x

"And that’s why there’s never going to be a computer that can play world-class
poker. It’s a people game." –Doyle Brunson, Super/System, 1979

"The analysis of a more realistic poker game than our very simple model should be
quite an interesting affair." –John Forbes Nash, 1951

xii

Contents

1 Introduction 1

2 Notation and Background 5
2.1 Imperfect-Information Extensive-Form Games 5
2.2 Nash Equilibrium . 6
2.3 Regret Minimization . 9

2.3.1 Regret Matching . 9
2.3.2 Regret Matching+ . 10
2.3.3 Hedge . 11
2.3.4 Equilibrium convergence of no-regret learning algorithms in games . . . 11
2.3.5 Counterfactual Regret Minimization (CFR) 12
2.3.6 Monte Carlo Counterfactual Regret Minimization (MCCFR) 13
2.3.7 Counterfactual Regret Minimization+ (CFR+) 15
2.3.8 Comparison to other equilibrium-finding algorithms 15
2.3.9 Proofs of Theoretical Results . 16

2.4 Benchmark Imperfect-Information Games . 16
2.4.1 Leduc Hold’em Poker . 16
2.4.2 Limit Texas Hold’em Poker . 17
2.4.3 No-Limit Texas Hold’em Poker . 18
2.4.4 Flop Texas Hold’em . 18
2.4.5 Goofspiel . 18
2.4.6 Liar’s Dice . 19

3 Equilibrium Finding via Counterfactual Regret Minimization 21
3.1 Faster Convergence with Discounted CFR (DCFR) 22

3.1.1 Weighted Averaging Schemes for CFR+ 22
3.1.2 Regret Discounting for CFR and Its Variants 22
3.1.3 Experimental setup . 24
3.1.4 Experiments on Regret Discounting and Weighted Averaging 25
3.1.5 Discounted Monte Carlo CFR . 26
3.1.6 Conclusions . 30
3.1.7 Proofs of Theoretical Results . 30

3.2 Strategy-Based Warm Starting of CFR . 32
3.2.1 Further Details on CFR . 33

xiii

3.2.2 Warm-Starting Algorithm . 33
3.2.3 Choosing the Number of Warm-Start Iterations 36
3.2.4 Choosing Substitute Counterfactual Values 36
3.2.5 Experiments . 37
3.2.6 Conclusions . 41
3.2.7 Proofs of Theoretical Results . 41

3.3 Regret-Based Pruning (RBP) . 46
3.3.1 Applying Best Response to Zero-Reach Sequences 47
3.3.2 Description of Regret-Based Pruning 48
3.3.3 Best Response Calculation for Regret-Based Pruning 50
3.3.4 Regret-Based Pruning with DCFR and CFR+ 51
3.3.5 Experiments . 52
3.3.6 Comparison of Minimum Skip Thresholds 53
3.3.7 Conclusions . 54
3.3.8 Proofs of Theoretical Results . 54

3.4 Dynamic Thresholding . 55
3.4.1 Dynamic Thresholding . 55
3.4.2 Regret-Based Pruning for Hedge . 56
3.4.3 Experiments . 57
3.4.4 Conclusions . 59
3.4.5 Proofs of Theoretical Results . 59

3.5 Best-Response Pruning (BRP) . 62
3.5.1 Description of Best-Response Pruning 63
3.5.2 Best-Response Pruning Requires Less Space 66
3.5.3 Best-Response Pruning Converges Faster 67
3.5.4 Experiments . 67
3.5.5 Conclusions . 68
3.5.6 Proofs of Theoretical Results . 70

4 Automated Abstraction for Imperfect-Information Games 75
4.1 Deep Counterfactual Regret Minimization . 76

4.1.1 Description of Deep Counterfactual Regret Minimization 77
4.1.2 Experimental Setup . 78
4.1.3 Experimental Results . 81
4.1.4 Conclusions . 82
4.1.5 Proofs of Theoretical Results . 85

4.2 Regret Transfer and Parameter Optimization . 91
4.2.1 Regret Transfer: Initializing Regrets of Actions Based on Regrets Com-

puted for Related Settings . 92
4.2.2 Warm Start Toward Nash Equilibrium in Zero-Sum Games 94
4.2.3 Generalization to Extensive-Form Games 95
4.2.4 Regret Transfer Experiments . 95
4.2.5 Parameter Optimization . 96
4.2.6 Parameter Optimization Experiments 99

xiv

4.2.7 Conclusions . 101
4.2.8 Proofs of Theoretical Results . 102

4.3 Simultaneous Abstraction and Equilibrium Finding 107
4.3.1 Adding Actions to an Abstraction . 108
4.3.2 Adding Actions with Regret Transfer 111
4.3.3 Computing Exploitability in Games with Continuous Action Spaces . . . 112
4.3.4 Where and When to Add Actions? . 113
4.3.5 Removing Actions from an Abstraction 114
4.3.6 Experiments . 115
4.3.7 Conclusions . 115
4.3.8 Proofs of Theoretical Results . 117

5 Search for Imperfect-Information Games 121
5.1 Safe and Nested Search . 121

5.1.1 Example Game: Coin Toss . 122
5.1.2 Prior Approaches to Search in Imperfect-Information Games 123
5.1.3 Reach Search . 127
5.1.4 Estimates for Alternative Payoffs . 130
5.1.5 Distributional Alternative Payoffs . 131
5.1.6 Hedge for Distributional Search . 133
5.1.7 Nested Search . 133
5.1.8 Experiments . 134
5.1.9 Conclusions . 137
5.1.10 Description of Gadget Game . 138
5.1.11 Scaling of Gifts . 138
5.1.12 Proofs of Theoretical Results . 140

5.2 Depth-Limited Search via Multi-Valued States 144
5.2.1 The Challenge of Depth-Limited Search in Imperfect-Information Games 145
5.2.2 Multi-Valued States in Imperfect-Information Games 146
5.2.3 Experiments . 149
5.2.4 Conclusions . 152
5.2.5 Proofs of Theoretical Results . 152

5.3 Depth-Limited Search and Deep Reinforcement Learning via Public Belief States 153
5.3.1 Notation and Background . 154
5.3.2 From World States to Public Belief States 155
5.3.3 Self Play Reinforcement Learning and Search for Public Belief States . . 158
5.3.4 Safe Search with Public Belief States 160
5.3.5 Experiments . 161
5.3.6 Conclusions . 163
5.3.7 Pseudocode for ReBeL . 164
5.3.8 Fictitious Linear Optimistic Play . 164
5.3.9 CFR-AVG: CFR Decomposition using Average Strategy 166
5.3.10 Hyper parameters . 169
5.3.11 Proofs of Theoretical Results . 171

xv

5.4 Comparison of Search via Multi-Valued States versus Public Belief States 177

6 Empirical Evaluation via Poker AI Agents 179
6.1 Tartanian7 . 179
6.2 Claudico . 180
6.3 Baby Tartanian8 . 181
6.4 Libratus . 183
6.5 Modicum . 187
6.6 Pluribus . 189
6.7 ReBeL . 193

7 Conclusions and Future Research 197

Bibliography 201

xvi

List of Figures

2.1 An example of the equilibrium selection problem. In the Lemonade Stand
Game, players simultaneously choose a point on a ring and want to be as far away
as possible from any other player. In every Nash equilibrium with more than two
players, players are spaced uniformly around the ring. There are infinitely many
such Nash equilibria. However, if each player independently chooses one Nash
equilibrium to play, their joint strategy profile is unlikely to be a Nash equilib-
rium. Left: An illustration of three different Nash equilibria in this game, dis-
tinguished by three different colors. Right: Each player independently chooses
one Nash equilibrium. Their joint strategy is not a Nash equilibrium. 8

3.1 Convergence in HUNL Subgame1. 26
3.2 Convergence in HUNL Subgame2. 27
3.3 Convergence in HUNL Subgame 3. 27
3.4 Convergence in HUNL Subgame 4. 28
3.5 Convergence in 5-card Goofspiel variant. 28
3.6 Convergence of MCCFR in HUNL Subgame 3. 29
3.7 Convergence of MCCFR in HUNL Subgame 4. 29
3.8 Comparison of CFR vs warm starting every iteration. The results shown are the

average over 64 different 100x100 normal-form games. 38
3.9 Comparison of CFR vs warm starting after 100, 500, or 2500 iterations. We

warm started to 97, 490, and 2310 iterations, respectively. We used λ = 0.08, 0.05, 0.02
respectively (using the same λ for both players). 39

3.10 Performance of full-game CFR when warm started. The MCCFR run uses an
abstraction with 5,000 buckets on the flop. After six core minutes of the MCCFR
run, its average strategy was used to warm start CFR in the full to T = 70 using
λ = 0.08. 40

3.11 Actual convergence of CFR compared to a projection of convergence based on
the first 10 iterations of CFR. 40

3.12 Comparison of different choices for λ when warm starting (using the same λi for
both players). 41

3.13 Top: Exploitability vs Nodes Touched. Bottom: Exploitability vs Iterations. . . . 49
3.14 Top: Exploitability. Bottom: Nodes touched per iteration. 53
3.15 A comparison of minimum thresholds for estimated number of iterations pruned

for RBP in CFR (left) and CFR+ (right) . 54

xvii

3.16 Performance of EGT, CFR with Hedge, and CFR with RM on Leduc and Leduc-
5. CFR with Hedge is shown without any pruning (vanilla Hedge), with dynamic
thresholding, and with RBP. EGT is shown without any pruning (vanilla EGT)
and with dynamic thresholding. CFR with RM is shown with partial pruning
(vanilla RM) and with RBP. Dynamic thresholding on RM resulted in identical
performance to vanilla RM, and is therefore not shown separately. 57

3.17 Varying the aggressiveness of dynamic thresholding. 58

3.18 Convergence and space required for CFR using RM and RM+ with best-response
pruning in Leduc hold’em. The y-axis on the top graph is linear scale. 69

3.19 Convergence and space required for CFR using RM and RM+ with best-response
pruning in Leduc-5. The y-axis on the top graph is linear scale. 70

3.20 Convergence for partial pruning, regret-based pruning, and best-response prun-
ing in Leduc. “CFR - No Prune” is CFR without any pruning. 71

3.21 Convergence for partial pruning, regret-based pruning, and best-response prun-
ing in Leduc-5. “CFR - No Prune” is CFR without any pruning. 71

4.1 The neural network architecture used for Deep CFR. The network takes an infoset (ob-
served cards and bet history) as input and outputs values (advantages or probability log-
its) for each possible action. 81

4.2 Comparison of Deep CFR with domain-specific tabular abstractions and NFSP in FHP.
Coarser abstractions converge faster but are more exploitable. Deep CFR converges with
2-3 orders of magnitude fewer samples than a lossless abstraction, and performs com-
petitively with a 3.6 million cluster abstraction. Deep CFR achieves lower exploitability
than NFSP, while traversing fewer infosets. 83

4.3 Left: FHP convergence for different numbers of training data collection traversals per
simulated LCFR iteration. The dotted line shows the performance of vanilla tabular
Linear CFR without abstraction or sampling. Middle: FHP convergence using different
numbers of minibatch SGD updates to train the advantage model at each LCFR iteration.
Right: Exploitability of Deep CFR in FHP for different model sizes. Label indicates the
dimension (number of features) in each hidden layer of the model. 84

4.4 Ablations of Deep CFR components in FHP. Left: As a baseline, we plot 5 replicates of
Deep CFR, which show consistent exploitability curves (standard deviation at t = 450 is
2.25 mbb/g). Deep CFR without linear weighting converges to a similar exploitability,
but more slowly. If the same network is fine-tuned at each CFR iteration rather than
training from scratch, the final exploitability is about 50% higher. Also, if the algorithm
plays a uniform strategy when all regrets are negative (i.e. standard regret matching),
rather than the highest-regret action, the final exploitability is also 50% higher. Right: If
Deep CFR is performed using sliding-window memories, exploitability stops converging
once the buffer becomes full. However, with reservoir sampling, convergence continues
after the memories are full. 84

xviii

4.5 Regret transfer after increasing the bet size in both rounds of Leduc hold’em by
0.1. The average over 20 runs is shown with 95% confidence intervals. The
warm start provides a benefit that is equivalent to about 125,000 iterations. In
the long run, that benefit becomes visually almost imperceptible on the log scale.
Unlike transferring regret without scaling, our method does not cause long-term
harm. 96

4.6 Parameter optimization where θ is the second-round bet size in Leduc hold’em. . 99
4.7 Parameter optimization where θ1 is the first-round bet size in Leduc, and θ2 is

the second-round bet size. 100
4.8 Parameter optimization where θ is the first action bet size in no-limit Texas

hold’em. Runs with four different initializations are shown. The learning rate
was s

3
4 . For initializations at 0.5 and 1, α = 0.3. For initializations at 1.5 and

2.0, α = 1.0. 101
4.9 Top: Full game exploitability. Bottom: Abstraction size. 116

5.1 (a) The example game of Coin Toss. “C” represents a chance node. S is a Player 2 (P2)
subgame. The dotted line between the two P2 nodes means that P2 cannot distinguish
between them. (b) The public game tree of Coin Toss. The two outcomes of the coin flip
are only observed by P1. 123

5.2 The blueprint we refer to in the game of Coin Toss. The Sell action leads to a subgame
that is not displayed. Probabilities are shown for all actions. The dotted line means the
two P2 nodes share an infoset. The EV of each P1 action is also shown. 124

5.3 The augmented subgames solved to find a P2 strategy in the Play subgame of Coin Toss. 125
5.4 Left: A modified game of Coin Toss with two subgames. The nodes C1 and C2 are

public chance nodes whose outcomes are seen by both P1 and P2. Right: An augmented
subgame for one of the subgames according to Reach search. If only one of the subgames
is being solved, then the alternative payoff for Heads can be at most 1. However, if both
are solved independently, then the gift must be split among the subgames and must sum
to at most 1. For example, the alternative payoff in both subgames can be 0.5. 128

5.5 A visualization of the change in the augmented subgame from Figure 5.3b when
using distributional alternative payoffs. 132

5.6 An example of a gadget game in Maxmargin refinement. P1 picks the initial
infoset she wishes to enter Sr in. Chance then picks the particular node of the
infoset, and play then proceeds identically to the augmented subgame, except
all P1 payoffs are shifted by the size of the alternative payoff and the alternative
payoff is then removed from the augmented subgame. 139

5.7 Exploitability in Flop Texas Hold’em of Reach-Maxmargin as we scale up the
size of gifts. 139

5.8 Exploitability of depth-limited solving in response to an opponent off-tree action as a
function of number of state values. We compare to action translation and to having had
the off-tree action included in the action abstraction (which is a lower bound on the
exploitability achievable with 1,000 iterations of CFR+). 150

xix

5.9 Convergence of different techniques in TEH. All subgames are solved using CFR-AVG.
Perfect Value Net uses an oracle function to return the exact value of leaf nodes on each
iteration. Self-Play Value Net uses a value function trained through self play. Self-Play
Value/Policy Net additionally uses a policy network to warm start CFR. Random Beliefs
trains the value net on random PBSs. 162

5.10 Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6
faces and 2 dice with 3 faces. For all games FLOP outperforms Linear FP, but does not
match the quality of Linear CFR. 166

5.11 Exploitability of different algorithms for Turn Endgame HoldâĂŹem. 167
5.12 Left: comparison of CFR-D, CFR-AVG, modified CFR-AVG, and FP using an oracle

value network which returns exact values for leaf PBSs. Right: comparison of CFR-D,
modified CFR-AVG, and FP using a value network learned through 300 epochs of self
play. 168

5.13 Illustration of Lemma 18. In this simple example, the subgame begins with some proba-
bility β(heads) of a coin being heads-up, which player 1 observes. Player 2 then guesses
if the coin is heads or tails, and wins if he guesses correctly. The payoffs for Player 2’s
pure strategies are shown as the lines marked πheads2 and πtails2 . The payoffs for a mixed
strategy is a linear combination of the pure strategies. The value for player 1 is the
minimum among all the lines corresponding to player 2 strategies, denoted by the solid
lines. 172

6.1 Performance of RBS compared to external-sampling MCCFR in a smaller-scale
preliminary experiment. Both algorithms were used to train a strategy based on
identical abstractions using 64 cores. Performance in milli-big blinds per hand
(mbb / hand) is shown against Tartanian7, the winner of the 2014 ACPC no-limit
hold’em competition. 182

6.2 Libratus’s performance over the course of the 2017 Brains vs AI competition. . . 187
6.3 Performance of Pluribus in the 5 humans + 1 AI experiment. The dotted lines

show the win rate plus or minus the standard error. The relatively steady perfor-
mance of Pluribus over the course of the 10,000-hand experiment suggests the
humans were unable to find exploitable weaknesses in the bot. 192

xx

List of Tables

4.1 Head-to-head expected value of NFSP and Deep CFR in HULH against con-
verged CFR equilibria with varying abstraction sizes. For comparison, in 2007
an AI using abstractions of roughly 3 · 108 buckets defeated human professionals
by about 52 mbb/g (after variance reduction techniques were applied). 83

5.1 Exploitability (evaluated in the game with no information abstraction) of search
in small flop Texas hold’em. 135

5.2 Exploitability (evaluated in the game with no information abstraction) of search
in large flop Texas hold’em. 136

5.3 Exploitability (evaluated in the game with no information abstraction) of search
in turn Texas hold’em. 136

5.4 Exploitability of the various search techniques in nested search. The performance of the
pseudo-harmonic action translation is also shown. 137

5.5 Head to head performance of our new agent against Baby Tartanian8 and Slumbot with
95% confidence intervals shown. Our new agent defeats both opponents with statistical
significance. Naïve depth-limited solving means states are assumed to have just a single
value, which is determined by the blueprint strategy. 151

5.6 Head-to-head results of ReBeL versus BabyTartanian8 [17] and Slumbot, as well as top
human expert Dong Kim, measured in thousandths of a big blind per game. We also
show performance against LBR [103] where the LBR agent must call for the first two
betting rounds, and can either fold, call, bet 1× pot, or bet all-in on the last two rounds.
The ± shows one standard deviation. For Libratus, we list the aggregate score against
all top humans; Libratus beat Dong Kim by 29 with an estimated ± of 78. 163

5.7 Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6
faces and 2 dice with 3 faces. The top two rows represent baseline numbers when a tab-
ular version of the algorithms is run on the entire game for 1,024 iterations. The bottom
2 lines show the performance of ReBeL operating on subgames of depth 2 with 1,024
search iterations. For exploitability computation of the bottom two rows, we averaged
the policies of 1,024 playthroughs and thus the numbers are upper bounds on exploitability.163

xxi

xxii

Chapter 1

Introduction

A primary goal for the field of artificial intelligence (AI) is developing agents capable of acting
optimally in the real world. However, the real world is not stationary; there are humans and other
agents with which the agent must interact. In order to be effective in multi-agent interactions, an
AI agent must be able to reason strategically not just about its actions, but also about the possible
actions of other agents. Game theory, which studies rational behavior in multi-agent interactions
(i.e., “games”), provides a theoretical framework for determining strategies in these settings via
computation of equilibria, in which each agent’s strategy is an optimal response to every other
agent’s strategy.

This thesis describes new techniques for computing equilibria in large adversarial imperfect-
information games. Perfect-information games, in which all agents know the exact state of
the world, have been the subject of extensive AI research. However, most real-world interac-
tions, such as negotiations, cybersecurity, and traffic navigation, involve one or more agents
having access to information that is hidden from other agents. Such games are referred to as
imperfect-information games, and have been studied far less despite their importance. Imperfect-
information games exist on a spectrum from purely adversarial two-player zero-sum games, in
which one agent’s gain is the other agent’s loss, to purely cooperative games, in which all agents
share rewards. The theory for the techniques in this thesis applies primarily to two-player zero-
sum games. However, in practice we observe these techniques produce competitive strategies in
a broader set of adversarial games, such as six-player poker, and some of the theory extends to
such settings as well.

We evaluate the methods described in this thesis on benchmark games, including the popular
recreational game of poker. Since the very earliest research on AI, recreational games have
been used as benchmarks for progress not just for strategic reasoning, but for the whole field
of AI. The use of recreational games for this purpose is primarily motivated by three factors.
First, the rules of a recreational game are well defined and have a clear scoring system, which
allows performance to be objectively measured. Second, recreational games were developed by
humans for humans, rather than being developed specifically for the evaluation of a particular
AI algorithm. This mitigates the risk that AI researchers would choose a benchmark that sets the
bar artificially low for their specific algorithm. Third, there are humans who have dedicated their
lives toward reaching the pinnacle of human performance in a specific game. By playing against
these humans, it is possible to measure whether AI has truly surpassed top human performance

1

in a particular benchmark. Of course, a likely additional motivation was the enjoyment of the
games themselves.

Among imperfect-information games, poker has served for decades as the primary challenge
problem for the fields of AI and game theory [8]. In fact, it is poker specifically that the founda-
tional papers on game theory used to illustrate their concepts starting a century ago [112, 156].
The reason for this choice is simple: no other popular recreational game captures the challenges
of hidden information as effectively and as elegantly as poker. In particular, researchers set the
goal of surpassing top human performance in no-limit Texas hold’em poker, which is by far the
most popular variant of poker in the world. While previous AI programs have defeated top hu-
mans in perfect-information games such as backgammon [152], checkers [130], chess [34], and
Go [140], poker stubbornly proved resistant to those approaches.

This thesis describes a series of advances that form the new state-of-the-art approach to AI
for adversarial imperfect-information games. Together, these techniques made it possible for the
first time to defeat top humans in no-limit Texas hold’em poker. Moreover, the techniques are
not specific to poker and can be widely applied to adversarial imperfect-information games in
general.

Chapter 3 describes new variants of counterfactual regret minimization (CFR) [163], an iter-
ative algorithmic framework for approximating equilibria in imperfect-information games. Dis-
counted CFR and Linear CFR, introduced in Section 3.1, dramatically speed up the empirical
convergence of CFR and are now the state-of-the-art equilibrium-finding algorithms for large
adversarial imperfect-information games. Section 3.2 introduces the first theoretically sound
technique for warm starting CFR from any arbitrary starting strategy. Sections 3.3-3.5 introduce
pruning techniques that make CFR faster and use less memory asymptotically, both in theory and
in practice, by allowing each iteration to traverse fewer nodes. In large games, this can improve
the speed of CFR and reduce memory usage by an order of magnitude or more.

Chapter 4 describes new techniques for scaling CFR to games that are too large to be repre-
sented exactly, such as no-limit Texas hold’em poker which has more than 10161 decision points.
In the past, this was accomplished using information abstraction, which buckets similar situ-
ations together based on chance outcomes, and action abstraction, which reduces continuous
action spaces to a small discrete number. These techniques produce an abstract game, which is
much smaller than the original game. The abstract game would be small enough to solve with
tabular CFR and its solution used as an approximation of the solution for the full game. Sec-
tion 4.1 introduces Deep CFR, a form of CFR that replaces information abstraction with deep
neural network function approximation to estimate regrets for unseen situations. Deep CFR
was the first non-tabular form of CFR to be successful in large games. Section 4.2 introduces
a method for automated action abstraction in a way that is provably locally optimal. This was
the first action abstraction algorithm with theoretical guarantees of local optimality. Section 4.3
takes this further and develops a technique for gradually expanding the action abstraction while
also solving the game. This technique provably converges to an equilibrium even in games with
continuous action spaces.

Chapter 5 describes new methods for conducting search in imperfect-information games.
Search has been critical for achieving superhuman performance in perfect-information games
such as backgammon [152], chess [34], and Go [140]. However, the search techniques used in
perfect-information games are not theoretically sound and empirically ineffective in games with

2

hidden information. There were two main obstacles that needed to be overcome in order to make
search theoretically sound in imperfect-information games: determining what the players’ be-
liefs should be about the state of the world at the start of the search tree, and determining what
the values should be of leaf nodes at the bottom of the search tree. Section 5.1 introduces new
techniques that address the first obstacle in a theoretically sound way and that empirically greatly
outperform past approaches. It also introduces a sound way for repeating search as play proceeds
down the game tree. Section 5.2 introduces new techniques that address the second obstacle in
a way that is theoretically sound and orders of magnitude less computationally expensive than
past approaches. Section 5.3 introduces ReBeL, the first algorithm for combining reinforce-
ment learning and search during training in a way that is guaranteed to converge to a Nash
equilibrium in two-player zero-sum imperfect-information games (and also perfect-information
games). ReBeL is a major step toward unifying the historically separate lines of research on
perfect-information and imperfect-information games.

The research techniques introduced in this thesis led to Libratus, the first AI to defeat top
human professionals in two-player no-limit Texas hold’em poker, and Pluribus, the first AI to
defeat top humans in six-player no-limit Texas hold’em poker, which were long-standing grand
challenge problems in the fields of AI and game theory. These agents, along with several other
bots that were developed in order to evaluate the techniques described in this thesis, are described
in detail in Chapter 6.

Nevertheless, there remains more to be done in order to develop even more scalable, efficient,
and general algorithms. Chapter 7 concludes by discussing specific directions for future work in
this space, both short-term and long-term.

3

4

Chapter 2

Notation and Background

This chapter covers notation and background information that will be used throughout the rest of
this thesis.

2.1 Imperfect-Information Extensive-Form Games

Our notation is modified from that of Osborne and Rubinstein [119]. In an imperfect-information
extensive-form (i.e., tree-form) game there is a finite set of players, P . There is also a distinct
“player” not in P that represents chance decisions and is denoted c. A history (i.e., node) h is
defined by all information of the current situation, including private knowledge known to only
one player. A(h) denotes the actions available at a node and P (h) is the player whose turn it is
to act at that node. If chance acts at the node, then P (h) = c. We write h @ h′ if a sequence
of actions leads from h to h′. We represent the node that follows h after choosing action a by
h · a. H is the set of all nodes. Z ⊆ H are terminal nodes for which no actions are available
and which award a value to each player. For each player i ∈ P , there is a payoff function
ui : Z → R. The range of payoffs is represented by L. If there are exactly two non-chance
players and u1(z) + u2(z) = 0 for all z ∈ Z , then the game is two-player zero-sum. If the game
consists of only a single information set for each player, then the game is normal form.

Imperfect information is represented by information sets (infosets) for each player i ∈ P .
For any infoset Ii belonging to player i, all nodes h, h′ ∈ Ii are indistinguishable to i. Moreover,
every node h ∈ H belongs to exactly one infoset for each player. The player who acts at Ii
is denoted P (Ii) and the available action set is denoted A(Ii). The set of player i infosets in
which player i acts is denoted Ii and the set of all infosets belonging to the acting player is
denoted I. The range of payoffs achievable from Ii is represented by L(Ii) We may simply write
I to represent the infoset Ii where i satisfies Ii = IP (Ii) (i.e., player i is the player who acts at Ii).

Throughout this thesis we assume players have perfect recall, which means they cannot
forget any information they previously knew. More formally, let h, h′ be histories such that
h @ h′ and let g, g′ be histories such that g @ g′. Perfect recall implies that if g and h do not
share an infoset and g 6@ h and h 6@ g, then h′ and g′ also do not share an infoset. Due to perfect
recall, we can write Ii @ I ′i if a sequence of actions leads from some history h ∈ Ii to some
history h′ ∈ I ′i. We can also write Ii · a to represent the player i infoset {h · a|h ∈ Ii}.

5

A strategy (i.e., a policy) σ(I) is a probability vector over actions for acting player i in
infoset I . Since all histories in an infoset belonging to i are indistinguishable, the strategies in
each of them must be identical. The probability of a particular action a is denoted by σ(I, a) or
by σ(h, a). We define σi to be a strategy for i in every infoset in the game where i acts. The
strategy of all players other than i is σ−i. A strategy profile σ is a tuple of strategies, one for
each player.

We denote reach by πσ(h). This is the probability with which h is reached if all players
play according to σ. Formally, πσ(h) = Πh′·a′vhσ(h′, a′). We also use πσ(g, h) to represent
the probability of reaching h given that history g has already been reached and all players play
according to σ. Formally, πσ(g, h) = Πg@h′·a′vhσ(h′, a′).

The player reach πσi (h) of a history h is the product of the probabilities for all agent i actions
leading to h. Formally, πσi (h) = Πh′·a′vh|P (h′)=iσ(h′, a′). Due to perfect recall, any two histories
g, h in infoset Ii have the same player reach for player i. Thus, we similarly define the player
reach πσi (Ii) of infoset Ii as πσi (Ii) = ΠI′i·a′vIi|P (Ii)=iσ(I ′i, a

′).
The external reach (also called opponent reach) πσ−i(h) of a history h is the contribution of

chance and all players other than i. Formally, πσ−i(h) = Πh′·a′vh|P (h′) 6=iσ(h′, a′). We also define
the external reach of an infoset as πσ−i(Ii) =

∑
h∈Ii π

σ
−i(h).

A best response for player i to σ−i is a strategy BR(σ−i) = argmaxσ′i ui(σ
′
i, σ−i).

A public state K is defined as a set of histories in which it is common knowledge among
all players, based on public observations, that the true state of the game is one of those histories.
Formally, for any history h ∈ K, if h, h′ ∈ Ii for some infoset Ii, then h′ ∈ K. An imperfect-
information subgame, which we simply call a subgame, S is a union of public states where if
any node A leads to any node B and both A and B are in S, then every node between A and B is
also in S. Formally, for any node h ∈ S , if h, h′ ∈ Ii for some infoset Ii then h′ ∈ S. Moreover,
if h ∈ S and h′′ ∈ S and there is a sequence of actions leading from h to h′′ (i.e., h @ h′′), then
for every node h′ such that h @ h′ @ h′′, h′ ∈ S. If h ∈ S but no descendant of h is in S, then h
is a leaf node. Additionally, the infosets containing h are leaf infosets. Finally, if h ∈ S but no
ancestor of h is in S, then h is a root node and the infosets containing h are root infosets.

2.2 Nash Equilibrium
Given a game, what is it we hope to compute? A natural answer is that we wish to compute a
strategy that will maximize our expected value. However, a strategy’s expected value ultimately
depends on the opponents’ strategies (or the strategies of the population from which the oppo-
nents are drawn). For example, if the opponents always throw Rock in Rock-Paper-Scissors, then
it is optimal to always throw Paper, but if the opponents always throw Paper, then it is optimal to
always throw Scissors.

If the population of opponent strategies is undefined then we typically wish to compute or
approximate a Nash equilibrium. A Nash equilibrium σ∗ is a strategy profile in which every
agent’s strategy is a best response: ∀i, ui(σ∗i , σ∗−i) = maxσ′i ui(σ

′
i, σ
∗
−i) [112]. In other words, a

Nash equilibrium is a strategy profile in which no player can improve by unilaterally shifting to a
different strategy. Nash equilibria have been proven to exist in all finite games, and many infinite
games, though finding an equilibrium may be difficult.

6

The exploitability e(σi) of a strategy σi in a two-player zero-sum game is how much worse
it does versus a best response compared to a Nash equilibrium strategy. Formally, e(σi) =
ui
(
σ∗i , BR(σ∗i)

)
−ui

(
σi, BR(σi)

)
. In an ε-Nash equilibrium, no player has exploitability higher

than ε. NashConv [98] generalizes the notion of exploitability to games with more than two play-
ers. The NashConv (or total exploitability) of a strategy profile is e(σ) =

∑
i∈P ui(BR(σ−i), σ−i)−

ui(σi, σ−i). The average exploitability (or simply exploitability) of strategy profile σ is e(σ)/|P|.
If the average exploitability of a strategy profile σ is e(σ) ≤ ε, then σ is a ε-Nash equilibrium.

Two-player zero-sum games are a special class of games in which Nash equilibria have sev-
eral useful additional properties. In particular, in two-player zero-sum games any player who
chooses to play a Nash equilibrium strategy is guaranteed to not lose in expectation no matter
what the opponent does (as long as one side does not have an intrinsic advantage under the game
rules, or as long as the players alternate sides). In other words, a Nash equilibrium strategy is un-
beatable in two-player zero-sum games. For this reason, to “solve” a two-player zero-sum game
means to find an exact Nash equilibrium. For example, the Nash equilibrium strategy for Rock-
Paper-Scissors is to randomly pick Rock, Paper, and Scissors with equal probability. Against
such a strategy, the best that an opponent can do in expectation is tie.

In the simple case of Rock-Paper-Scissors, playing the Nash equilibrium also guarantees
that the player will not win in expectation. However, in more complex games even determining
how to tie against a Nash equilibrium may be difficult; if the opponent ever chooses suboptimal
actions, then playing the Nash equilibrium will indeed result in victory in expectation.

In principle, playing the Nash equilibrium can be combined with opponent exploitation by
initially playing the equilibrium strategy and then over time shifting to a strategy that exploits
the opponent’s observed weaknesses (for example, by switching to always playing Paper against
an opponent that always plays Rock) [48]. However, except in certain restricted ways [52],
shifting to an exploitative non-equilibrium strategy opens oneself up to exploitation because the
opponent could also change strategies at any moment. Additionally, existing techniques for
opponent exploitation require too many samples to be competitive with human ability outside of
small games.

AI systems have reached superhuman performance in two-player zero-sum games such as
checkers [130], chess [34], two-player limit poker [12], Go [140], and, as a result of the research
described in this thesis, two-player no-limit poker [21]. In each of these cases, the AI system was
generated by attempting to approximate a Nash equilibrium strategy rather than by, for example,
trying to detect and exploit weaknesses in the opponent.

While a Nash equilibrium strategy is guaranteed to exist in any finite game, polynomial-time
algorithms for finding one are only proven to exist for special classes of games, among which
two-player zero-sum games are the most prominent. For two-player non-zero-sum games, no
polynomial-time algorithm is known for finding a Nash equilibrium. Computing an equilibrium
in such a game is in general PPAD-complete [39, 41]. Finding a Nash equilibrium in zero-sum
games with three or more players is at least as hard (because a dummy player can be added to
the two-player game to make it a three-player zero-sum game). Approximating a Nash equilib-
rium is also in general PPAD-complete [124]. In practice, even the best complete algorithm can
only address games with a handful of possible strategies per player if there are more than two
players [6].

Moreover, even if a Nash equilibrium could be computed efficiently in a game with more

7

than two players, it is not clear that playing such an equilibrium strategy would be wise. If
each player in such a game independently computes and plays a Nash equilibrium strategy, the
resulting strategy profile may not be a Nash equilibrium. One example of this is the Lemonade
Stand Game [164], illustrated in Figure 2.1, in which each player simultaneously picks a point
on a ring and the winner is whoever is farthest from any other player. In every Nash equilibrium
with more than two players, players are spaced uniformly along the ring, but there are infinitely
many ways this can be accomplished and therefore infinitely many Nash equilibria. If each player
independently computes one of those equilibria, the joint strategy profile is unlikely to result in
all players being spaced uniformly along the ring. Two-player zero-sum games are a special
case where even if the players independently compute and play Nash equilibrium strategies, the
resulting strategy profile is still a Nash equilibrium.

Figure 2.1: An example of the equilibrium selection problem. In the Lemonade Stand Game,
players simultaneously choose a point on a ring and want to be as far away as possible from
any other player. In every Nash equilibrium with more than two players, players are spaced
uniformly around the ring. There are infinitely many such Nash equilibria. However, if each
player independently chooses one Nash equilibrium to play, their joint strategy profile is unlikely
to be a Nash equilibrium. Left: An illustration of three different Nash equilibria in this game,
distinguished by three different colors. Right: Each player independently chooses one Nash
equilibrium. Their joint strategy is not a Nash equilibrium.

The algorithms discussed throughout this thesis typically are proven to converge to a Nash
equilibrium in two-player zero-sum games, which empirically leads to strong performance in
those games. Outside of two-player zero-sum games, the algorithms are typically not guaranteed
to converge to a Nash equilibrium (though they may still converge to weaker equilibria, such
as coarse correlated equilibrium [62]). Still, we observe that even in multiplayer games they
produce strong performance in the real-world domain of no-limit Texas hold’em poker, which
suggests they may be useful in a wider variety of settings than just two-player zero-sum games.

8

2.3 Regret Minimization
Regret minimization is a concept commonly used in online learning but which has also become
a key approach for computing equilibria in large imperfect-information games. We will start by
considering the single-agent setting, then move to the normal-form two-player zero-sum game
setting, and finally in Section 2.3.5 we will describe counterfactual regret minimization, which
describes an efficient way of extending regret minimization to extensive-form games.

Consider an agent in a repeated setting in which the agent must choose between |A| actions
each episode. Specifically, on each episode t, nature first assigns a reward vt(a) for each action a
(with the range of rewards being bounded by L, that is maxb∈A v

t(b)−mina∈A v
t(a) ≤ L). These

reward assignments are not observed by the agent. The rewards may change arbitrarily between
episodes (and may even be adversarial against the agent). After nature assigns rewards to the
actions, the agent chooses a probability distribution σt over actions, and receives a reward equal
to the expected value over actions: vt =

∑
a∈A σ

t(a)vt(a).
Since nature can choose the rewards in an arbitrary manner, one could equivalently describe

nature as choosing the rewards after the agent chooses its probability distribution over actions.
Let S be a set of sequences of strategies. Regret measures how much better some sequence

of strategies s ∈ S would have done compared to the sequence of strategies (σ1, σ2, ..., σT) that
the agent chose, where T is the number of iterations. For example, the regret for a sequence of
strategies sa consisting of always choosing action a would be

RT (sa) =
T∑
t=1

(
vt(a)− vt

)
(2.1)

For an algorithm to be no-regret, it must choose strategies on each iteration in a way that guar-
antees that RT (s) grows sublinearly for every s ∈ S (i.e., RT (s) ∈ o(T)).

Whether or not an algorithm is no-regret ultimately depends on the set of strategy sequences
S being considered. An algorithm that has no external regret guarantees that regret grows
sublinearly for S consisting of sequences of strategies in which the same single action is chosen
on each iteration. As discussed in Section 2.3.4, a no-external-regret algorithm can be used
to approximate a Nash equilibrium in two-player zero-sum games. For this reason, this thesis
focuses on no-external-regret guarantees, and we use “regret” to refer to external regret unless
otherwise specified.

Other notions of regret exist as well, and can be used to compute other forms of equilibria
such as correlated equilibria [11].

2.3.1 Regret Matching
Regret matching (RM) [65] is a simple no-regret learning algorithm that is widely used for
imperfect-information game solving. In RM, the probability of an action on an iteration is pro-
portional to the positive regret on that action. Formally, on each iteration t + 1, action a ∈ A is
selected according to probabilities

σt+1(a) =
Rt

+(a)∑
a′∈AR

t
+(a′)

(2.2)

9

whereRt
+(a) = max{0, Rt(a)}. If

∑
a′∈AR

t
+(a′) = 0 then any arbitrary strategy may be chosen.

Typically in this situation, each action is assigned equal probability, but this is not required and in
some cases (such as Deep CFR, discussed in Section 4.1 and SAEF in Section 4.3) other options
are used.

Our analysis of RM makes frequent use of a potential function of a regret vector. For a
vector of regret values ~RT , the potential function is defined to be

Φ(~RT) =
∑
a∈A

(
RT

+(a)
)2 (2.3)

RM guarantees [36] that after T iterations,

Φ(~RT) ≤
∑
a∈A

((
RT−1

+ (a)
)2

+
(
rT (a)

)2
)

(2.4)

This means that after T iterations of regret matching are played,

Φ(~RT) ≤ L2|A|T (2.5)

and therefore RM guarantees that regret is bounded by

RT (a) ≤ L
√
|A|
√
T (2.6)

where L is the range of payoffs, |A| is the number of actions, and T is the number of itera-
tions [36].

RM is one of many no-regret learning algorithms. and there exists many no-regret learning
algorithms with better bounds on regret than RM. For example, Hedge [36] has a convergence
bound that is O(ln |A|) rather than O(

√
|A|). Nevertheless, RM and its variants (which include

RM+ and more general variants that are introduced in Section 3.1) are by far the most popular no-
regret learning algorithms for solving sequential imperfect-information games. There are several
reasons for this. First, RM is simple to implement and does not require any parameter tuning.
Second, it does not require any expensive operations like exponentiation (which is used in Hedge)
or line search (which is used in NormalHedge [38]). Finally, and perhaps most importantly,
RM and its variants empirically perform extremely well in large-scale imperfect-information
sequential games.

2.3.2 Regret Matching+
Regret Matching+ (RM+) [149, 150] is a simple modification of RM in which regret for every
action is floored at zero. That is, RM+ chooses action probabilities based on the following
formula

σt+1(a) =
Qt

+(a)∑
a′∈AQ

t
+(a′)

(2.7)

where Qt(a) = max{0, Qt−1(a) + rt(a)}. If
∑

a′∈AQ
t
+(a′) ≤ 0, then actions can be chosen

arbitrarily.
RM+ is not known to have a superior convergence bound in theory compared to RM. Never-

theless, it empirically converges faster.

10

2.3.3 Hedge

In Hedge, a player picks a distribution over actions according to

σT+1(a) =
eηTR

T (a)∑
a′∈A e

ηTRT (a′)
(2.8)

where ηT is a tuning parameter. There is a substantial literature on how to set ηT for best perfor-

mance [36, 37]. If a player plays according to Hedge on every iteration t and uses ηt =
√

2 ln(|A|)
T

then on iteration T , RT ≤ L
√

2 ln(|A|)T [36].

2.3.4 Equilibrium convergence of no-regret learning algorithms in games

When both players in a two-player zero-sum game use a no-regret learning algorithm, the average
of the strategies played over all iterations converges to a Nash equilibrium. We use σ̄i to represent
player i’s average strategy over all iterations. Since we will reference the details of the following
known result later, we reproduce the proof here.

Theorem 1. In a two-player zero-sum game, if RTi
T
≤ εi for both players i ∈ P , then σ̄T is a

(ε1+ε2)
2

-equilibrium.

Proof. We follow the proof approach of Waugh et al. [160]. We use Σi to represent the set of
strategies for player i. From the definition of regret, we have that

max
σ′i∈Σi

1

T

(T∑
t=1

ui(σ
′
i, σ

t
−i)− ui(σti , σt−i)

)
≤ εi (2.9)

Since σ′i is the same on every iteration, this becomes

max
σ′i∈Σi

ui(σ
′
i, σ̄

T
−i)−

1

T

T∑
t=1

ui(σ
t
i , σ

t
−i) ≤ εi (2.10)

Since u1(σ) = −u2(σ), if we sum (2.10) for both players

max
σ′1∈Σ1

u1(σ′1, σ̄
T
2) + max

σ′2∈Σ2

u2(σ̄T1 , σ
′
2) ≤ ε1 + ε2 (2.11)

max
σ′1∈Σ1

u1(σ′1, σ̄
T
2)− min

σ′2∈Σ2

u1(σ̄T1 , σ
′
2) ≤ ε1 + ε2 (2.12)

Since u1(σ̄T1 , σ̄
T
2) ≥ minσ′2∈Σ2

u1(σ̄T1 , σ
′
2) so we have maxσ′1∈Σ1

u1(σ′1, σ̄
T
−2)−u1(σ̄T1 , σ̄

T
2) ≤ ε1 +

ε2. By symmetry, this is also true for Player 2. Therefore, 〈σ̄T1 , σ̄T2 〉 is a (ε1+ε2)
2

-equilibrium.

Thus, no-regret learning algorithms like RM constitute anytime algorithms for approximating
Nash equilibria.

11

2.3.5 Counterfactual Regret Minimization (CFR)
The no-regret learning algorithms described so far are intended for normal-form games (i.e.,
matrix games). While they could in theory be used for sequential games, doing so would require
representing the sequential game in normal form. In other words, the number of actions would
equal the number of pure strategies in the game. This quickly becomes intractable for large
sequential games.

Counterfactual regret minimization (CFR) is an algorithm for extensive-form games that
independently minimizes regret in each information set [163]. While any regret-minimizing al-
gorithm can be used in the information sets, RM and its variants are the most popular option [65].

Our analysis of CFR makes frequent use of counterfactual value. Informally, the counter-
factual value of an infoset I where P (I) = i is the expected utility to player i given that I has
been reached, weighed by the external reach of I for player i. Formally,

vσ(I) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h, z)ui(z)

))
(2.13)

and the counterfactual value of an action a is

vσ(I, a) =
∑
h∈I

(
πσ−i(h)

∑
z∈Z

(
πσ(h · a, z)ui(z)

))
(2.14)

Let σt be the strategy profile used on iteration t. The instantaneous regret on iteration t for
action a in information set I is

rt(I, a) = vσ
t

(I, a)− vσt(I) (2.15)

The counterfactual regret for action a in I on iteration T is

RT (I, a) =
T∑
t=1

rt(I, a) (2.16)

Additionally, RT
+(I, a) = max{RT (I, a), 0} and RT (I) = maxa{RT

+(I, a)}. Regret for player i
in the entire game is

RT
i = max

σ′i∈Σi

T∑
t=1

(
ui(σ

′
i, σ

t
−i)− ui(σti , σt−i)

)
(2.17)

where Σi is the set of pure strategies for player i.
If player i plays according to RM in information set I on iteration T then, just as in Equa-

tion 2.4, ∑
a∈A(I)

(
RT

+(I, a)
)2 ≤

∑
a∈A(I)

((
RT−1

+ (I, a)
)2

+
(
rT (I, a)

)2
)

(2.18)

Since counterfactual regret is weighed by external reach, we obtain the following lemma.
Lemma 1. After T iterations of regret matching are played in an information set I ,∑

a∈A(I)

(
RT

+(I, a)
)2 ≤

(
L(I)

)2|A(I)|
T∑
t=1

(
πσ

t

−i(I)
)2 (2.19)

12

In turn, this leads to a bound on regret of

RT (I) ≤ L(I)
√
|A(I)|

√√√√ T∑
t=1

(πσ
t

−i(I))2 (2.20)

The key result of CFR is that total regret in the full game is bounded by the sum of counterfactual
regrets:

RT
i ≤

∑
I∈Ii

RT (I) ≤
∑
I∈Ii

L(I)
√
|A(I)|

√√√√ T∑
t=1

(πσ
t

−i(I))2 ≤
∑
I∈Ii

L(I)
√
|A(I)|

√
T (2.21)

Therefore, by choosing a series of strategies that produce sublinear counterfactual regret in
each infoset, one can achieve sublinear total regret. CFR accomplishes this by applying any
no-regret learning algorithm, such as RM or RM+, locally at each infoset, operating on counter-
factual regret at the infoset. Thus, CFR constitutes an anytime algorithm for finding an ε-Nash
equilibrium in two-player zero-sum games.

The average strategy σ̄Ti (I) for an infoset I on iteration T is

σ̄Ti (I) =

∑T
t=1

(
πσ

t

i (I)σti(I)
)∑T

t=1 π
σt
i (I)

(2.22)

In practice, faster convergence is achieved by alternating which player updates their regrets
on each iteration rather than updating the regrets of both players simultaneously each iteration,
though this complicates the theory [33, 45]. We assume the alternating-updates form of CFR is
used unless otherwise specified.

While any regret minimization algorithm can be used at infosets to minimize counterfactual
regret, typically RM is used in “vanilla” CFR.

2.3.6 Monte Carlo Counterfactual Regret Minimization (MCCFR)
Vanilla CFR requires full traversals of the game tree, which is infeasible in large games. One
method to combat this is Monte Carlo CFR (MCCFR), in which only a portion of the game tree
is traversed on each iteration [96].

In MCCFR, a subset of nodes Qt in the game tree is traversed at each iteration, where Qt is
sampled from some distribution Q. Sampled regrets r̃t are tracked rather than exact regrets. For
infosets that are sampled at iteration t, r̃t(I, a) is equal to rt(I, a) divided by the probability of
having sampled I; for unsampled infosets r̃t(I, a) = 0.

There exist a number of MCCFR variants [55, 76, 81], but for this paper we focus specifically
on the external sampling variant due to its simplicity and strong performance. In external-
sampling MCCFR the game tree is traversed for one player at a time, alternating back and forth.
We refer to the player who is traversing the game tree on the iteration as the traverser. Regrets
are updated only for the traverser on an iteration. At infosets where the traverser acts, all actions
are explored. At other infosets and chance nodes, only a single action is explored (sampled
according to the strategy on that iteration of the player that acts at the infoset).

13

We begin by reviewing the derivation of convergence bounds for external sampling MCCFR
from Lanctot et al. [96].

An MCCFR scheme is completely specified by a set of blocks Q = {Qi} which each com-
prise a subset of all terminal histories Z. On each iteration MCCFR samples one of these blocks,
and only considers terminal histories within that block. Let qj > 0 be the probability of consid-
ering block Qj in an iteration.

Let ZI be the set of terminal nodes that contain a prefix in I , and let z[I] be that prefix. Define
πσ(h → z) as the probability of playing to z given that player p is at node h with both players
playing σ.

πσ(h→ z) =
∑
z∈ZI

πσ(z[I])

πσ(I)
πσ(z).

πσ(I → z) is undefined when π(I) = 0.
Let q(z) =

∑
j:z∈Qj qj be the probability that terminal history z is sampled in an iteration of

MCCFR. For external sampling MCCFR, q(z) = πσ−i(z).
The sampled value ṽσi (I|j) when sampling block j is

ṽσi (I|j) =
∑

z∈Qj∩ZI

1

q(z)
ui(z)πσ−i(z[I])πσ(z[I]→ z) (2.23)

For external sampling, the sampled value reduces to

ṽσi (I|j) =
∑

z∈Qj∩ZI

ui(z)πσi (z[I]→ z) (2.24)

The sampled value is an unbiased estimator of the true value vi(I). Therefore the sampled
instantaneous regret r̃t(I, a) = ṽσ

t

i (I, a)− ṽσti (I) is an unbiased estimator of rt(I, a).
The sampled regret is calculated as R̃T (I, a) =

∑T
t=1 r̃

t(I, a).
We first state the general bound shown in [95], Theorem 3.
Lanctot 95 defines Bi to be a set with one element per distinct action sequence ~a played by

player i, containing all infosets that may arise when player i plays ~a. Mi is then defined by∑
B∈Bi |B|. Let L be the difference between the maximum and minimum payoffs in the game.

Theorem 2. (Lanctot 95, Theorem 3) For any p ∈ (0, 1], when using any algorithm in the
MCCFR family such that for all Q ∈ Q and B ∈ Bi,

∑
I∈B

(∑
z∈Q∩ZI

πσ(z[I]→ z)πσ−i(z[I])

q(z)

)2

≤ 1

L2
(2.25)

where L ≤ 1, then with probability at least 1− p, total regret is bounded by

RT
i ≤

(
Mi +

√
2|Ii||Bi|√

p

)(
1

L

)
L
√
|A|T (2.26)

For the case of external sampling MCCFR, q(z) = πσ−i(z). Lanctot et al. 96, Theorem 9
shows that for external sampling, for which q(z) = πσ−i(z), the inequality in (2.25) holds for
L = 1, and thus the bound implied by (2.26) is

14

R̄T
i ≤

(
Mi +

√
2|Ii||Bi|√

p

)
L

√
|A|√
T

(2.27)

≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

because |Bi| ≤Mi ≤ |Ii| (2.28)

2.3.7 Counterfactual Regret Minimization+ (CFR+)

CFR+ is like CFR but with the following two changes. First, after each iteration any action with
negative regret is set to zero regret. Formally, CFR+ chooses its strategy on iteration T + 1
according to RM+ (discussed in Section 2.3.2). Second, CFR+ uses a weighted average strategy
where iteration T is weighted by T rather than using a uniformly weighted average strategy as in
CFR. Specifically, the average strategy for CFR+ is

σ̄Ti (I) =

∑T
t=1

(
tπσ

t

i (I)σti(I)
)∑T

t=1 tπ
σt
i (I)

(2.29)

The best known convergence bound for CFR+ is higher (that is, worse in exploitability) than
CFR by a constant factor of 2 [150]. Despite that, CFR+ typically converges much faster than
CFR and in some games even converges faster than O(1

ε
).

However, in some games CFR+ converges slower than 1
T

. We now provide a two-player zero-
sum game with this property. Consider the payoff matrix [1 0.9

−0.7 1] (where P1 chooses a row and
P2 simultaneously chooses a column; the chosen entry in the matrix is the payoff for P1 while
P2 receives the opposite).

2.3.8 Comparison to other equilibrium-finding algorithms

Regret minimization is far from the only method for computing Nash equilibria in two-player
zero-sum games.

Small games can be converted to normal form and solved using linear programming. How-
ever, the memory requirements of this approach grow exponentially with the size of the game.
Sequence-form linear programming can be used instead to find a Nash equilibrium in a matrix
of size |I1||A1| + |I2| by |I2||A2| + |I1| with O(|Z|) non-zero entries [30, 85, 86, 123, 157].
Sequence-form linear programming was used to solve Rhode Island hold’em, a small synthetic
form of poker, after lossless abstraction was applied to reduce the size of the game to approxi-
mately 108 nodes [56]. However, sequence-form linear programming does not scale well to larger
games. Instead, iterative algorithms that compute a coarse approximation of a Nash equilibrium
are preferred.

First-order methods such as the Excessive Gap Technique [72, 90, 92, 93] converge to a
Nash equilibrium in O(1/ε), which is asymptotically much better than CFR’s proven conver-
gence rate. However, the fastest first-order methods in practice converge slower than the fastest
CFR variants in large games, require careful tuning of the parameters, do not handle sampling

15

and approximation error as well as CFR, and are more difficult to implement. For all these rea-
sons, the leading approach for solving large imperfect-information games over the past decade
has almost always been a variant of CFR.

2.3.9 Proofs of Theoretical Results
Proof of Lemma 1

Proof. From (2.18) we see that

∑
a∈A(I)

(
RT

+(I, a)
)2 ≤

∑
a∈A(I)

T∑
t=1

(
rt(I, a)

)2

From (2.13) and (2.14), we see that rt(I, a) ≤ πσ
t

−i(I)L(I), so

∑
a∈A(I)

(
RT

+(I, a)
)2 ≤ |A(I)|

(
L(I)

)2
T∑
t=1

(
πσ

t

−i(I)
)2

We know 0 ≤ πσ
t

−i(I) ≤ 1. Therefore,
∑T

t=1

(
πσ

t

−i(I)
)2 ≤

∑T
t=1 π

σt

−i(I) ≤ Tπσ̄
T

−i (I). Thus, we
have ∑

a∈A(I)

(
RT

+(I, a)
)2 ≤ πσ̄

T

−i (I)
(
L(I)

)2|A(I)|T

2.4 Benchmark Imperfect-Information Games
There are a number of imperfect-information game benchmarks that are used for evaluating
equilibrium-finding techniques. The most prominent game for this setting is poker.

Poker is a family of games that involves hidden information, deception, and bluffing. It has
been used for nearly a century as a domain for the expression, development, and testing of game-
theoretic techniques related to imperfect-information games. This section describes the variants
of poker that are used in experiments throughout this paper.

We also describe Goofspiel, a non-poker card game, and Liar’s Dice, a game with many of
the elements of poker but using dice rather than a deck of cards.

2.4.1 Leduc Hold’em Poker
Leduc hold’em [143] is a popular benchmark problem for imperfect-information game solving
due to its size (large enough to be highly nontrivial but small enough to be solvable) and strategic
complexity.

In Leduc hold’em, there is a deck consisting of six cards: two each of Jack, Queen, and King.
There are two rounds. In the first round, each player places an ante of 1 chip in the pot and

16

receives a single private card. A round of betting then takes place with a two-bet maximum, with
Player 1 going first. A public shared card is then dealt face up and another round of betting takes
place. Again, Player 1 goes first, and there is a two-bet maximum. If one of the players has a
pair with the public card, that players wins. Otherwise, the player with the higher card wins.

In standard Leduc hold’em, the bet size in the first round is 2 chips, and 4 chips in the second
round. We also conduct experiments in a scaled-up variant, which we call Leduc-5, that has 5
bet sizes to choose from: in the first round a player may bet 0.5, 1, 2, 4, or 8 chips, while in the
second round a player may bet 1, 2, 4, 8, or 16 chips.

Leduc hold’em contains 288 information sets. Leduc-5 contains 34,224 information sets.

2.4.2 Limit Texas Hold’em Poker

Limit Texas hold’em (LTH) is a form of poker that was, and to some extent still is, played
competitively by humans. Two-player LTH, which we refer to as heads-up LTH (HULH) was
approximately solved (to within a precision that a human could not distinguish it from a perfect
solution within a lifetime of play) in 2015 [12].

In HULH the blinds (the amount of money the players must contribute to the pot before play
begins) are $2 for Player 1 and $1 for Player 2. On the first betting round, Player 2 acts first. On
subsequent betting rounds, Player 1 acts first.

HULH consists of four rounds of betting. On a round of betting, each player can choose to
either fold, call, or raise. If a player folds, they are considered to no longer be part of the hand.
That is, the player cannot win any money in the pot and takes no further actions. If a player
calls, that players places a number of chips in the pot equal to the most that any other player has
contributed to the pot. If a player raises, that player adds more chips to the pot than any other
player so far. At most three raises are allowed on the first betting round and at most four are
allowed on subsequent betting rounds. A round ends when each player still in the hand has acted
and has the same amount of money in the pot as every other player still in the hand.

Each raise on the earlier two betting rounds adds an extra $2 to the pot beyond what it would
cost to call. On the latter two betting rounds, each raise adds an extra $4 to the pot beyond what
it would cost to call.

At the start of the first round, every player receive two private cards from a standard 52-card
deck. At the start of the second round, three community cards are dealt face up for all players
to observe. At the start of the third betting round, an additional community card is dealt face up.
At the start of the fourth betting round, a final fifth community card is dealt face up. If at any
point only one player remains in the hand, that player collects all the money that all players have
contributed to the pot. Otherwise, the player with the best five-card poker hand, constructed from
the player’s two private cards and the five face-up community cards, wins the pot. In the case of
a tie, the pot is split equally among the winning players.

For the next hand—i.e., the next repetition of the game—the positions of the players are
reversed.

17

2.4.3 No-Limit Texas Hold’em Poker

No-limit Texas hold’em (NLTH) has been the most common and popular form of poker for
more than a decade. It is used, for example, to determine the winner of the World Series of
Poker Main Event. The rules are somewhat similar to LTH but allow for a wider range of raising
options. We discuss the difference in the rules, as well as the rules as they apply to the six-player
version of the game, in this section.

In two-player NLTH, which is referred to as heads-up NLTH (HUNL), both players start
each hand with $20,000. The blinds (the amount of money the players must contribute to the pot
before play begins) are $100 for Player 1 and $50 for Player 2. By having each hand start with
the same number of chips, we are able to treat each hand as a separate sample when measuring
win rate. On the first betting round, Player 2 acts first. On subsequent betting rounds, Player 1
acts first.

In multi-player (i.e., more than two players) NLTH, all players start each hand with $10,000.
The blinds are $50 for Player 1 and $100 for Player 2. This is the standard buy-in amount for
both live and online play. On the first betting round, Player 3 acts first. On subsequent betting
rounds, Player 1 acts first if still in the hand. Play proceeds through each consecutive player still
in the hand, with Player 1 following Player 6 if the round has not yet ended.

NLTH consists of four rounds of betting. Unlike LTH, there is no limit to the number of
times a player can raise, and players can choose how much to raise. The initial raise on each
round must be at least $100. Any subsequent raise on the round must be at least as large as the
previous raise (i.e., at least as large as the amount of money beyond a call that the previously-
raising player contributed). Raises can be in any whole-dollar amount. No player can raise more
than their remaining amount of money.

2.4.4 Flop Texas Hold’em

Flop Texas hold’em (FTH) is identical to Texas hold’em, except the game ends after the second
betting round with only three community cards ever revealed. Both limit Texas hold’em and
no-limit Texas hold’em can be modified in this way.

FTH is a synthetic game that retains much of the complexity of HUNL and HULH, while
being much more manageable in size.

2.4.5 Goofspiel

In Goofspiel, each player has N hidden cards in their hand (1, 2, ..., N), A deck of N cards (1,
2, ..., N), is placed between the two players. In the variant we consider, both players know the
order of revealed cards in the center will be 1, 2, ..., N . On each round, the top card of the deck is
flipped and is considered the prize card. Each player then simultaneously plays a card from their
hand. The player who played the higher-ranked card wins the prize card. If the players played
the same rank, then they split the prize’s value. The cards that were bid are discarded. At the
end of the game, players add up the ranks of their prize cards. A player’s payoff is the difference
between his total value and the total value of his opponent.

18

2.4.6 Liar’s Dice
Liar’s Dice is a two-player zero-sum game in our experiments, though in general it can be played
with more than two players. At the beginning of a game each player privately rolls d dice with f
faces each. After that a betting stage starts where players take turns trying to predict how many
dice of a specific kind there are among all the players, e.g., 4 dice with face 5. A player’s bid
must either be for more dice than the previous player’s bid, or the same number of dice but a
higher face. The round ends when a player challenges the previous bid (a call of liar). If all
players together have at least as many dice of the specified face as was predicted by the last bid,
then the player who made the bid wins. Otherwise the player who challenged the bid wins. We
use the highest face as a wild face, i.e., dice with this face count towards a bid for any face.

19

20

Chapter 3

Equilibrium Finding via Counterfactual
Regret Minimization

CFR is the leading equilibrium-finding algorithmic framework for imperfect-information games.
However, the original CFR algorithm is relatively slow and today is not competitive with more
modern variants of CFR or other equilibrium-finding algorithms. This chapter introduces several
improvements to CFR that dramatically improve its performance.

Section 3.1 introduces Discounted CFR (DCFR), a new class of CFR algorithms that dis-
counts regrets and leads to much faster empirical convergence while maintaining CFR’s bound
on regret. We show that one form of DCFR consistently matches or exceeds CFR+, the prior
state-of-the-art equilibrium-finding algorithm. This form of DCFR is today the state-of-the-art
equilibrium-finding algorithm and is widely used in commercial equilibrium-finding software.
CFR+ and most forms of DCFR result in poor performance when combined with Monte Carlo
CFR. Linear CFR (LCFR) is another form of DCFR that is robus to variance from sampling
(unlike CFR+ and most forms of DCFR). LCFR can therefore be combined with Monte Carlo
methods and is now the state-of-the-art equilibrium-finding algorithm for Monte Carlo variants
of CFR.

Section 3.2 introduces the first general technique for warm starting CFR from an arbitrary
starting strategy. The algorithm is agnostic to the origins of the strategy: it may come from
imitating human strategies, from a previous approximate equilibrium, or even from the output
of a different equilibrium-finding algorithm. We prove that this warm start technique does not
hurt the convergence bound of CFR and prove that under certain assumptions the technique is
optimal.

Sections 3.3, 3.4, and 3.5 introduce pruning techniques that allow CFR to avoid traversing
the entire game tree. This results in each CFR iteration being conducted much more quickly
while retaining the convergence bound of CFR. In particular, best response pruning, discussed
in Section 3.5, provably improves the asymptotic complexity of conducting an iteration of CFR
and the asymptotic memory usage of CFR to be dependent on the number of actions in the game
that are a best response to an equilibrium, rather than simply the number of actions in the game.

Together, these improvements can result in orders of magnitude faster convergence and orders
of magnitude reduction in asymptotic memory usage for large imperfect-information games.

21

3.1 Faster Convergence with Discounted CFR (DCFR)

The development of CFR+, a variant of CFR that uses RM+ at each infoset, was a key break-
through that in many cases is at least an order of magnitude faster than vanilla CFR [149, 150].
CFR+ was used to essentially solve heads-up limit Texas hold’em poker [12] and was used to
approximately solve heads-up no-limit Texas hold’em (HUNL) endgames in Libratus, which de-
feated HUNL top professionals [20, 21]. A blend of CFR and CFR+ was used by DeepStack to
defeat poker professionals in HUNL [110].

Nevertheless, we describe in this section variants of CFR that significantly outperform CFR+,
and in particular one variant, Discounted CFR (DCFR), that matches or exceeds the perfor-
mance of CFR+ in every game tested. We show that CFR+ does relatively poorly in games
where some actions are very costly mistakes (that is, they cause high regret in that iteration) and
provide an intuitive example and explanation for this. To address this weakness, we introduce
variants of CFR that do not assign uniform weight to each iteration. Instead, earlier iterations are
discounted. As we show, this high-level idea can be instantiated in many different ways.

DCFR is today the leading equilibrium-finding algorithm for large imperfect-information
games. Another variant that we introduce in this section, Linear CFR (LCFR) outperforms
DCFR in certain games with wide ranges in payoffs, and also is robust to variance from sampling
(unlike CFR+ and DCFR) and can therefore be combined with Monte Carlo methods.

3.1.1 Weighted Averaging Schemes for CFR+

As described in Section 2.3.7, CFR+ traditionally uses “linear” averaging, in which iteration t’s
contribution to the average strategy is proportional to t. In this subsection we generalize this
result and show that any sequence of non-decreasing weights may be used when calculating the
average strategy for CFR+. However, the bound on convergence is never lower than that of
vanilla CFR (that is, uniformly equal weight on the iterations).
Theorem 3. Suppose T iterations of RM+ are played in a two-player zero-sum game. Then
the weighted average strategy profile, where iteration t is weighed proportional to wt > 0 and
wi ≤ wj for all i < j, is a wT∑T

t=1 wt
L|I|

√
|A|
√
T -Nash equilibrium.

Empirically we find that CFR+ converges faster when iteration t is assigned weight t2 rather
than t when calculating the average strategy. We refer to this as quadratic-weighting CFR+ and
use it in the experiments in this section.

3.1.2 Regret Discounting for CFR and Its Variants

Although CFR+ assigns non-uniform weight to iterations when computing the average strategy,
in all past variants of CFR, including CFR+, each iteration’s contribution to the regrets is assigned
equal weight. In this subsection we discuss discounting iterations in CFR when determining
regrets—in particular, assigning less weight to earlier iterations. This is very different from, and
orthogonal to, the idea of discounting iterations when computing the average strategy, described
in the previous subsection.

22

To motivate discounting, consider the simple case of an agent deciding between three actions.
The payoffs for the actions are 0, 1, and -1,000,000, respectively. From Equation 2.2 we see that
CFR and CFR+ assign equal probability to each action on the first iteration. This results in re-
grets of 333,333, 333,334, and 0, respectively, when using CFR+. If we continue to run CFR+
or CFR, the next iteration will choose the first and second action with roughly 50% probability
each, and the regrets will be updated to be roughly 333,332.5 and 333,334.5, respectively. It will
take 471,407 iterations for the agent to choose the second action—that is, the best action—with
100% probability. Discounting the first iteration over time would dramatically speed conver-
gence in this case. While this might seem like a contrived example, many games include highly
suboptimal actions. In this simple example the bad action was chosen on the first iteration, but in
general bad actions may be chosen throughout a run, and discounting may be useful far beyond
the first few iterations.

Discounting prior iterations has received relatively little attention in the equilibrium-finding
community. “Optimistic” regret minimizing variants exist that assign a higher weight to recent
iterations, but this extra weight is temporary and typically only applies to a short window of
recent iterations; for example, counting the most recent iterate twice [148]. CFR+ discounts prior
iterations’ contribution to the average strategy, but not the regrets. Discounting prior iterations
has also been used in CFR for situations where the game structure changes, for example due
to interleaved abstraction and equilibrium finding [14, 16]. There has also been some work on
applying discounting to perfect-information game solving in Monte Carlo Tree Search [66].

