Scaling Concolic Execution of Binary
Programs for Security Applications

Pongsin Poosankam

CMU-CS-13-112
August 2013

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Thesis Committee:
Dawn Song, Chair (UC Berkeley and CMU)
Frank Pfenning
André Platzer
David Brumley
Stephen McCamant (University of Minnesota)

Submitted in partial fulfilment of the requirements
for the degree of Doctor of Philosophy.

Copyright(© 2013 Pongsin Poosankam

This research was based upon work partially supported byN#tmnal Science Foundation under Grants No. 0311808, B832
0448452, 0842694, 0627511, 0842695, 0831501, 0424422C&Rd0424422, by the Air Force Office of Scientific Researctieun
Grant No. 22178970-4170, by the Air Force Research Labgrateder Grant No. P010071555, by the Army Research Officerunde
grant No. DAAD19-02-1-0389, by the Office of Naval Researntler MURI Grant No. N000140911081, and by the MURI program
under AFOSR Grants No. FA9550-08-1-0352 and FA9550-0%390Pongsin Poosankam was partially supported by the Rl
Government scholarship.

The views and conclusions contained in this document arethiothe author and should not be interpreted as represehenfficial
policies, either expressed or implied, of CMU, the NationeieSce Foundation, the Air Force Office of Scientific Reseatice Air
Force Research Laboratory, the Army Research Office, theeQffiblaval Research, the Thai Government, or the U.S. Govertamen

Keywords: BitBlaze, BitFuzz, binary program analysis, concolic exemttest input
generation, vulnerability discovery

Abstract

Concolic execution is a technique for program analysis trekes the val-
ues of certain inputs symbolic, symbolically executes agypam’s code, and
computes a symbolic logical formula to represent a desiedthlaor of the
program under analysis. The computed formula is then sdiyeal decision
procedure to determine whether the desired behavior isbleaand, if so,
provide an example program input that satisfies the form@dacolic execu-
tion and similar techniques have widely been applied to ewaof security-
related applications including automatic test input gatien, vulnerability
discovery, exploit generation, signature generationgoa reverse engineer-
ing, and detecting deviations between software implentients

Although there has been a great success in applying it towssecurity-
related applications, a basic implementation of concolexation only works
well on small programs and scaling it to real-world binarggmams is diffi-
cult. One reason is that programs often contain certain codstructs that
are difficult to reason about directly such as loops and d@ngofiinctions.
Another reason is that the number of symbolic formulas grdwastically in
proportion to the size of the program being analyzed.

These observations led us to develop three scaling tecesigu concolic
execution. The first scaling technique, loop-extended alimexecution, fo-
cuses on improving the efficiency of concolic execution waealyzing pro-
gram portions that involve loops. The second techniquepm@osition and
re-stitching of concolic execution, addresses the issatetiose from the pres-
ence ofencoding functionsvhich are difficult to reason about automatically.
The third technique uses the state model of the program wemkgysis to
guide concolic execution. Our techniques work on programats and do
not require the presence of source code or debugging infmmia the bina-
ries.

We apply our scaled concolic execution to a variety of séguelated
applications. For each of our scaling techniques, we detraiasthat they
significantly improve the performance and usability of awdbic test input
generation and vulnerability discovery, which are preslglkknown applica-
tions of concolic execution. We also study unexplored ajapilbns of con-
colic execution in security-related problems such as ma&wenealogy and
protocol model inference.

Acknowledgments

Many people encouraged and supported the work describédsithiesis. First and fore-
most, | thank my adviser and thesis committee chair Profd3aan Song for her invalu-
able advice, guidance, and continuous support throughgudaoutoral study. This work
would have not been possible without her help.

| would like to gratefully acknowledge other four memberswyf thesis committee:
Professor David Brumley, Professor Stephen McCamant, Rafésank Pfenning, and
Professor Ande Platzer. Though they were busy with other responsitslitteey gra-
ciously granted their time to work with me. Their insightfaedback and suggestions on
how to improve this thesis and my research methodology irigtrare greatly appreci-
ated.

Work described in this thesis is part of and utilizes partshef BitBlaze infrastruc-
ture and | am indebted to all members of the BitBlaze team imeuduan Caballero,
Min Gyung Kang, Prateek Saxena, Heng Yin, Chia Yuan Cho, Stevendl Zhenkai
Liang, Lorenzo Martignoni, Damagoj Babic, Lenx Wei, MathRayer, Noah Johnson,
Kevin Zhijie Chen, Daniel Reynaud, Ivan Jager, James Newsd@uaa, Caselden, and
Alex Bazhanyuk. | would also like to extend my gratitude toestkolleagues who are
co-authors in papers done during my doctoral study incly@rofessor Avrim Blum, Pro-
fessor Kevin Fu, Professor Vern Paxson, Professor Adriamg?@rofessor Scott Shenker,
Professor lon Stoica, Petros Maniatis, Christian Kreibigtao Liu, Shobha Venkatara-
man, Jiang Zheng, Rolf Rolles, Andres Molina-Markham, EdwdoéJun Wu, Matei
Zaharia, and Jun Han.

I would like to thank my parents for their unconditional lcaed support.

| would also like to express my appreciation to my friends ittsBurgh and Berkeley
as well as those in Thailand for always being there on goodaddiays and for lending
a helping hand whenever needed.

The final products of this thesis would not be possible witrantinuous help from

the staffs at SCS and CSD, especially Deborah Cavlovich. yrapfireciate your patience
and your support. Thank you very much.

Portions of this thesis originate from work previously pabéd in the proceedings
of the 2009 International Symposium on Software Testing Andlysis (ISSTA) [99],
the proceedings of the 2010 ACM Conference on Computer and Coroatiom Security
(CCS) [19], and the proceedings of the 2011 USENIX Security 8sum [26].

Vi

Contents

[1__Introduction|
1.1 Introductioh
[1.2 Main Contributions . . .« « v oo

3.7 Limitations 50
3.8 Related WOIK . . . o v o oo e 51

3.9 Conclusion 53

| _ Restichn -
4.1 Introductioh 55
4.2 Problem Definition & Overview 75
421 Problem Definitidn 57
4.2.2 Approach OVEIVIEW i 59

4.3 _Stitched Concolic Execution 60

[4.3.1.2 Re-SHtchilg o v oo 63
|4.3.1.3 he Functional Ee[spedive 64
14.3.2 Identificationo 65

4.3.2.1 Identifying Encoding Functions 65
4.3.2.2 |dentifying Inverse Functions 68
[4.3.3 Multiple Encoding Layerso 69
4.4 Implementatino 69
- tian. 69
-in-a- N, e e 70
4.5 Experimental Evaluatibn 71
4.5.1 ldentification of Encoding Functions and Their Inesrs. 73
4.5.2 Decomposition vs. Non-Decomposition 75
4.5.3 Malware Vulnerabiliti®s 76
454 BugPersistence overTImeo oo 78
4.6 DISCUSSIAN . « « o v v o o e e 79
4.6.1 Applications and Ethical Considerations 80
4.6.2 Limitations 81
4.7 Related WOIK . . o o o oo 82
4.8 Conclusion 83
- n 85
Bl Introductioho 85
5.2 Related WOIK . . . o o oo 86
5.3 _Problem Definition and Overview 88
5.3.1 Problem Statement o v oo 88
5.3.2 Applications 90
[5.3.3 Preliminari@s o oo v 90
B4 Approach 93
5.4.1 AHigh-Level Descriptiono 93
5.4.2 Model Inference with 94
I5.4.3 The State-Space Exploration Phase 95
5.4.4 ModelRefinement 95

B51 LrasaClielt oo 97
5.5.2__Model Inference Optimizatidns 709
5.5.3 _State-Space Exploraion 98
5.6 _Experimental Evaluatibn 98
5.6.1 ExperimentalSetup oo 99
I5.6.2__Model Inference and Refinemdent 99
5.6.3 _Discovered Vulnerabilitles 105
5.6.4 _Comparison with the Baseline 110
5.7 Limitations 112
5.8 Conclusion 112
l6__Conclusion 115
6.1 Potential Integration of the Proposed Techniques 115
6.2 Conclusion 116
[Bibliographyl 119

List of Figures

2. Archi re of BitFUuzz o 22

3.1 A Simplified Example from an HTTP Server that Handles Retyuef the
Form:" GET." URI "_." Version"\n" 28

3.2 Overview of Our LECE Tool and Accessory Components. LECE, ou
main contribution, enhances concolic execution for diyeanput-dependent
data values, as in traditional concolic execution, with bght analysis
of the effects of loops (Sectidn 3.8.1) and an analysis thks lloops to
the input fields they process (Section 3.3.2). Additionathponents, de-
scribed in Sections 3.4 ahd B.5, support LECE and partlcplplnczatlons
such as detecting and diagnosing security bugs. 29

3.3 _First Part of the Pseudocode for Our Symboalic Analysis. 36
3.4 _Second Part of the Pseudocode for Our Symbolic Analysis. 37

4.1 A Simplified Example of a Program that Uses Layered Inpat&ssing.
The encoding functions include decryption (line 9) and ailsebash func-
tion for integrity verification (lines 10-12). 58

Our Approach. Ovals and diamonds represent computatiosedges
represent the dependencies (data-flow constraints) betikeen. On the
left is serial layering, while on the right is side-condititayering. 61

4.2 A Graphical Representation of the Two Styles of Decomtﬁised in

Xi

4.3 Architectural Overview Showing the Parts of Our Decosifon-based
Input Generation System. The steps labeled decomposittbreastitching
are discussed in Sectign 4.3.1, while identification is uised in Sec-

tion[4.3.2. The parts of the system shown with a gray backgt@re the
same as would be used in a non-stitching concolic execﬂsﬂem. The
steps above the dotted line are performed once as a setup, pifake the

rest of the process is repeated for each iteration of exgobora 62

5.1 An Abstract Rendition of the MACE State-Space Exploratibime figure
on the left shows an abstract model, i.e., a finite-state macimferred
by MACE. The figure on the right depicts clusters of concretdest of
the analyzed application, such that clusters are abstr a single
abstract state. We infer the abstract model vithinitialize the analyzed
application to the desired state, and then use the state &paloration
component of MACE to explore the concrete clusters of states. . . . 89

5.2 The MACE Approach Diagram. The* algorithm takes in the input and
output alphabets, over which it infers a state-machih&sends queries
and receives responses from the analyzed applicationhvidimot shown
in the figure. The result of inference is a finite-state mael{lFfSM). For
every state in the inferred state machine, we generate sesharansfer
sequence (Sectidn 5.8.3) that reaches the desired sttingtfrom the
initial state. Such|sequences are used to initialize the-sg@ace explorer,
which runs concaglic execution after the initialization. eT$tate-space ex-
plorers run the analyzed application (not shown) in pakalle 91

5.3 Model Inference of Vino’s RFB protocol. States in which W discov-
ers vulnerabilities are shown in grey. The edge labels shewigt of input
messages and the corresponding output message separ#ted/bgym-
bol. The explanations of the state and the input/output agesencodings

are in Figur@. 101
5.4 Explanation of States and Input/Output Messages of thtee $1achine

from Figurﬁ 102
5.5 The Inferred SMB Model from Samba. 103

5.6 Explanation of Input/Output Messages of the State Macfriom Figure

5.7 SMB Exploration Depth. The inferred state machine carsd®n as a
directed graph. Suppose we compute a spanning tree (e0g).,0f3that
graph. The root of the graph is at level zero. Its childrenzdevel one,
and so on. The figure shows the percentage of states visitathtlevel
by MACE and the baseline approach. The numbers above poinistbie
number of visited states at the given depth. The shaded lm@dycshows
that MACE is superior to the baseline approach in reaching destes of
the inferred protocol.

Xiii

Xiv

List of Tables

3.1 Syntaxofanexecutiontrace. 33

3.2

Discovery Results for Benchmarks and Real-world Progrénegcle (o)

represents concatenation. [IK]*, k£ denotes the buxiliary count attribute

3.3

specifying the number of times elemeXitrepeats. 46

Diagnosis Results on Real-world Software. Generatioe fion GHttpd
consists of the pre-processing time (420 s) and the posepsing time

4.1

(23 sand 140 s) for each condition. 15

Summary of the Applications on Which We Performed |dar&tfon of

4.2

Encoding Functions. 72

Description of the Bugs Our System Finds in Malware. Therma “scaled”

shows the results from the BitFuzz system including our deusition
and re-stitching techniques, while the “baseline” colunvesg the results
with these technigues disabled:800” means we run the tool for 10 hours

4.3

anditisyettofindthebug. 75

Bug Reproducibility Across Different Malware Varianthelshaded vari-

5.1

ants are the ones used for exploration. 79

Model Inference Result at the End of Each Iteration. Tlerse column

identifies the inference iteration. Thg column denotes the number of
states in the inferred model. Th& (resp.Xp) column denotes the size
of the input (resp. output) alphabet. The last column gihestotal time
(sum of all parallel jobs together) required for learning thodel in each
iteration, including the message filtefing time. The leagnprocess is
incremental, so later iterations can take less time, aslttex conjecture

might need a small amount of refinement. 00 1

XV

5.2 Description of the Found Vulnerabilities. The upper half of the table (Vird an

Samba) contains results

tocol model was inferred,
contains the results for th
inferred model (from Ving
Vulnerabilities and Expos
found. The new vulnerabi

or the reference implementations from which the pro
while the bottom half (Real VNC and Win XP SMB)

e other implementations that were explored using the
and Samba). The disclosure column lists Common

ires (CVE) numbers assigned to vulnerabilitiecSBMA

ities aflicized Thet symbol denotes a vulnerabil-

ity that could not have been detected by the baseline approach, bédaoke a
detector that would register non-termination. We found it with MACE, beeaus

it causedL* to hang. The
bility was found and the tq

‘[ter.” column lists the iteration in which the vulnera-

tal number of iterations. The “Jobs” column contains

the total number of parallel state-space exploration jobs. The numbersfgob
equal to the number of states in the final converged inferred state maditire.

baseline experiment was
as the MACE experiment.
fore at least one parallel s
the total runtime (number
that point. The “Baseline”

done with the same number of jobs running in parallel

The MACE column shows how much time passed be-
ate-space exploration job reported the&hility and

of jobs time to the first report) of all the jobs up to
column shows runtimes for the baseline concadic ex

cution without model guidance. We set the timeout for the MACE experiment to

2.5 hours per job. The bas

eline approach found only one vulnerabiég,\ehen

allowed to run for 15 hours (per job). Thet entries mean that the vulnerability

5.3

was not found within time.

Instruction Coverage Results. The table shows the instruction coveragdér

of unique executed instruction addresses) of MACE after 2.5 housgptdmtion

per state in the final converged inferred state machine, and the basalit@ico
execution given the amount of time equivalent to (time MACE required for in-
ferring the final state maching number of states in the final state machixne
2.5 hours), shown in the second column. For example, from Table 5.1awe ¢

see that Samba inference took the totaR6®8 + 1840 + 307
and produced an 84-state model. Thus, the baseline approaclveras g
150 + 4175 = 16775 minutes to run. The last two columns show the total

utes
84 x

number of crashes each approach found, and the number of uni
(EIPs) in parenthesis. Due to a limitation of our implementation
ration (user-mode only), the baseline result for Windows

1) was so abysmal, that comparing to the baseline would be

expld

compute the Win XP SMB

4175 min-

@cations
of the state-space
P SMBKeth
unfair. Thus, we
baseline coverage by running Santead est test

XVi

Chapter 1

Introduction

1.1 Introduction

In this thesis, we develop techniques that scale concokcugion to broad classes of
binary programs and apply it to a variety of security-redaggplications. We demon-
strate that our scaling techniques significantly improwe gkerformance and usability of
previously known applications of concolic execution sushvalnerability discovery and

signature generation. We then study further unexplored o$eoncolic execution in

security-related problems such as malware genealogy andom model inference.

Concolic execution is a technique for program analysis. Byintathe value of the
program input symbolic, it symbolically executes a progeaocode and computes values
for program variables in form of symbolic logical formulas.computed formula is then
provided to and can be solved by a decision procedure tordetemwhether it is possible
for the corresponding variable to have some specific comar@ue and what value the
input must be, in the first place, for this to be feasible. Cdéingaxecution and similar
techniques have widely been applied to a variety of secuoeigted applications. One of
their most prevalent applications &itomatic test input generatiofalso referred to as
program state-space exploratipfR1,/22, 23, 53, 54, 109]. In this application of concolic
execution, a program is concretely executed once with soitiglinput. Then, a concolic
execution engine can examine the branch conditions alangxécuted control-flow path
and use a decision procedure to find an input that would rexefsanch condition from
true to false or vice-versa. The process is repeated itehatio discover more inputs that
trigger new control-flow paths, and thus more program statég tested. This technique
is particularly useful for automatic generation of high«erage test inputs and for software

1

vulnerability discovery. Other security-related appiicas of concolic execution include
vulnerability-based signature generationl [13, 17], ekgeneration|[3, 64], protocol re-
verse engineering [18], and detecting deviations betwetware implementations [12].

Although there has been a great success in applying it towsgecurity-related appli-
cations, a basic implementation of concolic execution evidyks well on small programs
or on program procedures and scaling it to real-world bir@opgrams is difficult. One
reason is that programs often contain certain code cortsttiat are difficult to reason
about directly. Common examples of such code constructapsland encoding func-
tions such as decryption and checksum computation. Thetesce results in symbolic
formulas that tend to be large, complicated, and difficukdtve. Another reason is that
the number of symbolic formulas grows drastically in prdjmorto the size of the program
being analyzed. Without proper prioritization schemes,derall approach becomes less
and less efficient.

These observations led us to develop techniques that smadelic execution to broad
classes of binary programs. Our techniques work on progiaaribs and do not require
the presence of source code or debugging information inittegibs. This provides us two
key benefits toward security-related applications. Fitsd|/lows us to readily analyze a
wide range of closed source software including commerdighe-shelf (COTS) software
and malware, which are already distributed in binary formszarious cases, the users of
COTS may want to analyze security properties of COTS becaase ihino guarantee that
the software would be free of security flaws. In such situetjdhe ability to analyze the
software from the binary directly is useful because the CO&&lbpers may decide not
to share the source code and related documentations. Bymifathe case of malware,
the identity of malware author is usually unknown at the tohés discovery and it thus
leaves only the captured malware binaries as a starting fmvisecurity analysts. Second,
the program binary is what gets executed and thus providezre faithful representation
of the program than the source code does. Semantics of taeyland the source code
may vary slightly due to compiler errors and optimizations.

In this thesis, we are interested in programs that read avzkeps some input and be-
have deterministically with respect to this input. Dep&gdin the program and the goal of
our analysis, the input can be anything including commamel dirguments, physical files,
incoming network traffic, and the return values of systenscd&beterminism provides us
a guarantee that repeatedly executing a program with the ggyat always provides the
same result. When performing concolic execution, detesmman be achieved on any
programs by disabling run-time randomization, enforcimg same random seeds, or con-
sidering run-time non-deterministic variables as parthefprogram input. In most cases,
the presence or absence of randomization do not affect snétsef our analysis.

Vulnerability Conditions with Malware Protocol Model
Field Lengths Genealogy Inference
(Chapter 3) (Chapter 4) (Chapter 5)
Security-related
Applications
Vulnerability Discovery (Chapter 2-5)
Scaling Loop-extended Decomposition & Model-assisted
Techniques Concolic Execution Re-stitching Concolic Execution
(Chapter 3) (Chapter 4) (Chapter 5)
Traditional
T(-;?hrlﬂlgﬂzs Concolic Execution (Chapter 2)

Figure 1.1: Summary of Techniques and Applications.

This thesis consists of two main parts: techniques and egipins. Figures 111 sum-
marizes the techniques covered in this thesis and the secelated applications they en-
able. Unshaded boxes are the traditional technique anecapph already known prior to
our work. Shaded boxes are novel techniques and novel afiphs first proposed in this
thesis. In particular, we develop three techniques forisgaloncolic execution. The first
scaling technique, loop-extended concolic executionydes on improving the efficiency
of concolic execution when analyzing program portions thablve loops. The second
technique, decomposition and re-stitching of concoliccaken, addresses the issue that
arose from the presence ehcoding functionswhich are difficult to reason about auto-
matically. The third technique, model-assisted concotiecation, uses the state model
of the program under analysis to guide concolic executiar.elach of our scaling tech-
niques, we demonstrate that they significantly improve #réogpmance and usability of
automatic test input generation and vulnerability discgverhich are previously known
applications of concolic execution.

We also study unexplored applications of concolic executicsecurity-related prob-
lems such as malware genealogy and protocol model infereiveeshow that our tech-
niques enable some of these previously unexplored apipinsatvhich were hindered by
the scalability issue of concolic execution. In particulaop-extended concolic execu-
tion allows us to describe vulnerability conditions in teofmloop-related properties and
lengths of input fields. A subsequent work![17] uses suchenalbility conditions to au-
tomatically generate vulnerability-based signatureshieép detect malicious exploitation
of the vulnerabilities. Another technique, decompositama restitching, let us symboli-
cally reason about the behaviors of malware, even when itsramication is encrypted,

3

and thus enable our study in malware genealogy. And by altiewgn our model-assisted
concolic execution technique with L*, an existing onlinettaique for inferring the high-
level model of an application, we are able to improve the esalis of both techniques
and apply the combined technique to infer the protocol modi@omplex applications
such as Samba and VNC with little manual intervention.

1.2 Main Contributions

In this section, we introduce the three scaling techniquesievelop, and the security-
related applications that the techniques enable.