Outside of equilibrium finding, prior research has analyzed the theory for discounted regret
minimization [36]. That work investigates applying RM (and other regret minimizers) to a se-
quence of iterations in which iteration t has weight wt (assuming wt ≤ 1 and the final iteration
has weight 1). For RM, it proves that if

∑∞
t=1wt = ∞ then weighted average regret, defined as

Rw,T
i = maxa∈A

∑T
t=1(wtrt(a))∑T

t=1 w
t

is bounded by

Rw,T
i ≤

L
√
|A|
√∑T

t=1 w
2
t∑T

t=1 wt
(3.1)

Prior work has shown that, in two-player zero-sum games, if weighted average regret is ε, then

the weighted average strategy, defined as σw,Ti (I) =
∑
t∈T

(
wtπσ

t

i (I)σti(I)
)

∑
t∈T (wtπσ

t
i (I))

for infoset I , is a 2ε-
Nash equilibrium [14].

While there are a limitless number of discounting schemes that converge in theory, not all
of them perform well in practice. We introduce a number of variants that perform particularly
well also in practice. The first algorithm, which we refer to as linear CFR (LCFR), is identical
to CFR, except on iteration t the updates to the regrets and average strategies are given weight
t. That is, the iterates are weighed linearly. (Equivalently, one could multiply the accumulated
regret by t

t+1
on each iteration. We do this in our experiments to reduce the risk of numerical

instability.) This means that after T iterations of LCFR, the first iteration only has a weight of
2

T 2+T
on the regrets rather than a weight of 1

T
, which would be the case in CFR and CFR+. In

the motivating example introduced at the beginning of this subsection, LCFR chooses the second
action with 100% probability after only 970 iterations while CFR+ requires 471,407 iterations.

23

Furthermore, from (3.1), the theoretical bound on the convergence of regret is only greater than
vanilla CFR by a factor of 2√

3
.

Since the changes from CFR that lead to LCFR and CFR+ do not conflict, it is natural to
attempt to combine them into a single algorithm that weighs each iteration t proportional to t
and also has a floor on regret at zero like CFR+. However, we empirically observe that this
algorithm, which we refer to as LCFR+, actually leads to performance that is worse than LCFR
and CFR+ in the games we tested, even though its theoretical bound on convergence is the same
as for LCFR.

Nevertheless, we find that using a less-aggressive discounting scheme leads to consistently
strong performance. We can consider a family of algorithms called Discounted CFR with pa-
rameters α β, and γ (DCFRα,β,γ), defined by multiplying accumulated positive regrets by tα

tα+1
,

negative regrets by tβ

tβ+1
, and contributions to the average strategy by (t

t+1
)γ on each iteration t.

In this case, LCFR is equivalent to DCFR1,1,1, because multiplying iteration t’s regret and con-
tribution to the average strategy by t′

t′+1
on every iteration t ≤ t′ < T is equivalent to weighing

iteration t by t
T

. CFR+ (where iteration t’s contribution to the average strategy is proportional to
t2) is equivalent to DCFR∞,−∞,2.

In preliminary experiments we found the optimal choice of α, β, and γ varied depending
on the specific game. However, we found that setting α = 3/2, β = 0, and γ = 2 led to
performance that was consistently stronger than CFR+. Thus, when we refer to DCFR with no
parameters listed, we assume this set of parameters are used.

Theorem 4 shows that DCFR has a convergence bound that differs from CFR+ only by a
factor of at most 3.
Theorem 4. Assume that T iterations of DCFR are conducted in a two-player zero-sum game.
Then the weighted average strategy profile is a 6L|I|(|

√
|A|+ 1√

T
)/
√
T -Nash equilibrium.

One of the drawbacks of setting β ≤ 0 is that suboptimal actions (that is, actions that have
an expected value lower than some other action in every equilibrium) no longer have regrets that
approach −∞ over time. Instead, for β = 0 they will approach some constant value and for
β < 0 they will approach 0. This makes the algorithm less compatible with improvements that
prune negative-regret actions [15, 19], discussed in Section 3.3 and Section 3.5. Such pruning
algorithms can lead to more than an order of magnitude reduction in computational and space
requirements for some games. Setting β > 0 better facilitates this pruning. For this reason in our
experiments we also show results for β = 0.5.

3.1.3 Experimental setup

We conduct experiments on subgames of HUNL poker. Although the HUNL game tree is too
large to traverse completely without sampling, state-of-the-art agents for HUNL solve subgames
of the full game in real time during play [20, 21, 27, 110] using a small number of the available
bet sizes. For example, Libratus solved in real time the remainder of HUNL starting on the third
betting round. We conduct our HUNL experiments on four subgames generated by Libratus 1.
The subgames were selected prior to testing. We use a simplified betting structure that has bet

1https://github.com/CMU-EM/LibratusEndgames

24

sizes of 0.5x and 1x the size of the pot, as well as an all-in bet (betting all remaining chips) for
the first bet of each round. For subsequent bets in a round, we consider 1x the pot and all-in.

Subgame 1 begins at the start of the third betting round and continues to the end of the game.
There are $500 in the pot at the start of the round. This is the most common situation to be in upon
reaching the third betting round, and is also the hardest for AIs to solve because the remaining
game tree is the largest. Since there is only $500 in the pot but up to $20,000 could be lost, this
subgames contains a number of high-penalty mistake actions. Subgame 2 begins at the start of
the third betting round and has $4,780 in the pot at the start of the round. Subgame 3 begins at
the start of the fourth (and final) betting round with $500 in the pot, which is a common situation.
Subgame 4 begins at the start of the fourth betting round with $3,750 in the pot. Exploitability
is measured in terms of milli big blinds per game (mbb/g), a standard measurement in the field,
which represents the number of big blinds (P1’s original contribution to the pot) lost per hand of
poker multiplied by 1,000.

In addition to HUNL subgames, we also consider a version of the game of Goofspiel (limited
to just five cards per player). In the variant we consider, both players know the order of revealed
cards in the center will be 1, 2, 3, 4, 5. A player’s payoff is the difference between his total value
and the total value of his opponent.

3.1.4 Experiments on Regret Discounting and Weighted Averaging
Our experiments are run for 32,768 iterations for HUNL subgames and 8,192 iterations for Goof-
spiel. Since all the algorithms tested only converge to an ε-equilibrium rather than calculating
an exact equilibrium, it is up to the user to decide when a solution is sufficiently converged to
terminate a run. In practice, this is usually after 100 - 1,000 iterations [21, 110]. For example, an
exploitability of 1 mbb/g is considered sufficiently converged so as to be essentially solved [12].
Thus, the performance of the presented algorithms between 100 and 1,000 iterations is arguably
more important than the performance beyond 10,000 iterations. Nevertheless, we show perfor-
mance over a long time horizon to display the long-term behavior of the algorithms. All our
experiments use the alternating-updates form of CFR. We measure the average exploitability of
the two players.

In all of the experiments in this section, we use quadratic weighting for CFR+.
Our experiments show that LCFR can dramatically improve performance over CFR+ over

reasonable time horizons in certain games. However, asymptotically, LCFR appears to do worse
in practice than CFR+. LCFR does particularly well in subgame 1 and 3, which (due to the small
size of the pot relative to the amount of money each player can bet) have more severe mistake
actions compared to subgames 2 and 4. It also does poorly in Goofspiel, which also likely does
not have severely suboptimal actions. This suggests that LCFR is particularly well suited for
games with the potential for large mistakes.

Our experiments also show that DCFR 3
2
,0,2 matches or outperforms CFR+ across the board.

The improvement is usually a factor of 2 or 3. In Goofspiel, DCFR 3
2
,0,2 results in essentially

identical performance as CFR+.
DCFR 3

2
,−∞,2, which sets negative regrets to zero rather than multiplying them by 1

2
each

iteration, generally also leads to equally strong performance, but in rare cases (such as in Fig-
ure 3.2), can produce a spike in exploitability that takes many iterations to recover from. Thus,

25

we generally recommend using DCFR 3
2
,0,2 over DCFR 3

2
,−∞,2.

DCFR 3
2
, 1
2
,2 multiplies negative regrets by

√
t√
t+1

on iteration t, which allows suboptimal ac-
tions to decrease in regret to −∞ and thereby facilitates algorithms that temporarily prune
negative-regret sequences. In the HUNL subgames, DCFR 3

2
, 1
2
,2 performed very similarly to

DCFR 3
2
,0,2. However, in Goofspiel it does noticeably worse. This suggests that DCFR 3

2
, 1
2
,2

may be preferable to DCFR 3
2
,0,2 in games with large mistakes when a pruning algorithm may be

used, but that DCFR 3
2
,0,2 should be used otherwise.

Figure 3.1: Convergence in HUNL Subgame1.

3.1.5 Discounted Monte Carlo CFR
Monte Carlo CFR (MCCFR) is a variant of CFR in which certain player actions or chance out-
comes are sampled [55, 96]. MCCFR combined with abstraction has produced state-of-the-art
HUNL poker AIs [21]. It is also particularly useful in games that do not have a special structure
that can be exploited to implement a fast vector-based implementation of CFR [79, 96]. There are
many forms of MCCFR with different sampling schemes. The most popular is external-sampling
MCCFR, in which opponent and chance actions are sampled according to their probabilities, but
all actions belonging to the player updating his regret are traversed. Other MCCFR variants ex-
ist that achieve superior performance [76], but external-sampling MCCFR is simple and widely
used, which makes it useful as a benchmark for our experiments.

Although CFR+ provides a massive improvement over CFR in the unsampled case, the
changes present in CFR+ (a floor on regret at zero and linear averaging), do not lead to su-
perior performance when applied to MCCFR [30]. In contrast, in this subsection we show

26

Figure 3.2: Convergence in HUNL Subgame2.

Figure 3.3: Convergence in HUNL Subgame 3.

that the changes present in LCFR do lead to superior performance when applied to MCCFR.
Specifically, we divide the MCCFR run into periods of 107 nodes touched. Nodes touched is an

27

Figure 3.4: Convergence in HUNL Subgame 4.

Figure 3.5: Convergence in 5-card Goofspiel variant.

implementation-independent and hardware-independent proxy for time that counts the number

28

Figure 3.6: Convergence of MCCFR in HUNL Subgame 3.

Figure 3.7: Convergence of MCCFR in HUNL Subgame 4.

of nodes traversed (including terminal nodes). After each period n ends, we multiply all accu-
mulated regrets and contributions to the average strategies by n

n+1
. Figure 3.6 and Figure 3.7

demonstrate that this leads to superior performance in HUNL compared to vanilla MCCFR. The
improvement is particularly noticeable in subgame 3, which features the largest mistake actions.

29

We also show performance if one simply multiplies the accumulated regrets and contributions
to the average strategy by 1

10
after the first period ends, and thereafter runs vanilla MCCFR (the

“Initial Discount MCCFR” variant). The displayed results are the average of 100 different runs.

3.1.6 Conclusions
We introduced variants of CFR that discount prior iterations, leading to stronger performance
than the prior state-of-the-art CFR+, particularly in settings that involve large mistakes. In par-
ticular, the DCFR 3

2
,0,2 variant matched or outperformed CFR+ in all settings, and linear MCCFR

leads to clearly better performance over vanilla MCCFR.
While DCFR clearly outperforms CFR+, linear CFR does even better than DCFR in settings

with very large mistake actions. Unfortunately, naïvely combining the two into LCFR+ results in
poor performance. Developing a single algorithm that achieves matches or exceeds both LCFR
and DCFR remains an interesting and important direction for future work.

3.1.7 Proofs of Theoretical Results
Proof of Theorem 3

Consider the weighted sequence of iterates σ′1, ..., σ′T in which σ′t is identical to σt, but weighed
by wt. The regret of action a in infoset I on iteration t of this new sequence is R′t(I, a).

From Lemma 3 we know that Rt(I, a) ≤ L
√
|A|
√
T for player i for action a in infoset I .

Since wa,t is a non-decreasing sequence, so we can apply Lemma 2 using weight wt for iteration
t with B = L

√
|A|
√
T and C = 0. From Lemma 2, this means that R′t(I, a) ≤ wTL

√
|A|
√
T .

Applying (3.1), we get weighted regret is at most wTL|Ii|
√
|A|
√
T for player i. Thus, weighted

average regret is at most
wTL|Ii|

√
|A|
√
T∑T

t=1 wt
. Since |I1| + |I2| = |I|, so the weighted average

strategies form a
wTL|I|

√
|A|
√
T∑T

t=1 wt
-Nash equilibrium.

Proof Theorem 4

Proof. Since the lowest amount of instantaneous regret on any iteration is −L and DCFR mul-
tiplies negative regrets by 1

2
each iteration, so regret for any action at any point is greater than

−2L.
Consider the weighted sequence of iterates σ′1, ..., σ′T in which σ′t is identical to σt, but

weighed by wa,t = ΠT−1
i=t

i2

(i+1)2 = 6t2

T (T+1)(2T+1)
rather than wt = ΠT−1

i=t
i3/2

i3/2+1
. The regret of action

a in infoset I on iteration t of this new sequence is R′t(I, a).
From Lemma 5 we know that Rt(I, a) ≤ 2L

√
|A|
√
T for player i for action a in infoset

I . Since wa,t is an increasing sequence, so we can apply Lemma 2 using weight wa,t for iter-
ation t with B = 2L

√
|A|
√
T and C = −2L. From Lemma 2, this means that R′t(I, a) ≤

6T 2(2L
√
|A|
√
T+2L)(

T (T+1)(2T+1)
) ≤ 6L(|

√
|A| + 1√

T
)/
√
T . Applying (3.1), we get weighted regret is at most

6L|Ii|(|
√
|A| + 1√

T
)/
√
T . Since the weights sum to one, this is also weighted average regret.

30

Since |I1|+ |I2| = |I|, so the weighted average strategies form a 6L(|I|(
√
|A|+ 1√

T
)/
√
T -Nash

equilibrium.

Lemma 2. Call a sequence x1, ..., xT of bounded real values BC-plausible if B > 0, C ≤ 0,∑i
t=1 xt ≥ C for all i, and

∑T
t=1 xt ≤ B. For any BC-plausible sequence and any sequence of

non-decreasing weights wt ≥ 0,
∑T

t=1(wtxt) ≤ wT (B − C).

Proof. The lemma closely resembles Lemma 3 from [150] and the proof shares some elements.
We construct a BC-plausible sequence x∗1, ..., x

∗
T that maximizes the weighted sum. That

is,
∑T

t=1wtx
′
t = maxx′1,...,x′T

∑T
t=1wtx

′
t. We show that x∗1 = C, x∗t = 0 for 1 < t < T , and

x∗T = (B − C).
Consider x∗T . Clearly in order to maximize the weighted sum, x∗T = B −

∑T−1
t=1 (wtx

∗
t).

Next, consider x∗t for t < T and assume x∗t′ = C −
∑t′

t=1(wtx
∗
t) for t < t′ < T and assume

x∗T = B −
∑T−1

t=1 (wtx
∗
t). Since wt ≤ wT and wt ≤ wt′ , so

∑T
i=t(wix

∗
i) would be maximized

if x∗t = C −
∑t−1

i=1(wix
∗
i). By induction, this means x∗1 = C, x∗t = 0 for 1 < t < T , and

x∗T = B − C. In this case
∑T

t=1(wtx
∗
t) ≤ wT (B − C) + w1C ≤ wT (B − C). Since x∗ is a

maximizing sequence, so for any sequence x we have that
∑T

t=1(wtxt) ≤ wT (B − C).

Lemma 3. Given a sequence of strategies σ1, ..., σT , each defining a probability distribution
over a set of actions A, consider any definition for Qt(a) satisfying the following conditions:

1. Q0(a) = 0

2. Qt(a) = Qt−1(a) + rt(a) if Qt−1(a) + rt(a) > 0

3. 0 ≥ Qt(a) ≥ Qt−1(a) + rt(a) if Qt−1(a) + rt(a) ≤ 0

The regret-like value Qt(a) is then an upper bound on the regret Rt(a) and Qt(a) − Qt−1(a) ≥
rt(a) = Rt(a)−Rt−1(a).

Proof. The lemma and proof closely resemble Lemma 1 in [150]. For any t ≥ 1 we have
Qt+1(a) − Qt(a) ≥ Qt(a) + rt+1(a) − Qt(a) = Rt+1(a) − Rt(a). Since Q0(a) = 0 and
R0(a) = 0, so Qt(a) ≥ Rt(a).

Lemma 4. Given a set of actionsA and any sequence of rewards vt such that |vt(a)−vt(b)| ≤ L
for all t and all a, b ∈ A, after playing a sequence of strategies determined by regret matching
but using the regret-like value Qt(a) in place of Rt(a), QT (a) ≤ L

√
|A|T for all a ∈ A.

Proof. The proof is identical to that of Lemma 2 in [150].

Lemma 5. Assume that player i conducts T iterations of DCFR. Then weighted regret for
the player is at most L|Ii|

√
|A|
√
T and weighted average regret for the player is at most

2L|Ii|
√
|A|/
√
T .

Proof. The weight of iteration t < T is wt = ΠT−1
i=t

i3/2

i3/2+1
and wT = 1. Thus, wt ≤ 1 for all t and

therefore
∑T

t=1w
2
t ≤ T .

Additionally, wt ≥ ΠT−1
i=t

i
i+1

= t
T

for t < T and wT = 1. Thus,
∑T

t=1 wt ≥ T (T + 1)/2 >
T 2/2.

31

Applying (3.1) and Lemma 4, we see that Qw,T
i (I, a) ≤ L

√
|A|
√∑T

t=1 w
2
t∑T

t=1 wt
≤ 2L

√
|A|
√
T

T 2 . From

(3.1) we see that Qw,T
i ≤ 2L|Ii|

√
|A|
√
T

T 2 .

Correctness of DCFR(3/2, 1/2, 2)

Theorem 5. Assume that T iterations of DCFR 3
2
, 1
2
,2 are conducted in a two-player zero-sum

game. Then the weighted average strategy profile is a 9L|I||
√
|A|/
√
T -Nash equilibrium.

Proof. From Lemma 6, we know that regret in DCFR 3
2
, 1
2
,2 for any infoset I and action a cannot

be below −L
√
T .

Consider the weighted sequence of iterates σ′1, ..., σ′T in which σ′t is identical to σt, but
weighed by wa,t = ΠT−1

i=t
i2

(i+1)2 = 6t2

T (T+1)(2T+1)
rather than wt = ΠT−1

i=t
i3/2

i3/2+1
. The regret of action

a in infoset I on iteration t of this new sequence is R′t(I, a).
From Lemma 5 we know that Rt(I, a) ≤ 2L

√
|A|
√
T for player i for action a in infoset

I . Since wa,t is an increasing sequence, so we can apply Lemma 2 using weight wa,t for it-
eration t with B = 2L

√
|A|
√
T and C = −L

√
|A|
√
T . From Lemma 2, this means that

R′t(I, a) ≤ 6T 2(3L
√
|A|
√
T)(

T (T+1)(2T+1)
) ≤ 9L(|

√
|A|)/

√
T . Applying (3.1), we get weighted regret is at

most 9L|Ii|(|
√
|A|)/

√
T . Since the weights sum to one, this is also weighted average regret.

Since |I1| + |I2| = |I|, so the weighted average strategies form a 9L(|I|(
√
|A|)/

√
T -Nash

equilibrium.

Lemma 6. Suppose after each of T iterations of CFR, regret is multiplied by
√
t√
t+1

on iteration

t. Then RT (I, a) ≥ −L
√
T for any infoset I and action a.

Proof. We prove this inductively. On the first iteration, the lowest regret could be after multi-
plying by

√
1√

1+1
is −L

2
. Now assume that after T iterations of CFR in which regret is multiplied

by
√
t√
t+1

on each iteration, RT (I, a) ≥ −L
√
T for infoset I action a. After conducting an addi-

tional iteration of CFR and multiplying by
√
T+1√
T+1+1

, RT+1(I, a) ≤ −L(
√
T + 1)

√
T+1√
T+1+1

. Since
√
T + 1 ≤

√
T + 1 + 1, so −

√
T+1√
T+1+1

L
√
T + 1 = −L(

√
T + 1)

√
T+1√
T+1+1

≥ −L
√
T + 1. Thus,

RT+1(I, a) ≥ −L
√
T + 1.

3.2 Strategy-Based Warm Starting of CFR
One of the main constraints in solving large games is the time taken to arrive at a solution.
For example, essentially solving Limit Texas Hold’em required running CFR on 4,800 cores for
68 days [150]. Even though Limit Texas Hold’em is a popular human game with many domain
experts, and even though several near-Nash equilibrium strategies had previously been computed
for the game [79, 80], there was no known way to leverage that prior strategic knowledge to
speed up CFR. In this section we introduce such a method, enabling CFR to be warm started in
a theoretically sound way from arbitrary strategies.

32

Aside from simply speeding up convergence to a Nash equilibrium, warm starting has impor-
tant synergies with techniques discussed in later sections. For example, warm starting magnifies
the benefits of the pruning techniques discussed in Section 3.3 and Section 3.5, in which some
parts of the game tree need not be traversed during an iteration of CFR. This results in faster
iterations and therefore faster convergence to a Nash equilibrium. The frequency of pruning op-
portunities increases as equilibrium finding progresses. This may result in later iterations being
completed multiple orders of magnitude faster than early iterations. Our warm starting algorithm
can “skip" these early expensive iterations that might otherwise account for the bulk of the time
spent on equilibrium finding.

Warm starting can also be used to improve the performance of ReBeL, discussed in Sec-
tion 5.3. Without warm starting, ReBeL has to solve every subgame from scratch starting from
a uniform random strategy. This means its value network must be accurate even when players
play uniform random strategies and similarly unrealistic strategies. However, if ReBeL trains a
policy network and warm starts CFR in subgames using this policy network then it can focus its
value network on more important situations and also solve subgames faster.

3.2.1 Further Details on CFR
In Section 2.3.5, Equation 2.19 showed that when using CFR, counterfactual regret of an infoset
is bounded by ∑

a∈A(I)

(
RT

+(I, a)
)2 ≤

(
L(I)

)2|A(I)|
(T∑
t=1

πσ
t

−i(I)
)2

Since
∑T

t=1(πσ
t

−i(I))2 ≤
∑T

t=1 π
σt

−i(I) = Tπσ̄
T

−i (I) we can also use the following looser bound
that only depends on σ̄T rather than each σt for each iteration t. This will be useful for the theory
of our warm start technique.∑

a∈A(I)

(
RT

+(I, a)
)2 ≤

(
L(I)

)2|A(I)|Tπσ̄T−i (I) (3.2)

In turn, this leads to a bound on regret of

RT (I) ≤ L(I)
√
|A(I)|

√
T
√
πσ̄

T

−i (I) (3.3)

3.2.2 Warm-Starting Algorithm
In this section we explain the theory of how to warm start CFR and prove the method’s correct-
ness. By warm starting, we mean we wish to effectively “skip" the first T iterations of CFR
(defined more precisely later in this section). When discussing intuition, we use normal-form
games due to their simplicity. Normal-form games are a special case of games in which each
player only has one information set. They can be represented as a matrix of payoffs where
Player 1 picks a row and Player 2 simultaneously picks a column.

The key to warm starting CFR is to correctly initialize the regrets. To demonstrate the neces-
sity of this, we first consider an ineffective approach in which we set only the starting strategy,

33

but not the regrets. Consider the two-player zero-sum normal-form game defined by the payoff
matrix [1 0

0 2] with payoffs shown for Player 1 (the row player). The Nash equilibrium for this
game requires Player 1 to play 〈2

3
, 1

3
〉 and Player 2 to play 〈2

3
, 1

3
〉. Suppose we wish to warm

start regret matching with the strategy profile σ∗ in which both players play 〈0.67, 0.33〉 (which
is very close to the Nash equilibrium). A naïve way to do this would be to set the strategy on the
first iteration to 〈0.67, 0.33〉 for both players, rather than the default of 〈0.5, 0.5〉. This would re-
sult in regret of 〈0.0023,−0.0067〉 for Player 1 and 〈−0.0023, 0.0067〉 for Player 2. Since regret
matching picks actions in proportion to positive regret (see Equation 2.2), on the second iteration
Player 1 would play 〈1, 0〉 and Player 2 would play 〈0, 1〉, resulting in regret of 〈0.0023, 1.9933〉
for Player 1. That is a huge amount of regret, and makes this warm start no better than starting
from scratch. Intuitively, this naïve approach is comparable to warm starting gradient descent by
setting the initial point close to the optimum, but not reducing the step size. The result is that we
overshoot the optimal strategy significantly. In order to add some “inertia" to the starting strategy
so that CFR does not overshoot, we need a method for setting the regrets as well in CFR.

Fortunately, it is possible to efficiently calculate how far a strategy profile is from the op-
timum (that is, from a Nash equilibrium). This knowledge can be leveraged to initialize the
regrets appropriately. To provide intuition for this warm starting method, we consider warm
starting CFR to T iterations in a normal-form game based on an arbitrary strategy σ. Later, we
discuss how to determine T based on σ.

First, the average strategy profile is set to σ̄T = σ. We now consider the regrets. Regret for
action a after T iterations of CFR would normally be RT

i (a) =
∑T

t=1

(
ui(a, σ

t
−i)− ui(σt)

)
(see

Equation 2.16). Since
∑T

t=1 ui(a, σ
t
−i) is the value of having played action a on every iteration,

it is the same as Tui(a, σ̄T−i). When warm starting, we can calculate this value because we
set σ̄T = σ. However, we cannot calculate

∑T
t=1 ui(σ

t) because we did not define individual
strategies played on each iteration. Fortunately, it turns out we can substitute another value
we refer to as Tv′σ̄Ti , chosen from a range of acceptable options. To see this, we first observe
that the value of

∑T
t=1 ui(σ

t) is not relevant to the proof that two no-regret learning algorithms
converge to a Nash equilibrium (see Theorem 1 presented in Section 2.3.4). Specifically, in
Equation 2.11 in the proof, we see that

∑T
t=1 ui(σ

t) cancels out. Thus, if we choose v′σ̄Ti such
that v′σ̄T1 + v′σ̄

T

2 ≤ 0, Theorem 1 still holds. This is our first constraint.
There is an additional constraint on our warm start technique. We must ensure that no infor-

mation set violates the bound on regret guaranteed in Equation 3.2. If regret exceeds this bound,
then convergence to a Nash equilibrium may be slower than CFR guarantees. Thus, our second
constraint is that when warm starting to T iterations, the initialized regret in every information
set must satisfy Equation 3.2. If these conditions hold and CFR is played after the warm start,
then the bound on regret will be the same as if we had played T iterations from scratch instead of
warm starting. When using our warm start method in extensive-form games, we do not directly
choose v′σ̄Ti but instead choose a value u′σ̄T (I) for every information set (and we will soon see
that these choices determine v′σ̄Ti).

We now proceed to formally presenting our warm-start method and proving its effective-
ness. Theorem 6 shows that we can warm start based on an arbitrary strategy σ by replacing∑T

t=1 v
σt(I) for each I with some value Tv′σ(I) (where v′σ(I) satisfies the constraints mentioned

above). Then, Corollary 1 shows that this method of warm starting is lossless: if T iterations of

34

CFR were played and we then warm start using σ̄T , we can warm start to T iterations.
We now define some terms that will be used in the theorem. When warm starting, a substitute

information set value u′σ(I) is chosen for every information set I (we will soon describe how).
Define v′σ(I) = πσ−P (I)(I)u′σ(I) and define v′σi (h) for h ∈ I as πσ−i(h)u′σ(I). Define v′σi (z) for
z ∈ Z as πσ−iui(z).

As explained earlier in this section, in normal-form games
∑T

t=1 ui(a, σ
t
−i) = Tui(a, σ̄

T
−i).

This is still true in extensive-form games for information sets where a leads to a terminal payoff.
However, it is not necessarily true when a leads to another information set, because then the value
of action a depends on how the player plays in the next information set. Following this intuition,
we will define substitute counterfactual value for an action. First, define Succσi (h) as the set
consisting of histories h′ that are the earliest reachable histories from h such that P (h′) = i
or h′ ∈ Z. By “earliest reachable" we mean h v h′ and there is no h′′ in Succσ(h) such that
h′′ @ h′. Then the substitute counterfactual value of action a, where i = P (I), is

v′σ(I, a) =
∑
h∈I

(∑
h′∈Succσi (h·a)

v′σi (h′)
)

(3.4)

and substitute value for player i is defined as

v′σi =
∑

h′∈Succσi (∅)

v′σi (h′) (3.5)

We define substitute regret as

R′T (I, a) = T
(
v′σ(I, a)− v′σ(I)

)
and

R′T,T
′
(I, a) = R′T (I, a) +

T ′∑
t′=1

(
vσ

t′

(I, a)− vσt
′

(I)
)

Also, R′T,T ′(I) = maxa∈A(I) R
′T,T ′(I, a). We also define the combined strategy profile

σ′T,T
′
=
Tσ + T ′σ̄T

′

T + T ′

Using these definitions, we wish to choose u′σ(I) such that

∑
a∈A(I)

(
v′σ(I, a)− v′σ(I)

)2

+
≤
πσ−i(I)

(
L(I)

)2|A(I)|
T

(3.6)

We now proceed to our main result on warm starting.
Theorem 6. Let σ be an arbitrary strategy profile for a two-player zero-sum game. Choose
any T and choose u′σ(I) in every information set I such that v′σ1 + v′σ2 ≤ 0 and Equation 3.6 is
satisfied for every information set I . If we play T ′ iterations according to CFR, where on iteration
T ∗, ∀I ∀a we use substitute regret R′T,T

∗
(I, a), then σ′T,T

′
forms a (ε1 + ε2)-equilibrium where

εi =
∑
I∈Ii

√
πσ
′T,T ′
−i (I)L(I)

√
|A(I)|

√
T+T ′

.

35

Theorem 6 allows us to choose from a range of valid values for T and u′σ(I). Although
it may seem optimal to choose the values that result in the largest T allowed, this is typically
not the case in practice. This is because in practice CFR converges significantly faster than the
theoretical bound. In the next two sections we cover how to choose u′σ(I) and T within the
theoretically sound range so as to converge even faster in practice.

The following corollary shows that warm starting using Equation 3.6 is lossless: if we play
CFR from scratch for T iterations and then warm start using σ̄T by setting u′σ̄T (I) to even the
lowest value allowed by Equation 3.6, we can warm start to T .
Corollary 1. Assume T iterations of CFR were played and let σ = σ̄T be the average strategy
profile. If we choose u′σ(I) for every information set I such that

∑
a∈A(I)

(
v′σ(I, a)−v′σ(I)

)2

+
=

πσ−i(I)
(
L(I)
)2

|A(I)|
T

, and then play T ′ additional iterations of CFR where on iteration T ∗, ∀I ∀a we
use R′T,T

∗

i (I, a), then the average strategy profile over the T + T ′ iterations forms a (ε1 + ε2)-

equilibrium where εi =
∑
I∈Ii

√
πσ
′T,T ′
−i (I)L(I)

√
|A(I)|

√
T+T ′

.

3.2.3 Choosing the Number of Warm-Start Iterations
In this section we explain how to determine the number of iterations T to warm start to, given
only a strategy profile σ. We give a method for determining a theoretically acceptable range for
T . We then present a heuristic for choosing T within that range that delivers strong practical
performance.

In order to apply Theorem 1, we must ensure v′σ1 + v′σ2 ≤ 0. Thus, a theoretically acceptable
upper bound for T would satisfy v′σ1 + v′σ2 = 0 when u′σ(I) in every information set I is set as
low as possible while still satisfying (3.6).

In practice, setting T to this theoretical upper bound would perform very poorly because CFR
tends to converge much faster than its theoretical bound. Fortunately, CFR also tends to converge
at a fairly consistent rate within a game. Rather than choose a T that is as large as the theory
allows, we can instead choose T based on how CFR performs over a short run in the particular
game we are warm starting.

Specifically, we generate a function f(T) that maps an iteration T to an estimate of how
close σ̄T would be to a Nash equilibrium after T iterations of CFR starting from scratch. This
function can be generated by fitting a curve to the first few iterations of CFR in a game. f(T)
defines another function, g(σ), which estimates how many iterations of CFR it would take to
reach a strategy profile as close to a Nash equilibrium as σ. Thus, in practice, given a strategy
profile σ we warm start to T = g(σ) iterations. In those experiments that required guessing an
appropriate T (namely Figures 3.9 and 3.10) we based g(σ) on a short extra run (10 iterations of
CFR) starting from scratch. The experiments show that this simple method is sufficient to obtain
near-perfect performance.

3.2.4 Choosing Substitute Counterfactual Values
Theorem 6 allows for a range of possible values for u′σ(I). In this section we discuss how to
choose a particular value for u′σ(I), assuming we wish to warm start to T iterations.

36

From (3.4), we see that v′σ(I, a) depends on the choice of u′σ(I ′) for information sets I ′

that follow I . Therefore, we set u′σ(I) in a bottom-up manner, setting it for information sets
at the bottom of the game tree first. This method resembles a best-response calculation. When
calculating a best response for a player, we fix the opponent’s strategy and traverse the game tree
in a depth-first manner until a terminal node is reached. This payoff is then passed up the game
tree. When all actions in an information set have been explored, we pass up the value of the
highest-utility action.

Using a best response would likely violate the constraint v′σ1 + v′σ2 ≤ 0. Therefore, we com-
pute the following response instead. After every action in information set I has been explored,
we set u′σ(I) so that (3.6) is satisfied. We then pass v′σ(I) up the game tree.

From (3.6) we see there are a range of possible options for u′σ(I). In general, lower regret
(that is, playing closer to a best response) is preferable, so long as v′σ1 + v′σ2 ≤ 0 still holds. In
this section we choose an information set-independent parameter 0 ≤ λi ≤ 1 for each player and
set u′σ(I) such that

∑
a∈A(I)

(
v′σ(I)− v′σ(I, a)

)2

+
=
λiπ

σ
−i(I)

(
L(I)

)2|A(I)|
T

Finding λi such that v′σ1 + v′σ2 = 0 is difficult. Fortunately, performance is not very sensitive
to the choice of λi . Therefore, when we warm start, we do a binary search for λi so that v′σ1 +v′σ2
is close to zero (and not positive).

Using λi is one valid method for choosing u′σ(I) from the range of options that (3.6) allows.
However, there may be heuristics that perform even better in practice. In particular, πσ−i

(
L(I)

)2

in (3.6) acts as a bound on
(
rt(I, a)

)2. If a better bound, or estimation, for
(
rt(I, a)

)2 exists,
then substituting that in (3.6) may lead to even better performance.

3.2.5 Experiments
We now present experimental results for our warm-starting algorithm. We begin by demonstrat-
ing an interesting consequence of Corollary 1. It turns out that in two-player zero-sum games,
we need not store regrets at all. Instead, we can keep track of only the average strategy played.
On every iteration, we can “warm start" using the average strategy to directly determine the prob-
abilities for the next iteration. We tested this algorithm on random 100x100 normal-form games,
where the entries of the payoff matrix are chosen uniformly at random from [−1, 1]. On every
iteration T > 0, we set v′σ̄T1 = v′σ̄

T

2 such that

|L1|2|A1|∑
a1

(
u1(a1, σ̄T2)− v′σ̄T1

)2

+

=
|L2|2|A2|∑

a2

(
u2(a2, σ̄T1)− v′σ̄T2

)2

+

Figure 3.8 shows that warm starting every iteration in this way results in performance that is
virtually identical to CFR.

The remainder of our experiments are conducted on Limit Flop Texas Hold’em (FTH) (de-
scribed in Section 2.4.4).

37

Figure 3.8: Comparison of CFR vs warm starting every iteration. The results shown are the
average over 64 different 100x100 normal-form games.

The second experiment compares our warm starting to CFR in FTH. We run CFR for some
number of iterations before resetting the regrets according to our warm start algorithm, and
then continuing CFR. We compare this to just running CFR without resetting. When resetting,
we determine the number of iterations to warm start to based on an estimated function of the
convergence rate of CFR in FTH, which is determined by the first 10 iterations of CFR. Our
projection method estimated that after T iterations of CFR, σ̄T is a 10.82

T
-equilibrium. Thus,

when warm starting based on a strategy profile with exploitability x, we warm start to T = 10.82
x

.
Figure 3.9 shows performance when warm starting at 100, 500, and 2500 iterations. These are
three separate runs, where we warm start once on each run. We compare them to a run of CFR
with no warm starting. Based on the average strategies when warm starting occurred, the runs
were warm started to 97, 490, and 2310 iterations, respectively. The figure shows there is almost
no performance difference between warm starting and not warm starting.2

The third experiment demonstrates one of the main benefits of warm starting: being able to
use a small coarse abstraction and/or quick-but-rough equilibrium-finding technique first, and
starting CFR from that solution, thereby obtaining convergence faster. In all of our experiments,
we leverage a number of implementation tricks that allow us to complete a full iteration of CFR
in FTH in about three core minutes [79]. This is about four orders of magnitude faster than
vanilla CFR. Nevertheless, there are ways to obtain good strategies even faster. To do so, we
use two approaches. The first is a variant of CFR called External-Sampling Monte Carlo CFR
(MCCFR) [96], in which chance nodes and opponent actions are sampled, resulting in much
faster (though less accurate) iterations. The second is abstraction, in which several similar in-
formation sets are bucketed together into a single information set (where “similar" is defined by
some heuristic). This constrains the final strategy, potentially leading to worse long-term perfor-

2Although performance between the runs is very similar, it is not identical, and in general there may be dif-
ferences in the convergence rate of CFR due to seemingly inconsequential differences that may change to which
equilibrium CFR converges, or from which direction it converges.

38

Figure 3.9: Comparison of CFR vs warm starting after 100, 500, or 2500 iterations. We warm
started to 97, 490, and 2310 iterations, respectively. We used λ = 0.08, 0.05, 0.02 respectively
(using the same λ for both players).

mance. However, it can lead to faster convergence early on due to all information sets in a bucket
sharing their acquired regrets and due to the abstracted game tree being smaller. Abstraction is
particularly useful when paired with MCCFR, since MCCFR can update the strategy of an entire
bucket by sampling only one information set.

In our experiment, we compare three runs: CFR, MCCFR in which the 1,286,792 flop poker
hands have been abstracted into just 5,000 buckets, and CFR that was warm started with six
core minutes of the MCCFR run. As seen in Figure 3.10, the MCCFR run improves quickly but
then levels off, while CFR takes a relatively long time to converge, but eventually overtakes the
MCCFR run. The warm start run combines the benefit of both, quickly reaching a good strategy
while converging as fast as CFR in the long run.

In many extensive-form games, later iterations are cheaper than earlier iterations due to the
increasing prevalence of pruning, in which sections of the game tree need not be traversed. In this
experiment, the first 10 iterations took 50% longer than the last 10, which is a relatively modest
difference due to the particular implementation of CFR we used and the relatively small number
of player actions in FTH. In other games and implementations, later iterations can be orders of
magnitude cheaper than early ones, resulting in a much larger advantage to warm starting.

In this next experiment, we demonstrate the accuracy of our projection method for determin-
ing the number of iterations to warm start to. We plot the convergence rate of CFR in FTH, and
also plot what the convergence rate is projected to be based on data from the first 10 iterations
of CFR in FTH. Specifically, it predicts the rate of convergence as 10.82

T
, where T is the number

of iterations. Although it bases this projection on just 10 iterations, the results show it to be very
accurate even up to 10,000 iterations.

Next we demonstrate that performance is not particularly sensitive to the choice of λ. Fig-
ure 3.12 shows the results of warm starting after 500 iterations of CFR (warm starting to T =
500) when using various choices of λ (same λ for both players). Performance is virtually identi-

39

Figure 3.10: Performance of full-game CFR when warm started. The MCCFR run uses an
abstraction with 5,000 buckets on the flop. After six core minutes of the MCCFR run, its average
strategy was used to warm start CFR in the full to T = 70 using λ = 0.08.

Figure 3.11: Actual convergence of CFR compared to a projection of convergence based on the
first 10 iterations of CFR.

cal for λ = 0, 0.05, and 0.1, though λ = 0.05 performs the best by a small margin. Nevertheless,
performance degrades dramatically when choosing a value such as λ = 0.5.

40

Figure 3.12: Comparison of different choices for λ when warm starting (using the same λi for
both players).

3.2.6 Conclusions

We introduced a general method for warm starting RM and CFR in zero-sum games. We proved
that after warm starting to T iterations, CFR converges just as quickly as if it had played T
iterations of CFR from scratch. Moreover, we proved that this warm start method is “lossless."
That is, when warm starting with the average strategy of T iterations of CFR, we can warm start
to T iterations.

While other warm start methods exist, they can only be applied in special cases. A benefit of
ours is that it is agnostic to the origins of the input strategies. We demonstrated that this can be
leveraged by first solving a coarse abstraction and then using its solution to warm start CFR in
the full game.

Recent research that finds close connections between CFR and other iterative equilibrium-
finding algorithms [158] suggests that our techniques may extend beyond CFR as well. There
are a number of equilibrium-finding algorithms with better long-term convergence bounds than
CFR, but which are not used in practice due to their slow initial convergence [42, 72, 90, 114].
Our work suggests that a similar method of warm starting in these algorithms could allow their
faster asymptotic convergence to be leveraged later in the run while CFR is used earlier on.

3.2.7 Proofs of Theoretical Results

Lemma 7

Lemma 7 proves that the growth of substitute regret has the same bound as the growth rate of
normal regret. This lemma is used in the proof of Theorem 6.

41

Lemma 7. If ∑
a∈A

(
R′T (I, a)

)2

+
≤
(
πσ−i(I)

)(
L(I)

)2|A(I)|T

and strategies are chosen in I according to CFR using R′T,T
∗
(I, a) for all a on every iteration

T ∗, then R′T,T
′
(I) ≤

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′.

Proof. After T ′ iterations of CFR, we are guaranteed that
(
R′T,T

′
(I, a)

)2

+
≤
(
R′T (I, a))2

+ +∑T ′

t′=1

(
rt
′
(I, a)

)2. On iteration t′ ≤ T ′, from (2.13) and (2.14), we know that
(
rt
′
(I, a)

)2 ≤(
πσ

t′

−i (I)L(I)
)2. Thus,

(
R′T,T

′
(I, a)

)2

+
≤
(
R′T (I, a))2

+ +
T ′∑
t′=1

(
πσ

t′

−i (I)L(I)
)2

(
R′T,T

′
(I, a)

)2

+
≤
(
Tπσ−i(I) +

T ′∑
t′=1

(
πσ

t′

−i (I)
)2
)(
L(I)

)2

Since 0 ≤ πσ
t′

−i (I) ≤ 1, we know that
∑T ′

t′=1

(
πσ

t′

−i (I)
)2 ≤

∑T ′

t′=1 π
σt
′

−i (I). Also,
∑T ′

t′=1 π
σt
′

−i (I) =

T ′πσ̄
T ′

−i (I). So (
R′T,T

′
(I, a)

)2

+
≤
(
Tπσ−i(I) + T ′πσ̄

T ′

−i (I)
)(
L(I)

)2

(
R′T,T

′
(I, a)

)2

+
≤
(
πσ
′T,T ′

−i (I)
)(
L(I)

)2
(T + T ′)

Since R′T,T ′(I) ≤
√∑

a∈A(I)

(
R′T,T ′(I, a)

)2

+
so we get

R′T,T
′
(I) ≤

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′

Lemma 8

Lemma 8 proves that we can use substitute regret to prove convergence to a Nash equilibrium just
as we could use normal regret. Specifically, it proves that if average substitute regret is bounded
for both players in the whole game, then the strategy profile is as close to a Nash equilibrium as
if average normal regret were similarly bounded. This lemma is used in the proof of Theorem 6.
Lemma 8. Define R′T,T

′

i as

max
σ∗i ∈Σi

(
T
(
ui(σ

∗
i , σ−i)− v′σi

)
+

T ′∑
t′=1

(
ui(σ

∗
i , σ

t′)− ui(σt
′
)
))

(3.7)

In a two-player zero-sum game, if v′σ1 + v′σ2 ≤ 0 and R′T,T
′

T+T ′
≤ εi, then σ′T,T

′
is a (ε1 + ε2)-

equilibrium.

42

Proof. Since σ∗i is the same on every iteration,

R′T,T
′

i = (T + T ′) max
σ∗i ∈Σi

ui(σ
∗
i , σ

′T,T ′
−i)− Tv′σi −

T ′∑
t′=1

ui(σ
t′)

Since v′σ1 + v′σ2 ≤ 0 and u1(σt
′
) = −u2(σt

′
), so

max
σ∗1∈Σ1

u1(σ∗1, σ
′T,T ′
2) + max

σ∗2∈Σ2

u2(σ′T,T
′

1 , σ∗2) ≤ ε1 + ε2

max
σ∗1∈Σ1

u1(σ∗1, σ
′T,T ′
2)− min

σ∗2∈Σ2

u1(σ′T,T
′

1 , σ∗2) ≤ ε1 + ε2

Since u1(σ′T,T
′

1 , σ′T,T
′

2) ≥ minσ′2∈Σ2
u1(σ′T,T

′

1 , σ∗2) so we have

max
σ∗1∈Σ1

u1(σ∗1, σ
′T,T ′
2)− u1(σ′T,T

′

1 , σ′T,T
′

2) ≤ ε1 + ε2

By symmetry, this is also true for Player 2. Therefore, σ′T,T ′ is a (ε1 + ε2)-equilibrium.

Proof of Theorem 6

Proof. After setting T and v′σ(I) for every information set I , assume T ′ iterations were played
according to CFR, where on iteration T ∗, ∀I ∀a we used substitute regret R′T,T ∗(I, a).

We begin with some definitions. Define vσi (h) = πσ−i(h)
∑

z∈Z
(
πσ(h, z)ui(z)

)
. DefineD(I)

to be the information sets of player i reachable from I (including I). Define σ|D(I)→σ′ to be a
strategy profile equal to σ except in the information sets in D(I) where it is equal to σ′. Define
succσi (I ′|I, a) to be the probability that I ′ is the next information set of player i visited given that
the action awas just selected in information set I , and σ is the current strategy. Define Succ(I, a)
to be the set of all possible next information sets of player P (I) visited given that action a ∈ A(I)
was just selected in information set I . Define Succ(I) = ∪a∈A(I)Succ(I, a). The substitute full
counterfactual regret when warm starting from strategy σ and where i = P (I) is

R′T,T
′

full (I) = max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσt
′

(I)
))

(3.8)

We now prove recursively that

R′T,T
′

full (I) ≤
∑

I′∈D(I)

√
πσ
′T,T ′

−i (I ′)L(I ′)
√
|A(I ′)|

√
T + T ′ (3.9)

We define the level of an information set as follows. Any information set I such that
Succ(I) = ∅ is level 1. Let ` be the maximum level of any I ′ ∈ Succ(I). The level of I is
`+ 1.

43

First, consider an information set I of level 1. Then there are no Player i information sets
following I , so

R′T,T
′

i,full (I) = max
a∈A(I)

(
T
(
vσ(I, a)− v′σ(I)

)
+

T ′∑
t′=1

(
vσ

t′

(I, a)− vσt
′

(I)
))

Since there are no further player i actions in this case, so vσ(I, a) = v′σ(I, a). Therefore,
R′T,T

′

full (I) = R′T,T
′
(I). By Lemma 7, (3.9) holds.

Now assume that (3.9) holds for all I ′ where the level of I ′ is at most `. We prove (3.9) holds
for all I with level `+ 1 where i = P (I).

From Lemma 7, we know that

Tv′σ(I) +
T ′∑
t′=1

vσ
t

(I) ≥ max
a∈A(I)

(
Tv′σ(I, a) +

T ′∑
t′=1

vσ
t

(I, a)

−
√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′

)
(3.10)

Tv′σ(I) +
T ′∑
t′=1

vσ
t

(I) ≥

max
a∈A(I)

(
T
∑
h∈I

∑
h′∈Succi(h·a)

v′σi (h′) +
T ′∑
t′=1

vσ
t

(I, a)−

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′

)
(3.11)

We also know that for any σ,

max
σ′∈Σi

vσ|D(I)→σ′ (I) =

max
a∈A(I)

max
σ′i∈Σi

∑
h∈I

(∑
z∈Z:z∈Succi(h·a)

vσi (z)+

∑
h′ 6∈Z:h′∈Succi(h·a)

vσ|D(I(h′))→σ′ (h′)
)

(3.12)

44

Since for any z ∈ Z, vσi (z) = v′σi (z), so combining (3.11) and (3.12) we get

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσt
′

(I)
))
≤

max
σ′i∈Σi

(
T
∑
h∈I

∑
h′ 6∈Z:h′∈Succi(h·a)

(
vσ|D(I(h′))→σ′ (h′)− v′σi (h′)

)
+

T ′∑
t′=1

∑
h∈I

∑
h′ 6∈Z:h′∈Succi(h·a)

(
vσ

t′ |D(I(h′))→σ′ (h′)− vσt
′

i (h′)
)
+

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′ (3.13)

Since we sum over only h′ ∈ Succi(h · a) where h′ 6∈ Z, this becomes

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσt
′

(I)
))
≤

max
σ′i∈Σi

(
T

∑
I′∈Succ(I,a)

(
vσ|D(I′)→σ′ (I ′)− v′σi (I ′)

)
+

T ′∑
t′=1

∑
I′∈Succ(I,a)

(
vσ

t′ |D(I′)→σ′ (I ′)− vσt
′

i (I ′)
)
+

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′ (3.14)

From the recursion assumption, for any I ′ ∈ Succ(I, a),

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I ′)− v′σi (I ′)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I′)→σ′ (I ′)− vσt
′

(I ′)
))
≤

∑
I′′∈D(I′)

√
πσ
′T,T ′

−i (I ′′)L(I ′′)
√
|A(I ′′)|

√
T + T ′ (3.15)

45

Therefore,

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσt
′

(I)
))
≤

∑
I′∈Succ(I,a)

∑
I′′∈D(I′)

√
πσ
′T,T ′

−i (I ′′)L(I ′′)
√
|A(I ′′)|

√
T + T ′

+

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′ (3.16)

Since Succ(I, a) ⊆ Succ(I) and since D(I) = ∪I′∈Succ(I)D(I ′) ∪ {I}, so

max
σ′∈Σi

(
T
(
vσ|D(I)→σ′ (I)− v′σi (I)

)
+

T ′∑
t′=1

(
vσ

t′ |D(I)→σ′ (I)− vσt
′

(I)
))
≤

∑
I′∈D(I)

√
πσ
′T,T ′

−i (I ′)L(I ′)
√
|A(I ′)|

√
T + T ′ (3.17)

Therefore, (3.9) holds by recursion.
Define R′T,T

′

i according to (3.7). If P (∅) = i, then (3.9) implies

R′T,T
′

i ≤
∑
I∈Ii

√
πσ
′T,T ′

−i (I)L(I)
√
|A(I)|

√
T + T ′ (3.18)

If P (∅) 6= i, then we could simply add a Player i information set at the beginning of the game
with a single action. Therefore, (3.18) holds for every player i. Since v′σ1 + v′σ2 ≤ 0 by construc-
tion, so we can applying Lemma 8 using (3.18), and thereby see that Theorem 6 holds.

Proof of Corollary 1

Proof. After T iterations of CFR, for every information set I we could clearly assign v′σ̄T (I) =
1
T

∑T
t=1 v

σt(I) in order to satisfy Theorem 6, since this would set regrets to exactly what they
were before. From (3.2) we see this choice of v′σ̄T (I) satisfies (3.6). We instead choose v′σ̄T (I) ≤
1
T

∑T
t=1 v

σt(I), where v′σ̄T (I) still satisfies (3.6). Since v′σ̄T (I) ≤ 1
T

∑T
t=1 v

σt(I) for every
information set I , so from (3.5) we know v′σ̄

T

i ≤ 1
T

∑T
t=1 ui(σ

t). Therefore, v′σ̄T1 + v′σ̄
T

2 ≤ 0 and
we can apply Theorem 6 to warm start to T iterations.

3.3 Regret-Based Pruning (RBP)
A key improvement that makes CFR practical in large games is pruning. At a high level, pruning
allows the algorithm to avoid traversing the entire game tree while still maintaining the same con-
vergence guarantees. The classic version of pruning, which we will refer to as partial pruning,

46

allows the algorithm to skip updates for a player in a sequence if the other player’s current strat-
egy does not reach the sequence with positive probability. This dramatically reduces the cost of
each iteration. The magnitude of this reduction varies considerably depending on the game, but
can easily be higher than 90% [96], which improves the convergence speed of the algorithm by
a factor of 10. Moreover, the benefit of partial pruning empirically seems to be more significant
as the size of the game increases.

While partial pruning leads to a large gain in speed, we observe that there is still room for
much larger speed improvement. Partial pruning only skips updates for a player if an opponent’s
action in the path leading to that point has zero probability. This can fail to prune paths that
are actually prunable. Consider a game where the first player to act (Player 1) has hundreds of
actions to choose from, and where, over several iterations, the reward received from many of
them is extremely poor. Intuitively, we should be able to spend less time updating the strategy
for Player 1 following these poor actions, and more time on the actions that proved worthwhile
so far. However, here, partial pruning will continue to update Player 1’s strategy following each
action in every iteration.

In this section we introduce a better version of pruning, regret-based pruning (RBP), in
which CFR can avoid traversing a path in the game tree if either player takes actions leading
to that path with zero probability. This pruning needs to be temporary, because the reach prob-
abilities may become positive in a later CFR iteration. However, we can continue to prune for
as long as we know with certainty that the reach probability of a sequence is zero. Since reach
probability is determined by regret, and since regret cannot increase by more than the maximum
range of payoffs in the game on each iteration, so the number of CFR iterations that an action
can be pruned is proportional to how negative the regret is for that action.

RBP can lead to a dramatic improvement depending on the game. As a rough example,
consider a game in which each player has very negative regret for actions leading to 90% of
nodes. Partial pruning, which skips updates for a player when the opponent does not reach the
node, would traverse 10% of the game tree per iteration. In contrast, regret-based pruning, which
skips updates when either player does not reach the node, would traverse only 0.1 · 0.1 = 1% of
the game tree. In general, RBP asymptotically roughly squares the performance gain of partial
pruning.

We test RBP with CFR and CFR+. Experiments show that it leads to more than an order of
magnitude speed improvement over partial pruning. The benefit increases with the size of the
game.

3.3.1 Applying Best Response to Zero-Reach Sequences
In Section 2.3.4 it was explained that if both players’ average regret approaches zero, then their
average strategies approach a Nash equilibrium. CFR provides one way to compute strategies
that have bounded regret, but it is not the only way. CFR-BR [80] is a variant of CFR in which one
player plays CFR and the other player plays a best response to the opponent’s strategy in every
iteration. Calculating a best response to a fixed strategy is computationally cheap (in games of
perfect recall), costing only a single traversal of the game tree. By playing a best response in
every iteration, the best-responder is guaranteed to have at most zero regret. Moreover, the CFR
player’s regret is still bounded sublinearly because the CFR regret bounds hold regardless of the

47

other player’s policy. However, in practice the CFR player’s regret in CFR-BR tends to be higher
than when both players play vanilla CFR (since the opponent is clairvoyantly maximizing the
CFR player’s regret). For this reason, empirical results show that CFR-BR converges slower
than CFR, even though the best-responder’s regret is always at most zero.

We now discuss a modification of CFR that will motivate regret-based pruning. The idea is
that by applying a best response only in certain situations (and CFR in others), we can lower
regret for one player without increasing it for the opponent. Without loss of generality, we
discuss how to reduce regret for Player 1. Specifically, consider an information set I ∈ I1 and
action a where σt(I, a) = 0 and any history h ∈ I . Then for any ancestor history h′ such that
h′ @ h·a, we know πσ

t

1 (h′, h·a) = 0. Likewise, for any descendant history h′ such that h·a v h′,
we know πσ

t

1 (h′) = 0. Thus, from Equation 2.13 we see that Player 1’s strategy on iteration t
in any information set following action a has no effect on Player 2’s regret for that iteration.
Moreover, it also has no effect on Player 1’s regret for any information set except R(I, a) and
information sets that follow action a. Therefore, by playing a best response only in information
sets following action a (and playing vanilla CFR elsewhere), Player 1 guarantees zero regret for
himself in all information sets following action a, without the practical cost of increasing his
regret in information sets before I or of increasing Player 2’s regret. This may increase regret for
action a itself, but if we only do this when R(I, a) ≤ −L(I), we can guarantee R(I, a) ≤ 0 even
after the iteration. Similarly, Player 2 can simultaneously play a best response in information
sets following an action a′ where σt2(I ′, a′) = 0 for I ′ ∈ I2. This approach leads to lower regret
for both players.

(In situations where both players’ sequences of reaching an information set have zero proba-
bility (π1(h) = π2(h) = 0) the strategies chosen have no impact on the regret or average strategy
for either player, so there is no need to compute what strategies should be played from then on.)

Figure 3.13 shows that this technique (of playing a best response only in the special case
where an action is taken with zero probability) leads to a dramatic improvement over CFR in
terms of the number of iterations needed—though the theoretical convergence bound remains
the same. However, each iteration touches more nodes—because negative-regret actions more
quickly become positive and are not skipped with partial pruning—and thus takes longer. Thus,
in Leduc-5, the number of nodes touched (which is a better measure of time required), is actually
slightly higher for a given level of convergence. In both games, playing a best response in zero-
reach sequences led to no substantial difference when combined with CFR+. It depends on the
game whether CFR or this technique is faster overall.

Regret-based pruning, introduced in the next section, outperforms both of these approaches
significantly.

3.3.2 Description of Regret-Based Pruning
In this section we present regret-based pruning (RBP), a technique for soundly pruning—
on a temporary basis—negative-regret actions from the tree traversal in order to speed it up
significantly. In Section 3.3.1 we proposed a variant of CFR where a player plays a best response
in information sets that the player reaches with zero probability. In this section, we show that
these information sets and their descendants need not be traversed in every iteration. Rather, the
frequency that they must be traversed is proportional to how negative the regret is for the action

48

3.13a Leduc Hold’em 3.13b Leduc-5 Hold’em

Figure 3.13: Top: Exploitability vs Nodes Touched. Bottom: Exploitability vs Iterations.

leading to them. This less-frequent traversal does not hurt the regret bound (2.20). Consider
an information set I ∈ I1 and action a where Rt(I, a) = −1000 and regret for at least one
other action in I is positive, and assume L(I) = 1. From (2.2), we see that σt+1

1 (I, a) = 0. As
described in Section 3.3.1, the strategy played by Player 1 on iteration t + 1 in any information
set following action a has no effect on Player 2. Moreover, it has no immediate effect on what
Player 1 will do in the next iteration (other than in information sets following action a), because
we know regret for action a will still be at most -999 on iteration t+ 2 (since L(I) = 1) and will
continue to not be played. So rather than traverse the game tree following action a, we could
“procrastinate" in deciding what Player 1 did on iteration t+ 1, t+ 2, ..., t+ 1000 in that branch
until after iteration t + 1000 (at which point regret for that action may be positive). That is, we
could (in principle) store Player 2’s strategy for each iteration between t + 1 and t + 1000, and
on iteration t+ 1000 calculate a best response to each of them and announce that Player 1 played
those best responses following action a on iterations t + 1 to t + 1000 (and update the regrets
to match this). Obviously this itself would not be an improvement, but performance would be
identical to the algorithm described in Section 3.3.1.

However, rather than have Player 1 calculate and play a best response for each iteration
between t + 1 and t + 1000 separately, we could simply calculate a best response against the
average strategy that Player 2 played in those iterations. This can be accomplished in a single
traversal of the game tree. We can then announce that Player 1 played this best response on each
iteration between t + 1 and t + 1000. This provides benefits similar to the algorithm described
in Section 3.3.1, but allows us to do the work of 1000 iterations in a single traversal!

49

LetD(I, a) be the set of infosets following P (I) taking action a in infoset I . We now present
a theorem that guarantees that when R(I, a) ≤ 0, we can prune D(I, a) through regret-based
pruning for b |R(I,a)|

L(I)
c iterations.

Theorem 7. Consider a two-player zero-sum game. Let a ∈ A(I) be an action such that on
iteration T0, RT0(I, a) ≤ 0. Let I ′ be an information set for any player such that I ′ 6∈ D(I, a)

and let a′ ∈ A(I ′). Let m = b |R(I,a)|
L(I)

c. If σ(I, a) = 0 when R(I, a) ≤ 0, then regardless of what
is played in D(I, a) during {T0, ..., T0 +m}, RT

+(I ′, a′) is identical for T ≤ T0 +m.
We can improve this approach significantly by not requiring knowledge beforehand of exactly

how many iterations can be skipped. Rather, we will decide in light of what happens during the
intervening CFR iterations when an action needs to be revisited. From (2.15) we know that
rT (I, a) ∝ πσ

T

−i (I). Moreover, vσTP (I)(I) does not depend on D(I, a). Thus, we can prune D(I, a)
from iteration T0 until iteration T1 so long as

T0∑
t=1

vσ
t

P (I)(I, a) +

T1∑
t=T0+1

πσ
t

−i(I)U(I, a) ≤
T1∑
t=1

vσ
t

P (I)(I) (3.19)

where U(I, a) is the maximum payoff achievable for taking action a in infoset I . In the worst
case, this allows us to skip only bR(I,a)

L(I)
c iterations. However, in practice it performs significantly

better, though we cannot know on iteration T0 how many iterations it will skip because it de-
pends on what is played in T0 ≤ t ≤ T1. Our exploratory experiments showed that in practice
performance also improves by replacing U(I, a) with a more accurate upper bound on reward
in (3.19). CFR will still converge ifD(I, a) is pruned for too many iterations; however, that hurts
convergence speed. In the experiments included in this section, we conservatively use U(I, a) as
the upper bound.

3.3.3 Best Response Calculation for Regret-Based Pruning
In this section we discuss how one can efficiently compute the best responses as called for in
regret-based pruning. The advantage of Theorem 7 is that we can wait until after pruning has
finished—that is, until we revisit an action—to decide what strategies were played in D(I, a)
during the intervening iterations. We can then calculate a single best response to the average
strategy that the opponent played, and say that that best response was played in D(I, a) in each
of the intervening iterations. This results in zero regret over those iterations for information sets
in D(I, a). We now describe how this best response can be calculated efficiently.

Typically, when playing CFR one stores
∑T

t=1 π
t
i(I)σt(I) for each information set I , where

i is the player that acts at I . This allows one to immediately calculate the average strategy
defined in (2.22) in any particular iteration. If we start pruning on iteration T0 and revisit on

iteration T1, we wish to calculate a best response to σ̄T1−T0
i where σ̄T1−T0(I) =

∑T1
t=T0

πti(I)σ
t(I)∑T1

t=T0
πti(I)

.

An easy approach would be to store the opponent’s cumulative strategy before pruning begins
and subtract it from the current cumulative strategy when pruning ends. In fact, we only need
to store the opponent’s strategy in information sets that follow action a. However, this could
potentially use O(H) memory because the same information set I belonging to Player 2 may be

50

reached from multiple information sets belonging to Player 1. In contrast, CFR only requires
O(|I||A|) memory, and we want to maintain this desirable property. We accomplish that as
follows.

To calculate a best response against σ̄T2 , we traverse the game tree and calculate the counter-
factual value, defined in (2.14), for every action for every information set belonging to Player 1
that does not lead to any further Player 1 information sets. Specifically, we calculate vσ̄T0−1

1 (I, a)
for every action a in I such that D(I, a) = ∅. Since we calculate this only for actions where
D(I, a) = ∅, so vσ̄T0−1

1 (I, a) does not depend on σ̄1. Then, starting from the bottom information
sets, we set the best-response strategy σBR1 (I) to always play the action with the highest coun-
terfactual value (ties can be broken arbitrarily), and pass this value up as the payoff for reaching
I , repeating the process up the tree. In order to calculate a best response to σ̄T1−T0

2 , we first store,
before pruning begins, the counterfactual values for Player 1 against Player 2’s average strategy
for every action a in each information set I where D(I, a) = ∅. When we revisit the action on
iteration T1, we calculate a best response to σ̄T1

2 except that we set the counterfactual value for ev-
ery action a in information set I whereD(I, a) = ∅ to be T1v

σ̄T1

1 (I, a)−(T0−1)vσ̄
T0−1

1 (I, a). The
latter term was stored, and the former term can be calculated from the current average strategy
profile. As before, we set σBR1 (I) to always play whichever action has the highest counterfactual
value, and pass this term up.

A slight complication arises when we are pruning an action a in information set I and wish
to start pruning an earlier action a′ from information set I ′ such that I ∈ D(I ′, a′). In this case,
it is necessary to explore action a in order to calculate the best response in D(I ′, a′). However,
if such traversals happen frequently, then this would defeat the purpose of pruning action a. One
way to address this is to only prune an action a′ when the number of iterations guaranteed (or
estimated) to be skipped exceeds some threshold. This ensures that the overhead is worthwhile,
and that we are not frequently traversing an action a farther down the tree that is already being
pruned. Another option is to add some upper bound to how long we will prune an action. If
the lower bound for how long we will prune a exceeds the upper bound for how long we will
prune a′, then we need not traverse a in the best response calculation for a′ because a will still be
pruned when we are finished with pruning a′. In our experiments, we use the former approach.
Experiments to determine a good parameter for this are presented in Appendix 3.3.6.

3.3.4 Regret-Based Pruning with DCFR and CFR+
CFR+ [149] is a variant of CFR where the regret is never allowed to go below 0. At first glance,
it would seem that CFR+ and RBP are incompatible. RBP allows actions to be traversed with
decreasing frequency as regret decreases below zero. However, CFR+ sets a floor for regret at
zero. Nevertheless, it is possible to combine the two, as we now show. We modify the definition
of regret in CFR+ so that it can drop below zero, but immediately returns to being positive
as soon as regret begins increasing. Formally, we modify the definition of regret in CFR+ for
T > 0 to be as follows: RT (I, a) = rT (I, a) if rT (I, a) > 0 andRT−1(I, a) ≤ 0, andRT (I, a) =
RT−1(I, a)+rT (I, a) otherwise. This leads to identical behavior in CFR+, and also allows regret
to drop below zero so actions can be pruned.

When using RBP with CFR+, regret does not strictly follow the rules for CFR+. CFR+ calls
for an action to be played with positive probability whenever instantaneous regret for it is positive

51

in the previous iteration. Since RBP only checks the regret for an action after potentially several
iterations have been skipped, there may be a delay between the iteration when an action would
return to play in CFR+ and the iteration when it returns to play in RBP. This does not pose a
theoretical problem: CFR’s convergence rate still applies.

However, this difference is noticeable when combined with linear averaging of the average
strategy, which is shown in Equation 2.29. Empirically, linear averaging causes CFR+ to con-
verge to a Nash equilibrium much faster. However, in vanilla CFR it results in worse performance
and there is no proof guaranteeing convergence. Since RBP with CFR+ results in behavior that
does not strictly conform to CFR+, linear averaging results in somewhat noisier convergence.
This can be mitigated by reporting the strategy profile found so far that is closest to a Nash
equilibrium rather than the current average strategy profile, and we do this in the experiments.

Rather than use CFR+, a better option is to use DCFR, discussed in Section 3.1, with a set
of parameters that allows negative regrets to decrease to −∞. Specifically, using DCFR with
parameters α = 1.5, β = 0.5, and γ = 2 results in performance that outperforms CFR+ in most
settings and is usually comparable to DCFR with β = 0, while still allowing negative regret to
decrease to −∞.

3.3.5 Experiments

We tested regret-based pruning in both CFR and CFR+ against partial pruning, as well as against
CFR with no pruning. The implementation in these experiments traverses the game tree once
each iteration.3 We tested our algorithm on standard Leduc Hold’em [143], described in Sec-
tion 2.4.1, and a scaled-up variant we call Leduc-5 in which there are 5 bet sizes to choose from:
in the first round a player may bet 0.5, 1, 2, 4, or 8 chips, while in the second round a player may
bet 1, 2, 4, 8, or 16 chips.