1.2.1 Loop-extended Concolic Execution

Concolic execution and similar techniques have been widsdg dor finding and under-
standing software bugs, including security-relevant ofiedfind software bugs, concolic
execution first concretely executes a program, with sont&innput, to create a path
and then computes symbolic logical formulas to represenbthnch conditions along the
executed control-flow path. Through manipulation of therfolas, such as negation of
a particular branch condition, a concolic execution engiae generate a new formula,
which is then solved with a decision procedure. If a soluégists, the solution represents
a new program input that shall take the program along a éiftecontrol-flow path. The
process is repeated iteratively to create inputs that adwkerent control-flow paths and
may trigger hidden bugs in the program.

If a bug has already been observed and a sample buggy inpbebagiven, concolic
execution can be used to diagnose the bug. Again, one cametelycexecute the pro-
gram, with the buggy input being treated as symbolic, andnéxa the branch conditions
that lead to the point of program failure. Other conditionglwe value of input that trig-
ger the bug can also be extracted using this approach. Beexésearches [13,/17] have
shown that these conditions, known\agnerability conditions are useful for automat-
ically generating signatures to filter attacks, or to helgeusity analyst understand the
vulnerability.

Problem Overview. Although concolic execution has been successfully usdudmtore-
mentioned applications, its existing approach is limitee&xamining behavior of a pro-
gram one execution path at a time. This poses a significafiealga in making concolic
execution scalable. When analyzing larger programs, theigae becomes less and less

4

effective, largely due to the combinatorial explosion ie ttumber of feasible execution
paths.

This shortcoming becomes more apparent when concolic égaduas to deal with
loops, especially those whose number of loop iterationsmdrolled by the program in-
put. In such cases, there are potentially many distinctgi@t paths to be examined
individually, with each of those paths representing a d#ifé number of loop iterations
being executed. Although the examined paths are distinel; eéffects on the program’s
overall semantic may vary only slightly and a thorough exgion of such loops may be
unnecessary. Simple heuristics, such as considering aelyuéon paths with the same
number of loop iterations as in the original program exexgytcan mitigate this combina-
torial explosion problem. However, these heuristics vaill fo expose bugs that are related
to loops, such as buffer overflows, which are common and e security-relevant.

In this thesis, we develop a new scaling technique, loopraded concolic execution,
which provides a middle ground for handling loops. Loopeaxted concolic execution
abstracts the effect of loops over all execution paths anghsarizes them into a small
and concise set of symbolic formulas. It does not suffer ftbencombinatorial explosion
induced by the presence of loops but is yet able to reasort abogram behaviors related
to the number of loop iterations.

Intuition and Approach. The traditional technique of concolic execution considey
direct data dependencies of program variables. When coiggdeops that iterate through
program inputs, the formulas based on direct data depepdend to be repetitive and
high in number because each single loop iteration resutteéndistinct formula and thus
make concolic execution unscalable. Our intuition is tdaep these repetitive formulas
with a more concise set of simplified formulas that are baseld@p dependency instead.
Thus, the goal of loop-extended concolic execution is teritiiese loop-related formulas
so that we can later perform symbolic reasoning on them. ifiqaty, the repetitive for-
mulas are those from the loop exit conditions and the lodgied formulas are inferred
from the loop invariants, which are properties that holatighout the execution of the
loop. Because the size of formula set is reduced from beingdy by the number of
loop iteration to being bounded by the number of loop inv@saconcolic execution is
more scalable.

We need to express explicitly the inferred loop-relatedanfiolas so that we can pass
them to the decision procedure. To achieve this, we intredwo new kinds of symbolic
variables: loop trip counts and auxiliary variables. Theplgelated formulas will be
expressed in terms of existing symbolic variables as wahese new symbolic variables.
A loop trip countrepresents the number of iterations each loop has beerneiiesd a

specific point along the program execution. Thus, the nurabkrop trip counts will be
the same as the number of loop occurrencesaéxiliary variablerepresents a property
of the program input such as the length of an input field andhéex to a field delimiter,
which could affect the number of loop iterations during peorg execution. The number
of auxiliary variables depends on how many variable-lefiiglds there are in the program
input.

Loop-extended concolic execution consists of two stepthdifirst step, loop-extended
concolic execution performs a one-pass forward symbolatysis along a dynamic exe-
cution trace to determine dependencies of program vagaiiethe loop trip counts. In
particular, it searches for variables whose value is a tifigaction of one or more loop
trip counts. If found, the linear function is the loop-redtformula we seek and shall be
added to the set of formulas that will be provided later to @sden procedure. Also, the
formulas that were previously induced from the correspogdibop exit conditions shall
be removed from the formula set.

In the second step, our technique heuristically analyzesthe program uses loops to
access its input and searches for linear relationshipsemetihe auxiliary variables and
the loop trip counts. These linear relationships allow eshhique to express in symbolic
formulas how loop-dependent variables relate to the lengtid counts of elements in
the program input. These formulas are added to the set ofulasio be processed by
a decision procedure. Because the auxiliary variables arbalc in the formulas we
provided to the decision procedure, the outputs we receora the decision procedure
will include the satisfying assignment for the auxiliaryriedles as well. Because the
auxiliary variables represent properties of the progrgmtisuch as the length of an input
field and an index to a field delimiter, we can reconstruct natisfying inputs of varied
length.

Results. We have implemented our approach and applied it to discawmedysubsequent
diagnosis of buffer overflow vulnerabilities. We perfornr amalysis on a standard bench-
mark suite and on real-world software. The benchmark sugt@ise was previously pub-
lished by researchers at the MIT Lincoln Laboratories [12APfontains 14 samples in-
spired by vulnerabilities in open-source network serve8sarting from sample benign
inputs, our tool discovers all known bugs denoted by the berack suite. Most of the
bugs are found in just a few minutes. In addition to the knowgdh our tool also discov-
ers a new bug in one benchmark.

As full-scale case studies, we test our approach on thrdeveedd Windows and
Linux programs which are known to have buffer overflow bugsir @ol discovers four
bugs in these programs in a few minutes. We also note thabtheuted symbolic formu-

las, which represents vulnerability conditions and thusasponds to the generated buggy
inputs, contains auxiliary variables that denote the lesgif input fields. They are more
accurate and usable than those given in previous work [31itwacks a notation to refer
to the length of an input field.

To confirm the value of our approach, we count the number otrae executions
needed to discover each bug using our approach and thatraf osr implementation of
the traditional (Sectioh 2.4), and we compare them. In masés, our approach signifi-
cantly reduces the number of executions required to disdmyféer overflow bugs.

Contributions.

e Loop-extended concolic execution: We introduce a new sgdkchnique for con-
colic execution that incorporates the semantics of loofusthre traditional analysis.
Our technique abstracts the effect of loops over all exenupiaths and summa-
rizes them into a small and concise set of symbolic congtaihe technique
works by introducing new symbolic variables that repregbet number of loop
iterations, using forward symbolic analysis to determime generalized effects of
these new symbolic variables on other program variablesyepiacing loop-related
constraints induced from individual execution paths wignall and concise set of
generalized constraints.

e Improved vulnerability discovery: We implement our scgliechnique and use it
to find vulnerabilities in both a standard benchmark suit thnee real-world pro-
grams. After generating only a handful of candidate inpats, tool successfully
discovers bugs in software. In most cases, our scaling igeérsignificantly re-
duces the number of executions required to discover bufferflow bugs.

e Vulnerability conditions with field lengths: By introducirguxiliary variables to
represent features of an input grammar such as lengths patitien counts, loop-
extended concolic execution allows us to describe vulniégabonditions in term
of loop-related properties and lengths of input fields. ®glbent work|[17] uses
such vulnerability conditions to automatically generatgnerability-based signa-
tures that help filter future attacks of known vulneralmhti

7

1.2.2 Decomposition and Re-stitching of Encoding Functions

Problem Overview. Concolic execution naturally has issues when a program wardgy-
sis contains encoding functionSncoding functiongclude tasks such as data decryption
and encryption, data decompression and compression, arthputation of checksums
and hash functions. When being symbolically reasoned abnotding functions result in
symbolic formulas that can be difficult to solve. This is not@ising because functions
such as cryptographic hash functions are designed agamdgtdi any input that would
provide the same hash as the original input. In particuter problem we address is how
to scale concolic execution to automatically generate itggits for programs that use
encoding functions.

Scaling concolic execution in the presence of encodingtions provides the first step
toward answering another interesting security-relategstion: can we find and exploit
vulnerabilities in malware? Although vulnerability dis@y has long been an important
task in software security, little research has addressktxabilities in malware. Encod-
ing functions are used widely in malware as well as in bengjtware. Many instances of
malware such as trojans and botnets uses communicatioeegmpted channels to avoid
being detected by network intrusion detection systems @JlDmprovement on the han-
dling of encoding functions in concolic execution will gtiyaassist security researchers
on malware analysis.

Intuition and Approach. To address the problem, we develop a novel technique that im-
proves concolic execution on programs that use encodingitns. The intuition behind
our technique is that it is possible to perform concolic exien without having to sym-
bolically reason about encoding functions head-on. Ingaer, we avoid the complexity
caused by encoding functions by identifying and bypasdiegitso that we can concen-
trate on performing symbolic reasoning on the rest of thg@m. Once having obtained
partial results, we re-stitch them with the effect of the &gged encoding functions using
means other than symbolic reasoning to get a complete reBettause the technique is
based on decomposing (factoring) the formulas induced bygram into subsets, solv-
ing only a subset, and then re-stitching the solutions baekrefer to our technique as
decomposition and re-stitching

Our technique starts by identifying encoding functionshie program execution and
determining which form of decomposition is applicable fack encoding function. Other
researchers have previously proposed algorithms to digsh certain types of encoding
functions from other functions in a program [114, 115] bwytldo not perfectly suit our

8

purpose. We thus propose a new identification techniqueda@seur intuition regarding
the complexity caused by encoding functions: that the datptiencoding functions con-
tain a very high degree of mixtures from parts of the inpwguheng in symbolic formulas
that are difficult to solve.

To identify encoding functions, we perform a trace-basqueddency analysis that is
a general kind of dynamic tainting. Our analysis assigngantifier to each input byte,
and determines, for each value in an execution, which subseput bytes it depends on.
We call the size of the subset the bytet degree If the taint degree of a byte is larger
than a configurable threshold, we refer to it as high-taggrde. Encoding functions are
functions that produce high-taint-degree buffer as output

After the encoding functions have been identified, we appéyttaditional approach
of concolic execution to generate the path constraint fergieviously observed execu-
tion. A path constraint is a conjunction of smaller formulaguced from the instructions
along the program execution and these formulas are andotatie the identifiers of the
function they are induced from. We decompose the generatestraint to separate the
conjoined formulas, single out those that come from enagptiinctions, conjoin the rest
of the formulas to obtain a smaller constraint, and pass énstcaint (now unrelated to
encoding functions) to a solver. The constraint solutigreésents a partial input, which
requires re-stitching to obtain the final input.

How to perform re-stitching depends on how the encodingtfandatself is used. For
a function that decrypts or decompresses input data, wetbasetain its corresponding
inverse function (i.e., encryption or compression) andpdufhis inverse function with a
partial constraint solution (coming from the manipulata@decrypted input data) to get a
complete (i.e., encrypted or compressed) solution. Fathe inverse function is possible
by means of browsing and filtering through a list of candidatections. For a function
that computes and compares checksums, re-stitching isrpextl simply by concretely
executing the function again on a partial constraint sofut— a solution with everything
but a correct checksum — to obtain a matching checksum thatgeto the final solution.

To determine how the encoding functions are used, our apprparforms dynamic
dependency analysis on the program execution trace toznalyw data is used inside
and outside of the encoding functions and compares thahstggome pre-defined rules.
For a decryption/decompression function, the data usetidyunction must never been
used again later in the program. For a checksum functiomutgut must be used in a
conditional check against a part of the program data thasjeidt from its input and that
part of the program data must not be used elsewhere. Aceptdiour pre-defined rules,
the usual usage pattern of performing a checksum verifitatmodecrypted data will sat-
isfy both rules and two-step decomposition and re-stiggltian be performed. However,

9

other usage patterns that combine multiple encoding fanstnay violate our pre-defined
rules.

If an encoding function does not satisfy any pre-definedsroleif the inverse func-
tions for functions like decryption and decompression artganesent, decomposition and
re-stitching is not possible. Our technique detects wheh sucase occurs and opts to
perform concolic execution in a traditional brute-forcermaer.

Results. We have added an implementation of decomposition and tehsig as an ex-
tension to our traditional concolic execution tool. We gptbie tool, with and without
the new scaling technique, to analyze four different sampfanalware that extensively
make use of encoding functions and demonstrate the imprevethat results from the
scaling technique. Under the traditional settings, thé fiads two bugs in two malware
samples and runs out of memory on the other two families. Utideimproved settings,
the tool finds six bugs in all four malware samples and newves aut of memory. As a
proof of concept, we successfully create an exploit atthek tonce provided to the mal-
ware, triggers the hidden bug and uninstalls the malwara &idnost machine. To the best
of our knowledge, our malware analysis is the first automatady of vulnerabilities in
malware, though on a very small sample set.

We also retest the discovered buggy inputs on other malwatances from the same
families and successfully trigger similar failure conalits in those instances as well. Some
of these instances in the same family are first reportedly sege than a few months apart.
This implies that the bug, the encoding functions have nahged through time.

Contributions.

e Decomposition and re-stitching: We develop a techniquesiteles concolic execu-
tion to reason about programs that use encoding functions.tdchnique is based
on decomposing the formulas induced by a program, solvihgasubset, and then
re-stitching the solutions into a complete result. The magpline evidently improves
the speed and reduces the memory usage of a concolic exeeuntyne, making it
more practical.

¢ Vulnerability discovery in malware: We use a concolic exemuengine, coupled
with our decomposition and re-stitching technique, to find$in malware instances
that use encoding functions. We find six and publicly diselfidge vulnerabilities in
four malware instances that we analyzed. To the best of amwlatge, our malware
analysis is the first automated study of vulnerabilities adware.

10

e Malware genealogy: We also use the vulnerabilities we fdarassist in the study of
malware genealogy. We find that each of discovered vulnigiabialso appears in
multiple variants in the same malware families and can lggéred using the same
buggy input. Our study demonstrates that there are comp®memalware that tend
to stay unchanged over time and thus could be used to idehg&fynalware family
to which an unknown suspicious binary belongs.

1.2.3 Model-assisted Concolic Execution

Problem Overview. Programs that maintain an ongoing interaction with its emment,
like servers and web services, tend to get executed for apenigd of time and thus
performing state-space exploration (also referred to &snaatic test input generation)
using concolic execution on such programs can be time consuniNevertheless, we
observe that the traditional approach of concolic exeoutan be improved if guided with
the abstract model of the program under analysis. The abst@del could provide high-
level information about the structure of program state sp&y knowing how close (or
how far) the analysis is from important states in the prograenshall be able to efficiently
prioritize the overall process.

To simplify the problem of finding the right abstract modeltb&é programs under
analysis, we focus our technique on network applicatioa$ dommunicate with their
environment through a protocol.

Approach. We propose an approach to combine an existing model inferezahnique
with concolic execution. Our approach has three iteratigps First, we use the existing
technique to automatically infer an abstract finite-stateleh of a program’s interaction
with its environment. Second, we use the inferred model tdegooncolic execution and
to improve the state-space exploration. Third, if the esgiion phase discovers new types
of protocol messages, we refine the abstract model and réyge@atocess from the second
step. We refer to our approachmedel-assisted concolic execution.

We useMealy machineso represent abstract protocol models. A Mealy machine is
a finite state machine in which, at each particular stateppatifrom the environment
determines what the output the model will emit and what sthtdl be transitioned into.
Because the model is abstract, multiple distinct values n€ieie program message (i.e.,
input or output) may be represented by the same abstracages®ur technique requires
that the user provides an output message abstraction dnndiin abstraction functions
a function that finds an abstract message which corresporalgiten concrete message.

11

Unlike one of our own prior work [27], our technique does rnefuire an input message
abstraction function.

Our technique requires a set of sample input messages thaedad to the observed
application. These sample input messages may be obtaioedtfre live traffic. In its
first step, our technique uses an existing black box infereaigorithm, called.* [2],
to infer an abstract finite-state model of a network applicausing the set of sample
program input messages. In a nutshéll,systematically feeds the network application
under analysis with combinatorial sequences of the sanmpletimessages (a message
may appear in a sequence more than once), observes the kétaftic induced by each
message sequence, and soundly constructs a finite-stat# thatimatches the observed
traffics. Naturally, having a bigger set of sample input rages will result in a more
complete model but will also require longer time to process.

In the second step, our technique uses the inferred modelde g traditional concolic
execution engine to discover more program input messaggsarticular, for each of the
states found in the inferred model, we feed a sequence of mpasages known to lead
the program to that particular state and perform concolkeceion from that point on for
an allotted time.

Finally, our automated technique selectively adds sombeohewly discovered input
messages to the current set of known input messages andpagaides the set td.* to
infer an improved abstract model. We then repeat the prdeessthe second step. In
each iteration, the inferred protocol model will becomeseloto a complete model. After
some number of iterations, no new state will be found and tbeéehis converged.

Results.

We extend our traditional concolic execution engine with @echnique and perform
experiments with servers from two well-known network poutis: RFB (commonly known
as VNC) and SMB. In particular, we pick Vino VNC 2.26.1 as a repreative server for
the RFB protocol and Samba 3.3.4 for the SMB protocol. Aftesvaiterations, our tech-
nique successfully infers protocol models of both servedsir technique discovers all
the input messages (i.e., message types) as described BfBiprotocol specificatidﬂq
and as shown in the Samba source é?)dltealso generates, for each server, a finite state
machine that resembles what the ideal protocol model waoeld b

One of the most prevalent applications of concolic exeausorulnerability discovery
and our technique finds seven vulnerabilities in Vino VNC6212 RealVNC 4.1.2, and

Ihttp://www.realvnc.com/docs/rfbproto.pdf
2http://www.samba.org

12

Samba 3.3.4 within 2.5 hours of concolic execution per stiéte use the RFB model
inferred by the analysis of Vino VNC to guide concolic exéontof RealVNC. Our intu-
ition is that RealVNC is another variant of servers that impats RFB protocol and thus
should respect the same protocol model as Vino VNC does.

To confirm the value of our approach, we also compare thetsesibur vulnerability
discovery against that of our implementation of the tradiél approach (Sectidn 2.4).
When running for the same amount of wall clock time, a tradaloconcolic execution
engine discovers only one of seven vulnerabilities founadynew technique. We also
illustrate that our new technique is superior to the tradai approach in reaching deep
states of the inferred protocol.

Contributions.

e Model-assisted concolic execution: We develop an iteggbinocess of combining
concolic execution with knowledge of an abstract model efgtogram under anal-
ysis. Our technique helps scale concolic execution to laegeork applications that
communicate with their environment through some protaocélsomplete protocol
model is not our prerequisite because our technique caatiitely infer and refine
an abstract model that represents the high-level logic efmigtwork applications
being analyzed.

¢ Vulnerability discovery in network servers: Our tool digsecs seven vulnerabilities
(four of which are new) in four applications that we analyx¥e also show that
our technique performs faster and deeper state-spaceaatipiothan the traditional
approach.

e Protocol model inference: Given an output abstraction tion¢ our approach it-
eratively infers and refines a model of the protocol as impleted by a program.
Unlike the prior work, it requires no input abstraction ftino, which is usually not
trivial and must be provided by the end users. Thus, our worktributes toward a
more automated approach for reverse-engineering pratocol

1.3 Organization of the Thesis

The rest of this thesis is organized into three parts. In tisé ffiart, we discuss the tradi-
tional approach of concolic execution and its prevalentiegfion of automatic test input
generation. In Chaptét 2, we discuss our implementationabiitigue and a sample case

13

study of how we use the tool to discover a new vulnerabilityainommercial software
product.

In the second part, we discuss the shortcomings of traditmmcolic execution, detail
our techniques for addressing the issues, and describ@lonea applications of concolic
execution that our new techniques enable. This part censighree chapters. Chapfér 3
describes loop-extended concolic execution, a techniatfocuses on improving the
efficiency of concolic execution when analyzing prograntipas that involve loops, and
its application to vulnerability discovery and diagnosfsbaffer overflows. Chapter]4
discusses the technique of decomposition and re-stitchuigch addresses issues that
arise from the presence of encoding functions, and how wptdta technique to assist
in malware analysis. Chapféer 5 details the technique of coimdpiconcolic execution and
automatic protocol model inference to improve both automtast input generation and
protocol reverse-engineering.

In the final part, Chaptér 6 provides further discussion orpthtential integration of
our proposed techniques and the conclusion remarks.

14

Chapter 2

Concolic Execution of Binary Programs

2.1 Introduction

Designing secure systems is an exceptionally difficult.t&sken a single bug hidden in an
inopportune place can create catastrophic security h@lessidering the size of modern
software systems, searching for and exterminating all itidem bugs is a daunting task.
Thus, development of tools and techniques that help redubmseverity of these security
holes is of critical importance.

Testing plays an important role in finding bugs in a softwam@dpct. Unlike static
code analysis techniques like code review, inspection, modf of correctness, testing
involves monitoring actual program execution in hope ofesbimg unexpected behaviors
(e.g., program crashing or program prematurely termiratéxdch imply the existence of
bugs. Programs under test are executed multiple times Wigneht input values. Because
the entire input set of programs tend to be too large to exhvalstest, usually only a
subset are selected. Choosing a good subset contributéfécsigity to the effectiveness
of a test process and can be done manually by test expertsaveehough understanding
of the program under test. However, such manual selectitasbfnputs is expensive and
error-prone. Thus, various approaches to automatic test igeneration/selection have
been developed and adopted, ranging from random selectbheuristic-based selection
to control flow-based selection and data flow-based sele{giB0, 103].

Recently, concolic execution and other related technigé®&ktave been popular for
automatically generating test inputs for software syst@iis22, 49, 53, 54, 82, 102, 113].
Concaolic execution is a combination of concrete executiahsymbolic reasoning. In its
first step, it concretely executes a program under test vathesinitial input to create

15

a concrete path. It then considers the seen input as symdnaticcomputes symbolic
logical formulas to represent the branch conditions altvegeixecuted control-flow path.
Through manipulation of the formulas, such as negation aréiqular branch condition,
it crafts new formulas, which can then be solved by a decipimtedure. If a solution
exists, the solution represents a new program input thdk tstke the program along a
different control-flow path. From an instance of concretecexion, multiple new program
inputs may get generated. The whole process is repeatedhetle new program inputs
to generate even more program inputs that cover more unsedrokflow paths. By
systematically exploring the program state space and ggngrone program input for
each unique control-flow path, concolic execution ensunasthe generated test inputs
are not redundant and thus contributes to the area of effistétware testing.

In addition to automatic test input generation, concolieaiion has been used in other
areas as well. The application most related to test inpueigeion is vulnerability-based
signature generation [13,/17]. When a vulnerability is fogad., a crash discovered via
automatic test input generation) and is reproducible, ameuse concolic execution to per-
form symbolic reasoning along a faulty execution path aung ttan obtain symbolic pred-
icate on the program input that would lead the program albagame path and trigger the
same vulnerability. This symbolic predicate can be usedsagrature for detecting and
protecting against malicious inputs that may potentiairhtdre system. Because the sym-
bolic predicate is not restricted to any particular coreieput, this type of vulnerability-
based signature has zero false positive. In addition tonaaiio test input generation
and vulnerability-based signature generation, other knescurity-related applications of
concolic execution and similar techniques include exgeiteration/[3, 25, 64], protocol
reverse engineering [18], and detecting deviations betweftware implementations [12].

We build BitFuzz, a trace-based concolic execution systartgof the BitBlaze [105]
platform for binary analysis. We successfully use BitFuzazdietomatic test input gener-
ation and for finding bugs in software. BitFuzz tests a var@tyVindows and Linux
programs without the need of source code. The list of sotwas have tested includes
commercial software like Cardiac Science G3 AEDUpdate sofvi57], server applica-
tions such as RealVNtand Sami# and malware such as Zbot [40] and MegaD [77].
The standard version of BitFuzz implements the traditiopgiraach of concolic execu-
tion. For many other software products, test input genamatiith the traditional approach
alone does not yield good results. We additionally appleadisg techniques we develop
to make it more practical. Thus, we discuss our test resalthase software products in
Chaptef B-b, where we also discuss our scaling techniques.

thttp://www.realvnc.com
2http://www.samba.org

16

© for] ~ o (5] e w N =

[N
o

[
[

voi d process_comand (char* nsg) {
char num
if (meg[0] %8 == 0)
num = nsg[0] - 8;

el se
num = nsg[0] ;
if (num=="P") /1 ASCIl of P = 80
if (meg[l] =="Y") /1 ASCIl of Y = 89
abort(); /'l represent a point of failure
return;

Figure 2.1: A Running Example.

2.2 Concolic Execution for Test Input Generation

In this section, we detail the steps taken by our traditi@meacolic execution tool to au-
tomatically generate test inputs for a given program. FHopscity, we describe the algo-
rithm by example, leaving formal details of concolic exéontto other literature in this
area|[53, 101].

Figure[2.1 contains a short C function. We use this funct®a aunning example to
illustrate how to perform concolic execution for automaést input generation, treating
its string argument as symbolic. For a conditional statdmea call the executions from
the conditional statement line to the first line in the trueckl and the false bloc& pair
of branchesThus, in the example function, conditional statementsarkne 3, 7, and 8,
and pairs of branches a8 — 4,3 — 6), (7 — 8,7 — 10), and(8 — 9,8 — 10).

Concolic execution performs symbolic reasoning on concesecution paths and
thus requires concrete inputs. Suppose that we have aal iniiut string “AB” (ASCII
code = 65 and 66) and that concolic execution denotes thd epwa string of sym-
bolic charactersS,S;. The concrete execution path with respect to this input gl
2—3—6—7—10. The full path predicate, which is the conjunction of coiufis
derived from statements along the execution path(iSy = 0 mod 8) A (num = &) A
—(num = 80). As you can see, the condition derived from a false braneh (Line 3
and 7) is of the form~P when P is the condition shown in a conditional statement. For
the same conditional statement, a true branch will simphg gi condition”. An assign-
ment statement gives an equality condition in the same wag bi gives the condition
num = Sy as shown in the path predicate.

17

For each condition derived from a conditional statemenbgkmasbranch conditiof),
concolic execution modifies the path predicate by negatiegoranch condition and re-
moving the conditions that come from subsequent stateménteur running example,
the initial path predicate has two branch conditions and there will be two modified
predicates——(S; = 0 mod 8) and—(Sy = 0 mod 8) A (num = Sy) A == (num = 80).
Each of the modified predicates are given to a constrainestdvsolve for a sample input
that would lead the execution along a different executidh pahich is similar to the orig-
inal execution path from the beginning down to the brancim wie negated condition, if
feasible. In this case, the first modified predicate is fdasibhe satisfying input for this
predicate is any byte string of which the first byte is a miatipf 8. Although there are
many possible satisfying inputs, the constraint solveravily give one example of them.
We will assume that the constraint solver provides us afgatgsinput string “PB” (ASCII
code = 80 and 66) for this predicate. The second predicatatifeasible because its first
clause and third clause are in conflict (i.e., 80 is a multgdl®). Thus, the constraint
solver will tell us it is infeasible and nothing is to be dowe this predicate.

The process is repeated. A concrete execution of the funatith the newly generated
input string “PB” will be along the path — 3 — 4 — 7 — 10. The full path predicate is
(So = 0 mod 8) A (num = Sy — 8) A =(num = 80). Because both branches of the first
conditional statement (Line 3) have been executed, we doeed to generate a modified
predicate for that particular branch. Thus, concolic ekeawgenerates only one modified
predicate with respect to the second conditional stateitiémé 7), (S = 0 mod 8) A
(num = Sy — 8) A =—=(num = 80). The predicate is satisfiable and we will assume that
the constraint solver provides us a satisfying input sttk§” (ASCIl code = 88 and 66).

The process is repeated again. A concrete execution of tiotidun with the new input
string “XB” will be along the patl2 — 3 — 4 — 7 — 8 — 10. The full path predicate is
(Sp = 0 mod 8) A (num = Sy — 8) A (num = 80) A =(S; = 89). Because all branches of
the first and the second conditional statements (Line 3 ahdv@ been executed, only one
modified predicate is generated. The predicate is with ispé¢he third conditional state-
ment (Line 8) and iti$Sy; = 0 mod 8) A (num = Sy — 8) A (num = 80) A =—(S; = 89).
The predicate is satisfiable and we will assume that the @nssolver provides us a sat-
isfying input string “XY” (ASCII code = 88 and 89).

When the function is executed with the new input, a hiddentpafifailure is reached
and a bug is found. The path?s— 3 — 4 — 7 — 8 — 9. Because all branches of all
conditional statements along the path have been execwétiena new predicate nor a
new input is generated.

As the function has been executed with the initial input ahdther newly generated
inputs, the automatic test input generation process is &mp The technique finds a

18

concise set of test inputs that comprises four strings “ABB*, “XB”, and “XY”. The
input string “XY” triggers a hidden failure in the functiorthis string is the only faulty
two-byte string. Random test input generation, which is la@oautomatic technique, will
have &6 success rate per each randomly selected input, to find tdemiailure. Thus,
concolic execution is much better in term of the quality @it t@puts generated and is a
more favorable approach.

Although we uses a C function as a running example, our im@fgation of concolic
execution works with binary programs and its algorithm isglaly the same as described
in this walk-through.

2.3 Other Known Applications of Concolic Execution

In addition to automatic test input generation, concolieaKion and related techniques
have also been applied to other security-related areas laslwéhis section, we briefly
describe those applications.

Signature generation. Signature-based input filtering tests program inputs afjarset
of malicious input signatures and raises a warning when #neynatched. It provides a
fast and important means to protect a computer when patohesftware vulnerabilities
are not yet available or have not yet been applied. The keletly® to signature-based
defense is to automatically generate small and efficiemegiges that have both few false
positives and few false negatives. One approach to thislgmols to generate exploit-
based signatures by extracting patterns that appeareel ab#derved exploits [¥0, 87, 111].
However, signatures generated by this approach can hakddigg positive and negative
rates, especially when the exploits have many polymorpdi@ts.

Another approach to signature generation is to construlctevability-based signa-
tures [13, 17] by analyzing the vulnerable program and theahconditions needed to
exploit the vulnerability. Given a vulnerable program angdaant of vulnerability, this
approach uses concolic execution to generate an inputgatedhat drives the program to
the point of vulnerability. The generated signature is $yngpconjunction of this pred-
icate and the condition on the program input that exploits\thinerability. Although
vulnerability-based signatures may consist of complexstramts and may take a longer
time to match against compared to regular expression-tsmgedtures, they are more ap-
plicable because they have no false positive.

Protocol reverse engineering.One goal of protocol reverse engineering is to automati-

19

\

Trace generation ‘ Input generation
\
\

-

»
nput i Constraint
Execution ;]
Monitor execution Generator —» > Constraint
trace Vine Tool Solver

(TEMU) (Vine Tools)
program
binary |

Figure 2.2: Overview of How BitFuzz Utilizes the Existing Coomgnts

cally extract the format of protocol input messages. Tegpes for input format extraction
can be classified into techniques that analyze the pattéithe @alid inputs|[35, 68] and

techniques that analyze how a program processes input8420.17]. The second kind
of techniques performs better when it observes more priogessprogram inputs. Thus,

it benefits greatly from a high coverage set of test inputegeed using concolic execu-
tion [18].

Deviation detection. Different implementations that handle the same messagequio
usually contain deviations, which are differences in hogythrocess the same inputs. De-
tecting these deviations is important for several appbeat[12/ 93]. Because differences
between implementations often imply that one of them hasriam, eleviation detection
can be used to detect potential errors in one of the progrimman also be used to gener-
ate fingerprints, which are inputs used to remotely identifych applications or operating
system a host is running. Lastly, in the case of two versidrieesame software, it can
be used to incrementally generate new test cases for a segresst suite, by focusing on
inputs that cause the software to behave differently afteas been updated. Given two
binary implementations and a sample input of a specific kniyywa, previous work [12]
uses concolic execution and constraint solving to autaralyi generate new inputs that
demonstrate deviations between implementations.

2.4 BitFuzz: Our Concolic Execution Engine

We implement our symbolic reasoning engine, called BitFuRitFuzz is written in
OCaml, Python, and C/C++, and runs on a Linux system. BitFuzz motr®quire source
code of the program being analyzed. It analyzes Intel x8&ri®@s running in a Windows

20

or Linux OS, and is extensible to analyze binaries in othehitgctures and other oper-
ating systems. BitFuzz symbolically reasons about a supjegjram to generate a high
coverage set of inputs that exercise feasible program paflosaddress the general scal-
ability issue of concolic execution, we extend BitFuzz witlaleng techniques which are
discussed in Chapteli3-5.

As illustrated in Figuré 212, BitFuzz is implemented usingesal existing components
in the BitBlaze [105] platform for binary analysis. TEMU, thestiexisting component,
is an extensible whole-system emulator. It is used to ereth@ subject program in its
expected operating system environment (such as unmoddisiwns of Windows XP and
Ubuntu Linux). The relevant inputs to the program are magwditracked using dynamic
taint analysis: they can come from the virtual keyboardnfio disk file, from a network
message, or from any specially designated API routine. Bifuses TEMU to observe
the instructions that operate on the inputs, and to save themexecution trace filéhat
also records the inputs and their arguments. This tracesfparsed using the Vine toolkit,
the second existing component, which comprises an intaateethnguage and analysis
library that represents the precise semantics of the @li¢frtel x86 machine instructions
using a small set of more general and simpler operations.uBttkises the Vine toolkit
to analyze and extract the symbolic path predicate fromntermediate representation
of the trace. Finally, it queries a constraint solver, thedtlexisting component, to solve
whether the symbolic path predicate is satisfiable and teigeecan example input whose
assignment would satisfy the path predicate. The expetsneithis thesis use STP [48],
a complete decision procedure incorporating the theofiesrays and bit-vectors, as a
constraint solver for BitFuzz.

In the context of automatic test input generation, BitFuZio¥es the technique de-
scribe in Sectiof 212. It modifies the path predicate by niegaine of the branch condi-
tions in depth-first order and removing the conditions tloamte from subsequent branches.
It then queries the decision procedure to solve the modifiedipate for an input that will
direct the program to a different path starting at the modlifieanch. BitFuzz repeats this
process to generate inputs that explore various prograhs pétnegates each symbolic
branch condition that appears in a trace to generate motasingAnd for each unique
input, BitFuzz reruns TEMU to collect the corresponding érac

Rather than being limited to a simple back-and-forth alteéona BitFuzz maintains
two priority queues, one for candidate inputs and anothecdtiected execution traces,
as illustrated in Figure_2.3. Each input gives a trace anth ¢@ce can yield multiple
new inputs. The traces that visit a larger number of new blalsicks, unexplored by
the prior traces, have higher priority. The inputs generatenegating branch conditions
inside newly discovered basic blocks also have higheripyid@imilar to the prioritization

21

trace
input

Y

Trace Generation

Input Generation _
inputs trace
(Vine Tools &

Constraint Solver) (TEMU)

Trace
Priority
Queue

Input
Priority
Queue

initial input .

> new inputs

Figure 2.3: Architecture of BitFuzz

22

schemes described in the related wark [15, 54], our priayitgues are biased toward
finding new program paths.

Vulnerability detection. BitFuzz supports several techniques for vulnerability cabe
and reports any inputs flagged by these techniques. It dgteagram termination and in-
valid memory access exceptions. Executions that exceeteatit are flagged as potential
infinite loops. It also uses TEMUF's taint propagation modoléentify whether the input
(e.g., network data) is used in the program counter or in iteegarameter of a memory
allocation.

Distributed environment. BitFuzz is designed to be scalable and distributed; it can be
run on a single machine and on multiple machines that shaoeirees. We have success-
fully run a parallel distributed version of BitFuzz acrossltiple machines under DETER
Security testbeo [8]. We have also setup BitFuzz on Amazon H&Riavith a goal of
letting users try whether the approach of concolic exeaus@pplicable to their security
analysis needs.

23

24

Chapter 3

Loop-extended Concolic Execution

3.1 Introduction

A key limitation of traditional concolic execution (or TCErfghort) is that it interacts
poorly with loops, a common programming construct. Spedlificit generalizes a pro-
gram execution only to a set of executions that follow eyatttt same number of loop
iterations for each loop as in the original concrete execugwith exception of the path
predicate in which one of the loop exit conditions is negatdtbr instance when tradi-
tional concolic execution is applied to test case genearatioincrease coverage, it will
be unable (in one iteration) to generate an input that foesesution down a different
branch than in the original execution, if taking that brargcbnly feasible with a different
number of loop iterations. In other words, in traditionahcolic execution, the values
of a symbolic variable reflect only the data dependenciefersymbolic inputs; control
dependencies, including loop dependencies, are ignored.

We proposdoop-extended concolic executior LECE for short), which generalizes
from a concrete execution to a set of program executionshwimay contain a different
number of iterations for each loop as in the original exexutin loop-extended concolic
execution, in addition to the data dependencies on infutsydlue of a symbolic variable
also captures certain loop dependent effects.

At a high level, our approach works by introducing new syniadriables to represent
the number of times each loop in the program has executedddii@n to maintaining
the data dependencies of program state variables on inpusT&CE, LECE performs a
more detailed analysis to identify loop-dependent vaegflor instance finding variables
whose value is a linear function of one or more loop executioants. It also relates

25

loop execution counts to features of the program inputpthicing auxiliary variables to
capture the lengths and repetition counts of fields in a knmwaot grammar. Together,
these constraints allow LECE to additionally express howy{dependent variables relate
to the lengths and counts of elements in the program input.

Loop-extended concolic execution can make bug-findingstawre effective and al-
low test-case generation to reach high coverage more gqui€dpturing more program
logic in symbolic constraints allows LECE to reason abouptoelated constraints with a
decision procedure, rather than requiring iterative wetded search as with TCE.

The power of LECE is crucial for several important applicatio As sample applica-
tions, we use loop-extended concolic execution to discauerdiagnose buffer-overflow
vulnerabilities, one of the most important classes of safénerrors that allow attackers
to subvert programs and systems. Intuitively, LECE is poweshough to express the
effect of varying features of the input, such as number odi§ielr their lengths (which, in
turn, affect the loop iteration counts), on program vaesalbh a single step. This allows
new vulnerabilities to be discovered using many fewer itens than traditional concolic
execution. In addition, for a known vulnerability, our tedtues are useful to diagnose
a set of general conditions under which it may be exploiteuest conditions are useful
for understanding the vulnerability, testing for it, fixiitgand blocking attacks targeting
it [13,131,32, 37,47, 54, 119, 120, 122].

Because concolic execution is often used in security-reélapplications such as this
one, it is important that it works well for binary programs fehich source code is not
available. Our algorithms are designed with this constiaimind. They overcome some
of the challenges inherent in targeting binaries—such esvexing program structures
like the boundaries of loops, which appear trivially in thregmal source.

We have built a full implementation of this technique, usandynamic tool to collect
program traces and an off-the-shelf decision procedurariplgy and solve constraints.
Our tool discovers and diagnoses vulnerabilities in bottaadard benchmark suite and
three real-world programs on Windows and Linux. Our ressittsw that LECE is prac-
tically effective, and confirms that the behavior of loopg@al programs is often very
regular.

3.2 Overview

In this section, we first motivate our approach with an exangblowing the limitation of
traditional concolic execution, then give an overview of tachnique of loop-extended

26

concolic execution.

3.2.1 Motivation and Challenges

Using concolic execution to generalize over observed prodyehavior is a powerful tech-
nique because it combines the strengths of dynamic and atalysis. However, the core
traditional concolic execution technique correspondsri@maalysis of just one control-
flow path in a program, which is a significant limitation in grams that contain loops.
Next, we show this limitation with a specific example.

Consider a simplified example of a function in an HTTP senieoys in Figurd 3.1,
that processes HTTP GET requests. The program first cheakshi request’'s method
field has the valu€&ET on line 9, and then proceeds to parse the URI and version fields
into separate buffers on lines 12-16 and 18-22 respectiltetgjects this request if the
version number is unsupported. Finally, it records the URuested by the client and the
version number in a comma separated string denotetsigypuf on lines 26-30, which it
subsequently logs by invokingogRequest on line 32.

Readers may have already noticed that this code is vulnei@blbuffer overflow, but
suppose we were attempting to check for such vulneralsilitg®ng a traditional concolic
execution technique. For instance, in the course of itsogafibn, such an iterative test
generation tool might consider the program in@HT x y. It will trace the execution
of the program with this input, which causes the program &zinethe error condition on
line 24. In order to explore the rest of the function, the exglion tool needs to find a
program input that passes the checks on line 23. Howeveng#égtath does not contain
enough information to reason about the length check, becdever _| en variable is
not directly dependent on any byte of the input: traditiac@icolic execution would not
mark it as symbolic. At this point, testing tools based onaodic execution will usually
attempt to explore other program paths, but without infaromefrom the first path to guide
them, they can only choose further paths in an undirectdddassuch as by trying to take
a different direction at one of the branches that occurrethembserved path. (Such tools
treat the execution of a loop simply as a sequence of branohedor each time the loop
end test is executed.) For instance, a tool might deterrhaechanging the last character
of the input from a newline ta would cause the loop at line 18 to run for one additional
iteration. A series of many such changes would be requiréatd¢he version field was
long enough to pass the check.