We measure the total exploitability of the strategy profiles. As shown in Figure 1, RBP leads
to a substantial improvement over vanilla CFR with partial pruning in Leduc Hold’em, increasing
the speed of convergence by more than a factor of 8. This is partially due to the game tree being
traversed twice as fast, and partially due to the use of a best response in sequences that are pruned
(the benefit of which was described in Section 3.3.1). The improvement when added on top of
CFR+ is smaller, increasing the speed of convergence by about a factor of 2. This matches the
reduction in game tree traversal size.

The benefit from RBP is more substantial in the larger benchmark game, Leduc-5. RBP
increases convergence speed of CFR by a factor of 12, and reduces the per-iteration game tree
traversal cost by about a factor of 7. In CFR+, RBP improves the rate of convergence by about
an order of magnitude. RBP also decreases the number of nodes touched per iteration in CFR+
by about a factor of 40.

The results imply that larger games benefit more from RBP than smaller games. This is
not universally true, since it is possible to have a large game where every action is part of the
Nash equilibrium. Nevertheless, there are many games with very large action spaces where the
vast majority of those actions are suboptimal, but players do not know beforehand which are

3Canonical CFR+ traverses the game tree twice each iteration, updating the regrets for each player in separate
traversals [149]. This difference does not, however, affect the error measure (y-axis) in the experiments.

52

3.14a Leduc Hold’em 3.14b Leduc-5 Hold’em

Figure 3.14: Top: Exploitability. Bottom: Nodes touched per iteration.

suboptimal. In such games, RBP would improve convergence tremendously.

3.3.6 Comparison of Minimum Skip Thresholds

As discussed in Section 3.3.3, it may be worthwhile to establish some minimum threshold for
the anticipated number of iterations to be skipped in order to prune an action. This ensures that
the overhead of pruning is worth the gain, and also prevents descendant actions that are already
pruned from being repeatedly traversed. Setting such a threshold does not affect the theoretical
guarantees of the algorithm, and may lead to better empirical performance.

We now describe how to set such a threshold. We estimate the number of iterations that will
be skipped if we prune an action by modifying (3.19) to assume the information set will continue
to be reached by the opponent as often as it has, on average, in the past. We also modify the
equation to assume that vσtP (I)(I) will be the average that has been received in the past. This
allows us to solve the equation for the number of iterations we estimate will be skipped. If this
estimated number of iterations exceeds some minimum threshold, then we proceed with pruning
the action. Formally, we calculate the estimate as

T̂1 − T0 =
RT0(I, a)∑T0

t=1 v
σt (I)

T0
−

∑T0
t=1 π

σt
−iU(I,a)

T0

(3.20)

53

In Figure 3.15, we compare 1, 5, 10, 25, and 50 as possible thresholds in Leduc-5 for regret-
based pruning in CFR and CFR+. All of the options performed similarly, suggesting that the al-
gorithm is not very sensitive to the parameter chosen. The experiments show that a low threshold
is preferable early on, while a higher threshold leads to better performance later. The long-term
gain of increasing the threshold appears to quickly diminish however, as there is only a slight
long-term difference between a threshold of 10 iterations and a threshold of 50 iterations. In the
experiments presented in Section 3.3.5, we use a threshold of 25 iterations for RBP in all cases.

3.15a Leduc Hold’em 3.15b Leduc-5 Hold’em

Figure 3.15: A comparison of minimum thresholds for estimated number of iterations pruned for
RBP in CFR (left) and CFR+ (right)

3.3.7 Conclusions
RBP is a new method of pruning that allows CFR to avoid traversing high-regret actions in
every iteration. RBP temporarily ceases their traversal in a sound way without compromising
the overall convergence rate. Experiments show an order of magnitude speed improvement over
partial pruning, and suggest that the benefit of RBP increases with game size. Thus RBP is
particularly useful in large games where many actions are suboptimal, but where it is not known
beforehand which actions those are.

One limitation of RBP is that its benefits are reduced when using vector-form implementa-
tions of CFR introduced by Johanson et al. [79], in which the regrets for all infosets sharing a
public state are updated simultaneously. While the regrets for individual infosets can be skipped,
it is still necessary to explore the descendant public nodes and evaluate all terminal nodes unless
all infosets in the public state can be pruned.

3.3.8 Proofs of Theoretical Results
Proof of Theorem 7

Proof. By definition of L(I), we know that rt(I, a) ≤ L(I). Thus, for iteration T0 ≤ T ≤
T0 +m, RT (I, a) ≤ 0. Clearly the theorem is true for T < T0. We prove the theorem continues
to hold inductively for T ≤ T0 + m. Assume the theorem holds for iteration T and consider

54

iteration T + 1. Suppose I ′ ∈ IP (I) and either I ′ 6= I or a′ 6= a. Then for any h′ ∈ I ′, there
is no ancestor of h′ in an information set in D(I, a). Thus, πσT+1

−i (h′) does not depend on the
strategy in D(I, a). Moreover, for any z ∈ Z, if h′ @ h @ z for some h ∈ I∗ ∈ D(I, a),
then πσT+1

(h′, z) = 0 because σT+1(I, a) = 0. Since I ′ 6= I or a′ 6= a, it similarly holds that
πσ

T+1
(h′ · a′, z) = 0. Then from Equation 2.13 and Equation 2.14, rT+1(I, a) does not depend

on the strategy in D(I, a).
Now suppose I ′ ∈ Ii for i 6= P (I). Consider some h′ ∈ I ′ and some h ∈ I . First suppose

that h · a v h′. Since πσT+1

i (h · a) = 0, so πσT+1

i (h′) = 0 and h′ contributes nothing to the regret
of I ′. Now suppose h′ @ h. Then for any z ∈ Z, if h′ @ h @ z then πσT+1

(h′, z) = 0 and does
not depend on the strategy in D(I, a). Finally, suppose h′ 6@ h and h · a 6v h′. Then for any
z ∈ Z such that h′ @ z, we know h 6@ z and therefore πσT+1

(h′, z) = 0 does not depend on the
strategy in D(I, a).

Now suppose I ′ = I and a′ = a. We proved RT (I, a) ≤ 0 for T0 ≤ T ≤ T0 + m, so
RT

+(I, a) = 0. Thus, for all T ≤ T0 + m, RT (I ′, a′) is identical regardless of what is played in
D(I, a).

3.4 Dynamic Thresholding

While regret-minimizing algorithms other than RM can be used within CFR, and iterative algo-
rithms other than CFR exist with better convergence bounds in terms of the number of iterations
needed [61, 72, 121], CFR with RM exhibits superior empirical performance in large games [90].
A primary reason for this is that CFR with RM is able to put zero probability on some actions,
and therefore prune large sections of the game tree, particularly in large games. That is, it need
not traverse the entire game tree on each iteration. This behavior is shared by some other regret
minimizing algorithms, but is relatively uncommon and is considered a desirable property [105].

In this section we describe dynamic thresholding, a method that allows pruning to be applied
in a wider range of algorithms, and applied more frequently in settings that already support
pruning. We focus on Hedge [47, 104], also known as the exponentially-weighted forecaster,
which is the most popular regret-minimizing algorithm in domains other than extensive-form
game solving, on RM, and on the Excessive Gap Technique (EGT) [61, 114], which converges
to an ε-Nash equilibrium in two-player zero-sum games in O(1

ε
), that is, in significantly fewer

iterations (in theory) than CFR which converges in O(1
ε2

).

3.4.1 Dynamic Thresholding

As described in Section 3.3, regret-based pruning and partial pruning can lead to much faster
convergence when running CFR. However, these pruning techniques can only be applied when
an action is played with zero probability, so pruning is incompatible with regret minimization
algorithms like Hedge that assign positive probability to all actions on every iteration. This
motivates our introduction of dynamic thresholding, in which low-probability actions are set to
zero probability.

In dynamic thresholding for Hedge, when each successive iteration t is computed we set any

55

action with probability less than
(C−1)

√
ln(|A(I)|)

√
2|A(I)|2

√
t

(whereC ≥ 1) to zero probability and normalize
the remaining action probabilities accordingly so they sum to 1. We then use this new probability
vector to determine the regrets of iteration t + 1. If an action is thresholded, this deviation from
what Hedge calls for may lead to worse performance and therefore higher regret. In particular,
since the altered probability vectors determine the regrets for future iterations, there is a risk that
this error could snowball. However, using the threshold that we just specified above, we ensure
that the new regret is within a constant factor C of the traditional regret bound.
Theorem 8. If player P (I) plays according to Hedge in an information set I for T iterations

using threshold
(C−1)

√
ln(|A(I)|)

√
2|A(I)|2

√
t

with C ≥ 1 on every iteration t, then

RT (I) ≤ C
√

2L(I)
√

ln(|A(I)|)
√
T

To apply the above theorem within CFR, we get from Equation 2.21 that one can then just
sum the regrets of all information sets to bound the total regret for this player.

Dynamic thresholding can in general be applied to any regret minimization algorithm. We
present Theorem 8 specifically for Hedge in order to tailor the threshold for that algorithm, which
provides a tighter theoretical bound. In Theorem 9, we also show that dynamic thresholding can
be applied to RM. However, it results in very little, if any, additional pruning. This is because
RM is very unlikely in practice to put extremely small probabilities on actions. Nevertheless, we
prove that dynamic thresholding applies to RM for the sake of completeness and for its potential
theoretical applications. Note that the formula for the threshold is now different.
Theorem 9. If player P (I) plays according to regret matching in an information set I for T
iterations using threshold C2−1

2C|A(I)|2
√
t

with C ≥ 1 on every iteration t, then

RT (I) ≤ CL(I)
√
|A(I)|

√
T

Again, to apply the above theorem within CFR, we get from Equation 2.21 that one can then
just sum the regrets of all information sets to bound the total regret for this player.

3.4.2 Regret-Based Pruning for Hedge

In this section we describe how dynamic thresholding enables regret-based pruning when using
Hedge. To use RBP, it is necessary to determine a lower bound on the number of iterations for
which an action will have zero probability. In RM without dynamic thresholding this is simply
the minimum number of iterations it would take an action to achieve positive regret, as shown in
(3.19). In Hedge with dynamic thresholding, we instead must determine the minimum number
of iterations it would take for an action to reach probability above the dynamic threshold.

Let RT0(I, a) be the regret for an action a in information set I on iteration T0. If σT0(I, a) <
(C−1)

√
ln(|A(I)|)

√
2|A(I)|2

√
T0

, where σT0(I, a) is determined according to the Hedge algorithm shown in (2.8),
then pruning can begin on iteration T0. By Theorem 8, we can prune the game tree following
action a on any consecutive iteration T after that if

56

eηT
(
RT0 (I,a)+U(I,a)(T−T0)

)
∑

a′∈A(I) e
ηT

(
RT (I,a′)+

∑T
T ′=T0+1 v

T ′ (I,a′)
) < (C − 1)

√
ln(|A(I)|)√

2|A(I)|2
√
t

(3.21)

Figure 3.16: Performance of EGT, CFR with Hedge, and CFR with RM on Leduc and Leduc-5.
CFR with Hedge is shown without any pruning (vanilla Hedge), with dynamic thresholding, and
with RBP. EGT is shown without any pruning (vanilla EGT) and with dynamic thresholding.
CFR with RM is shown with partial pruning (vanilla RM) and with RBP. Dynamic thresholding
on RM resulted in identical performance to vanilla RM, and is therefore not shown separately.

Once this no longer holds, skipping ceases. If we later find another T0 that satisfies the
condition above, we do another sequence of iterations where we skip traversing after a, etc.

3.4.3 Experiments
We show results for dynamic thresholding with and without RBP on Leduc Hold’em and Leduc-
5.

Hedge requires the user to set the tuning parameter ηt. When proving worst-case regret
bounds, the parameter is usually defined as a function of L(I) for an information set I (for

example, ηt =

√
8 ln(|A(I)|)
L(I)
√
t

) [36]. However, this is overly pessimistic in practice, and better
performance can be achieved with heuristics while still guaranteeing convergence, albeit at a

weaker convergence bound.4 In our experiments, we set ηt =

√
ln(|A(I)|)

3
√

VAR(I)t
√
t
, where VAR(I)t is the

observed variance of v(I) up to iteration t, based on a heuristic by Chaudhuri et al. [38].
4Convergence is still guaranteed so long as L(I) is replaced with a value that has a constant lower and upper

bound, though the worst-case bound may be worse.

57

In addition to the regret-minimization algorithms, for comparison my collaborator Christian
Kroer also experimented with dynamic thresholding in the leading gradient-based algorithm for
finding ε-equilibrium in zero-sum games, the excessive gap technique (EGT) [72, 114], coupled
with the distance-generating function from Kroer et al. [93]. It converges to an ε-equilibrium in
two-player zero-sum games in O(1

ε
) iterations, that is, in significantly fewer iterations than CFR

which converges in O(1
ε2

). In this EGT variant the gradient is computed by traversing the game
tree. This enables pruning and dynamic thresholding to be implemented in EGT as well. In our
experiments with EGT, we stop traversing a branch in the game tree when the probability (over
nature and the opposing player) of the branch falls below c

T
for various values of c. We leave the

theoretical verification of this approach as future work.

Figure 3.17: Varying the aggressiveness of dynamic thresholding.

Figure 3.16 shows the performance of dynamic thresholding on Hedge and EGT against the
vanilla versions of the algorithm as well as against the benchmark algorithms CFR+ and CFR
with RM. We present our results with the number of nodes touched on the x axis. Nodes touched
is a hardware- and implementation-independent proxy for time. Hedge involves exponentiation
when determining strategies, which takes longer than the simple floating point operations of
RM. In our implementation, regret matching traverses 36% more nodes per second than Hedge.
However, in large-scale multi-core implementations of CFR, memory access is the bottleneck on
performance and therefore the penalty for using Hedge should not be as significant.

The two figures on the left show that dynamic thresholding benefits EGT and Hedge, and
the relative benefit increases with game size. In Leduc-5, dynamic thresholding improves the
performance of EGT by a factor of 2, and dynamic thresholding combined with RBP improves
the performance of CFR with Hedge by a factor of 7. The graphs on the right show that, when
using thresholding and RBP, Hedge outperforms RM in Leduc, but RM outperforms Hedge in
Leduc-5. RM’s better performance in Leduc-5 is due to more widespread pruning than Hedge.

Nevertheless, CFR+ exceeds the performance of CFR with Hedge and CFR with RM in
Leduc-5. Thus, while dynamic thresholding enables widespread pruning in CFR with Hedge,
more must be done to make Hedge competitive with CFR+ and DCFR.

Figure 3.17 shows the performance of EGT and Hedge with different aggressiveness of dy-
namic thresholding. For EGT, we threshold by c

T
, where the number shown in the legend is c.

For Hedge, we threshold by
d
√

ln(|A|)
√

2|A|2
√
T

, where d is shown in the legend. The results show that for
Hedge the performance is not sensitive to the parameter, and threshold only helps. For EGT, the
results using c = {0.001, 0.005, 0.01} are all similar and beneficial, while using a value of 0.05

58

is too aggressive, and hurts performance slightly.

3.4.4 Conclusions
Dynamic thresholding sets a threshold at every iteration such that any action with probability be-
low the threshold is set to zero probability. This enables pruning for the first time in a wide range
of algorithms. We showed that it can be applied to both Regret Matching and Hedge—regardless
of whether they are used in isolation for any problem or as subroutines at each information set
within CFR. We proved that the regret bound increases by only a small constant factor, and each
iteration becomes faster due to enhanced pruning. Our experiments demonstrated substantial
speed improvements in Hedge; the relative speedup increases with problem size. We also showed
that dynamic thresholding leads to a large improvement in convergence speed when applied to a
version of EGT [93], despite lacking known theoretical guarantees.

Future work could examine whether the idea of dynamic thresholding could be applied to
other iterative algorithms that place at least some small positive probability on all actions [42,
121].

3.4.5 Proofs of Theoretical Results
Proof of Theorem 8

Proof. Without loss of generality, assume the minimum payoff in infoset I is zero. We use

η =

√
2 ln(|A(I)|)
L(I)
√
T

and define Φ(Rt(I)) as

Φ(Rt(I)) =
1

η
ln
(∑
a∈A(I)

exp(ηRt(I, a))
)

(3.22)

Since for all a ∈ A(I) we know exp(ηRt(I, a)) > 0, so

max
a∈A(I)

RT (I, a) ≤ Φ(RT (I)) (3.23)

We prove inductively on t that

Φ(Rt(I)) ≤ ln(|A(I)|)
η

+ C(L(I))2ηt (3.24)

If (3.24) holds for all t, then from (3.23) the lemma is satisfied.
For t = 1, dynamic thresholding produces the same strategy as vanilla Hedge, so (3.24)

is trivially true. We now assume that (3.24) is true for t − 1 and consider iteration t > 1.
Vanilla Hedge calls for a probability vector σt(I) that, if played on every iteration t, would
result in (3.24) holding for T . Dynamic thresholding creates a new strategy vector σ̂t(I). Let
δt(a) = σ̂t(I, a)− σt(I, a) and δt = maxa∈A(I) δ

t(a).
In the worst case, all but one action is reduced to zero and the probability mass is added to

the single remaining action. Thus, |δt(a)| ≤ (C−1)
√

ln(|A(I)|)
√

2|A(I)|
√
t

. After playing σ̂t(I, a) on iteration

59

t, we have

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + rt(I, a)

)))
Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + vt(I, a)− vt(I)

)))
Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + vt(I, a)−

∑
a′∈A(I)

(
σ̂t(I, a′)vt(I, a′)

))))
Since σ̂t(I, a′) = σt(I, a) + δt(a), we get

Φ(Rt(I)) ≤ 1

η
ln
(∑
a∈A(I)

exp
(
η
(
Rt−1 + vt(I, a)

−
∑

a′∈A(I)

(
σt(I, a′)vt(I, a′) + δ(a′)vt(I, a′)

))))
Since vt(I, a′) ≤ L(I) and δt(a′) ≤ δt, this becomes

Φ(Rt(I)) ≤ 1

η
ln
(

exp
(
ηδtL(I)|A(I)|

) ∑
a∈A(I)

exp
(

η
(
Rt−1 + vt(I, a)−

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′)

))))

Φ(Rt(I)) ≤ δtL(I)|A(I)|+ 1

η
ln
(∑
a∈A(I)

exp
(

η
(
Rt−1 + vt(I, a)−

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′)

))))
Since vt(I, a) −

∑
a′∈A(I)

(
σt(I, a′)vt(I, a′) is the original update Hedge intended, we apply

Theorem 2.1 from Cesa-Bianchi and Lugosi [36] and Lemma 1 from Brown and Sandholm [14]
to get

Φ(Rt(I)) ≤ δtL(I)|A(I)|+ Φ(Rt−1(I)) +
(L(I))2η

2

Since δt < (C−1)L(I)η
2|A(I)| , we get

Φ(Rt(I)) ≤ Φ(Rt−1(I)) + C(L(I))2η

Substituting the bound on Φ(Rt−1(I)) we arrive at

Φ(Rt(I)) ≤ ln(|A(I)|)
η

+ C(L(I))2ηt

This satisfies the inductive step.

60

Proof of Theorem 9

Proof. We find it useful to define

Φ(RT (I)) =
∑
a∈A(I)

(
RT (I, a)2

+

)
(3.25)

We prove inductively on T that

Φ(RT (I)) ≤ C2
(
L(I)

)2
A(I)T (3.26)

If (3.26) holds, then R(I) ≤ CL(I)
√
|A(I)|

√
T . On iteration 1, regret matching calls for

probability 1
|A(I)| on each action, which is above the threshold. Thus, dynamic thresholding

produces identical strategies as vanilla regret matching, so from Theorem 2.1 in Cesa-Bianchi
and Lugosi [36], (3.26) holds.

We now assume (3.26) holds for iteration T − 1 and consider iteration T > 1. Vanilla regret
matching calls for a probability vector σT (I) that, if played, would result in (3.26) holding for T .
Dynamic thresholding creates a new strategy vector σ̂T (I) in which σ̂T (I, a) = 0 if σT (I, a) ≤

C2−1
2C|A(I)|2

√
T

. After reducing actions to zero probability, the strategy vector is renormalized. Let
δ(a) = σ̂T (I, a) − σT (I, a) and δ = maxa∈A(I) δ(a). In the worst case, all but one action is
reduced to zero and the probability mass is added to the single remaining action. Thus, |δ(a)| ≤

C2−1
2C|A(I)|

√
T

.
After playing σ̂T (I, a) on iteration T , we have

Φ(RT (I)) ≤
∑
a∈A(I)

(
RT−1(I, a) + rT (I, a)

)2

+

From Lemma 7 in Lanctot et al. [96], we get

Φ(RT (I)) ≤
(

Φ(RT−1(I)) + 2
∑
a

(RT−1
+ (I, a)rT (I, a)) + rT (I, a)2

)
Φ(RT (I)) ≤

(
Φ(RT−1(I)) + 2

∑
a

(RT−1
+ (I, a)rT (I, a)) + (L(I))2

)
From (2.15) and (2.2),

rT (I, a) = vT (I, a)−
∑

a′∈A(I)

(
σ̂T (I, a′)vT (I, a′)

)
Since σ̂T (I, a) = σ(I, a)T + δ(a), we get

rT (I, a) = vT (I, a)−
∑

a′∈A(I)

((
σT (I, a′) + δ(a)

)
vT (I, a′)

)
Regret matching satisfies the Blackwell condition [10] which, as shown in Lemma 2.1 in Cesa-
Bianchi and Lugosi [36], means∑

a∈A(I)

(
(RT−1

+ (I, a)
(
vT (I, a)−

∑
a′∈A(I)

(
σT (I, a′)vT (I, a′)

)))
≤ 0

61

Thus, we are left with∑
a∈A(I)

(RT−1
+ (I, a)rT (I, a)) ≤ |δ|

∑
a∈A(I)

(
RT−1

+ (I, a)
∑

a′∈A(I)

(
vT (I, a′)

))
Since vT (I, a′) ≤ L(I), this leads to

Φ(RT (I)) ≤
(

Φ(RT−1(I)) + 2|δ|
∑
a∈A(I)

(
RT−1

+ (I, a)L(I)|A(I)|
)

+ (L(I))2|A(I)|
)

By the induction assumption,∑
a∈A(I)

(
RT−1

+ (I, a))2 ≤ C2(L(I))2|A(I)|(T − 1)

so by Lemma 5 in Lanctot et al. [96]∑
a∈A(I)

RT−1
+ (I, a) ≤ CL(I)|A(I)|

√
T − 1

This gives us

Φ(RT (I)) ≤
(

Φ(RT−1(I)) + (L(I))2|A(I)|
(
2C|δ||A(I)|

√
T − 1 + 1

))
Since |δ| < C2−1

2C|A(I)|
√
T

this becomes

Φ(RT (I)) ≤
(

Φ(RT−1(I)) + C2(L(I))2|A(I)|
)

Substituting the bound of Φ(RT (I)) we get

Φ(RT (I)) ≤ C2(L(I))2|A(I)|T

This satisfies the inductive step.

3.5 Best-Response Pruning (BRP)
Both computation time and storage space are difficult challenges when solving large imperfect-
information games. For example, solving limit Texas hold’em [12] required nearly 8 million core
hours and a complex, domain-specific streaming compression algorithm to store the 262 TiB of
uncompressed data in only 10.9 TiB. This data had to be repeatedly decompressed from disk into
memory and then compressed back to disk in order to run CFR+ [150].

As discussed in Section 3.3, regret-based pruning can be applied to speed up the traversal of
the game tree in CFR. However, regret-based pruning does not reduce the space needed to solve
a game.

62

In this section we discuss Best-Response Pruning (BRP), a form of pruning for iterative
algorithms such as CFR in large imperfect-information games. BRP leverages the fact that in
iterative algorithms we are typically interested in performance against the opponent’s average
strategy over all iterations, and that the opponent’s average strategy cannot change faster than
a rate of 1

t
, where t is the number of iterations conducted so far. Thus, if part-way through a

run one of our actions has done extremely poorly relative to other available actions against the
opponent’s average strategy, then after just a few more iterations the opponent’s average strategy
cannot change sufficiently for the poorly-performing action to now be doing well against the
opponent’s updated average strategy. In fact, we can bound how much an action’s performance
can improve over any number of iterations against the opponent’s average strategy. So long as
the upper bound on that performance is still not competitive with the other actions, then we can
safely ignore the poorly-performing action.

BRP provably reduces the computation time needed to solve imperfect-information games.
Additionally, a primary advantage of BRP is that in addition to faster convergence, it also reduces
the space needed over time. Specifically, once pruning begins on a branch, BRP discards the
memory allocated on that branch and does not reallocate the memory until pruning ends and
the branch cannot immediately be pruned again. In Section 3.5.2, we prove that after enough
iterations of CFR are completed, space for certain pruned branches will never need to be allocated
again. Specifically, we prove that when using BRP it is asymptotically only necessary to store
data for parts of the game that are reached with positive probability in a best response to a Nash
equilibrium. This is extremely advantageous when solving large imperfect-information games,
which are often constrained by space and in which the set of best response actions may be orders
of magnitude smaller than the size of the game [132].

While BRP still requires enough memory to store the entire game in the early iterations,
Section 3.2 describes a warm starting technique that can skip the early iterations of CFR, and
possibly other iterative algorithms, by first solving a low-memory abstraction of the game and
then using its solution to warm start CFR in the full game [18]. BRP’s reduction in space is
also helpful to the Simultaneous Abstraction and Equilibrium Finding (SAEF) algorithm [16],
described in Section 4.3, which starts CFR with a small abstraction of the game and progressively
expands the abstraction while also solving the game. SAEF’s space requirements increase the
longer the algorithm runs, and may eventually exceed the constraints of a system. BRP can
counter this increase in space by eliminating the need to store suboptimal paths of the game tree.

BRP provably results in CFR converging faster because suboptimal paths in the game tree
will only need to be traversed O

(
ln(T)

)
times over T iterations. We also prove that BRP uses

asymptotically less space, which is a major advantage over regret-based pruning. Additionally,
BRP easily generalizes to iterative algorithms beyond CFR such as Fictitious Play [70].

3.5.1 Description of Best-Response Pruning

This section describes the behavior of BRP. We focus on the case where BRP is applied to CFR.
We begin by defining a counterfactual best response (CBR), which is stronger than a best

response. Given a partial strategy profile σ−i, a counterfactual best response to it, φ(σ−i), is a best
response to σ−i with the additional condition that for every player i infoset I , v〈φ(σ−i),σ−i〉

i (I) =

63

maxa∈A(I) v
〈φ(σ−i),σ−i〉
i (I, a). In other words, a CBR must always choose an action resulting in

maximum expected value in every infoset, regardless of whether that infoset is actually reached
as part of a best response. In a regular best response, an infoset need only choose a maximum-EV
action if that infoset is reached with positive probability (i.e., if all earlier actions lead to it with
positive probability).

BRP begins pruning an action a in an infoset I whenever playing perfectly beyond that action
against the opponent’s average strategy (that is, playing a CBR) still does worse than what has
been achieved in the iterations played so far. That is, the condition for pruning to begin is that

Tv
〈φ(σ̄T−i),σ̄

T
−i〉

i (I, a) ≤
∑T

t=1 v
σt

i (I). Pruning continues for the minimum number of iterations
it could take for the opponent’s average strategy to change sufficiently such that the pruning
starting condition no longer holds. Since vσti (I, a) − vσti (I) ≤ L(I) for any iteration t, pruning

continues for at least
∑T
t=1 v

σt (I)−Tv
〈φ(σ̄T−i),σ̄

T
−i〉

i (I,a)

L(I)
iterations. When pruning ends, BRP calculates

a CBR in the pruned branch against the opponent’s average strategy over all iterations played so
far, and sets regret in the pruned branch as if that CBR strategy were played on every iteration
played in the game so far—even those that were played before pruning began.

While using a CBR works correctly when applying BRP to CFR, it is also sound to choose a
strategy that is almost a CBR, as long as that strategy ensures∑

a∈A(I)

(
RT

+(I, a)
)2 ≤

(
L(I)

)2|A(I)|T

for every infoset I . In practice, this means that the strategy is close to a CBR, and approaches a
CBR as T → ∞. However, in practice CFR converges much faster than the theoretical bound,
so while a near-CBR rather than an exact CBR may allow for slightly longer pruning in theory, it
may actually result in worse performance in practice. For this reason, in this section we discuss
the theory and algorithms in terms of exact CBRs. Nevertheless, future research on deciding on
a near-CBR may in the future lead to near-CBRs resulting in better performance in practice. For
a description of how BRP can be conducted with near-CBRs, see Brown and Sandholm [19].

We define the counterfactual best response value as ψσ−i(I, a) = maxσ′i v
〈σ′i,σ−i〉
i (I, a) and

ψσ−i(I) = maxσ′i v
〈σ′i,σ−i〉
i (I) where player i acts at I .

When applying BRP to CFR, an action is pruned only if it would still have negative regret
had a CBR against the opponent’s average strategy been played on every iteration. Specifically,
on iteration T of CFR with RM, if

Tψσ̄
T
−i(I, a) ≤

T∑
t=1

vσ
t

i (I) (3.27)

then D(I, a) can be pruned for

T ′ =

∑T
t=1 v

σt

i (I)− Tψσ̄T−i(I, a)

L(I)
(3.28)

iterations. After those T ′ iterations are over, we calculate a CBR in D(I, a) to the opponent’s
average strategy and set regret as if that CBR had been played on every iteration. Specifically,

64

for each t ≤ T + T ′ we set5 vσ
t

i (I, a) = ψσ̄
T+T ′
−i (I, a) so that

RT+T ′(I, a) =
(
T + T ′

)(
ψσ̄

T+T ′
−i (I, a)

)
−

T+T ′∑
t=1

vσ
t

i (I) (3.29)

and for every information set I ′ ∈ D(I, a) we set vσti (I ′, a′) = ψσ̄
T+T ′
−i (I ′, a′) and vσti (I ′) =

ψσ̄
T+T ′
−i (I ′) so that

RT+T ′(I ′, a′) =
(
T + T ′

)(
ψσ̄

T+T ′
−i (I ′, a′)− ψσ̄

T+T ′
−i (I ′)

)
(3.30)

Theorem 10 proves that if (3.27) holds for some action, then the action can be pruned for
T ′ iterations, where T ′ is defined in (3.28). The proof for Theorem 10 draws from the theory
for warm starting CFR using only a strategy profile [18], which was described in Section 3.2.
Essentially, we warm start regrets in the pruned branch using only the average strategy of the
opponent and knowledge of T .
Theorem 10. Assume T iterations of CFR with RM have been played in a two-player zero-sum
game and assume Tψσ̄

T
−i(I, a) ≤

∑T
t=1 v

σt

i (I) where P (I) = i. Let

T ′ = b
∑T

t=1 v
σt

i (I)− Tψσ̄T−i(I, a)

L(I)
c

If both players play according to CFR with RM for the next T ′ iterations in all information sets
I ′′ 6∈ D(I, a) except that σ(I, a) is set to zero and σ(I) is renormalized, then

(T + T ′)
(
ψσ̄

T+T ′
−i (I, a)

)
≤

T+T ′∑
t=1

vσ
t

i (I)

Moreover, if one then sets vσ
t

i (I, a) = ψσ̄
T+T ′
−i (I, a) for each t ≤ T + T ′ and vσ

t

i (I ′, a′) =

ψσ̄
T+T ′
−i (I ′, a′) for each I ′ ∈ D(I, a), then after T ′′ additional iterations of CFR with RM, the

bound on exploitability of σ̄T+T ′+T ′′ is no worse than having played T + T ′ + T ′′ iterations of
CFR with RM without BRP.

In practice, rather than check whether (3.27) is met for an action on every iteration, one
could only check actions that have very negative regret, and do a check only once every several
iterations. This would still be safe and would save some computational cost of the checks, but
would lead to less pruning.

Similar to regret-based pruning, the duration of pruning in BRP can be increased by giving up
knowledge beforehand of exactly how many iterations can be skipped. From (2.14) and (2.13)
we see that if πσt−i(I) is very low, then (3.27) would continue to hold for more iterations than
(3.28) guarantees. Specifically, we can prune D(I, a) from iteration t0 until iteration t1 as long
as

t0
(
ψσ̄

t0
−i,t0(I, a)

)
+

t1∑
t=t0+1

πσ
t

−i(I)U(I, a) ≤
t1∑
t=1

vσ
t

i (I) (3.31)

where U(I, a) is the maximum payoff achievable for taking action a in infoset I .

5In practice, only the sums
∑T
t=1 v

σt

i (I) and either
∑T
t=1 v

σt

i (I, a) or RT (I, a) are stored.

65

3.5.2 Best-Response Pruning Requires Less Space
A key advantage of BRP over regret-based pruning is that setting the new regrets according to
(3.29) and (3.30) requires no knowledge of what the regrets were before pruning began. Thus,
once pruning begins, all the regrets in D(I, a) can be discarded and the space that was allocated
to storing the regret can be freed. That space need only be re-allocated once (3.31) ceases to
hold and we cannot immediately begin pruning again (that is, (3.27) does not hold). Theorem 11
proves that for any information set I and action a ∈ A(I) that is not part of a best response to a
Nash equilibrium, there is an iteration TI,a such that for all T ≥ TI,a, action a in information set
I (and its descendants) can be pruned.6 Thus, once this TI,a is reached, it will never be necessary
to allocate space for regret in D(I, a) again.
Theorem 11. In a two-player zero-sum game, if for every Nash equilibrium σ∗, ψσ

∗
−i(I, a) <

ψσ
∗
−i(I), then there exists a TI,a and δI,a > 0 such that after T ≥ TI,a iterations of CFR,

ψσ̄
T
−i(I, a)−

∑T
t=1 v

σt

i (I)

T
≤ −δI,a.

While such a constant TI,a exists for any suboptimal action, BRP cannot determine whether
or when TI,a is reached. Thus, it is still necessary to check whether (3.27) is satisfied whenever
(3.31) no longer holds, and to recalculate how much longer D(I, a) can safely be pruned. This
requires the algorithm to periodically calculate a best response in D(I, a). However, this best
response calculation does not require knowledge of regret inD(I, a), so it is still never necessary
to store regret after iteration TI,a is reached.

While it is possible to discard regrets in D(I, a) without penalty once pruning begins, regret
is only half the space requirement of CFR. Every information set I also stores a sum of the
strategies played

∑T
t=1

(
πσ

t

i (I)σt(I)
)

which is normalized once CFR ends in order to calculate
σ̄T (I). Fortunately, if action a in information set I is pruned for long enough, then the stored
cumulative strategy inD(I, a) can also be discarded at the cost of a small increase in the distance
of the final average strategy from a Nash equilibrium. This is similar to dynamic thresholding,
discussed in Section 3.4, except we need only apply it to the stored average strategy rather
than the strategy played on every iteration. (Of course, one could also simply use dynamic
thresholding to set small probabilities to zero on every individual iteration.)

Specifically, if πσ̄Ti (I, a) ≤ C√
T

, where C is some constant, then setting σ̄T (I, a) = 0 and

renormalizing σ̄T (I), and setting σ̄T (I ′, a′) = 0 for I ′ ∈ D(I, a), can result in at most C|I|L√
T

higher exploitability for the whole strategy σ̄T . Since CFR only guarantees that σ̄T is a
2|I|L
√
|A|

√
T

-

Nash equilibrium anyway, C|I|L√
T

is only a constant factor of the bound. If an action is pruned from

T ′ to T , then
∑T

t=1

(
πσ

t

i (I)σt(I, a)
)
≤ T ′

T
. Thus, if an action is pruned for long enough, then

eventually
∑T

t=1

(
πσ

t

i (I)σt(I, a)
)
≤ C√

T
for any C, so

∑T
t=1

(
πσ

t

i (I)σt(I, a)
)

could be set to
zero (as well as all descendants of I · a), while suffering at most a constant factor increase in
exploitability. As more iterations are played, this penalty will continue to decrease and eventually
be negligible. The constant C can be set by the user: a higher C allows the average strategy to
be discarded sooner, while a lower C reduces the potential penalty in exploitability.

6If CFR converges to a particular Nash equilibrium, then this condition could be broadened to any information
set I and action a ∈ A(I) that is not a best response to that particular Nash equilibrium. While empirically CFR
does appear to always converge to a particular Nash equilibrium, there is no known proof that it always does so.

66

We define IS as the set of information sets that are not guaranteed to be asymptotically pruned
by Theorem 11. Specifically, I ∈ IS if I 6∈ D(I ′, a′) for some I ′ and a′ ∈ A(I ′) such that for
every opponent Nash equilibrium strategy σ∗−i, ψ

σ∗−i(I ′, a′) < ψσ
∗
−i(I ′). Theorem 11 implies the

following.
Corollary 2. In a two-player zero-sum game with some threshold on the average strategy C√

T
for

C > 0, after a finite number of iterations CFR with BRP requires only O
(
|IS||A|

)
space.

Using a threshold of C
T

rather than C√
T

does not change the theoretical properties of the
corollary, and is likely more appropriate when using variants of CFR that empirically converge
faster than O(1

ε2
) such as DCFR or Linear CFR (both of which are discussed in Section 3.1),

or variants of CFR that provably converge faster than O(1
ε2

) [44]. Additionally, if BRP can be
extended to first-order methods that converge to an ε-Nash equilibrium in O(1

ε
) iterations rather

than O(1
ε2

) iterations, such as the Excessive Gap Technique [72, 93], then a threshold of C
T

may
be more appropriate when those algorithms are used.

3.5.3 Best-Response Pruning Converges Faster

We now prove that BRP in CFR speeds up convergence to an ε-Nash equilibrium. Section 3.5.1
proved that CFR with BRP converges in the same number of iterations as CFR alone. In this
section, we prove that BRP allows each iteration to be traversed more quickly. Specifically, if
an action a ∈ A(I) is not a CBR to a Nash equilibrium, then D(I, a) need only be traversed
O(ln(T)) times over T iterations. Intuitively, as both players converge to a Nash equilibrium,
actions that are not a counterfactual best response will eventually do worse than actions that are,
so those suboptimal actions will accumulate increasing amounts of negative regret. This negative
regret allows the action to be safely pruned for increasingly longer periods of time.

Specifically, let S ⊆ H be the set of histories where h · a ∈ S if h ∈ S and action a is part of
some CBR to some Nash equilibrium. Formally, S contains ∅ and every history h · a such that
h ∈ S and ψσ

∗
−i(I, a) = ψσ

∗
−i(I) for some Nash equilibrium σ∗.

Theorem 12. In a two-player zero-sum game, if both players choose strategies according to CFR
with BRP, then conducting T iterations requires onlyO

(
|S|T+|H| ln(T)

)
nodes to be traversed.

The definition of S uses properties of the Nash equilibria of the game, and an action a ∈ A(I)
not in S is only guaranteed to be pruned by BRP after some TI,a is reached, which also depends
on the Nash equilibria of the game. Since CFR converges to only an ε-Nash equilibrium, CFR
cannot determine with certainty which nodes are in S or when TI,a is reached. Nevertheless, both
S and TI,a are fixed properties of the game.

3.5.4 Experiments

We compare the convergence speed of BRP to regret-based pruning, to only partial pruning,
and to no pruning at all. We also show that BRP uses less space as as more iterations are
conducted, unlike regret-based pruning and partial pruning. The experiments are conducted on
Leduc hold’em and Leduc-5 (described in Section 2.4.1).

67

Nodes touched is a hardware and implementation-independent proxy for time which we use
to measure performance of the various algorithms. Overhead costs are counted in nodes touched.
As described in Section 3.3, since regret-based pruning can only prune negative-regret actions,
regret-based pruning modifies the definition of CFR+ so that regret can be negative but immedi-
ately jumps up to zero as soon as regret increases. BRP does not require this modification. Still,
BRP also modifies the behavior of CFR+ because without pruning, CFR+ would put positive
probability on an action as soon as its regret increases, while BRP waits until pruning is over.
This is not, by itself, a problem. However, CFR+’s linear weighting of the average strategy is
only guaranteed to converge to a Nash equilibrium if pruning does not occur. While both regret-
based pruning and BRP do well empirically with CFR+, the convergence is noisy. This noise can
be reduced by using the lowest-exploitability average strategy profile found so far, which we do
in the experiments.7 BRP does not do as well empirically with the linear-averaging component
of CFR+. Thus, for BRP we only measure performance using RM+ with CFR, which is the
same as CFR+ but without linear averaging. CFR+ with and without linear averaging has the
same theoretical performance as CFR, but CFR+ does better empirically (particularly with linear
averaging).

Figure 3.18 and Figure 3.19 show the reduction in space needed to store the average strategy
and regrets for BRP—for various values of the constant threshold C, where an action’s proba-
bility is set to zero if it is reached with probability less than C√

T
in the average strategy, as we

explained in Section 3.5.2. In both games, a threshold between 0.01 and 0.1 performed well in
both space and number of iterations, with the lower thresholds converging somewhat faster and
the higher thresholds reducing space faster. We also tested thresholds below 0.01, but the speed
of convergence was essentially the same as when using 0.01. In Leduc, all variants resulted in a
quick drop-off in space to about half the initial amount. In Leduc-5, a threshold of 0.1 resulted in
about a factor of 7 reduction for both CFR with RM and CFR with RM+. This space reduction
factor appears to continue to increase.

Figure 3.20 and Figure 3.21 compare the convergence rates of BRP, regret-based pruning, and
only partial pruning for CFR with RM, CFR with RM+, and CFR+. In Leduc, BRP and regret-
based pruning perform comparably when added to CFR. regret-based pruning with CFR+ does
significantly better, while BRP with CFR using RM+ sees no improvement over BRP with CFR.
In Leduc-5, which is a far larger game, BRP outperforms regret-based pruning by a factor of 2
when added to CFR. BRP with CFR using RM+ also performs comparably to regret-based prun-
ing with CFR+, while retaining theoretical guarantees and not suffering from noisy convergence.

3.5.5 Conclusions

BRP is a form of pruning that provably reduces both the space needed to solve an imperfect-
information game and the time needed to reach an ε-Nash equilibrium. This addresses both of
the major bottlenecks in solving large imperfect-information games: time and space. Experimen-
tally, BRP reduced the space needed to solve a game by a factor of 7, with the reduction factor

7Exploitability is no harder to compute than one iteration of CFR or CFR+. Snapshots are not plotted at every
iteration but only after every 10,000,000 nodes touched—except for the first few snapshots.

68

Figure 3.18: Convergence and space required for CFR using RM and RM+ with best-response
pruning in Leduc hold’em. The y-axis on the top graph is linear scale.

increasing with game size. While the early iterations may still be slow and require the same
amount of space as CFR without BRP, these early iterations can be skipped by warm starting
CFR with a rough approximation of an equilibrium, as described in Section 3.2.

As is the case with regret-based pruning, the faster convergence of BRP is reduced when
using a vector-based implementation of CFR [79]. However, the reduction in space requirements
is retained even if a vector-based implementation of CFR is used.

This section focused on the theory of BRP when applied to CFR, which is the most pop-
ular algorithm for solving imperfect-information games, but BRP can also be applied to Ficti-
tious Play [70] and likely extends to other iterative algorithms such as the Excessive Gap Tech-
nique [72].

69

Figure 3.19: Convergence and space required for CFR using RM and RM+ with best-response
pruning in Leduc-5. The y-axis on the top graph is linear scale.

3.5.6 Proofs of Theoretical Results

Lemma 9

Lemma 9 proves that if (3.27) is satisfied for some action a ∈ A(I) on iteration T , then the value
of action a and all its descendants on every iteration played so far can be set to the counterfactual
best response value. The proof for Lemma 9 draws from the theory for warm starting CFR using
only a strategy profile, discussed in Section 3.2.
Lemma 9. Assume T iterations of CFR with RM have been played in a two-player zero-sum
game. If T

(
ψσ̄

T
−i(I, a)

)
≤
∑T

t=1 v
σt

i (I) and one sets vσ
t

i (I, a) = ψσ̄
T
−i(I, a) for each t ≤ T

and for each I ′ ∈ D(I, a) sets vσ
t

i (I ′, a′) = ψσ̄
T
−i(I ′, a′) and vσ

t

i (I ′) = ψσ̄
T
−i(I ′) then after T ′

additional iterations of CFR with RM, the bound on exploitability of σ̄T+T ′ is no worse than
having played T + T ′ iterations of CFR with RM unaltered.

Proof. The proof builds upon Theorem 6 in Section 3.2. Assume T
(
ψσ̄

T
−i(I, a)

)
≤
∑T

t=1 v
σt

i (I).

70

Figure 3.20: Convergence for partial pruning, regret-based pruning, and best-response pruning
in Leduc. “CFR - No Prune” is CFR without any pruning.

Figure 3.21: Convergence for partial pruning, regret-based pruning, and best-response pruning
in Leduc-5. “CFR - No Prune” is CFR without any pruning.

We wish to warm start to T iterations. For each I ′ ∈ D(I, a) set vσti (I ′, a′) = ψσ̄
T
−i(I ′, a′)

and vσti (I ′) = ψσ̄
T
−i(I ′) and set vσti (I, a) = ψσ̄

T
−i(I, a) for all t ≤ T . For every other action,

leave regret unchanged. For each I ′ ∈ D(I, a) we know by construction that Φ(RT (I ′)) ≤ 0.
By assumption, T

(
ψσ̄

T
−i(I, a)

)
≤
∑T

t=1 v
σt

i (I), so RT (I, a) ≤ 0 and therefore Φ(RT (I)) is
unchanged. Finally, since the T iterations were played according to CFR with RM and regret
is unchanged for every other information set I ′′, so the conditions for Theorem 6 in Section 3.2
hold for every information set, and therefore we can warm start to T iterations of CFR with RM

71

with no penalty to the convergence bound.

Proof of Theorem 10

Proof. From Lemma 9 we can immediately set regret for a ∈ A(I) to vσti (I, a) = ψσ̄
T
−i(I, a).

By construction of T ′, Rt(I, a) is guaranteed to be nonpositive for T ≤ t ≤ T +T ′ and therefore
σt(I, a) = 0. Thus, σ̄T+T ′

i (I ′) for I ′ ∈ D(I, a) is identical regardless of what is played inD(I, a)
during T ≤ t ≤ T + T ′.

Since (T + T ′)
(
ψσ̄

T+T ′
−i (I, a)

)
≤ T

(
ψσ̄

T
−i(I, a)

)
+ T ′

(
U(I, a)

)
and since

∑T+T ′

t=1 vσ
t

i (I) ≥∑T
t=1 v

σt

i (I) + T ′
(
L(I)

)
, so by the definition of T ′, (T + T ′)

(
ψσ̄

T+T ′
−i (I, a)

)
≤
∑T+T ′

t=1 vσ
t

i (I).
So if regrets in D(I, a) and RT+T ′(I, a) are set according to Lemma 9, then after T ′′ additional
iterations of CFR with RM, the bound on exploitability of σ̄T+T ′+T ′′ is no worse than having
played T + T ′ + T ′′ iterations of CFR with RM from scratch.

Proof of Theorem 11

Proof. Consider an information set I and action a ∈ A(I) where for every opponent Nash
equilibrium strategy σ∗−i, ψ

σ∗−i(I, a) < ψσ
∗
−i(I) where i = P (I). Let δ = minσ−i∈Σ∗

(
ψσ−i(I)−

ψσ−i(I, a)
)

where Σ∗ is the set of Nash equilibria. Let

σ′−i = argmax
σ−i∈Σ−i|ψσ−i (I)−ψσ−i (I,a)≤ 3δ

4

u−i(σ−i, BR(σ−i))

Since σ′−i is not a Nash equilibrium strategy and CFR converges to a Nash equilibrium strategy
for both players, so there exists a Tδ such that for all T ≥ Tδ, ψσ̄

T
−i(I) − ψσ̄T−i(I, a) > 3δ

4
. Let

T ′I,a = 4|I|2L2|A|
δ2 . For T ≥ T ′I,a since RT

i ≤
∑

I∈Ii R
T (I), so ψσ̄

T
−i(I) −

∑T
t=1 v

σt

i (I) ≤ δ
2
. Let

TI,a = max(T ′I,a, Tδ) and δI,a = δ
4
. Then for T ≥ TI,a, ψσ̄

T
−i(I, a)−

∑T
t=1 v

σt

i (I)

T
≤ −δI,a.

Proof of Corollary 2

Proof. Let I 6∈ IS . Then I ∈ D(I ′, a′) for some I ′ and a′ ∈ A(I ′) such that for every opponent
Nash equilibrium strategy σ∗−i, ψ

σ∗−i(I ′, a′) < ψσ
∗
−i(I ′) where P (I ′) = i. Applying Theorem 11,

this means there exists a TI′,a′ and δI′,a′ > 0 such that for T ≥ TI′,a′ , ψσ̄
T
−i(I ′, a′)−

∑T
t=1 v

σt

i (I′)

T
≤

−δI′,a′ . So (3.27) always applies for T ≥ TI′,a′ for I ′ and a′ and I will always be pruned. Since
(3.30) does not require knowledge of regret, it need not be stored for I .

Since D(I ′, a′) will always be pruned for T ≥ TI′,a′ , so for any T ≥ (TI′,a′)
2

C2 iterations for
some constant C > 0, πσ̄Ti (I) ≤ C√

T
, which satisfies the threshold of the average strategy. Thus,

the average strategy in D(I, a) can be discarded.

Lemma 10

Lemma 10. If for all T ≥ T ′ iterations of CFR with RBP, T
(
ψσ̄

T
−i(I, a)

)
−
∑T

t=1 v
σt

i (I) ≤ −CT
for some C > 0, then any history h′ such that h · a v h′ for some h ∈ I need only be traversed
at most O

(
ln(T)

)
times.

72

Proof. Let a ∈ A(I) be an action such that for all T ≥ T ′, T
(
ψσ̄

T
−i(I, a)

)
−
∑T

t=1 v
σt

i (I) ≤ −CT
for some C > 0. Then from Theorem 10, D(I, a) can be pruned for m ≥ b CT

L(I)
c iterations on

iteration T . Thus, over iterations T ≤ t ≤ T + m, only a constant number of traversals must be
done. So each iteration requires only K

m
work when amortized, where K is a constant. Since C

and L(I) are constants, so on each iteration t ≥ T ′, only an average of K
t

traversals of D(I, a) is
required. Summing over all t ≤ T for T ≥ T ′, and recognizing that T ′ is a constant, we get that
action a is only taken O

(
ln(T)

)
over T iterations. Thus, any history h′ such that h · a v h′ for

some h ∈ I need only be traversed at most O
(

ln(T)
)

times.

Proof of Theorem 12

Proof. Consider an h∗ 6∈ S. Then there exists some h · a v h∗ such that h ∈ S but h · a 6∈ S.
Let I = I(h) and i = P (I). Since h · a 6∈ S but h ∈ S, so for every Nash equilibrium
σ∗, ψσ

∗
−i(I, a) < ψσ

∗
−i(I). From Theorem 11, there exists a TI,a and δI,a > 0 such that after

T ≥ TI,a iterations of CFR, ψσ̄
T
−i(I, a) −

∑T
t=1 v

σt(I)
i

T
≤ −δI,a. Thus from Lemma 10, h∗ need

only be traversed at most O
(

ln(T)
)

times.

73

74

Chapter 4

Automated Abstraction for
Imperfect-Information Games

Iterative algorithms such as CFR scale to much larger games than previous techniques. Linear
programming was used to solve Rhode Island hold’em [56], a game of about 108 infosets, but
has not been successful for games much larger than that. In contrast, CFR is able to scale to
games such as HULH (described in Section 2.4.2), which has about 1013 infosets (after removing
symmetries).

However, CFR alone cannot scale to games much larger than HULH because CFR stores
regrets for each infoset it encounters. Even scaling to HULH required a complex streaming
compression algorithm to store as many of the regrets as possible on disk rather than in mem-
ory [150]. Best response pruning, discussed in Section 3.5, helps reduce this storage, but even
pruning would not make a game like HUNL (described in Section 2.4.3), which has about 10161

infosets, tractable for CFR.
In order to make such large games tractable, one can use abstraction to bucket similar infos-

ets together. Most research on imperfect-information games consider two forms of abstraction
separately.

The first is information abstraction, which buckets together “similar” infosets that may dif-
fer only in the outcomes of chance nodes (e.g., different poker hands). Information abstraction
has been very effective in poker AI’s and was used in Libratus and Pluribus. However, infor-
mation abstraction tends to be very domain-specific, and several papers have been written on
how to do information abstraction just in the domain of poker. Section 4.1 describes Deep CFR,
an alternative to information abstraction that uses deep neural network function approximation
to generalize between similar infosets rather than simply bucketing them together. Deep CFR
requires far less domain knowledge than past information abstraction techniques, which makes
it easier to deploy in imperfect-information games other than poker. Deep CFR was the first
scalable non-tabular CFR variant to be successful in large games.

The other form of abstraction is action abstraction, in which the action space for players
is reduced. Section 4.2 and Section 4.3 describe techniques for automated action abstraction.
These were the first automated action abstraction techniques for imperfect-information games
with theoretical guarantees of convergence to a locally optimal set of actions.

75

4.1 Deep Counterfactual Regret Minimization

Prior techniques for scaling CFR to extremely large imperfect-information games have used
abstraction, which buckets similar states together and treats them identically. The simplified (ab-
stracted) game is then approximately solved via tabular CFR. However, constructing an effective
abstraction requires extensive domain knowledge and the abstract solution may only be a coarse
approximation of a true equilibrium.

In contrast, reinforcement learning has been successfully extended to large state spaces by us-
ing function approximation with deep neural networks rather than a tabular representation of the
policy (deep RL). This approach has led to a number of breakthroughs in constructing strategies
in large MDPs [107] as well as in zero-sum perfect-information games such as Go [141, 142].1

Importantly, deep RL can learn good strategies with relatively little domain knowledge for the
specific game [141]. However, most popular RL algorithms do not converge to good policies
(equilibria) in imperfect-information games in theory or in practice.

Rather than use tabular CFR with abstraction, this section introduces a form of CFR, which
we refer to as Deep Counterfactual Regret Minimization, that uses function approximation
with deep neural networks to approximate the behavior of tabular CFR on the full, unabstracted
game. We prove that Deep CFR converges to an ε-Nash equilibrium in two-player zero-sum
games and empirically evaluate performance in poker variants, including heads-up limit Texas
hold’em. We show that even though Deep CFR uses relatively little domain knowledge, it is
competitive with domain-specific tabular abstraction techniques.

Neural Fictitious Self Play (NFSP) [69] previously combined deep learning function approx-
imation with Fictitious Play [13] to produce an AI for heads-up limit Texas hold’em. NFSP was
the prior leading function approximation algorithm for imperfect-information games. However,
Fictitious Play has weaker theoretical convergence guarantees than CFR, and in practice con-
verges slower. We show in our experiments Deep CFR outperforms NFSP. Model-free policy
gradient algorithms have been shown to minimize regret when parameters are tuned appropri-
ately [144] and achieve performance comparable to NFSP.

Past work has investigated using deep learning to estimate values at the depth limit of a
subgame in imperfect-information games [27, 110]. However, tabular CFR was used within
the subgames themselves. Large-scale function approximated CFR has also been developed for
single-agent settings [77]. Our algorithm is intended for the multi-agent setting and is very
different from the one proposed for the single-agent setting.

Prior work has combined regression tree function approximation with CFR [162] in an al-
gorithm called Regression CFR (RCFR). This algorithm defines a number of features of the
infosets in a game and calculates weights to approximate the regrets that a tabular CFR im-
plementation would produce. Regression CFR is algorithmically similar to Deep CFR, but uses
hand-crafted features similar to those used in abstraction, rather than learning the features. RCFR
also uses full traversals of the game tree (which is infeasible in large games) and has only been
evaluated on toy games. It is therefore best viewed as the first proof of concept that function
approximation can be applied to CFR.

1Deep RL has also been applied successfully to some partially observed games such as Doom [94], as long as
the hidden information is not too strategically important.

76

Since Deep CFR was announced, several related algorithms have also been developed. Dou-
ble Neural CFR [101] was developed independently and in parallel with Deep CFR and investi-
gates a similar combination of deep learning with CFR. DREAM [146] extends Deep CFR to the
model-free setting.

4.1.1 Description of Deep Counterfactual Regret Minimization
In this section we describe Deep CFR. The goal of Deep CFR is to approximate the behavior of
CFR without calculating and accumulating regrets at each infoset, by generalizing across similar
infosets using function approximation via deep neural networks.

On each iteration t, Deep CFR conducts a constant number K of partial traversals of the
game tree, with the path of the traversal determined according to external sampling MCCFR. At
each infoset I it encounters, it plays a strategy σt(I) determined by regret matching on the output
of a neural network V : I → R|A| defined by parameters θt−1

i that takes as input the infoset I
and outputs values V (I, a|θt−1). Our goal is for V (I, a|θt−1) to be approximately proportional
to the regret Rt−1(I, a) that tabular CFR would have produced.

When a terminal node is reached, the value is passed back up. In chance and opponent
infosets, the value of the sampled action is passed back up unaltered. In traverser infosets,
the value passed back up is the weighted average of all action values, where action a’s weight
is σt(I, a). This produces samples of this iteration’s instantaneous regrets for various actions.
Samples are added to a memoryMv,i, where i is the traverser, using reservoir sampling [155] if
capacity is exceeded.

Consider a nice property of the sampled instantaneous regrets induced by external sampling:
Lemma 11. For external sampling MCCFR, the sampled instantaneous regrets are an unbiased
estimator of the advantage, i.e. the difference in expected payoff for playing a vs σti(I) at I ,
assuming both players play σt everywhere else.

EQ∈Qt
[
r̃σ

t

i (I, a)
∣∣∣ZI ∩Q 6= ∅] =

vσ
t
(I, a)− vσt(I)

πσ
t

−i(I)
.

Recent work in deep reinforcement learning has shown that neural networks can effectively
predict and generalize advantages in challenging environments with large state spaces, and use
that to learn good policies [108].

Once a player’s K traversals are completed, a new network is trained from scratch to deter-
mine parameters θti by minimizing MSE between predicted advantage Vi(I, a|θt) and samples
of instantaneous regrets from prior iterations t′ ≤ t r̃t

′
(I, a) drawn from the memory. The av-

erage over all sampled instantaneous advantages r̃t′(I, a) is proportional to the total sampled
regret R̃t(I, a) (across actions in an infoset), so once a sample is added to the memory it is never
removed except through reservoir sampling, even when the next CFR iteration begins.

One can use any loss function for the value and average strategy model that satisfies Bregman
divergence [4], such as mean squared error loss.

While almost any sampling scheme is acceptable so long as the samples are weighed prop-
erly, external sampling has the convenient property that it achieves both of our desired goals by
assigning all samples in an iteration equal weight. Additionally, exploring all of a traverser’s

77

actions helps reduce variance. However, external sampling may be impractical in games with ex-
tremely large branching factors, so a different sampling scheme, such as outcome sampling [96],
may be desired in those cases.

In addition to the value network, a separate policy network Π : I → R|A| approximates
the average strategy at the end of the run, because it is the average strategy played over all
iterations that converges to a Nash equilibrium. To do this, we maintain a separate memory
MΠ of sampled infoset probability vectors for both players. Whenever an infoset I belonging to
player i is traversed during the opposing player’s traversal of the game tree via external sampling,
the infoset probability vector σt(I) is added toMΠ and assigned weight t.

If the number of Deep CFR iterations and the size of each value network model is small,
then one can avoid training the final policy network by instead storing each iteration’s value
network [145]. During actual play, a value network is sampled randomly and the player plays
the CFR strategy resulting from the predicted advantages of that network. This eliminates the
function approximation error of the final average policy network, but requires storing all prior
value networks. Nevertheless, strong performance and low exploitability may still be achieved
by storing only a subset of the prior value networks [75].

Theorem 13 states that if the memory buffer is sufficiently large, then with high probability
Deep CFR will result in average regret being bounded by a constant proportional to the square
root of the function approximation error.
Theorem 13. Let T denote the number of Deep CFR iterations, |A| the maximum number of
actions at any infoset, and K the number of traversals per iteration. Let LtV be the average
MSE loss for Vi(I, a|θt) on a sample inMV,i at iteration t , and let LtV ∗ be the minimum loss
achievable for any function V . Let LtV − LtV ∗ ≤ εL.

If the value memories are sufficiently large, then with probability 1− p total regret at time T
is bounded by

RT
p ≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|
√
T + 4T |Ii|

√
|A|LεL (4.1)

with probability 1− p.
Corollary 3. As T →∞, average regret R

T
i

T
is bounded by

4|Ii|
√
|A|LεL

with high probability.
We do not provide a convergence bound for Deep CFR when using linear weighting, since

the convergence rate of Linear CFR has not been shown in the Monte Carlo case. However,
Figure 4.4 shows moderately faster convergence in practice.

4.1.2 Experimental Setup
We measure the performance of Deep CFR (Algorithm 1) in approximating an equilibrium in
heads-up limit flop hold’em poker (FHP) (described in Section 2.4.4). FHP is a large game with
over 1012 nodes and over 109 infosets. In contrast, the network we use has 98,948 parameters. We

78

Algorithm 1 Deep Counterfactual Regret Minimization
function DEEPCFR

Initialize each player’s advantage network V (I, a|θi) with parameters θi so that it returns
0 for all inputs.

Initialize reservoir-sampled advantage memoriesMV,1,MV,2 and strategy memoryMΠ.
for CFR iteration t = 1 to T do

for each player i do
for traversal k = 1 to K do

TRAVERSE(∅, i, θ1, θ2,MV,i,MΠ) . Collect data from a game traversal with
external sampling

Train θi from scratch on loss L(θi) = E(I,t′,r̃t′)∼MV,i

[
t′
∑

a

(
r̃t
′
(a)− V (I, a|θi)

)2
]

Train θΠ on loss L(θΠ) = E(I,t′,σt′)∼MΠ

[
t′
∑

a

(
σt
′
(a)− Π(I, a|θΠ)

)2
]

return θΠ

Algorithm 2 CFR Traversal with External Sampling
function TRAVERSE(h, i, θ1, θ2,MV ,MΠ, t)

Input: History h, traverser player i, regret network parameters θ for each player, advantage
memoryMV for player i, strategy memoryMΠ, CFR iteration t.

if h is terminal then
return the payoff to player i

else if h is a chance node then
a ∼ σ(h)
return TRAVERSE(h · a, i, θ1, θ2,MV ,MΠ, t)

else if P (h) = i then . If it’s the traverser’s turn to act
Compute strategy σt(I) from predicted advantages V (I(h), a|θi) using regret match-

ing.
for a ∈ A(h) do

v(a)← TRAVERSE(h · a, i, θ1, θ2,MV ,MΠ, t) . Traverse each action
for a ∈ A(h) do

r̃(I, a)← v(a)−
∑

a′∈A(h) σ(I, a′) · v(a′) . Compute advantages

Insert the infoset and its action advantages (I, t, r̃t(I)) into the advantage memoryMV

else . If it’s the opponent’s turn to act
Compute strategy σt(I) from predicted advantages V (I(h), a|θ3−i) using regret match-

ing.
Insert the infoset and its action probabilities (I, t, σt(I)) into the strategy memoryMΠ

Sample an action a from the probability distribution σt(I).
return TRAVERSE(h · a, i, θ1, θ2,MV ,MΠ, t)

also measure performance relative to domain-specific abstraction techniques in the benchmark
domain of HULH poker (described in Section 2.4.2), which has over 1017 nodes and over 1014

79

infosets.
In both games, we compare performance to NFSP, which was the previous leading algorithm

for imperfect-information game solving using domain-independent function approximation, as
well as state-of-the-art abstraction techniques designed for the domain of poker [24, 50, 82].

Network Architecture

We use the neural network architecture shown in Figure 4.1 for both the value network V that
computes advantages for each player and the network Π that approximates the final average
strategy. This network has a depth of 7 layers and 98,948 parameters. Infosets consist of sets
of cards and bet history. The cards are represented as the sum of three embeddings: a rank
embedding (1-13), a suit embedding (1-4), and a card embedding (1-52). These embeddings
are summed for each set of permutation invariant cards (hole, flop, turn, river), and these are
concatenated. In each of the Nrounds rounds of betting there can be at most 6 sequential actions,
leading to 6Nrounds total unique betting positions. Each betting position is encoded by a binary
value specifying whether a bet has occurred, and a float value specifying the bet size.

The neural network model begins with separate branches for the cards and bets, with three and
two layers respectively. Features from the two branches are combined and three additional fully
connected layers are applied. Each fully-connected layer consists of xi+1 = ReLU(Ax[+x]).
The optional skip connection [+x] is applied only on layers that have equal input and output di-
mension. Normalization (to zero mean and unit variance) is applied to the last-layer features. The
network architecture was not highly tuned, but normalization and skip connections were used be-
cause they were found to be important to encourage fast convergence when running preliminary
experiments on pre-computed equilibrium strategies in FHP.

In the value network, the vector of outputs represented predicted advantages for each action
at the input infoset. In the average strategy network, outputs are interpreted as logits of the
probability distribution over actions.

Model training

We allocate a maximum size of 40 million infosets to each player’s advantage memory MV,p

and the strategy memory MΠ. The value model is trained from scratch each CFR iteration,
starting from a random initialization. We perform 4,000 mini-batch stochastic gradient descent
(SGD) iterations using a batch size of 10,000 and perform parameter updates using the Adam
optimizer [84] with a learning rate of 0.001, with gradient norm clipping to 1. For HULH we use
32,000 SGD iterations and a batch size of 20,000. Figure 4.4 shows that training the model from
scratch at each iteration, rather than using the weights from the previous iteration, leads to better
convergence.

Linear CFR

In our experiments we use Linear CFR (described in Section 3.1, a variant of CFR that is faster
than CFR and in certain settings is the fastest-known variant of CFR (particularly in settings
with wide distributions in payoffs), and which tolerates approximation error well. LCFR is not

80

Figure 4.1: The neural network architecture used for Deep CFR. The network takes an infoset (observed
cards and bet history) as input and outputs values (advantages or probability logits) for each possible
action.

essential and does not appear to lead to better performance asymptotically, but does result in
faster convergence in our experiments.

LCFR is like CFR except iteration t is weighed by t. Specifically, we maintain a weight
on each entry stored in the advantage memory and the strategy memory, equal to t when this
entry was added. When training θp each iteration T , we rescale all the batch weights by 2

T
and

minimize weighted error.

4.1.3 Experimental Results

Figure 4.2 compares the performance of Deep CFR to different-sized domain-specific abstrac-
tions in FHP. The abstractions are solved using external-sampling Linear Monte Carlo CFR [22,
96], which is the leading algorithm in this setting. The 40,000 cluster abstraction means that
the more than 109 different decisions in the game were clustered into 40,000 abstract decisions,
where situations in the same bucket are treated identically. This bucketing is done using K-
means clustering on domain-specific features. The lossless abstraction only clusters together
situations that are strategically isomorphic (e.g., flushes that differ only by suit), so a solution to
this abstraction maps to a solution in the full game without error.

Performance and exploitability are measured in terms of milli big blinds per game (mbb/g),
which is a standard measure of win rate in poker.

The figure shows that Deep CFR asymptotically reaches a similar level of exploitability as
the abstraction that uses 3.6 million clusters, but converges substantially faster. Although Deep
CFR is more efficient in terms of nodes touched, neural network inference and training requires
considerable overhead that tabular CFR avoids. However, Deep CFR does not require advanced
domain knowledge. We show Deep CFR performance for 10,000 CFR traversals per step. Using
more traversals per step is less sample efficient and requires greater neural network training time

81

but requires fewer CFR steps.
Figure 4.2 also compares the performance of Deep CFR to NFSP, an existing method for

learning approximate Nash equilibria in imperfect-information games. NFSP approximates fic-
titious self-play, which is proven to converge to a Nash equilibrium but in practice does so far
slower than CFR. We observe that Deep CFR reaches an exploitability of 37 mbb/g while NFSP
converges to 47 mbb/g.2 We also observe that Deep CFR is more sample efficient than NFSP.
However, these methods spend most of their wallclock time performing SGD steps, so in our
implementation we see a less dramatic improvement over NFSP in wallclock time than sample
efficiency.