Similarly, consider the execution of the program on the rarprogram inputGET
/index. html HTTP/ 1. 1. For this simple function, a single input already exerceses

27

© [ee] ~ o ol B w N =

Wow W NNNNRNN N NNN R B R R R R s R R
N P O © ® N o o & W N P O © ®m® N o o &~ W N P O

w
w

#define URI_DELIM TER *
#define VERSION_DELIM TER "\ n’

voi d process_request(char * input)

{
char URI[80], version[80], nsgbuf[100];
int ptr=0, uri_len=0, ver_len=0, i, j;
if (strncnp input, "GET ", 4) !'=0)
fatal ("Unsupported request");
ptr = 4;
while (input[ptr] !'= URI _DELIMTER) {
if (uri_len < 80)
URI[uri_len] = input[ptr];
uri _I en++; ptr++;
}
pt r ++;

while (input[ptr] !'= VERSI ON _DELI M TER)
if (ver_len < 80)

version[ver_len] = input[ptr];
ver | en++; ptr++;
}
if (ver_len <8 || version[5] !'="1")

fatal ("Unsupported protocol version");

for (i=0,ptr=0; i
megbuf[ptr] = URI[i];

nmsgbuf[ptr++] =", ;

for (j =0; J <ver_len; j++, ptr++)
msgbuf [ptr] = version[j];

msgbuf [ptr++] = "'\0

LogRequest (nsgbuf) ;

Figure 3.1: A Simplified Example from an HTTP Server that HaadRequests of the

Form:" GET." URI "_" Version " \n"

28

< uri_len; i++, ptr++)

program input

binan grammar
new Y \ /

input f input generation
- Y, test case
disassembler Loop-Extended Concolic Execution - >

linkage of input to loops

|

. - dynamic |trace
initial > input | program wf yracing symbolic loop dependence analysis
input pool input 2|

constrainS—~ ,CDn_SF'a",“
—— simplification
concolic execution for direct dependence /

Yy diagnosis
»

tool

query/security
predicate

Figure 3.2: Overview of Our LECE Tool and Accessory ComponehEBCE, our main
contribution, enhances concolic execution for directlpudependent data values, as
in traditional concolic execution, with symbolic analysis the effects of loops (Sec-
tion[3.3.1) and an analysis that links loops to the input §iekety process (Sectién 3.B.2).
Additional components, described in Sectiéns 3.4[and yppart LECE and particular
applications such as detecting and diagnosing security.bug

large proportion of the code (for instance, it executesfahe lines of non-error code in
the figure). However, examining this single path is not emotagelucidate the relation-
ship between the variabjet r and the input, because that relationship involves control
dependencies.

3.2.2 Technique Overview

We propose a new type of concolic executitmpp-extended concolic executionLECE,
which captures the effects of more related program exetsitioan just a single path (as
in traditional concolic execution), by modeling the efeof loops.

Broadly, the goal of loop-extended concolic execution iscered the symbolic expres-
sions computed from a single execution by incorporatingtemtel information reflecting
the effects of loops that were executed. In traditional olinexecution, the values of
variables are either concrete (i.e., constant, reprasgativalue that does not directly de-
pend on the symbolic input) or are represented by a symbrpcession (for instance,
the sum of an input byte and a concrete value). However, sdrie values considered
concrete by traditional concolic execution are in factiadily dependent on the input be-
cause of loops. In loop-extended concolic execution, thekees can also be represented
symbolically, and variables whose values were already sjimbecause of a direct input
dependency can have a more general abstract value.

To make loop-extended concolic execution more tractabéesmlit the task into two
parts by introducing a new class of symbolic variables, Whie calltrip counts Each
loop in the program has a trip count variable that repredteaumber of times the loop

29

has executed at any moment. Then to obtain the relationgtvpelen a symbolic values
and the program input, we separately obtain first the relatigps between the symbolic
values and one or more trip counts (in addition to their direlationships with the input,
as in traditional concolic execution), and then the refegiops between the program’s trip
counts and the program input:

e Step 1: Symbolic analysis of loop dependencie§o determine dependencies on
loop trip counts, we use a program analysis that maintagsighcounts as symbolic
variables that are implicitly incremented for each new l@gepation, and then looks
for relationships between those variables and others ipribgram. (This is done at
the same time as the analysis tracking direct dependerieS&€E, and the results
combined in single symbolic expressions.) Specificallyharee found that looking
for linear functions of the trip counts covers the most int@ot loop dependent
variables without excessive analysis cost. Traditionduation variable is one of
such variable, as it depends on a particular loop that itlessin, but not vice versa.
Our loop dependent variable may depend on trip counts ofijpiellbop occurrences
in a program.

e Step 2: Constraints linking the input grammar to loops. Loops are often used
when fields of the input are of variable length, such as chearastrings and se-
guences of data of the same type. Our approach takes adgasfttigs connection
by using a grammar that specifies the inputs to the prograchaatching loops
with the parts of the input over which they operate. In pattc the approach intro-
ducesauxiliary input variables to capture features of the grammar suchraghs
and repetition counts.

A summary of the components of our system is shown in FiguZetBe center box,
LECE, represents the primary contribution of this research.

To summarize our approach, we now return to the example aofr&i@.1 and explain
how loop-extended symbolic execution is more helpful tovaudnerability testing appli-
cation.

1. In the first step, the symbolic loop dependence analygisesges various program
values in terms of four trip count symbolic variabl€g’;, one for each loop in
the program. For instance, the value of the varigitle at the end of execution
is abstracted by the expressiéit’; + 7'C, + 2, and similarlyuri | en = TCY,
ver len =TCy 1 =TCs, and] = TCy. The path predicate is also maintained
(as in traditional concolic execution). In this example,iftstancej < uri | en

30

inside the third loop, while the negation holds after thepldas completed, and
similarly forj andver _| en.

2. In the second step, we link the trip counts to auxiliaryialales representing fea-
tures of the input. In the running example, the executiomt®wof the first two
loops are equal to the lengths of input fieldSC, = LengthURI) andTC, =
Length(Version).

In the case of vulnerability checking, we would combine ¢hegmbolic constraints
describing a class of program executions with the conditiora violation of the security
policy. In this case, for instance, the array access on ngiBfail if ptr > 100. Thenin
the same way as in a traditional concolic execution approaeltan pass these conditions
to a decision procedure to determine whether an exploit $sipte, and if so, determine
specific values for input variables that will trigger it. Img case, the decision procedure
will report that an overflow is possible, specifically on apuabfor which LengtiU R1) +
Length Version) > 99.

Applying the approach to binaries. Because we wish to use these analysis techniques
for security applications, it is an important practical smeration that they work on bi-
nary programs for which source code is not available. Thisddrther challenges for our
approach: for instance, purely static analysis is morecditfion binaries because much
of the structure that existed in the source code has been (&sid of course, the real
constraints we generate do not contain variable nameshwieadded in the example for
readability.) It is in part for this reason that the concaiecution approach is valuable
in the first place, so we choose algorithms to retain theseflienn our extension. For
instance, even though the technique we use to infer lindatiarships between variables
is closely related to a sound static analysis approach, weotitimit it to finding rela-
tionships that could hold on all possible inputs. Insteant,gnal is to combine static and
dynamic analysis to produce results that cover as large ssilpge a range of inputs for
which we can still produce useful results.

Use of an input grammar. Information that constrains the space of valid inputs toa pr
gram, in the form of a grammar or otherwise, is key to scalmgut space exploration
beyond the limits of brute-force exhaustive search. Previ@search using concolic ex-
ecution [17| 52|, 74] demonstrates the benefit of using antigmmar for this purpose.
In the application domains we target, suitable grammarsas#y available, so we simply
use them. However, for domains in which grammars are noadyravailable, previous
research shows how a grammar can be infetred [20, 71, 11aH);a8ystem could easily

31

be combined with ours.

3.3 Algorithms

In this section, we discuss the algorithmic details of the &eps in loop-extended con-
colic execution introduced in Sectién B.2. Secfion 3.3 4cdbes the analysis that iden-
tifies relationships between values of variables and nusnbefoop iterations (step 1).

Sectior 3.3.2 outlines techniques to capture the reldtipasdetween loops and the input,
using auxiliary variables in the external specificationhef input grammar (step 2).

The steps described below require accessory componendsdactecontrol flow graphs
from binaries, make irreducible CFGs reducible, extractsiaf allocated objects, and
parse input grammars. The details of these componentshvdrim the preparation phase
for steps outlined here, are given later in Secfion 3.5.

Loop detection. Our approach uses an existing static loop detection teabrimidentify

all loops in the subject program. To achieve this, it usescessory component (to be
discussed in Sectidn 3.5) to obtain the control flow grapthefgrogram. Then, it applies
a static loop detection algorithm [84, pp. 191-197] to idfgmtatural loops in the control
flow graph by means of searching for back edgedaBk edgen — n is an edge in the
control flow graph whose terminal nodedominates its initial noden (i.e., every path
from the entry of the control flow graph to the nagecontains the node). For each back
edgem — n found, a correspondingatural loopis a subgraph whose node set includes
n and any nodes that can reachwithout visitingn, and whose edge set contains all the
edges connecting nodes in the node set. The nadealled thdoop entryof the natural
loop. A natural loop has one loop entry but may have multiplekkedges. A loop entry is
unique to each natural loop; two loops that share the looddreare actually considered
as a single natural loop.

For each natural loop, the algorithm gives us the addressabf leop entry, the address
pairs that compose each loop back edge (a loop may have faulagk edges), and the
loop exit condition. Our approach then uses these addrassepass over the dynamic
execution trace to detect the occurrences of loops in theéo® and uses this information
to assist the symbolic trip count analysis (Section 3.3[hg loop exit conditions are used
to determine the relationship between loops and the prograuots (Section 3.312) and to
generate loop-extended symbolic constraints (Settiod3.4

We also consider using a dynamic approach to detect loopi@swes in the execution
trace [66]. The approach requires less setup as it does quites a control flow graph

32

Trace = Stmt*

Stmt = [lhs < e|assert (cond)

lhs = v

cond = el=e2]el <e2|-cond | cond; A condy | cond; V condy

e = v |*v|c|e oeywhereo € {+,—,%,/,%,...}, vis avariable,

andc is a constant

Table 3.1: Syntax of an execution trace.

and works on any execution trace (e.g., can be used agaitistgaalware). However,
it is less reliable because it does not detect every kindafdan the trace [66] and also
requires heuristics to find the loop exit conditions. Becahseknowledge of exit condi-
tions is crucial to our overall approach, we choose thecslatip detection approach over
its dynamic counterpart.

3.3.1 Symbolic Analysis of Loop Dependencies

In order to generalize its description of computations ithailve loops, our approach must
determine the relationship between loop-dependent vagand the loops in which they
are modified. To achieve this, our approach performs a oss{fpawvard symbolic analysis
along a dynamic execution trace. Specifically, it searcbesdriables whose value is a
linear function oftrip countvariables. Each of these trip count variables represemts th
number of iterations each loop executes.

There are two advantages of our dynamic analysis approaahaovompletely static
one such as the induction variable identification approachresonly performed in com-
pilers [1, pp. 687—688]. First, our approach keeps traclepimdencies on loop execution
counts even after the loop itself has finished, and combiapsmtiencies on multiple loop
occurrences. In contrast, a static induction variableysmabnly reasons about induction
variables with respect to one particular loop. Second, ppra@ach is performed on a dy-
namic trace and thus does not require a conservative algsis) which is often a source
of scalability challenges and/or imprecision in staticlgsia.

Analysis algorithm. The goal of our algorithm is to find the linear relationshipgvizeen
loop-dependent variables and the loops they depend on.aebrleop occurrenckin the
program, we introduce a symbolic trip count variabl€;, which represents the number of
iterations the loop has executed. The core of an abstragt vabur analysis is a symbolic
linear expression whose terms are trip counts, with integaling factors and an integer

33

constant term. For instance, the abstract value 4 - T'C4, + 2 - T'C, would correspond to
a variable initialized as 10, then incremented by 4 on ea&chtibn of the first loop and by
2 on each iteration of the second loop. If a variable is loepahdent, its abstract value
will have at least one trip count term. Otherwise, it will bher a constant or undefined.

Our dynamic analysis algorithm for determining the lineglationship between vari-
ables and loops is shown in Figure]3.3 and Fidguré 3.4. An atistalue is stored in a
record data typebstrval (lines 1-5), which comprises an integer constant teramnd
integer vecton representing scaling factors of the trip count terms. FangXe, if the
number of loop occurrences is 5, the abstract value 4 - T'C; + 2 - T'C, would corre-
spond to<c=10, wv=[4, 2, 0, 0, 0] >. Thus, the length of the vectaris bounded by
the number of loop occurrences in the trace. If an abstrdaeva not linear to the trip
counts, a nil record is used.

The goal of our algorithm is to obtain an abstract store, tvliisca map of a variable
(temporaries and machine registers in our machine-lexeéjror a memory location to its
abstract value. This map is represented in our algorithnheydata typebstrmap (line
6). It allows us to determine the relationship between e and loops at any point
throughout the execution trace.

The main routine of our algorithm msnal yzeTr ace (lines 8-26). Given an execu-
tion trace (syntax shown in Takile B.Anal yzeTr ace performs a pass over the trace to
compute and updat®, which is the abstract store at that particular point in tkexation.

When propagating through a loop occurrerngeal yzeTr ace uses!, P]l] to keep
record of the abstract store at the end of the most recenthplaied loop iteration, or
at the loop entry if we are within the first iteration (lines-1Z&, 19—23). Upon reaching
the end of each loop iteration, the recorded abstract staletlee current abstract store
are used to compute an abstract value for each variablenmdgloop trip counts and to
verify any abstract values computed in prior iterationsifieej oi nl t er ati ons). In
particular, at the end of the first iteration, the scalingdaof the loop trip count term
is computed as the change in the abstract value from whenrsiivhe beginning of the
iteration (lines 32—-34). At the end of other iterations, veeify this same scaling factor
against the ones computed in the prior iterations. If theyaolomatch, it means that the
variable is not loop dependent (lines 35-37). Once a varigbtdeemed not to be loop
dependent, it stays that way under the loop under analygsnsnated (lines 31 and 38).

anal yzeTr ace also calls aroutinanal yzeSt nt (the routine has two helper rou-
tines —abst r Eval andl ookupAndSt or e) to update the abstract store with the side
effect of each assignment statement (lines 43-47); staeafether types are ignored
(line 48—49). If the source of the assignment is a variablaeaory location, or a con-

34

stant, its abstract value is directly inherited to the aediton (lines 55-57). If the source
is an arithmetic operation that involves a summation, araghbn of two loop-dependent
values, or a multiplication of a loop-dependent value andrestant, we compute a linear
formula for the destination (lines 58—69). A multiplicatiof two loop-dependent values
and other operations do not result in a loop-dependent ahgs 70—71).

For instance, consider the analysis of loop 3 on lines 26+Eiare3.1. At the begin-
ning of the looppt r has the abstract valse=0, v=[0, 0, 0] > and the abstract store is
recorded. Themt r isincremented and thus have the abstract valad., v=[0, 0, 0] >.
At the end of the first iteration, the recorded abstract value the current abstract value
are used to obtain a new abstract vatue0, v=[0, 0, 1] >, which will pass the verifi-
cation at the end of each subsequent iteration. The effebeahcrements on lines 28 and
31 and loop 4 on lines 30-31 are analyzed in a similar wayngia final abstract value
forptr of <c=2, v=[0, O, 1, 1] >, which corresponds 2+ T'C3 + T'C}.

Our approach bypasses the issues that arises from comgenlés analysis by distin-
guishing memory locations using the concrete addresses\@akin the execution trace.
When a symbolic value is used as a memory address (e.g., myp@xiarray), our approach
use the concrete address value, as is common in traditionabtic execution (lines 46
and 56).

Our approach also aims to identify as many as possible abstihies that are linear
expressions, so that they are available for our subsequahtsss. To achieve this, we
allow our tool to convert non-linear abstract values (reprged by nil record) to the con-
stant value representing the value the variable had in therete trace at the point. This is
similar in effect to removing from consideration all the exgons on which that variable
had any other value, though less drastic because thosetiexecoan still contribute to
the generality of other abstract values. Given that theeelimit to the amount of gener-
ality our abstract values can represent, this conversitdecte a judgment that it is more
valuable for them to abstract over variation that occurselo the point where they are
queried. For instance, if the combined effect of two nesbeg$ is nonlinear, our analysis
will retain the dependence on the inner loop’s trip count.

Theoretically, it is not clear when the best points to conaarabstract value in this
way would be: for instance, delaying a conversion at one naragpoint might remove
the need to convert another value later. However, we havgbad results by performing
the conversion eagerly just before a non-linear abstrdaewaiould otherwise propagate.
Specifically, it is performed at the end of each loop iteratidter the abstract value has
been computed or has been verified (lines 37-38).

35

© ~ (2] (&) s w N =

=
o

-
[

12

type abstrval = record {c: int, v: int[]}
[+ Represent abstract val ues:
c+v[0] -TC1+v[1] -TCo+...+v[N-1]-TCyN, when v has size N.
c , when v is nil.
NON- LI NEAR , when the record is nil. =*/
type abstrmap = map {string -> abstrval};
procedure anal yzeTrace(trace : Trace) returns abstrmap {
M : abstrmap = {};
P . abstrmap[| oop occurrences in the trace];
I, 7. int;
for each stmt in trace {
if (stmt is a loop entry) {
I = the loop that starts at stmi;
P[] = M. copy;
}
M = analyzeStnt (stmt, M);
if (stmt is an end of sone loop iteration) {
[= the | oop whose one of its iterations ends at stmt;
¢+ = nunber of conplete iterations of the |oop [at stmt,;
joinlterations(l, 4, P[], M); [+ M nodified =/
P[] = M. copy;
}
}
}
procedure joinlterations(l, ¢« : int, P, M : abstrmap) {
for each key v in M {
p = P[v]; m = M[v];
if (pisnnot nil & m is not nil && p.v == m.v) {
if (i == 1) { [+ Infer an abstract value */
M[v].c = p.c;
M[v].v[l] = m.c - p.c;
} else if (p.v[l] == m.c - p.c) {
/= The existing abstract value is valid. Do not hing.
} else M[v] = <c = concreteValue(v) , v = nil >;
} else M[v] = <c = concreteValue(v) , v = nil >;
¥
}

Figure 3.3: First Part of the Pseudocode for Our Symboliclysis
36

*/

44

45

46

a7

49

50

51

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

procedure anal yzeStnt (stmt : Stmt, M : abstrmap) returns abstrmap {

}

mat ch stmt with
lhs <+ e
mat ch lhs with
v: M[wv] = abstrEval (e, M);
xv: M["m@ + concreteValue(v)] = abstrEval (e, M);

return M; [~ M is nodified x/
assert (cond):
return M; [+ M is unchanged =*/

procedure abstrEval (e : e, M : abstrmap) returns abstrval {

}

mi, Mo . abstrval,
match e with
v: return | ookupAndStore(v, M);
xv: return | ookupAndStore("m@ + concreteValue(v), M);
c. return<c=c¢, Vv =nl >
e1 o es.
my = abstrEval (e1); mo = abstrEval (e3);
if (mpisnnil || mgis nil) return nil; /* NON-LINEAR =/
else if (mp.vis nil &% mo.v is nil)
return < ¢ = mj.€C o mg.C , V =nil >
else if (o€ {+, -}
return < ¢ = m;.C o mg.C , V. = mi.V 0 mg.V >,
else if (o€ {x})

if (mi.v == nil)

return < ¢ = mi.C o me.C , V = mi.C o mg.V >
else if (mo.v == nil)

return < ¢ = mj;.C o me.C , V = mg.C o mi.V >,
else return nil; /* NONLINEAR */
else return nil; /* NON-LINEAR */

procedure | ookupAndStore(v : v, M : abstrmap) returns abstrval {

}

if (vis not a key in M)
M[v] = < c = concretevValue(v) , v = nil >;
return M[v]; [+ M may be nodified */

Figure 3.4: Second Part of the Pseudocode for Our SymbolatyAis.

37

3.3.2 Linking Loops to Input

When the symbolic analysis discussed in Sedtion B.3.1 is @phe symbolic expres-
sions for program state variables that our tool has prodwikdbe in terms of the trip
count variables. To obtain the relationship between thgnara state variables and the
input, we need to obtain the relationship between the trimteariables and the input.
In general, such relationships might be very complicatedwéver, we leverage the ob-
servation that often such trip count variables relate ttagefeatures of the structure of
the input such as the length of a variable-length field (swch satring) or the number of
records of the same type (callgdrative fields.

To precisely capture these repetitive features of progmgpats, which are missing
from descriptions like context-free grammars, we intragtlte concept ohuxiliary at-
tributes. For instance, we introdutength attributes to represent the size of fields that
might vary in length, andountattributes to represent the number of times iterative fields
are repeated. Auxiliary attributes are associated witmgratical units at any level (e.g.,
terminals and non-terminals in a context-free grammarghsas Lengttl/ RI) for the
length of a URI field in the HTTP grammar. They can also be syatiealy added to an
existing parser as an attribute grammar (agatcc [61]); for instance, the length for a
non-terminal in a rule can be computed as the sum of the Ismgthhe right-hand side of
the rule. In some cases, the value of an auxiliary attribaifgrovided in another field of
the input. Our technique can take advantage of auxilianbates that appear in the input
in this way, but it also uses them in ways that do not requieentho appear in the input.

The goal for the linking step is to identify loop-computedues in the program that
represent auxiliary attributes; for instance, if a loopssdito compute the length of a field.
Previous work|[20] shows that automatic inference of vdeslbhat iterate over multiple
variable-length fields is feasible, and more recently Cabalét al. show how to relate
certain program variables to features of an input grammér M/e use similar techniques
based on the same intuition; we determine that a loop’stiter&ount is the length of a
field if its exit condition checks either a delimiter for thelfl or a value derived from a
length or an auxiliary attribute of the field. In more detwié use the following steps:

1. Relate data-dependent bytes to fields in traditional concolic execution, our tool
determines for each variable in the trace which input bytgdentified by offset) it
directly depends on. Our tool also parses the input accgtdithe known grammar,
and so determines which protocol field contains each inpté.byherefore, one
simple way of matching variables with one or more input fieéd® combine these
two mappings. For instance, in the example of Figuré 3.1bthfer URI contains
the contents of the field R1.

38

2. Identify variable length fields, counts, and delimitefge input grammar also iden-
tifies which fields correspond to the lengths or iterationntswf other fields, and
our tool maps this information through direct dependentiedetermine program
variables that represent lengths and counts. Also, we a@sgrémmar to determine
which values are used as delimiters to signal the end of ablariength field. For
instance, in the HTTP grammar, the fiéldz is delimited by a space character.

3. Identify variables used in loop exit condition®y analyzing loops as described
in Section 3.5, our tool determines which variables are useélde conditions that
determine when to exit a loop. For instance, the loop on BteL7 of Figuré 3]1 is
guarded by a condition on the variablesnduri _| en.

4. Recognize loops over delimited fieldisthe exit condition of a loop compares bytes
of a field to a value that is the delimiter of the field, then wélihe iteration count of
the loop to the length of the field. For instance, in Figuré thé loop on lines 12-16
compares each byte of the URI field to a space, which is known thee grammar
to be the delimiter of the URI, so the execution count of thapl the length of the
field (I'C, = Length(U RI)). In other situations, a loop may process several bytes
on each iteration, which gives a relation with a scale fackwr instance, if each
iteration processes a 4-byte word, the field length is equdltimes the loop trip
count.

5. Recognize loops over counted field$ the exit condition of a loop compares a
variable to a value that is identified in the grammar as thgtleof a field or the
counter for a repeated field, then we link the iteration caditie loop to that length
or count field. As in the case of a delimited field, the scalédiabetween the field
and the trip count may not be 1, for instance if a loop processral items in each
iteration.

While these techniques are not enough to recognize eventih@pnight be written,
they represent the most common patterns, and we have foend tih be sufficient to
capture the relationships for both length and count atiein practice.

3.4 Applying LECE

In this section we describe how to apply LECE to test genaratimd in problems about
security bugs in software. First, we describe the primitperation of using LECE to
determine how a given predicate might be satisfied duringnara execution: on a single

39

program path, but perhaps involving different numbers oplderations. We then show
how to use this primitive for improving coverage in test gatien, discovering previously
unknown security bugs, and diagnosing the cause of a bug ginly an execution that
exercises it.

3.4.1 Loop-extended Condition Analysis

A basic use of traditional concolic execution is to detemrtime conditions under which a
predicate at a program location can be true. For instanegyrédicate might be a branch
condition, a programmer-provided assertion, or an arrayntde check. We start with the
predicate (which we will call thguery predicatg associated with a program point, and
an execution that reaches that point, but does not satiefpriédicate. Then the task is to
determine the conditions on an input to the program thatcdcoalise execution to follow
the same path, but cause the query predicate to be true. W&peextended concolic
execution, we enhance this condition analysis by taking aticount other program exe-
cutions that are similar to the observed one, but might wevalifferent numbers of loop
executions. Once the predicate has been chosen, this kbepeed condition analysis
takes the following 3 steps:

1. Derive symbolic expressions in terms of inpu@ven the original execution trace,
our tool first performs loop-extended concolic executiontlom trace as described
in previous sections. The result of this step gives a symlm{pression for each
program state variable that depends on the inputs, inajuatith data dependencies
and control dependencies introduced by loops.

2. Instantiate query predicateOur tool instantiates the query predicate by using the
symbolic expression computed for each variable that agpedhe predicate.

3. Solve constraintsThe query predicate can be satisfied if there exist inputsetpto-
gram that simultaneously cause it to reach the locationeptiedicate, and satisfy
the predicate. Therefore, our tool conjoins a path conditwith the query predi-
cate, and passes this formula to a decision procedure toateif it is satisfiable.
Constraints in the path condition that arise from loop exiidibons are removed,
since they are superseded by loop-dependent symbolicssipns. Our implemen-
tation uses STF_[48], an SMT solver that represents maclihes precisely as
bounded bit vectors. If the formula is solvable, STP retassatisfying assignment
to its free variables, which represent particular inpuebyand auxiliary attributes.

40

A grammar-based input generation tool/[11, 52] can then bd ts produce a ver-
sion of the initial input, modified according to the satisiyiassignment, which is
a candidate to satisfy the predicate. When the constraigtsreethat a length or
a count be larger, our approach heuristically repeats elesvieom the initial input

until the result is long enough.

3.4.2 Uses for Loop-extended Conditions

Loop-extended condition analysis has many applicatiomsthis section, we describe
three: improving the coverage of test generation based cotic execution, discovering
violations of security properties, and diagnosing the exglonditions of a security flaw.

3.4.2.1 Improving Test Generation

Test generation is the task of discovering inputs to a progitsat cause it to explore
a variety of execution paths. Traditional concolic exemuttan be used in an iterative
search process to find such inputs|[22,/53/ 102], but it doesaoyme well with program
branches that involve loop-dependent values; using LECteandsallows test generation
to achieve higher coverage.

The basic operation in such an iterative search is to tak&eouéon path and a branch
along that path, anteversethe branch: find an input that causes execution to reach that
branch, but then take the opposite direction. Reversing achré just an application
of the primitive of Sectiom 3.411, where the query predidata branch condition or its
negation. The benefit of using loop-extended concolic exacunstead of traditional
concolic execution in test generation can be seen in twocésp€irst, an LECE-based
exploration is able to reverse branches whose conditiormdvie loop-dependent values;
in a tool based on TCE, by contrast, loop-dependent valuesareonsidered symbolic.
Second, an iterative search performed with LECE is more @icesince the conditions it
reasons about capture the effect on values computed in.|6opsstance, if a subsequent
branch depends on a loop-derived value, LECE-based seajalia® only one iteration
to determine a number of iterations of the loop to reversedmalition. The length check
on line 23 in the example of Figure 8.1 shows this benefit: aBEfHased generation tool
can immediately construct an input with a long-enough werfield, because the length is
a symbolic variable, while a TCE-based tool could only stwevds such an input by trial
and error.

41

3.4.2.2 \ulnerability Discovery

Many classes of security vulnerabilities can occur wheseeurity predicates violated
during program execution. For instance, given a programwhiges to an array, a buffer
overflow occurs if the index of a write to an array is outsidele correct bounds. In a
program that uses machine integers to compute the lengtidafaastructure, an integer
overflow vulnerability occurs if a computation gives the wgoresult when truncated to
word size. To check whether program logic is sufficient tospret such failures, the prob-
lem of vulnerability discovery, or “fuzzing,” asks whethttrere is a program input that
could violate the security predicate. Vulnerability digepoy is similar to test case gener-
ation; the only difference is the additional checking of aws#y predicate at each dan-
gerous operation. Thus, like test generation, it can beopedd using our loop-extended
condition analysis: the query predicate is just the negaifdhe security predicate.

Loop-extended concolic execution is a particularly goodamdor discovering vul-
nerabilities related to input processing, because the stat@ture size values that are
misused in buffer overflow and integer overflow vulneralaititare often processed using
loops. The buffer overflow in Figuie 3.1 is typical in this wdepending on the security
property, some preprocessing might be needed to preciséilyedthe security predicate
describing how an operation might be unsafe: for instandeenachecking for a buffer
overflow, to determine the length of the vulnerable buffee Wil discuss some practical
aspects of such preprocessing in Sedtioh 3.5.

3.4.2.3 \Wulnerability Diagnosis

If a vulnerability has already been exploited by an attackeother important application
is diagnosing it: extracting a set @tilnerability conditionggeneral constraints on the
values of inputs that exploit the vulnerability). Diagreos an important problem in secu-
rity because vulnerability conditions are useful for auatically generating signatures to
search for or filter attacks, or to help a security analyseustadnd a vulnerability.

Vulnerability diagnosis is again based on the loop-extdrndition analysis primi-
tive of Sectior 3.4J1: in fact, the combination of a path et and a negated security
predicate gives a vulnerability condition. However, cditcexecution typically generates
thousands of constraints, so our tool performs severatagdtions to simplify them into
a smaller set, as discussed in Section 3.5. Such simpldicaiparticularly important for
applications involving manual analysis, but a compact @¢andis also more efficient for
use by later automated tools.

Some forms of vulnerability diagnosis could be performemhgd CE, but a TCE-

42

based diagnosis would be too narrow for many applicatior@duding most buffer over-
flows. For instance, a TCE-based diagnosis of the web senfgime[3.1 could capture
some generality in the contents of the input fields, but it M@astrict their lengths to the
particular values seen in the sample exploit. A filter basedwch a diagnosis could be
easily bypassed by an attack that used a different length ByRtontrast, LECE finds
conditions that are more general; for instance, in the exawipFigure 3.1, it finds that
nsgbuf can be overflowed by inputs of arbitrary size, as long as the giuthe lengths
of two fields is at least 99.

3.5 Implementation

We have implemented the core loop-extended concolic execabmponent described
earlier in OCaml, and the protocol format linkage in OCaml corad with C and Python
code to integrate with off-the-shelf parsers. We utilized existing binary analysis infras-
tructure [10, 105] for taking an execution trace and getthrggsemantics of x86 instruc-
tions.

The rest of this section describes several additional compts we developed to real-
ize our proposed primitives and heuristics that make this@ach practical when working
with binaries.

Memory layout extraction. Our tool infers on its own the memory allocations made by
the program at different points during the program executichen, the tool checks these
allocations for overflows in pointer accesses. When dealiitly synamic allocation, it
uses the arguments to memory allocation functions as beiogrded by TEMU (part
of our infrastructure discussed in Section|2.4). For stzaked memory accesses, we
implemented a stack bound inference technique called staalysis|[100], though more
detailed techniques![4, 5] could alternatively be used.

Loop information extraction. Our infrastructure uses the IDA Pro tool [60] to disassem-
ble binaries and we reused the static loop detection algust84, pp. 191-197] existing
in our infrastructure [17]. There are two notable additiareveats which were useful for
obtaining results for our case studies.

1. Addition of dynamic edgesThe presence of indirect call and jump instructions
hinders static CFG extraction: an analysis may completebgmmode blocks that are
reachable only through indirect jumps. Our static contrmivflgraph extraction is

43

supplemented with indirect jump targets observed in theetravhich allow many
more loops to be discovered. For instance, such loops wéreatto obtaining
accurate results in the SQL Server case study of S€cfio?. 3.6.

2. Irreducible loops.Unlike in high-level languages, loops in binaries are ofteg-
ducible. We dealt with this by employing node-splittinghemues|[1, pp. 684—-685]
to make loops reducible so that they can be identified in timérabflow graph by
means of searching for back edges.

Protocol Grammar. Our existing infrastructure interfaces with Wiresharkl, lan off-
the-shelf IDS/IPS, to obtain protocol grammars of netwad@cols we study.

Input Generation. We find that a relatively simple input generation approachkaevell
with our LECE implementation: when a constraint requires@iangth or count be larger,
we repeat elements from the initial input until the resuloisg enough. In more general
examples where the field being extended is subject to morii@uhl constraints, one
could also leverage grammar-based input generation agip{@a, 52].

Constraint simplification. Our tool performs live-variable analysis to remove irrelet

constraints. It then performs constant folding on the r@mgi constraints, and sim-
plifies them using the algebraic simplification routinesltbni with the STP constraint
solver [48].

3.6 Experimental Evaluation

We evaluated the effectiveness of loop-extended concréicigion by applying it to dis-

covery and subsequent diagnosis of buffer overflow vulnktiab. We selected two kinds
of subject programs for this evaluation. For comparisorhvather implementations,
which require source code and/or run only on Linux, we usedsted benchmark suites
containing known overflows. To test the practical utilityair tool, we use real-world

Windows and Linux applications with historic vulnerabdg. Our tool discovers all the
benchmark overflows, as well as those in real-world appbtoat by generating just a few
candidate inputs.

In addition to a subject binary program and an initial prograput, our system also
requires the following data to complete each of the expeartme

44

e Extra inputs

— Grammar of the program input (obtained using Wireshark)

— Program disassembly (required for loop detection, obthugeng IDA Pro)
e Data automatically inferred by our system

— Stack and heap memory layout (required for overflows detekti

— Locations of indirect jumps/calls (to improve loop deten)i

3.6.1 Evaluation on a Benchmark Suite

As benchmarks, we used a set of 14 samples extracted frorarabltities in open-source
network servers (BIND, Sendmail, and WUFTP) by researchareavIT Lincoln Labo-
ratories [122], which range between 200 and 800 lines of eadé. (These are the same
benchmark programs used by Xu et al. [120].)

Replacing TCE with LECE would be beneficial throughout inputcgpaxploration in
vulnerability discovery, since symbolic expressions tmyd-dependent values allow more
branches to be reversed, as discussed in Section 3.4.2Wevidn it can be difficult to
fairly compare concolic execution tools on an end-to-emsldydecause of differences in
input assumptions and search heuristics. Therefore, wineoour evaluation to the last
stage of vulnerability search by starting both our tool aficC& tool with a program input
that reaches the line of code where a vulnerability occursdbes not exploit it. These
inputs are short and/or close to usual program inputs, sodbeld be found relatively
easily by either a TCE-based or an LECE-based approach (thbagime required would
still be highly dependent on the initial input and searchristics used). Therefore, the
results on these inputs provide a bound on the performanee ehd-to-end system: if
a tool is unable to find a vulnerability given the hint of a rfBamput, it would also be
unable to find it starting from a completely unrelated input.

Results and New BugsThe upper half of Table_3.2 shows the results of our tool on the
Lincoln Labs overflow benchmarks. The first column identiBash benchmark, and the
second column summarizes the input grammar our tool usesthirad and fourth columns
show the initial input our tool started with, and the expiofut it found. The fifth column
shows the number of candidate inputs our tool generatesy thft slash), and the number
of those that in fact cause an overflow (before the slash).siiXile column shows the total
runtime of our tool, starting with the initial input tracedamcluding all the discovered

45

Program Input Format Initial Input Exploit Input Bug/ Time (s) | Loop-Dep.
Candidate Conditions
BIND 1 DNS QUERY 104 bytes, RDLen=48 RDLen=16 1/5 2511 16
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 1/2 586 13
BIND 4 DOMAINNAME “web.foo.mit.edu” “web.foo.mit.edu” (64 times) 1/1 4464 52
Sendmail 1 Byte Array <> “<>" (89 times) 4/5 672 1
Sendmail 2 | struct passwd (Linux)| (*",“root”,0,0,“root”,"”,"") (*",“root”,0,0,"“rootroo”,"","") 1/1 526 38
Sendmail 3 [String ™ [“a=\n"]? [“a=\n"]>* 1/4 626 18
Sendmail 4 Byte Array “aaa” “a” (69 times) 1/1 633 2
Sendmail 5 Byte Array “N\\” “\"” (148 times) 3/3 18080 6
Sendmail 6| OPTION:' ' 0cARG “-d aaaaaaaaaa-2” “-d 4222222222-2" 1/1 676 11
Sendmail 7| DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WUFTP 1 String “aaa” “a” (9 times) 2/2 483 5
WUFTP 2 PATH “aaa” “a” (10 times) 1/1 197 29
WuUFTP 3 PATH “aaa” “a” (47 times) 1/1 109 7
GHttpd MethodbURIloVersion | “GET /index.html HTTP/1.1” “GET "+188 bytes + “ HTTP/1.1” 2/2 1562 41
SQL Server| CommandDBName X04 x61 x61 x61 x04 x61(194 bytes) 1/3 205 1
GDI (Not required) 1014 bytes, INP[19:18]=0x0182 INP[19:18]=0x4003 1/1 353 2

Table 3.2: Discovery Results for Benchmarks and Real-worlg@ifaras. A circle ¢) represents concatenation. In

[X]*, k denotes the auxiliary count attribute specifying the nunaféimes elemenf repeats.

46

overflows. (The seventh column will be discussed in Se¢ti6r33 All experiments were
performed on a 3GHz Intel Core 2 Duo with 4GB of RAM.

Our LECE tool discovers most of the bugs in just a few minuteguiring only a
few candidate inputs each. In each case, we supplied a serafirbinput, and the tool
automatically found that a longer input could cause an aw@rfOur tool also discovered
an apparently new bug in one of the Lincoln Labs benchmarkaddition to the known
overflows (marked with * BAD */ comments in the benchmark code) our tool finds a
new overflow on line 340 of the functigmar se_dns_r epl y in Sendmail benchmark
7. (In the other cases where our tool reports multiple oweifig inputs, they were a set
of related errors marked in the benchmark.)

Comparison with Splat. Xu et al. [120] suggest a different approach to making TCE
work better for certain buffer overflows, by abstracting rotree length of string buffers.
Specifically, their length abstraction technique requmegrammer-supplied source code
annotation to mark a chosen prefix of the relevant bufferfgeats as symbolic. In con-
trast, our technique automatically extracts memory baferd their dependency on the
input fields using a combination of static and dynamic anglygore importantly, LECE
does not need any information about string-manipulatingtions, but instead uses in-
put grammar to assist its analysis. Our key enhancementdldnéoop dependencies is
practically sufficient to reason about the implementatiohthe string functions for our
applications. As a result, LECE can reason about vulnetigsilpresent in custom oper-
ations on array inputs that may not use any common stringatipes (examples of these
are available in our studied benchmarks).

Though the Lincoln Labs benchmarks were also studied by Xal.4120], a head-
to-head empirical comparison was not possible. Unfortlgabecause of the way the
original benchmarks are designed to be self-containedast unmclear which buffers (and
which parts) were annotated as program inputs in their wik. instance, the BIND 2
benchmark exercises code from BIND that parses a DNS pacietalao includes code
to generate an appropriate packet. In Xu etlal. [[120], it wadaar which value in the
packet generation process was treated as the input. As shovable[3.2, we considered
the whole packet itself to be the input, so that only an inpat ts a mostly syntactically
correct packet will cause an overflow. We believe our choiedes for a more realistic
evaluation, but it implies that a direct comparison of theldbexecution times would not
be meaningful.

Our tool was able to find exploits for the two benchmarks (Seaitll and 5) on which
Splat times out. (In the case of Sendmail 5, the total runtimg of our tool to evaluate 3
candidate inputs is longer than the two-hour timeout uséd plat, but our tool reports

47

its first vulnerability before two hours have elapsed.) Cardimaining benchmarks, our
tool reproduces Splat’s positive results on the completgams.

Accuracy of candidate inputs. In the fifth column, Tablé_3]2 shows the number of can-
didate test inputs our tool generated in the process of findach exploit. The fact that
only a few tests were required (on avera@e)% of the candidates our tool generates are
real exploits) demonstrates the targeted nature of LECEebssarch: the tool efficiently
chooses appropriate loop iteration counts and prunesrhayfterations that are safe, con-
centrating on the most likely vulnerability candidates.c0@irse, since the candidates are
concrete inputs that can be automatically tested, failedlidates are not reported: the
tool gives no false positive results.

3.6.2 Evaluation on Real-World Programs

As full-scale case studies, we took 3 real-world Windows kindix programs which are
known to have buffer overflow vulnerabilities. These in@uble program targeted by the
infamous Slammer worm in 2003 [83], the one affected by ameG®I vulnerability in
2007 [78], and an HTTP server [50]. Talle]3.2 summarizes theevabilities in these
programs and the input grammars our tool used. We gave bamig inputs to these
programs that are representative of normal inputs thatwoepyd receive in practice.

Starting with a benign input, our tool uses just one iteratbLECE to discover buffer
overflows in all 3 real world programs. The bugs found in thel @bd SQL cases are the
same reported earlier in these programs, as we manuallyroaafi For ghttpd, our tool
discovers two buffer overflow vulnerabilities in theg function inutil.c. One of
these is described in previous research using this subjegtam [31]. The new over-
flow involves a separate buffer and would need a separate ligsd results are shown in
Table[3.2; next we explain each vulnerability in more detail

GHttpd vulnerability. GHttpd is a Linux web server; we use version 1.4.3. We send an
initial benign input,GET /i ndex. ht Ml HTTP/ 1. 1, to the running web service, and

it responds normally. Given a trace of this execution andHR@P grammar, our tool
discovers 2 potential buffers to overflow and generatesidatelexploits for each. These
inputs are the same as the initial input except that their UFRddihave lengths of 188 and
140 bytes respectively. Testing confirms that both candglmideed cause overflows: the
shorter request overflows one buffer, and the longer ondlower both that buffer and a
subsequent one.

48

SQL Server vulnerability. This vulnerability is a stack-based overflow in Microsoft’s
SQL Server Resolution Service (SSRS), which listens for UDjuests on port 1434.
Based on its specification [79], one valid message formaauos @ fields: a header byte
of value 4, followed by a string giving a database name. Wel $ka SSRS service a
benign request that consists of the header byte and a staimg’; to which the service
responds correctly. Given the trace and the input grammartaml finds 3 potential
buffers to overflow and generates one candidate inputs fdr.e@ur automated testing
reports that one candidate, which is 195 bytes long, ovesfeplwffer that is the same one
exploited by the SQL Slammer worm. (The other two candidapeiis are longer than
the maximum-length UDP packet, so they are discarded dtestgng and not reported.)
The fact that such large inputs could be generated in a sstgfe rather than via a long
iteration process, shows the power of LECE.

GDI vulnerability. This vulnerability in the Microsoft Windows Graphic RendegiEn-
gine was patched in 2007. We created a benign and properhaftted WMF image file
using Microsoft PowerPoint, containing only the texta”; the file is 1014 bytes long.
We attempt to open the file using a sample application andrdett@ program execu-
tion. Without using an input grammar, our tool discovers teptal buffer read overflow
and creates an exploit input, which crashes the samplecapipi. The only differences
between the exploit and the benign input are the values ieshi® and 19 (shown in Ta-
ble[3.2). Comparing with a grammar for the WMF format, these$yorrespond to the
size of the image field.