Figure 4.3 shows the performance of Deep CFR using different numbers of game traversals,
network SGD steps, and model size. As the number of CFR traversals per iteration is reduced,
convergence becomes slower but the model converges to the same final exploitability. This is
presumably because it takes more iterations to collect enough data to reduce the variance suf-
ficiently. On the other hand, reducing the number of SGD steps does not change the rate of
convergence but affects the asymptotic exploitability of the model. This is presumably because
the model loss decreases as the number of training steps is increased per iteration (see Theorem
13). Increasing the model size also decreases final exploitability up to a certain model size in
FHP.

In Figure 4.4 we consider ablations of certain components of Deep CFR. Retraining the regret
model from scratch at each CFR iteration converges to a substantially lower exploitability than
fine-tuning a single model across all iterations. We suspect that this is because a single model
gets stuck in bad local minima as the objective is changed from iteration to iteration. The choice
of reservoir sampling to update the memories is shown to be crucial; if a sliding window memory
is used, the exploitability begins to increase once the memory is filled up, even if the memory is
large enough to hold the samples from many CFR iterations.

Finally, we measure head-to-head performance in HULH. We compare Deep CFR and NFSP
to the approximate solutions (solved via Linear Monte Carlo CFR) of three different-sized ab-
stractions: one in which the more than 1014 decisions are clustered into 3.3 · 106 buckets, one in
which there are 3.3 · 107 buckets and one in which there are 3.3 · 108 buckets. The results are
presented in Table 4.1. For comparison, the largest abstractions used by the poker AI Polaris in
its 2007 HULH man-machine competition against human professionals contained roughly 3 ·108

buckets. When variance-reduction techniques were applied, the results showed that the profes-
sional human competitors lost to the 2007 Polaris AI by about 52 ± 10 mbb/g [83]. In contrast,
our Deep CFR agent loses to a 3.3 · 108 bucket abstraction by only −11 ± 2 mbb/g and beats
NFSP by 43± 2 mbb/g.

4.1.4 Conclusions
We described a method to find approximate equilibria in large imperfect-information games by
combining the CFR algorithm with deep neural network function approximation. This method is

2We run NFSP with the same model architecture as we use for Deep CFR. In the benchmark game of Leduc
hold’em, our implementation of NFSP achieves an average exploitability (total exploitability divided by two) of 37
mbb/g in the benchmark game of Leduc hold’em, which is substantially lower than originally reported in Heinrich
and Silver [69]. We report NFSP’s best performance in FHP across a sweep of hyperparameters.

82

Opponent Model
Abstraction Size

Model NFSP Deep CFR 3.3 · 106 3.3 · 107 3.3 · 108

NFSP - −43± 2 mbb/g −40± 2 mbb/g −49± 2 mbb/g −55± 2 mbb/g
Deep CFR +43± 2 mbb/g - +6± 2 mbb/g −6± 2 mbb/g −11± 2 mbb/g

Table 4.1: Head-to-head expected value of NFSP and Deep CFR in HULH against converged
CFR equilibria with varying abstraction sizes. For comparison, in 2007 an AI using abstrac-
tions of roughly 3 · 108 buckets defeated human professionals by about 52 mbb/g (after variance
reduction techniques were applied).

10
6

10
7

10
8

10
9

10
10

10
11

Nodes Touched

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Convergence of Deep CFR, NFSP, and Domain-Specific Abstractions

Deep CFR
NFSP (1,000 infosets / update)
NFSP (10,000 infosets / update)
Abstraction (40,000 Clusters)
Abstraction (368,000 Clusters)
Abstraction (3,644,000 Clusters)
Lossless Abstraction (234M Clusters)

Figure 4.2: Comparison of Deep CFR with domain-specific tabular abstractions and NFSP in FHP.
Coarser abstractions converge faster but are more exploitable. Deep CFR converges with 2-3 orders of
magnitude fewer samples than a lossless abstraction, and performs competitively with a 3.6 million cluster
abstraction. Deep CFR achieves lower exploitability than NFSP, while traversing fewer infosets.

theoretically principled and achieves strong performance in large poker games relative to domain-
specific abstraction techniques without relying on advanced domain knowledge. This was the
first non-tabular variant of CFR to be successful in large games.

Deep CFR and other neural methods for imperfect-information games provide a promising
direction for tackling large games whose state or action spaces are too large for tabular methods
and where abstraction is not straightforward.

83

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Traversals per iter
3,000
10,000
30,000
100,000
300,000
1,000,000
Linear CFR

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

SGD steps per iter
1,000
2,000
4,000
8,000
16,000
32,000
Linear CFR

10
4

10
5

10
6

Model Parameters

10
2

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

dim=8

dim=16

dim=32
dim=64

dim=128 dim=256

Figure 4.3: Left: FHP convergence for different numbers of training data collection traversals per sim-
ulated LCFR iteration. The dotted line shows the performance of vanilla tabular Linear CFR without
abstraction or sampling. Middle: FHP convergence using different numbers of minibatch SGD updates to
train the advantage model at each LCFR iteration. Right: Exploitability of Deep CFR in FHP for different
model sizes. Label indicates the dimension (number of features) in each hidden layer of the model.

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Deep CFR (5 replicates)
Deep CFR without Linear Weighting
Deep CFR without Retraining from Scratch
Deep CFR Playing Uniform when All Regrets < 0

10
1

10
2

CFR Iteration

10
2

10
3

E
xp

lo
ita

bi
lit

y
(m

bb
/g

)

Deep CFR
Deep CFR with Sliding Window Memories

Figure 4.4: Ablations of Deep CFR components in FHP. Left: As a baseline, we plot 5 replicates of Deep
CFR, which show consistent exploitability curves (standard deviation at t = 450 is 2.25 mbb/g). Deep
CFR without linear weighting converges to a similar exploitability, but more slowly. If the same network
is fine-tuned at each CFR iteration rather than training from scratch, the final exploitability is about 50%
higher. Also, if the algorithm plays a uniform strategy when all regrets are negative (i.e. standard regret
matching), rather than the highest-regret action, the final exploitability is also 50% higher. Right: If
Deep CFR is performed using sliding-window memories, exploitability stops converging once the buffer
becomes full. However, with reservoir sampling, convergence continues after the memories are full.

84

4.1.5 Proofs of Theoretical Results
Proof of Lemma 11

We show
EQj∼Q

[
ṽσ

t

i (I)
∣∣∣ZI ∩Qj 6= ∅

]
= vσ

t

(I)/πσ
t

−i(I).

Let qj = P (Qj).

EQj∼Q
[
ṽσ

t

i (I)
∣∣∣ZI ∩Q 6= ∅] =

EQj∼Q
[
ṽσ

t

i (I)
]

PQj∼Q(ZI ∩Qj 6= ∅)

=

∑
Qj∈Q qj

∑
z∈ZI∩Qj ui(z)πσ

t

−i(z[I])πσ
t
(z[I]→ z)/q(z)

πσ
t

−i(I)

=

∑
z∈ZI∩Qj

(∑
Qj :z∈Qj qj

)
ui(z)πσ

t

−i(z[I])πσ
t
(z[I]→ z)/q(z)

πσ
t

−i(I)

=

∑
z∈ZI q(z)ui(z)πσ

t

−i(z[I])πσ
t
(z[I]→ z)/q(z)

πσ
t

−i(I)

=
vσ

t
(I)

πσ
t

−i(I)

The result now follows directly.

K-external sampling

We first show that performing MCCFR with K external sampling traversals per iteration (K-ES)
shares a similar convergence bound with standard external sampling (i.e. 1-ES). We will refer to
this result in the next section when we consider the full Deep CFR algorithm. This convergence
bound is rather obvious and the derivation pedantic, so the reader is welcome to skip this section.

We model T rounds of K-external sampling as T ×K rounds of external sampling, where at
each round t ·K + d (for integer t ≥ 0 and integer 0 ≤ d < K) we play

σtK+d(a) =

R+
tK(a)

R+
Σ,tK

if R+
Σ,tK > 0

arbitrary, otherwise
(4.2)

In prior work, σ is typically defined to play 1
|A| whenR+

Σ,T (a) ≤ 0, but in fact the convergence
bounds do not constraint σ’s play in these situations, which we will demonstrate explicitly here.
We need this fact because minimizing the loss L(V) is defined only over the samples of (visited)
infosets and thus does not constrain the strategy in unvisited infosets.
Lemma 12. If regret matching is used in K-ES, then for 0 ≤ d < K∑

a∈A

R+
tK(a)rtK+d(a) ≤ 0 (4.3)

85

Proof. If R+
Σ,tK ≤ 0, then R+

tK(a) = 0 for all a and the result follows directly. For R+
Σ,tK > 0,

∑
a∈A

R+
tK(a)rtK+d(a) =

∑
a∈A

R+
T (a)(utK+d(a)− utK+d(σtK)) (4.4)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(
utK+d(σtK)

∑
a∈A

R+
tK(a)

)
(4.5)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(∑
a∈A

σtK+d(a)utK+d(a)

)
R+

Σ,tK(a) (4.6)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(∑
a∈A

R+
tK(a)

R+
Σ,tK(a)

utK+d(a)

)
R+

Σ,tK(a) (4.7)

=

(∑
a∈A

R+
tK(a)utK+d(a)

)
−

(∑
a∈A

R+
tK(a)(a)utK+d(a)

)
(4.8)

= 0 (4.9)

Theorem 14. Playing according to Equation 4.2 guarantees the following bound on total regret∑
a∈A

(R+
TK(a))2 ≤ |A|L2K2T (4.10)

Proof. We prove by recursion on T .∑
a∈A

(R+
TK(a))2 ≤

∑
a∈A

(
R+

(T−1)K(a) +
K−1∑
d=0

rtK−d(a)

)2

(4.11)

=
∑
a∈A

(
R+

(T−1)K(a)2 + 2
K−1∑
d=0

rd(a)R+
(T−1)K(a) +

K−1∑
d=0

K−1∑
d′=0

rTK−d(a)rTK−d′(a)

)
(4.12)

By Lemma 12,

∑
a∈A

(R+
TK(a))2 ≤

∑
a∈A

(R+
(T−1)K(a))2 +

∑
a∈A

K−1∑
d=0

K−1∑
d′=0

rTK−d(a)rTK−d′(a) (4.13)

By induction, ∑
a∈A

(R+
(T−1)K(a))2 ≤ |A|L2(T − 1) (4.14)

From the definition, |rTK−d(a)| ≤ L

∑
a∈A

(R+
TK(a))2 ≤ |A|L2(T − 1) +K2|A|L2 = |A|L2K2T (4.15)

86

Theorem 15. (Lanctot [95], Theorem 3 & Theorem 5) After T iterations ofK-ES, average regret
is bounded by

R̄TK
i ≤

(
1 +

√
2√
pK

)
|Ii|L

√
|A|√
T

(4.16)

with probability 1− p.

Proof. The proof follows Lanctot [95], Theorem 3. Note that K-ES is only different from ES
in terms of the choice of σT , and the proof in Lanctot [95] only makes use of σT via the bound
on (

∑
aR

T
+(a))2 that we showed in Theorem 14. Therefore, we can apply the same reasoning to

arrive at

R̃TK
i ≤

LMi
√
|A|TK
L

(4.17)

(Lanctot [95], Eq. (4.30)).
Lanctot et al. [96] then shows that R̃TK

i and RTK
i are similar with high probability, leading

to

E

(∑
I∈Ii

(RTK
i (I)− R̃TK

i (I))

)2
 ≤ 2|Ii||Bi||A|TKL2

L2
(4.18)

(Lanctot [95], Eq. (4.33), substituting T → TK).
Therefore, by Markov’s inequality, with probability at least 1− p,

RTK
i ≤

√
2|Ii||Bi||A|TKL

L
√
p

+
LM

√
|A|TK
L

(4.19)

where external sampling permits L = 1 [95].
Using the fact that M ≤ |Ii| and |Bi| < |Ii| and dividing through by KT leads to the

simplified form

R̄TK
i ≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

(4.20)

with probability 1− p.

We point out that the convergence of K-ES is faster as K increases (up to a point), but it still
requires the same order of iterations as ES.

87

Proof of Theorem 13

Proof. Assume that an online learning scheme plays

σt(I, a) =

{
yt+(I,a)∑
a y

t
+(I,a)

if
∑

a y
t
+(I, a) > 0

arbitrary, otherwise
(4.21)

Morrill [111], Corollary 3.0.6 provides the following bound on the total regret as a function
of the L2 distance between y+

t and RT,+ at each infoset.

max
a∈A

(RT (I, a))2 ≤ |A|L2T + 4L|A|
T∑
t=1

∑
a∈A

√
(Rt

+(I, a)− yt+(I, a))2 (4.22)

≤ |A|L2T + 4L|A|
T∑
t=1

∑
a∈A

√
(Rt(I, a)− yt(I, a))2 (4.23)

Since σt(I, a) from Eq. 4.21 is invariant to rescaling across all actions at an infoset, it’s also the
case that for any C(I) > 0

max
a∈A

(RT (I, a))2 ≤ |A|L2T + 4L|A|
T∑
t=1

∑
a∈A

√
(Rt(I, a)− C(I)yt(I, a))2 (4.24)

Let xt(I) be an indicator variable that is 1 if I was traversed on iteration t. If I was traversed
then r̃t(I) was stored in MV,i, otherwise r̃t(I) = 0. Assume for now thatMV,i is not full, so all
sampled regrets are stored in the memory.

Let Πt(I) be the fraction of iterations on which xt(I) = 1, and let

εt(I) =
∥∥Et [r̃t(I)|xt(I) = 1

]
− V (I, a|θt)

∥∥
2

88

Inserting canceling factors of
∑t

t′=1 x
t′(I) and setting C(I) =

∑t
t′=1 x

t′(I),3

max
a∈A

(R̃T (I, a))2 ≤|A|L2T + 4L|A|
T∑
t=1

(
t∑

t′=1

xt
′
(I)

)∑
a∈A

√√√√(R̃t(I, a)∑t
t′=1 x

t′(I)
− yt(I, a)

)2

(4.25)

=|A|L2T + 4L|A|
T∑
t=1

(
t∑

t′=1

xt
′
(I)

)∥∥Et [r̃t(I)|xt(I) = 1
]
− V (I, a|θt)

∥∥
2

(4.26)

=|A|L2T + 4L|A|
T∑
t=1

tΠt(I)εt(I) by definition (4.27)

≤|A|L2T + 4L|A|T
T∑
t=1

Πt(I)εt(I) (4.28)

(4.29)

The first term of this expression is the same as Theorem 14, while the second term accounts
for the approximation error.

In the case of K-external sampling, the same derivation as shown in Theorem 14 leads to

max
a∈A

(R̃T (I, a))2 ≤ |A|L2TK2 + 4L
√
|A|TK2

T∑
t=1

Πt(I)εt(I) (4.30)

in this case. We elide the proof.

The new regret bound in Eq. (4.30) can be plugged into Lanctot [95], Theorem 3 as we do
for Theorem 15, leading to

R̄T
i ≤

∑
I∈Ii

(1 +

√
2√
pK

)
L

√
|A|√
T

+
4√
T

√√√√|A|L T∑
t=1

Πt(I)εt(I)

 (4.31)

Simplifying the first term and rearranging,

3The careful reader may note that C(I) = 0 for unvisited infosets, but σt(I, a) can play an arbitrary strategy at
these infosets so it’s okay.

89

R̄T
i ≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

+
4
√
|A|L√
T

∑
I∈Ii

√√√√ T∑
t=1

Πt(I)εt(I) (4.32)

R̄T
i ≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

+
4
√
|A|L√
T
|Ii|
∑

I∈Ii
|Ii|

√√√√ T∑
t=1

Πt(I)εt(I) (4.33)

≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

+
4
√
|A|L|Ii|√
T

√√√√ T∑
t=1

∑
I∈Ii

Πt(I)εt(I) by Jensen’s inequality

(4.34)

Now, lets consider the average MSE loss LTV (MT) at time T over the samples in memory
MT .

We start by stating two well-known lemmas:

Lemma 13. The MSE can be decomposed into bias and variance components

Ex[(x− θ)2] = (θ − E[x])2 + Var(θ) (4.35)

Lemma 14. The mean of a random variable minimizes the MSE loss

argmin
θ

Ex[(x− θ)2] = E[x] (4.36)

and the value of the loss at when θ = E[x] is Var(x).

LTV =
1∑

I∈Ii

∑T
t=1 x

t(I)

∑
I∈Ii

T∑
t=1

xt(I)
∥∥r̃t(I)− V (I|θT)

∥∥2

2
(4.37)

≥ 1

|Ii|T
∑
I∈Ii

T∑
t=1

xt(I)
∥∥r̃t(I)− V (I|θT)

∥∥2

2
(4.38)

=
1

|Ii|
∑
I∈Ii

ΠT (I) Et
[∥∥r̃t(I)− V (I|θT)

∥∥2

2

∣∣∣xt(I) = 1
]

(4.39)

Let V ∗ be the model that minimizes LT onMT . Using Lemmas 13 and 14,

LTV ≥
1

|Ii|T
∑
I∈Ii

ΠT (I)
(∥∥V (I|θT)− Et

[
r̃t(I)

∣∣xt(I) = 1
]∥∥2

2
+ LTV ∗

)
(4.40)

So,

90

LTV − LTV ∗ ≥
1

|Ii|
∑
I∈Ii

ΠT (I) εT (I) (4.41)∑
I∈Ii

ΠT (I) εT (I) ≤ |Ii|(LTV − LTV ∗) (4.42)

Plugging this into Eq. 4.32, we arrive at

R̄T
i ≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

+
4
√
|A|L|Ii|√
T

√√√√|Ii| T∑
t=1

(LtV − LtV ∗) (4.43)

≤

(
1 +

√
2√
pK

)
L|Ii|

√
|A|√
T

+ 4|Ii|
√
|A|LεL (4.44)

So far we have assumed that MV contains all sampled regrets. The number of samples in
the memory at iteration t is bounded by K · |Ii| · t. Therefore, if K · |Ii| · T < |MV | then the
memory will never be full, and we can make this assumption.4

Proof of Corollary 3

Proof. Let p = T−1/4.

P

(
R̄T
i >

(
1 +

√
2√
K

)
L|Ii|

√
|A|

T−1/4
+ 4|Ii|

√
|A|LεL

)
< T−1/4 (4.45)

Therefore, for any ε > 0,

lim
T→∞

P
(
R̄T
i − 4|Ii|

√
|A|LεL > ε

)
= 0. (4.46)

4.2 Regret Transfer and Parameter Optimization
CFR can only be run in games with discrete action spaces. In order to use CFR in a game with
a continuous action space, such as no-limit poker, the action space must be discretized. This
process is referred to as action abstraction, and has been used in every competitive HUNL poker
agent. In almost all cases, these action abstractions were determined by hand based on domain
knowledge. Some prior work investigated automated algorithms for action abstraction, but either

4We do not formally handle the case where the memories become full in this work. Intuitively, reservoir sampling
should work well because it keeps an ‘unbiased’ sample of previous iterations’ regrets. We observe empirically in
Figure 4.4 that reservoir sampling performs well while using a sliding window does not.

91

had no convergence guarantees [67, 68] or had been defined only for a much narrower game
class, stochastic games [129].

In this section we describe the first action abstraction algorithm for continuous action space
extensive-form games that has locally optimal convergence guarantees. These techniques were
ultimately used in Libratus to choose the bet sizes that were considered in the first two actions of
the game.

We begin by proving that regrets on actions in one setting (game) can be transferred to warm
start the regrets for solving a different setting with same structure but different payoffs that can
be written as a function of parameters. We prove how this can be done by carefully discounting
the prior regrets. We then study optimizing a parameter vector for a player in a two-player zero-
sum game (e.g., optimizing bet sizes to use in poker). We propose a custom gradient descent
algorithm that provably finds a locally optimal parameter vector while significantly saving regret-
matching iterations at each step. It optimizes the parameter vector while simultaneously finding
an equilibrium. We present experiments in no-limit Leduc hold’em and no-limit Texas hold’em
to optimize bet sizing.

4.2.1 Regret Transfer: Initializing Regrets of Actions Based on Regrets
Computed for Related Settings

We consider a space of games with identical structure but potentially differing rewards. Suppose
that we ran T iterations of regret matching on a game Γ1 and then made a very small change to
the rewards so that we are now in a game Γ2. Intuitively, if the change was small, then most of
what we learned from Γ1 should still apply to Γ2, though perhaps it will not be quite as relevant
as before. Indeed, in this section we build on that intuition and prove that we can transfer most
of what we learned, and therefore avoid restarting regret matching from scratch. We will show
that this can be done by appropriately discounting the former regrets.

The fundamental idea is that since we make only a small change to the payoffs, if the same
exact sequence of strategies that were played in the T iterations of regret matching in game Γ1

were repeated in Γ2 (ignoring the regrets when choosing actions in each iteration), then we can
still bound the regret in Γ2. If we then carefully scale those iterations down so that they “weigh
less", we can fit them into a bound that is equivalent to having played T ′ ≤ T iterations of regret
matching from scratch in Γ2. We then prove that we can continue regret matching for some
number of iterations T2 in Γ2, and our resulting bound is equivalent to having played T ′ + T2

iterations of regret matching from scratch in Γ2. We call this algorithm regret transfer.
Section 3.2 presented a warm starting algorithm for CFR that can also transfer what has been

learned in Γ1 to Γ2. However, the regret transfer algorithm we describe in this section can do
this transfer instantaneously even without a full traversal of the game tree, and requires far less
parameter tuning. However, as we will see, the regret transfer algorithm is more limited.

Key to our regret transfer algorithm is the assumption that we can replay the exact sequence
of strategies from the T iterations of regret matching from Γ1 in Γ2. In general, this is not
worthwhile to implement, as it would be better to simply play T iterations of regret matching in
Γ2 from scratch. However, we can “replay" the T iterations in O(1) in the case we mentioned
previously, where payoffs are all functions of a parameter vector ~θ, and we change only the value

92

of this vector. In this case, we can store the regret we accumulate in Γ1 as a function of this
vector. For example, consider the case of ~θ being just a scalar θ. If all payoffs are of the form
ui,〈ai,a−i〉 = αi,〈ai,a−i〉θ+ βi,〈ai,a−i〉, then we can store regret for every action with separate values
Rα(a) and Rβ(a). When we access the regret to determine the action for the next iteration, we
can simply calculate R(a) = Rα(a)θ1 +Rβ(a), where θ1 is the value of θ in Γ1. This way, if we
move to Γ2 where θ is some different value θ2, then we can simply evaluate Rα(a)θ2 +Rβ(a) to
get regret.

We will now proceed to proving that regrets can be transferred across settings by appropri-
ately discounting the iterations conducted at prior settings, starting with the case of normal form
games. First, we will present a result that will be useful in our proof.

Let ~RT
i denote the vector of regrets for the set of actions for player i on iteration T . As a

reminder, the potential function of a regret vector for a player i is Φ(~RT
i) =

∑
a∈A

(
RT
i,+(a)

)2.
As shown in (2.5), the bound on the potential function when playing according to regret matching
every iteration is Φ(~RT

i) ≤ L2|A|T . Rather than playing according to RM, suppose instead we
played a sequence of arbitrary strategies first and only then start playing according to regret
matching. We will now show that we can still bound the potential function.
Lemma 15. Suppose player i is given an initial potential Φ(~RT0

i) ≤ wT0|Ai|L2
i for a game

where T0 iterations have been played and w is an arbitrary scalar. If regret matching is used in
all future iterations, then at iteration T0 + T , we can bound the potential:

Φ(~RT0
i + ~RT

i) ≤ (wT0 + T)|Ai|L2
i (4.47)

We now show specifically how to weigh the previous iterations. Suppose after T iterations
we have some regret RT , and then we modify the game by changing the payoffs slightly. We will
analyze how one can initialize regret matching in this new game.

We will find it useful to define weighted average regret:

RT,T2

w,i (a)

wT + T2

=
w
∑T

t=1 r
t
i(a) +

∑T2

t=1 r
t
i(a)

wT + T2

(4.48)

Theorem 16. Say we have played T iterations of regret matching in a game. Assume all players
play the same sequence of strategies over T iterations in some other game, where the structure
of the game is identical but the payoffs may differ. We denote regret in this new game by R′.
Consider any weight wi for agent i such that

0 ≤ wi ≤
L2
i |Ai|T

Φ(~R′Ti)
(4.49)

If we scale the payoffs of the first T iterations by wi and then play according to regret matching
for T2 iterations, then weighted average regret in the new game is

R′T,T2

w,i

wiT + T2

≤
Li
√
|Ai|√

(wiT + T2)
(4.50)

93

This is the same bound achieved from the player playing wiT + T2 iterations of regret-
matching from scratch.

Later in this paper we will find it useful to define wi in terms of the maximum change in
regret. We therefore present the following proposition.
Proposition 1. Let

Li =
max

{
maxa∈A[R′Ti (a)−RT

i (a)], 0
}

T
(4.51)

If we choose

0 ≤ wi ≤
1

1 +
2Li
√
|Ai|
√
T

Li
+

L2
i T

L2
i

(4.52)

then Theorem 16 still holds.

4.2.2 Warm Start Toward Nash Equilibrium in Zero-Sum Games
We now strengthen Theorem 16 to show that we get a warm start toward an approximate Nash
equilibrium in two-player zero-sum games.

We first define a weighted average strategy as the average of a series of strategies where the
first T iterations are weighted by w and the latter T2 iterations by 1. Formally, we define σT,T2

w,i

such that the probability of action a is

p
σ
T,T2
w,i

(a) =
w
∑T

t=1 pσti (a) +
∑T2

t=1 pσti (a)

wT + T2

(4.53)

Corollary 4. Say both players have played T iterations of regret matching in a two-player game
Γ. Let us transfer regret for both players to a new two-player zero-sum game with identical
structure Γ′ according to Theorem 16, and let w = mini{wi}. If both players play an additional
T2 iterations of regret matching, then their weighted average strategies constitute a 2ε-Nash
equilibrium where

ε = max
i

{ Li
√
|Ai|√

(wT + T2)

}
From (4.49), we see that the algorithm allows a range of valid values for the weightwi. At first

glance it may seem always better to use the largest valid wi so as to get the most aggressive warm
start via discounting the prior iterations by as little as possible. However, this is usually not the

case in practice. Because regret matching in practice converges significantly faster than
Li
√
|Ai|√
T

,
it may be possible to get a faster practical convergence by choosing a smaller wi, even if this
results in a theoretically worse convergence rate. One option—consistent with our theory—is to
use wi =

Φ(~RTi)

Φ(~R′Ti)
; this performed well in our preliminary experiments, but has the slight downside

of requiring repeated calculations of the potentials. Another option is to calculatewi by replacing
Li with average payoff in (4.52). This performed well in practice and maintains the theoretical
guarantees because wi is guaranteed to be within the correct range. An additional benefit is that
this way we express wi as a function of the largest change in regret, which is typically easy to

94

bound—an aspect we will leverage in the next section. Therefore, in the experiments in the rest
of this paper we calculate wi according to (4.52) with estimated average payoff instead of Li.5

4.2.3 Generalization to Extensive-Form Games
We now present a corollary that the same algorithm can be applied to extensive-form games
when solved using CFR.
Corollary 5. Let Γ be an extensive-form game. Suppose player i has played T CFR iterations in
Γ. Assume that all players play the exact same sequence of strategies in some other game Γ′ with
identical structure but potentially different payoffs. We define for each information set Ii ∈ Ii

LIi =
max

{
maxa[R

T (Ii, a)−R′T (Ii, a)], 0
}

T

We also define wIi using LIi according to Theorem 16. Let wi = minIi{wIi}. If we scale the
payoffs of the T iterations by wi and then play according to CFR for T2 iterations, then weighted
average regret for player i is bounded by

RT,T2

w,i

wiT + T2

≤
Li|Ii|

√
|Ai|√

wiT + T2

(4.54)

If Γ′ is a two-player zero-sum game, then the weighted average strategies form an ε-Nash equi-

librium, with ε =
R
T,T2
w,1

w1T+T2
+

R
T,T2
w,2

w2T+T2
.

Recall that in regret transfer we can replay the iterations in the new game in O(1) by storing
regrets as a function of ~θ. For example, in the case where ~θ is one-dimensional, we would need to
store two values for regret instead of one, and therefore require twice as much memory. However,
in extensive-form games, not every information set may be affected by such a change in ~θ. If
an information set’s possible payoffs are all constant (independent of ~θ), even though there is a
variable payoff somewhere else in the game, then there is no need to use extra memory to store
the coefficients on ~θ at that information set. The exact amount of memory used thus depends on
the structure of the game.

4.2.4 Regret Transfer Experiments
We now show experimental results on regret transfer. We use Leduc hold’em poker (described
in Section 2.4.1 as the test problem here. These experiments will show average exploitability as
a function of the number of iterations run.

In the experiments in this section, we consider warm starting after the allowed bet sizes in our
game model have changed. We first estimated a solution to Leduc with 1 million CFR iterations.
We then considered a modified form of Leduc where the bet sizes for the first and second round
were slightly different. Specifically, we changed the first-round bet from 2 to 2.1 and the second-
round bet from 4 to 4.1. In other words, ~θ changed from 〈2, 4〉 to 〈2.1, 4.1〉. We tested three

5As a computational detail, we scale future iterations by 1
w rather than scaling previous iterations by w. Both

yield identical results, but the former seems easier to implement.

95

approaches to solving this new game. In the first, we simply solved the game from scratch using
CFR. In the second, we transferred the regret and average strategy from the original Leduc game,
but did not de-weight them. Finally, in the third, we transferred regret and average strategy by
de-weighting by w = 0.125, a value chosen by the method described in the previous section.
Figure 4.5 shows the results.

Figure 4.5: Regret transfer after increasing the bet size in both rounds of Leduc hold’em by
0.1. The average over 20 runs is shown with 95% confidence intervals. The warm start provides
a benefit that is equivalent to about 125,000 iterations. In the long run, that benefit becomes
visually almost imperceptible on the log scale. Unlike transferring regret without scaling, our
method does not cause long-term harm.

It is clear that while transferring without scaling provides a short-term improvement, in the
long-run it is actually detrimental (worse than starting from scratch). In contrast, when the
transferred regret is properly weighed using our method, we see an equal improvement in the
short-term without long-term detriment. Since the transfer only gives us a head-start of a fixed
number of iterations, in the long run this gain, of course, becomes negligible (on a logarithmic
plot). Nevertheless, if the change is small then this fixed number of iterations can be a substantial
portion of the run.

4.2.5 Parameter Optimization
We now incorporate the result from the previous section into a custom gradient descent algorithm
for two-player zero-sum games. Our objective is to find the value of a parameter vector ~θ that
results in a locally maximal value for a Nash equilibrium for a family of games with payoffs
that are Lipschitz functions of ~θ. For example, we could be optimizing the bet sizes for a player
in no-limit poker. Without loss of generality, in this section we present everything as if we are
maximizing the parameter vector for Player 1.6

6The function used to maximize the parameter vector can be independent of the zero-sum game. It can be
maximized for either player, or parts of it could be maximized for one player or the other. It could even be maximized

96

To do this, we will simultaneously solve the parameterized game using regret matching (CFR
in the case of extensive-form games), storing regret in terms of ~θ, while running our gradient
descent algorithm. Specifically, at each step s we will run some number of iterations, ts, of
regret matching. Then, for each θd ∈ ~θ we will calculate an estimated derivative ĝd,s, as we will
detail later. We will then update θd as

θd,s+1 = θd,s + ĝd,s
α

`s
(4.55)

where `s is a learning rate (analyzed later) and α is any positive constant. We then multiply the
weights of all prior steps s′ ≤ s by ws, where ws is determined according to (4.49). So, the
previous step ends up being discounted by ws, the one before that by ws · ws−1 (because it was
multiplied by that previous ws before), etc.

The number of regret matching iterations we conduct at step s is

ts = dKs− wsK(s− 1)e (4.56)

for some constant K.7 Thus, at the end of step s we will have run an equivalent of Ks regret

matching iterations, and by Theorem 16 we have weighted average regret
R
K(s−1),ts
ws,i

Ks
≤ Li
√
|Ai|√
Ks

.

We compute the estimated derivative ĝd,s (for each dimension d of ~θ separately) as follows.
Define ~ξd to be the unit vector in the vector space of ~θ along dimension θd ∈ ~θ. In concept, we
will estimate the value of the game at two points ~θs±s−

1
4 ~ξd. We do this by running the equivalent

of Ks iterations of regret matching at each of the two points. Then we use the slope between
them as the estimated derivative. We later prove that this converges to the true derivative.

There is a problem, however, because ~θ changes at each step and running Ks iterations from
scratch becomes increasing expensive as s grows. To address this, we could transfer regret from
a maintained strategy at ~θs using Theorem 16, but even this would be too expensive because s−

1
4

shrinks very slowly. As a better solution to address the problem, we do the following. For each
dimension d we maintain a strategy profile σd− for the game at ~θs − s−

1
4 ~ξd and a strategy profile

σd+ for the game at ~θs + s−
1
4 ~ξd, and we estimate the derivative using those points, as well as

transfer regret from them. At each step s, we run ts iterations of regret matching at each of these
2N points. As ~θs moves, these points move with it, so they are always at ±s− 1

4 ~ξd from it along
each dimension d, respectively.

The pseudocode of the full algorithm is shown as Algorithm 3. The following theorem proves
that Algorithm 3 is correct and shows its speed advantage.
Theorem 17. Let Γ~θ be a family of two-player zero-sum games with identical structure. Assume
each payoff is, across games, an identical function of some N -dimensional parameter vector ~θ
that is bounded so that ∀d, θd ∈ [ad, bd]. Assume also that ∀d, these functions are Lipschitz
continuous in θd. Let the learning rate `s be such that `s = Ω(

√
s) and 1

`s
diverges as s → ∞.

Define v∗i (~θ) to be the Nash equilibrium value of Γ~θ. As s → ∞, Algorithm 3 converges to a
locally optimal ~θ with respect to v∗i (~θ), and to a Nash equilibrium strategy profile at that ~θ.

to the preferences of some third party.
7Theoretically, any positive constant K works, but in practice K could be chosen to ensure the overhead of

stepping (conducting the re-weighting, calculating the gradient, etc.) is small compared to the cost of conducting
the regret matching iterations.

97

Algorithm 3 Parameter optimization in two-player zero-sum games
Choose K, `s
Choose U ≤ Li // In the experiments we used average payoff of the player.

Initialize s← 1, t← 0
Initialize N-dimensional parameter vector ~θ
Initialize Θ← {~θd− = ~θ − ~ξd, ~θd+ = ~θ + ~ξd : d ∈ {1...N}}
Initialize avg regret tables: ∀p ∈ Θ ∀I ∀a, rp(I, a)← 0
Initialize avg strategy tables: ∀p ∈ Θ ∀I ∀a, σp(I, a)← 0
loop

while t < sK do
for all p ∈ Θ do

rp, σp ← One-Iteration-of-Regret-Matching(rp)

t← t+ 1

for all d in 1 to N do // Loop over the parameters

ĝd ←
vi(σ~θd+

)−vi(σ~θd−)

2s−
1
4

// Estimate derivative wrt. θd

θ′d ← θd + ĝd
α
`(s)

// Revise value of parameter θd

for all d in 1 to N do // Narrow the interval around each θd
~θd− ← ~θ′ − ~ξd(s+ 1)−

1
4

~θd+ ← ~θ′ + ~ξd(s+ 1)−
1
4

L← max
{

maxp∈Θ,I∈I,a∈A
{
r′p(I, a)− rp(I, a)

}
, 0
}

w ← 1

1+
2L
√
|A|t
U

+L2t
U2

// Calculate weight based on Theorem 16

for all p ∈ Θ, I ∈ I, a ∈ A do
rp(I, a)← wrp(I, a) // De-weight old regret

σp(I, a)← wσp(I, a) // De-weight old average strategy

~θ ← ~θ′, t← wt, s← s+ 1

Let

ĝd,s =
vi(σd+)− vi(σd−)

2s−
1
4

(4.57)

and let ĝs = maxd ĝd,s. At each step s, Algorithm 3 conducts O(s
3
2 ĝs

1
`s

) iterations of regret
matching.

This represents a substantial improvement over naïve gradient descent. If we were to do
gradient descent without regret transfer, we would require Θ(s) iterations at each step, and thus
take Θ(s2) time. With regret transfer, however, if we use a learning rate `s = s, and even if the
gradient did not converge at any significant rate (although in reality it does), we only do O(

√
s)

iterations at each step, thus taking O(s
√
s) time overall.

98

4.2.6 Parameter Optimization Experiments

Leduc Hold’em

As we mentioned in the regret transfer experiments, one can view Leduc as having two parame-
ters: the first-round bet size θ1 and the second-round bet size θ2.

In the first experiment here, we held θ1 fixed at 2.0 (the standard in Leduc), and ran Algo-
rithm 3 to optimize θ2. We used a learning rate ls = s

3
4 , α = 50, and K = 100. We conducted

three runs of the algorithm, starting from three different initial values for θ2, respectively. Each
run converged to θ2 = 9.75± 0.01 within 108 iterations (Figure 4.6).

As a sanity check, we ran CFR on 41 models of the game with different values for θ2. Specif-
ically, we checked values for θ2 in the set {3.0, 3.25, ..., 12.75, 13.0}. Indeed, θ2 = 9.75 maxi-
mized Player 1’s payoff.

Figure 4.6: Parameter optimization where θ is the second-round bet size in Leduc hold’em.

In the next experiment, we ran Algorithm 3 to simultaneously optimize θ1 and θ2. The same
learning rate, α, andK were used as in the previous experiment. Three initial points were chosen:
(θ1, θ2) = (2.0, 4.0), (4.0, 2.0), and (4.0, 8.0). Within 5 · 108 iterations, all runs converged
to θ1 = 1.69 ± 0.01 and θ2 = 8.56 ± 0.01. The results of these experiments are shown in
Figure 4.7, with θ1 on the bottom and θ2 on the top. The value of the game at the converged
(θ1, θ2) = (1.69, 8.56) was 0.1645 ± 0.002. This was an improvement over the 1-dimensional
optimization in the previous experiment, which fixed θ1 = 2.0 and converged to θ2 = 9.75. The
value of the game there was 0.1611± 0.002.

99

Figure 4.7: Parameter optimization where θ1 is the first-round bet size in Leduc, and θ2 is the
second-round bet size.

No-Limit Texas Hold’em

We also provide results demonstrating that our algorithm even scales to two-player no-limit Texas
hold’em poker (described in Section 2.4.3.

The following experiments were done with the betting abstraction used by Tartanian5 in
the 2012 Annual Computer Poker Competition. For the card abstraction, we used the leading
algorithm [82] for generating an imperfect-recall abstraction. We used no abstraction on the first
round of the game (aka “preflop"), i.e., 169 buckets, and 200 buckets for each of the remaining
three rounds. This resulted in an abstracted game with roughly 1.4 million information sets.

The 2012 betting abstraction allows the first player to act to either fold, call, raise, or go all-
in. The raise amount is set to 1x the pot. This choice of bet size was based on human intuition,
and may not be optimal. In these experiments we ran Algorithm 3 to find the raise amount that
would be optimal for the first action of the game (in this abstraction).8

No-limit Texas hold’em with an imperfect-recall card abstraction posed a challenge in that
evaluating ui(σ) is difficult in large imperfect-recall games. To get around this, we estimated

8As the initial bet size changed, it was necessary to adhere to the chip stack limitations in no-limit Texas hold’em.
We dealt with this by maintaining the structure of the game, but limiting all payoffs to the size of the chip stack.
When the initial bet size increased, all actions remained valid. However, some actions essentially had no conse-
quence, as the chip stack limit had already been reached. When the initial bet size decreased, the all-in actions
would nevertheless result in all chips being bet, up to the pre-determined chip stack limit. In this way we were
able to maintain the structure of the game across parameter settings. However, when transferring regret, we did not
explicitly consider the constraints of chip stacks. That is, if regret from an iteration with a parameter of 1.0 was
transferred to a parameter of 1.1, then we would implicitly assume that the new chip stack was 1.1x the original.
This was only the case for iterations that were transferred, and not for iterations being played at the current bet size.
Moreover, as the parameter converged, this became an increasingly insignificant issue.

100

ui(σ) while running CFR at each step using the same public card samples. This resulted in
some noise in the steps.9 Nevertheless, after 109 iterations of chance-sampled CFR, all 4 runs
converged to 0.77± 0.01 (Figure 4.8).

Figure 4.8: Parameter optimization where θ is the first action bet size in no-limit Texas hold’em.
Runs with four different initializations are shown. The learning rate was s

3
4 . For initializations

at 0.5 and 1, α = 0.3. For initializations at 1.5 and 2.0, α = 1.0.

As a check, we ran CFR on models of the game with a fixed bet size in {0.5, 0.6, ..., 1.0}.
Indeed, 0.8 resulted in the highest expected payoff for Player 1, followed by 0.7.

4.2.7 Conclusions

We began by proving that regrets on actions in one setting (game) can be transferred to warm
start the regrets for solving a different setting with same structure but different payoffs that can
be written as a function of parameters. Experiments on Leduc hold’em poker verified the benefits
of the technique. It provided a significant head start over running CFR from scratch.

This is a more constrained form of warm starting than the method described in Section 3.2,
but this form of warm starting is simpler, does not require a full traversal of the game tree to up-
date regrets, and likely produces a better warm start in practice for small changes in parameters,
though at the cost of increased memory usage and more constraints on when it can be used.

We then studied optimizing a parameter vector for a player in a two-player zero-sum game
(e.g., optimizing bet sizes to use in poker). We proposed a custom gradient descent algorithm
that provably finds a locally optimal parameter vector while leveraging our warm-start theory
to significantly save regret-matching iterations at each step. It optimizes the parameter vector
while simultaneously finding an equilibrium. To conduct s steps, it takes O(s

√
s) time (and

9Due to the challenge of evaluating ui(σ) in large imperfect-recall games, K was set to a minimum of 5,000 and
a maximum of 200,000. We stepped when we had statistical significance that the derivative was of the right sign;
otherwise we stepped at 200,000.

101

significantly less than that in practice) while straightforward gradient descent takes Θ(s2) to
conduct those same steps.

We ran experiments in no-limit Leduc hold’em and no-limit Texas hold’em to optimize bet
sizing. This amounts to the first action abstraction algorithm (algorithm for selecting a small
number of discrete actions to use from a continuum of actions—a key preprocessing step for
solving large games using current equilibrium-finding algorithms) with convergence guarantees
for extensive-form games. Very few other automated action abstraction algorithms have been
presented, and the prior ones either have no convergence guarantees [67, 68] or are for a much
narrower game class, stochastic games [129].

This automated action abstraction technique was ultimately used to determine the first two
bet sizes for Libratus, the first AI bot to defeat top humans in no-limit Texas hold’em poker (de-
scribed in Section 6.4). However, more work remains to be done in order to make the algorithm
efficient enough in order to be used to determine action abstractions for an entire game. Due
to repeated discounting, the algorithm converges more slowly than running CFR with fixed bet
sizes. Another direction for future work is developing a way to converge to a globally optimal
action abstraction, rather than just a locally optimal one.

4.2.8 Proofs of Theoretical Results
Proof of Lemma 15

Proof. From page 10 of Cesa-Bianchi and Lugosi [36], we know that for any t

Φ(~Rt
i)− Φ(~Rt−1

i) ≤
∑
a∈Ai

rti(a)2

Summing over all iterations, we therefore have

Φ(~RT0
i + ~RT

i) ≤ Φ(~RT0
i) +

T∑
t=T0+1

∑
a∈Ai

rti(a)2

Φ(~RT0
i + ~RT

i) ≤ wT0|Ai|L2
i +

T∑
t=T0+1

∑
a∈Ai

rti(a)2

The maximum possible immediate regret for an action on a single iteration is Li. Therefore,

Φ(~RT0
i + ~RT

i) ≤ wT0|Ai|L2
i + T |Ai|L2

i

Proof of Theorem 16

Proof. From (2.5), we have that

Φ(~RT
i) =

∑
a∈Ai

RT
i (a)2

+ ≤ L2
i |Ai|T (4.58)

102

After replaying the T iterations in the new game, we have

Φ(~R′T,i) =
∑
a∈Ai

(
R′Ti (a)+

)2 (4.59)

We scale the payoffs from each of the T iterations by wi.

Φ(wi ~R
′T
i) =

∑
a∈Ai

(
wiR

′T
i (a)+

)2

Φ(wi ~R
′T
i) = w2

i

∑
a∈Ai

(
R′Ti (a)+

)2 (4.60)

Substituting the definition of wi

Φ(wi ~R
′T
i) ≤ wi

TL2
i |Ai|

Φ(~R′Ti)

∑
a∈Ai

(
R′Ti (a)+

)2

Φ(wi ~R
′T
i) ≤ wiTL

2
i |Ai|

∑
a∈Ai

(
R′Ti (a)+

)2

Φ(~R′Ti)

Substituting (4.59), we simplify to

Φ(wi ~R
′T
i) ≤ wiTL

2
i |Ai| (4.61)

If we play an additional T2 iterations of regret-matching, then by Lemma 15 the bound will be

Φ(wi ~R
′T
i + ~R′T2

i) ≤ (wiT + T2)L2
i |Ai| (4.62)

From (2.4) this becomes

∑
a

(
wi

T∑
t=1

r′ti (a) +

T2∑
T+1

r′ti (a)
)2

≤ (wiT + T2)L2
i |Ai|

max
a

(
wi

T∑
t=1

r′ti (a) +

T2∑
T+1

r′ti (a)
)2

≤ (wiT + T2)L2
i |Ai|

max
a

(
wi

T∑
t=1

r′ti (a) +

T2∑
T+1

r′ti (a)
)
≤
√
wiT + T2Li

√
|Ai|

Dividing by wiT + T2, we arrive at

R′T,T2

w,i

wiT + T2

≤
Li
√
|Ai|√

(wiT + T2)

103

Proof of Proposition 1

Proof. From (2.4) we have that

Φ(~RT
i) =

∑
a∈Ai

RT
i (a)2

+ ≤ L2
i |Ai|T (4.63)

We then add at most Li average regret to each action. So

Φ(~R′Ti) ≤
∑
a

(RT
i (a)+ + Li)

2

≤
∑
a

[RT
i (a)2

+ + 2LiR
T
i (a)+ + L2

i]

Since
∑

aR
T
i (a)2

+ is just our original potential function,

Φ(~R′Ti) ≤ L2
i |Ai|T + 2Li(

∑
a

RT
i (a)+) + |Ai|L2

i

From (2.6), we know that RT
i (a)+ ≤ Li

√
|Ai|
√
T , so therefore

Φ(~R′Ti) ≤ L2
i |Ai|T + 2LiLi|Ai|

3
2T

3
2 + |Ai|L2

i

≤ (TL2
i |Ai|)(1 +

2L
√
|Ai|
√
T

Li
+
L2T

L2
i

)

and finally
1

1 +
2L
√
|Ai|
√
T

Li
+ L2T

L2
i

≤ TL2
i |Ai|

Φ(~R′Ti)
(4.64)

Proof of Corollary 1

Proof. Let σti be the strategy used by player i on time step t ≤ T and σT+t
i be the strategy used

by player i on time step T < t ≤ T + T2. Since we have scaled down the payoffs of the first T
iterations by w ≤ wi, we know from Theorem 16 and (4.48) that for each player i,

1

wT + T2

max
σ′i∈Σi

{ T∑
t=1

[w(ui(σ
′
i, σ

t
−i))− w(ui(σ

t
i , σ

t
−i))]+

T2∑
t=1

[ui(σ
′
i, σ

T+t
−i)− ui(σT+t

i , σT+t
−i)]

}
≤ Li|Ai|√

(wT + T2)

Pulling out w and substituting εi:

1

wT + T2

max
σ′i∈Σi

{
w

T∑
t=1

[ui(σ
′
i, σ

t
−i)− ui(σti , σt−i)]+

T2∑
t=1

[ui(σ
′
i, σ

T+t
−i)− ui(σT+t

i , σT+t
−i)]

}
≤ εi (4.65)

104

Let σ̄i be the weighted average strategy of player i, where iterations t ≤ T are weighted by w
and the later iterations are weighted by 1. So,

1

wT + T2

max
σ′i∈Σi

{
w

T∑
t=1

[ui(σ
′
i, σ

t
−i)]+

T2∑
t=1

[ui(σ
′
i, σ

T+t
−i)]

}
= max

σ′i∈Σi
ui(σ

′
i, σ̄−i) (4.66)

and therefore we can rewrite Inequality (4.65) as

−
w
∑T

t=1 ui(σ
t
i , σ

t
−i) +

∑T2

t=1 ui(σ
T+t
i , σT+t

−i)

wT + T2

+

max
σ′i∈Σi

ui(σ
′
i, σ̄−i) ≤ εi (4.67)

By summing the two player’s versions of Inequality (4.67), the first terms cancel out (since
u2(·) = −u1(·)), so we get

max
σ′1∈Σ1

u1(σ′1, σ̄2) + max
σ′2∈Σ2

u2(σ̄1, σ
′
2) ≤ ε

where ε = ε1 + ε2. This implies

u1(σ̄1, σ̄2) + max
σ′2∈Σ2

u2(σ̄1, σ
′
2) ≤ ε

and so (since u2(·) = −u1(·)) we have

max
σ′2∈Σ2

u2(σ̄1, σ
′
2)− u2(σ̄1, σ̄2) ≤ ε

and analogously for player 2. So, this is a ε-equilibrium.

Proof of Corollary 2

Proof. Substituting counterfactual regret for regret in Theorem 16 and noting that ∀I w ≤ wI ,
we know that

∀I wR
′T (I) +R′T2(I)

wT + T2

≤
Li
√
|Ai|√

wT + T2

From Theorem 3 in Zinkevich et al. [163], this means

wR′Ti +R′T2
i

wT + T2

≤
Li|I|

√
|Ai|√

wT + T2

R′T,T2

w,i ≤
Li|I|

√
|Ai|√

wT + T2

105

We further know that for all players

max
σ′i∈Σi

[T∑
t=1

[w(ui(σ
′
i, σ

t
−i))− w(ui(σ

t
i , σ

t
−i))]+

T2∑
t=1

[ui(σ
′
i, σ

T+t
−i)− ui(σT+t

i , σT+t
−i)]

]
≤ εi(wT + T2)

Thus, the remainder of the proof to show that this results in a ε Nash equilibrium when Γ′ is a
two-player zero-sum game exactly follows Corollary 4.

Proof of Theorem 17

Proof. First we prove that ĝd,s converges to the true derivative gd,s. From (4.56), we see that
at each step s we have run the equivalent of sK iterations of regret matching. By (2.6) and
Theorem 16, this means we can bound regret as Rsi

sK
≤ L

√
A√
sK

. Additionally, it is well known
that in two-player zero-sum games the strategy profile is an ε-equilibrium where ε = Rs

1 + Rs
2

(e.g., Zinkevich et al. [163, Thm. 2]). Since Algorithm 3 maintains strategy profiles σd− and σd+

for each of theN dimensions d, and each of those strategy profiles have completed the equivalent
of sK iterations of regret matching, so |v(σd+)− v∗(~θs + s−

1
4 ~ξd)| ≤ C√

s
and |v(σd−)− v∗(~θs −

s−
1
4 ~ξd)| ≤ C√

s
. So,

ĝd,s =
v(σd+)− v(σd−)

2s−
1
4

=
v∗(~θs + s−

1
4 ~ξd)− v∗(~θs − s−

1
4 ~ξd)±O(1√

s
)

2s−
1
4

= gd,s ±O(
1

s
1
4

) (4.68)

Since the gradient estimate converges to the true gradient, we have that under the standard as-
sumptions on the learning rate and the functions presented in the theorem statement, the gradient
descent will converge to a local optimum (e.g. [138]).

What remains to be proven is that at step s, Algorithm 3 conducts O(s
3
2 ĝs

1
`s

) iterations of
regret matching. Since the payoffs of the games are Lipschitz functions, so ∀θd ∈ ~θ, regret for
each action is Lipschitz with respect to θd. Therefore, from (4.51),

Ls ≤
∑
d

Cd

(
|θd,s+1 − θd,s|+ s−

1
4 − (s+ 1)−

1
4

)
(4.69)

From (4.55), θd,s+1 − θd,s = ĝd,s
α
`s

. This is dependent only on ĝd,s and `s. Since `s ∈ Ω(
√
s) and

ĝd,s ∈ O(1), we get the following by substituting Ls from (4.69) into (4.52):

ws ∈ O
(1

1 +
ĝd,s
√
s+(s−

1
4−(s+1)−

1
4)

`s

)
(4.70)

∈ O
(`s

`s + ĝd,s
√
s+ (s−

1
4 − (s+ 1)−

1
4)

)
(4.71)

106

Using (4.56) and that O(s−
1
4 − (s+ 1)−

1
4) ∈ O(`s), we have

ts ∈ O
(
s− s`s

`s + ĝd,s
√
s

)
∈ O

(ĝd,ss
3
2

`s + ĝd,s
√
s

)
(4.72)

Since `s ∈ Ω(
√
s) and ĝd,s ∈ O(1), this gives us

ts ∈ O
(ĝd,ss 3

2

`s

)
(4.73)

4.3 Simultaneous Abstraction and Equilibrium Finding
A central challenge in solving imperfect-information games is that the game may be far too large
to solve with an equilibrium-finding algorithm. For example, HUNL poker has more than 10165

nodes in the game tree and 10161 information sets [78]. For such games, abstraction has emerged
as a key approach: a smaller, more tractable version of the game that maintains many of its
strategic features is created [9, 24, 50, 57, 59, 82, 89, 97, 139]. In the abstract game, a player is
constrained to behaving identically in a set of situations. The abstract game is then solved for
(near-) equilibrium, and its solution (i.e., the strategies for all players) mapped back to the full
game. Intuitively, an abstraction should retain “important" parts of the game as fine-grained as
possible, while strategically similar or unimportant states could be grouped together. However,
the key problem is that it is difficult to determine which states should be abstracted without
knowing the equilibrium of the game. This begets a chicken-and-egg problem.

Another issue is that even if an equilibrium-finding algorithm in a given abstraction could
determine what parts of the game are (un)important, the equilibrium-finding algorithm would
have to be run from scratch on the new abstraction.

A related issue is that a given abstraction is good in the equilibrium-finding process only
for some time. Coarse abstractions yield good strategies early in the run while larger, fine-
grained abstractions take longer to reach reasonable strategies but yield better ones in the long
run. Therefore, the abstraction size is typically hand crafted to the anticipated available run time
of the equilibrium-finding algorithm using intuition and past experience with the approach.

There has been a great deal of research on generating good abstractions before equilibrium
finding. Most of that work has focused on information abstraction, where a player is forced to
ignore certain information in the game. Less research has gone into action abstraction (restrict-
ing the set of actions available to a player). Action abstraction has typically been done by hand
using domain-specific knowledge (with some notable exceptions [89, 129]).

Beyond the manual strategy-based abstraction mentioned above, there has been some work
on interleaving abstraction and equilibrium finding. Hawkin et al. [67, 68] proposed algorithms
that adjust the sizes of some actions (some bet sizes in no-limit poker) in an abstraction during
equilibrium finding, without convergence guarantees.

107

The Regret Transfer form of automated action abstraction, described in Section 4.2 presented
an algorithm that adjusts action sizes during equilibrium finding in a way that guarantees con-
vergence if the player’s equilibrium value for the game is convex in the action-size vector. That
approach works for adjusting a small number of action sizes but the memory usage scales lin-
early with the number of actions being set. The Regret Transfer approach, and no other prior
approach, changes the number of actions in the abstraction and thus cannot be used for growing
(refining) an abstraction.

In this section we describe an algorithm that intertwines action abstraction and equilibrium
finding. It begins with a coarse abstraction and selectively adds actions that the equilibrium-
finding algorithm deems important. It overcomes the chicken-and-egg problem mentioned above
and does not require knowledge of how long the equilibrium-finding algorithm will be allowed to
run. It can quickly—in constant time—add actions to the abstraction while provably not having
to restart the equilibrium finding. Experiments show it outperforms fixed abstractions at every
stage of the run: early on it improves as quickly as equilibrium finding in coarse abstractions, and
later it converges to a better solution than does equilibrium finding in fine-grained abstractions.

4.3.1 Adding Actions to an Abstraction
A central challenge with abstraction is its inflexibility to change during equilibrium finding. Af-
ter many iterations of equilibrium finding, one may determine that certain actions left out of
the abstraction are actually important. Adding to an abstraction has been a recurring topic of re-
search [54, 159]. Prior work by Burch et al. [31] examined how to reconstruct a Nash equilibrium
strategy for a subgame after equilibrium finding completed by storing only the counterfactual val-
ues of the information sets in the roots of the subgame. Jackson [74] presented a related approach
that selectively refines subgames already in the abstraction after equilibrium finding completed.
However, no prior method guaranteed convergence to a Nash equilibrium if equilibrium finding
continues after actions are added to an abstraction. The algorithm we present in this section
builds upon these prior approaches, but provides this key theoretical guarantee.

In this section we introduce a general approach for adding actions to an abstraction at run
time, and prove that we still converge to a Nash equilibrium. We discuss specifically adding
subgames. That is, after some number T0 of CFR iterations in a game Γ, we wish to add some
actions leading to asubgame S, forming Γ′. A trivial way to do this is to simply restart equilib-
rium finding from scratch after the subgame is added. However, intuitively, if the added subgame
is small, its addition should not significantly change the optimal strategy in the full game. Instead
of restarting from scratch, we aim to preserve, as much as possible, what we have learned in Γ,
without weakening CFR’s long-term convergence guarantee.

We define the head of a subgame S as the union of infosets that have actions leading directly
into S but are not in S. Formally, Sr is the set of histories h where h 6∈ S and ∃a ∈ A(h) such
that either h · a ∈ S, or h ∈ I and for some history h′ ∈ I , h′ ∈ Sr. We also define the greater
subgame of S as S∗ = S ∪ Sr.

The key idea to our approach is to act as if S had been in the abstraction the entire time,
but that the actions in Sr leading to S were never played with positive probability. Since we
never played the actions in Sr, we may have accumulated regret on those actions in excess of the
bounds guaranteed by CFR. That would hurt the convergence rate. Later in this section we show

108

that we can overcome this excess regret by discounting the prior iterations played (and thereby
their regrets as well). The factor we have to discount by increases the higher the regret is, and the
more we discount, the slower the algorithm converges because it loses some of the work it did.
Therefore, our goal is to ensure that the accumulated regret is as low as possible. The algorithm
we present can add actions for multiple players. In our description, we assume without loss of
generality that the added actions belong to Player 1 (P1).

We now discuss how to “fill in" what happened in subgame S during those T0 iterations.
Since the actions leading to S were never played, we have that for any history h 6∈ S and any leaf
node z ∈ S, πσt(h, z) = 0 for all t ∈ T0. By the definition of counterfactual value (2.14) this
means that regret for all actions in all information sets outside the greater subgame S∗ remain
unchanged after adding S. We therefore need only concern ourselves with S∗.

From (2.14) we see that Rt(I, a) ∝ πσ
t

−i(h) for h ∈ I . Since S was never entered by P1,
for every history in S and every player other than P1, πσt−i(h) = 0 and therefore Rt(I, a) =
0, regardless of what strategy they played. Normally, as discussed in Section 2.3.1 when an
information set has zero regret on all its actions the information set’s strategy is set to uniform
random. This is obviously a poor strategy; had P1’s opponents played this way in S for all T0

iterations, P1 may have very high regret in Sr for not having entered S and taken advantage of
this poor play. Fortunately, they need not have played randomly in S. In fact, they need not have
played the same strategy on every iteration. We have complete flexibility in deciding what the
other players played. Since our goal is to minimize overall regret, it makes sense to have them
play strategies that would result in low regret for P1 in Sr.

We construct an auxiliary game to determine regrets for one player and strategies for the
others. Specifically, similar to the approach in Burch et al. [31], we define a recovery game
S
σ1..T

Γ
i for a subgame S for player i of a game Γ and sequence of strategy profiles σ1..T . The game

consists of an initial chance node leading to a history h∗ ∈ Sr with probability10∑
t≤T π

σt

−i(h
∗)∑

h∗∈Sr
∑

t≤T π
σt
−i(h

∗)
(4.74)

If this is undefined, then all information sets in S∗ have zero regret and we are done. In each
h ∈ Sr, Pi has the choice of either taking the weighted average counterfactual value of the

information set I = I(h),
∑
t≤T v

σt

i (I)∑
t≤T π

σt
−i(I)

, or of taking the action leading into S, where play continues

in S until a leaf node is reached. We play TS =
∑

h∗∈Sr
∑

t≤T π
σt

−i(h
∗) iterations of CFR (or any

other regret-minimization algorithm) in the recovery game.
We now define the combined game Γ + S of a game Γ and a subgame S following play of a

recovery game Sσ
1..T
Γ
i as the union of Γ and S with regret and average strategy set as follows. For

any action a belonging to I such that I · a 6∈ S, RΓ+S(I, a) = RΓ(I, a). Otherwise, if P (I) 6= i
then RΓ+S(I, a) = 0. If P (I) = i and I ⊆ S then RΓ+S(I, a) = RS(I, a). In the case that
I · a ∈ S but I 6⊆ S, then RΓ+S(I, a) =

∑
t≤TS v

σtS
i (I, a)−

∑
t≤T v

σtΓ
i (I).

10In two-player games without sampling of chance nodes,
∑
t≤T π

σt

−1(h) is easily calculated as the product of∑
t≤T π

σt

2 (I) for the last information set I of P2 before h, and multiplying it by σc(a′|h′) for all chance nodes
h′ @ h where h′ · a′ v h.

109

If I ∈ Γ then σ̄TΓ+S(I) = σ̄TΓ (I). Otherwise, if P (I) = i then σ̄TΓ+S(I) = ~0, and if P (I) 6= i
then σ̄TΓ+S(I) = σ̄TS (I).

The theorem below proves that this is equivalent to having played a sequence of iterations
in Γ + S from the beginning. The power of this result is that if we play according to CFR
separately in both the original game Γ and the recovery game Sσ

1..T
Γ
i , then the regret of every

action in every information set of their union is bounded according to CFR (with the important
exception of actions in Sr leading to S, which the algorithm handles separately as described after
the theorem).
Theorem 18. Assume T iterations were played in Γ and then TS iterations were played in the
recovery game Sσ

1..T
Γ
i and these are used to initialize the combined game Γ + S. Now consider

the uninitialized game Γ′ identical to Γ + S. There exists a sequence of T ′ iterations (where
|T ′| = |TS||T |) in Γ′ such that, after weighing each iteration by 1

|TS |
, for any action a in any

information set I ∈ Γ′, RT ′

Γ′ (I, a) = RT
Γ+S(I, a) and σ̄T

′

Γ′ (I) = σ̄TΓ+S(I).
As mentioned earlier, if we played according to CFR in both the original abstraction and

the recovery game, then we can ensure regret for every action in every information set in the
expanded abstraction is under the bound for CFR, with the important exception of actions a in
information sets I ∈ Sr such that for h ∈ I , h ·a ∈ S. This excessive regret can hurt convergence
in the entire game.

Fortunately, in Section 4.2 we showed that if an information set I exceeds a bound on regret,
then one can discount all prior iterations in order to maintain CFR’s guarantees on performance.
However, the result from Section 4.2 requires all information sets to be scaled according to the
highest-regret information set in the game. This is problematic in large games where a small
rarely-reached information set may perform poorly and exceed its bound significantly. We im-
prove upon this in the theorem below.

Recall the definitions of weighted regret

RT,T2

w,i (a) = w
T∑
t=1

rti(a) +

T2∑
t=1

rti(a) (4.75)

and weighted average strategy

p
σ
T,T2
w,i

(a) =
w
∑T

t=1 pσti (a) +
∑T2

t=1 pσti (a)

wT + T2

(4.76)

Theorem 19. Suppose T iterations were played in some game. Choose any weight wi such that

0 ≤ wi ≤ min
{

1,
|Ii|L2

i |Ai|T∑
I∈Ii

∑
a∈A(I)

(
RT

+(I, a)
)2

}
(4.77)

If we weigh the T iterations by wi, then after T ′ additional iterations of CFR,

RT,T ′

wi,i
≤ |Ii|Li

√
|Ai|
√
wiT + T ′

where T ′ > max{T, maxI
∑
a∈A(I)R

T
+(I,a)2

L2|A| }.

110

Corollary 6. In a two-player zero-sum game, if we weigh the T iterations by w = mini{wi},
then after T ′ additional iterations, the players’ weighted average strategies constitute a 2ε-
equilibrium where

ε = max
i

|Ii|Li
√
|Ai|√

wT + T ′

While using the largest w that our theory allows may seem optimal according to the theory,
better performance is achieved in practice by using a lower w. This is because CFR tends to
converge faster than its theoretical bound. Say we add subgame S to an abstraction Γ using a
recovery game to form Γ + S. Let Si, Γi, and (Γ + S)i represent the information sets in each
game belonging to player i. Then, based on experiments, we recommend using

wi =

∑
I∈Γi

∑
a

(
RT

+(I, a)
)2

+
∑

I∈Si

∑
a

(
RT

+(I, a)
)2∑

I∈(Γ+S)i

∑
a

(
RT

+(I, a)
)2 (4.78)

where the numerator uses the regret of I ⊆ Sr before adding the subgame, and the denominator
uses its regret after adding the subgame. This value of wi also satisfies our theory.

4.3.2 Adding Actions with Regret Transfer
In certain games, it is possible to bypass the recovery game and add subtrees in O(1). We
accomplish this with the regret transfer approach described in Section 4.2, which allows regret
to be transferred from one game to another in O(1) in special cases.

Suppose we have a subgame S1 in Γ and now wish to add a new subgame S2 that has identical
structure as S1. Instead of playing according to the recovery game, we could (hypothetically)
record the strategies played in S1 on every iteration, and repeat those strategies in S2. Of course,
this would require huge amounts of memory, and provide no benefit over simply playing new
strategies in S2 through the recovery game. However, it turns out that this repetition can be done
in O(1) time in certain games.

Suppose all payoffs in S1 are functions of a vector ~θ1. For example, in the case of ~θ1 being a
scalar, one payoff might be ui(z1) = αi,zθ1 + βi,z. Now suppose the payoffs in S2 are identical
to their corresponding payoffs in S1, but are functions of ~θ2 instead of ~θ1. The corresponding
payoff in S2 would be ui(z2) = αi,zθ2 + βi,z. Suppose we play T iterations and store regret in
S∗1 as a function of ~θ1. Then we can immediately “repeat" in S2 the T iterations that were done
in S1 by simply copying over the regrets in S1 that were stored as a function of ~θ1, and replacing
~θ1 with ~θ2.

The regret transfer method described in Section 4.2 stored regret for the entire game as a
function of ~θ1. For SAEF, we can just store the regret in S∗1 as a function of ~θ1. This is because
when we transfer to S2, the “replaying" of iterations in S2 has no effect on the rest of the game
outside of S∗2 . Moreover, if ~θ1 is entirely determined by one player, say P1, then there is no need
to store regret for P2 as a function of ~θ, because P2’s regret will be set to 0 whenever we add a
subgame for P1.

Regret transfer can be extremely useful. For example, suppose whenever P1 takes an action
that sets ~θ1, that in any subsequent information set belonging to P1 all reachable payoffs are

111

multiplied by ~θ1. Then subsequent regrets need not be stored as a function of ~θ1, only the infor-
mation sets that can choose ~θ1. This is very useful in games like poker, where bets are viewed
as multiplying the size of the pot and after P1 bets, if P2 does not immediately fold, then every
payoff is multiplied by the size of the bet. In that case, regret for an action need only be stored
as a function of that action’s bet size.

It is also not strictly necessary for the structure of the subgames to be identical. If S2 has
additional actions that are not present in S1, one could recursively add subgames by first adding
the portion of S2 that is identical to S1, and then adding the additional actions either with regret
transfer internally in S2, or with a recovery game. However, if S2 has fewer actions than S1, then
applying regret transfer would imply that illegal actions were taken, which would invalidate the
theoretical guarantees.

Typically, slightly less discounting is required if one uses the recovery game. Moreover,
regret transfer requires extra memory to store regret as a function of ~θ. However, being able to
add a subgame in O(1) is extremely beneficial, particularly for large subgames.

4.3.3 Computing Exploitability in Games with Continuous Action Spaces

In order to calculate the exploitability of an abstract strategy profile in the full game, it is neces-
sary to define the player’s strategy in situations that do not arise in the abstraction—because the
opponent(s) (and perhaps also chance) may take actions that are not included in the abstraction.
Typically, this is accomplished by mapping an action not in the abstraction to one that is. This
is referred to as action translation. Empirical results have shown that the randomized pseudo-
harmonic mapping [49] performs best among action translation techniques, though in Section 5.1
we discuss alternatives to action translation.

To calculate exploitability in a game, it is typically necessary to traverse the entire game. This
is infeasible in large and infinite games. However, in situations where a player maps a range of
actions to a single abstract action, it may be possible to express the exploitability of each action
as a function whose maximum is easy to find. With that we can calculate exact exploitability in
the original (unabstracted) game by traversing only the abstraction.

We now define one class of such games. Consider the case of an abstraction that maps
a range of full-game actions [LI , UI] ⊂ R in I to a single abstract action a, and suppose an
action θ ∈ [LI , UI] is taken. Suppose further that for every information set I ′ in the abstraction
belonging to P (I) and reachable from I following a, any payoff z that can be reached from
I ′ has a payoff that is multiplied by θ. That is, for any history h′ ∈ I ′ and z ∈ Z such that
π(h′, z) > 0, we have uP (I)(z) = θu′P (I)(z). Since the abstraction maps all actions θ ∈ [LI , UI]
to the same state, the abstraction will play identically regardless of which θ is chosen. With
that in mind, since every reachable payoff is scaled identically, each choice of θ results in a
strategically identical situation for P (I). Thus, rather than choosing a specific θ, we can instead
choose the entire range [LI , UI]. Our traversal will then return the entire expected payoff as a
function of θ, and we can then choose the value that would maximize the function.

We use this approach in our full-game exploitability calculation, allowing us to calculate
exploitability in a full game of infinite size.

112

4.3.4 Where and When to Add Actions?
In previous sections we covered how one can add actions to an abstraction during equilibrium
finding. In this section, we discuss where in the game, and when, to add actions.

For this section we will assume that each iteration of CFR takes O(|H|) time. Modern im-
plementations of CFR can traverse game trees faster. For example, Monte Carlo CFR can, in
certain “balanced” games, conduct an iteration in O(

√
|H|). Vector-based implementations of

CFR (introduced in Johanson et al. [79]) have a more complex computational cost that is usually
O(|I| ln |I|. The ideas in this section can be adapted depending on the computational complexity
of the implementation of CFR.

Regardless of how CFR is implemented, if useless subgames are added then the amount of
time each iteration will take will be longer. We therefore need some method of determining when
it is worthwhile to add an action to an abstraction. Generally our goal in regret-minimization al-
gorithms is to keep average overall regret low. Thus, the decision of where and when to add
an infoset will depend on how best we can minimize overall regret. Regret in information sets
where we play CFR is O(

√
T), while regret in information sets not played according to CFR is

O(T). So, intuitively, if an information set has low regret, we would do a better job of mini-
mizing average regret by not including it in the abstraction and doing faster iterations. But as it
accumulates regret in O(T), eventually we could better minimize average regret by including it
in the abstraction.

Following this intuition, we propose the following formula for determining when to add an
action. Essentially, it determines when the derivative of summed average regret, taken with
respect to the number of nodes traversed, would be more negative with the subgame added. It
assumes that regrets for actions not in the abstraction grow at rate ∼ T while all other regrets
grow at rate ∼

√
T .

Proposition 2. Consider a game Γ + S consisting of a main game Γ and subgame S. Assume a
player i begins by playing CFR only in Γ, so that each iteration takesO(|Γ|), but at any time may
choose to also play CFR in S (after which each iteration takes O(|Γ|+ |S|)). Assume that when
playing CFR on an information set I , squared regret for an action a where ∀h ∈ I , h · a ∈ Γ

grows by a fixed amount every iteration:
(
RT+1(I, a)

)2
=
(
RT (I, a)

)2
+ CI for some constant

CI . Assume that for others actions
(
RT (I, a)

)2
= CIT

2. Then the optimal point to begin playing
CFR in S is on the earliest iteration T where∑

I∈IΓ,i R
T (I)

|Γ|
<

∑
I∈IΓ,i R

T (I) +
∑

I′∈IS,i

(
2RT (I ′)− RT (I′)

T

)
|Γ|+ |S|

This proposition relies on two important assumptions: 1) we know how fast regret will grow
(and that it grows at the rate specified in the proposition), and 2) we can calculate regret for
information sets outside the abstraction. Generally, it is not possible to precisely know the growth
rate of regret. In our experiments, we use the rate of growth in regret up to the current iteration
as an estimate of future growth. It is possible that better heuristics can be constructed depending
on the domain. For example, using the rate of growth over only the most recent iterations,
or some weighted average of that form, may provide a more accurate measurement. In our
experiments, we found that the speed of our algorithm can be enhanced by making the condition

113

in Proposition 2 slightly stronger by increasing the left hand side by a small amount (1% was a
good value in our experiments, as we will discuss).

We can estimate regret for information sets outside the abstraction. Suppose we want to
calculate

∑
t≤T v

σt

i (I, a) for some action a leading to a subgame not in our abstraction. The
opponents must have some defined strategies following this action. We can calculate a best re-
sponse against those strategies. Since we could have played that best response on each iteration,
we can calculate an upper bound on regret for a by multiplying the counterfactual value from
the best response by the number of iterations. This approach can be applied to any finite game,
and can even be used to evaluate all actions in some infinite games, such as those defined in Sec-
tion 4.3.3. In special cases, we can also use regret transfer to provide an instantaneous measure
of regret using the approach described in Section 4.3.2.

In general, games involving abstraction exhibit abstraction pathology: a Nash equilibrium
computed in a finer-grained abstraction can be further from the full-game Nash equilibrium than
a Nash equilibrium computed in a coarser abstraction [160]. Since the method described in this
section examines regret in the full game when considering adding actions, it ensures eventual
convergence to a Nash equilibrium in the full game! Any full-game action experiencing linear
growth in regret would, by design, eventually be added to the abstraction. Thus, any “weak
points" of the abstraction in the full game are quickly addressed by including them in the ab-
straction.

4.3.5 Removing Actions from an Abstraction

One potential problem with adding many actions to the abstraction is that some may later turn
out to not be as important as we thought. In that case, we may want to remove actions from the
abstraction in order to traverse the game faster. There are a few ways to accomplish this.

First, even in vanilla CFR, there are situations where we can effectively remove subgames. If
for every player i, the probability on iteration t of reaching history h, πσti (h), is zero, then regret
and average strategy will not be updated for any player. In that case, there is no need to traverse
the descendants of h. If the path leading to a given subgame has, for each player, an action
belonging to that player with sufficiently negative regret, then it may make sense to “archive"
the subgame by removing it from memory and storing it on disk. If CFR updates the regrets on
that path so that at least one player has positive probability of reaching the subgame, then we can
bring the subgame back into memory. In the experiments we use only this first action removal
method (and we actually do not use disk but RAM).

A temporary method for removing subgames would be to apply regret-based pruning, which
was described in Section 3.3. A more permanent method for removing subgames would be to ap-
ply a combination of dynamic thresholding (described in Section 3.4) and best-response pruning
(described in Section 3.5). Specifically, if the average strategy reaches a subgame with proba-
bility less than C√

T
for some constant C and the condition for best response pruning is satisfied,

then the subgame can be completely wiped from the game tree and its memory freed. If, in the
future, the subgame ends up being reached with positive probability in the Nash equilibrium,
then it would eventually be added again through the algorithm in Section 4.3.4.

114

4.3.6 Experiments

We tested our algorithm on a game we coin continuous Leduc hold’em (CLH), a modification
of regular Leduc hold’em (described in Section 2.4.1). CLH is identical to traditional Leduc
except a player may bet or raise any real amount between 1% of the pot and 100% of the pot.
(There are no “chip stacks" in this game.)

We created three fixed abstractions of CLH. All bet sizes were viewed as fractions of the
pot. All abstractions contained a fold and call action. Abstraction Branch-2 included a min bet
and max bet at every information set. Branch-3 additionally contained a bet size of 1

3
, selected

according to the pseudo-harmonic mapping. Branch-5 further contained 1
7

and 3
5
, again selected

by the pseudo-harmonic mapping.
We initialized the abstraction that was used in automated action addition to contain only the

minimum and maximum possible bet at each information set (in addition to fold and call). We
ran vanilla CFR on each abstraction. The automated abstractions considered adding actions every
5 iterations according to the heuristic presented in Section 4.3.4 using regret transfer to estimate
regret. As mentioned in that section, the heuristic cannot exactly predict how regret will grow.
We therefore also tested automated abstraction refinement with slightly stronger conditions for
adding actions to the abstraction: Recovery-1.01 and Transfer both multiply the left term in
the condition by 1.01. Such changes to the heuristic, of course, retain our theoretical guarantees.
Recovery-1.0 and Recovery-1.01 use a recovery game to add IISGs as described in Section 4.3.1,
while Transfer uses regret transfer as described in Section 4.3.2.

We calculated exploitability in the full continuous game assuming the randomized pseudo-
harmonic action translation is used. Figure 4.9 shows that Recovery-1.01 outperformed all the
fixed abstractions at every point in the run. Moreover, while the fixed abstractions leveled off in
performance, the automated abstractions continued to improve throughout the run. We also tested
a threshold of 1.1, which performed comparably to 1.01, while a threshold of 2.0 performed
worse.

Although regret transfer allows adding a subgame inO(1) time, that method performed worse
than using a recovery game. This is due to the regret from adding the subgame being higher,
thereby requiring more discounting of prior iterations. The “bump" in the Transfer curve in
Figure 4.9 is due to a particularly poor initialization of a subgame, which required heavy dis-
counting. However, our heuristic tended to favor adding small subgames near the bottom of the
game tree. It is possible that in situations where larger subgames are added, the benefit of adding
subgames in O(1) would give regret transfer an advantage.

4.3.7 Conclusions

We introduced a method for adding actions to an abstraction simultaneously with equilibrium
finding, while maintaining convergence guarantees. We additionally presented a method for
determining strategic locations to add actions to the abstraction based on the progress of the
equilibrium-finding algorithm, as well as a method for determining when to add them. In experi-
ments, the automated abstraction algorithm outperformed all fixed abstractions at every snapshot,
and does not level off in performance.

The algorithm is game independent, and is particularly useful in games with large action

115

Figure 4.9: Top: Full game exploitability. Bottom: Abstraction size.

spaces. The results show that it can overcome the challenges posed by an extremely large branch-
ing factor in actions, or even an infinite one, in the search for a Nash equilibrium.

Many of these ideas were later used in Libratus’s self-improvement component, in which
subgames were added to its strategy offline. However, rather than compute a best response to
Libratus’s current strategy in order to choose actions to add, Libratus instead used its human
opponents as a natural “best response”. The actions that the humans most frequently selected
were the ones selected to be added to the strategy.

116

Beyond what we have described in this section, there is still substantial room for further
research. In particular, the heuristic for deciding where and when to add actions, described in
Section 4.3.4, could likely be improved. Subsequent research has also expanded on this topic
focusing especially on imperfect recall [35].

4.3.8 Proofs of Theoretical Results
Proof of Theorem 18

Proof. Consider the set of |TST | ordered pairs (t1, t2), where t1 ≤ T and t2 ≤ TS . Each iteration
t′ ≤ T ′ will correspond to such a pair. On iteration t′ = (t1, t2) for information sets I ∈ Ii we
play according to σt1Γ (I) when I 6⊆ S and according to σt2S (I) for I ⊆ S.

From the definition of an imperfect-information subgame, for any information set I and ac-
tion a, either ∀h ∈ I h · a ∈ S or ∀h ∈ I h · a 6∈ S. We first consider information sets I and
actions a such that ∀h ∈ I , h · a 6∈ S. Consider an arbitrary terminal node z such that h · a v z.
If z ∈ S, then there is a unique history h′ such that h · a @ h′ @ z and h′ 6∈ S but there is an
action a′ such that h′ · a′ ∈ S. Since t′ plays according to σt1Γ in this h′, so πσ

t′
Γ′ (h′, z) = 0 and

therefore πσ
t′
Γ′ (h · a, z) = 0 and πσ

t′
Γ′ (h, z) = 0.

Now suppose z 6∈ S. Then for every ancestor h′ @ z, h′ 6∈ S, so πσ
t′
Γ′ (h, z) = πσ

t1
Γ (h, z).

Moreover, from the definition of counterfactual regret, RT ′

Γ′ (I, a) = |TS|RT
Γ (I, a).

Now consider information sets I and actions a such that for h ∈ I , h · a ∈ S. First suppose
P (I) 6= i. Then I ⊆ S. But Pi plays according to σt1Γ outside S and never enters S, so

π
σt
′

Γ′
−i (I) = 0, so RT ′

Γ′ (I, a) = 0.
Now suppose P (I) = i. Either I ⊆ Sr or I ⊆ S. First suppose I ⊆ S. From (2.16) we have

that RT ′(I, a) =
∑

t′≤T ′
(
v
σt
′

Γ′
i (I, a)− vσ

t′
Γ′
i (I)

)
=∑

t′∈T ′

∑
h∈I

(
π
σt
′

Γ′
−i (h)

∑
z∈Z

(
πσ

t′
Γ′ (h, z)− πσt

′
Γ′ (h · a, z)

)
ui(z)

)
For each h ∈ I , there exists a unique history h∗ @ h such that h∗ ∈ Sr. On iteration t′,

π
σt
′

Γ′
−i (h) = π

σ
t1
Γ
−i (h∗)π

σ
t2
S
−i (h∗, h). Moreover, since for every h′ such that h @ h′ and h′ @ z we

know that h′ ∈ S, so πσ
t′
Γ′ (h, z) = πσ

t2
S (h, z). So we now have that

∑
t′∈T ′ v

σt
′

Γ′
i (I)

TS
=(∑

t1≤T

π
σ
t1
Γ
−i (h∗)

) ∑
t2≤TS

∑
h∈I

(
π
σ
t2
S
−i (h∗, h)

(∑
z∈Z

πσ
t2
S (h, z)

)
ui(z)

)

and we have a similar result for
∑

t′≤T ′ v
σt
′

Γ′
i (I, a). In the recovery game, from (4.74) and the def-

inition of TS , we have that
∑

t2≤T π
σ
t2
S
−i (h∗) =

∑
t1≤T π

σ
t1
Γ
−i (h∗). Since every other term depends

on TS and not T , so RT ′

Γ′ (I, a) = |TS|RTS
S (I, a).

Finally, consider I 6⊆ S and a ∈ A(I) such that for h ∈ I , h · a ∈ S. Let i = P (I).

Since σt′i (I) = σt1i (I) and σt1i (I) never enters S, so
∑

t′≤T ′ v
σt
′

Γ′
i (I) = TS

∑
t1≤T v

σ
t1
Γ
i (I). Since

117

h · a ∈ S, so we can use
∑

t′≤T v
σt
′

Γ′
i (I, a) from the previous case, and we get RT ′

Γ′ (I, a) =

|TS|RT
Γ+S(I, a)

Proof of Theorem 19

Proof. We begin by proving that the theorem is satisfied forwi = 1 when
∑

I∈Ii

∑
a∈A(I)

(
RT

+(I, a)
)2 ≤

|Ii|L2
i |Ai|T . Since the T ′ iterations were played according to CFR, so from Lemma 15, we have∑

I∈Ii

∑
a∈A(I)

(
RT+T ′

+ (I, a)
)2 ≤ |Ii|L2

i |Ai|(T + T ′) (4.79)

Using Lemma 4 from Lanctot et al. [96], we know∑
I∈Ii

√ ∑
a∈A(I)

(
RT+T ′

+ (I, a)
)2 ≤ |Ii|

√
L2
i |Ai|(T + T ′) (4.80)

Since ∑
I∈Ii

max
a
RT+T ′

+ (I, a) ≤
∑
I∈Ii

√ ∑
a∈A(I)

(
RT+T ′

+ (I, a)
)2 (4.81)

and since wi = 1, we have Rwi
+,T+T ′(I, a) = RT+T ′

+ (I, a). Therefore, we arrive at

RT,T ′

wi,i
≤ |Ii|Li

√
|Ai|
√
wiT + T ′ (4.82)

We now prove that the theorem is satisfied for

wi =
|Ii|L2

i |Ai|T∑
I∈Ii

∑
a∈A(I)

(
RT

+(I, a)
)2 (4.83)

when
∑

I∈Ii

∑
a∈A(I)

(
RT

+(I, a)
)2

> |Ii|L2
i |Ai|T . (We will later prove that if the theorem is

satisfied for some wi, then it is satisfied for any w′i where 0 ≤ w′i ≤ wi). After playing the
original T iterations and weighing them by wi, we have for each I ∈ Ii that

w2
i

∑
a∈A(I)

(
RT

+(I, a)
)2

=
∑
a∈A(I)

(
wi

T∑
t=1

rti(I, a)+

)2

From Lemma 15 we have that for any information set I after an additional T ′ iterations,∑
a∈A(I)

(
RT,T ′

wi,i,+
(I, a)

)2 ≤
∑
a∈A(I)

w2
i

(
RT

+(I, a)
)2

+ L2
i |A|T ′

and therefore

RT,T ′

wi,i
(I) ≤

√
w2
i

∑
a∈A(I)

(
RT

+(I, a)
)2

+ L2
i |A|T ′ (4.84)

118

We wish to prove that wi satisfies∑
I∈Ii

RT,T ′

wi,i
(I) ≤ |Ii|Li

√
|Ai|
√
wiT + T ′ (4.85)

Let SI =
∑
a∈A(I)R

T
+(I,a)2

L2
i |A|T

. Combining (4.84) and (4.85), it is sufficient to prove that

∑
I∈Ii

√
w2
i SIT + T ′ ≤ |Ii|

√
wiT + T ′ (4.86)

The Taylor expansion of
√
wiT + T ′ is

√
T ′ +

Twi

2
√
T ′
− T 2w2

i

8T ′
3
2

+
∞∑
n=3

T nwni

T ′n−
1
2

(
1
2

n

)
(4.87)

Since 0 < wi < 1 and since T ′ > T > 0, the series converges. Similarly, the Taylor expansion
of
√
w2
i SIT + T ′ is

√
T ′ +

TSIw
2
i

2
√
T ′
− T 2S2

Iw
4
i

8T ′
3
2

+
∞∑
n=3

T nSnI w
2n
i

T ′n−
1
2

(
1
2

n

)
(4.88)

Choose T ′ > T maxI{SI}. Since 0 < wi < 1, the series converges for all I ∈ Ii. We first show
that ∑

I∈Ii

(
∞∑
n=3

T nSnI w
2n
i

T ′n−
1
2

(
1
2

n

)
−
∞∑
n=3

T nwni

T ′n−
1
2

(
1
2

n

))
≥ 0 (4.89)

∞∑
n=3

(∑
I∈Ii

(
SnI w

n
i − 1

)T nwni
T ′n−

1
2

(
1
2

n

))
≥ 0 (4.90)

Since wi < 1 and T ′ > T , so ∣∣∣T 3w3
i

T ′3−
1
2

(
1
2

3

)∣∣∣ ≥ ∣∣∣T 4w4
i

T ′4−
1
2

(
1
2

4

)∣∣∣
Thus, it is sufficient to show

∑
I∈Ii(S

n
I w

n
i) ≥ |Ii| for n ≥ 3 in order to prove (4.90). From

(4.83) and the definition of SI , we see this holds for n ≥ 1. Thus (4.90) holds and so it would be
sufficient to find wi such that∑

I∈Ii

(√
T ′ +

TSIw
2
i

2
√
T ′
− T 2S2

Iw
4
i

8T ′
3
2

)
≤ |Ii|

(√
T ′ +

Twi

2
√
T ′
− T 2w2

i

8T ′
3
2

)
Simplifying, this is equivalent to∑

I∈Ii

(
SIwi −

TS2
Iw

3
i

4T ′
)
≤ |Ii|

(
1− Twi

4T ′
)

119

Rearranging terms, this is equivalent to

wi
∑
I∈Ii

SI + wi
∑
I∈Ii

(T
4T ′
− TS2

Iw
2
i

4T ′
)
≤ |Ii| (4.91)

We first show that
∑

I∈Ii

(
T

4T ′
− TS2

Iw
2
i

4T ′

)
≤ 0. Simplifying, this is equivalent to(

|Ii| − w2
i

∑
I∈Ii

S2
I

)
≤ 0

Substituting for wi, we wish to show(
|Ii| −

|Ii|2
∑

I∈Ii S
2
I(∑

I∈Ii SI
)2 ≤ 0 (4.92)

From Lemma 4 in Lanctot et al. [96], we know that(∑
I∈Ii

SI
)2 ≤ |Ii|

∑
I∈Ii

S2
I

and therefore (4.92) holds. Going back to equation (4.91), replacing (4.92) with 0 , and substi-
tuting (4.83) for wi, we get

|Ii|
∑

I∈Ii SI∑
I∈Ii SI

+ 0 ≤ |Ii|

and therefore (4.83) satisfies the theorem.
Finally, we prove that if the theorem is satisfied for some wi, then the theorem is satisfied for

any w′i where 0 ≤ w′i ≤ wi. Assume we satisfied (4.86) for some wi, so that∑
I∈Ii

√
w2
i SIT +X ≤ |Ii|

√
wiT +X

for all X > max{T, maxI
∑
a∈A(I) R

T
+(I,a)2

L2|A| }. Then∑
I∈Ii

√
w2
i SIT +

wi
w′i
T ′ ≤ |Ii|

√
wiT +

wi
w′i
T ′

so ∑
I∈Ii

√
wi
w′i

√
wiw′iSIT + T ′ ≤ |Ii|

√
wi
w′i

√
w′iT + T ′

Canceling out
√

wi
w′i

and recognizing w′i ≤ wi, this gives

∑
I∈Ii

√
w′2i SIT + T ′ ≤ |Ii|

√
w′iT + T ′

Thus, w′i satisfies the sufficient condition given in (4.86).

120

Chapter 5

Search for Imperfect-Information Games

Prior to the popularization of search-based methods such as the ones described in this chapter,
the standard approach to computing strategies in large imperfect-information games was to first
generate an abstraction, which is a smaller version of the game that retains as much as possible
the strategic characteristics of the original game [126, 127, 128]. For example, a continuous ac-
tion space might be discretized. Techniques for abstraction were discussed in detail in Chapter 4.
The abstract game was solved offline and its solution was used when playing the full game. We
refer to the solution of an abstraction (or more generally any approximate solution to a game,
such as those resulting from Deep CFR 4.1) as a blueprint strategy.

In heavily abstracted games, a blueprint may be far from the true solution. Search attempts
to improve upon the blueprint by computing a more accurate equilibrium solution for an en-
countered subgame, while fitting its solution within the overarching blueprint. Search has led
to dramatic improvements in performance for imperfect-information game AI agents, and the
development of theoretically sound and empirically effective search techniques was critical to
the creation of Libratus and Pluribus, which defeated top humans in no-limit Texas hold’em
poker. However, as we will show, conducting search in an imperfect-information game is far
more difficult than in a perfect-information game.

In this chapter we describe methods for conducting search in imperfect-information games.
Section 5.1 introduces new technique for safe search, in which we wish to guarantee we will
achieve a closer approximation of a full-game equilibrium by doing search compared to just
playing the blueprint. However, Section 5.1 assumes we always search to the end of the game.
Section 5.2 and Section 5.3 describe algorithms, compatible with the ones in Section 5.1, that
may be used for depth-limited search.

5.1 Safe and Nested Search

In perfect-information games, determining the optimal strategy at a decision point only requires
knowledge of the game tree’s current node and the remaining game tree beyond that node (the
subgame rooted at that node). This fact has been leveraged by nearly every AI for perfect-
information games, including AIs that defeated top humans in chess [34] and Go [140]. In
checkers, the ability to decompose the game into smaller independent subgames was even used

121

to solve the entire game [131].
However, determining the optimal strategy for a decision point in an imperfect-information

game is a far more complex process because the game tree’s exact node is typically unknown.
Instead, the optimal strategy going forward depends on both players’ beliefs about the state of
the world. In this section we begin by showing that simply assuming all players have played
a particular Nash equilibrium strategy up to the current decision point and then computing an
optimal strategy going forward can lead to highly exploitable strategies. We then introduce
approaches for computing strategies going forward that are provably no more exploitable than the
pre-computed blueprint strategy, by incorporating information about what values are achievable
in blueprint subgames. We also introduce techniques for conducting search repeatedly as play
continues down the game tree, in a technique we call nested search.

An alternative approach to safe search is presented as part of ReBeL in Section 5.3.4. When
ReBeL’s safe search technique can be applied, it may be preferable. However, that safe search
technique is, so far, only known to be theoretically sound when used with a particular form
of depth-limited search (specifically, depth-limited search with a public belief state value func-
tion), whereas the search techniques described in this section can be applied whenever there is a
blueprint strategy for the game.

5.1.1 Example Game: Coin Toss
In this section we provide intuition for why an imperfect-information subgame cannot be solved
in isolation without information about the root probability distribution over nodes or about the
values of other subgames. We demonstrate this in a simple game we call Coin Toss, shown in
Figure 5.1a, which will be used as a running example throughout the chapter.

Coin Toss is played between players P1 and P2. The figure shows rewards only for P1;
P2 always receives the negation of P1’s reward. A coin is flipped and lands either Heads or
Tails with equal probability, but only P1 sees the outcome. P1 then chooses between actions
“Sell” and “Play.” The Sell action leads to a subgame whose details are not important, but the
expected value (EV) of choosing the Sell action will be important. (For simplicity, one can
equivalently assume in this subsection that Sell leads to an immediate terminal reward, where
the value depends on whether the coin landed Heads or Tails). If the coin lands Heads, it is
considered lucky and P1 receives an EV of $0.50 for choosing Sell. On the other hand, if the
coin lands Tails, it is considered unlucky and P1 receives an EV of −$0.50 for action Sell. (That
is, P1 must on average pay $0.50 to get rid of the coin). If P1 instead chooses Play, then P2

may guess how the coin landed. If P2 guesses correctly, then P1 receives a reward of −$1. If
P2 guesses incorrectly, then P1 receives $1. P2 may also forfeit, which should never be chosen
but will be relevant in later sections. We wish to determine the optimal strategy for P2 in the
subgame S that occurs after P1 chooses Play, shown in Figure 5.1a.

Were P2 to always guess Heads, P1 would receive $0.50 for choosing Sell when the coin
lands Heads, and $1 for Play when it lands Tails. This would result in an average of $0.75 for
P1. Alternatively, were P2 to always guess Tails, P1 would receive $1 for choosing Play when
the coin lands Heads, and −$0.50 for choosing Sell when it lands Tails. This would result in
an average reward of $0.25 for P1. However, P2 would do even better by guessing Heads with
25% probability and Tails with 75% probability. In that case, P1 could only receive $0.50 (on

122

Figure 5.1: (a) The example game of Coin Toss. “C” represents a chance node. S is a Player 2 (P2)
subgame. The dotted line between the two P2 nodes means that P2 cannot distinguish between them. (b)
The public game tree of Coin Toss. The two outcomes of the coin flip are only observed by P1.

average) by choosing Play when the coin lands Heads—the same value received for choosing
Sell. Similarly, P1 could only receive−$0.50 by choosing Play when the coin lands Tails, which
is the same value received for choosing Sell. This would yield an average reward of $0 for P1. It
is easy to see that this is the best P2 can do, because P1 can average $0 by always choosing Sell.
Therefore, choosing Heads with 25% probability and Tails with 75% probability is an optimal
strategy for P2 in the “Play” subgame.

Now suppose the coin is considered lucky if it lands Tails and unlucky if it lands Heads. That
is, the expected reward for selling the coin when it lands Heads is now −$0.50 and when it lands
Tails is now $0.50. It is easy to see that P2’s optimal strategy for the “Play” subgame is now
to guess Heads with 75% probability and Tails with 25% probability. This shows that a player’s
optimal strategy in a subgame can depend on the strategies and outcomes in other parts of the
game. Thus, one cannot solve a subgame using information about that subgame alone. This is a
central challenge of imperfect-information games as opposed to perfect-information games.

5.1.2 Prior Approaches to Search in Imperfect-Information Games
This section reviews prior techniques for search in imperfect-information games, which we build
upon. Throughout this section, we refer to the Coin Toss game shown in Figure 5.1a.

As discussed earlier, a standard approach to dealing with large imperfect-information games
is to solve an abstraction of the game. The abstract solution is a (probably suboptimal) strategy
profile in the full game. We refer to this full-game strategy profile as the blueprint. The goal of
search is to improve upon the blueprint by changing the strategy only in a subgame. While the
blueprint is frequently a Nash equilibrium (or approximate Nash equilibrium) in some abstraction
of the full game, our techniques do not assume this. The blueprint can in fact be any arbitrary

123

strategy in the full game.

Figure 5.2: The blueprint we refer to in the game of Coin Toss. The Sell action leads to a subgame that
is not displayed. Probabilities are shown for all actions. The dotted line means the two P2 nodes share an
infoset. The EV of each P1 action is also shown.

Assume that a blueprint σ (shown in Figure 5.2) has already been computed for Coin Toss in
which P1 chooses Play 3

4
of the time with Heads and 1

2
of the time with Tails, and P2 chooses

Heads 1
2

of the time, Tails 1
4

of the time, and Forfeit 1
4

of the time after P1 chooses Play. 1

The details of the blueprint in the Sell subgame are not relevant in this section, but the EV for
choosing the Sell action is relevant. We assume that if P1 chose the Sell action and played
optimally thereafter, then she would receive an expected payoff of 0.5 if the coin is Heads, and
−0.5 if the coin is Tails. We will attempt to improve P2’s strategy in the subgame S that follows
P1 choosing Play.

Additional Notation

We begin by introducing additional notation that will be useful when describing the search tech-
niques in this section.

Recall that a counterfactual best response (CBR), is a best response that additionally plays
optimally even in unreached sequences. That is, given a strategy σi, a counterfactual best re-
sponse to it, CBR(σi), is a best response to σi with the additional condition that for every
player −i infoset I , v〈CBR(σi),σi〉

−i (I) = maxa∈A(I) v
〈CBR(σi),σi〉
−i (I, a). In other words, a CBR

must always choose an action resulting in maximum expected value in every infoset, regard-
less of whether that infoset is actually reached as part of a best response. In a regular best
response, an infoset need only choose a maximum-EV action if that infoset is reached with
positive probability (i.e., if earlier actions lead to it with positive probability). Recall also that
a counterfactual best response value is defined as CBV σ−i(I, a) = minσ′i v

〈σ′i,σ−i〉(I, a) and
CBV σ−i(I) = minσ′i v

〈σ′i,σ−i〉(I).

1In many large games the blueprint is far from optimal either because the equilibrium-finding algorithm did not
sufficiently converge, or because the game was too large and had to be abstracted or function approximation was
used. Clearly the example blueprint shown here could be trivially improved; we use it for simplicity of exposition.

124

5.3a Unsafe search 5.3b Resolving search

Figure 5.3: The augmented subgames solved to find a P2 strategy in the Play subgame of Coin Toss.

We define Stop for a subgame S as the set of earliest-reachable histories in S. Specifically,
h ∈ Stop if h ∈ S and h′ 6∈ S for any h′ @ h.

Unsafe Search

We first review the most intuitive form of search, which we refer to as unsafe search [9, 51, 57,
58]. This form of search assumes both players played according to the blueprint prior to reaching
the subgame. That defines a probability distribution over the nodes at the root of the subgame S,
presenting the probability that the true game state matches that node. A strategy for the subgame
is then calculated which assumes that this distribution is correct.

In all the search algorithms we describe, an augmented subgame containing S and a few ad-
ditional nodes is solved to determine the strategy for S. Applying unsafe search to the blueprint in
Coin Toss (after P1 chooses Play) means solving the augmented subgame shown in Figure 5.3a.

Specifically, the augmented subgame consists of only an initial chance node and S. The
initial chance node reaches h ∈ Stop with probability πσ(h)∑

h′∈Stop
πσ(h′)

. The augmented subgame is

solved and its strategy for P2 is used in S rather than the blueprint strategy.
Unsafe search lacks theoretical solution quality guarantees and there are many situations

where it performs extremely poorly. Indeed, if it were applied to the blueprint of Coin Toss then
P2 would always choose Heads—which P1 could exploit severely by only choosing Play with
Tails. Despite the lack of theoretical guarantees and potentially bad performance, unsafe search
is simple and can sometimes produce low-exploitability strategies, as we show later.

We now move to discussing safe search techniques, that is, ones that ensure that the ex-
ploitability of the strategy is no higher than that of the blueprint strategy.

Subgame Resolving

In Subgame Resolving [31], a safe strategy is computed for P2 in the subgame by solving the
augmented subgame shown in Figure 5.3b, producing an equilibrium strategy σS . This aug-
mented subgame differs from unsafe search by giving P1 the option to “opt out” from entering S

125

and instead receive the EV of playing optimally against P2’s blueprint strategy in S.
Specifically, the augmented subgame for Resolving differs from unsafe search as follows.

For each htop ∈ Stop we insert a new P1 node hr, which exists only in the augmented subgame,
between the initial chance node and htop. The set of these hr nodes is Sr. The initial chance
node connects to each node hr ∈ Sr in proportion to the probability that player P1 could reach
htop if P1 tried to do so (that is, in proportion to πσ−1(htop)). At each node hr ∈ Sr, P1 has two
possible actions. Action a′S leads to htop, while action a′T leads to a terminal payoff that awards
the value of playing optimally against P2’s blueprint strategy, which is CBV σ2(I1(htop)). In the
blueprint of Coin Toss, P1 choosing Play after the coin lands Heads results in an EV of 0, and 1

2

if the coin is Tails. Therefore, a′T leads to a terminal payoff of 0 for Heads and 1
2

for Tails. After
the equilibrium strategy σS is computed in the augmented subgame, P2 plays according to the
computed subgame strategy σS2 rather than the blueprint strategy when in S. The P1 strategy σS1
is not used.

Clearly P1 cannot do worse than always picking action a′T (which awards the highest EV
P1 could achieve against P2’s blueprint). But P1 also cannot do better than always picking a′T ,
because P2 could simply play according to the blueprint in S, which means action a′S would give
the same EV to P1 as action a′T (if P1 played optimally in S). In this way, the strategy for P2 in S
is pressured to be no worse than that of the blueprint. In Coin Toss, if P2 were to always choose
Heads (as was the case in unsafe search), then P1 would always choose a′T with Heads and a′S
with Tails.

Resolving guarantees that P2’s exploitability will be no higher than the blueprint’s (and may
be better). However, it may miss opportunities for improvement. For example, if we apply
Resolving to the example blueprint in Coin Toss, one solution to the augmented subgame is the
blueprint itself, so P2 may choose Forfeit 25% of the time even though Heads and Tails dominate
that action. Indeed, the original purpose of Resolving was not to improve upon a blueprint
strategy in a subgame, but rather to compactly store it by keeping only the EV at the root of the
subgame and then reconstructing the strategy in real time when needed rather than storing the
whole subgame strategy.

Maxmargin Search

Maxmargin search [109] is similar to Resolving, except that it seeks to improve P2’s strategy
in the subgame strategy as much as possible. While Resolving seeks a strategy for P2 in S that
would simply dissuade P1 from entering S, Maxmargin search additionally seeks to punish P1

as much as possible if P1 nevertheless chooses to enter S. A subgame margin is defined for
each infoset in Sr, which represents the difference in value between entering the subgame versus
choosing the alternative payoff. Specifically, for each infoset I1 ∈ Stop, the subgame margin is

MσS(I1) = CBV σ2(I1)− CBV σS2 (I1) (5.1)

In Maxmargin search, a Nash equilibrium σS for the augmented subgame described in Re-
solving search is computed such that the minimum margin over all I1 ∈ Stop is maximized.
Aside from maximizing the minimum margin, the augmented subgames used in Resolving and
Maxmargin search are identical.

126

Given our blueprint strategy in Coin Toss, Maxmargin search would result in P2 choosing
Heads with probability 5

8
, Tails with probability 3

8
, and Forfeit with probability 0.

The augmented subgame can be solved in a way that maximizes the minimum margin by
using a standard LP solver. In order to use iterative algorithms such as the Excessive Gap Tech-
nique [61, 91, 114] or Counterfactual Regret Minimization (CFR) [163], one can use the gadget
game, described in Section 5.1.10, which was introduced by Moravcik et al. [109]. Our experi-
ments used CFR.

Maxmargin search is safe. Furthermore, it guarantees that if every Player 1 best response
reaches the subgame with positive probability through some infoset(s) that have positive mar-
gin, then exploitability is strictly lower than that of the blueprint strategy. While the theoretical
guarantees are stronger, Maxmargin may lead to worse practical performance relative to Resolv-
ing when combined with the techniques discussed in Section 5.1.4, due to Maxmargin’s greater
tendency to overfit to assumptions in the model.

5.1.3 Reach Search

All of the search techniques described in Section 5.1.2 only consider the target subgame in iso-
lation, which can lead to suboptimal strategies. For example, Maxmargin solving applied to S in
Coin Toss results in P2 choosing Heads with probability 5

8
and Tails with 3

8
in S. This results in

P1 receiving an EV of −1
4

by choosing Play in the Heads state, and an EV of 1
4

in the Tails state.
However, P1 could simply always choose Sell in the Heads state (earning an EV of 0.5) and Play
in the Tails state and receive an EV of 3

8
for the entire game. In this section we introduce Reach

search, an improvement to past search techniques that considers what the opponent could have
alternatively received from other subgames.2 For example, a better strategy for P2 would be to
choose Heads with probability 3

4
and Tails with probability 1

4
. Then P1 is indifferent between

choosing Sell and Play in both cases and overall receives an expected payoff of 0 for the whole
game.

However, that strategy is only optimal if P1 would indeed achieve an EV of 0.5 for choosing
Sell in the Heads state and −0.5 in the Tails state. That would be the case if P2 played according
to the blueprint in the Sell subgame (which is not shown), but in reality we would apply search
to the Sell subgame if the Sell action were taken, which would change P2’s strategy there and
therefore P1’s EVs. Applying search to any subgame encountered during play is equivalent to
applying it to all subgames independently. Thus, we must consider that the EVs from other
subgames may differ from what the blueprint says because search would be applied to them as
well.

As an example of this issue, consider the game shown in Figure 5.4 which contains two iden-
tical subgames S1 and S2 where the blueprint has P2 pick Heads and Tails with 50% probability.
The Sell action leads to an EV of 0.5 from the Heads state, while Play leads to an EV of 0. If
we were to solve just S1, then P2 could afford to always choose Tails in S1, thereby letting P1

achieve an EV of 1 for reaching that subgame from Heads because, due to the chance node C1,
S1 is only reached with 50% probability. Thus, P1’s EV for choosing Play would be 0.5 from

2Other search methods have also considered the cost of reaching a subgame [74, 159]. However, those ap-
proaches are not correct in theory when applied in real time to any subgame reached during play.

127

Figure 5.4: Left: A modified game of Coin Toss with two subgames. The nodes C1 and C2 are public
chance nodes whose outcomes are seen by both P1 and P2. Right: An augmented subgame for one of
the subgames according to Reach search. If only one of the subgames is being solved, then the alternative
payoff for Heads can be at most 1. However, if both are solved independently, then the gift must be split
among the subgames and must sum to at most 1. For example, the alternative payoff in both subgames
can be 0.5.

Heads and −0.5 from Tails, which is optimal. We can achieve this strategy in S1 by solving an
augmented subgame in which the alternative payoff for Heads is 1. In that augmented subgame,
P2 always choosing Tails would be a solution (though not the only solution).

However, if the same reasoning were applied independently to S2 as well, then P2 might
always choose Tails in both subgames and P1’s EV for choosing Play from Heads would become
1 while the EV for Sell would only be 0.5. Instead, we could allow P1 to achieve an EV of 0.5
for reaching each subgame from Heads (by setting the alternative payoff for Heads to 0.5). In
that case, P1’s overall EV for choosing Play could only increase to 0.5, even if both S1 and S2

were solved independently.
We capture this intuition by considering for each I1 ∈ Stop all the infosets and actions I ′1 ·a′ @

I1 that P1 would have taken along the path to I1. If, at some I ′1 ·a′ @ I1 where P1 acted, there was
a different action a∗ ∈ A(I ′1) that leads to a higher EV, then P1 would have taken a suboptimal
action if they reached I1. The difference in value between a∗ and a′ is referred to as a gift. We
can afford to let P1’s value for I1 increase beyond the blueprint value (and in the process lower
P1’s value in some other infoset in Stop), so long as the increase to I1’s value is small enough
that choosing actions leading to I1 is still suboptimal for P1. Critically, we must ensure that
the increase in value is small enough even when the potential increase across all subgames is
summed together, as in Figure 5.4.3

A complicating factor is that gifts we assumed were present may actually not exist. For
example, in Coin Toss, suppose applying search to the Sell subgame results in P1’s value for Sell

3In this paper and in our experiments, we allow any infoset that descends from a gift to increase by the size of
the gift (e.g., in Figure 5.4 the gift from Heads is 0.5, so we allow P1’s value for Heads in both S1 and S2 to increase
by 0.5). However, any division of the gift among subgames is acceptable so long as the potential increase across all
subgames (multiplied by the probability of P1 reaching that subgame) does not exceed the original gift. For example
in Figure 5.4 if we only apply Reach search to S1, then we could allow the Heads state in S1 to increase by 1 rather
than just by 0.5. In practice, some divisions may do better than others. The division we use in this paper (applying
gifts equally to all subgames) did well in practice.

128

from the Heads state decreasing from 0.5 to 0.25. If we independently solve the Play subgame,
we have no way of knowing that P1’s value for Sell is lower than the blueprint suggested, so
we may still assume there is a gift of 0.5 from the Heads state based on the blueprint. Thus, in
order to guarantee a theoretical result on exploitability that is as strong as possible, we use in
our theory and experiments a lower bound on what gifts could be after search was applied to all
other subgames.

Formally, let σ2 be a P2 blueprint and let σ−S2 be the P2 strategy that results from apply-
ing search independently to a set of disjoint subgames other than S. Since we do not want to
compute σ−S2 in order to apply search to S, let bgσ−S2 (I ′1, a

′)c be a lower bound of CBV σ−S2 (I ′1)−
CBV σ−S2 (I ′1, a

′) that does not require knowledge of σ−S2 . In our experiments we use bgσ−S2 (I ′1, a
′)c =

maxa∈Az(I′1)∪{a′}CBV
σ2(I ′1, a)−CBV σ2(I ′1, a

′) whereAz(I ′1) ⊆ A(I ′1) is the set of actions lead-
ing immediately to terminal nodes. Reach search modifies the augmented subgame in Resolving
and Maxmargin by increasing the alternative payoff for infoset I1 ∈ Stop by

∑
I′1·a′vI1|P (I′1)=P1

bgσ−S2 (I ′1, a
′)c.

Formally, we define a reach margin as

MσS

r (I1) = MσS(I1) +
∑

I′1·a′vI1|P (I′1)=P1

bgσ
−S
2 (I ′1, a

′)c (5.2)

This margin is larger than or equal to the one for Maxmargin, because bgσ−S2 (I ′, a′)c is nonneg-
ative. We refer to the improved algorithms as Reach-Resolve and Reach-Maxmargin.

Intuitively, the alternative payoff in an augmented subgame determines how important it is
that P2 “defend” against that P1 infoset. If the alternative payoff is increased, then P1 is more
likely to choose the alternative payoff rather than enter the subgame, so P2 can instead focus on
lowering the value of other P1 infosets in Stop.

Using a lower bound on gifts is not necessary to guarantee safety. So long as we use a gift
value gσ′(I ′1, a

′) ≤ CBV σ2(I ′1) − CBV σ2(I ′1, a
′), the resulting strategy will be safe. However,

using a lower bound further guarantees a reduction to exploitability when a P1 best response
reaches with positive probability an infoset I1 ∈ Stop that has positive margin, as proven in
Theorem 20. In practice, it may be best to use an accurate estimate of gifts. One option is to
use ĝσ

−S
2 (I ′1, a

′) = ˜CBV
σ2

(I ′1) − ˜CBV
σ2

(I ′1, a
′) in place of bgσ−S2 (I ′1, a

′)c, where ˜CBV
σ2 is

the closest P1 can get to the value of a counterfactual best response while P1 is constrained to
playing within the abstraction that generated the blueprint. Using estimates is covered in more
detail in Section 5.1.4.

Theorem 20 shows that when subgames are solved independently and using lower bounds
on gifts, Reach-Maxmargin search has exploitability lower than or equal to past safe techniques.
The theorem statement is similar to that of Maxmargin [109], but the margins are now larger (or
equal) in size.
Theorem 20. Given a strategy σ2 in a two-player zero-sum game, a set of disjoint subgames S,
and a strategy σS2 for each subgame S ∈ S produced via Reach-Maxmargin search using lower
bounds for gifts, let σ′2 be the strategy that plays according to σS2 for each subgame S ∈ S, and
σ2 elsewhere. Moreover, let σ−S2 be the strategy that plays according to σ′2 everywhere except for
P2 nodes in S, where it instead plays according to σ2. If πBR(σ′2)

1 (I1) > 0 for some I1 ∈ Stop,
then exp(σ′2) ≤ exp(σ−S2)−

∑
h∈I1 π

σ2
−1(h)MσS

r (I1).

129

So far the described techniques have guaranteed a reduction in exploitability over the blueprint
by setting the value of a′T equal to the value of P1 playing optimally to P2’s blueprint. Relaxing
this guarantee by instead setting the value of a′T equal to an estimate of P1’s value when both
players play optimally leads to far lower exploitability in practice. We discuss this approach in
the next section.

5.1.4 Estimates for Alternative Payoffs

In this section we consider the case where we have a good estimate of what the values of sub-
games would look like in a Nash equilibrium. Unlike previous sections, exploitability might be
higher than the blueprint when using this method; the solution quality ultimately depends on the
accuracy of the estimates used. In practice this approach leads to significantly lower exploitabil-
ity.

When solving multiple P2 subgames, there is a minimally-exploitable strategy σ∗2 that could,
in theory, be computed by changing only the strategies in the subgames. (σ∗2 may not be a Nash
equilibrium because P2’s strategy outside the subgames is fixed, but it is the closest that can be
achieved by changing the strategy only in the subgames). However, σ∗2 can only be guaranteed to
be produced by solving all the subgames together, because the optimal strategy in one subgame
depends on the optimal strategy in other subgames.

Still, suppose that we know CBV σ∗2 (I1) for every infoset I1 ∈ Stop for every subgame S.
Let Ir,1 be the infoset in Sr that leads to I1. By setting the P1 alternative payoff for Ir,1 to
v(Ir,1, a

′
T) = CBV σ∗2 (I1), safe search guarantees a strategy will be produced with exploitability

no worse than σ∗2 . Thus, achieving a strategy equivalent to σ∗2 does not require knowledge of σ∗2;
rather, it only requires knowledge of CBV σ∗2 (I1) for infosets I1 in the top of the subgames.

While we do not know CBV σ∗2 (I1) exactly without knowing σ∗2 itself, we may nevertheless
be able to produce (or learn) good estimates of CBV σ∗2 (I1). For example, in Section 5.1.8 we
compute the solution to the game of No-Limit Flop Hold’em (NLFH), and find that in perfect
play P2 can expect to win about 37 mbb/h4 (that is, if P1 plays perfectly against the computed P2

strategy, then P1 earns−37; if P2 plays perfectly against the computed P1 strategy, then P2 earns
37). An abstraction of the game which is only 0.02% of the size of the full game produces a P1

strategy that can be beaten by 112 mbb/h, and a P2 strategy that can be beaten by 21 mbb/h. Still,
the abstract strategy estimates that at equilibrium, P2 can expect to win 35 mbb/h. So even though
the abstraction produces a very poor estimate of the strategy σ∗, it produces a good estimate of
the value of σ∗. In our experiments, we estimate CBV σ∗2 (I1) by calculating a P1 counterfactual
best response within the abstract game to P2’s blueprint. We refer to this strategy as ˜CBR(σ2)
and its value in an infoset I1 as ˜CBV

σ2
(I1). We then use ˜CBV

σ2
(I1) as the alternative payoff

of I1 in an augmented subgame. In other words, rather than calculate a P1 counterfactual best
response in the full game to P2’s blueprint strategy (which would be CBR(σ2)), we instead
calculate P1’s counterfactual best response where P1 is constrained by the abstraction.

If the blueprint was produced by conducting T iterations of CFR in an abstract game, then

4In poker, the performance of one strategy against another depends on how much money is being wagered. For
this reason, expected value and exploitability are measured in milli big blinds per hand (mbb/h). A big blind is the
amount of money one of the players is required to put into the pot at the beginning of each hand.

130

one could instead simply use the final iteration’s strategy σT1 , as this converges to a counterfactual
best response within the abstract game. This is what we use in our experiments in this paper.

Theorem 21 proves that if we use estimates of CBV σ∗2 (I1) as the alternative payoffs in Max-
margin search, then we can bound exploitability by the distance of the estimates from the true
values. This is in contrast to the previous algorithms which guaranteed exploitability no worse
than the blueprint.
Theorem 21. Let S be a set of disjoint subgames being solved in a game with no private actions.
Let σ be a blueprint and let σ∗2 be a minimally-exploitable P2 strategy that differs from σ2 only
in S. Let ∆ = maxS∈S,I1∈Stop |CBV σ∗2 (I1) − CBV σ2(I1)|. Applying Maxmargin solving to
each subgame using σ as the blueprint produces a P2 strategy with exploitability no higher than
exp(σ∗2) + 2∆.

Using estimates of the values of σ∗ tends to be do better than the theoretically safe options
described in Section 5.1.2.5

Although Theorem 21 uses Maxmargin in the proof, in practice Resolve does far better with
estimates than Maxmargin, even though Maxmargin should do better if the estimates are accu-
rate. This is possibly because Maxmargin may “overfit” to the estimates. Theorem 21 easily
extends to Reach-Maxmargin as well, and Reach-Resolve does better than Resolve regardless of
whether estimates are used.

Section 5.1.5 discusses an improvement, which we refer to as Distributional Alternative Pay-
offs, that leads to even better performance by making the algorithm more robust to errors in the
blueprint estimates.

5.1.5 Distributional Alternative Payoffs

One problem with existing safe search techniques is that they may “overfit” to the alternative
payoffs, even when we use estimates. Consider for instance a subgame with two different P1

infosets I1 and I ′1 at the top. Assume P1’s value for I1 is estimated to be 1, and for I ′1 is 10. Now
suppose during search, P2 has a choice between two different strategies. The first sets P1’s value
in the subgame for I1 to 0.99 and for I ′1 to 9.99. The second slightly increases P1’s value for the
subgame for I1 to 1.01 but dramatically lowers the value for I ′1 to 0. The safe search methods
described so far would choose the first strategy, because the second strategy leaves one of the
margins negative. However, intuitively, the second strategy is likely the better option, because it
is more robust to errors in the model. For example, perhaps we are not confident that 10 is the
exact value, but instead believe its true value is normally distributed with 10 as the mean and a
standard deviation of 1. In this case, we would prefer the strategy that lowers the value for I ′1 to
0.

To address this problem, we introduce a way to incorporate the modeling uncertainty into
the game itself. Specifically, we introduce a new augmented subgame that makes search more
robust to errors in the model. This augmented subgame changes the augmented subgame used
in subgame Resolving (shown in Figure 5.3b) so that the alternative payoffs are random vari-
ables, and P1 is informed at the start of the augmented subgame of the values drawn from the

5It is also possible to combine the safety of past approaches with some of the better performance of using
estimates by adding the original Resolve conditions as additional constraints.

131

random variables (but P2 is not). The augmented subgame is otherwise identical. A visualization
of this change is shown in Figure 5.5. As the distributions of the random variables narrow, the
augmented subgame converges to the Resolve augmented subgame (but still maximizes the min-
imum margin when all margins are positive). As the distributions widen, P2 seeks to maximize
the sum over all margins, regardless of which are positive or negative.

Figure 5.5: A visualization of the change in the augmented subgame from Figure 5.3b when
using distributional alternative payoffs.

This modification makes the augmented subgame infinite in size because the random vari-
ables may be real-valued and P1 could have a unique strategy for each outcome of the random
variable. Fortunately, the special structure of the game allows us to arrive at a P2 Nash equi-
librium strategy for this infinite-sized augmented subgame by solving a much simpler gadget
game.

The gadget game is identical to the augmented subgame used in Resolve search (shown in
Figure 5.3b), except at each initial P1 infoset Ir,1 ∈ Sr, P1 chooses action a′S (that is, chooses to
enter the subgame rather than take the alternative payoff) with probability P

(
XI1 ≤ v(Ir,1, a

′
S)
)
,

where v(Ir,1, a
′
S) is the expected value of action a′S . (When solving via CFR, it is the expected

value on each iteration, as described in CFR-BR [80]). This leads to Theorem 22, which proves
that solving this simplified gadget game produces a P2 strategy that is a Nash equilibrium in the
infinite-sized augmented subgame illustrated in Figure 5.5.
Theorem 22. Let S ′ be a Resolve augmented subgame and S ′r its root. Let S be a Distributional
augmented subgame similar to S ′, except at each infoset Ir,1 ∈ Sr, P1 observes the outcome of a
random variable XI1 and the alternative payoff is equal to that outcome. If CFR is used to solve
S ′ except that the action leading to S ′ is taken from each Ir,1 ∈ S ′r with probability P

(
XI1 ≤

vt(Ir,1, a
′
S)
)
, where vt(Ir,1, a′S) is the value on iteration t of action a′S , then the resulting P2

strategy σS
′

2 in S ′ is a P2 Nash equilibrium strategy in S.
Another option which also solves the game but has better empirical performance relies on the

softmax (also known as Hedge) algorithm [104]. This gadget game is more complicated, and is

132

described in detail in Section 5.1.6. We use the softmax gadget game in our experiments.
The correct distribution to use for the random variables ultimately depends on the actual

unknown errors in the model. In our experiments for this technique, we set XI1 ∼ N
(
µI1 , s

2
I1

)
,

where µI is the blueprint value (plus any gifts). sI1 is set as the difference between the blueprint
value of I1, and the true (that is, unabstracted) counterfactual best response value of I1. Our
experiments show that this heuristic works well, and future research could yield even better
options.

5.1.6 Hedge for Distributional Search
In this paper we use CFR [163] with Hedge in Sr, which allows us to leverage a useful property
of the Hedge algorithm [104] to update all the infosets resulting from outcomes of XI1 simul-
taneously.6 When using Hedge, action a′S in infoset Ir,1 in the augmented subgame is chosen

on iteration t with probability eηtv̂(Ir,1,a
′
S)

e
ηtv̂(Ir,1,a

′
S

)
+e

ηtv̂(Ir,1,a
′
T

)
. Where v̂(Ir,1, a

′
T) is the observed expected

value of action a′T , v̂(Ir,1, a
′
S) is the observed expected value of action a′S , and ηt is a tuning pa-

rameter. Since, action a′S leads to identical play by both players for all outcomes ofX , v̂(Ir,1, a
′
S)

is identical for all outcomes of X . Moreover, v̂(Ir,1, a
′
T) is simply the outcome of XI1 . So the

probability that a′S is taken across all infosets on iteration t is∫ ∞
−∞

eηtv̂(Ir,1,a′S)

eηtv̂(Ir,1,a′S) + eηtx
fXI1 (x)dx (5.3)

where fXI1 (x) is the pdf of XI1 . In other words, if CFR is used to solve the augmented subgame,
then the game being solved is identical to Figure 5.3b except that action a′S is always chosen in
infoset I1 on iteration t with probability given by (5.3). In our experiments, we set the Hedge

tuning parameter η as suggested in [26]: ηt =

√
ln(|A(I1)|)

3
√
V AR(I1)t

√
t
, where V AR(I1)t is the observed

variance in the payoffs the infoset has received across all iterations up to t. In the subgame that
follows Sr, we use CFR+ as the solving algorithm.

5.1.7 Nested Search
As we have discussed, large games must be abstracted to reduce the game to a tractable size.
This is particularly common in games with large or continuous action spaces. Typically the
action space is discretized by action abstraction so that only a few actions are included in the
abstraction. While we might limit ourselves to the actions we included in the abstraction, an
opponent might choose actions that are not in the abstraction. In that case, the off-tree action
can be mapped to an action that is in the abstraction, and the strategy from that in-abstraction
action can be used. For example, in an auction game we might include a bid of $100 in our
abstraction. If a player bids $101, we simply treat that as a bid of $100. This is referred to
as action translation [49, 60, 133]. Action translation is the state-of-the-art prior approach to
dealing with this issue. It has been used, for example, by all the leading competitors in the
Annual Computer Poker Competition (ACPC).

6Another option is to apply CFR-BR [80] only at the initial P1 nodes when deciding between a′T and a′S .

133

In this section, we develop techniques for applying search to calculate responses to opponent
off-tree actions, thereby obviating the need for action translation. That is, rather than simply treat
a bid of $101 as $100, we calculate in real time a unique response to the bid of $101. This can
also be done in a nested fashion in response to subsequent opponent off-tree actions. We present
two methods that dramatically outperform the leading action translation technique. Additionally,
these techniques can be used to solve finer-grained models as play progresses down the game
tree. For exposition, we assume that P2 wishes to respond to P1 choosing an off-tree action.

We refer to the first method as the inexpensive method.7 When P1 chooses an off-tree action
a, a subgame S is generated following that action such that for any infoset I1 that P1 might be
in, I1 · a ∈ Stop. This subgame may itself be an abstraction. A solution σS is computed via
search, and σS is combined with σ to form a new blueprint σ′ in the expanded abstraction that
now includes action a. The process repeats whenever P1 again chooses an off-tree action.

To conduct safe search in response to off-tree action a, we could calculate CBV σ2(I1, a)
by defining, via action translation, a P2 blueprint following a and best responding to it [16].
However, that could be computationally expensive and would likely perform poorly in practice
because, as we show later, action translation is highly exploitable. Instead, we relax the guar-
antee of safety and use ˜CBV

σ2
(I1) for the alternative payoff, where ˜CBV

σ2
(I1) is the value in

I1 of P1 playing as close to optimal as possible while constrained to playing in the blueprint ab-
straction (which excludes action a). In this case, exploitability depends on how well ˜CBV

σ2
(I1)

approximates CBV σ∗2 (I1), where σ∗2 is an optimal P2 strategy (see Section 5.1.4).8 In general,
we find that only a small number of near-optimal actions need to be included in the blueprint
abstraction for ˜CBV

σ2
(I1) to be close to CBV σ∗2 (I1). We can then approximate a near-optimal

response to any opponent action. This is particularly useful in very large or continuous action
spaces.

The “inexpensive” approach cannot be combined with Unsafe search because the probability
of reaching an action outside of a player’s abstraction is undefined. Nevertheless, a similar
approach is possible with Unsafe search (as well as all the other search techniques) by starting
the search at h rather than at h · a. In other words, if action a taken in node h is not in the
abstraction, then Unsafe search is conducted in the smallest subgame containing h (and action a
is added to that abstraction). This increases the size of the subgame compared to the inexpensive
method because a strategy must be recomputed for every action a′ ∈ A(h) in addition to a. For
example, if an off-tree action is chosen by the opponent as the first action in the game, then the
strategy for the entire game must be recomputed. We therefore call this method the expensive
method. We present experiments with both methods.

5.1.8 Experiments

Our experiments were conducted on action-abstracted heads-up no-limit Texas hold’em (HUNL)
(described in Section 2.4.3, as well as action-abstracted no-limit flop hold’em (NLFH) (described
in Section 2.4.4) and action-abstracted no-limit turn hold’em (NLTH) (which is just like HUNL

7Following our study, the AI DeepStack used a technique similar to this form of nested search [110].
8We estimate CBV σ

∗
2 (I1) rather than CBV σ

∗
2 (I1, a) because CBV σ

∗
2 (I1) − CBV σ∗

2 (I1, a) is a gift that may
be added to the alternative payoff anyway.

134

but ends after the third betting round with only four community cards ever revealed). For equi-
librium finding, we used CFR+ [150].

Our first experiment compares the performance of the search techniques when applied to
information abstraction (which is card abstraction in the case of poker). Specifically, we solve
NLFH with no information abstraction on the preflop. On the flop, there are 1,286,792 infosets
for each betting sequence; the abstraction buckets them into 200, 2,000, or 30,000 abstract ones
(using a leading information abstraction algorithm [50]). We then apply search immediately after
the flop community cards are dealt.

We experiment with two versions of the game, one small and one large, which include only
a few of the available actions in each infoset. We also experimented on abstractions of NLTH.
In that case, we solve NLTH with no information abstraction on the preflop or flop. On the turn,
there are 55,190,538 infosets for each betting sequence; the abstraction buckets them into 200,
2,000, or 20,000 abstract ones. We apply search immediately after the turn community card is
dealt.

Tables 5.1, 5.2, and 5.3 show the performance of each technique. In all our experiments, ex-
ploitability is measured in the standard units used in this field: milli big blinds per hand (mbb/h).

Small Flop Hold’em Flop Buckets: 200 2,000 30,000
Trunk Strategy 88.69 37.374 9.128
Unsafe 14.68 3.958 0.5514
Resolve 60.16 17.79 5.407
Maxmargin 30.05 13.99 4.343
Reach-Maxmargin 29.88 13.90 4.147
Reach-Maxmargin (not split) 24.87 9.807 2.588
Estimate 11.66 6.261 2.423
Estimate + Distributional 10.44 6.245 3.430
Reach-Estimate + Distributional 10.21 5.798 2.258
Reach-Estimate + Distributional (not split) 9.560 4.924 1.733

Table 5.1: Exploitability (evaluated in the game with no information abstraction) of search in
small flop Texas hold’em.

In the above experiments, Estimate is the technique introduced in Section 5.1.4 (added on top
of Resolving) and Distributional is the technique introduced in Section 5.1.5. We use a normal
distribution in the Distributional search experiments, with standard deviation determined by the
heuristic presented in Section 5.1.5.

Since search begins immediately after a chance node with an extremely high branching factor
(1, 755 in NLFH), the gifts for the Reach algorithms are divided among subgames inefficiently.
Many subgames do not use the gifts at all, while others could make use of more. The result is that
the theoretically safe version of Reach allocates gifts very conservatively. In the experiments we
show results both for the theoretically safe splitting of gifts, as well as a more aggressive version
where gifts are scaled up by the branching factor of the chance node (1, 755). This weakens
the theoretical guarantees of the algorithm, but in general did better than splitting gifts in a
theoretically correct manner. However, this is not universally true. Section 5.1.11 shows that in

135

Large Flop Hold’em Flop Buckets: 200 2,000 30,000
Trunk Strategy 283.7 165.2 41.41
Unsafe 65.59 38.22 396.8
Resolve 179.6 101.7 23.11
Maxmargin 134.7 77.89 19.50
Reach-Maxmargin 134.0 72.22 18.80
Reach-Maxmargin (not split) 130.3 66.79 16.41
Estimate 52.62 41.93 30.09
Estimate + Distributional 49.56 38.98 10.54
Reach-Estimate + Distributional 49.33 38.52 9.840
Reach-Estimate + Distributional (not split) 49.13 37.22 8.777

Table 5.2: Exploitability (evaluated in the game with no information abstraction) of search in
large flop Texas hold’em.

Turn Hold’em Turn Buckets: 200 2,000 20,000
Trunk Strategy 684.6 465.1 345.5
Unsafe 130.4 85.95 79.34
Resolve 454.9 321.5 251.8
Maxmargin 427.6 299.6 234.4
Reach-Maxmargin 424.4 298.3 233.5
Reach-Maxmargin (not split) 333.4 229.4 175.5
Estimate 120.6 89.43 76.44
Estimate + Distributional 119.4 87.83 74.35
Reach-Estimate + Distributional 116.8 85.80 72.59
Reach-Estimate + Distributional (not split) 113.3 83.24 70.68

Table 5.3: Exploitability (evaluated in the game with no information abstraction) of search in
turn Texas hold’em.

at least one case, exploitability increased when gifts were scaled up too aggressively. In all cases,
using Reach search in at least the theoretical safe method led to lower exploitability.

Despite lacking theoretical guarantees, Unsafe search did surprisingly well in most games.
However, it did substantially worse in Large NLFH with 30,000 buckets. This exemplifies its
variability. Among the safe methods, all of the changes we introduce show improvement over
past techniques. The Reach-Estimate + Distributional algorithm generally resulted in the lowest
exploitability among the various choices, and in most cases beat Unsafe search.

In all but one case, using estimated values lowered exploitability more than Maxmargin and
Resolve search. Also, in all but one case using distributional alternative payoffs lowered ex-
ploitability.

The second experiment evaluates nested search, and compares it to action translation. In order
to also evaluate action translation, in this experiment, we create an NLFH game that includes 3
bet sizes at every point in the game tree (0.5, 0.75, and 1.0 times the size of the pot); a player can
also decide not to bet. Only one bet (i.e., no raises) is allowed on the preflop, and three bets are

136

allowed on the flop. There is no information abstraction anywhere in the game. We also created a
second, smaller abstraction of the game in which there is still no information abstraction, but the
0.75× pot bet is never available. We calculate the exploitability of one player using the smaller
abstraction, while the other player uses the larger abstraction. Whenever the large-abstraction
player chooses a 0.75× pot bet, the small-abstraction player generates and solves a subgame for
the remainder of the game (which again does not include any subsequent 0.75× pot bets) using
the nested search techniques described above. This subgame strategy is then used as long as the
large-abstraction player plays within the small abstraction, but if she chooses the 0.75× pot bet
again later, then the search is used again, and so on.

Table 5.4 shows that all the search techniques substantially outperform action translation.
Resolve, Maxmargin, and Reach-Maxmargin use inexpensive nested search, while Unsafe and
“Reach-Maxmargin (expensive)” use the expensive approach. In all cases, we used estimates
for the alternative payoff as described in Section 5.1.7. We did not test distributional alternative
payoffs in this experiment, since the calculated best response values are likely quite accurate.
Reach-Maxmargin performed the best, outperforming Maxmargin and Unsafe search. These
results suggest that nested search is preferable to action translation (if there is sufficient time to
solve the subgame).

mbb/h
Randomized Pseudo-Harmonic Mapping 1,465
Resolve 150.2
Reach-Maxmargin (Expensive) 149.2
Unsafe (Expensive) 148.3
Maxmargin 122.0
Reach-Maxmargin 119.1

Table 5.4: Exploitability of the various search techniques in nested search. The performance of the
pseudo-harmonic action translation is also shown.