3.6.3 Further Applications

Improving test coverage.Though our evaluation does not focus on the explorationghas
of vulnerability detection, our experiments do demonsteateature of loop-extended con-
colic execution that makes it more effective in obtaininguhspace coverage. As de-
scribed in Section 3.4.2.1, LECE improves on TCE by finding sylintexpressions for
more branch conditions that depend on the number of timgxslerecute, making it pos-
sible for a coverage tool to reverse them. To measure ttestefive give in the last column
of Table[3.2 the number of branches for which our tool foundaptdependent condition
but no directly input-dependent condition, so that an LE@Bed tool would be able to
reverse them but a TCE-based tool would not. The count is a auoflunique program-
counter locations (i.e., static and context-insensitiagd excludes loop exit conditions.
For instance, one of the 29 loop-dependent conditions in WVRUE is a length check (on

49

line 464) intended to prevent the buffer overflow. Becausecttezk is faulty, it is false

on both our benign and exploit inputs, but exploring botresidvould be critical for an

exploration task, such as verifying the lack of overflows fixad version. The condition

is immediately apparent to our tool, but would not be congidesymbolic under standard
TCE.

Vulnerability diagnosis. Our tool can also be used for vulnerability diagnosis: to find
general set of conditions under which an exploit occurs.gbisis is most useful when
a vulnerability is already being used by attackers, and imjgortant to understand and
defend against attacks quickly: vulnerability conditiaas accelerate or replace manual
analysis of an exploit, and be used to generate filters tactletelock attacks. But to be
useful, such conditions must be broad enough to cover a tdags of attacks.

We used our tool to perform diagnosis on the same real-woddrams described in
Sectior 3.6.2. Either a publicly available exploit, or ti@leits generated by our discov-
ery tool, could be used and produce the same results.

Our tool’'s diagnoses, summarized in Tdbld 3.3, are moreratzand usable than those
given in previous work [37]. For instance, for the Micros8fL Server vulnerability, the
condition our tool generates states that the vulnerabl¥dikingth must be greater than 64
bytes, whereas the buffer overrun vulnerability conditgemerated in previous work states
that the length must be at least 97 bytes [37]. This diffeeemens out to be significant.
Because we have no access to source code, we validated olis eqerimentally by
supplying inputs of various sizes to the server. We fountivieen the vulnerable field has
a size larger than 64 bytes, the overflow overwrites pointatfs invalid values, causing
an exception when these values are dereferenced.

Also note that most diagnoses of buffer overflows, including GHttpd and SQL
Server examples shown in Tablel3.3, could not be producedtandard TCE tool, which
lacks even a notation to refer to the length of an input field.

3.7 Limitations

Although we found that LECE provides enhancement to con@decution and can be
applied to various security-related applications as dised in Sectioh 3.6, it is valuable
to discuss some key limitations of the technique.

First, LECE uses static loop detection technique insteaeteating them during pro-
gram execution, which would make the overall technique dynand applicable for any

50

Program | Buffer size Condition for overflow Constraint
(bytes) generation time (s

GHttpd (1) 220 URI.len > 172 420 + 23

GHttpd (2) 208 URI.len > 133 420 + 140

SQL Server 128 DBNane. |l en > 64 192

GDI 4096 | (2-1NP[19:18])>>2 < O 200

Table 3.3: Diagnosis Results on Real-world Software. Geloerdéitne for GHttpd con-
sists of the pre-processing time (420 s) and the post-psoggime (23 s and 140 s) for
each condition.

executables. As a result, LECE requires a control flow graghgrbgram under analysis
which may be difficult to retrieve for obfuscated program® &koose the static approach
because it provides the loop exit conditions which are eluw our overall approach.
The dynamic approach, on the other hand, would require weprbeuristics to identify
loop exit condition. Second, it relies heavily on the preseof input grammar, which
may not be readily available. Even though previous work [284 proposed a technique
for automatic inference of proprietary input formats, tleerectness of the resulting for-
mats cannot be fully guaranteed and the technique is nostalgainst obfuscation. Third,
LECE requires a heuristic for extending the length of an itiield, by repeatedly concate-
nating elements from the initial input field until it reachibe desired length. Although
the heuristic works fine in our experiment, it is possiblet i@ extended field may be
subject to additional constraints. Finally, LECE only calesilinear relationship between
loop trip counts and variables, which is not applicable tayniaput formats that contain
nested fields.

3.8 Related Work

This section discusses two classes of related research: diner work on analysis ap-
proaches similar to our loop-extended concolic executioern, work that also addresses
the problem of discovering and/or diagnosing buffer-owerfattacks.

3.8.1 Analysis Approaches

Extensions to traditional concolic execution. Several previous approaches have ex-
tended traditional concolic execution with additionalirthation about the program or its

51

possible inputs. Previous grammar-based approaches1152574] have taken advan-
tage of knowledge of which program inputs are legal to redbessize of the search space
when generating new inputs. By comparison, our use of an gmaumar in Section 3.3.2
is focused on extracting more information from a single exiea. The Splat tool of Xu et
al. [120] also targets the problem of buffer-overflow diagjspbut they do not explicitly
model loop constructs as in loop-extended concolic executhAn empirical and analyt-
ical comparison to their approach is presented in Settiéd 3Pre- and post-conditions
can summarize the behavior of a function so that it need no¢dmealyzed [51], similar to
how our approach avoids the need to reanalyze with diffarantbers of loop iterations.
If repeated constraints are generated, they can also bedateved by optimizations such
as constraint subsumptian [54].

Static analysis.Determining linear (technically, “affine”) relationshipmong the val-
ues of variables, as our analysis in Secfion 3.3.1 does)assic problem of static program
analysis, pioneered by Kair [62]. Like many properties thablve multiple variables, it
can potentially become expensive. For instance the pofginetchnique [33] requires
costly conversion operations on a multi-dimensional aestrepresentation. More recent
research has considered restricted abstract domainslithatfar more efficient compu-
tation, such as “octagons” [81] and “pentagons’| [72]. Thehteques of Miller-Olm and
Seidl [85] have the advantage of giving precise results aidnrespect to overflow, but
their runtime is a high power of the number of variables in@gpam ¢’ for the interpro-
cedural case). Random analysis! [56] can also be used to de¢elimear relationships,
with a small probability of error. For the simpler case wesidar, it is sufficient to take a
more efficient non-relational approach: we express theegadd program variables not in
terms of each other but in terms of a small set of auxiliafy-tount variables.

3.8.2 Discovering and Diagnosing Buffer Overflows

Buffer-overflow vulnerabilities are a critical security dleage, and many approaches tar-
get them. Sound static analysis holds the possibility ohiglating false negatives, but in
practice buffer overflow checking is difficult enough thatisd analysis is possible only
for small programs with extensive user annotation [44]. &comparable to our approach
are scalable bug-finding tools [47, 119]. However, purdcstatalysis approaches suffer
from false positives, which tool users must examine by haRdr instance, one com-
parison [122] using the same benchmarks we use in Sdctiofi f&énd that many tools
produced so many false positives they did only slightlydrdtian chance. Dynamic anal-
ysis techniques, on the other hand, avoid false positivesxaynining programs as they
execute|[32, 34, 88]. However, the requirement of runninglbexecutions means that

52

the overhead of dynamic analysis tools can limit their aggtdility. Concolic execution
combines static and dynamic techniques to generalize floseroed executions to simi-
lar unobserved ones, and loop-extended concolic execetitamds this generalization to
include loops.

Our vulnerability diagnosis using loop-extended concelecution extends previous
diagnosis approaches based on traditional concolic execjit3, 14, 31]. Bouncer [31]
employs source-code-based static alias analysis aloig™M@E. ShieldGen [37] uses a
protocol-specification-based exploration of the inputcgp@ diagnose a precise vulnera-
bility condition. However, in contrast to our work, it treahe program as a black-box,
ignoring the implementation. In addition, it does not captaomplex relationships be-
tween fields that may be necessary to exploit a vulnerabifity instance, as its authors
point out, ShieldGen cannot capture the condition that tmlgned length of two fields
must exceed a buffer size for exploit (as in the example ofi@e8.2), while our tech-
niques can.

3.9 Conclusion

We propose loop-extended concolic execution, a new typerdaic execution that gains
power by modeling the effects of loops. It introduces tripigovariables with a symbolic
analysis of linear loop dependencies, and links them taifeatin a known input gram-
mar. We apply this approach to the problem of detecting aagdraising buffer overflow
vulnerabilities, in a tool that operates on unmodified Wind@nd Linux binaries. Rather
than trying a large number of inputs in an undirected way, approach often discov-
ers an overflow on the first candidate it tries. Our tool findshe vulnerabilities in the
Lincoln Labs benchmark suite and gives accurate symboiiditions describing real vul-
nerabilities. These results suggest that loop-extendedatic execution has the potential
to make many kinds of program analysis, including imporsadurity applications, faster
and more effective.

53

54

Chapter 4

Decomposition and Re-stitching

4.1 Introduction

Vulnerability discovery inbenignprograms has been an important task in software se-
curity: identifying software bugs that may be remotely @ialble and creating program
inputs that demonstrate their existence. However, findulgerabilities inmalwarehas
not been studied. Do malicious programs have vulneras®iDo different binaries of the
same malware family share vulnerabilities? How do we autmaildy discover vulnerabil-
ities in malware? What are the implications of vulnerabititycovery to malware defense,
law enforcement and cyberwarfare? In this thesis we takértestep in addressing these
guestions. In particular, we propose new symbolic reagptechniques for automatic
input generation in the presence of compémcoding functionsind demonstrate the ef-
fectiveness of our techniques by examining and finding bangeal-world malware. Our
study also shows that vulnerabilities can persist for yaaress malware revisions. We
hope our work will spur discussions in the implications oflwee vulnerability discovery
to malware defense, law enforcement and cyberwarfare.

Concolic execution and related techniques can be used foerability discovery in
malware just like in benign software. However traditionahcolic execution is ineffec-
tive in the presence of certain common computation taskddmg the decryption and
decompression of data, and the computation of checksuméasidfunctions. We call
theseencoding functionsEncoding functions result in symbolic formulas that cardife
ficult to solve, which is not surprising, given for instanbattcryptographic hash functions
are designed to be impractical to invert @&ncoding functions are used widely in mal-

Inversion of hash and checksum function in this thesis sdfefinding any input that would provide the

55

ware (and also in many benign applications). In our expermisiehe traditional concolic
execution approach fails to explore the execution spadeeafialware samples effectively.

To address the challenges posed by the presence of encaulictiphs, we propose
a new approachstitchedconcolic execution. This approach first identifies potérdia
coding functions and their inverses, if any. Then, it decosgs the symbolic constraints
from the execution, separating the constraints generateth encoding function from
the constraints in the rest of the execution. The solver doeattempt to solve the (hard)
constraints induced by the encoding functions. It focusesaving the (easier) con-
straints from the remainder of the execution. Finally, istiéches the solver’s output by
either using the inverses of the encoding functions or byisglrelated constraints, creat-
ing a program input that can be fed back to the unmodified jpragr

For instance, our approach can automatically identify ghparticular function in an
execution is performing some expensive computation onrpatj e.g., decrypting the
input. Rather than using symbolic execution inside the g function, it applies
symbolic execution on the outputs of the decryption funttiproducing constraints for
the execution after the decryption. Solving those con#isajenerates an unencrypted
message. Then, it executes the inverse (encrypt) functioth® unencrypted message,
generating an encrypted message that can be fed back toodpapr.

More generally, we identify two kinds of computation thatkeauch decomposition
possible: computations that transform data into a new ftwahreplaces the old data (such
as decompression and decryption), and side computatiahsdlate a constrained value
to an otherwise unconstrained value (such as checksums)cldtdy, we explain these
techniques in the context of concolic execution, but theyegually applicable to concrete
fuzz (random) testing (e.g., [45, 106]) and taint-diredie¥ing [49].

We implement our approach as a set of additions to a systeaufomated concolic ex-
ecution of off-the-shelf x86 executables in binary formplemented using our BitBlaze
infrastructure [10,_105]. Our re-stitching approach eaalihe first automated study of
bugs in malware: our tool finds several new, remotely trigggge bugs in prevalent mal-
ware programs such as botnet clients and trojans. Vulrigmbin botnet clients could
allow a third party to terminate or take control a bot, so theya powerful tool for either
defensive or malicious purposes. To confirm the value of ppr@ach, we show that our
tool would be unable to find most of the bugs we report withbetnew techniques we
introduce.

Malware vulnerabilities have a great potential for diffgrapplications such as mal-
ware removal or cyberwarfare. Some malware programs sutiotagt clients are de-

same hash as the original input.

56

ployed at a scale that rivals popular benign applicationsiristance, the recently-disabled
Mariposa botnet was sending messages from more than 12miilfiique IP addresses at
the point it was taken down, and stole data from more than080Q0ysers[69]. Our goal
in this research is to demonstrate that finding vulneradsliin widely-deployed malware
such as botnet clients is technically feasible. Howeve,itiplications of the usage of
malware vulnerabilities require more investigation. Fraraple, some of the potential
applications of malware vulnerabilities raise ethical &aghl concerns that need to be ad-
dressed by the community. Thus, another goal of this rekaarno raise awareness and
spur discussion in the community about the positives andtivegs of the different uses of
malware vulnerabilities.

4.2 Problem Definition & Overview

In this section, we describe the problem we address and giegexrview of our approach.

4.2.1 Problem Definition

Our problem is how to perform concolic execution in the pneseof encoding functions.

Often there are parts of a program that are not amenable tmboexecution. A class
of common culprits, which we cafincoding functionsncludes many instances of decryp-
tion, decompression, and checksums. For instance, corbileode in Figure 411, which
is an idealized example modeled after a botnet client. Aéeeiving a messagef(r uct
nsg) from the network, it first decrypts the body of the messagegu8ES [39], verifies
that it has a correct SHA-1 hash [86], and then takes a mabcaxtion such as sending
spam based on a command in the message. Concolic execugorptdtto create a new
valid input by solving a formula corresponding to the pathditon for an execution path.
Suppose we run the program on a message that causes the ldi¢gpate in a DDOS
attack: at a high level, the path condition takes the form

m' = Dedm) A hy = SHAL(m') A m’[0] = 101 (4.1)

wherem and h; represent two relevant parts of the program input treatesiyasolic:
m is the message body >nessage, andh; is the message checksum>hash. Dec
represents the operation of AES decryption, while SHA1 é&SKA-1 hash function. To
see whether it can create a message to cause a different,amiaocolic execution will
attempt to solve the modified path condition

m' = Dedm) A hy = SHAL(m') A m’[0] # 101 (4.2)

57

© [ee] ~ o ol B w N =

N~ e O
S © ® N o o » W N kO

N
[y

struct nmeg {
| ong neg_I en;
unsi gned char hash[20];
unsi gned char nessage[];
b
voi d process(unsi gned char* network _data) {
I nt *p;
struct nsg *m = (struct nsg *) network _data;
aes_cbc_decrypt (m >nmessage, m >nsg_| en, key);
p = conpute_shal(m >nmessage, m >nsg_| en);
i f (mencnp(p, m>hash, 20))
exit(1);
el se {
int cnd = m>nessage[0] ;
if (cmd == 101)
ddos_attack(m;
else if (cnmd == 142)
send_spam(nm;
[+ ... */

Figure 4.1: A Simplified Example of a Program that Uses Layén@ut Processing. The
encoding functions include decryption (line 9) and a sedwsh function for integrity
verification (lines 10-12).

58

which differs from the original in inverting the last cond.

However solvers tend to have a very hard time with conditgunsh as this one. As
seen by the solver, the Dec and SHA1 functions are expantied tomplex combination
of constraints that mix together the influence of many in@lti®s and are hard to reason
about[41]. The solver cannot easily recognize the higledlstructure of the computation,
such as that the internals of the Dec and SHAL1 functions alepiendent of the parsing
conditionm’[0] # 101. Such encoding functions are also just as serious an obdftacl
related techniques like concrete and taint-directed hgzzi hus, the problem we address
is how to perform input generation (such as via concolic etten) for programs that use
encoding functions.

4.2.2 Approach Overview

We propose an approach stitchedconcolic execution to perform input generation in the
presence of encoding functions. We first discuss the iotuitiehind it, outline the steps
involved, and then explain how it applies to malware vulbéity finding.

Intuition. The insight behind our approach is that it is possible to cbe problems
caused by encoding functions, by identifying and bypastiegn to concentrate on the
rest of the program, and re-stitching inputs using conagéeution. For instance in the
path condition of formula 412, the first and second constsasome from encoding func-
tions. Our approach can verify that they are independent &ach other and the message
parser (exemplified by the constraint[0] # 101) within the high-level structure of input
processing and checking. Thus these constraints can bengesed, and the solver can
concentrate on the remainder. Solving the remaining caims$r gives a partial input in
the form of a value forn’, and our system can then re-stitch this into a complete progr
input by concretely executing the encoding functions oirtimeerses, specifically,; as
SHAL(m') andm as Dec*(m/).

Many encoding functions use keys or seeds which can be aabelwring program
execution. Our approach heuristically assumes that therseg are using the same key.
Thus, it will not work on functions that use public-key crggtaphy. We discuss this
limitation in Section 4.6.2.

Stitched concolic execution.In outline, our approach proceeds as follows. As a first
phase, our approach identifies encoding functions (sucleas/gtion and checksums)
based on a program execution. Then in the second phase, pnoaah augments explo-

59

ration based on concolic execution by adding decomposéiwh re-stitching. On each
iteration of exploration, we decompose the generated m@intg to separate those related
to encoding functions, and pass the constraints unrelateddoding functions to a solver.
The constraint solution represents a partial input; the@ggh then re-stitches it, with
concrete execution of encoding functions and their in&rggo a complete input used
for a future iteration of exploration. If as in Figure 4.1 tbare multiple layers of encod-
ing functions, the approach decomposes each layer in tonditheen reverses the layers in
re-stitching. Since our approach is used with and based nardic analysis, it is not a
requirement that it be sound over all possible executiomsjudge the re-stitching by the
program inputs it generates, which we can check by execthem.

Finding vulnerabilities in malware. We implement the approach as a scaling tool for
BitFuzz (discussed in Sectién 2.4). We use BitFuzz to find \aloiéities in malware pro-
grams. Many such malware samples, e.g., bots, act as nethenmts that start connections
to remote C&C servers. Thus, the input that BitFuzz needs thtf@éhe program in each
iteration is often the response to some request sent by tgggm. Previous exploration
tools for binaries do not support such network clients aneliacused on programs that
read input from the file system or network servers that receetwork data directly from
the exploration tool. One goal for BitFuzz is to be able to explkuch network client pro-
grams without a real connection to the Internet, what welo#drnet in your workstation
For malware, this means that we do not need to worry aboutioa$ behavior leaking to
the Internet. To enable such exploration we have developget @ tools, which we detail
in Sectior 4.4.

4.3 Stitched Concolic Execution

In this section we describe key aspects of our approach: dhdittons under which a
program’s constraints can be decomposed and re-stitcleati¢s[4.3.11), techniques for
choosing what components’ constraints to decompose (8e4iB.2), and how to repeat
the process when there are multiple encoding layers. (3e4iB.8). An overview of the
system architecture is shown in Figlrel4.3.

4.3.1 Decomposition and Re-Stitching

In this section we describe the principles of our decompos#nd re-stitching approach
at two levels: first at the level of constraints between paogwnalues, and then more

60

Inputl élnput2

D @
OWRG:
o

Output

Input

Output

Figure 4.2: A Graphical Representation of the Two Styles afddeposition Used in Our
Approach. Ovals and diamonds represent computations, @geseaepresent the depen-
dencies (data-flow constraints) between them. On the lskrigl layering, while on the
right is side-condition layering.

abstractly by considering a program as a collection of fionel elements.

4.3.1.1 Decomposing Constraints

One perspective on decomposition is to consider a progrexesution as inducing con-
straints among program values. These are the same cotstrahare represented by for-
mulas in symbolic execution: for instance, that one valwegigal to the sum of two other
values. The constraints that arise from a single prograrouti® have the structure of a
directed acyclic graph whose sources represent inputs Aodensinks represent outputs;
we call this theconstraint graph The feasible input-output pairs for a given execution
path correspond to the values that satisfy such a consggstem, so input generation can
be viewed as a kind of constraint satisfaction problem.

In this constraint-satisfaction perspective, analyziag pf a program separately cor-
responds to cutting the constraints that link its inputshi® test of the execution. For
a formula generated by concolic execution, we can make patformula independent
by renaming the variables it refers to. Following this agig it is not necessary to ex-
tract a component as if it were a separate program. Our toosicaply perform concolic
execution on the entire program, and achieve a separattarebes components by using
different variable names in some of the extracted conggain

61

L4

Encoding function
and inverse

Decomposed constraints

Initial input Execution
Execution |3
- trace

Monitor

Identification

Encoding func. 1

Re-stitching
Partial input

Program

Execution
Monitor [

)

Constraint
Solver

Execution
trace

Component 2

Figure 4.3: Architectural Overview Showing the Parts of O@composition-based Input
Generation System. The steps labeled decomposition astitebing are discussed in
Sectio 4.311, while identification is discussed in Sedddh2. The parts of the system
shown with a gray background are the same as would be usedon-stitching concolic
execution system. The steps above the dotted line are petbonce as a setup phase,
while the rest of the process is repeated for each iteratieroration.

We propose two generic forms of decomposition, which atestithted graphically in
Figure[4.2. For each form of decomposition, we explain whgahts of the program are
identified for decomposition, and describe what local ammbagl dependency conditions
are necessary for the decomposition to be correct.

One set of global dependency conditions are inherent in itiyghgstructure shown in
Figure[4.2. If each node represents the constraints geefiam one component, then
for the decomposition to be correct, there must not be angtcaints between values
that do not correspond to edges in Figure 4.2. For instareedamponentf, in serial
decomposition must not access the input directly.