We used the techniques presented in this paper in our AI Libratus (described in Section 6.4),
which competed against four top human specialists in heads-up no-limit Texas hold’em in the
January 2017 Brains vs. AI competition. Libratus was constructed by first solving an abstraction
of the game via a new variant of Monte Carlo CFR [96] that prunes negative-regret actions [15,
17, 19]. Libratus applied nested search (solved with CFR+ [150]) upon reaching the third betting
round, and in response to every subsequent opponent bet thereafter. This allowed Libratus to
avoid information abstraction during play, and leverage nested search’s far lower exploitability
in response to opponent off-tree actions.

5.1.9 Conclusions
Search has been critical for achieving superhuman performance in perfect-information games
such as backgammon [152], chess [34], and go [140]. However, applying search in imperfect-
information games in a way that is theoretically sound has been a major challenge.

In this section we described search techniques for imperfect-information games that have
stronger theoretical guarantees and better practical performance than prior search methods. We

137

presented results on exploitability of both safe and unsafe search techniques. We also introduced
a method for nested search in response to the opponent’s off-tree actions, and demonstrated that
this leads to dramatically better performance than the usual approach of action translation. These
search techniques were ultimately used in Libratus and Pluribus, which for the first time defeated
top humans in no-limit Texas hold’em poker.

5.1.10 Description of Gadget Game
Solving the augmented subgame described in Maxmargin solving and Reach-Maxmargin solv-
ing will not, by itself, necessarily maximize the minimum margin. While LP solvers can easily
handle this objective, the process is more difficult for iterative algorithms such as Counterfac-
tual Regret Minimization (CFR) and the Excessive Gap Technique (EGT). For these iterative
algorithms, the augmented subgame can be modified into a gadget game that, when solved, will
provide a Nash equilibrium to the augmented subgame and will also maximize the minimum
margin [109]. This gadget game is unnecessary when using distributional alternative payoffs,
which is introduced in section 5.1.5.

The gadget game differs from the augmented subgame in two ways. First, all P1 payoffs that
are reached from the initial infoset of I1 ∈ Sr are shifted by the alternative payoff of I1, and
there is longer an alternative payoff. Second, rather than the game starting with a chance node
that determines P1’s starting infoset, P1 decides for herself which infoset to begin the game in.
Specifically, the game begins with a P1 node where each action in the node corresponds to an
infoset I1 in Sr. After P1 chooses to enter an infoset I1, chance chooses the precise node h ∈ I1

in proportion to πσ−1(h).
By shifting all payoffs in the game by the size of the alternative payoff, the gadget game

forces P1 to focus on improving the performance of each infoset over some baseline, which is
the goal of Maxmargin and Reach-Maxmargin solving. Moreover, by allowing P1 to choose
the infoset in which to enter the game, the gadget game forces P2 to focus on maximizing the
minimum margin.

Figure 5.6 illustrates the gadget game used in Maxmargin and Reach-Maxmargin.

5.1.11 Scaling of Gifts
To retain the theoretical guarantees of Reach search, one must ensure that the gifts assigned to
reachable subgames do not (in aggregate) exceed the original gift. That is, if g(I1) is a gift at
infoset I1, we must ensure that CBV σ∗2 (I1) ≤ CBV σ2(I1) + g(I1). In this paper we accomplish
this by increasing the margin of an infoset I ′1, where I1 v I ′1, by at most g(I1). However,
empirical performance may improve if the increase to margins due to gifts is scaled up by some
factor. In most games we experimented on, exploitability decreased the further the gifts were
scaled. However, Figure 5.7 shows one case in which we observe the exploitability increasing
when the gifts are scaled up too far. The graph shows exploitability when the gifts are scaled
by various factors. At 0, the algorithm is identical to Maxmargin. at 1, the algorithm is the
theoretically correct form of Reach-Maxmargin. Optimal performance in this game occurs when
the gifts are scaled by a factor of about 1, 000. Scaling the gifts by 100, 000 leads to performance
that is worse than Maxmargin search. This empirically demonstrates that while scaling up gifts

138

Figure 5.6: An example of a gadget game in Maxmargin refinement. P1 picks the initial infoset
she wishes to enter Sr in. Chance then picks the particular node of the infoset, and play then
proceeds identically to the augmented subgame, except all P1 payoffs are shifted by the size of
the alternative payoff and the alternative payoff is then removed from the augmented subgame.

may lead to better performance in some cases (because an entire gift is unlikely to be used in
every subgame that receives one), it may also lead to far worse performance in some cases.

Figure 5.7: Exploitability in Flop Texas Hold’em of Reach-Maxmargin as we scale up the size
of gifts.

139

5.1.12 Proofs of Theoretical Results
Proof of Theorem 20

Proof. Assume MσS

r (I1) ≥ 0 for every infoset I1 and assume π
BR(σ′2)
1 (I∗1) > 0 for some

I∗1 ∈ Stop and let ε = Mr(I
∗
1). Define πσ−1(I1) =

∑
h∈I1 π

σ
−1(h) and define πσ−1(I1, I

′
1) =∑

h∈I1,h′∈I′1
πσ−1(h, h′).

We show that for every P1 infoset I1 v I∗1 where P (I1) = P1,

CBV σ′2(I1) ≤ CBV σ−S2 (I1)+∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)− CBV σ−S2 (I ′′1 , a

′′)c
)
−

∑
h∈I1,h∗∈I∗1

πσ2
−1(h, h∗)ε (5.4)

By the definition of MσS

r (I∗1) this holds for I∗1 itself. Moreover, the condition holds for every
other I1 ∈ Stop, because by assumption every margin is nonnegative and πσ2

−1(I1, I
∗
1) = 0 for any

I1 ∈ Stop where I1 6= I∗1 . The condition also clearly holds for any I1 with no descendants in S
because then πσ2

−1(I1, I
∗
1) = 0 and σ′2(h) = σ−S2 (h) in all P2 nodes following I1. This satisfies

the base step. We now move on to the inductive step.
Let Succ(I1, a) be the set of earliest-reachable P1 infosets following I1 such that P (I ′1) = P1

for I ′ ∈ Succ(I1, a). Formally, I ′1 ∈ Succ(I1, a) if P (I ′1) = P1 and I1 · a v I ′1 and for any other
I ′′1 ∈ Succ(I1, a), I ′′1 6@ I ′1. Then

CBV σ′2(I1, a) = CBV σ−S2 (I1, a)+ ∑
I′1∈Succ(I1,a)

π
σ′2
−1(I1, I

′
1)(CBV σ′2(I ′1)− CBV σ−S2 (I ′1)) (5.5)

Assume that every I ′1 ∈ Succ(I1, a) satisfies (5.4). Then

CBV σ′2(I1, a) ≤ CBV σ−S2 (I1, a)− πσ2
−1(I1, I

∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI′1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)− CBV σ−S2 (I ′′1 , a

′′)c
))

CBV σ′2(I1, a) ≤ CBV σ−S2 (I1)−
(
CBV σ−S2 (I1)− CBV σ−S2 (I1, a)

)
− πσ2

−1(I1, I
∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI′1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)− CBV σ−S2 (I ′′1 , a

′′)c
))

Since bCBV σ−S2 (I1)− CBV σ−S2 (I1, a)c ≤ CBV σ−S2 (I1)− CBV σ−S2 (I1, a1) so we get

CBV σ′2(I1, a) ≤ CBV σ−S2 (I1)− b(CBV σ−S2 (I1)− CBV σ−S2 (I1, a)c − πσ2
−1(I1, I

∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI′1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)− CBV σ−S2 (I ′′1 , a

′′)c
))

140

CBV σ′2(I1, a) ≤ CBV σ−S2 (I1)− πσ2
−1(I1, I

∗
1)ε+∑

I′1∈Succ(I1,a)

πσ2
−1(I1, I

′
1)
(∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)− CBV σ−S2 (I ′′1 , a

′′)c
))

CBV σ′2(I1, a1) ≤ CBV σ−S2 (I1)−πσ2
−1(I1, I

∗
1)ε+

∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)−CBV σ−S2 (I ′′1 , a

′′
1)c
)

Since πBR(σ′2)
1 (I∗1) > 0, and action a leads to I∗1 , so by definition of a best response,CBV σ′2(I1, a) =

CBV σ′2(I1). Thus,

CBV σ′2(I1) ≤ CBV σ−S2 (I1)−πσ2
−1(I1, I

∗
1)ε+

∑
I′′1 ·a′′vI1|P (I′′1)=P1

(
bCBV σ−S2 (I ′′1)−CBV σ−S2 (I ′′1 , a

′′)c
)

which satisfies the inductive step.
Applying this reasoning to the root of the entire game, we arrive at exp(σ′2) ≤ exp(σ−S2) −

πσ2
−1(I∗1)ε.

Proof of Theorem 21

Proof. Without loss of generality, we assume that it is player P2 who conducts search. We define
a node h in a subgame S as earliest-reachable if there does not exist a node h′ ∈ S such that
h′ ≺ h. For each earliest-reachable node h ∈ S, let hr be its parent and aS be the action leading
to h such that hr · aS = h. We require hr to be a P1 node; if it is not, then we can simply insert a
P1 node with only a single action between hr and h. Let Sr be the set of all hr for S.

Applying search to subgames as they are reached during play is equivalent to applying search
to every subgame before play begins, so we can phrase what follows in the context of all sub-
games being solved before play begins. Let σ′2 be the P2 strategy produced after search is applied
to every subgame. We show inductively that for any P1 infoset I1 6∈ S where it is P1’s turn to
move (i.e., P (I1) = P1), the counterfactual best response values for P1 satisfy

CBV σ′2(I1) ≤ CBV σ∗2 (I1) + 2∆ (5.6)

Define Succ(I1, a) as the set of infosets belonging to P1 that follow action a in I1 and where it is
P1’s turn and where P1 has not had a turn since a, as well as terminal nodes follow action a in
I1 without P1 getting a turn. Formally, a terminal node z ∈ Z is in Succ(I1, a) if there exists a
history h ∈ I1 such that h · a � z and there does not exist a history h′ such that P (h′) = P1 and
h · a � h′ ≺ z. Additionally, an infoset I ′1 belonging to P1 is in Succ(I1, a) if P (I ′1) = P1 and
I1 · a � I ′1 and there does not exist an earlier infoset I ′′1 belonging to P1 such that P (I ′′1) = P1

and I ′ · a � I ′′1 ≺ I ′1. Define Succ(I1) as ∪a∈A(I1)Succ(I1, a). Similarly, we define Succ(h, a) as
the set of histories belonging to P (h), or terminals, that follow action a and where P (h) has not
had a turn since a. Formally, h′ ∈ Succ(h, a) if either P (h′) = P (h) or P (h′) ∈ Z and h ·a � h′

and there does not exist a history h′′ such that P (h′′) = P (h) and h · a � h′′ ≺ h′.
Now we define a level L for each P1 infoset where it is P1’s turn and the infoset is not in the

set of subgames S .

141

• For immediate parents of subgames we define the level to be zero: for all I1 ∈ Sr for any
subgame S ∈ S, L(I1) = 0.

• For infoset that are not ancestors of subgames, we define the level to be zero: L(I1) = 0
for any infoset I1 that is not an ancestor of a subgame in S.

• For all other infosets, the level is one greater than the greatest level of its successors:
L(I1) = `+ 1 where ` = maxI′1∈Succ(I1) L(I ′1) where L(z) = 0 for terminal nodes z.

Base case of induction

First consider infosets I1 ∈ Sr for some subgame S ∈ S. We define Mσ′2(I1) = vσ(I1, aS) −
CBV σ′2(I1, aS). Consider a subgame S ∈ S . Estimated-Maxmargin search arrives at a strat-
egy σ′2 such that minI1∈Sr M

σ′2(I1) is maximized. By the assumption in the theorem statement,
|vσ(I1, aS) − CBV σ∗2 (I1, aS)| ≤ ∆ for all I1 ∈ Sr. Thus, σ∗2 satisfies minI1∈Sr M

σ∗2 (I1) ≥
−∆ and therefore minI1∈Sr M

σ′2(I1) ≥ −∆, because Estimated-Maxmargin search could, at
least, arrive at σ′2 = σ∗2 . From the definition of Mσ′2(I1), this implies that for all I1 ∈ Sr,
CBV σ′2(I1, aS) ≤ vσ(I1, aS) + ∆. Since by assumption vσ(I1, aS) ≤ CBV σ∗2 (I1, aS) + ∆, this
gives us CBV σ′2(I1, aS) ≤ CBV σ∗2 (I1, aS) + 2∆.

Now consider infosets I1 that are not ancestors of any subgame in S. By definition, for all
h such that h � I1 or I1 � h, and P (h) = P2, σ∗2(I2(h)) = σ2(I2(h)) = σ′2(I2(h)). Therefore,
CBV σ′2(I1) = CBV σ∗2 (I1).

So, we have shown that (5.6) holds for any I1 such that L(I1) = 0.

Inductive step

Now assume that (5.6) holds for any P1 infoset I1 where P (I1) = P1 and I1 6∈ S and L(I1) ≤ `.
Consider an I1 such that P (I1) = P1 and I1 6∈ S and L(I1) = `+ 1.

From the definition of CBV σ′2(I1, a), we have that for any action a ∈ A(I1),

CBV σ′2(I1, a) =
(∑
h∈I1

((
π
σ′2
−1(h)

)(
v〈CBR(σ′2),σ′2〉(h · a)

)))
/
∑
h∈I1

π
σ′2
−1(h) (5.7)

Since for any h ∈ I1 there is no P1 action between a and reaching any h′ ∈ Succ(h, a), so
π
σ′2
1 (h · a, h′) = 1. Thus,

CBV σ′2(I1, a) =
(∑
h∈I1

(
π
σ′2
−1(h)

∑
h′∈Succ(h,a)

π
σ′2
−1(h, h′)

(
v〈CBR(σ′2),σ′2〉(h′)

)))
/
∑
h∈I1

π
σ′2
−1(h) (5.8)

CBV σ′2(I1, a) =
(∑
h∈I1

∑
h′∈Succ(h,a)

((
π
σ′2
−1(h′)

)
v〈CBR(σ′2),σ′2〉(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (5.9)

Since the game is perfect recall,
∑

h∈I1
∑

h′∈Succ(h,a) f(h′) =
∑

I′1∈Succ(I1,a)

∑
h′∈I′1

f(h′) for any
function f . Thus,

CBV σ′2(I1, a) =
(∑
I′1∈Succ(I1,a)

∑
h′∈I′1

((
π
σ′2
−1(h′)

)(
v〈CBR(σ′2),σ′2〉(h′)

)))
/
∑
h∈I1

π
σ′2
−1(h) (5.10)

142

From the definition of CBV σ′2(I ′1) we get

CBV σ′2(I1, a) =
(∑
I′1∈Succ(I1,a)

(
CBV σ′2(I ′1)

∑
h′∈I′1

π
σ′2
−1(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (5.11)

Since (5.6) holds for all I ′1 ∈ Succ(I1, a), so

CBV σ′2(I1, a) ≤
(∑
I′1∈Succ(I1,a)

(
(CBV σ∗2 (I ′1) + 2∆)

∑
h′∈I′1

π
σ′2
−1(h′)

))
/
∑
h∈I1

π
σ′2
−1(h) (5.12)

Since P2’s strategy is fixed according to σ2 outside of S, so for all I1 6∈ S, πσ′−1(I1) = πσ−1(I1) =
πσ
∗
−1(I1). Therefore,

CBV σ′2(I1, a) ≤
(∑
I′1∈Succ(I1,a)

(
(CBV σ∗2 (I ′1) + 2∆)

∑
h′∈I′1

π
σ∗2
−1(h′)

))
/
∑
h∈I1

π
σ∗2
−1(h) (5.13)

Pulling out the 2∆ constant and applying equation (5.11) for CBV σ∗2 (I1, a) we get

CBV σ′2(I1, a) ≤ CBV σ∗(I1, a) + 2∆
((∑

I′1∈Succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h′)

)
/
∑
h∈I1

π
σ∗2
−1(h)

)
(5.14)

Since
(∑

I′1∈Succ(I1,a)

∑
h′∈I′1

π
σ∗2
−1(h′)

)
=
∑

h∈I1 π
σ∗2
−1(h) we arrive at

CBV σ′2(I1, a) ≤ CBV σ∗(I1, a) + 2∆ (5.15)

Thus, (5.6) holds for I1 as well and the inductive step is satisfied. Extending (5.6) to the root
of the game, we see that exp(σ′2) ≤ exp(σ∗2) + 2∆.

Proof of Theorem 22

Proof. We prove inductively that using CFR in S ′ while choosing the action leading to S ′ from
each I1 ∈ S ′r with probability P

(
XI1 ≤ vt(I1, a

′
S)
)

results in play that is identical to CFR in S
and CFR-BR [80] in Sr, which converges to a Nash equilibrium.

For each P2 infoset I ′2 in S ′ where P (I ′2) = P2, there is exactly one corresponding infoset I2

in S that is reached via the same actions, ignoring random variables. Each P1 infoset I ′1 in S ′

where P (I ′1) = P1 corresponds to a set of infosets in S that are reached via the same actions,
where the elements in the set differ only by the outcome of the random variables. We prove
that on each iteration, the instantaneous regret for these corresponding infosets is identical (and
therefore the average strategy played in the P2 infosets over all iterations is identical).

At the start of the first iteration of CFR, all regrets are zero. Therefore, the base case is
trivially true. Now assume that on iteration t, regrets are identical for all corresponding infosets.
Then the strategies played on iteration t in S are identical as well.

First, consider an infoset I ′1 in S ′ and a corresponding infoset I1 in S. Since the remaining
structure of the game is identical beyond I ′1 and I1, and because P2’s strategies are identical in
all P2 infosets encountered, so the immediate regret for I ′1 and I1 is identical as well.

143

Next, consider a P1 infoset I1,x in Sr in which the random variableXI1 has an observed value
of x. Let the corresponding P1 infoset in S ′r be I ′1. Since CFR-BR is played in this infoset, and
since action a′T leads to a payoff of x, so P1 will choose action a′S with probability 1 if x ≥ a′T
and with probability 0 otherwise. Thus, for all infosets in Sr corresponding to I ′1, action a′S is
chosen with probability P

(
XI1 ≤ v(I1, a

′
S)
)
.

Finally, consider a P2 infoset I2 in S and its corresponding infoset I ′2 in S ′. Since in both cases
action a′T is taken in Sr with probability P

(
XI1 ≤ v(I1, a

′
S)
)
, and because P1 plays identically

between corresponding infosets in S and S ′, and because the structure of the game is otherwise
identical, so the immediate regret for I ′1 and I1 is identical as well.

5.2 Depth-Limited Search via Multi-Valued States
The key breakthrough that led to superhuman performance in HUNL poker was nested search,
described in Section 5.1, in which the agent repeatedly calculates a finer-grained strategy in real
time (for just a portion of the full game) as play proceeds down the game tree [20, 21, 110].

However, real-time search was too expensive for Libratus in the first half of the game because
the subgame that Libratus searched in real time always extended to the end of the game. Instead,
for the first half of the game Libratus pre-computed a fine-grained strategy that was used as a
lookup table. While this pre-computed strategy was successful, it required millions of core hours
and terabytes of memory to calculate. Moreover, in deeper sequential games the computational
cost of this approach would be even more expensive because either longer subgames or a larger
pre-computed strategy would need to be solved. A more general approach would be to solve
depth-limited subgames, which may not extend to the end of the game. These could be solved
even in the early portions of a game.

When conducting depth-limited search, a primary challenge is determining what values to
substitute at the leaf nodes of the depth-limited subgame. In perfect-information depth-limited
subgames, the value substituted at leaf nodes is simply an estimate of the state’s value when all
players play an equilibrium [125, 137]. For example, this approach was used to achieve super-
human performance in backgammon [153], chess [34], and Go [140, 141]. The same approach
is also widely used in single-agent settings such as heuristic search [64, 102, 115, 117]. Indeed,
in single-agent and perfect-information multi-agent settings, knowing the values of states when
all agents play an equilibrium is sufficient to reconstruct an equilibrium. However, this does not
work in imperfect-information games, as we demonstrate in the next section.

This section describes a way to solve depth-limited imperfect-information subgames which
we call the multi-valued states approach. The crux of the approach is to assign multiple values to
leaf nodes corresponding to different combinations of blueprint strategies that players might play
for the remainder of the game. When a leaf node is reached, each player simultaneously selects
one of these blueprint strategies and a reward is returned based on the joint choice. This technique
was ultimately used in Pluribus to defeat top humans in multiplayer no-limit Texas hold’em poker
for the first time (specifically, six-player NLTH). Additionally, Pluribus was orders of magnitude
computationally more efficient that Libratus, despite the game being orders of magnitude larger.
This is efficiency is primarily due to depth-limited search via multi-valued states.

Another way to solve depth-limited subgames, described in Section 5.3, involves a public

144

𝑷𝟏

𝑷𝟐 𝑷𝟐 𝑷𝟐

Pap
er 𝑃 = 0.4 𝑃 = 0.2 𝑃 = 0.4

Pap
er

0,0 -1,1 2,-2

Pap
er

1,-1 0,0 -2,2

Pap
er

-2,2 2,-2 0,0

5.8a Rock-Paper-Scissors+ shown with the optimal
P1 strategy. The terminal values are shown first for
P1, then P2. The red lines between the P2 nodes
means they are indistinguishable to P2.

𝑷𝟏

Pap
er

0 0 0

5.8b A depth-limited subgame of Rock-Paper-
Scissors+ with state values determined from the equi-
librium.

belief state (PBS) value function. This PBS value function was originally used by the poker AI
DeepStack [110], and was also used by the poker AI ReBeL [29]. However, training and using a
PBS value function is orders of magnitude more expensive than the multi-valued states approach,
especially in the way used by DeepStack. Nevertheless, ReBeL has some advantages over the
multi-valued states approach. Section 5.4 contains a thorough comparison of the two techniques.

5.2.1 The Challenge of Depth-Limited Search in Imperfect-Information
Games

In imperfect-information games (also referred to as partially observable games), an optimal strat-
egy cannot be determined in a subgame simply by knowing the values of states (i.e., game-tree
nodes) when all players play an equilibrium strategy. A simple demonstration is in Figure 5.8a,
which shows a sequential game we call Rock-Paper-Scissors+ (RPS+). RPS+ is identical to tra-
ditional Rock-Paper-Scissors, except if either player plays Scissors, the winner receives 2 points
instead of 1 (and the loser loses 2 points). Figure 5.8a shows RPS+ as a sequential game in which
P1 acts first but does not reveal the action to P2 [31, 51]. The optimal strategy (Minmax strategy,
which is also a Nash equilibrium in two-player zero-sum games) for both players in this game is
to choose Rock and Paper each with 40% probability, and Scissors with 20% probability. In this
equilibrium, the expected value to P1 of choosing Rock is 0, as is the value of choosing Scissors
or Paper. In other words, all the red states in Figure 5.8a have value 0 in the equilibrium. Now
suppose P1 conducts a depth-limited search with a depth of one in which the equilibrium values
are substituted at that depth limit. This depth-limited subgame is shown in Figure 5.8b. Clearly,
there is not enough information in this subgame to arrive at the optimal strategy of 40%, 40%,
and 20% for Rock, Paper, and Scissors, respectively.

In the RPS+ example, the core problem is that we incorrectly assumed P2 would always play
a fixed strategy. If indeed P2 were to always play Rock, Paper, and Scissors with probability
〈0.4, 0.4, 0.2〉, then P1 could choose any arbitrary strategy and receive an expected value of 0.
However, by assuming P2 is playing a fixed strategy, P1 may not find a strategy that is robust to
P2 adapting. In reality, P2’s optimal strategy depends on the probability that P1 chooses Rock,

145

Paper, and Scissors. In general, in imperfect-information games a player’s optimal strategy at a
decision point depends on the player’s belief distribution over states as well as the strategy of all
other agents beyond that decision point.

In this section we introduce a method for depth-limited search that ensures a player is robust
to such opponent adaptations. Rather than simply substitute a single state value at a depth limit,
we instead allow the opponent one final choice of action at the depth limit, where each action
corresponds to a strategy the opponent will play in the remainder of the game. The choice of
strategy determines the value of the state. The opponent does not make this choice in a way that
is specific to the state (in which case he would trivially choose the maximum value for himself).
Instead, naturally, the opponent must make the same choice at all states that are indistinguishable
to him. We prove that if the opponent is given a choice between a sufficient number of strategies
at the depth limit, then any solution to the depth-limited subgame is part of a Nash equilibrium
strategy in the full game. We also show experimentally that when only a few choices are offered
(for computational speed), performance of the method is extremely strong.

5.2.2 Multi-Valued States in Imperfect-Information Games
We now describe our new method for depth-limited solving in imperfect-information games,
which we refer to as multi-valued states. Our general approach is to first precompute an ap-
proximate Nash equilibrium for the entire game. We refer to this precomputed strategy profile
as a blueprint. Since the blueprint is precomputed for the entire game, it is likely just a coarse
approximation of a true Nash equilibrium. Our goal is to compute a better approximation in real
time for just a depth-limited subgame S that we find ourselves in during play. For the remainder
of the description of our technique, we assume that player P1 is attempting to approximate a
Nash equilibrium strategy in S.

Let σ∗ be an exact Nash equilibrium. To present the intuition for our approach, we begin by
considering what information about σ∗ would, in theory, be sufficient in order to compute a P1

Nash equilibrium strategy in S. For ease of understanding, when considering the intuition for
multi-valued states we suggest the reader first focus on the case where S is rooted at the start of
the game (that is, no prior actions have occurred).

As explained in Section 5.2.1, knowing the values of leaf nodes in S when both players play
according to σ∗ (that is, vσ∗i (h) for leaf node h and player Pi) is insufficient to compute a Nash
equilibrium in S (even though this is sufficient in perfect-information games), because it assumes
P2 would not adapt their strategy outside S. But what if P2 could adapt? Specifically, suppose
hypothetically that P2 could choose any strategy in the entire game, while P1 could only play
according to σ∗1 outside of S. In this case, what strategy should P1 choose in S? Since σ∗1 is a
Nash equilibrium strategy and P2 can choose any strategy in the game (including a best response
to P1’s strategy), so by definition P1 cannot do better than playing σ∗1 in S. Thus, P1 should play
σ∗1 (or some equally good Nash equilibrium) in S.

Another way to describe this setup is that upon reaching a leaf node h in infoset I in sub-
game S, rather than simply substituting vσ∗2 (h) (which assumes P2 plays according to σ∗2 for the
remainder of the game), P2 could instead choose any mixture of pure strategies for the remainder
of the game. So if there are N possible pure strategies following I , P2 would choose among N
actions upon reaching I , where action n would correspond to playing pure strategy σn2 for the

146

remainder of the game. Since this choice is made separately at each infoset I and since P2 may
mix between pure strategies, so this allows P2 to choose any strategy below S.

Since the choice of action would define a P2 strategy for the remainder of the game and since
P1 is known to play according to σ∗1 outside S, so the chosen action could immediately reward
the expected value v〈σ

∗
1 ,σ

n
2 〉

i (h) to Pi. Therefore, in order to reconstruct a P1 Nash equilibrium in
S, it is sufficient to know for every leaf node the expected value of every pure P2 strategy against
σ∗1 (stated formally in Proposition 3). This is in contrast to perfect-information games, in which
it is sufficient to know for every leaf node just the expected value of σ∗2 against σ∗1 . Critically, it is
not necessary to know the strategy σ∗1 , just the values of σ∗1 played against every pure opponent
strategy in each leaf node.

Proposition 3 adds the condition that we know v
〈σ∗1 ,BR(σ∗1)〉
2 (I) for every root infoset I ∈ S.

This condition is used if S does not begin at the start of the game. Knowledge of v〈σ
∗
1 ,BR(σ∗1)〉

2 (I)
is needed to ensure that any strategy σ1 that P1 computes in S cannot be exploited by P2 chang-
ing their strategy earlier in the game. Specifically, we add a constraint that v〈σ1,BR(σ∗1)〉

2 (I) ≤
v
〈σ∗1 ,BR(σ∗1)〉
2 (I) for all P2 root infosets I . This makes our technique safe:

Proposition 3. Assume P1 has played according to Nash equilibrium strategy σ∗1 prior to reach-
ing a depth-limited subgame S of a two-player zero-sum game. In order to calculate the portion
of a P1 Nash equilibrium strategy that is in S, it is sufficient to know v

〈σ∗1 ,BR(σ∗1)〉
2 (I) for every

root P2 infoset I ∈ S and v〈σ
∗
1 ,σ2〉

1 (h) for every pure undominated P2 strategy σ2 and every leaf
node h ∈ S.

Other safe search techniques have been developed in recent papers, but those techniques
require solving to the end of the full game [20, 21, 31, 74, 109] (except one [110], which we will
compare to in Section 5.4).

Of course, it is impractical to know the expected value in every state of every pure P2 strategy
against σ∗1 , especially since we do not know σ∗1 itself. To deal with this, we first compute a
blueprint strategy σ̂∗ (that is, a precomputed approximate Nash equilibrium for the full game).
Next, rather than consider every pure P2 strategy, we instead consider just a small number of
different P2 strategies (that may or may not be pure). Indeed, in many complex games, the
possible opponent strategies at a decision point can be approximately grouped into just a few
“meta-strategies”, such as which highway lane a car will choose in a driving simulation. In
our experiments, we find that excellent performance is obtained in poker with fewer than ten
opponent strategies. In part, excellent performance is possible with a small number of strategies
because the choice of strategy beyond the depth limit is made separately at each leaf infoset.
Thus, if the opponent chooses between ten strategies at the depth limit, but makes this choice
independently in each of 100 leaf infosets, then the opponent is actually choosing between 10100

different strategies. We now consider two questions. First, how do we compute the blueprint
strategy σ̂∗1? Second, how do we determine the set of P2 strategies? We answer each of these in
turn.

There exist several methods for constructing a blueprint. One option, which achieves the best
empirical results and is what we use, involves first abstracting the game by bucketing together
similar situations [50, 80] and then applying the iterative algorithm Monte Carlo Counterfactual
Regret Minimization [96]. Several alternatives exist that do not use a distinct abstraction step [16,

147

35, 69]. The agent will never actually play according to the blueprint σ̂∗. It is only used to
estimate v〈σ∗1 ,σ2〉(h).

We now discuss two different ways to select a set of P2 strategies. Ultimately we would like
the set of P2 strategies to contain a diverse set of intelligent strategies the opponent might play,
so that P1’s solution in a subgame is robust to possible P2 adaptation. One option is to bias the
P2 blueprint strategy σ̂∗2 in a few different ways. For example, in poker the blueprint strategy
should be a mixed strategy involving some probability of folding, calling, or raising. We could
define a new strategy σ′2 in which the probability of folding is multiplied by 10 (and then all the
probabilities renormalized). If the blueprint strategy σ̂∗ were an exact Nash equilibrium, then any
such “biased” strategy σ′2 in which the probabilities are arbitrarily multiplied would still be a best
response to σ̂∗1 . In our experiments, we use this biasing of the blueprint strategy to construct a set
of four opponent strategies on the second betting round. We refer to this as the bias approach.

Another option is to construct the set of P2 strategies via self-play. The set begins with just
one P2 strategy: the blueprint strategy σ̂∗2 . We then solve a depth-limited subgame rooted at the
start of the game and going to whatever depth is feasible to solve, giving P2 only the choice of this
P2 strategy at leaf infosets. That is, at leaf node h we simply substitute vσ̂∗i (h) for Pi. Let the P1

solution to this depth-limited subgame be σ1. We then approximate a P2 best response assuming
P1 plays according to σ1 in the depth-limited subgame and according to σ̂∗1 in the remainder of
the game. Since P1 plays according to this fixed strategy, approximating a P2 best response is
equivalent to solving a Markov Decision Process, which is far easier to solve than an imperfect-
information game. This P2 approximate best response is added to the set of strategies that P2

may choose at the depth limit, and the depth-limited subgame is solved again. This process
repeats until the set of P2 strategies grows to the desired size. This self-generative approach
bears some resemblance to the double oracle algorithm [106] and recent work on generation
of opponent strategies in multi-agent RL [98]. In our experiments, we use this self-generative
method to construct a set of ten opponent strategies on the first betting round. We refer to this as
the self-generative approach.

One practical consideration is that since σ̂∗1 is not an exact Nash equilibrium, a generated P2

strategy σ2 may do better than σ̂∗2 against σ̂∗1 . In that case, P1 may play more conservatively than
σ∗1 in a depth-limited subgame. To correct for this, one can balance the players by also giving P1

a choice between multiple strategies for the remainder of the game at the depth limit.

Once a P1 strategy σ̂∗1 and a set of P2 strategies have been generated, we need some way
to calculate and store v〈σ̂

∗
1 ,σ2〉

2 (h). Calculating the state values can be done by traversing the
entire game tree once. However, that may not be feasible in large games. Instead, one can
use Monte Carlo simulations to approximate the values. For storage, if the number of states is
small (such as in the early part of the game tree), one could simply store the values in a table.
More generally, one could train a function to predict the values corresponding to a state, taking
as input a description of the state and outputting a value for each P2 strategy. Alternatively,
one could simply store σ̂∗1 and the set of P2 strategies. Then, in real time, the value of a state
could be estimated via Monte Carlo rollouts. We present results for both of these approaches in
Section 5.2.3.

148

5.2.3 Experiments

We conducted experiments on the games of heads-up no-limit Texas hold’em poker (HUNL)
(described in Section 2.4.3) and heads-up no-limit flop hold’em poker (NLFH) (described in
Section 2.4.4). Performance is measured in terms of mbb/g, which is a standard win rate measure
in the literature. It stands for milli-big blinds per game and represents how many thousandths of
a big blind (the initial money a player must commit to the pot) a player wins on average per hand
of poker played.

Exploitability Experiments in No-Limit Flop Hold’em

Our first experiment measured the exploitability of our technique in NLFH. Exploitability of
a strategy in a two-player zero-sum game is how much worse the strategy would do against
a best response than a Nash equilibrium strategy would do against a best response. Formally,
the exploitability of σ1 is minσ2 u1(σ∗1, σ2) − minσ2 u1(σ1, σ2), where σ∗1 is a Nash equilibrium
strategy.

We considered the case of P1 betting 0.75× the pot at the start of the game, when the action
abstraction only contains bets of 0.5× and 1× the pot. We compared our depth-limited solving
technique to the randomized pseudoharmonic action translation (RPAT) [49], in which the bet of
0.75× is simply treated as either a bet of 0.5× or 1×. RPAT is the lowest-exploitability known
technique for responding to off-tree actions that does not involve real-time computation.

We began by calculating an approximate Nash equilibrium in an action abstraction that does
not include the 0.75× bet. This was done by running the CFR+ equilibrium-approximation
algorithm [150] for 1,000 iterations, which resulted in less than 1 mbb/g of exploitability within
the action abstraction. Next, values for the states at the end of the first betting round within the
action abstraction were determined using the self-generative method discussed in Section 5.2.2.
Since the first betting round is a small portion of the entire game, storing a value for each state
in a table required just 42 MB.

To determine a P2 strategy in response to the 0.75× bet, we constructed a depth-limited
subgame rooted after the 0.75× bet with leaf nodes at the end of the first betting round. The
values of a leaf node in this subgame were set by first determining the in-abstraction leaf nodes
corresponding to the exact same sequence of actions, except P1 initially bets 0.5× or 1× the pot.
The leaf node values in the 0.75× subgame were set to the average of those two corresponding
value vectors. When the end of the first betting round was reached and the board cards were
dealt, the remaining game was solved using safe subgame solving.

Figure 5.8 shows how exploitability decreases as we add state values (that is, as we give
P1 more best responses to choose from at the depth limit). When using only one state value at
the depth limit (that is, assuming P1 would always play according to the blueprint strategy for
the remainder of the game), it is actually better to use RPAT. However, after that our technique
becomes significantly better and at 16 values its performance is close to having had the 0.75×
action in the abstraction in the first place.

While one could have calculated a (slightly better) P2 strategy in response to the 0.75× bet
by solving to the end of the game, that subgame would have been about 10,000× larger than
the subgames solved in this experiment. Thus, depth-limited solving dramatically reduces the

149

0

2

4

6

8

10

12

14

1 2 4 8 16 32

Ex
p

lo
it

ab
ili

ty
 (

m
b

/g
)

Number of Values Per State

Exploitability of depth-limited solving in NLFH

Action Translation

Multi-State Values

In-Abstraction

Figure 5.8: Exploitability of depth-limited solving in response to an opponent off-tree action as a function
of number of state values. We compare to action translation and to having had the off-tree action included
in the action abstraction (which is a lower bound on the exploitability achievable with 1,000 iterations of
CFR+).

computational cost of nested subgame solving while giving up very little solution quality.

Experiments Against Top AIs in Heads-Up No-Limit Texas Hold’em

Our main experiment uses depth-limited solving to produce a master-level HUNL poker AI called
Modicum (described in detail in Section 6.5) using computing resources found in a typical lap-
top. We test Modicum against Baby Tartanian8 [17], the winner of the 2016 Annual Computer
Poker Competition, and against Slumbot [76], the winner of the 2018 Annual Computer Poker
Competition. Neither Baby Tartanian8 nor Slumbot uses real time computation; their strategies
are a precomputed lookup table. Baby Tartanian8 used about 2 million core hours and 18 TB
of RAM to compute its strategy. Slumbot used about 250,000 core hours and 2 TB of RAM
to compute its strategy. In contrast, Modicum used just 700 core hours and 16GB of RAM to
compute its strategy and can play in real time at the speed of human professionals (an average of
20 seconds for an entire hand of poker) using just a 4-core CPU.

The blueprint strategy for Modicum was constructed by first generating an abstraction of
HUNL using state-of-the-art abstraction techniques [50, 82]. Storing a strategy for this abstrac-
tion as 4-byte floats requires just 5 GB. This abstraction was approximately solved by running
Monte Carlo Counterfactual Regret Minimization for 700 core hours [96].

HUNL consists of four betting rounds. We conduct depth-limited solving on the first two
rounds by solving to the end of that round using MCCFR. Once the third betting round is reached,
the remaining game is small enough that we solve to the end of the game using an enhanced form
of CFR+ described in the appendix.

We generated 10 values for each state at the end of the first betting round using the self-

150

generative approach. The first betting round was small enough to store all of these state values
in a table using 240 MB. For the second betting round, we used the bias approach to generate
four opponent best responses. The first best response is simply the opponent’s blueprint strategy.
For the second, we biased the opponent’s blueprint strategy toward folding by multiplying the
probability of fold actions by 10 and then renormalizing. For the third, we biased the opponent’s
blueprint strategy toward checking and calling. Finally for the fourth, we biased the opponent’s
blueprint strategy toward betting and raising. To estimate the values of a state when the depth
limit is reached on the second round, we sample rollouts of each of the stored best-response
strategies.

The performance of Modicum is shown in Table 5.5. For the evaluation, we used AIVAT to
reduce variance [32]. Our new agent defeats both Baby Tartanian8 and Slumbot with statistical
significance. For comparison, Baby Tartanian8 defeated Slumbot by 36 ± 12 mbb/g, Libratus
defeated Baby Tartanian8 by 63± 28 mbb/g, and Libratus defeated top human professionals by
147± 77 mbb/g.

Baby Tartanian8 Slumbot
Blueprint (No real-time solving) −57± 13 −11± 8
Naïve depth-limited solving −10± 8 −1± 15
Depth-limited solving 6± 5 11± 9

Table 5.5: Head to head performance of our new agent against Baby Tartanian8 and Slumbot with 95%
confidence intervals shown. Our new agent defeats both opponents with statistical significance. Naïve
depth-limited solving means states are assumed to have just a single value, which is determined by the
blueprint strategy.

In addition to head-to-head performance against prior top AIs, we also tested Modicum
against two versions of Local Best Response (LBR) [103]. An LBR agent is given full access to
its opponent’s full-game strategy and uses that knowledge to exactly calculate the probability the
LBR agent is in each possible state. Given that probability distribution and a heuristic for how
the opposing agent will play thereafter, the LBR agent chooses a best response action. LBR is a
way to calculate a lower bound on exploitability and has been shown to be effective in exploiting
agents that do not use real-time solving.

In the first version of LBR we tested against, the LBR agent was limited to either folding or
betting 0.75× the pot on the first action, and thereafter was limited to either folding or calling.
Modicum beat this version of LBR by 570 ± 42 mbb/g. The second version of LBR we tested
against could bet 10 different amounts on the flop that Modicum did not include in its blueprint
strategy. Much like the experiment in Section 5.2.3, this was intended to measure how vulnerable
Modicum is to unanticipated bet sizes. The LBR agent was limited to betting 0.75× the pot for
the first action of the game and calling for the remaining actions on the preflop. On the flop, the
LBR agent could either fold, call, or bet 0.33 × 2x times the pot for x ∈ {0, 1, ..., 10}. On the
remaining rounds the LBR agent could either fold or call. Modicum beat this version of LBR by
1377± 115 mbb/g. In contrast, similar forms of LBR have been shown to defeat prior top poker
AIs that do not use real-time solving by hundreds or thousands of mbb/g [103].

While our new agent is probably not as strong as Libratus, it was produced with less than

151

0.1% of the computing resources and memory, and is never vulnerable to off-tree opponent ac-
tions.

While the rollout method used on the second betting round worked well, rollouts may be
significantly more expensive in deeper games. To demonstrate the generality of our approach,
we also trained a deep neural network (DNN) to predict the values of states at the end of the
second betting round as an alternative to using rollouts. The DNN takes as input a 34-float vector
of features describing the state, and outputs four floats representing the values of the state for the
four possible opponent strategies (represented as a fraction of the size of the pot). The DNN was
trained using 180 million examples per player by optimizing the Huber loss with Adam [84],
which we implemented using PyTorch [120]. In order for the network to run sufficiently fast on
just a 4-core CPU, the DNN has just 4 hidden layers with 256 nodes in the first hidden layer and
128 nodes in the remaining hidden layers. This achieved a Huber loss of 0.02. Using a DNN
rather than rollouts resulted in the agent beating Baby Tartanian8 by 2± 9 mbb/g. However, the
average time taken using a 4-core CPU increased from 20 seconds to 31 seconds per hand. Still,
these results demonstrate the generality of our approach.

5.2.4 Conclusions
Search has been critical for achieving superhuman performance in perfect-information games and
was the key breakthrough that allowed Libratus to defeat top humans in imperfect-information
games. However, in order to make search truly general, it must be possible to conduct depth-
limited search.

In this section we described the multi-valued states approach for depth-limited search in
imperfect-information games and proved that it is theoretically sound in the limit. Experimen-
tal results show that it leads to stronger performance than the best precomputed-strategy AIs in
HUNL while using orders of magnitude less computational resources, and is also orders of mag-
nitude more efficient than past approaches that use real-time solving. Additionally, the method
exhibits low exploitability.

The multi-valued states approach was ultimately used to develop Pluribus [23], which for
the first time defeated top human professionals in multiplayer poker, and did so with orders
of magnitude fewer computational resources compared to Libratus despite multiplayer no-limit
Texas hold’em poker being orders of magnitude larger than heads-up no-limit Texas hold’em
poker.

5.2.5 Proofs of Theoretical Results
Proof of Proposition 3

Proof. Consider the augmented subgame S ′ structured as follows. S ′ contains S and all its
descendants. Additionally, for every root node h ∈ S (that is, a node whose parent is not in S),
S ′ contains a node h′ belonging to P2. If h1 and h2 are root nodes in S and h1 and h2 share
an infoset, then h′1 and h′2 share an infoset. S ′ begins with an initial chance node that reaches
h′ with probability proportional to the probability of reaching h if P2 tried to do so (that is, the
probability of reaching it according to P1’s strategy and chance’s probabilities).

152

At node h′, P2 has two actions. The “alt” action leads to a terminal node that awards
v
〈σ∗1 ,BR(σ∗1)〉
2 (I). The “enter” action leads to h. From Theorem 1 in [31], a solution to S ′ is

part of a P1 Nash equilibrium strategy in the full game.
Now consider the depth-limited augmented subgame S ′′ that is similar to S ′ but does not

contain the descendants of S. We show that knowing v〈σ
∗
1 ,σ2〉

1 (h) for every pure undominated
P2 strategy σ2 and every leaf node h ∈ S is sufficient to calculate the portion of a P1 Nash
equilibrium strategy for S ′ that is in S ′′. That, in turn, gives a strategy in S that is a Nash
equilibrium strategy in the full game.

We modify S ′′ so that, after P1’s strategy is chosen, P2 chooses a probability distribution
over the N pure undominated strategies where the probability of pure undominated strategy σn2
is represented as p(n). This mixture of pure strategies defines a strategy σm2 =

∑
n≤N

(
p(n)σn2

)
.

In this way, P2 can pick any undominated strategy because every undominated strategy is a
mixture of pure undominated strategies. Upon reaching a leaf node h, P1 receives a reward of∑

n≤N
(
p(n)v

〈σ∗1 ,σn2 〉
1 (h)

)
= v

〈σ∗1 ,σm2 〉
1 (h). Clearly P1 can do no better than playing σ∗1 , because it

is a Nash equilibrium and P2 can play any undominated strategy. Thus, any strategy P1 plays
in S ′′, when combined with σ∗1 outside of S ′′, must do at least as well as playing σ∗1 in the full
game.

5.3 Depth-Limited Search and Deep Reinforcement Learning
via Public Belief States

Combining reinforcement learning with search at both training and test time (RL+Search) has
led to a number of major successes in AI in recent years. For example, the AlphaZero algo-
rithm achieves state-of-the-art performance in the perfect-information games of Go, chess, and
shogi [142]. However, prior RL+Search algorithms such as AlphaZero do not work in imperfect-
information games because they make a number of assumptions that no longer hold in these set-
tings. An example of this was presented in Figure 5.8a and Figure 5.8b in Section 5.2.1. Recent
AI breakthroughs in imperfect-information games have highlighted the importance of search at
test time [21, 23, 99, 110], but combining RL and search during training in imperfect-information
games has been an open problem.

This section describes ReBeL (Recursive Belief-based Learning), a general RL+Search al-
gorithm that converges to a Nash equilibrium in two-player zero-sum games. At a high level,
ReBeL resembles past RL+Search algorithms used in perfect-information games [1, 134, 141,
142, 151]. These algorithms train a value network through self play. During training, a search
algorithm is used in which the values of leaf nodes are determined via the value function. Addi-
tionally, a policy network may be used to guide search. However, ReBeL differs from RL+Search
algorithms for perfect-information games in that the notion of “state” is expanded to include the
probabilistic belief distribution of all agents about what state they may be in, given the available
common knowledge information and the policies of all agents. This expanded notion of state,
which we refer to as a public belief state (PBS) originated in work on decentralized multi-agent
POMDPs [43, 113, 118] and has since been used in work on imperfect-information games more
broadly [46, 73, 110, 136].

153

ReBeL builds upon the idea of using a PBS value function, which was used in the poker AI
DeepStack [110]. However, DeepStack’s value function was trained not through self-play RL,
but rather by generating random PBSs, including random probability distributions, and estimat-
ing their values using search. This would be like learning a value function for Go by randomly
placing stones on the board. This is not an efficient way of learning a value function because the
vast majority of randomly generated situations would not be relevant in actual play. DeepStack
coped with this by using handcrafted features to reduce the dimensionality of the public belief
state space, by sampling PBSs from a distribution based on expert domain knowledge, and by
using domain-specific abstractions to circumvent the need for a value network when close to the
end of the game.

Section 5.2 introduced multi-valued states, an alternative sound method for conducting depth-
limited search in imperfect-information games that was used in the Pluribus poker AI to defeat
elite human professionals in multiplayer poker for the first time [23, 27]. However, multi-valued
states only uses search at test time and therefore requires a strong blueprint as a starting point.
Section 5.4 discusses in detail the relative strengths and weaknesses of ReBeL and multi-valued
states.

Our goal in developing ReBeL was not to chase state-of-the-art performance by any means
necessary. Instead, our goal was to develop a simple, flexible, effective algorithm that leverages
as little expert domain knowledge as possible. Experimental results show that despite its sim-
plicity, ReBeL is effective in large-scale two-player zero-sum imperfect-information games and
defeats a top human professional with statistical significance in the benchmark game of heads-up
no-limit Texas hold’em poker while using far less expert domain knowledge than any previous
poker AI. In perfect-information games, ReBeL simplifies to an algorithm similar to AlphaZero,
with the major difference being in type of search algorithm used.

5.3.1 Notation and Background
Since ReBeL most closely resembles a reinforcement learning algorithm, we describe it using
reinforcement learning notation based on factored observation games [88], which is a modifica-
tion of partially observable stochastic games [63] that distinguishes between private and public
observations. We consider a game with N = {1, 2, ..., N} agents. We provide theoretical and
empirical results only for when |N | = 2, though related techniques have been shown to be
successful in practice in certain settings with more agents [23].

We assume throughout this section that the rules of the game, as well as our agent’s policy
(including any algorithms used to generate the policy) are common knowledge. However, the
outcome of stochastic algorithms (i.e., the random seeds) are not known. This is a common
assumption in game theory. One argument for it is that in repeated play an adversary would
eventually determine an agent’s policy. Another motivation is that in a Nash equilibrium there is
no incentive to change one’s policy even if the other players’ policies are known.

A world state w ∈ W is a state in the game. A = A1 ×A2 × ...×AN is the space of joint
actions. Ai(w) denotes the legal actions for agent i at w and a = (a1, a2, ..., aN) ∈ A denotes a
joint action. After a joint action a is chosen, a transition function T determines the next world
state w′ drawn from the probability distribution T (w, a) ∈ ∆W . After joint action a, agent i
receives a rewardRi(w, a).

154

Upon transition from world state w to w′ via joint action a, agent i receives a private obser-
vation from a function Opriv(i)(w, a, w

′). Additionally, all agents receive a public observation
from a function Opub(w, a, w

′). Public observations may include observations of publicly taken
actions by agents. For example, in many recreational games, including poker, all betting actions
are public.

A history (also called a trajectory) is a finite sequence of legal actions and world states,
denoted h = (w0, a0, w1, a1, ..., wt). An infostate (or action-observation history (AOH)) for
agent i is a sequence of an agent’s observations and actions si = (O0

i , a
0
i , O

1
i , a

1
i , ..., O

t
i) where

Ok
i =

(
Opriv(i)(w

k−1, ak−1, wk),Opub(w
k−1, ak−1, wk)

)
The unique infostate corresponding to a history h for agent i is denoted si(h). The set of histories
that correspond to si is denotedH(si).

A public state is a sequence spub = (O0
pub, O

1
pub, ..., O

t
pub) of public observations. The unique

public state corresponding to a history h and an infostate si is denoted spub(h) and spub(si),
respectively. The set of histories that match the sequence of public observation of spub is denoted
H(spub).

As an example, consider a game in which two players roll two six-sided dice each. One die
of each player is publicly visible, but the other die is only observed by the player who rolled it.
Suppose player 1 rolls a 3 and a 4 (with 3 being the hidden die), and player 2 rolls a 5 and a 6 (with
5 being the hidden die). The history is h =

(
(3, 4), (5, 6)

)
. The set of histories corresponding

to player 2’s infostate is H(s2) =
{(

(x, 4), (5, 6)
)
| x ∈ {1, 2, 3, 4, 5, 6}

}
, so |H(s2)| = 6. The

set of histories corresponding to spub is H(spub) =
{(

(x, 4), (y, 6)
)
| x, y ∈ {1, 2, 3, 4, 5, 6}

}
, so

|H(spub)| = 36 .
Public states provide an easy way to reason about common knowledge in a game. All agents

observe the same public sequence spub, and therefore it is common knowledge among all agents
that the true history is some h ∈ H(spub).9

An agent’s policy πi is a function mapping from an infostate to a probability distribution
over actions. A policy profile π is a tuple (π1, π2, ..., πN). We also define a policy for a history
h as πi(h) = πi(si(h)) and π(h) = (π1(s1(h)), π2(s2(h)), ..., πN(sN(h))). The expected sum
of future rewards (also called the expected value (EV)) for agent i in history h when all agents
play policy profile π is denoted vπi (h). The EV for the entire game is denoted vi(π).

5.3.2 From World States to Public Belief States
As shown in Section 5.2.1, world states and histories do not necessarily have unique values in
imperfect-information games because their values depend not just on the true state of the world,
but also on what each agent knows, what each agent knows about what the other agents know,
etc. In other words, it depends on the common knowledge [2] among the agents.

In this section we describe a mechanism for converting an imperfect-information game into
a continuous state space perfect-information game where the state description contains the com-
mon knowledge of all agents. In this way, techniques that have been applied to perfect-information
games can also be applied to imperfect-information games (with some modifications).

9As explained in [88], it may be possible for agents to infer common knowledge beyond just public observations.
However, doing this additional reasoning is inefficient both theoretically and practically.

155

For intuition, consider a game such as poker in which one of 52 cards is privately dealt to
each player. The players choose actions based on their private card, and eventually receive a
reward once the game ends. Now consider a modification of this game in which the players
cannot see their private cards; instead, their cards are seen by a “referee”. When a player acts,
they announce the probability they would take each action with each possible private card. The
referee then chooses an action on the player’s behalf according to the announced probability
distribution for the player’s true private card. At the beginning of this game, players do not know
their private card and assign equal probability to each card. However, after each action by the
referee, players can update their belief distribution about which card they are holding via Bayes’
Rule. Likewise, players can update their belief distribution about an opponent’s private card
through the same operation. Thus, the probability that each player is holding each private card is
common knowledge among all players at all times in this game.

The critical insight for this section is that these two games are strategically identical, but
the latter game contains no private information and is instead a continuous state space perfect-
information game. While players do not announce their action probabilities for each possible
card in the first game, we assume (as stated in Section 5.3.1) that all players’ policies are common
knowledge, and therefore the probability that a player would choose each action for each possible
card is indeed known by all players.

Of course, at test time (i.e., when our agent actually plays against a human opponent) the
opponent does not actually announce their entire policy and therefore our agent does not know the
true probability distribution over opponent cards. We later address this problem in Section 5.3.4.

Going even further, consider a similar game but in which players have no single private card.
Instead, players have a weight (or, equivalently, a probability) p(s) for each private card s such
that the weights of all cards sum to 1. When a player acts, the environment (i.e., the referee)
chooses an action a with probability

∑
s π(a|s)p(s), where π(a|s) is the player’s announced

probability for choosing action a with private card s. After an action is chosen, the weight for
each card is updated according to Bayes’ Rule. Again, this game is strategically identical to the
two already described.

This intuition can be formalized by defining a public belief state (PBS) PBS β as a common-
knowledge joint probability distribution over the agents’ possible infostates.10 Formally, let
Si(spub) be the set of infostates that player i may be in given a public state spub. Then PBS
β = (∆S1(spub), ...,∆SN(spub)) where ∆S1(spub) denotes a probability distribution over the ele-
ments of S1(spub).11 In perfect-information games, PBSs reduce to histories, which in two-player
zero-sum games effectively reduce to world states.

We can generalize the notion of “state value” to imperfect-information games by defining a
belief subgame (which we refer to simply as a subgame for the rest of this paper) to be rooted

10One could alternatively define a PBS as a probability distribution over histories inH(spub) for some public state
spub. However, any PBS that can arise in play (i.e., that can arise from the agents playing some policy profile π) can
always be described by a joint probability distribution over the agents’ possible infostates [118, 135], so we use this
latter definition for simplicity.

11Frequently, a PBS can be compactly summarized by discarding parts of the history that are no longer relevant.
For example, in poker we do not need to track the entire history of actions, but just the amount of money each player
has in the pot, the public board cards, and whether there were any bets in the current round.

156

at a PBS.12 Just as in perfect-information subgames, the optimal agent policies in a subgame
rooted at a PBS do not depend on anything (policies, observations, etc.) that came before the
PBS. Thus, a two-player zero-sum subgame rooted at a PBS β has a unique value V1(β) =∑

h∈H(spub(β))

(
p(h)vπ

∗
1 (h)

)
, where spub(β) is the public state corresponding to β and π∗ is a Nash

equilibrium in the subgame. Since the game is zero-sum, V1(β) = −V2(β). Just as one can
compute an optimal policy in perfect-information games via depth-limited search by learning a
value function for world states, we show in this paper that one can compute an optimal policy in
imperfect-information games via search by learning a value function V1 : B → R, where B is the
continuous state space of PBSs.

However, existing depth-limited search algorithms operate on values similar to the gradient
of V1 rather than on V1 itself. We therefore learn these gradient-like values directly rather than
learning V1.

Specifically, existing depth-limited search algorithms for imperfect-information games re-
quire the EVs of infostates for PBSs [31, 110]. The EV of infostate si in β assuming π∗ is played
is

vπ
∗

i (si|β) =
∑

h∈H(si)

p(h|si, β)vπ
∗

i (h)

Theorem 23 proves that infostate EVs for β under some Nash equilibrium π∗ can be derived
from Vi.
Theorem 23. Let Ṽi be the extension of Vi to unnormalized belief distributions. For any (normal-
ized) belief β and any subgradient −ḡi of −Ṽi(β) with respect to β, Vi(β) + ḡi · ŝi = vπ

∗
i (si|β)

for some Nash equilibrium policy π∗, where ŝi is the unit vector in direction si.
Therefore, we learn an infostate-value function v̂ : B → R|S1|+|S2| that directly approximates

for each si the average of the sampled vπ∗i (si|β) values produced by our RL+Search procedure
at β.

Unlike the PBS value V1(β), the infostate values may not be unique and depend on which
Nash equilibrium is played in the subgame. Each execution k of our RL+Search algorithm may
converge to a different π∗,k in β, so the samples of vπ∗,ki (β) may not be identical. Nevertheless,
Theorem 24 states that the average of valid samples of vπ

∗
k
i (β) corresponds to vπ∗i (β) for some

other equilibrium policy π∗. Therefore v̂ should approximate vπ∗i for some equilibrium policy.
Theorem 24. Let X be the vector of infostate EVs in PBS β corresponding to minimax policy
profile π∗,X , and let Y be the vector of infostate EVs in β corresponding to minimax policy profile
π∗,Y . Then λX + (1− λ)Y is the vector of infostate EVs in β corresponding to minimax policy
profile λπ∗,X + (1− λ)π∗,Y for 0 ≤ λ ≤ 1.

Given that agents play according to policy profile π, the PBS that arises at public state spub,
the infostate si, and the history h is denoted βπspub

, βπsi , and βπh , respectively.
A depth-limited belief subgame (which we refer to simply as a depth-limited subgame) is a

belief subgame that extends only for some limited number of actions into the future. In this paper,
search is performed over a fixed-size depth-limited subgame (as opposed to Monte Carlo Tree
Search, which grows the subgame as more search iterations are performed [53]), and we assume

12Past work defines a subgame to be rooted at a public state [16, 20, 31, 87, 88, 109, 110, 135, 147]. However,
imperfect-information subgames rooted at a public state do not have well-defined values.

157

that all histories sharing a public state are either all in the subgame or all not in the subgame. A
history z that has children in the full game but does not have children in the subgame is a leaf
node, and agent i receives a reward of v̂(si(z)|βπz) at such a history, where π is the policy profile
in the subgame. This means that the value of a leaf node is conditional on the beliefs at that leaf
node, which in turn are conditional on the policy in the subgame.

5.3.3 Self Play Reinforcement Learning and Search for Public Belief States

At a high level, ReBeL, shown in Algorithm 4, is similar to RL+Search algorithms used for
perfect-information games, but operating on PBSs rather than world states. At the start of the
game, a depth-limited subgame rooted at the initial PBS βr is generated. This subgame is solved
(i.e., a Nash equilibrium is approximated) by running T iterations of an iterative equilibrium-
finding algorithm and using the learned value network v̂ to approximate leaf values on every
iteration. The infostate values at βr are added as training examples for v̂ and (optionally) the
policies in the subgame are added as training examples for the policy network. Finally, a leaf
node z is sampled and the process repeats with the PBS at z being the new subgame root. Detailed
pseudocode is provided in Section 5.3.7.

Algorithm 4 ReBeL: RL and Search for Imperfect-Information Games
function SELFPLAY(βr, θv, θπ, Dv, Dπ) . βr is the current PBS

while !ISTERMINAL(βr) do
G← CONSTRUCTSUBGAME(βr)
π̄, πtwarm ← INITIALIZEPOLICY(G, θπ) . twarm = 0 and π0 is uniform if no warm start
G← SETLEAFVALUES(G, π̄, πtwarm , θv)
v(βr)← COMPUTEEV(G, πtwarm)
tsample ∼ unif{twarm + 1, T} . Sample an iteration
for t = (twarm + 1)..T do

πt ← UPDATEPOLICY(G, πt−1)
π̄ ← t−1

t
π̄ + 1

t
πt

G← SETLEAFVALUES(G, π̄, πt, θv)
v(βr)← t−1

t
v(βr) + 1

t
COMPUTEEV(G, πt)

if t = tsample then
β′r ← SAMPLELEAF(G, πt) . Sample a leaf PBS according to the new policies

Add {βr, v(βr)} to Dv . Add to value net training data
for β ∈ G do . Loop over the PBS at every public state in G

Add {β, π̄(β)} to Dπ . Add to policy net training data (optional)
βr ← β′r

Search in a depth-limited imperfect-information subgame

There exist a number of iterative algorithms for solving imperfect-information games [13, 72,
92, 93, 163]. Our framework is flexible with respect to the choice of a search algorithm.

158

We assume that the search algorithm used is an iterative self-play algorithm. On each itera-
tion t, the algorithm determines a policy profile πt. Next, the value of every leaf node z is set
according to v̂(si(z)|βπ̄tz) or v̂(si(z)|βπtz), depending on the algorithm, where π̄t denotes the av-
erage policy profile over iterations 1 to t. Given πt and the leaf node values, each infostate in βr
has a well-defined value. This vector of values, denoted vπt(βr), is computed and stored. Next,
the algorithm chooses a new policy profile πt+1, and the process repeats for T iterations. For
many algorithms, including CFR, the average policy profile π̄T converges to a Nash equilibrium
as T →∞.

After solving a subgame rooted at PBS βr with an iterative algorithm that has run for T
iterations, the value vector (

∑T
t=1 v

πt(βr))/T is added to the training data for v̂(βr).13

Prior work on search in imperfect-information games has used the CFR Decomposition
(CFR-D) algorithm [31, 110]. Section 5.3.9 describes CFR-AVG, a modification of CFR-D that
sets the value of a leaf node z based on π̄t rather than πt, which addresses some weaknesses of
CFR-D. Section 5.3.5 also shows experimental results for fictitious play (FP) [13].

Self-play reinforcement learning

Algorithm 4 learns values for PBSs through self play. After solving a subgame rooted at PBS βr,
the value vector for the root infostates is added to the training dataset for v̂. Next, a leaf PBS β′r
is sampled and a new subgame rooted at β′r is solved. This process repeats until the game ends.

Since the subgames are solved using an iterative algorithm, we want v̂ to be accurate for
leaf PBSs on every iteration. Therefore, a leaf node z is sampled according to πt on a random
iteration t ∼ unif{0, T − 1}, where T is the number of iterations of the search algorithm.14 To
ensure sufficient exploration, one agent samples random actions with probabilility ε > 0.15 In
CFR-D β′r = βπ

t

z , while in CFR-AVG and FP β′r = βπ̄
t

z .
Eventually, a subgame rooted at β∗r is reached near the end of the game that does not contain

leaf nodes (i.e., the subgame is not depth-limited). v̂ will therefore learn correct values vπ∗(si|β∗r)
for every root infostate si and for some Nash equilibrium π∗ (except for an error term that disap-
pears as T →∞). In the future, when β∗r is a leaf PBS of a different subgame, it will be possible
to more accurately compute the value of that subgame. In this way, accurate PBS values will
“bubble up” the game tree and v̂ will increase in accuracy over time.

Theorem 25 states that, with perfect function approximation, running Algorithm 4 will pro-
duce a value network whose error is bounded by O(1√

T
) after a finite amount of time for any

PBS that could be encountered during play, where T is the number of CFR iterations being run
in subgames.
Theorem 25. Consider an idealized value approximator that returns the most recent sample of
the value for sampled PBSs, and 0 otherwise. Running Algorithm 4 with T iterations of CFR in
each subgame will, after a finite amount of time, produce a value approximator that has error of
at most C√

T
for any PBS that could be encountered during play, where C is a game-dependent

constant.

13For some algorithms, including CFR-AVG and FP, an alternative is to add the value vector vπ̄
T

(βr).
14For FP, we pick a random agent i and sample according to (πti , π̄

t
−i) to reflect the search operation.

15The algorithm is still correct if all agents sample random actions with probability ε, but that is less efficient
because the value of a leaf node that can only be reached if both agents go off policy is irrelevant.

159

Adding a policy network

Algorithm 4 will result in v̂ converging correctly even if a policy network is not used. However,
if a policy network is not used then in the first several iterations t of running a search algorithm
in the subgames, π̄t may be very far from an equilibrium. Since, in some search algorithms, π̄t

determines the PBSs at the leaf nodes of a subgame, not using a policy network means the learned
value network must be accurate over a wide domain of PBSs. Additionally, adding an accurate
policy network will reduce the number of search iterations necessary to closely approximate a
Nash equilibrium.

Algorithm 4 can train a policy network Π̂ : β → (∆A)|S1|+|S2| by adding π̄T (β) for each
PBS β in the subgame to a training dataset each time a subgame is solved (i.e., T iterations of
CFR have been run in the subgame).

In our experiments, we use a simplified form of the warm start technique described in Sec-
tion 3.2 to warm start CFR from the trained policy network. The simplifications we make are
that we use an exact best response rather than a weakened best response, and we always warm
start to 15 CFR iterations.

Algorithm behavior in perfect-information games

Perfect-information games can be viewed as a special case of imperfect-information games in
which public states are equivalent to histories, and therefore have the same value as world states.
Since the value of a leaf node in a perfect-information subgame does not depend on the policy in
the subgame, only one search iteration is required to solve a subgame.

Thus, in perfect-information games Algorithm 4 reduces to an algorithm similar to Alp-
haZero. The major differences are that AlphaZero plays just a single action before solving a
new subgame while ReBeL plays the subgame policy until reaching a leaf node, and AlphaZero
grows the size of the subgame during search, and AlphaZero trains on the final reward received
at the end of the game.

5.3.4 Safe Search with Public Belief States

As discussed in subsection 5.3.2, we assume during training that the players’ entire policies are
common knowledge. This, in turn, means that the current public belief state is always known by
all players. In self-play training, all players’ policies are indeed common knowledge. However,
at test time (such as when playing against an actual human) the opponent obviously does not
make their entire policy public. What, then, should ReBeL assume the opponent’s policy is?

This question was examined in detail in Section 5.1. As explained in that section, unsafe
search, in which we assume the opponent plays a specific Nash equilibrium policy, may be
highly exploitable because the opponent might take advantage of our assumption and simply
play a different policy. Section 5.1 described several prior and new safe search techniques which
are not as exploitable.

However, using those safe search techniques requires already having access to a trained value
network v̂, which makes them difficult to use during self-play training, and using safe search at
test time when it was not used during training might lead to novel PBSs for which the value

160

network might not be accurate. Moreover, safe search tends to do worse than unsafe search in
terms of head-to-head performance, and for this reason every past competitive agent used unsafe
search either partially or entirely. [21, 23, 27, 110, 136].

We now introduce a new safe search technique that can be used when conducting depth-
limited search using a PBS value network. Unlike all previous safe search techniques, this new
technique does not any additional constraints. Instead, it simply runs the exact same ReBeL al-
gorithm at test time that was used during self-play training. Specifically, when conducting search
at test time it picks a random iteration and assumes all agents play according to that iteration’s
policy profile (or, in the case of CFR-AVG, the average policy profile up to that iteration) for the
entire subgame. This leads to a PBS leaf node, which defines a new subgame, and the process re-
peats. This is very similar to unsafe search, except unsafe search always uses the average policy
profile of the final iteration. By choosing a random iteration, the opponent does not know what
belief distribution we are assuming and therefore is unable to exploit our assumption.

This leads to a counter-intuitive result in which the policy output by our search algorithm
may be extremely pure and highly exploitable, and yet the algorithm itself is not exploitable.
For example, in the modified Rock-Paper-Scissors subgame shown in Figure 5.8a, our algorithm
may output a policy of 100% Rock for player 2. However, the algorithm is still unexploitable so
long as the probability it outputs that policy is 40% because the opponent would not know when
our policy is to play Rock with 100% probability. Thus, there is a distinction between the policy
our algorithm samples for a specific “episode” of play, versus the “true” policy which is played
by the algorithm in expectation.

Theorem 26, the proof of which is in Section 5.3.11, states that this new safe search algorithm
approximates a Nash equilibrium. Specifically, Theorem 26 states that once a value network is
trained according to Theorem 25, using Algorithm 4 at test time (without off-policy exploration)
will approximate a Nash equilibrium.
Theorem 26. If Algorithm 4 is run at test time with no off-policy exploration, a value network
with error at most δ for any leaf PBS that was trained to convergence as described in Theorem 25,
and with T iterations of CFR being used to solve subgames, then the algorithm plays a (δC1 +
δC2√
T

)-Nash equilibrium, where C1, C2 are game-specific constants.
In other words, the same algorithm we describe for training also approximates a Nash equi-

librium at test time. This result applies regardless of how the value network was trained and
therefore can be applied to prior algorithms that use PBS value functions [110, 136].

Since a random iteration is selected, there is a risk that we may select a very early iteration,
or even the first iteration, in which the policy is extremely poor. This can be mitigated by using
modern equilibrium-finding algorithms, such as Linear CFR or Discounted CFR [22], that assign
little or no weight to the early iterations that are played while still converging to a Nash equilib-
rium. Theorem 26 still holds so long as the equilibrium-finding algorithm that is used converges
to a Nash equilibrium.

5.3.5 Experiments

We measure exploitability of a policy π∗, which is
∑

i∈N maxπ vi(π, π
∗
−i)/|N |. All CFR ex-

periments use alternating-updates Linear CFR [22]. All FP experiments use alternating-updates

161

Linear Optimistic FP, which is a novel variant described in Section 5.3.8.
We evaluate on the benchmark imperfect-information games of heads-up no-limit Texas

hold’em poker (HUNL), which is described in Section 2.4.3, and Liar’s Dice, which is described
in Section 2.4.6. We also evaluate our techniques on turn endgame hold’em (TEH), a variant of
no-limit Texas hold’em in which both players automatically check/call for the first two of the
four betting rounds in the game.

In HUNL and TEH, we reduce the action space to at most nine actions using domain knowl-
edge of typical bet sizes. However, our agent responds to any “off-tree” action at test time by
adding the action to the subgame [23, 27]. The bet sizes and stack sizes are randomized dur-
ing training. For TEH we train on the full game and measure exploitability on the case of both
players having $20,000, unperturbed bet sizes, and the first four board cards being 3♠7♥T♦K♠.

For HUNL, our agent uses far less domain knowledge than any prior competitive AI agent.
Additionally, our AI agent is trained on all stack sizes between 5,000 and 25,000 chips, rather
than just the standard 20,000. Section 6.7 discusses the poker domain knowledge leveraged in
ReBeL.

We approximate the value and policy functions using artificial neural networks. Both net-
works are multilayer perceptrons with Gaussian Error Linear Unit [71] activation functions and
LayerNorm [3]. Both networks are trained with Adam [84]. We use pointwise Huber loss as the
criterion for the value function and mean squared error (MSE) over probabilities for the policy.
In preliminary experiments we found MSE for the value network and cross entropy for the policy
network did worse. See Section 5.3.10 for the hyperparameters.

We use PyTorch [120] to train the networks. We found data generation to be the bottleneck
due to the sequential nature of the FP and CFR algorithms and the evaluation of all leaf nodes on
each iteration. For this reason we use a single machine for training and up to 128 machines with
8 GPUs each for asynchronous data generation. Figure 5.9 shows ReBeL, using a learned value
network, reaches a level of exploitability in TEH equivalent to running about 125 iterations of
full-game tabular linear CFR. For context, top poker agents typically use between 100 and 1,000
tabular CFR iterations [12, 21, 23, 27, 110].

0 50 100 150 200 250
Search Iterations

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

yn
(R

el
at

iv
e

to
 In

iti
al

 P
ot

 S
ize

)

Random Beliefs Value Net
Full Game
Perfect Value Net
Self-Play Value Net
Self-Play Value/Policy Net

0 50 100 150 200 250 300
Training Epochs

Self-Play Value Net (250 Search Iterations)

Figure 5.9: Convergence of different techniques in TEH. All subgames are solved using CFR-AVG.
Perfect Value Net uses an oracle function to return the exact value of leaf nodes on each iteration. Self-
Play Value Net uses a value function trained through self play. Self-Play Value/Policy Net additionally
uses a policy network to warm start CFR. Random Beliefs trains the value net on random PBSs.

Table 5.6 shows results for ReBeL in HUNL. We compare ReBeL to BabyTartanian8 [17]

162

and Slumbot, prior champions of the Computer Poker Competition, and the local best response
(LBR) [103] algorithm. We also present results against Dong Kim, a top human HUNL expert
that did best among the four top humans that played against Libratus. Kim played 7,500 hands.
Variance was reduced by using AIVAT [32]. ReBeL played faster than 2 seconds per hand and
never needed more than 5 seconds for a decision.

Bot Name Slumbot BabyTartanian8 LBR Top Humans

DeepStack - - 383± 112 -

Libratus - 63 ± 14 - 147 ± 39

Modicum 11 ± 5 6 ± 3 - -

ReBeL 45 ± 5 9 ± 4 881 ± 94 165 ± 69

Table 5.6: Head-to-head results of ReBeL versus BabyTartanian8 [17] and Slumbot, as well as top human
expert Dong Kim, measured in thousandths of a big blind per game. We also show performance against
LBR [103] where the LBR agent must call for the first two betting rounds, and can either fold, call, bet
1× pot, or bet all-in on the last two rounds. The ± shows one standard deviation. For Libratus, we list the
aggregate score against all top humans; Libratus beat Dong Kim by 29 with an estimated ± of 78.

Table 5.7 shows ReBeL also converges to an approximate Nash in several versions of Liar’s
Dice. Of course, tabular CFR does better than ReBeL when using the same number of CFR
iterations, but tabular CFR quickly becomes intractable to run as the game grows in size.

Algorithm 1x4f 1x5f 1x6f 2x3f

Full-game FP 0.012 0.024 0.039 0.057
Full-game CFR 0.001 0.001 0.002 0.002

ReBeL FP 0.041 0.020 0.040 0.020
ReBeL CFR-D 0.017 0.015 0.024 0.017

Table 5.7: Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6 faces
and 2 dice with 3 faces. The top two rows represent baseline numbers when a tabular version of the
algorithms is run on the entire game for 1,024 iterations. The bottom 2 lines show the performance of
ReBeL operating on subgames of depth 2 with 1,024 search iterations. For exploitability computation
of the bottom two rows, we averaged the policies of 1,024 playthroughs and thus the numbers are upper
bounds on exploitability.

5.3.6 Conclusions
We describe ReBeL, an algorithm that generalizes the paradigm of self-play reinforcement learn-
ing and search to imperfect-information games. We prove that ReBeL computes to an approxi-
mate Nash equilibrium in two-player zero-sum games and demonstrate that it produces superhu-
man performance in the benchmark game of heads-up no-limit Texas hold’em.

163

ReBeL has some limitations that present avenues for future research. Most prominently, the
input to its value and policy functions currently grows linearly with the number of infostates
in a public state. This is intractable in games such as Recon Chess [116] that have strategic
depth but very little common knowledge. ReBeL’s theoretical guarantees are also limited only to
two-player zero-sum games.

Nevertheless, ReBeL achieves low exploitability in benchmark games and superhuman per-
formance in heads-up no-limit Texas hold’em while leveraging far less expert knowledge than
any prior bot. We view this as a major step toward developing universal techniques for multi-
agent interactions.

5.3.7 Pseudocode for ReBeL
Algorithm 5 presents ReBeL in more detail.

We define the average of two policies to be the policy that is, in expectation, identical
to picking one of the two policies and playing that policy for the entire game. Formally, if

π = απ1 + (1 − α)π2, then π(si) =
(xπ1
i (si)α)π1(si)+(xπ2

i (si)(1−α))π2(si)

x
π1
i (si)α+x

π2
i (si)(1−α)

where xπ1
i (si) is the

product of the probabilities for all agent i actions leading to si. Formally, xπi (si) of infostate
si = (O0

i , a
0
i , O

1
i , a

1
i , ..., O

t
i) is xπi (si) = Πt(a

t
i).

5.3.8 Fictitious Linear Optimistic Play
Fictitious Play (FP) [13] is an extremely simple iterative algorithm that is proven to converge
to a Nash equilibrium in two-player zero-sum games. However, in practice it does so at an
extremely slow rate. On the first iteration, all agents choose a uniform policy π0

i and the average
policy π̄0

i is set identically. On each subsequent iteration t, agents compute a best response to
the other agents’ average policy πti = argmaxπi vi(πi, π̄

t−1
−i) and update their average policies to

be π̄ti = t−1
t
π̄t−1
i + 1

t
πti . As t→∞, π̄t converges to a Nash equilibrium in two-player zero-sum

games.
It has also been proven that a family of algorithms similar to FP known as generalized weak-

ened fictitious play (GWFP) also converge to a Nash equilibrium so long as they satisfy certain
properties [100, 154], mostly notably that in the limit the policies on each iteration converge to
best responses.

In this section we introduce a novel variant of FP we call Fictitious Linear Optimistic Play
(FLOP) which is a form of GWFP. FLOP is inspired by related variants in CFR, in particular
Linear CFR [22]. FLOP converges to a Nash equilibrium much faster than FP while still being
an extremely simple algorithm. However, variants of CFR such as Linear CFR and Discounted
CFR [22] still converge much faster in most large-scale games.

In FLOP, the initial policy π0
i is uniform. On each subsequent iteration t, agents compute a

best response to an optimistic [40, 122, 148] form of the opponent’s average policy in which πt−1
−i

is given extra weight: πti = argmaxπi vi(πi,
t
t+2
π̄t−1
−i + 2

t+2
πt−1
−i). The average policy is updated

to be π̄ti = t−1
t+1
π̄t−1
i + 2

t+1
πti . Theorem 27 proves that FLOP is a form of GWFP and therefore

converges to a Nash equilibrium as t→∞.
Theorem 27. FLOP is a form of Generalized Weakened Fictitious Play.

164

Algorithm 5 ReBeL
function REBEL-LINEAR-CFR-D(βr, θv, θπ, Dv, Dπ) . βr is the current PBS

while !ISTERMINAL(βr) do
G← CONSTRUCTSUBGAME(βr)
π̄, πtwarm ← INITIALIZEPOLICY(G, θπ) . twarm = 0 and π0 is uniform if no warm start
G← SETLEAFVALUES(βr, πtwarm , θv)
v(βr)← COMPUTEEV(G, πtwarm)
tsample ∼ linear{twarm + 1, T} . Probability of sampling iteration t is proportional to t
for t = (twarm + 1)..T do

πt ← UPDATEPOLICY(G, πt−1)
π̄ ← t−1

t+1
π̄ + 2

t+1
πt

G← SETLEAFVALUES(βr, πt, θv)
v(βr)← t−1

t+1
v(βr) + 2

t+1
COMPUTEEV(G, πt)

if t = tsample then
β′r ← SAMPLELEAF(G, πt) . Sample a leaf PBS according to the new policies

Add {βr, v(βr)} to Dv . Add to value net training data
for β ∈ G do . Loop over the PBS at every public state in G

Add {β, π̄(β)} to Dπ . Add to policy net training data (optional)
βr ← β′r

function SETLEAFVALUES(β, π, θv)
if ISLEAF(β) then

for si ∈ β do . For each infostate si corresponding to β
v(si) = v̂(si|β, θv)

else
for a ∈ A(β) do

SETLEAFVALUES(T (β, π, a), π, θv)

function SAMPLELEAF(G, π)
i∗ ∼ unif{1, N}, h ∼ βr . Sample a history randomly from the root PBS and a random

player
while !ISLEAF(h) do

c ∼ unif[0, 1]
for i = 1..N do

if i == i∗ and c < ε then . we set ε = 0.25 during training, ε = 0 at test time
sample an action ai uniform random

else
sample an action ai according to πi(si(h))

h ∼ τ(h, a)

return βh . Return the PBS corresponding to leaf node h

165

Proof. Assume that the range of payoffs in the game isM . Since πti = argmaxπi vi(πi,
t
t+2
π̄t−1
−i +

2
t+2
πt−1
−i), so πti is an εt-best response to π̄t−1

−i where εt < M 2
t+2

and εt → 0 as t → ∞. Thus,
FLOP is a form of GWFP with αt = 2

t
.

64 128 256 512 1024 2048 4096 8192 16384

10 4

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

1x4f
FP
Linear FP
FLOP
Linear CFR

64 128 256 512 1024 2048 4096 8192 16384

1x5f
FP
Linear FP
FLOP
Linear CFR

64 128 256 512 1024 2048 4096 8192 16384
Search Iterations

10 4

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

y

1x6f

FP
Linear FP
FLOP
Linear CFR

64 128 256 512 1024 2048 4096 8192 16384
Search Iterations

2x3f

FP
Linear FP
FLOP
Linear CFR

Figure 5.10: Exploitability of different algorithms of 4 variants of Liar’s Dice: 1 die with 4, 5, or 6 faces
and 2 dice with 3 faces. For all games FLOP outperforms Linear FP, but does not match the quality of
Linear CFR.

5.3.9 CFR-AVG: CFR Decomposition using Average Strategy
On each iteration t of CFR-D, the value of every leaf node z is set to v̂(si(z)|βπtz). Other than
changing the values of leaf nodes every iteration, CFR-D is otherwise identical to CFR. If T
iterations of CFR-D are conducted with a value network that has error at most δ for each infostate
value, then π̄T has exploitability of at most k1δ + k2/

√
T where k1 and k2 are game-specific

constants [110].
Since it is the average policy profile π̄t, not πt, that converges to a Nash equilibrium as

t → ∞, and since the leaf PBSs are set based on πt, the input to the value network v̂ may span
the entire domain of inputs even as t → ∞. For example, suppose in a Nash equilibrium π∗

the probability distribution at βπ∗z was uniform. Then the probability distribution at βπtz for any
individual iteration t could be anything, because regardless of what the probability distribution is,
the average over all iterations could still be uniform in the end. Thus, v̂ may need to be accurate
over the entire domain of inputs rather than just the subspace near βπ∗z .

In CFR-AVG, leaf values are instead set according to the average policy π̄t on iteration t.
When a leaf PBS is sampled, the leaf node is sampled with probability determined by πt, but the
PBS itself is defined using π̄t.

166

10 15 22 33 49 73 109 163 244 366 549 823 1234
Search Iterations

10 3

10 2

10 1

100

Ex
pl

oi
ta

bi
lit

yn
(R

el
at

iv
e

to
 In

iti
al

 P
ot

 S
ize

)

Non-alternating FP
FP
Optimistic FP
Linear FP
Linear Optimistic FP (FLOP)
Linear CFR

Figure 5.11: Exploitability of different algorithms for Turn Endgame HoldâĂŹem.

We first describe the tabular form of CFR-D [31]. Consider a game G′ and a depth-limited
subgame G, where both G′ and G share a root but G extends only a limited number of actions
into the future. Suppose that T iterations of a modified form of CFR are conducted in G′. On
each iteration t ≤ T , the policy π(si) is set according to CFR for each si ∈ G. However, for
every infostate s′i ∈ G′ \ G, the policy is set differently than what CFR would call for. At each
leaf public state s′pub of G, we solve a subgame rooted at βπts′pub

by running T ′ iterations of CFR.

For each s′i in the subgame rooted at βπts′pub
, we set πt(s′i) = π̄T (s′i) (where πt(s′i) is the policy for

the infostate in G and π̄T (s′i) is the policy for the infostate in the subgame rooted at βπts′pub
). It is

proven that as T ′ →∞, CFR-D converges to a O(1√
T

)-Nash equilibrium [31].
CFR-AVG is identical to CFR-D, except the subgames that are solved on each iteration t are

rooted at βπ̄ts′pub
rather than βπts′pub

. Theorem 28 proves that CFR-AVG achieves the same bound on
convergence to a Nash equilibrium as CFR-D.
Theorem 28. Suppose that T iterations of CFR-AVG are run in a depth-limited subgame, where
on each iteration t ≤ T the subgame rooted at each leaf PBS βπ̄

t

s′pub
is solved completely. Then π̄T

is a C√
T

-Nash equilibrium for a game-specific constant C.
CFR-AVG has a number of potential benefits over CFR-D:
• Since π̄t converges to a Nash equilibrium as t→∞, CFR-AVG allows v̂ to focus on being

accurate over a more narrow subspace of inputs.
• When combined with a policy network (as introduced in Section 5.3.3), CFR-AVG may

allow v̂ to focus on an even more narrow subspace of inputs.
• Since π̄t+1 is much closer to π̄t than πt+1 is to πt, in practice as t becomes large one can

avoid querying the value network on every iteration and instead recycle the values from a
previous iteration. This may be particularly valuable for Monte Carlo versions of CFR.

While CFR-AVG is theoretically sound, we modify its implementation in our experiments to
make it more efficient in a way that has not been proven to be theoretically sound. The reason
for this is that while the input to the value network is βπ̄ts′pub

(i.e., the leaf PBS corresponding to π̄t

being played in G, the output needs to be the value of each infostate si given that πt is played in

167

G. Thus, unlike CFR-D and FP, in CFR-AVG there is a mismatch between the input policy and
the output policy.

One way to cope with this is to have the input consist of both βπ̄ts′pub
and βπts′pub

. However, we
found this performed relatively poorly in preliminary experiments when trained through self play.

Instead, on iteration t− 1 we store the output from v̂(si|βπ̄
t−1

s′pub
) for each si and on iteration t

we set vt(si) to be tv̂(si|βπ̄
t

s′pub
) − (t − 1)v̂(si|βπ̄

t−1

s′pub
) (in vanilla CFR). The motivation for this is

that πt = tπ̄t− (t− 1)π̄t−1. If vt(h) = vt−1(h) for each history h in the leaf PBS, then this mod-
ification of CFR-AVG is sound. Since vt(h) = vt−1(h) when h is a full-game terminal node (i.e.,
it has no actions), this modified form of CFR-AVG is identical to CFR in a non-depth-limited
game. However, that is not the case in a depth-limited subgame, and it remains an open question
whether this modified form of CFR-AVG is theoretically sound in depth-limited subgames. Em-
pirically, however, we found that it converges to a Nash equilibrium in turn endgame hold’em
for every set of parameters (e.g., bet sizes, stack sizes, and initial beliefs) that we tested.

Figure 5.12 shows the performance of CFR-D, CFR-AVG, our modified form of CFR-AVG,
and FP in TEH when using an oracle function for the value network. It also shows the perfor-
mance of CFR-D, our modified form of CFR-AVG, and FP in TEH when using a value network
trained through self-play. Surprisingly, the theoretically sound form of CFR-AVG does worse
than CFR-D when using an oracle function. However, the modified form of CFR-AVG does
better than CFR-D when using an oracle function and also when trained through self play.

0 50 100 150 200 250
Search Iterations

10 3

10 2

10 1

Ex
pl

oi
ta

bi
lit

yn
(R

el
at

iv
e

to
 In

iti
al

 P
ot

 S
ize

)

CFR-D Oracle Value Net
CFR-AVE Oracle Value Net
Modified CFR-AVE Oracle Value Net
FP Oracle Value Net

0 50 100 150 200 250
Search Iterations

CFR-D Self-Play Value Net
Modified CFR-AVE Self-Play Value Net
FP Self-Play Value Net

Figure 5.12: Left: comparison of CFR-D, CFR-AVG, modified CFR-AVG, and FP using an oracle value
network which returns exact values for leaf PBSs. Right: comparison of CFR-D, modified CFR-AVG,
and FP using a value network learned through 300 epochs of self play.

We also trained a model on HUNL with training parameters that were identical to the one
reported in Section 5.3.5, but using CFR-D rather than CFR-AVG. That model lost to BabyTar-
tanian8 by 10 ± 3 whereas the CFR-AVG model won by 9 ± 4. The CFR-D model also beat
Slumbot by 39± 6 whereas the CFR-AVG model won by 45± 5.

Proof of Theorem 28

Our proof closely follows from [31] and [110].

Proof. Let Rt(si) be the (cumulative) regret of infostates si on iteration t. We show that the
regrets of all infostates in G′ are bounded by O(

√
T) and therefore the regret of the entire game

is bounded by O(
√
T).

168

First, consider the infostates in G. Since their policies are chosen according to CFR each
iteration, their regrets are bounded by O(

√
T) regardless of the policies played in descendant

infostates.
Next consider an infostate si ∈ G′ \ G. We prove inductively that Rt(si) ≤ 0. Let βπt be

the PBS at the root of the subgame containing si in CFR-D, and βπ̄t be the PBS at the root of
the subgame containing si in CFR-AVG. On the first iteration, βπt = βπ̄

t . Since we assume
CFR-AVG computes an exact equilibrium in the subgame rooted at βπ̄t = βπ

t , so Rt(si) = 0 on
the first iteration.

Next, we prove Rt+1(si) ≤ Rt(si). We define a∗,t as

a∗,ti = argmax
ai

t∑
t′=0

vt
′
(si, ai) (5.16)

By definition of regret,

Rt+1(si) =
t+1∑
t′=0

(
vt
′
(si, a

∗,t+1
i)− vt′(si)

)
(5.17)

Separating iteration t+ 1 from the summation we get

Rt+1(si) =
t∑

t′=0

(
vt
′
(si, a

∗,t+1
i)− vt′(si)

)
+
(
vt+1(si, a

∗,t+1
i)− vt+1(si)

)
(5.18)

By definition of a∗,ti we know
∑t

t′=0 v
t′(si, a

∗,t+1
i) ≤

∑t
t′=0 v

t′(si, a
∗,t
i), so

Rt+1(si) ≤
t∑

t′=0

(
vt
′
(si, a

∗,t
i)− vt′(si)

)
+
(
vt+1(si, a

∗,t+1
i)− vt+1(si)

)
(5.19)

Since
∑t

t′=0

(
vt
′
(si, a

∗,t
i)− vt′(si)

)
is the definition of Rt(si) we get

Rt+1(si) ≤ Rt(si) +
(
vt+1(si, a

∗,t+1
i)− vt+1(si)

)
(5.20)

Since πt+1 = π∗,t+1 in the subgame where π∗,t+1 is an exact equilibrium of the subgame rooted at
βπ̄

t+1 , so πt+1 is a best response to π̄t+1 in the subgame and therefore vt+1(si, a
∗,t+1
i) = vt+1(si).

Thus,
Rt+1(si) ≤ Rt(si) (5.21)

5.3.10 Hyper parameters
In this section we provide details of the value and policy networks and the training procedures.

We approximate the value and policy functions using artificial neural networks. The input
to the value network consists of three components for both games: agent index, representation
of the public state, and a probability distribution over infostates for both agents. For poker, the

169

public state representation consists of the board cards and the common pot size divided by stack
size; for Liar’s Dice it is the last bid and the acting agent. The output of the network is a vector
of values for each possible infostate of the indexed agent, e.g., each possible poker hand she can
hold.

We trained a policy network only for poker. The policy network state representation addi-
tionally contains pot size fractions for both agents separately as well as a flag for whether there
have been any bets so far in the round. The output is a probability distribution over the legal
actions for each infostate.

As explained in section 5.3.5 we use Multilayer perceptron with GeLU [71] activation func-
tions and LayerNorm [3] for both value and policy networks.

For poker we represent the public state as a concatenation of a vector of indices of the board
cards, current pot size relative to the stack sizes, and binary flag for the acting player. The size
of the full input is

1(agent index) + 1(acting agent) + 1(pot) + 5(board) + 2× 1326(infostate beliefs)

We use card embedding for the board cards similar to [28] and then apply MLP. Both the value
and the policy networks contain 6 hidden layers with 1536 layers each. For all experiments we
set the probability to explore a random action to ε = 25% (see Section 5.3.3). To store the
training data we use a simple circular buffer of size 12M and sample uniformly. Since our action
abstraction contains at most 9 legal actions, the size of the target vector for the policy network
is 9 times bigger than one used for the value network. In order to make it manageable, we apply
linear quantization to the policy values. As initial data is produced with a random value network,
we remove half of the data from the replay buffer after 20 epochs.

For the full game we train the network with the Adam optimizer with learning rate 3× 10−4

and halved the learning rate every 800 epochs. One epoch is 2,560,000 examples and the batch
size 1024. We used 90 DGX-1 machines, each with 8 × 32GB Nvidia V100 GPUs for data
generation. We report results after 1,750 epochs. For TEH experiments we use higher initial
learning rate 4× 10−4, but halve it every 100 epochs. We report results after 300 epochs.

For Liar’s Dice we represent the state as a concatenation of a one hot vector for the last bid
and binary flag for the acting player. The size of the full input is

1(agent index) + 1(acting agent) + ndicenfaces(last bid) + 2nfaces
ndice(infostate beliefs).

The value network contains 2 hidden layers with 256 layers each. We train the network with
Adam optimizer with learning rate 3× 10−4 and halved the learning rate every 400 epochs. One
epoch is 25,600 examples and the batch size 512. During both training and evaluation we run
the search algorithm for 1024 iterations. We use single GPU for training and 60 CPU threads for
data generation. We trained the network for 1000 epochs. To reduce the variance in RL+Search
results, we evaluated the three last checkpoints and reported averages in table 5.7.

Human Experiments for HUNL

We evaluated our HUNL agent against Dong Kim, a top human professional specializing in
HUNL. Kim was one of four humans that played against Libratus [21] in the man-machine

170

competition which Libratus won. Kim lost the least to Libratus. However, due to high variance, it
is impossible to statistically compare the performance of the individual humans that participated
in the competition.

A total of 7,500 hands were played between Kim and the bot. Kim was able to play from
home at his own pace on any schedule he wanted. He was also able to play up to four games
simultaneously against the bot. To incentivize strong play, Kim was offered a base compensation
of $1 ± $0.05x for each hand played, where x signifies his average win/loss rate in terms of
big blinds per hundred hands played. Kim was guaranteed a minimum of $0.75 per hand and
could earn no more than $2 per hand. Since final compensation was based on the variance-
reduced score rather than the raw score, Kim was not aware of his precise performance during
the experiment.

The bot played at an extremely fast pace. No decision required more than 5 seconds, and the
bot on average plays faster than 2 seconds per hand in self play. To speed up play even further, the
bot cached subgames it encountered on the preflop. When the same subgame was encountered
again, it would simply reuse the solution it had already computed previously.

Kim’s variance-reduced score, which we report in Section 5.3.5, was a loss of 165±69 where
the ± indicates one standard error. His raw score was a loss of 358± 188.

5.3.11 Proofs of Theoretical Results
We start by proving some preliminary Lemmas. For simplicity, we will sometimes prove results
for only one player, but the results hold WLOG for both players.

For some policy profile π = (π1, π2), let vπi (s1|β) : B → R|Si| be a function that takes as
input a PBS and outputs infoset values for player i at infoset s1.
Lemma 16. For fixed β and π2, v(π1,π2)

1 (s1|β) is identical for any π1 that is a BR to π2 if β1(s1) >
0.

Proof. π∗1 is a BR therefore it must maximize V1 =
∑

s1
p(s1)vπ1 (s1). It can only do so by

achieving the unique maximum at each infoset s1 that occurs with positive probability.

Lemma 17. Let V π2
1 (β) be player 1’s BR value at β assuming that player 2 plays π2. V π2

1 (β) is
linear in β1.

Proof. This follows directly from Lemma 16 along with the definition of V1,

V π2
1 (β) =

∑
s1∈S1(spub)

β1(s1)v1(s1|β, (BR(π2), π2))

.

Lemma 18. V1(β) = minπ2 V
π2

1 (β), and the set of π2 that attain V1(β) at β0 are precisely the
Nash equilibrium policies at β0. This also implies that V1(β) is concave.

Proof. By definition, the Nash equilibrium at β is the minimum among all choices of π2 of the
value to player 1 of her BR to π2. Any π2 that achieves this NE value when playing a BR is a NE
policy.

171

From Lemma 17, we know that each V π2
1 (β) is linear, which implies that V1(β) is concave

since any function that is the minimum of linear functions is concave.

Figure 5.13: Illustration of Lemma 18. In this simple example, the subgame begins with some probability
β(heads) of a coin being heads-up, which player 1 observes. Player 2 then guesses if the coin is heads
or tails, and wins if he guesses correctly. The payoffs for Player 2’s pure strategies are shown as the lines
marked πheads2 and πtails2 . The payoffs for a mixed strategy is a linear combination of the pure strategies.
The value for player 1 is the minimum among all the lines corresponding to player 2 strategies, denoted
by the solid lines.

Lemma 19. At any β, the set of maps v1 : S1 → R corresponding to Nash equilibrium policies
π∗ forms a convex set.

Proof. A mixture of Nash equilibrium policy profile is a coarse correlated equilibrium, which
means it’s a Nash equilibrium since the game is two-player zero-sum. Therefore the set of Nash
equilibrium policies is convex on the simplex.

Now, consider the map from infosets to values, using a normal form representation of the
subgame:

vπ
∗

1 (s1|β) =
∑
h∈s1

p(h|β)π∗1(a1)π∗2(a2)v1(h|a1, a2) (5.22)

This map is continuous in π∗, so the set of maps must also be convex.

Now we can turn to proving the Theorem.
Consider a function Ṽ1 that is an extension of V1 to unnormalized probability distributions

over S1 and S2; i.e. Ṽi((spub, b1, b2)) = Vi((spub, b1/|b1|1, b2/|b2|1)). Ṽi = Vi on the simplex of
valid beliefs, but we extend it in this way to R|s1|≥0 \ ~0 so that we can consider gradients w.r.t.
p(s1).

We will use the term ‘supergradient’ to be the equivalent of the subgradient for concave
functions. Formally, g is a supergradient of concave function F at x0 iff for any x in the domain
of F ,

F (x)− F (x0) ≤ g · (x− x0).

172

Also, superg(F) = −subg(−F).

Theorem (Restatement of Theorem 23). For any belief β1 and any supergradient ḡ of Ṽ1(β) with
respect to β1,

vπ
∗

1 (s1|β) = V1(β) + ḡ · ŝ1 (5.23)

for some Nash equilibrium policy π∗, where ŝ1 is the unit vector in direction s1.

Proof. Lemma 18 shows that V1(β) is a concave function of β, and its extension Ṽ off the
simplex is constant perpendicular to the simplex, so Ṽ is concave as well. Therefore the notion
of a supergradient is well-defined.

Furthermore, V1 is the minimum of a set of linear functions V π2
1 (Lemma 18), so at each point

β, V1 is equal to V π2
1 for one or more policies π2 which are exactly the set of equilibrium policies

at β. The gradient of V π2
1 is

∇β1V
π2

1 (β) = ∇β1

∑
s1∈S1(spub)

β1(s1)v
(BR(π2),π2)
1 (s1|β) (5.24)

=
∑

s1∈S1(spub)

ŝ1v
(BR(π2),π2)
1 (s1|β) (5.25)

(5.26)

If there is only a single V π2
1 (β) plane that intersects V1(β), then V1 lies on this plane and has

a single supergradient which is simply the gradient of V π2
1 at this point16.

Otherwise, V1(β) lies at an ‘edge’ defined by the intersection of planes corresponding to
V π2

1 (β) for different equilibrium policies. The tangent plane for any supergradient at β1 lies
within the convex hull of these intersecting planes. By Lemma 19, the set of V π2

1 planes is convex
so any plane in this convex hull corresponds to the value for some equilibrium π∗. Therefore,
any supergradient of V corresponds to a∇β1V

π∗
1 (β1) for some NE π∗ in the subgame.

Finally, let’s compute g · ŝ1 at some β1 on the simplex (i.e. |β1|1 = 1).

16The supergradient of a differentiable function is only equal to its gradient in the interior, which is why we
exclude the boundary from the result, i.e. we only consider R|S1|

>0 . This could be corrected with a more detailed
proof, but we don’t care about the boundary since CFR-AVG never assigns a probability of exactly 0 to any state.

173

g = ∇β1/|β1|1V
π∗

1 (spub, β1/|β1|, β2) · d

dβ1

(
β1

|β1|1

)
(chain rule) (5.27)

=

 ∑
s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)

 · (|β1|1 − β1)/(|β1|1)2 (Eq. 5.26) (5.28)

=

 ∑
s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)

 · (1− β1) (since |β1|1 = 1) (5.29)

=
∑

s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)−
∑

s′1∈S1(spub)

β1(s′1)vπ
∗

1 (s′1|β) (5.30)

=
∑

s′1∈S1(spub)

ŝ′1v
π∗

1 (s′1|β)− V1(β) (5.31)

g · ŝ1 = vπ
∗

1 (s1|β)− V1(β) (5.32)

And we’re done.

Theorem (Restatement of Theorem 24). Let X be the vector of infostate EVs in PBS β cor-
responding to minimax policy profile π∗X , and let Y be the vector of infostate EVs in β corre-
sponding to minimax policy profile π∗Y . Then λX + (1− λ)Y is the vector of infostate EVs in β
corresponding to minimax policy profile λπ∗X + (1− λ)π∗Y for 0 ≤ λ ≤ 1.

Proof. We focus on a single infoset EV, v1(s1|β, π∗), and consider a normal form representation
of the subgame.

v
λπ∗X+(1−λ)π∗Y
1 (s1|β) =

∑
h∈s1

p(h|β) (λπ∗X(a) + (1− λ)π∗Y (a)) v1(h|a) (5.33)

= λ
∑
h∈s1

p(h|β)π∗X(a)v1(h|a) + (1− λ)
∑
h∈s1

p(h|β)π∗Y (a)v1(h|a) (5.34)

= λv
π∗X
1 (s1|β) + (1− λ)v

π∗Y
1 (s1|β) (5.35)

This mixed joint policy can be played independently by each agent in a two-player zero-sum
game, since all coarse correlated equilibria are Nash equilibria. The interpolated policy is a
minimax (Nash) strategy, due to Lemma 19.

Theorem (Restatement of Theorem 25). Consider an idealized value approximator that returns
the most recent sample of the value for sampled PBSs, and 0 otherwise. Running Algorithm 4
with T iterations of CFR in each subgame will, after a finite amount of time, produce a value
approximator that produces values that correspond to a C√

T
-equilibrium policy for any PBS that

could be encountered during play, where C is a game-dependent constant.

174

Proof. CFR [163] is an iterated self play algorithm whose average policy across iterations con-
verges to a Nash equilibrium. The key idea behind CFR is that it decomposes the regret min-
imization in the full game into independent regret minimization problems at each information
state. At each infostate I , CFR minimizes the regret over the counterfactual value, that is the
EV of taking action a at I weighted by the probability of reaching Ii assuming player i plays to
reach I and the opponent and chance play their policies at iteration t. The central result of [163]
is that the total regret RT

i in the game is bounded by the sum of the counterfactual regrets at each
infostate RT

i (I). [163] then proposes an independent regret matching policy [65] of

πt+1
i (si, ai) =

max{0,Rti(si,ai)}∑

a′
i
∈Ai(si)

max{0,Rti(si,a′i)}
if
∑

a′i∈Ai(si)
max{0, Rt

i(si, a
′
i)} > 0

1
|Ai(si)| otherwise

(5.36)

at each infostate, whose external regret after T iterations is bounded byO(1/
√
T). This leads

to the CFR bound
RT
i ≤ ∆|Ii|

√
|Ai|/

√
T ,

where ∆ is the range of payoffs, |Ii| is the number of infostates, and |Ai| is the max number of
actions for player i.

A crucial property of CFR is that each regret minimization at I only depends on the coun-
terfactual values of each action at I . It doesn’t matter exactly what policy is performed at other
infostates as long as they have low regret.

Suppose we compute an ε-Nash equilibrium in a PBS βπ
t . Then the values for the PBS

correspond to an (average) policy in βπt that achieves at most ε regret in I at time t.
Consider CFR run in a depth-limited subgame G. Let ILi be the infostates in leaf L, and IG

∗

i

be the infostates of G not in any leaf subgame. If the total regret at each leaf PBS βπ
t

L at each
iteration t is bounded by |ILi |/

√
T then the total regret in G will be bounded by

RT
i,G ≤ |IG

∗

i |/
√
T +

1

T

∑
L∈G

T∑
t=1

RT

i,βπ
t

L

(5.37)

= |IG∗i |/
√
T +

1

T

∑
L∈G

T∑
t=1

|ILi |/
√
T (5.38)

= |IG∗i |/
√
T +

∑
L∈G

|ILi |/
√
T (5.39)

= |IGi |/
√
T . (5.40)

In other words, if the O(1/
√
T) regret bound holds at each leaf PBS βπtL encountered during

the search in βG , then the regret bound also holds for the values computed in β. So now we must
show inductively that valid bounds are computed for each relevant PBS that may be encountered
during play.

Consider the naive algorithm that at each leaf node in a depth-limited subgame, recursively
runs the same CFR procedure in each leaf subgame βtL. This algorithm would would clearly

175

obey the regret bound in Equation 5.40 by sequentially solving O(t|spub|) PBSs. But what about
the sampling approach in Algorithm 4?

Every PBS solved during this naive scheme can be specified by a pair of a public state spub

and a sequence τ = (t1, t2, ..., tk)), denoting that this is the PBS at spub with beliefs that arise
from πt1 at the root PBS, πt2 at the second subgae on the path to spub, and so on. We call τ an
iter-sequence.

We define the "natural ordering" of iter-sequences to be the one that places all suffixes of τ
before τ , and orders all prefixes lexicographially. E.g. for T = 2 and depth of 3, the natural
ordering would be

(1, 1, 1), (1, 1, 2), (1, 1), (1, 2, 1), (1, 2, 2), (1, 2), (1), (2, 1, 1), (2, 1, 2), (2, 1), (2, 2, 1), (2, 2, 2), (2, 2), (2)

Consider a PBS β with some iter-sequence τ . Suppose the value function for every PBS with
an iter sequence τ ′ < τ is "valid" at iteration j of Algorithm 4. Then CFR will be correct in
all subgames leading to β up to the relevant iteration. So with positive probability, at iteration
j of Algorithm 4, the sequence of leaf PBSs leading to β will be reached, and CFR will be
evaluated in β. Furthermore, the PBSs for all subgames of β are suffixes in the natural ordering,
so values for all leaf nodes in β will be "valid". Therefore, with positive probability, a correct
value of β will be inserted into the value function at this iteration of Algorithm 1. And all future
computations of the value of β will also be correct, so the value of β will always be valid after
this point.

Order all PBSs encountered during this procedure (β1, ..., βN) by the natural ordering of
their iter-sequences. Suppose on iter j of Algorithm 4, the value function is valid for (β1, ..., βk).
Then P (βk+1 sampled on iter m) is positive and independent on each iter m > j. Therefore by
the second Borel-Cantelli Lemma,

lim
M→∞

Pr(βk+1 sampled on some iter j < m < M) = 1

So each β will eventually be sampled and produce a valid value estimate.
The only thing left to show is that any β encountered during play against the final policies

generated by this procedure will be in the set of {β} computed by Algorithm 4. The set of
possible test-time PBSs consist of those where the agent plays πT and the opponent plays an
arbitrary policy. As described in Section 5.3.3, leaf PBSs are sampled at a random t ≤ T for
a public state reached by one player playing πt and the other playing a uniform policy with
probability ε (and πt otherwise). So it will sample every βπTL for any L as long as it’s in the
support of πT for at least one player. This is a superset of all leaf nodes that may be encountered
when the agent plays πT at test time.

Theorem (Restatement of Theorem 26). If Algorithm 4 is run at test time with no off-policy
exploration, a value network that has error at most δ for any leaf PBS, and with T iterations of
CFR being used to solve subgames, then the algorithm plays a (δC1 + δC2√

T
)-Nash equilibrium,

where C1, C2 are game-specific constants.

Proof. We prove the theorem inductively. Consider first a subgame near the end of the game that
is not depth-limited. I.e., it has no leaf nodes. Clearly, the policy π∗ that Algorithm 4 using CFR
plays in expectation is a k1√

T
-Nash equilibrium for game-specific constant k1 in this subgame.

176

Rather than play the average policy over all T iterations π̄T , one can equivalently pick a
random iteration t ∼ uniform{1, T} and play according to πt, the policy on iteration t. This
algorithm is also a k1√

T
-Nash equilibrium in expectation.

Next, consider a depth-limited subgame G such that for any leaf PBS βt on any CFR itera-
tion t, the policy that Algorithm 4 plays in the subgame rooted at βt is in expectation a δ-Nash
equilibrium in the subgame. If one computes a policy for G using tabular CFR-D [31] (or, as
discussed in Section 5.3.9, using CFR-AVG), then by Theorem 2 in [31], the average policy over
all iterations is k2δ + k3√

T
-Nash equilibrium.

Just as before, rather than play according to this average policy π̄T , one can equivalently pick
a random iteration t ∼ uniform{1, T} and play according to πt. Doing so would also result in a
k2δ + k3√

T
-Nash equilibrium in expectation. This is exactly what Algorithm 4 does.

Since there are a finite number of “levels” in a game, which is a game-specific constant,
Algorithm 4 plays according to a δC1 + δC2√

T
-Nash equilibrium.

5.4 Comparison of Search via Multi-Valued States versus Pub-
lic Belief States

This chapter described two methods for conducting depth-limited search: multi-valued states
(MVSs) (described in Section 5.2 and public belief states (PBSs) (described in Section 5.3).
There are benefits and drawbacks to both approaches, which we now describe in detail. The right
choice may depend on the domain and future research may change the competitiveness of either
approach.

The most significant drawback of the PBS approach is that evaluating PBSs with a function
approximator is more expensive and less scalable to large games than MVSs. The input to
a function that predicts the value of a MVS is simply the state description (for example, the
sequence of actions), and the output is several values. In our experiments on HUNL, the input
was 34 floating-point numbers and the output was 4 floating-point numbers. In contrast, the
input to a function that predicts the values of a PBS is a probability vector for each player over
the possible infostates they may be in. For example, in HUNL, the input is more than 2,652
floating-point numbers and the output is more than 1,326 floating-point numbers. The input
would be even larger in games with more infostates per infoset and in a game such as Stratego
would be prohibitively large using current techniques.

Moreover, because a PBS is partly defined by a player’s belief distribution, the values of the
leaf infosets in the PBS approach must be recalculated each time the strategy in the subgame
changes. With the best domain-specific iterative algorithms, this requires recalculating the leaf
infosets between 100 and 1,000 times. In contrast, the MVS approach requires only a single
function call for each leaf node regardless of the number of iterations conducted.

Another drawback of the PBS approach is that learning a mapping from PBSs to infostate
values is computationally more expensive than learning a mapping from states to a set of values.
For example, Modicum required less than 1,000 core hours to create this mapping. In contrast,
DeepStack required over 1,000,000 core hours to create its mapping. ReBeL substantially im-

177

proved upon DeepStack by learning through self play rather than by generating random PBSs,
but even ReBeL was orders of magnitude more expensive to train than Modicum.

On the other hand, the MVS approach as it exists so far requires knowledge of a blueprint
strategy that is already an approximate Nash equilibrium. A benefit of the PBS approach is that,
as we describe in Section 5.3, it can be combined with self-play to completely avoid the need for
a blueprint.

Another benefit of the PBS approach is that in many games (but not all) it obviates the need
to keep track of the sequence of actions played. For example, in poker if there are two different
sequences of actions that result in the same amount of money in the pot and all players having
the same belief distribution over what their opponents’ cards are, then the optimal strategy in
both of those situations is the same. This is similar to how in Go it is not necessary to know
the exact sequence of actions that were played. Rather, it is only necessary to know the current
configuration of the board (and, in certain situations, also the last few actions played).

A further benefit of the PBS approach is that its run-time complexity does not increase with
the degree of precision in approximating a Nash equilibrium, other than needing a better (possi-
bly more computationally expensive) function approximator. In contrast, for the MVS approach
the computational complexity of finding a solution to a depth-limited subgame grows linearly
with the number of values per state.

In short, there are benefits and drawbacks to using PBSs versus MVSs and neither approach is
clearly superior in all settings. Currently, the most important factor in deciding which technique
to use is the number of infosets per public state. If the number of infosets per public state is
small, then the PBS approach used in ReBeL is likely the superior choice. Otherwise, if there
are a lot of infosets per public state, then the MVSs approach is likely the superior choice.

178

Chapter 6

Empirical Evaluation via Poker AI Agents

Poker served for decades as a grand challenge problem for the fields of AI and game theory.
The foundational papers on game theory, first written nearly a century ago, used poker games as
examples when describing their work [112, 156] and poker is the most popular and well-known
imperfect-information game in the world. There are many variants of poker, but no-limit Texas
hold’em in particular is the most popular variant and is the variant played in the World Series of
Poker Main Event, the most prestigious poker competition in the world. Despite AI successes
in many perfect-information games, no-limit Texas hold’em poker proved stubbornly resistant to
prior AI approaches.

The algorithms described in this thesis are designed from the ground up to be domain-
independent and applicable to a wide variety of settings. However, in order to measure the
effectiveness of these techniques relative to others, we evaluated primarily on the common bench-
mark of no-limit Texas hold’em poker. This chapter describes large-scale poker agents that were
created in order to evaluate the techniques described in this thesis.

In particular, Libratus [21] (described in Section 6.4) was the first agent to defeat top hu-
mans in heads-up (i.e., two-player) no-limit Texas hold’em poker. Libratus leveraged several
new techniques, with the most important being the newly developed safe and nested search al-
gorithms described in Section 5.1. Libratus demonstrated the importance of search even in an
imperfect-information game. Prior to Libratus, the vast majority of poker agents did not use
search, and those that did only used it sparingly and not in a theoretically sound way. Addition-
ally, Pluribus [23] (described in Section 6.6) was the first agent to defeat top humans in multi-
player (specifically, six-player) no-limit Texas hold’em poker, the most popular format of poker
in the world. Pluribus also leveraged several new techniques, with the most important being the
depth-limited search techniques described in Section 5.2, which allowed search to scale to much
larger games by reducing the computational cost by orders of magnitude. In fact, Pluribus’s
training cost was the equivalent of only $144 at 2019 cloud computing spot instance rates.

6.1 Tartanian7

Tartanian7 [24] was our entry for the 2014 Annual Computer Poker Competition’s heads-up no-
limit Texas hold’em events. It was the clear winner, beating each of the next three competitors

179

by at least 20 thousandths of a big blind per hand of poker (20 mbb/g).
Tartanian7 was distinguished by its large-scale distributed CFR algorithm. While past bots

had potentially up to 5,000 buckets per round for their information abstraction, Tartanian7 had
30,000 buckets. It also had a much larger action abstraction than prior bots. Tartanian7 did not
use search.

Tartanian7 used a new hierarchical abstraction algorithm that would first divide hands into
N “clusters” based only on public information (community cards). It would then further divide
these clusters into separate buckets based on private and public information [24]. In this way, the
abstraction was a mix or perfect and imperfect recall. Once a hand was assigned to a cluster, any
future hand on later rounds would be in the same cluster. In Tartanian7, there were 60 clusters
and 500 buckets per cluster.

Since hands always remained in a single cluster for the remainder of the game, it was pos-
sible to use a distributed form of MCCFR for equilibrium finding. Specifically, one node was
designated a “head” node that would handle the preflop part of the computation. Upon reaching
the flop, the head node would sample one flop from each cluster and have each cluster in par-
allel update the regrets for the remainder of the MCCFR iteration. Since there were 60 clusters
and one head node, we used 61 blades of the Pittsburgh Supercomputing Center’s Blacklight
supercomputer for this purpose.

6.2 Claudico

Claudico1 was an AI bot that played against four top human specialist professionals in heads-up
no-limit Texas hold’em poker in 2015. The bot played 80,000 hands in total.

Claudico was based on Tartanian7. We used a larger information abstraction (60,000 and
90,000 buckets for the big and small blind position, respectively) and ran MCCFR for longer.
We also used an asymmetric action abstraction rather than Tartanian7’s symmetric abstraction.

For part of the competition, we also used search in the final betting round. However, this
search algorithm only solved the remainder of the game once upon reaching the final round. If
the opponent selected an off-tree action after that point, Claudico would use action translation to
map the bet to a size already in the abstraction. The search algorithm also used card abstraction.

Claudico ultimately lost by 92 mbb/g, but the standard error was 52.8 mbb/g, so the result
was not statistically significant at the 95% confidence level. By the end of the competition, it
was clear that the humans it was playing against had found weaknesses they could exploit. This
included a recognition that the bot could not distinguish certain hands due to its information
abstraction, and also a recognition that the bot would incorrectly interpret certain bet sizes due
to action translation. The humans’ successful discovery and exploitation of these weaknesses
motivated research into better search techniques, and ultimately led to Libratus, which defeated
top humans in the same game less than two years later (see Section 6.4).

1Claudico is Latin and means I limp. Its name was chosen due to the bot’s tendency to limp (that is, call for the
initial action in the game rather than raise), which went against conventional poker wisdom at the time.

180

6.3 Baby Tartanian8
Baby Tartanian8 [17] was the winner of both events in the 2016 Annual Computer Poker Compe-
tition (there was no 2015 competition). Like Tartanian7, which won the 2014 competition, Baby
Tartanian8 was an abstraction-based non-searching agent. However, it used a much finer abstrac-
tion than any other bot. It also used a form of regret-based pruning (described in Section 3.3)
designed for MCCFR that effectively increased the size of the abstraction even further.

Baby Tartanian8 is likely the strongest non-searching poker AI bot for HUNL ever devel-
oped, and remains a challenging benchmark even five years later for state-of-the-art searching
agents. The major weakness of Baby Tartanian8 is that due to its use of action translation and
post-processing, it is much more exploitable than modern search-based agents. However, unlike
search-based bots, Baby Tartanian8 acts instantaneously.

To facilitate distributed equilibrium finding, Baby Tartanian8’s abstraction algorithm decom-
poses the game tree into disjoint parts after the early stage of the game. Specifically, we defined
this “early stage" as the preflop in poker, and separated the remaining game tree into disjoint
sets by conditioning on the flop community cards. During equilibrium finding on a distributed
architecture, the early stage of the game is assigned to one head node, while each remaining
disjoint part is assigned to a different child node. This ensures that each machine can access
memory locally and run independently, other than one message to and from the head node on
each iteration. This abstraction approach was used for the top three agents in the ACPC in 2016,
and was also used by our champion agent Tartanian7 in the 2014 competition [24] (described in
Section 6.1).

Baby Tartanian8 uses an asymmetric action abstraction, in which more actions are allowed
for the opponent than for ourselves [5]. This allows us to leverage domain knowledge to elim-
inate suboptimal actions for ourselves, while still being able to respond intelligently in case
the opponent chooses suboptimal actions. Actions were selected by examining the equilibrium
strategies of smaller agents and choosing the actions that were most commonly used.

Equilibrium Finding

For equilibrium finding, we used a distributed variant of MCCFR based on the algorithm used
by Tartanian7 (see Section 6.1). Our agent also employs a novel sampling algorithm based on
regret-based pruning (RBP) (see Section 3.3). RBP allows an agent to avoid exploring actions
in the game tree on every iteration if those actions have performed poorly in the past, while still
guaranteeing convergence to a Nash equilibrium within the same number of iterations. Thus,
while the number of iterations needed to arrive within a certain ε of a Nash equilibrium does
not change, each iteration is performed far more quickly. The number of iterations for which an
action may be skipped depends on how negative the regret is for that action—the action must be
explored again at the earliest iteration on which its regret could turn positive.

Our sampled implementation of RBP, which we refer to as regret-based sampling (RBS),
has not been proven to converge to a Nash equilibrium. Nevertheless, preliminary experiments
on smaller-scale hardware, as shown in Figure 6.1, demonstrated a substantial increase in per-
formance in both small and large games. Due to this strong empirical performance in large-scale
experiments, we used RBS in the equilibrium finding of Baby Tartanian8, despite lacking theo-

181

Figure 6.1: Performance of RBS compared to external-sampling MCCFR in a smaller-scale pre-
liminary experiment. Both algorithms were used to train a strategy based on identical abstrac-
tions using 64 cores. Performance in milli-big blinds per hand (mbb / hand) is shown against
Tartanian7, the winner of the 2014 ACPC no-limit hold’em competition.

retical guarantees. Although RBS likely improved our early convergence rate, there was some
evidence that our implementation of RBS may have led to decreased performance when closer
to convergence. For this reason, we turned off RBS for the final 5 days of the equilibrium com-
putation.

Agent Construction

Our equilibrium finding was run offline at the San Diego Supercomputing Center on the Comet
supercomputer. We used 3,408 cores (142 blades with 24 cores each) for about 600 hours, for a
total of about 2 million core hours. Each node had 128 GB of RAM.

Since we used an asymmetric abstraction, we solved two separate abstractions (using about
1 million core hours for each abstraction) and used half of each solution for our final agent (i.e.,
the first mover’s strategy or the second mover’s strategy). Each abstraction had 1.6 · 1014 nodes
in its game tree, and the final strategy required 16 TB to store as doubles.

The submission size limit for the ACPC was 200 GB. To satisfy this constraint, the final
strategy was purified so that the agent would take a single action with probability one [24].
The purified strategy was then compressed so that each situation would use only dln(|A|)e bits
to represent which action should be played, where |A| is the number of possible actions in a
situation. To reduce the possibility of an opponent exploiting our deterministic strategy, we did
not purify or compress the early part of the game (the preflop), which requires only 170 KB
to store uncompressed. The size constraints resulted in our submission of a “Baby” version of
Tartanian8.

182

6.4 Libratus
In this section we describe Libratus,2 an AI bot that, in a 20-day, 120,000-hand competition
featuring a $200,000 prize pool, became the first AI to defeat top humans in HUNL poker.3

Libratus was inspired by the weaknesses that were seen in Claudico (see Section 6.2). In
particular, information abstraction and action translation were two major issues in Claudico. It
was clear that both of these could be addressed through search4, though determining exactly how
was not an easy process. For this reason, there was a heavy emphasis on search in Libratus, and
especially nested search (described in Section 5.1), which distinguishes it from previous bots.

Libratus featured three modules: the first was a blueprint strategy computed offline using
a variant of MCCFR. The second was a real-time search algorithm that improved upon the
blueprint when playing against actual humans. The last was a “self-improvement” module that
would augment the blueprint strategy with additional actions offline, where the actions were
determined by the most common bet sizes used by the humans during the competition.

Blueprint Strategy

Most of the actions included in Libratus’s action abstraction were determined by analyzing the
most common bet sizes at various points in the game taken by prior top AIs in the Annual
Computer Poker Competition (ACPC)5. However, bet sizes for the first two actions in the
game were determined by the parameter optimization algorithm described in Section 4.2, which
converged to a locally optimal set of bet sizes.

Libratus does not use any card abstraction on the first and second betting rounds. The last
two betting rounds, which are exponentially larger, are abstracted only in the blueprint strategy.
The 55 million different hand possibilities on the third round are algorithmically grouped into
2.5 million abstract buckets, and the 2.4 billion different possibilities on the fourth round are
algorithmically grouped into 1.25 million abstract buckets. However, the AI does not follow the
blueprint strategy in these rounds and instead applies a nested search algorithm, described in
the next section, which does not use any card abstraction. Thus, each poker hand is considered
individually during actual play. The card abstraction algorithm that we used was similar to
that used in our prior AIs Baby Tartanian8 (covered in Section 6.3) and Tartanian7 (covered in
Section 6.1).

Once the abstraction was constructed, we computed the blueprint strategy for Libratus via
a variant of MCCFR. Our variant of MCCFR traverses a smaller portion of the game tree on

2Libratus is Latin and means balanced (for approximating Nash equilibrium) and forceful (for its powerful play
style and strength).

3While past AIs have challenged humans in poker, no other AI has demonstrated the ability to defeat top humans
in HUNL. Polaris previously defeated human specialists in heads-up limit Texas hold’em, and the game was later
essentially solved [12], but heads-up limit Texas hold’em is a far simpler game than HUNL. It is widely believed
that AIs have operated profitably in online poker games, including HUNL games, but at generally low stakes playing
against average players. The AI DeepStack beat non-specialist humans in HUNL [110], but those players were used
to primarily playing other poker variants, are not considered strong in HUNL, and were offered little incentive.

4Claudico did use search on the final betting round, but that search algorithm still used information abstraction
and action translation.

5www.computerpokercompetition.org

183

www.computerpokercompetition.org

each iteration by employing a form of regret-based pruning (covered in Section 3.3). Intuitively,
there are many clearly suboptimal actions in the game, and repeatedly exploring them wastes
computational resources that could be better used improving the strategy elsewhere. Rather
than explore every hypothetical alternative action to see what its reward would have been, our
algorithm probabilistically skips over unpromising actions that have very negative regret as it
proceeds deeper into the tree during a game.

Formally, an action a with regret R(a) that is below a threshold C (where C is negative) is
sampled with probability K/

(
K +C −R(a)

)
, where K is a positive constant. This sampling is

only done for about the last half of iterations to be run; the first half is conducted using traditional
external-sampling MCCFR. Other formulas can also be used.

This led to a factor of three speedup of MCCFR in practice and allowed us to solve larger ab-
stractions than were previously possible. This skipping also mitigates the problems of imperfect
recall. Imperfect-recall abstractions involve intentionally forgetting some aspects of the cards
on the path of play so far in order to be able to computationally afford to have a more refined
abstraction of the present state of cards [17, 24, 25, 161]. Since all infosets in a single abstract
card bucket share the same strategy, updating the strategy for one of them leads to updating the
strategy for all of them. This is not an issue if all of them share the same optimal strategy at
the solution reached, but in practice there are differences between their optimal strategies and
they effectively “fight” to push the bucket’s strategy toward their own optimal strategy. Skipping
negative-regret actions means that infosets that will never be reached in actual play will no longer
have their strategies updated, thereby allowing the infosets that will actually occur during play
to move the bucket’s strategy closer to their optimal strategies.

Nested Search

While purely abstraction-based approaches have produced strong AIs for poker [17, 25, 60, 80],
abstraction alone has not been enough to reach superhuman performance in HUNL. In addition
to abstraction, Libratus uses search to compute a more detailed strategy for the particular part of
the game it finds itself in. Compared to prior bots such as Claudico, Libratus uses a much more
advanced form of search.

Libratus plays according to the abstract blueprint strategy only in the early parts of HUNL,
where the number of possible states is relatively small and we can afford the abstraction to be
extremely detailed. Upon reaching the third betting round or situations where no additional bets
or raises can be made, Libratus constructs a new subgame, without any card abstraction, that is
solved in real time. The subgame’s solution is used as the strategy for Libratus going forward.

Libratus uses unsafe search upon reaching the third betting round for the first time. There-
after, it uses Nested Reach Maxmargin search (described in Section 5.1.3) after every opponent
action. This allowed Libratus to avoid action translation [49], which was a major weakness in
Claudico.

Since the subgame is solved in real time, the abstraction in the subgame can also be decided
upon in real time and change between hands. Libratus leveraged this feature by changing, at the
first point of subgame solving, the bet sizes it would use in every subgame, thereby forcing the
opponent to continually adapt to new bet sizes and strategies. Specifically, Libratus increased or
decreased all its bet sizes by a percentage chosen uniformly at random between 0% and 8%.

184

Self-Improvement

The third module of Libratus is the self-improver, which improves the blueprint strategy in the
background. The way machine learning has typically been used in game playing is to try to
build an opponent model, find mistakes in the opponent’s strategy, and exploit those mistakes [7,
48, 52]. The downside is that trying to exploit the opponent opens oneself to being exploited.
Therefore, Libratus generally did not do opponent exploitation. Instead, it used the data of
how the opponents played against it to suggest where the holes in its own strategy were, and
algorithmically filled those holes in its blueprint strategy in the background. This is similar
to the Simultaneous Abstraction and Equilibrium Finding algorithm described in Section 4.3,
except the actions to be added were chosen based on the human opponents’ play rather than
by computing a best response. In other words, Libratus used the humans as the best response
algorithms.

In most situations that can occur in the first two betting rounds, real-time search would be
prohibitively slow in Libratus because it did not use depth-limited search. In those rounds there
are many actions in the abstraction, so the error from rounding to a nearby size is small. Still,
there is some error, and this could be reduced by including more actions in the abstraction. To
fill in these gaps in the abstraction, Libratus analyzed the gaps between actions and which gaps
were most heavily exploited by its opponents each day. It chose the top k gaps on the first betting
round where the gaps were scored based on how frequently opponent actions were played in
the gap and how far those actions were from an existing action in the abstraction. Based on
the available computing resources, we chose k = 3 so that the algorithms could typically fix
three holes to reasonable accuracy in 24 hours. For each of those gaps, a subgame was solved
overnight for the bet size roughly at the midpoint of the gap. If those actions were used by the
opponent the following day, then the subgame’s solution was used rather than rounding to an
action farther away in the abstraction. In this way Libratus was able to progressively narrow its
gaps as the competition proceeded by leveraging the humans’ ability to find weaknesses in an
opponent. Furthermore, these fixes to its strategy are universal: they work against all opponents,
not just the opponents that Libratus has faced.

Specifically, Libratus used two versions of the self-improver. The “defensive” version at-
tempted to fill in gaps in Libratus’s abstraction to make it more difficult for the opponent to
exploit the AI. The “offensive” version attempted to exploit its opponents to an extent if they
consistently used the same bet size. Both versions were only applied to actions in the first bet-
ting round. We now describe both techniques in detail. In all cases, bet sizes are measured as
fractions of the size of the pot.

Each evening after the day’s games were over, Libratus determined two opponent bet sizes to
solve with the defensive self-improver, and one bet size to solve with the offensive self-improver.
Defensive bet sizes were determined by scoring each “gap” between existing bet sizes in the
abstraction. A gap is defined by two neighboring bet sizes A and B already in the abstraction.
If, during the day, an opponent chose a bet size x such that A < x < B, then the gap’s score
would increase by the distance of x fromA orB. Formally, the score would increase by min{x−
A,B−x}. The pseudo-harmonic midpoint [49] of the two highest-scoring gaps would be solved
using defensive self-improvement each night. Specifically, if a gap between bet sizes A and
B was selected, then defensive self-improvement would be applied to the bet size (A + B +

185

2AB)/(A + B + 2). One opponent bet size was also solved overnight using offensive self-
improvement. This was determined by simply choosing the most common opponent bet size in
the previous day.

In the offensive self-improver, a subgame was solved using unsafe subgame solving, which
means we assume both players play according to the blueprint strategy for all moves preceding
the subgame. In the subgame the opponent was given the choice between folding, checking, or
calling (except in the first action of the game, where calling was not provided as a valid option),
or betting the self-improvement bet size. After the subgame was solved, the strategy in the
subgame of the response to the self-improvement bet size was used if the opponent consistently
bet that particular size in the future. Specifically, if the opponent bet that particular size for each
of the last eight times they bet in that particular situation, then we would use the offensive self-
improvement strategy to respond to the bet size. The offensive self-improver enabled Libratus to
exploit an opponent in a fairly safe way if they were not playing a balanced strategy. However,
during the Brains vs. AI competition the human opponents changed the bet sizes they used almost
every day in order to prevent Libratus from calculating an effective response to their strategy. As
a result, the offensive self-improver played little role in the competition.

In the defensive self-improver, a subgame was solved in a manner similar to the offensive
self-improver, but with the addition of at least one “control” bet size that was commonly played
in the blueprint strategy that we had computed in advance of the competition using the first
module of Libratus described in the body of this paper. The sole role of including the control
action was to determine a balanced strategy in the game tree following the self-improvement
bet size: we do not want to assume that the opponent uses the selected new bet size for all
private cards. Therefore, for computational speed, our algorithm used a significantly coarser
abstraction following the control action, and its strategy was discarded after subgame solving
finished. Using unsafe subgame solving with control actions still has theoretical bounds on
exploitability when applied to the first action of the game—because there is no assumption being
made about the opponent’s prior play. For situations other than the first action of the game, unsafe
subgame solving lacks theoretical guarantees, but empirically we found it to produce competitive
strategies with generally low exploitability—as shown, for example, in the experiments discussed
in the body of this paper. The strategy in the subgame of the response to the self-improvement
bet size (but not the control bet size) was added to the overall blueprint strategy of Libratus.
If an opponent chose an action that was close to the self-improvement bet size, then Libratus
would use the self-improvement strategy as a response. This is in contrast to the offensive self-
improver, which only used the strategy from the subgame if the opponent used the same bet size
consistently. The defensive self-improver played a more significant role in the competition. By
the end of the competition, roughly half of all the hands played by Libratus were played using a
strategy determined by defensive self-improvement.

Results

No-limit Texas hold’em is the most popular form of poker in the world and has been the primary
benchmark challenge for AI in imperfect-information games. The competition was played over
the course of 20 days, and involved 120,000 hands of poker. A prize pool of $200,000 was split
among the four humans based on their performance against the AI to incentivize strong play. The

186

AI decisively defeated the team of human players by a margin of 147 mbb / hand, with 99.98%
statistical significance (see Figure 6.2), and defeating each human individually. This was the first
time an AI defeated top humans in heads-up no-limit Texas hold’em poker.

Figure 6.2: Libratus’s performance over the course of the 2017 Brains vs AI competition.

6.5 Modicum

Modicum was developed in 2018 to play heads-up no-limit Texas hold’em. While Modicum
is substantially weaker than Libratus, it is far less expensive to run. Its training and operation
requires only a 4-core CPU and 16GB of memory. We achieved this dramatic reduction in com-
putational cost and memory usage by leveraging the depth-limited search techniques described
in Section 5.2. In a sense, Modicum is the precursor to Pluribus, which went on to defeat elite
human professionals in six-player no-limit Texas hold’em.

Modicum was shown to beat the benchmark bots Slumbot and Baby Tartanian8 with statisti-
cal significance, shown in Table 5.5. Modicum was also shown to be unexploitable by the local
best response algorithm [103]. While Modicum was never tested against human professionals,
we think it is likely that it plays at a superhuman level in HUNL.

As with Libratus and Pluribus, Modicum first trains a blueprint policy using MCCFR. It then
conducts search at test time.

The blueprint abstraction treats every poker hand separately on the first betting round (where
there are 169 strategically distinct hands). On the remaining betting rounds, the hands are
grouped into 30,000 buckets using prior information abstraction techniques [24, 50, 82]. The
action abstraction was chosen primarily by observing the most common actions used by prior
top agents. We made a conscious effort to avoid actions that would likely not be in Baby Tar-
tanian8’s and Slumbot’s action abstraction, so that we do not actively exploit their use of action
translation. This makes our experimental results relatively conservative.