Serial decomposition.The first style of decomposition our approach performs is/beh
successive operations on the same information, in whickirtdayer is a transformation
producing input to the second layer. More precisely, it lmge what we call &urjective
transformation There are two conditions that define a surjective transition. First,
once a value has been transformed, the pre-transformeddbthe input is never used
again. Second, the transformation must be an onto funatiery element in its codomain
can be produced with some input. A functipr= 22 which returns a signed 32-bit integer
is an example of functions that do not satisfy this conditibhe codomain of this func-
tion contain®3? elements, including negative integers which are not péssilstput of the
function. In Figuré 4.2/, is the component that must implement a surjective transderm
tion. Some examples of surjective transformations incileEompression and decryption.
The key insight of the decomposition is that we can analyegdrt of the program down-
stream from the transformation independently, and themlgimvert the transformation
to re-stitch inputs. For instance, in the example of Figule the decryption operation is
a surjective transformation that induces the constraine= Dedm). To analyze the rest

62

of the program without this encoding function, we can justarae the other uses of' to
a new variable (say:”) that is otherwise unconstrained, and analyze the progsafma’
were the input. Bypassing the decryption in this way gives

hy = SHAL(m") A m"[0] = 101 (4.3)

as the remaining path condition.

Side-condition decomposition. The second style of decomposition our approach per-
forms separates two components that operate on the saméulatan still be considered
mostly independent. Intuitively, faee side-conditioms a constraint on part of a program’s
input that can effectively be ignored during analysis of thst of a program, because it
can always be satisfied by choosing values for another pahneohput. We can be free
to change this other part of the input if it does not partiteda any constraints other than
those from the side-condition. More precisely, a progratil@iing a free side-condition
takes the form shown in the right-hand side of Fidure 4.2. Jitle-condition is the con-
straint that the predicagemust hold between the outputs fifand f,. The side-condition

is free because whatever value the first half of the inputstakean be satisfied by making
an appropriate choice for the second half of the input. Amgxa of a free side-condition

is that the checksum computed over a program’s inpytroust equal) the checksum
parsed from a message headgy).(Section[4.3.2]1 discusses how a free side-condition
can be identified.

To perform decomposition given a free side-condition, wapdy replace the side-
condition with a value that is always true. For instance thAS hash of Figuré 4]1
participates in a free side-conditian = SHAL(m") (assuming we have already removed
the decryption function as mentioned above). Butloes not appear anywhere else among
the constraints, so we can analyze the rest of the prograhthas condition were just the
literal true. This gives the path condition:

true A m”[0] = 101 (4.4)

4.3.1.2 Re-Stitching

After decomposing the constraints, our system solves thstints corresponding to the
remainder of the program (excluding the encoding funcgpnés in non-stitched concolic
execution, to give a partial input. The re-stitching stepdsua complete program input
from this partial input by concretely execution encodingdtions and their inverses. If
the decomposition is correct, such a complete input is guieeal to exist, but we construct

63

it explicitly so that the exploration process can re-execthé program from the beginning.
Once we have found a bug, a complete input confirms (indepgredeny assumptions
about the analysis technique) that the bug is real, allowy &ssting on other related
samples, and is the first step in creating a working exploit.

For serial decomposition, we are given an inpuftpand the goal is to find a corre-
sponding input taf; that produces that value. This requires access to an infigmsgon
for fi; we discuss finding one in Sectibn 4.3]2.2. fifis many-to-one, any inverse will
suffice.) For instance, in the example of Figlré 4.1, theigdartput is a decrypted mes-
sage, and the full input is the corresponding AES-encryptedsage.

For side-condition decomposition, we are given a valuetierfirst part of the input
that is processed bji. The goal is to find a matching value for the rest of the inpat ik
processed bys, such that the predicateholds. For instance, in Figuire 4.4, corresponds
to the functionconput e_shal, f; is the identity function copying the value >hash,
andp is the equality predicate. We find such a value by execufinigrwards, finding a
value related to that value by and applying the inverse gt. A common special case is
that f is the identity function and the predicatas just equality, in which case we only
have to re-rury;. For Figure 4.11, our tool must simply re-apggnput e_shal to each
new message.

4.3.1.3 The Functional Perspective

A more abstract perspective on the decomposition our tgaenperforms is to consider
the components of the program as if they were pure functidhsourse the real programs
we analyze have side-effects: a key aspect of our implerientis to automatically ana-
lyze the dependencies between operations to understact wistructions produce values
that are read by other instructions. We summarize thiststre¢o understand which opera-
tions are independent from others. In this section, we sh@xridependence by modeling
a computation as a function that takes as inputs only thdsev#he computation depends
on, and whose outputs encompass all of its side effects.réprgesentation is convenient
for formally describing the conditions that enable decosifan and re-stitching.

Serial decomposition applies when a program has the furadtiorm f,(f;(:)) for
input i, and the functiory; (the surjective transformation) is onto: all values thagimi
be used as inputs tfy could be produced as outputs fffor some input. Observe that
the fact thati does not appear directly as an argumenfstamplies thatf, has no direct
dependency on the pre-transformed input. For re-stitchuggare given a partial input,
in f(z,), and our tool computes the corresponding full inputas- f;* (z;).

64

For side-condition decomposition, we say that a predipatea free side-condition
in a program that has the functional forfi(f5(i1), p(f1(1), f2(i2))), where the input is
in disjoint partsi; andi,. Here f, is a surjective transformation andis a surjective or
right-total relation: for ally there exists am: such that(x,y) is true. Wheryp is a free
side-condition, the effect of decomposition is to igngref,, andp, and analyze inputg
as if the program werég,(f5(i1), true). This gives a partial input, for the computation
fa(fs(z1),true). To create a full input, we must also find an additional inpusuch that
p(fi(x1), f2(z2)) holds. Our tool computes this using the formuba= £, (p~* (f1(x1))).

4.3.2 Identification

The previous section described the conditions under wheclowhposition is possible; we
next turn to the question of how to automatically identifndalate decomposition sites.
Specifically, we first discuss finding encoding functions @t®n[4.3.2.11, and then how
to find inverses of those functions when needed in SeLfio2.2.3

4.3.2.1 Identifying Encoding Functions

There are two properties of an encoding function that mageoiitable to use for decom-
position in our approach. First, the encoding function $thdne difficult to reason about
symbolically. Second, the way the function is used shoultthhane of the decomposition
patterns described in Section 4]3.1. Our identificatiomaggh is structured to check these
two kinds of properties, using a common mechanism of dyna®ejpendency analysis.

Dynamic dependency analysisFor identifying encoding functions, we perform a trace-
based dependency analysis that is a general kind of dynamiing. The analysis as-
sociates information with each value during executionppgates that information when
values are copied, and updates that information when valeessed in an operation to
give a new value. Equivalently, this can be viewed as projpagaformation along edges
in the constraint graph (taking advantage of the fact thatetkecution is a topological-
order traversal of that graph). Given the selection of arbsstiof the program state as
a taint source, the analysis computes which other partseoptbgram state have a data
dependency on that source.

Identifying high taint degree. An intuition that partially explains why many encoding
functions are hard to reason about is that they mix togetbestcaints related to many
parts of the program input, which makes constraint solviifigcdlt. For instance, this

65

is illustrated by a contrast between an encryption functitat uses a block cipher in
CBC mode, and one that uses a stream cipher. Though the funpigoform superficially
similar tasks, the block cipher encryption is a barrier toamic execution because of its
high mixing, while a stream cipher is not. Because of the laickixing, a constraint
solver can efficiently determine that a single plaintexebyan be modified by making a
change to the corresponding ciphertext byte. We use thugiont for detecting encoding
functions for decomposition: the encoding functions welaterested in tend to mix their
inputs.

We can potentially use dynamic dependency analysis to theclependencies of val-
ues on any earlier part of the program state; for instanceave axperimented with treat-
ing every input to a function as a dependency (taint) soBogfor our study, we confine
ourselves to using the inputs to the entire program (i.emfsystem calls) as dependency
sources. To be precise our analysis assigns an identifieadio iaput byte, and deter-
mines, for each value in an execution, which subset of thetibptes it depends on. We
call the number of such input bytes the valuait degree If the taint degree of a byte is
larger than a configurable threshold, we refer to it as haghttdegree. We group together
a series of high-taint-degree values in adjacent memomtilmts as a single buffer; our
decomposition applies to a single such buffer.

This basic technique could apply to buffers anywhere in atetton, but we further
enhance it to identify functions that produce high-taiatieee buffers as output. This has
several benefits: it reduces the number of candidate buffetsneed to be checked in
later stages, and in cases where the tool needs to later fintv@nrse of a computation
(Sectiori4.3.2]2), it is convenient to search using a cotaglenction. Our tool heuristi-
cally considers a buffer to be an output of a function if it&lat the point in time that a
return instruction is executed. Also, we heuristicallyntiy a function that includes the
complete encoding functionality by searching for the fiighktaint-degree computation
that the output buffer depends on, and choosing the funttianencloses both this first
computation and the output buffer.

In the example of Figuie 4.1, the buffers containing the oistpfaes_cbc_decr ypt
andconput e_shal would both be found as candidates by this technique, sineg th
both would contain bytes that depend on all of the input b{ttes final decrypted byte,
and all of the hash value bytes).

Checking dependence conditionsvalues with a high taint degree as identified above are
candidates for decomposition because they are potenpiedlylematic for symbolic rea-
soning. Butto apply our technique to them, they must also@pgpe proper context in the
program to apply our decomposition. Intuitively the sturetof the program must be like

66

those in Figuré 4]2. To be more precise, we describe (ineldgnce conditions that limit
what parts of the program may use values produced by oth&s phathe program. The
next step in our identification approach is to verify that pheper dependence conditions
hold (on the observed execution). This checking is needesld@ improper decomposi-
tions, and it also further filters the potential encodingclioms identified based on taint
degree. If the dependence conditions on the program steuate not satisfied, our tech-
nique cannot be applied and thus concolic execution has peifermed in a traditional
brute force manner. Although satisfying situations can ey \imited, the structures of
the program as in Figufe 4.2 match common, non-obfuscatggkesf encoding functions
and thus extend the applications of concolic execution soger set of programs.

Intuitively, the dependence conditions require that theoeing function be indepen-
dent of the rest of the program, except for the specific @tatiips we expect. For serial
decomposition, our tool checks that the input bytes thaewsed as inputs to the surjec-
tive transformation are not used later in the program. Fae-sondition decomposition,
our tool checks that the result of the free side-conditicedprate is the only use of the
value computed from the main input (e.g., the computed cheul, and that the remain-
ing input (e.g., the expected checksum from a header) is sed other than in the free
side-condition. Our tool performs this checking using thme kind of dynamic depen-
dency analysis used to measure taint degree.

In the example of Figuiie 4.1, our tool checks that the eneq/ptput toaes_cbc_decr ypt
is not used later in the program (it cannot be, because itasamitten). It also checks that
the hash buffer pointed to byis not used other than in threencnp on line 11, and that
the bufferm >hash, containing the expected hash value, is not used elsewhere.

Identifying new encoding functions. The identification step may need to be run in each
iteration of the exploration because new encoding funstfanctions may appear that had
not been seen in previous iterations. As an optimizatiorf; Bt runs the identification
on the first iteration of the exploration, as shown in Figur®, 4nd then, on each new
iteration, it checks whether the solver times out when sghany constraint. If it does, it
re-runs the identification on the current execution trace.

A graph-based alternative. Our taint-degree dependency analysis can be seen as simple
special case of a broader class of algorithms that idemigresting parts of a program
from the structure of its data dependency (data-flow) gragte approach we currently
use has efficiency and simplicity advantages because itgnate in one pass over a trace,
but in the future we are also interested in exploring moreegarapproaches that explicitly
construct the dependency graph. For instance, the ineedatween the two stages in a

67

serial decomposition must be a cut in the constraint grapdhywae would generally expect
it to be minimal cut in the sense of the subset partial ordew& can search for candidate
serial decompositions by using a maximum-flow-minimumadgorithm as in McCamant

and Ernst’s Flowcheck toal [75].

4.3.2.2 Identifying Inverse Functions

Recall that to re-stitch inputs after serial decompositoum,approach requires the inverses
of surjective transformation functions. This requiremisiteasonable because surjective
functions like decryption and decompression are commdamyriverses of other functions
(encryption and compression) that apply to arbitrary dataese functions and their in-
verses are often used in concert, so their implementatian®ften be found in the same
binaries or in publicly available libraries (e.g., [89, 1IR3 hus, we locate relevant inverse
functions by searching for possible functions in the codadanalyzed as well as in pub-
licly available libraries. If a possible inverse functiceguires a key or a seed, we supply
it with the same key/seed used in the execution trace by tbedemg function.

Specifically, we check whether two functions are each otheverses by random
testing. If f andf’ are two functions, and for several randomly-chogsamdy, f'(f(x)) =
xandf(f'(y)) = vy, thenf and f’ are likely inverses of each other over most of their
domains. Supposg is the encoding function we wish to invert. Starting with e
functions from the same binary module that were exercisdtientrace, we infer their
interfaces using our previous BCR tool [16]. To prioritize ttendidates, we use the
intuition that the encryption and decryption functionlik have similar interfaces. For
each candidate invergg we compute a 4-element feature vector counting how many of
the parameters are used only for input, only for output, d¢in femd how many are pointers.
We then sort the candidates in increasing order of the M&amindistances (sum of absolute
differences) between their features and thosg. of

For each candidate inverge we executef o g andg o f on k random inputs each,
and check whether they both return the original inputs ircales. If so, we consider
g to be the inverse of. To match the output interface gfwith the input interface of
f, and vice-versa, we generate missing inputs either aguptdi the semantics inferred
by BCR todl, or randomly; if there are more outputs than inputs we tesh gmssible
mapping. Increasing the parameteimproves the confidence in resulting identification,
but the choice of the parameter is not very sensitive: tefietsuhave enough entropy that
even a single false positive is unlikely, but since the tastgust concrete executions, they

2BCR tool infers various semantics related to system opersfiincluding field lengths, IP addresses,
timestamps, and filenames.

68

are inexpensive. If we do not find an inverse among the exddutections in the same
module, we expand the search to other functions in the himagther libraries shipped
with the binary, and in standard libraries.

For instance, in the example of Figurel4.1, our tool requare&\ES encryption func-
tion to invert the AES decryption used by the bot program. dtsht is common for the
encryption function to appear in the same binary, since titeolien encrypts its reply
messages with the same cipher, but in the case of a standatibfulike AES we could
also find the inverse in a standard library like OpenSSL [89].

Once an inverse function is identified, we use our previous B&Rtb extract the
function [16]. The hybrid disassembly technique used by BGR éatracts the body of
the function, including instructions that did not appeahi@ execution, which is important
because when re-stitching a partial input branches leadirigose, previously unseen,
instructions may be taken. If the inverse function requad®y or a seed, we supply it
with the same key/seed used in the execution trace by thalgmcfunction.

4.3.3 Multiple Encoding Layers

If a program has more than one encoding function, we can tepgaapproach to de-
compose the constraints from each encoding function in, tomeating a multi-layered
decomposition. The decomposition operates from the caitsidn the order the encoding
functions are applied to the input, intuitively like pegjithe layers of an onion. For in-
stance, in the example of Figure 4.1, our tool decomposésHesiecryption function and
then the hash-checking function, finally leaving only thénleo client's command parsing
and malicious behavior for exploration.

4.4 Implementation

In this section we provide implementation details for oualsg tool and describe our
Internet-in-a-Workstation environment.

4.4.1 Decomposition and Re-stitching of Concolic Execution

We implement our approach as a scaling tool for BitFuzz, aesydliscussed in Sec-
tion[2.4. BitFuzz is implemented using the BitBlaze [105] mati for binary analysis,

69

which includes TEMU, an extensible whole-system emuldtat implements taint prop-
agation. BitFuzz supports several techniques for vulnétylblietection and reports any
inputs flagged by these techniques. It detects program nation and invalid memory
access exceptions. Executions that exceed a timeout agedlas potential infinite loops.
It also uses TEMU's taint propagation module to identify wie the input (e.g., network
data) is used in the program counter or in the size parametememory allocation.

Following the approach introduced in Section 4.3.1.1, gstesn implements decom-
position by making local modifications constraints geredtom execution, with some
additional optimizations. For serial decomposition, ksia TEMU extension mechanism
called a hook to implement the renaming of symbolic values.aAurther optimization,
the hook temporarily disables taint propagation insidegheoding function so that no
symbolic constraints are generated. To save the work ofmpating a checksum on each
iteration in the case of side-condition decomposition, toof can also directly force the
conditional branch implementing the predicatéo take the same direction it did on the
original execution.

4.4.2 Internet-in-a-Workstation

We have developed an environment where we can run malwaselation, without wor-
rying about malicious behavior leaking to the Internet. Mamalware programs, e.g.,
bots, act as network clients that start connections to ref@&iC servers. Thus, the input
that BitFuzz needs to feed to the program in each iteratioftém dhe response to some
request sent by the program.

All network traffic generated by the program, running in theaition monitor, is
redirected to the local workstation in a manner that is fpansnt to the program under
analysis. In addition, we have developed two helper toolmodified DNS server which
can respond to any DNS query with a preconfigured or randomheated, IP address,
and a generic replay server. The generic replay server takasput an XML file that
describes a network dialog as an ordered sequence of caymgathere each connection
can comprise multiple messages in either direction. It tdkes as input the payload of
the messages in the dialog. Such generic server simpliegagk of setting up different
programs and protocols. Given a network trace of the comoation we generate the
XML file describing the dialog to explore, and give the reptegyver the seed messages
for the exploration. Then, at the beginning of each expionaiteration BitFuzz hands
new payload files (i.e., the re-stitched program input) soréplay server so that they are
fed to the network client program under analysis when it sgenew connection.

70

4.5 Experimental Evaluation

This section evaluates our approach by finding bugs in malilzat uses complex en-
coding functions. It demonstrates that our decompositi@hra-stitching approach finds
some bugs in malware that were not previously found, anditisagnificantly increases
the efficiency of the exploration in other cases. It presér@smalware bugs we find and
shows that these bugs have persisted in the malware farfolideng periods of time,
sometimes years.

Malware samples. The first column of Tablé 411 presents the four popular fasibf
malware that we have used in our evaluation. Zbot, also knasvAeus and Kollah, is
a malware kit that allows malware authors to generate themr wariant of password-
stealing botnets. Malware from this family is first seen i®2@nd has evolved over time
since. The bot program communicates with the C&C server usiagHTTP protocol
using RC4 encryption on the payload with the key specified byrthlvare author [46].
MegaD or Ozdok is a prevalent spam botnet that accountedsfdf@ of all spam in the
Internet in a December 2008 study and accounts for 15% asmif Z4.0 [73]. Previous
work shows that MegaD’s C&C communication is protected usingroprietary block
encryption algorithm|[18]. Gheg, also known as Tofsee anchdléoa, is a spam botnet
that can route its spam messages through the victim’s ISiersand has 60,000 estimated
member as reported in a February 2010 study [63]. It enciygifec from the C&C server
using proprietary protocol on port 443. Cutwail is a bot pesgrin a Pushdo family that
is first seen in 2007 and accounts for 7% of Internet spam figonaximately 1.5 million
bots in April 2010[[73]. The bot uses RC4 encryption for its C&@mounication|[107].

All four malware families act as network clients, that is, emhrun they attempt to
connect to a remote C&C server rather than opening a listestoget and await for com-
mands. All four of them encrypt their network communicattoravoid signature-based
NIDS detection, and make it harder for analysts to reverggreer their C&C protocol.
In addition to encryption, Zbot also uses an MD5 cryptogiraphash function to verify the
integrity of a configuration file received from the servereTgresence of a hash checksum
will frustrate black-box analysis such as random fuzz mgstsince most randomly gener-
ated input will have an incorrect checksum and so will beatej@ at an early stage of the
program’s input processing.

Experimental setup. For each bot we are given a network trace of the bot commuaoicat
from which we extract an XML representation of the dialoghmn the bot and the C&C
server, as well as the payload of the network packets in tlagagd This information is

71

Name Program | Input size| # Instruction| Decryption or checksum/hash| Runtime

size (KB) | (bytes) (x10?) Algorithm Maximum (sec)
taint degree
Zbot 126.5 5269 1307.3 RC4-256 1 92
MD5 4976

MegaD 71.0 68 4687.6 64-bit block cipher 8 105
Gheg 32.0 271 84.5 8-bit stream ciphel 128 5
Cutwall 50.0 269 23.1 byte-based cipher 1 2

Table 4.1: Summary of the Applications on Which We Perforndshtification of Encoding Functions.

72

needed by the replay server to provide the correct sequémetwork packets to the bot
during exploration. For example, this is needed for Megal2netthe response sent by
the replay server comprises two packets that need to be squéstially but cannot be
concatenated together due to the way that the bot reads fresocket. As a seed for the
exploration we use the same content observed in the diajagreal in the network trace.
Other seeds can alternatively be used. Although our setuguaport exploring multiple
connections, currently, we focus the exploration on thé ¢msnection started by the bot.

For the experiments we ran BitFuzz on a 3GHz Intel Core 2 Duox.imarkstation
with 4GB of RAM running Ubuntu Server 9.04. The emulated gwgstem where the
malware program runs is a Microsoft Windows XP SP3 image witBAMB of emulated
RAM.