We used unsafe nested search on the first and second betting rounds, as well as for the first
subgame on the third betting round. Unsafe search is described in Section 5.1.2, and nested
search is described in Section 5.1.7. Unsafe search lacks theoretical guarantees because the
opponent need not play according to the specific equilibrium we compute, and may actively
exploit our assumption that they are playing according to a specific strategy. Nevertheless, in

187

practice unsafe search typically achieves strong performance and exhibits low exploitability in
poker, particularly in large games [20].

Since the first betting round (called the preflop) is extremely small, whenever the opponent
takes an action that we have not previously observed, we add it to the action abstraction for the
preflop, solve the whole preflop again, and cache the solution. When the opponent chooses an
action that they have taken in the past, we simply load the cached solution rather than solve the
subgame again. This results in the preflop taking a negligible amount of time on average.

To determine the values of leaf nodes on the first and second betting round, whenever a
subgame was constructed we mapped each leaf node in the subgame to a leaf node in the blueprint
abstraction (based on similarity of the action sequence). The values of a leaf node in the subgame
(as a fraction of the pot) were set to its corresponding blueprint abstraction leaf node. In the case
of rollouts, this meant conducting rollouts in the blueprint strategy starting at the blueprint leaf
node.

As explained in Section 5.2, we tried two methods for determining state values at the end
of the second betting round. The first method involves storing the four opponent approximate
best responses and doing rollouts in real time whenever the depth limit is reached. The second
involves training a deep neural network (DNN) to predict the state values determined by the four
approximate best responses.

For the rollout method, it is not necessary to store the best responses as 4-byte floats. That
would use 32|A| bits per abstract infoset, where |A| is the number of actions in an infoset. If one
is constrained by memory, an option is to randomize over the actions in an abstract infoset ahead
of time and pick a single action. That single action can then be stored using a minimal number of
bits. This means using only dlog2(|A|)e bits per infoset. This comes at a slight cost of precision,
particularly if the strategy is small, because it would mean always picking the same action in
an infoset whenever it is sampled. Since we were not severely memory constrained, we instead
stored the approximate best responses using a single byte per abstract infoset action. In order to
reduce variance and converge more quickly, we conduct multiple rollouts upon reaching a leaf
node. We found the optimal number of rollouts to be three given our memory access speeds.

For the DNN approach, whenever a subgame on the second round is generated we evaluate
each leaf node using the DNN before solving begins. The state values are stored (using about 50
MB). This takes between 5 and 10 seconds depending on the size of the subgame.

Starting on the third betting round, we always solve to the end of the game using an algorithm
similar to Discounted CFR (Discounted CFR was not yet developed). We use unsafe search the
first time the third betting round is reached. Subsequent subgames are solved using safe nested
search (specifically, Reach search (described in Section 5.1.3) where the alternative payoffs are
based on the expected value from the previously-solved subgame [20]).

Our CFR variant ignores the first 50% of iterations when determining the average strategy.
Also, for the first 30 iterations, it discounts the regrets after each iteration by

√
T√
T+1

where T
indicates the iteration. This reduces exploitability in the subgame by about a factor of three
compared to CFR+.

The number of CFR iterations and the amount of time we run MCCFR varies depending on
the size of the pot. For the preflop, we always run MCCFR for 30 seconds to solve a subgame
(though this is rarely done due to caching). On the flop, we run MCCFR for 10 to 30 seconds

188

depending on the pot size. On the turn, we run between 150 and 1,000 iterations of our modified
form CFR. On the river, we run between 300 and 2,000 iterations of our modified form of CFR.

6.6 Pluribus
Pluribus [23] was the first bot to defeat elite human professionals in multiplayer (i.e., more than
two-player) poker. Specifically, it defeated a set of 15 elite human professionals in six-player no-
limit Texas hold’em poker. Alongside Libratus’s victory in two-player no-limit Texas hold’em,
this is considered a major milestone achievement in the field of AI.

Multiplayer poker posed several difficult challenges beyond HUNL. First, since the game
is not two-player zero-sum, there were theoretical questions of what should even be computed.
Two-player zero-sum games are a special class of games in which Nash equilibria also have
an extremely useful additional property: any player who chooses to use a Nash equilibrium is
guaranteed to not lose in expectation no matter what the opponent does (as long as one side does
not have an intrinsic advantage under the game rules, or the players alternate sides). In other
words, a Nash equilibrium strategy is unbeatable in two-player zero-sum games. For this reason,
to “solve” a two-player zero-sum game means to find an exact Nash equilibrium.

While a Nash equilibrium strategy is guaranteed to exist in any finite game, efficient al-
gorithms for finding one are only proven to exist for special classes of games, among which
two-player zero-sum games are the most prominent. For multiplayer or general-sum games,
computing a Nash equilibrium is PPAD-complete [39, 41]. Even approximating a Nash equilib-
rium is difficult (except in special cases) in theory [124].

Moreover, even if a Nash equilibrium could be computed efficiently in a game with more
than two players, it is not clear that playing such an equilibrium strategy would be wise. If each
player in such a game independently computes and plays a Nash equilibrium, the joint strategy
that they play (one strategy per player) may not be a Nash equilibrium and players might have an
incentive to deviate to a different strategy. Two-player zero-sum games are a special case where
even if the players independently compute and select Nash equilibria, the joint strategy is still a
Nash equilibrium.

The shortcomings of Nash equilibria outside of two-player zero-sum games, and the failure
of any other game-theoretic solution concept to convincingly overcome them, have raised the
question of what the right goal should even be in such games. In the case of six-player poker,
we took the viewpoint that our goal should not be a specific game-theoretic solution concept,
but rather to create an AI that empirically consistently defeats human opponents, including elite
human professionals.

Beyond just the game theory challenges, six-player NLTH is also much larger than HUNL.
For example, if the same search algorithms that were used in Libratus were used in Pluribus, they
would have required roughly 100,000× as much memory and time.

Despite the massive increase in the size of the game, Pluribus used far fewer resources for
both training and search than Libratus. The blueprint strategy for Pluribus was computed in 8
days on a 64-core server for a total of 12,400 CPU core hours. It required less than 512 GB
of memory. At cloud computing spot instance rates in 2019, this would have cost about $144
to train. This is in sharp contrast to all the other recent superhuman AI milestones for games,

189

which used large numbers of servers and/or farms of GPUs. When conducting real-time search,
Pluribus used a 28-core CPU and no more than 128 GB of memory.

Like Libratus, Pluribus used a blueprint strategy that was trained offline using a variant of
MCCFR. This blueprint strategy was improved upon at test time using depth-limited search. The
search technique was based on the search algorithm described in Section 5.2. Libratus’s self-
improvement component was not used in Pluribus, though using it likely would have led to even
better performance.

Depth-limited search

Depth-limited search was the most important improvement that made Pluribus’s victory in six-
player poker possible. It reduces the computational resources and memory needed by probably
at least five orders of magnitude. Libratus [21] always solved to the end of the game when real-
time search was used (Libratus started using real-time search on the third betting round—the
half-way point in the game—and in certain situations even earlier). However, additional players
increase the size of subgames exponentially. Conducting beneficial real-time search on the flop
(the second betting round) with more than three players involved is likely infeasible without
depth-limited search. Pluribus used a depth-limited search technique similar to Modicum, but
it was generalized to more than two players and it included a number of additional technical
contributions as follows.
• Modicum’s depth-limited search had the searcher play the blueprint strategy while the

opponent chose among multiple continuation strategies. This is theoretically sound (in
two-player zero-sum games), but in practice gives the opponents more power and therefore
makes the searcher relatively defensive/conservative. Pluribus addressed this weakness by
having the searcher also choose among continuous strategies (which is still theoretically
sound in two-player zero-sum games). Modicum instead penalized the opponent to try to
balance the players, but our new approach is more effective, easier, and more elegant.

• Previous nested search algorithms either used nested safe search or nested unsafe search
(described in detail in Section 5.1). Nested unsafe search is not theoretically sound, and in
some cases may do extremely poorly, but on average tends to perform better in practice.
For Pluribus we used a new form of nested unsafe search in which we always solve starting
at the beginning of the current betting round rather than starting at the most recent decision
point. Our player’s strategy is held fixed for actions that it has already chosen in the
betting round. However, the approach allows the other players to have changed strategies
anywhere in the current betting round, that is, even above the current decision point. Taking
that possibility into account mitigates the potential for unsafe search to be exploitable,
while still retaining its practical benefits.

Equilibrium finding

Pluribus also has innovations in the equilibrium finding algorithms that were used in the blueprint
computation and within the depth-limited search. We summarize them here.
• We used Linear MCCFR rather than traditional MCCFR. This was the first time Linear

MCCFR was implemented and tested at scale. We suspect this sped up convergence by

190

about a factor of 3.
• Our Linear MCCFR algorithm used a form of dynamic pruning that skipped actions with

extremely negative regret in 95% of iterations. A similar idea was used in Libratus and
in Baby Tartanian8, but in those cases the skipping was done everywhere. In contrast,
in Pluribus, in order to reduce the potential inaccuracies involved with pruning, we do
not skip actions on the last betting round (because on the last betting round one does not
get the benefits of effectively increasing the card abstraction through pruning) or actions
leading to terminal payoffs (because the cost of examining those payoffs is minor anyway).
Additionally, whether or not to skip in Libratus/BabyTartanian8 was decided separately for
each action rather than deciding for the entire iteration; the latter is cheaper due to fewer
calls to a random number generator, so we do the latter in Pluribus. We suspect that these
changes contributed about a factor of 2 speedup.

Memory usage

To conserve memory, Pluribus allocated memory for the regrets in an action sequence only when
the sequence was encountered for the first time (except on the first betting round which is small
and allocated up front). This is particularly useful in six-player poker, in which there are many
action sequences that never occur. This reduced memory usage by more than a factor of 2.

Experimental evaluation

We evaluated Pluribus against elite human professionals in two formats: five human professionals
playing with one copy of Pluribus (5H+1AI), and one human professional playing with five
copies of Pluribus (1H+5AI). All human participants have won more than $1 million playing
poker professionally.

In all experiments, we used the variance-reduction technique AIVAT [32] to reduce the luck
factor in the game6 and measured statistical significance at the 95% confidence level using a
one-tailed t-test for whether Pluribus is profitable.

The human participants in the 5H+1AI experiment were Jimmy Chou, Seth Davies, Michael
Gagliano, Anthony Gregg, Dong Kim, Jason Les, Linus Loeliger, Daniel McCaulay, Greg Mer-
son, Nicholas Petrangelo, Sean Ruane, Trevor Savage, and Jacob Toole. In this experiment,
10,000 hands of poker were played over 12 days. Each day, five volunteers from the pool of
professionals were selected to participate based on availability. The participants were not told
who else was participating in the experiment. Instead, each participant was assigned an alias that
remained constant throughout the experiment. The alias of each player in each game was known,
so that players could track the tendencies of each player throughout the experiment. $50,000
was divided among the human participants based on their performance to incentivize them to
play their best. Each player was guaranteed a minimum of $0.40 per hand for participating, but
this could increase to as much as $1.60 per hand based on performance. After applying AI-
VAT, Pluribus won an average of 48 mbb/game (with a standard error of 25 mbb/game). This is

6Due to the presence of AIVAT and because the players did not know each others’ scores during the experiment,
there was no incentive for the players to play a risk-averse or risk-seeking strategy in order to outperform the other
human.

191

considered a very high win rate in six-player no-limit Texas hold’em poker, especially against a
collection of elite professionals, and implies that Pluribus is much better than the human players.
Pluribus was determined to be profitable with a p-value of 0.028, which is statistically significant.
The performance of Pluribus over the course of the experiment is shown in Figure 6.3.

-20

0

20

40

60

80

100

120

140

0 10000

Hands played in 5 humans + 1 AI experiment

Pl
ur

ib
us

 w
in

 ra
te

 in
 m

bb
/g

0

Figure 6.3: Performance of Pluribus in the 5 humans + 1 AI experiment. The dotted lines show
the win rate plus or minus the standard error. The relatively steady performance of Pluribus over
the course of the 10,000-hand experiment suggests the humans were unable to find exploitable
weaknesses in the bot.

The human participants in the 1H+5AI experiment were Chris “Jesus” Ferguson and Darren
Elias. Each of the two humans separately played 5,000 hands of poker against five copies of
Pluribus. Pluribus does not adapt its strategy to its opponents and does not know the identity of
its opponents, so the copies of Pluribus could not intentionally collude against the human player.
To incentivize strong play, we offered each human $2,000 for participation and an additional
$2,000 if he performed better against the AI than the other human player did. The players did
not know who the other participant was and were not told how the other human was performing
during the experiment. For the 10,000 hands played, Pluribus beat the humans by an average of
32 mbb/game (with a standard error of 15 mbb/game). Pluribus was determined to be profitable
with a p-value of 0.014, which is statistically significant. (Darren Elias was behind Pluribus by
40 mbb/game with a standard error of 22 mbb/game and a p-value of 0.033, and Chris Ferguson
was behind Pluribus by 25 mbb/game with a standard error of 20 mbb/game and a p-value of
0.107. Ferguson’s lower loss rate may be due to variance, skill, and/or the fact that he used a
more conservative strategy that was biased toward folding in unfamiliar difficult situations.)

Since Pluribus’s strategy was determined entirely from self-play without any human data, it
also provides an outside perspective on what optimal play should look like in multi-player no-
limit Texas hold’em. Pluribus confirms the conventional human wisdom that limping (calling the

192

“big blind” rather than folding or raising) is suboptimal for any player except the “small blind”
player who already has half the big blind in the pot by the rules, and thus has to invest only half
as much as the other players to call. While Pluribus initially experimented with limping when
computing its blueprint strategy offline through self play, it gradually discarded this action from
its strategy as self play continued. However, Pluribus disagrees with the folk wisdom that “donk
betting” (starting a round by betting when one ended the previous betting round with a call) is a
mistake; Pluribus does this far more often than professional humans do.

6.7 ReBeL
The ReBeL algorithm (described in Section 5.3) combines deep reinforcement learning and
search (RL+Search) at both training and test time. Unlike prior RL+Search algorithms such
as AlphaZero [142], which are intended for perfect-information games, ReBeL converges to a
Nash equilibrium in two-player zero-sum imperfect-information games in addition to solving
perfect-information games and single-agent settings.

We evaluated the ReBeL algorithm in part by developing a bot for HUNL poker (which we
also call ReBeL). Our goal was not to develop the strongest possible poker AI agent, and indeed
ReBeL is not as strong as Libratus (described in Section 6.4) and is far more expensive than Mod-
icum (described in Section 6.5). Instead, our goal for ReBeL was to develop a relatively simple,
flexible algorithm that leverages as little domain knowledge as possible and still achieves super-
human performance. Indeed, the bot achieved very strong results against prior benchmark bots
and even defeated a top human professional by a wide margin (see Table 5.6 in Section 5.3.5).
To show that the algorithm can be easily deployed in games other than poker, we applied it to the
imperfect-information game of Liar’s Dice and showed that it achieves excellent performance in
that domain as well.

The most prominent form of domain knowledge in the ReBeL poker AI agent is the simpli-
fication of the action space during self play so that there are at most 8 actions at each decision
point. The bet sizes are hand-chosen based on conventional poker wisdom and are fixed fractions
of the pot, though each bet size is perturbed by ±0.1× pot during training to ensure diversity in
the training data.

We specifically chose not to leverage domain knowledge that has been widely used in previ-
ous poker AI agents:
• All prior top poker agents, including DeepStack [110], Libratus [21], and Pluribus [23],

have used information abstraction to bucket similar infostates together based on domain-
specific features [24, 50, 80]. Even when computing an exact policy, such as during search
or when solving a poker game in its entirety [12, 56], past agents have used lossless ab-
straction in which strategically identical infostates are bucketed together. For example, a
flush of spades may be strategically identical to a flush of hearts.
Our agent does not use any information abstraction, whether lossy or lossless. The agent
computes a unique policy for each infostate. The agent’s input to its value and policy
network is a probability distribution over pairs of cards for each player, as well as all
public board cards, the amount of money in the pot relative to the stacks of the players,
and a flag for whether a bet has occurred on this betting round yet.

193

• DeepStack trained its value network on random PBSs. In order to make this tractable,
DeepStack reduced the dimensionality of its value network input by using information
abstraction and sampled PBSs according to a handcrafted algorithm that would sample
more realistic PBSs compared to sampling uniform random. We show in Section 5.3.5 that
training on PBSs sampled uniformly randomly without information abstraction results in
extremely poor performance in a value network.
Our agent collects training data purely from self play without any additional heuristics
guiding which PBSs are sampled, other than an exploration hyperparameter that was set to
ε = 0.25 in all experiments.

• Past no-limit poker bots were designed specifically to play with 200 big blinds (20,000
chips). This was the standard format in the Annual Computer Poker Competition. In
order to run an agent like Libratus effectively with a different number of chips, a separate
blueprint strategy would need to be computed. ReBeL, in contrast, is trained to handle any
number of chips between 5,000 and 25,000.

• In cases where both players bet all their chips before all board cards are revealed, past poker
AIs compute the exact expected value of all possible remaining board card outcomes. This
is expensive to do in real time on earlier rounds, so past agents pre-compute this expected
value and look it up during training and testing. Using the exact expected value reduce
variance and makes learning easier.
Our agent does not use this shortcut. Instead, the agent learns these “all-in” expected
values on its own. When both agents have bet all their chips, the game proceeds as normal
except neither player is allowed to bet.

• The search space in DeepStack [110] extends to the start of the next betting round, except
for the third betting round (out of four) where it instead extends to the end of the game.
Searching to the end of the game on the third betting round was made tractable by using
information abstraction on the fourth betting round (see above). Similarly, Libratus [20],
Modicum [27], and Pluribus [23] all search to the end of the game when on the third
betting round. Searching to the end of the game has the major benefit of not requiring the
value network to learn values for the end of the third betting round. Thus, instead of the
game being three “levels” deep, it is only two levels deep. This reduces the potential for
propogation of errors.
Our agent always solves to the end of the current betting round, regardless of which round
it is on.

• The depth-limited subgames in DeepStack extended to the start of the next betting round
on the second betting round. On the first betting round, it extended to the end of the first
betting round for most of training and to the start of the next betting round for the last
several CFR iterations. Searching to the start of the next betting round was only tractable
due to the abstractions mentioned previously and due to careful optimizations, such as
implementing CFR on a GPU.
Our agent always solves to the end of the current betting round regardless of which round
it is on. We implement CFR only on a single-thread CPU and avoid any abstractions.
Since a subgame starts at the beginning of a betting round and ends at the start of the next

194

betting round, our agent must learn six “layers” of values (end of first round, start of second
round, end of second round, start of third round, end of third round, start of fourth round)
compared to three for DeepStack (end of first round, start of second round, start of third
round).

• DeepStack used a separate value network for each of the three “layers” of values (end
of first round, start of second round, start of third round). Our agent uses a single value
network for all situations.

195

196

Chapter 7

Conclusions and Future Research

This thesis described advances in equilibrium finding for large adversarial imperfect-information
games along three tracks: improvements to counterfactual regret minimization (CFR), new forms
of abstraction and ways of combining function approximation with CFR, and finally new search
techniques for imperfect-information games. Together, these improvements for the first time
enabled an AI to defeat top human professionals in both two-player no-limit Texas hold’em
poker and multiplayer no-limit Texas hold’em poker, which were considered grand challenges
for the fields of AI and game theory. However, poker is only a benchmark for progress in this
field. The techniques themselves are domain-independent and can be deployed in adversarial
imperfect-information games beyond just poker.

Chapter 3 introduced substantial improvements to CFR in three areas: discounting variants
that achieve state-of-the-art performance among equilibrium-finding algorithms both with and
without sampling, the first theoretically sound and empirically effective warm-starting technique,
and pruning techniques that lead to more than an order of magnitude speedup in large games.
However, there are still opportunities for large improvements.

While Discounted CFR (DCFR) and Linear CFR (LCFR) achieve remarkable speedups over
CFR and CFR+, LCFR does relatively better in games with wide distributions in payoffs, while
DCFR does better in other games. Surprisingly, combining the changes of both algorithms
into a single algorithm leads to poor performance. One of the biggest unanswered questions
in this space is whether there exists an algorithm that can achieve similar performance to LCFR
in games with wide distributions in payoffs, while still being competitive with DCFR in other
games.

Section 3.2 introduced the first theoretically sound method for warm starting CFR from ar-
bitrary strategies. This warm starting technique provably maintains the convergence bound of
CFR. However, in practice CFR converges much faster than its theoretical bound. While the
warm start technique allows for a range of parameter values to be used for warm starting, it is
unclear which choice of parameter values will lead to the best empirical performance. Develop-
ing a heuristic for selecting this parameter value, or proving a tighter bound on convergence for
CFR, would allow the warm starting algorithm to be even more effective.

Another important open question is whether regret-based pruning or best-response pruning
can be adapted to Monte Carlo variants of CFR in a theoretically sound way. Currently, in the-
ory both pruning techniques require exact CFR iterations and are therefore incompatible with

197

sampling. While forms of regret-based pruning for Monte Carlo CFR were used in BabyTarta-
nian8, Libratus, and Pluribus, which led to large speedups, its use was not theoretically sound.
A provably sound form of pruning may lead to even larger improvements in algorithms with
sampling.

Chapter 4 introduced new ways of conducting abstraction. Regret transfer and simultaneous
abstraction and equilibrium-finding (SAEF) provide the first theoretically sound approaches for
action abstraction, and make it possible to converge to a Nash equilibrium even in games with
continuous action spaces. Deep CFR combines CFR with neural network function approximation
and for the first time made it possible to use CFR in large games without tabular tracking of
regrets and strategies. The recently introduced DREAM algorithm [146] builds upon Deep CFR
and can be deployed even in settings without an explicit model of the environment.

However, there is still much work to be done along the path of scaling CFR to larger domains
such as 3-dimensional continuous action space environments. A major obstacle is that exist-
ing CFR algorithms cannot cope with continuous action spaces. Developing such an algorithm
would be a major step toward universal reinforcement learning algorithms that could be success-
ful in large imperfect-information games as well as perfect-information games and single-agent
settings.

Chapter 5 introduced new theoretically sound and empirically effective search techniques
for imperfect-information games. Safe search techniques, which prevent the opponent from
exploiting any assumption we might make about the opponent’s strategy, have been known for
many years. However, they performed poorly in practice compared to unsafe search techniques
that lacked theoretical guarantees and for that reason the unsafe search was used either entirely
or partially in competitive agents. Reach search and ReBeL are two major improvements to safe
search that for the first time make safe search empirically competitive with unsafe search. Nested
search, described in Section 5.1.7, presented a way for both safe and unsafe search techniques to
be applied repeatedly as play proceeds down the game tree. Section 5.2 introduced depth-limited
search via multi-valued states, which made depth-limited search far cheaper and more scalable
than past approaches. Finally, ReBeL, introduced in Section 5.3, made it possible for the first
time to combined depth-limited search and reinforcement learning at both training and test time
in imperfect-information games in a theoretically sound way. This was a major step toward
bridging the gap between the historically separate research threads of perfect-information games
and imperfect-information games.

Perhaps the biggest remaining open research question related to search in two-player zero-
sum imperfect-information games is how to apply search in a theoretically sound way in games
that have little or no common knowledge. All existing safe search techniques for imperfect-
information games operate by decomposing the game into pieces that are divided based on com-
mon knowledge and then solving just one of those pieces rather than the entire game. However, if
there is no common knowledge, then existing search techniques view the whole game as a single
atomic piece and those search techniques provide no benefit over simply solving the entire game
offline. While a lack of common knowledge is relatively rare in recreational games, it is quite
common in real-world applications, which makes this challenge important for the deployment of
equilibrium-finding techniques in the real world. Still, humans are able to search in games even
when there is not explicit common knowledge, which suggests there should be a path forward on
this challenge.

198

Most importantly, there is a question of how to extend the techniques presented in this thesis
to general-sum and multiplayer settings. While two-player zero-sum interactions are common
among recreational games, they are very rare in the real world. Instead, real-world strategic inter-
actions, such as business negotiations, politics, and traffic navigation, typically have a complex
mixture of adversarial and cooperative elements. Pluribus demonstrated that the techniques in
this thesis extend to multiplayer poker and likely to a broader class of multiplayer interactions,
but there are certainly situations in which existing CFR variants and existing search techniques
are not sufficient for computing an effective strategy.

Nevertheless, this thesis advances the state of the art for equilibrium-finding in large adver-
sarial imperfect-information games. Just ten years ago, the prospect of developing AI algorithms
capable of defeating top humans in a complex imperfect-information game like no-limit poker
seemed to be a distant dream. Now those techniques, and much more, are a reality.

199

200

Bibliography

[1] Thomas Anthony, Zheng Tian, and David Barber. Thinking fast and slow with deep learn-
ing and tree search. In Neural Information Processing Systems (NIPS), pages 5360–5370,
2017. 5.3

[2] Robert Aumann. Agreeing to disagree. The Annals of Statistics, 4, 1976. 5.3.2

[3] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normalization. arXiv
preprint arXiv:1607.06450, 2016. 5.3.5, 5.3.10

[4] Arindam Banerjee, Srujana Merugu, Inderjit S Dhillon, and Joydeep Ghosh. Clustering
with bregman divergences. Journal of machine learning research, 6(Oct):1705–1749,
2005. 4.1.1

[5] Nolan Bard, Michael Johanson, and Michael Bowling. Asymmetric abstractions for ad-
versarial settings. In International Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS), pages 501–508, 2014. 6.3

[6] Kimmo Berg and Tuomas Sandholm. Exclusion method for finding nash equilibrium in
multiplayer games. In AAAI Conference on Artificial Intelligence (AAAI), 2017. 2.2

[7] Darse Billings, Denis Papp, Jonathan Schaeffer, and Duane Szafron. Opponent modeling
in poker. In Proceedings of the National Conference on Artificial Intelligence (AAAI),
pages 493–499, Madison, WI, 1998. 6.4

[8] Darse Billings, Aaron Davidson, Jonathan Schaeffer, and Duane Szafron. The challenge
of poker. Artificial Intelligence, 134(1-2):201–240, 2002. 1

[9] Darse Billings, Neil Burch, Aaron Davidson, Robert Holte, Jonathan Schaeffer, Terence
Schauenberg, and Duane Szafron. Approximating game-theoretic optimal strategies for
full-scale poker. In International Joint Conference on Artificial Intelligence (IJCAI), 2003.
4.3, 5.1.2

[10] David Blackwell. An analog of the minmax theorem for vector payoffs. Pacific Journal
of Mathematics, 6:1–8, 1956. 3.4.5

[11] Avrim Blum and Yishay Mansour. From external to internal regret. Journal of Machine
Learning Research, 8(Jun):1307–1324, 2007. 2.3

[12] Michael Bowling, Neil Burch, Michael Johanson, and Oskari Tammelin. Heads-up limit
hold’em poker is solved. Science, 347(6218):145–149, January 2015. 2.2, 2.4.2, 3.1,
3.1.4, 3.5, 5.3.5, 3, 6.7

[13] George W. Brown. Iterative solutions of games by fictitious play. In Tjalling C. Koopmans,

201

editor, Activity Analysis of Production and Allocation, pages 374–376. John Wiley & Sons,
1951. 4.1, 5.3.3, 5.3.8

[14] Noam Brown and Tuomas Sandholm. Regret transfer and parameter optimization. In
AAAI Conference on Artificial Intelligence (AAAI), pages 594–601, 2014. 3.1.2, 3.1.2,
3.4.5

[15] Noam Brown and Tuomas Sandholm. Regret-based pruning in extensive-form games. In
Neural Information Processing Systems (NIPS), pages 1972–1980, 2015. 3.1.2, 5.1.8

[16] Noam Brown and Tuomas Sandholm. Simultaneous abstraction and equilibrium finding
in games. In International Joint Conference on Artificial Intelligence (IJCAI), 2015. 3.1.2,
3.5, 5.1.7, 5.2.2, 12

[17] Noam Brown and Tuomas Sandholm. Baby Tartanian8: Winning agent from the 2016
annual computer poker competition. In International Joint Conference on Artificial In-
telligence (IJCAI), pages 4238–4239, 2016. (document), 5.1.8, 5.2.3, 5.3.5, 5.6, 6.3, 6.4,
6.4

[18] Noam Brown and Tuomas Sandholm. Strategy-based warm starting for regret minimiza-
tion in games. In AAAI Conference on Artificial Intelligence (AAAI), pages 432–438, 2016.
3.5, 3.5.1

[19] Noam Brown and Tuomas Sandholm. Reduced space and faster convergence in imperfect-
information games via pruning. In International Conference on Machine Learning
(ICML), 2017. 3.1.2, 3.5.1, 5.1.8

[20] Noam Brown and Tuomas Sandholm. Safe and nested subgame solving for imperfect-
information games. In Neural Information Processing Systems (NIPS), pages 689–699,
2017. 3.1, 3.1.3, 5.2, 5.2.2, 12, 6.5, 6.7

[21] Noam Brown and Tuomas Sandholm. Superhuman AI for heads-up no-limit poker: Li-
bratus beats top professionals. Science, page eaao1733, 2017. 2.2, 3.1, 3.1.3, 3.1.4, 3.1.5,
5.2, 5.2.2, 5.3, 5.3.4, 5.3.5, 5.3.10, 6, 6.6, 6.7

[22] Noam Brown and Tuomas Sandholm. Solving imperfect-information games via dis-
counted regret minimization. In AAAI Conference on Artificial Intelligence (AAAI), 2019.
4.1.3, 5.3.4, 5.3.5, 5.3.8

[23] Noam Brown and Tuomas Sandholm. Superhuman AI for multiplayer poker. Science,
page eaay2400, 2019. 5.2.4, 5.3, 5.3.1, 5.3.4, 5.3.5, 6, 6.6, 6.7

[24] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Hierarchical abstraction, dis-
tributed equilibrium computation, and post-processing, with application to a champion
no-limit texas hold’em agent. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 7–15, 2015. 4.1.2, 4.3, 6.1, 6.3, 6.3, 6.4, 6.5, 6.7

[25] Noam Brown, Sam Ganzfried, and Tuomas Sandholm. Tartanian7: A champion two-
player no-limit Texas hold’em poker-playing program. In AAAI Conference on Artificial
Intelligence (AAAI), pages 4270–4271, 2015. Demo Track paper. 6.4, 6.4

[26] Noam Brown, Christian Kroer, and Tuomas Sandholm. Dynamic thresholding and pruning
for regret minimization. In AAAI Conference on Artificial Intelligence (AAAI), pages 421–

202

429, 2017. 5.1.6

[27] Noam Brown, Tuomas Sandholm, and Brandon Amos. Depth-limited solving for
imperfect-information games. In Neural Information Processing Systems (NeurIPS),
pages 7663–7674, 2018. 3.1.3, 4.1, 5.3, 5.3.4, 5.3.5, 6.7

[28] Noam Brown, Adam Lerer, Sam Gross, and Tuomas Sandholm. Deep counterfactual
regret minimization. In International Conference on Machine Learning (ICML), pages
793–802, 2019. 5.3.10

[29] Noam Brown, Anton Bakhtin, Adam Lerer, and Qucheng Gong. Combining deep rein-
forcement learning and search for imperfect-information games. In Neural Information
Processing Systems (NeurIPS), 2020. 5.2

[30] Neil Burch. Time and Space: Why Imperfect Information Games are Hard. PhD thesis,
University of Alberta, 2017. 2.3.8, 3.1.5

[31] Neil Burch, Michael Johanson, and Michael Bowling. Solving imperfect information
games using decomposition. In AAAI Conference on Artificial Intelligence (AAAI), pages
602–608, 2014. 4.3.1, 5.1.2, 5.2.1, 5.2.2, 5.2.5, 5.3.2, 12, 5.3.3, 5.3.9, 5.3.9, 5.3.11

[32] Neil Burch, Martin Schmid, Matej Moravcik, Dustin Morill, and Michael Bowling. AI-
VAT: A new variance reduction technique for agent evaluation in imperfect information
games. In AAAI Conference on Artificial Intelligence (AAAI), 2018. 5.2.3, 5.3.5, 6.6

[33] Neil Burch, Matej Moravcik, and Martin Schmid. Revisiting CFR+ and alternating up-
dates. Journal of Artificial Intelligence Research, 64:429–443, 2019. 2.3.5

[34] Murray Campbell, A Joseph Hoane, and Feng-Hsiung Hsu. Deep Blue. Artificial intelli-
gence, 134(1-2):57–83, 2002. 1, 2.2, 5.1, 5.1.9, 5.2

[35] Jiří Čermák, Viliam Lisỳ, and Branislav Bošanskỳ. Automated construction of bounded-
loss imperfect-recall abstractions in extensive-form games. Artificial Intelligence, 282:
103248, 2020. 4.3.7, 5.2.2

[36] Nicolo Cesa-Bianchi and Gabor Lugosi. Prediction, learning, and games. Cambridge
University Press, 2006. 2.3.1, 2.3.1, 2.3.3, 3.1.2, 3.4.3, 3.4.5, 3.4.5, 3.4.5, 4.2.8

[37] Nicolo Cesa-Bianchi, Yishay Mansour, and Gilles Stoltz. Improved second-order bounds
for prediction with expert advice. Machine Learning, 66(2-3):321–352, 2007. 2.3.3

[38] Kamalika Chaudhuri, Yoav Freund, and Daniel J Hsu. A parameter-free hedging algo-
rithm. In Neural Information Processing Systems (NIPS), pages 297–305, 2009. 2.3.1,
3.4.3

[39] Xi Chen, Xiaotie Deng, and Shang-Hua Teng. Settling the complexity of computing two-
player Nash equilibria. Journal of the ACM, 2009. 2.2, 6.6

[40] Chao-Kai Chiang, Tianbao Yang, Chia-Jung Lee, Mehrdad Mahdavi, Chi-Jen Lu, Rong
Jin, and Shenghuo Zhu. Online optimization with gradual variations. In Conference on
Learning Theory, pages 6–1, 2012. 5.3.8

[41] Constantinos Daskalakis, Paul W Goldberg, and Christos H Papadimitriou. The complex-
ity of computing a Nash equilibrium. SIAM Journal on Computing, 39(1), 2009. 2.2,

203

6.6

[42] Constantinos Daskalakis, Alan Deckelbaum, and Anthony Kim. Near-optimal no-regret
algorithms for zero-sum games. Games and Economic Behavior, 92:327–348, 2015. 3.2.6,
3.4.4

[43] Jilles Steeve Dibangoye, Christopher Amato, Olivier Buffet, and François Charpillet. Op-
timally solving dec-POMDPs as continuous-state MDPs. Journal of Artificial Intelligence
Research, 55:443–497, 2016. 5.3

[44] Gabriele Farina, Christian Kroer, Noam Brown, and Tuomas Sandholm. Stable-predictive
optimistic counterfactual regret minimization. In International Conference on Machine
Learning, pages 1853–1862, 2019. 3.5.2

[45] Gabriele Farina, Christian Kroer, and Tuomas Sandholm. Online convex optimization for
sequential decision processes and extensive-form games. In AAAI Conference on Artificial
Intelligence (AAAI), volume 33, pages 1917–1925, 2019. 2.3.5

[46] Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon White-
son, Matthew Botvinick, and Michael Bowling. Bayesian action decoder for deep multi-
agent reinforcement learning. In International Conference on Machine Learning (ICML),
pages 1942–1951, 2019. 5.3

[47] Yoav Freund and Robert Schapire. A decision-theoretic generalization of on-line learning
and an application to boosting. Journal of Computer and System Sciences, 55(1):119–139,
1997. 3.4

[48] Sam Ganzfried and Tuomas Sandholm. Game theory-based opponent modeling in large
imperfect-information games. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 533–540, 2011. 2.2, 6.4

[49] Sam Ganzfried and Tuomas Sandholm. Action translation in extensive-form games with
large action spaces: axioms, paradoxes, and the pseudo-harmonic mapping. In Interna-
tional Joint Conference on Artificial Intelligence (IJCAI), pages 120–128, 2013. 4.3.3,
5.1.7, 5.2.3, 6.4, 6.4

[50] Sam Ganzfried and Tuomas Sandholm. Potential-aware imperfect-recall abstraction with
earth mover’s distance in imperfect-information games. In AAAI Conference on Artificial
Intelligence (AAAI), pages 682–690. AAAI Press, 2014. 4.1.2, 4.3, 5.1.8, 5.2.2, 5.2.3, 6.5,
6.7

[51] Sam Ganzfried and Tuomas Sandholm. Endgame solving in large imperfect-information
games. In International Conference on Autonomous Agents and Multi-Agent Systems (AA-
MAS), pages 37–45, 2015. 5.1.2, 5.2.1

[52] Sam Ganzfried and Tuomas Sandholm. Safe opponent exploitation. ACM Transaction
on Economics and Computation (TEAC), 3(2):8:1–28, 2015. Best of EC-12 special issue.
2.2, 6.4

[53] Sylvain Gelly and David Silver. Combining online and offline knowledge in UCT. In
International Conference on Machine learning (ICML), pages 273–280, 2007. 5.3.2

[54] Richard Gibson. Regret Minimization in Games and the Development of Champion Mul-

204

tiplayer Computer Poker-Playing Agents. PhD thesis, University of Alberta, 2014. 4.3.1

[55] Richard Gibson, Marc Lanctot, Neil Burch, Duane Szafron, and Michael Bowling. Gener-
alized sampling and variance in counterfactual regret minimization. In AAAI Conference
on Artificial Intelligence (AAAI), pages 1355–1361, 2012. 2.3.6, 3.1.5

[56] Andrew Gilpin and Tuomas Sandholm. Optimal Rhode Island hold’em poker. In Pro-
ceedings of the National Conference on Artificial Intelligence (AAAI), pages 1684–1685,
Pittsburgh, PA, 2005. AAAI Press / The MIT Press. Intelligent Systems Demonstration.
2.3.8, 4, 6.7

[57] Andrew Gilpin and Tuomas Sandholm. A competitive Texas hold’em poker player via
automated abstraction and real-time equilibrium computation. In Proceedings of the Na-
tional Conference on Artificial Intelligence (AAAI), pages 1007–1013, 2006. 4.3, 5.1.2

[58] Andrew Gilpin and Tuomas Sandholm. Better automated abstraction techniques for im-
perfect information games, with application to Texas hold’em poker. In International
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS), pages 1168–1175,
2007. 5.1.2

[59] Andrew Gilpin and Tuomas Sandholm. Lossless abstraction of imperfect information
games. Journal of the ACM, 54(5), 2007. 4.3

[60] Andrew Gilpin, Tuomas Sandholm, and Troels Bjerre Sørensen. A heads-up no-limit
Texas hold’em poker player: discretized betting models and automatically generated
equilibrium-finding programs. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 911–918, 2008. 5.1.7, 6.4

[61] Andrew Gilpin, Javier Peña, and Tuomas Sandholm. First-order algorithm with
O(ln(1/ε)) convergence for ε-equilibrium in two-person zero-sum games. Mathemati-
cal Programming, 133(1–2):279–298, 2012. Conference version appeared in AAAI-08.
3.4, 5.1.2

[62] James Hannan. Approximation to bayes risk in repeated play. Contributions to the Theory
of Games, 3:97–139, 1957. 2.2

[63] Eric A Hansen, Daniel S Bernstein, and Shlomo Zilberstein. Dynamic programming for
partially observable stochastic games. In AAAI, volume 4, pages 709–715, 2004. 5.3.1

[64] Peter E Hart, Nils J Nilsson, and Bertram Raphael. Correction to "a formal basis for the
heuristic determination of minimum cost paths". ACM SIGART Bulletin, pages 28–29,
1972. 5.2

[65] Sergiu Hart and Andreu Mas-Colell. A simple adaptive procedure leading to correlated
equilibrium. Econometrica, 68:1127–1150, 2000. 2.3.1, 2.3.5, 5.3.11

[66] Junichi Hashimoto, Akihiro Kishimoto, Kazuki Yoshizoe, and Kokolo Ikeda. Accelerated
UCT and its application to two-player games. In Advances in computer games, pages
1–12. Springer, 2011. 3.1.2

[67] John Hawkin, Robert Holte, and Duane Szafron. Automated action abstraction of im-
perfect information extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), pages 681–687, 2011. 4.2, 4.2.7, 4.3

205

[68] John Hawkin, Robert Holte, and Duane Szafron. Using sliding windows to generate ac-
tion abstractions in extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), pages 1924–1930, 2012. 4.2, 4.2.7, 4.3

[69] Johannes Heinrich and David Silver. Deep reinforcement learning from self-play in
imperfect-information games. arXiv preprint arXiv:1603.01121, 2016. 4.1, 2, 5.2.2

[70] Johannes Heinrich, Marc Lanctot, and David Silver. Fictitious self-play in extensive-form
games. In International Conference on Machine Learning (ICML), pages 805–813, 2015.
3.5, 3.5.5

[71] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). arXiv preprint
arXiv:1606.08415, 2016. 5.3.5, 5.3.10

[72] Samid Hoda, Andrew Gilpin, Javier Peña, and Tuomas Sandholm. Smoothing techniques
for computing Nash equilibria of sequential games. Mathematics of Operations Research,
35(2):494–512, 2010. Conference version appeared in WINE-07. 2.3.8, 3.2.6, 3.4, 3.4.3,
3.5.2, 3.5.5, 5.3.3

[73] Karel Horák and Branislav Bošanskỳ. Solving partially observable stochastic games with
public observations. In AAAI Conference on Artificial Intelligence (AAAI), volume 33,
pages 2029–2036, 2019. 5.3

[74] Eric Jackson. A time and space efficient algorithm for approximately solving large imper-
fect information games. In AAAI Workshop on Computer Poker and Imperfect Informa-
tion, 2014. 4.3.1, 2, 5.2.2

[75] Eric Griffin Jackson. Compact CFR. In AAAI Workshop on Computer Poker and Imperfect
Information, 2016. 4.1.1

[76] Eric Griffin Jackson. Targeted CFR. In AAAI Workshop on Computer Poker and Imperfect
Information, 2017. 2.3.6, 3.1.5, 5.2.3

[77] Peter H Jin, Sergey Levine, and Kurt Keutzer. Regret minimization for partially observable
deep reinforcement learning. arXiv preprint arXiv:1710.11424, 2017. 4.1

[78] Michael Johanson. Measuring the size of large no-limit poker games. Technical report,
University of Alberta, 2013. 4.3

[79] Michael Johanson, Kevin Waugh, Michael Bowling, and Martin Zinkevich. Accelerating
best response calculation in large extensive games. In International Joint Conference on
Artificial Intelligence (IJCAI), pages 258–265, 2011. 3.1.5, 3.2, 3.2.5, 3.3.7, 3.5.5, 4.3.4

[80] Michael Johanson, Nolan Bard, Neil Burch, and Michael Bowling. Finding optimal ab-
stract strategies in extensive-form games. In AAAI Conference on Artificial Intelligence
(AAAI), pages 1371–1379. AAAI Press, 2012. 3.2, 3.3.1, 5.1.5, 6, 5.1.12, 5.2.2, 6.4, 6.7

[81] Michael Johanson, Nolan Bard, Marc Lanctot, Richard Gibson, and Michael Bowling.
Efficient nash equilibrium approximation through monte carlo counterfactual regret min-
imization. In International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), pages 837–846, 2012. 2.3.6

[82] Michael Johanson, Neil Burch, Richard Valenzano, and Michael Bowling. Evaluating
state-space abstractions in extensive-form games. In International Conference on Au-

206

tonomous Agents and Multiagent Systems (AAMAS), pages 271–278, 2013. 4.1.2, 4.2.6,
4.3, 5.2.3, 6.5

[83] Michael Bradley Johanson. Robust Strategies and Counter-Strategies: From Superhuman
to Optimal Play. PhD thesis, University of Alberta, 2016. 4.1.3

[84] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv
preprint arXiv:1412.6980, 2014. 4.1.2, 5.2.3, 5.3.5

[85] Daphne Koller and Avi Pfeffer. Representations and solutions for game-theoretic prob-
lems. Artificial Intelligence, 94(1):167–215, July 1997. 2.3.8

[86] Daphne Koller, Nimrod Megiddo, and Bernhard von Stengel. Efficient computation of
equilibria for extensive two-person games. Games and Economic Behavior, 14(2):247–
259, 1996. 2.3.8

[87] Vojtěch Kovařík and Viliam Lisỳ. Problems with the EFG formalism: a solution attempt
using observations. arXiv preprint arXiv:1906.06291, 2019. 12

[88] Vojtěch Kovařík, Martin Schmid, Neil Burch, Michael Bowling, and Viliam Lisỳ. Re-
thinking formal models of partially observable multiagent decision making. arXiv preprint
arXiv:1906.11110, 2019. 5.3.1, 9, 12

[89] Christian Kroer and Tuomas Sandholm. Extensive-form game abstraction with bounds.
In Proceedings of the ACM Conference on Economics and Computation (EC), pages 621–
638. ACM, 2014. 4.3

[90] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster first-
order methods for extensive-form game solving. In Proceedings of the ACM Conference
on Economics and Computation (EC), pages 817–834. ACM, 2015. 2.3.8, 3.2.6, 3.4

[91] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Theoretical
and practical advances on smoothing for extensive-form games. In Proceedings of the
ACM Conference on Economics and Computation (EC), 2017. 5.1.2

[92] Christian Kroer, Gabriele Farina, and Tuomas Sandholm. Solving large sequential games
with the excessive gap technique. In Neural Information Processing Systems (NeurIPS,
pages 864–874, 2018. 2.3.8, 5.3.3

[93] Christian Kroer, Kevin Waugh, Fatma Kılınç-Karzan, and Tuomas Sandholm. Faster algo-
rithms for extensive-form game solving via improved smoothing functions. Mathematical
Programming Series A, 2020. 2.3.8, 3.4.3, 3.4.4, 3.5.2, 5.3.3

[94] Guillaume Lample and Devendra Singh Chaplot. Playing FPS games with deep reinforce-
ment learning. In AAAI, pages 2140–2146, 2017. 1

[95] Marc Lanctot. Monte Carlo Sampling and Regret Minimization for Equilibrium Com-
putation and Decision-Making in Large Extensive Form Games. PhD thesis, University
of Alberta, University of Alberta, Computing Science, 116 St. and 85 Ave., Edmonton,
Alberta T6G 2R3, June 2013. 2.3.6, 2, 15, 4.1.5, 4.1.5, 4.1.5, 4.1.5, 4.1.5

[96] Marc Lanctot, Kevin Waugh, Martin Zinkevich, and Michael Bowling. Monte Carlo sam-
pling for regret minimization in extensive games. In Neural Information Processing Sys-
tems (NeurIPS), pages 1078–1086, 2009. 2.3.6, 2.3.6, 3.1.5, 3.2.5, 3.3, 3.4.5, 4.1.1, 4.1.3,

207

4.1.5, 4.3.8, 4.3.8, 5.1.8, 5.2.2, 5.2.3

[97] Marc Lanctot, Richard Gibson, Neil Burch, Martin Zinkevich, and Michael Bowling. No-
regret learning in extensive-form games with imperfect recall. In International Conference
on Machine Learning (ICML), pages 65–72, 2012. 4.3

[98] Marc Lanctot, Vinicius Zambaldi, Audrunas Gruslys, Angeliki Lazaridou, Karl Tuyls,
Julien Pérolat, David Silver, and Thore Graepel. A unified game-theoretic approach to
multiagent reinforcement learning. In Neural Information Processing Systems (NIPS),
pages 4190–4203, 2017. 2.2, 5.2.2

[99] Adam Lerer, Hengyuan Hu, Jakob Foerster, and Noam Brown. Improving policies via
search in cooperative partially observable games. In AAAI Conference on Artificial Intel-
ligence (AAAI), 2020. 5.3

[100] David S Leslie and Edmund J Collins. Generalised weakened fictitious play. Games and
Economic Behavior, 56(2):285–298, 2006. 5.3.8

[101] Hui Li, Kailiang Hu, Shaohua Zhang, Yuan Qi, and Le Song. Double neural counterfactual
regret minimization. In International Conference on Learning Representations (ICLR),
2019. 4.1

[102] Shen Lin. Computer solutions of the traveling salesman problem. Bell System Technical
Journal, 44(10):2245–2269, 1965. 5.2

[103] Viliam Lisy and Michael Bowling. Equilibrium approximation quality of current no-limit
poker bots. In AAAI Workshop on Computer Poker and Imperfect Information Games,
2017. (document), 5.2.3, 5.3.5, 5.6, 6.5

[104] Nick Littlestone and M. K. Warmuth. The weighted majority algorithm. Information and
Computation, 108(2):212–261, 1994. 3.4, 5.1.5, 5.1.6

[105] Haipeng Luo and Robert E Schapire. A drifting-games analysis for online learning and
applications to boosting. In Neural Information Processing Systems (NIPS), pages 1368–
1376, 2014. 3.4

[106] H Brendan McMahan, Geoffrey J Gordon, and Avrim Blum. Planning in the presence
of cost functions controlled by an adversary. In International Conference on Machine
Learning (ICML), pages 536–543, 2003. 5.2.2

[107] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. Nature, 518(7540):529, 2015.
4.1

[108] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timothy Lilli-
crap, Tim Harley, David Silver, and Koray Kavukcuoglu. Asynchronous methods for deep
reinforcement learning. In International Conference on Machine Learning (ICML), pages
1928–1937, 2016. 4.1.1

[109] Matej Moravcik, Martin Schmid, Karel Ha, Milan Hladik, and Stephen J Gaukrodger. Re-
fining subgames in large imperfect information games. In AAAI Conference on Artificial
Intelligence (AAAI), pages 572–578. AAAI Press, 2016. 5.1.2, 5.1.2, 5.1.3, 5.1.10, 5.2.2,

208

12

[110] Matej Moravčík, Martin Schmid, Neil Burch, Viliam Lisỳ, Dustin Morrill, Nolan Bard,
Trevor Davis, Kevin Waugh, Michael Johanson, and Michael Bowling. Deepstack:
Expert-level artificial intelligence in heads-up no-limit poker. Science, 356(6337):508–
513, 2017. 3.1, 3.1.3, 3.1.4, 4.1, 7, 5.2, 5.2.2, 5.3, 5.3.2, 12, 5.3.3, 5.3.4, 5.3.4, 5.3.5,
5.3.9, 5.3.9, 3, 6.7

[111] Dustin R Morrill. Using regret estimation to solve games compactly. Master’s thesis,
University of Alberta, 2016. 4.1.5

[112] John Nash. Non-cooperative games. Annals of Mathematics, 54:289–295, 1951. 1, 2.2, 6

[113] Ashutosh Nayyar, Aditya Mahajan, and Demosthenis Teneketzis. Decentralized stochastic
control with partial history sharing: A common information approach. IEEE Transactions
on Automatic Control, 58(7):1644–1658, 2013. 5.3

[114] Yurii Nesterov. Excessive gap technique in nonsmooth convex minimization. SIAM Jour-
nal of Optimization, 16(1):235–249, 2005. 3.2.6, 3.4, 3.4.3, 5.1.2

[115] Allen Newell and George Ernst. The search for generality. In Proc. IFIP Congress,
volume 65, pages 17–24, 1965. 5.2

[116] Andrew J Newman, Casey L Richardson, Sean M Kain, Paul G Stankiewicz, Paul R
Guseman, Blake A Schreurs, and Jeffrey A Dunne. Reconnaissance blind multi-chess:
an experimentation platform for ISR sensor fusion and resource management. In Signal
Processing, Sensor/Information Fusion, and Target Recognition XXV, volume 9842, page
984209. International Society for Optics and Photonics, 2016. 5.3.6

[117] Nils J Nilsson. Problem-solving methods in. Artificial Intelligence, 1971. 5.2

[118] Frans Adriaan Oliehoek. Sufficient plan-time statistics for decentralized pomdps. In In-
ternational Joint Conference on Artificial Intelligence (IJCAI), 2013. 5.3, 10

[119] Martin J Osborne and Ariel Rubinstein. A Course in Game Theory. MIT Press, 1994. 2.1

[120] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch:
An imperative style, high-performance deep learning library. In Neural Information Pro-
cessing Systems (NeurIPS), pages 8026–8037, 2019. 5.2.3, 5.3.5

[121] François Pays. An interior point approach to large games of incomplete information. In
AAAI Workshop on Computer Poker and Imperfect Information, 2014. 3.4, 3.4.4

[122] Alexander Rakhlin and Karthik Sridharan. Online learning with predictable sequences. In
Conference on Learning Theory, pages 993–1019, 2013. 5.3.8

[123] I. Romanovskii. Reduction of a game with complete memory to a matrix game. Soviet
Mathematics, 3:678–681, 1962. 2.3.8

[124] Aviad Rubinstein. Inapproximability of nash equilibrium. SIAM Journal on Computing,
47(3):917–959, 2018. 2.2, 6.6

[125] Arthur L Samuel. Some studies in machine learning using the game of checkers. IBM
Journal of research and development, 3(3):210–229, 1959. 5.2

209

[126] Tuomas Sandholm. The state of solving large incomplete-information games, and appli-
cation to poker. AI Magazine, pages 13–32, Winter 2010. Special issue on Algorithmic
Game Theory. 5

[127] Tuomas Sandholm. Abstraction for solving large incomplete-information games. In AAAI
Conference on Artificial Intelligence (AAAI), pages 4127–4131, 2015. Senior Member
Track. 5

[128] Tuomas Sandholm. Solving imperfect-information games. Science, 347(6218):122–123,
2015. 5

[129] Tuomas Sandholm and Satinder Singh. Lossy stochastic game abstraction with bounds.
In Proceedings of the ACM Conference on Electronic Commerce (EC), pages 880–897.
ACM, 2012. 4.2, 4.2.7, 4.3

[130] Jonathan Schaeffer. One Jump Ahead: Challenging Human Supremacy in Checkers.
Springer-Verlag, New York, 1997. 1, 2.2

[131] Jonathan Schaeffer, Neil Burch, Yngvi Björnsson, Akihiro Kishimoto, Martin Müller,
Robert Lake, Paul Lu, and Steve Sutphen. Checkers is solved. Science, 317(5844):1518–
1522, 2007. 5.1

[132] Martin Schmid, Matej Moravcik, and Milan Hladik. Bounding the support size in exten-
sive form games with imperfect information. In AAAI Conference on Artificial Intelligence
(AAAI), pages 784–790, 2014. 3.5

[133] David Schnizlein, Michael Bowling, and Duane Szafron. Probabilistic state translation
in extensive games with large action sets. In International Joint Conference on Artificial
Intelligence (IJCAI), pages 278–284, 2009. 5.1.7

[134] Julian Schrittwieser, Ioannis Antonoglou, Thomas Hubert, Karen Simonyan, Laurent
Sifre, Simon Schmitt, Arthur Guez, Edward Lockhart, Demis Hassabis, Thore Graepel,
et al. Mastering atari, go, chess and shogi by planning with a learned model. arXiv
preprint arXiv:1911.08265, 2019. 5.3

[135] Dominik Seitz, Vojtech Kovarík, Viliam Lisỳ, Jan Rudolf, Shuo Sun, and Karel Ha. Value
functions for depth-limited solving in imperfect-information games beyond poker. arXiv
preprint arXiv:1906.06412, 2019. 10, 12

[136] Jack Serrino, Max Kleiman-Weiner, David C Parkes, and Josh Tenenbaum. Finding friend
and foe in multi-agent games. In Neural Information Processing Systems (NeurIPS), pages
1249–1259, 2019. 5.3, 5.3.4, 5.3.4

[137] Claude E Shannon. Programming a computer for playing chess. The London, Edinburgh,
and Dublin Philosophical Magazine and Journal of Science, 41(314):256–275, 1950. 5.2

[138] A Shapiro and Y Wardi. Convergence analysis of gradient descent stochastic algorithms.
Journal of optimization theory and applications, 91(2):439–454, 1996. 4.2.8

[139] Jiefu Shi and Michael Littman. Abstraction methods for game theoretic poker. In CG
’00: Revised Papers from the Second International Conference on Computers and Games,
pages 333–345, London, UK, 2002. Springer-Verlag. 4.3

[140] David Silver, Aja Huang, Chris J Maddison, Arthur Guez, Laurent Sifre, George Van

210

Den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Veda Panneershelvam, Marc
Lanctot, et al. Mastering the game of go with deep neural networks and tree search.
Nature, 529(7587):484–489, 2016. 1, 2.2, 5.1, 5.1.9, 5.2

[141] David Silver, Julian Schrittwieser, Karen Simonyan, Ioannis Antonoglou, Aja Huang,
Arthur Guez, Thomas Hubert, Lucas Baker, Matthew Lai, Adrian Bolton, et al. Mas-
tering the game of go without human knowledge. Nature, 550(7676):354, 2017. 4.1, 5.2,
5.3

[142] David Silver, Thomas Hubert, Julian Schrittwieser, Ioannis Antonoglou, Matthew Lai,
Arthur Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran, Thore Graepel, et al. A
general reinforcement learning algorithm that masters chess, shogi, and go through self-
play. Science, 362(6419):1140–1144, 2018. 4.1, 5.3, 6.7

[143] Finnegan Southey, Michael Bowling, Bryce Larson, Carmelo Piccione, Neil Burch, Darse
Billings, and Chris Rayner. Bayes’ bluff: Opponent modelling in poker. In Conference on
Uncertainty in Artificial Intelligence (UAI), pages 550–558, July 2005. 2.4.1, 3.3.5

[144] Sriram Srinivasan, Marc Lanctot, Vinicius Zambaldi, Julien Pérolat, Karl Tuyls, Rémi
Munos, and Michael Bowling. Actor-critic policy optimization in partially observable
multiagent environments. In Neural Information Processing Systems (NeurIPS), pages
3426–3439, 2018. 4.1

[145] Eric Steinberger. Single deep counterfactual regret minimization. arXiv preprint
arXiv:1901.07621, 2019. 4.1.1

[146] Eric Steinberger, Adam Lerer, and Noam Brown. DREAM: Deep regret minimization with
advantage baselines and model-free learning. arXiv preprint arXiv:2006.10410, 2020. 4.1,
7

[147] Michal Šustr, Vojtěch Kovařík, and Viliam Lisỳ. Monte carlo continual resolving for
online strategy computation in imperfect information games. In International Conference
on Autonomous Agents and Multiagent Systems (AAMAS), pages 224–232, 2019. 12

[148] Vasilis Syrgkanis, Alekh Agarwal, Haipeng Luo, and Robert E Schapire. Fast convergence
of regularized learning in games. In Neural Information Processing Systems (NIPS), pages
2989–2997, 2015. 3.1.2, 5.3.8

[149] Oskari Tammelin. Solving large imperfect information games using CFR+. arXiv preprint
arXiv:1407.5042, 2014. 2.3.2, 3.1, 3.3.4, 3

[150] Oskari Tammelin, Neil Burch, Michael Johanson, and Michael Bowling. Solving heads-up
limit texas hold’em. In International Joint Conference on Artificial Intelligence (IJCAI),
pages 645–652, 2015. 2.3.2, 2.3.7, 3.1, 3.1.7, 3.1.7, 3.1.7, 3.2, 3.5, 4, 5.1.8, 5.1.8, 5.2.3

[151] Gerald Tesauro. TD-Gammon, a self-teaching backgammon program, achieves master-
level play. Neural computation, 6(2):215–219, 1994. 5.3

[152] Gerald Tesauro. Temporal difference learning and TD-gammon. Communications of the
ACM, 38(3), 1995. 1, 5.1.9

[153] Gerald Tesauro. Programming backgammon using self-teaching neural nets. Artificial
Intelligence, 134(1-2):181–199, 2002. 5.2

211

[154] Ben Van der Genugten. A weakened form of fictitious play in two-person zero-sum games.
International Game Theory Review, 2(04):307–328, 2000. 5.3.8

[155] Jeffrey S Vitter. Random sampling with a reservoir. ACM Transactions on Mathematical
Software (TOMS), 11(1):37–57, 1985. 4.1.1

[156] John von Neumann. Zur Theorie der Gesellschaftsspiele. Mathematische Annalen, 100:
295–320, 1928. 1, 6

[157] Bernhard von Stengel. Efficient computation of behavior strategies. Games and Economic
Behavior, 14(2):220–246, 1996. 2.3.8

[158] Kevin Waugh and Drew Bagnell. A unified view of large-scale zero-sum equilibrium
computation. In AAAI Workshop on Computer Poker and Imperfect Information, 2015.
3.2.6

[159] Kevin Waugh, Nolan Bard, and Michael Bowling. Strategy grafting in extensive games.
In Neural Information Processing Systems (NeurIPS), 2009. 4.3.1, 2

[160] Kevin Waugh, David Schnizlein, Michael Bowling, and Duane Szafron. Abstraction
pathologies in extensive games. In International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pages 781–788, 2009. 2.3.4, 4.3.4

[161] Kevin Waugh, Martin Zinkevich, Michael Johanson, Morgan Kan, David Schnizlein, and
Michael Bowling. A practical use of imperfect recall. In Symposium on Abstraction,
Reformulation and Approximation (SARA), 2009. 6.4

[162] Kevin Waugh, Dustin Morrill, Drew Bagnell, and Michael Bowling. Solving games with
functional regret estimation. In AAAI Conference on Artificial Intelligence (AAAI), 2015.
4.1

[163] Martin Zinkevich, Michael Johanson, Michael H Bowling, and Carmelo Piccione. Regret
minimization in games with incomplete information. In Neural Information Processing
Systems (NeurIPS), pages 1729–1736, 2007. 1, 2.3.5, 4.2.8, 4.2.8, 5.1.2, 5.1.6, 5.3.3,
5.3.11

[164] Martin A Zinkevich, Michael Bowling, and Michael Wunder. The lemonade stand game
competition: solving unsolvable games. ACM SIGecom Exchanges, 10(1):35–38, 2011.
2.2

212

	1 Introduction
	2 Notation and Background
	2.1 Imperfect-Information Extensive-Form Games
	2.2 Nash Equilibrium
	2.3 Regret Minimization
	2.3.1 Regret Matching
	2.3.2 Regret Matching+
	2.3.3 Hedge
	2.3.4 Equilibrium convergence of no-regret learning algorithms in games
	2.3.5 Counterfactual Regret Minimization (CFR)
	2.3.6 Monte Carlo Counterfactual Regret Minimization (MCCFR)
	2.3.7 Counterfactual Regret Minimization+ (CFR+)
	2.3.8 Comparison to other equilibrium-finding algorithms
	2.3.9 Proofs of Theoretical Results

	2.4 Benchmark Imperfect-Information Games
	2.4.1 Leduc Hold'em Poker
	2.4.2 Limit Texas Hold'em Poker
	2.4.3 No-Limit Texas Hold'em Poker
	2.4.4 Flop Texas Hold'em
	2.4.5 Goofspiel
	2.4.6 Liar's Dice

	3 Equilibrium Finding via Counterfactual Regret Minimization
	3.1 Faster Convergence with Discounted CFR (DCFR)
	3.1.1 Weighted Averaging Schemes for CFR+
	3.1.2 Regret Discounting for CFR and Its Variants
	3.1.3 Experimental setup
	3.1.4 Experiments on Regret Discounting and Weighted Averaging
	3.1.5 Discounted Monte Carlo CFR
	3.1.6 Conclusions
	3.1.7 Proofs of Theoretical Results

	3.2 Strategy-Based Warm Starting of CFR
	3.2.1 Further Details on CFR
	3.2.2 Warm-Starting Algorithm
	3.2.3 Choosing the Number of Warm-Start Iterations
	3.2.4 Choosing Substitute Counterfactual Values
	3.2.5 Experiments
	3.2.6 Conclusions
	3.2.7 Proofs of Theoretical Results

	3.3 Regret-Based Pruning (RBP)
	3.3.1 Applying Best Response to Zero-Reach Sequences
	3.3.2 Description of Regret-Based Pruning
	3.3.3 Best Response Calculation for Regret-Based Pruning
	3.3.4 Regret-Based Pruning with DCFR and CFR+
	3.3.5 Experiments
	3.3.6 Comparison of Minimum Skip Thresholds
	3.3.7 Conclusions
	3.3.8 Proofs of Theoretical Results

	3.4 Dynamic Thresholding
	3.4.1 Dynamic Thresholding
	3.4.2 Regret-Based Pruning for Hedge
	3.4.3 Experiments
	3.4.4 Conclusions
	3.4.5 Proofs of Theoretical Results

	3.5 Best-Response Pruning (BRP)
	3.5.1 Description of Best-Response Pruning
	3.5.2 Best-Response Pruning Requires Less Space
	3.5.3 Best-Response Pruning Converges Faster
	3.5.4 Experiments
	3.5.5 Conclusions
	3.5.6 Proofs of Theoretical Results

	4 Automated Abstraction for Imperfect-Information Games
	4.1 Deep Counterfactual Regret Minimization
	4.1.1 Description of Deep Counterfactual Regret Minimization
	4.1.2 Experimental Setup
	4.1.3 Experimental Results
	4.1.4 Conclusions
	4.1.5 Proofs of Theoretical Results

	4.2 Regret Transfer and Parameter Optimization
	4.2.1 Regret Transfer: Initializing Regrets of Actions Based on Regrets Computed for Related Settings
	4.2.2 Warm Start Toward Nash Equilibrium in Zero-Sum Games
	4.2.3 Generalization to Extensive-Form Games
	4.2.4 Regret Transfer Experiments
	4.2.5 Parameter Optimization
	4.2.6 Parameter Optimization Experiments
	4.2.7 Conclusions
	4.2.8 Proofs of Theoretical Results

	4.3 Simultaneous Abstraction and Equilibrium Finding
	4.3.1 Adding Actions to an Abstraction
	4.3.2 Adding Actions with Regret Transfer
	4.3.3 Computing Exploitability in Games with Continuous Action Spaces
	4.3.4 Where and When to Add Actions?
	4.3.5 Removing Actions from an Abstraction
	4.3.6 Experiments
	4.3.7 Conclusions
	4.3.8 Proofs of Theoretical Results

	5 Search for Imperfect-Information Games
	5.1 Safe and Nested Search
	5.1.1 Example Game: Coin Toss
	5.1.2 Prior Approaches to Search in Imperfect-Information Games
	5.1.3 Reach Search
	5.1.4 Estimates for Alternative Payoffs
	5.1.5 Distributional Alternative Payoffs
	5.1.6 Hedge for Distributional Search
	5.1.7 Nested Search
	5.1.8 Experiments
	5.1.9 Conclusions
	5.1.10 Description of Gadget Game
	5.1.11 Scaling of Gifts
	5.1.12 Proofs of Theoretical Results

	5.2 Depth-Limited Search via Multi-Valued States
	5.2.1 The Challenge of Depth-Limited Search in Imperfect-Information Games
	5.2.2 Multi-Valued States in Imperfect-Information Games
	5.2.3 Experiments
	5.2.4 Conclusions
	5.2.5 Proofs of Theoretical Results

	5.3 Depth-Limited Search and Deep Reinforcement Learning via Public Belief States
	5.3.1 Notation and Background
	5.3.2 From World States to Public Belief States
	5.3.3 Self Play Reinforcement Learning and Search for Public Belief States
	5.3.4 Safe Search with Public Belief States
	5.3.5 Experiments
	5.3.6 Conclusions
	5.3.7 Pseudocode for ReBeL
	5.3.8 Fictitious Linear Optimistic Play
	5.3.9 CFR-AVG: CFR Decomposition using Average Strategy
	5.3.10 Hyper parameters
	5.3.11 Proofs of Theoretical Results

	5.4 Comparison of Search via Multi-Valued States versus Public Belief States

	6 Empirical Evaluation via Poker AI Agents
	6.1 Tartanian7
	6.2 Claudico
	6.3 Baby Tartanian8
	6.4 Libratus
	6.5 Modicum
	6.6 Pluribus
	6.7 ReBeL

	7 Conclusions and Future Research
	Bibliography