In each of our experiments, our system only used a malwarglsaamd a network
trace as its inputs. In the experiments that require inviemrsetions, our system was able to
successfully extract the inverse functions from executianes. However, successful ex-
traction is actually not guaranteed. This limitation widl Hiscussed later in Sectibn 4)6.2.

4.5.1 Identification of Encoding Functions and Their Inverses

The first step in our approach is to identify the encoding fimms. The identification of the

encoding functions happens on the execution trace producé#te seed at the beginning
of the exploration. We set the taint degree threshold to 4habany byte that has been
generated from 5 or more input bytes is flagged. Table 4.1 sanmes the results. The
identification finds an encoding function in three of the feamples: Gheg, MegaD, and
Zbot. For Cutwail, no encoding function is identified. Thes@afor this is that Cutwail’s

cipher is simple and does not contain any mixing of the inwhich is the property that our
encoding function identification technique detects. With@put mixing the constraints

generated by the cipher are not complex to solve. We showrthise next section. In

addition, Cutwail’s trace does not contain any checksumtfans.

For Zbot, the encoding function flagged in the identificatimnresponds to the MD5
checksum that it uses to verify the integrity of the configiorafile it downloads from the
C&C server. In addition to the checksum, Zbot uses the RC4 ciph@iotect its commu-
nication, which is not flagged by our identification techrégiescribed in Section 4.3.2.1.
This happens because RC4 is a stream cipher that does no mixhegioput, i.e., it does
not use input or output bytes to update its internal statee ifput is simply combined
with a pseudo-random keystream using bit-wise exclusiveésoce the keystream is not
derived from the input but from a key in the data section, ¢oscrete for the solver. Thus,

73

the solver only needs to invert the exclusive-or computatibgenerate an input, which
means that RC4 introduces no hard-to-solve constraints. Asudty we do not perform
decomposition and restitching on the program conditioas¢bme from the RC4 cipher.

For the other two samples (Gheg and MegaD) the encodingifunttagged by the
identification corresponds to the cipher. MegaD uses a 6lldxik cipher, which mixes 8
bytes from the input before combining them with the key. Ghegpher uses a one-byte
key that is combined with the first input byte to produce a by output that is used also
as key to encode the next byte. This process repeats andximgr(taint degree) of each
new output byte increases by one. Neither Gheg nor MegaDauslescksum.

Once the encoding functions have been identified, BitFuzpdoices new symbols
for the outputs of those encoding functions, effectivelgateposing the constraints in the
execution into two sets and ignoring the set of hard-toesobinstraints introduced by the
encoding function.

The results of our encoding function identification, for thist iteration of the explo-
ration, are summarized in Taldle 4.1, which presents on thehle program name and
program size, the size of the input seed, and the number plat®ns in the execution
trace produced by the seed. The decryption or checksum oali@scribes the algorithm
type and the maximum taint degree the algorithm producesdrexecution. We display
all decryption and checksum algorithms known to appearénetkecution, regardless of
whether our tool considers them encoding functions (i.avjrig Maximum taint degree
of 5 or higher) or not. The rightmost column shows the runtohthe identification algo-
rithm, which varies from a few seconds to close to two minuBEscause the identification
is reused over a large number of iterations, the amortizedh@ad is even smaller.

Identifying the inverse functions. For Gheg and MegaD, BitFuzz needs to identify the
inverse of the decryption function so that it can be used stiteh the inputs into a new
program input for another iteration. (The encryption fumetfor MegaD is the same one
identified in previous work [16]; we use it to check the aceyraf our new identification
approach.)

As described in Sectidn 4.3.2.2, BitFuzz extracts the iaterfof each function in the
execution trace that belongs to the same module as the aeciatiction, and then priori-
tizes them by the similarity of their interface to the decapfunction. For both Gheg and
MegaD, the function with the closest prototype is the entoypfunction, as our tool con-
firms by random testing witlk = 10 tests. These samples illustrate the common pattern
of a matching encryption function being included for twoyw@mmunication, so we did
not need to search further afield for an inverse.

74

Vulnerability Disclosure Encoding | Search time (min.
type public identifier functions scaled\ baseline
Null dereference OSVDB-66499 [94] checksum| 17.8 | >600
Zbot Infinite loop | OSVDB-66500 [93]| checksum| 129.2 | >600
Buffer overrun | OSVDB-66501 [92]| checksum| 18.1| >600
MegaD Process exit n/a decryption 8.5 | >600

| Gheg | Null dereference OSVDB-66498 [91]| decryption| 16.6| 1445 |
| Cutwail | Buffer overrun | OSVDB-66497 [90]] none | 39.4 | 39.4 |

Name

Table 4.2: Description of the Bugs Our System Finds in Malwditee column “scaled”
shows the results from the BitFuzz system including our dexsition and re-stitching
techniques, while the “baseline” column gives the resulth these techniques disabled.
“>600" means we run the tool for 10 hours and it is yet to find theg bu

4.5.2 Decomposition vs. Non-Decomposition

In this section we compare the number of bugs found by BitFuzenait uses decompo-
sition and re-stitching, which we cdilll BitFuzz, and when it does not, which we call
vanilla BitFuzz. Full BitFuzz uses the identified decoding functiomsiecompose the
constraints into two sets, one with the constraints intoediuby the decryption/checksum
function and the other with the remaining constraints dftat stage. In addition, each it-
eration of MegaD and Gheg uses the inverse function to tehgtie inputs into a program
input. Vanilla BitFuzz is comparable to basic previous exiecutools. In both full and
vanilla cases, BitFuzz detects bugs using the techniquesided in Sectiofn 414.

In each iteration of its exploration, BitFuzz collects theextion trace of the malware
program starting from the first time it receives network ddtatops the trace collection
when the malware program sends back a reply, closes the coitation socket, or a bug
is detected. If none of those conditions is satisfied thestadlection is stopped after 2
minutes. For each collected trace, BitFuzz analyzes up tdir$te200 input-dependent
control flow branches and automatically generates new @nt that would explore new
paths in the program. It then queries STP to solve each gedesat of constraints, uses
the solver’s response to generate a new input, and addshitpdol of inputs to test on
future iterations. Because constraint solving can take g loerg time without yielding
a meaningful result, BitFuzz discards a set of constrain&T#® runs out of memory or
exceeds a 5-minute timeout for constraint solving.

We run both vanilla and full BitFuzz for 10 hours and report bhgs found, which

75

are summarized in Table 4.2. Detailed descriptions of thgsallow in Sectiori 4.513.

We break the results in Tadle 4.2 into three categories. Thiedategory includes Zbot
and MegaD for which full BitFuzz finds bugs but Vanilla BitFuzass$ not. Full BitFuzz

finds a total of four bugs, three in Zbot and one in MegaD. Tlofetbe bugs are found in
under 20 minutes and the second Zbot bug is found after 2 hganilla BitFuzz does not
find any bugs in the 10-hour period. This happens due to th@lepdty of the constraints
being introduced by the encoding functions. In particuiamg full BitFuzz the 5-minute
timeout for constraint solving is never reached and STP mewes out of memory, while
using vanilla BitFuzz more than 90% of the generated comggraesult in STP running
out of memory.

The second category comprises Gheg for which both vanilthfat BitFuzz find
the same bug. Although both tools find the same bug, we obskatesanilla BitFuzz
requires almost ten times as long as full BitFuzz to do so. Tjpieec used by Gheg uses a
one-byte hardcoded key that is combined with the first ingte kising bitwise exclusive-
or to produce the first output byte, that output byte is themduss key to encode the
second byte also using bitwise exclusive-or and so on. Tthestaint degree of the first
output byte is one, for the second output byte is two and sontihthbe maximum taint
degree of 128 shown in Talle #.1. The high maximum taint degrakes it harder for the
solver to solve and explains why vanilla BitFuzz takes muctgér than full BitFuzz to
find the bug. Still, the constraints induced by the Gheg aipine not as complex as the
ones induced by the Zbot and MegaD ciphers and the solvetualgnfinds solutions for
them. This case shows that even in cases where the solvawaiitually find a solution,
using decomposition and re-stitching can significantly novp the performance of the
exploration.

The third category comprises Cutwail for which no encodincfions with high taint
degree are identified and thus vanilla BitFuzz and full BitFamzequivalent.

In summary, full BitFuzz using decomposition and re-stichclearly outperforms
vanilla BitFuzz. Full BitFuzz finds bugs in cases where varBiitcuzz fails to do so due
to the complexity of the constraints induced by the encodlimgtions. It also improves
the performance of the exploration in other cases were tbedimg constraints are not as
complex and will eventually be solved.

4.5.3 Malware Vulnerabilities

In this section we present the results of our manual anatgsisiderstand the bugs dis-
covered by BitFuzz and our experiences reporting the bugs.

76

Zbot. BitFuzz finds three bugs in Zbot. The first one is a null pointeéerence. One
of the C&C messages contains an array size field, which theramogises as the size
parameter in a call t& | Al | ocat eHeap. When the array size field is larger than the
available memory left in its local heap, the allocation retua null pointer. The return
value of the allocation is not checked by the program, whaterlattempts to write to the
buffer, crashing when it tries to dereference the null paint

The second bug is an infinite loop condition. A C&C message c@@pof a sequence
of blocks. Each block has a 16-byte header and a payload. fOhe belds in the header
represents the size of the payloadyhen the trojan program finishes processing a block,
it iteratively moves to the next one by adding the block size, 16, to a cursor pointer.
When the value of the payload sizesis= —16, the computed block size becomes zero,
and the trojan keeps processing the same block over and gaer. a

The last bug is a stack buffer overrun. As mentioned above, @ @&ssage comprises
of a sequence of blocks. One of the flags in the block headerrdates whether the block
payload is compressed or not. If the payload is compresbedydjan program decom-
presses it by storing the decompressed output into a fixesdbsiffer located on the stack.
When the length of the decompressed payload is larger thaouffer size, the program
will write beyond the buffer. If the payload is large enoughyill overwrite a function
return address and can eventually lead to control flow hifecKT his vulnerability is ex-
ploitable and we have successfully crafted a C&C messagexipdits the vulnerability
and hijacks the execution of the malware.

MegaD. BitFuzz finds one input that causes the MegaD bot to exit cjedhle analyzed
this behavior using the MegaD grammar produced by previcark W.8] and found that
the bug is present in the handling of thimg message (typ8x27). If the bot receives a
ping message and the bot identifier (usually set by a prelyioaseived C&C message)
has not been set, then it sends a rggpgmessage (typ@x28) and terminates. This be-
havior highlights the fact that, in addition to bugs, outcsted concolic execution can also
discover C&C messages that cause the malware to cleanlyeegit kill commands), if
those commands are available in the C&C protocol. These messannot be considered
bugs but can still be used to disable the malware. They am@adlyeinteresting because
they may have been designed to completely remove all trdcbe analware running in
the compromised host. In addition, their use could raisefeathical and legal questions
than the use of an exploit would.

Gheg. BitFuzz finds one null pointer dereference bug in Gheg. Theibwgmilar to
the one in Zbot. One of the C&C messages contains an array eide Whose value

77

is multiplied by a constant (Ox1e8) and the result used asitteeparameter in a call to
Rt I Al | ocat eHeap. The return value of the allocation is not checked by the faag

and the program later writes into the allocated buffer. Wlnendrray size field value is
larger than the available memory in its local heap, the atioa fails and a null pointer is
returned. The program fails to check that the returned vial@enull pointer and tries to
dereference it.

Cutwail. BitFuzz finds a buffer overrun bug that leads to an out-of-loisunrite in Cut-
wail. One of the received C&C messages contains an array. feaond in the array has

a length field specifying the length of the record. This fialdised as the size parameter
inacalltoRt | Al | ocat eHeap. The returned pointer is appended to a global array that
can only hold 50 records. If the array in the received mesbkagemore than 50 records,
the 51% record will be written outside the bounds of the global arrdear the global
array, there exists a pointer to a private heap handle anoluthef-bounds write will over-
write this pointer. Further calls tBt | Al | ocat eHeap will then attempt to access the
malformed heap handle, and will lead to heap corruption acrdsh.

Reporting the bugs. We reported the Gheg bug to the editors of the Common Vulner-
abilities and Exposures (CVE) database [38]. Our suggestamthat vulnerabilities in
malware should be treated similarly to vulnerabilities amenercial or open source pro-
grams, of course without reporting back to the developerswever, the CVE editors
felt that malware vulnerabilities were outside the scopéhefr database. Subsequently,
we reported the Gheg vulnerability to the Open Source Valoiéty Database (OSVDB)
moderators who accepted it. Since then, we have reportetdhall vulnerabilities except
the MegaD one, which may be considered intended functigniayi the botmaster. Ta-
ble[4.2 presents the public identifiers for the disclosedexdbilities. We further address
the issue of disclosing malware vulnerabilities in Sedddh

4.5.4 Bug Persistence over Time

Bot binaries are updated very often to avoid detection by\dnis tools. One interesting
guestion is how persistent over time are the bugs found byuB#FTo evaluate this, we
retest our crashing inputs on other binaries from the sameana families. Tablé 4]3
shows all the variants, with the shaded variants correspgno the ones explored by
BitFuzz and mentioned in Tatle 4.1.

We replay the input that reproduces the bug BitFuzz found estladed variant on the
rest of variants from the same family. As shown, the bugs epeoducible across all the

78

Family MD5 First seen| Reported by
Obf2df85*7f65 | Jun-23-09 Prevx
Zbot | 1c9d16db*7fc8| Aug-17-09 Prevx
7a4b9ceb*77d6 Dec-14-09| ThreatExpert
700f9d28*0790| Feb-22-08 Prevx
MegaD 22a9c61c*e4le Dec-13-08 _Prevx
d6d00d00*35db| Feb-03-10| VirusTotal
09ef89ff*4959 | Feb-24-10| VirusTotal
287b835b*b5b8| Feb-06-08 Prevx
edde4488*401e¢ Jul-17-08 Prevx
Gheg | 83977366*b0b6| Aug-08-08| ThreatExpert
cdbd8606*6604| Aug-22-08 Prevx
f222e775*68c2| Nov-28-08 Prevx
Cutwail 1fb0dad6*1279| Aug-03-09 Prevx
3b9¢c3d65*07de Nov-05-09 Prevx

Table 4.3: Bug Reproducibility Across Different Malware \&rts. The shaded variants
are the ones used for exploration.

variants we tested. This means for instance that the Meggbdsibeen present for at least
two years (the time frame covered by our variants). In addjtthe MegaD encryption
and decryption functions (and the key they use), as well @aCO&C protocol have not
changed, or barely evolved, through time. Otherwise theviboigid not be reproducible
in older variants. The results for Gheg are similar. The groduces across all Gheg
variants, although in this case our most recent sampleis Movember 2008. Note that,
even though the sample is relatively old it still works, miegrthat it still connects to a
C&C server on the Internet and sends spam. For Zbot, all thuge keproduce across
all variants; this means they have been present for at leastrihs. These results are
important because they demonstrate that there are comisoinelnot software, such as
the encryption functions and C&C protocol grammar, that tenelolve slowly over time
and thus could be used to identify the family to which an unkmdinary belongs, one
widespread problem in malware analysis.

4.6 Discussion

In light of our results, this section provides additionaaission on the applications for
the discovered bugs and associated ethical consideratitimsn, it presents a potential

79

scenario for using the discovered bugs, and describes som&tions of our approach.

4.6.1 Applications and Ethical Considerations

Malware vulnerabilities could potentially be used in diéfiet “benign” applications such
as remediating botnet infestations, for malware geneasigge we have shown that the
bugs persist over long periods of time, as a capability fardaforcement agencies, or as a
strategic resource in state-to-state cyberwarfare [956jvéver, their use raises important
ethical and legal questions. For example, there may be aedarigsignificant negative
consequences, such as adverse effects to the infectedmascliilso, it is unclear which
legal entity would perform such remediation, and whetherently there exists any entity
with the legal right to take such action. On the other handingga potential avenue for
cleanup and not making use of it also raises some ethicakcossince if such remedi-
ation were effective, it would be a significant service to mh@ware’s future third-party
victims (targets of DDoS attacks, spam recipients, etauchjuestions belong to recent
and ongoing discussions about ethics in security researgh [43]) that have not reached
a firm conclusion.

Malware vulnerabilities could also be used for malign psg® For instance, there are
already indications that attackers are taking advantagaain vulnerabilities in web in-
terfaces used to administer botnets to hijack each othetrsels [40]. This raises concerns
about disclosing such bugs in malware. In the realm of valbiities in benign software,
there has been significant debate on what disclosure peactie socially optimal and
there is a partial consensus in favor of some kind of “residmslisclosure” that gives
authors a limited form of advance notice. However, it is neacwhat the analogous best
practice for malware vulnerabilities should be. We havedaihis disclosure issue when
deciding whether to publicly disclose the vulnerabilitves found and to which extent we
should describe the vulnerabilities. We hope the vulnétisi reported here do provide
an appropriate level of details.

Potential application scenario. While we have not used our crashing inputs on bots in
the wild, here we hypothetically discuss one possible soemd how one might do so.
The malware programs we analyze start TCP connections wilmate C&C server. To
exploit the vulnerabilities we have presented, we need fenmsonate the C&C server and
feed inputs in the response to the initial request from thisvara program. This scenario
often happens during a botnet takedown, in which law enfoss# or other responding
entities identify the IP addresses and DNS names assouwiétethe C&C servers used by

a botnet, and appeal to relevant ISPs and registrars to henede-registered or redirected

80

to the responders. The responders can then impersonate tGes@&er: one common
choice is asinkhole servethat collects statistics on requests but does not reply. Bt s
responders are also in a position to perform more active aomgation with bots, and for
instance vulnerabilities like the ones we present could &= dor cleanup if the botnet
does not support cleanup via its normal protocol. For exapgalch a scenario happened
recently during the attempted MegaD takedown by FireEyg [F@r a few days FireEye
ran a sinkhole server that received the C&C connections filmenbbts. This sinkhole
server was later handed to the Shadowserver Foundatioih [103

4.6.2 Limitations

We have found our techniques to be quite effective agaimsttinrent generation of mal-
ware. But since malware authors have freedom in how they desigoding functions, and
an incentive to avoid analysis of their programs, it is vhlado consider what measures
they might take against analysis.

Preventing access to inversesTo stitch complete inputs in the presence of a surjective
transformation, our approach requires access to an apai®@pnverse function: for in-
stance, the encryption function corresponding to a demygtinction. So far, we have
been successful in finding such inverses within the malwararya If the inverses were
not present in the binary, we could find them from standardcesu However, these ap-
proaches could be thwarted if malware authors made differieoices of cryptographic
algorithms. For instance, malware authors could design pinetocols using asymmetric
(public-key) encryption and digital signatures. Since waild not have access to the pri-
vate key used by the C&C server, we could not forge the sigeatuthe messages sent
to the bot. We could still use our decomposition and redsitiig approach to find bugs in
malware, because the signature verification is basicallg@ $ide-condition that can be
ignored. However, we could only build an exploit for our migeti bot, as other bots will
verify the (incorrect) signature in the message and refec@urrently, most malware do
not use public-key cryptography, but that may change. In¢laén of symmetric encryp-
tion, malware authors could deploy different non-stan@dgdrithms for the server-to-bot
and bot-to-server directions of communication: though thebretically infeasible, the
construction of an encryption implementation from a bindegryption implementation
might be challenging to automate. For instance, Kolbitdchl.g67] faced such a situa-
tion in recreating binary updates for the Pushdo trojanctviwvas feasible only because
the decryption algorithm used was weak enough to be invdryelorute force for small
plaintexts.

81

Obfuscating encoding functions. Malware authors could potentially keep our system
from finding encoding functions in binaries by obfuscatingrh. General purpose packing
is not an obstacle to our dynamic approach, but more tardsteld of obfuscation would
be a problem. For instance, our current implementationgeizes only standard function
calls and returns, so if a malware author rewrote them usamgstandard instructions our
tool would require a corresponding generalization to campee. Further along the arms
race, there are also fundamental limitations arising fraimuse of a dynamic dependency
analysis, similar to the limitations of dynamic taint arsdy 24].

4.7 Related Work

One closely related recent project is Wang et al.’s Tainp®8csystem|[114]. Our goals
partially overlap with theirs in the area of checksums, hwtwork differs in three key

aspects. First, Wang et al.’s techniques do not apply tordpoession or decryption.
Second, TaintScope performs exploration based on taiattid fuzzing [49], while our

system harnesses the full generality of concolic execulitird, Wang et al. evaluate their
tool only on benign software, while we perform the first auéded study of vulnerabilities
in malware.

The encoding functions we identify within a program can digsoextracted from a
program to be used elsewhere. The Binary Code Reuse [16] anectosfsadget [67]
systems can be used to extract encryption and checksunidnalities, including some of
the same ones our tool identifies, for applications such@&gonke defense. Our application
differs in that our system can simply execute the code inrigiral context instead of
extracting it. Inspector Gadget [67] can also perform dtedagadget inversion, which
is useful for the same reasons as we search for existingseanctions. However, their
approach does not work on strong cryptographic functions.

Previous work in protocol reverse engineering has usednaltige heuristics to iden-
tify cryptographic operations in malware binaries. Fotamee ReFormat [115] and Dis-
patcher([18] propose detecting such functions by meastimgatio of arithmetic and bit-
wise instructions to other instructions. Our use of taimréde as a heuristic is more specif-
ically motivated by the limitations of concolic executiofor instance a simple stream
cipher would be a target of the previous approaches but ifonour approach.

Decomposition is a broad class of techniques in programysisaand verification,
but most previous decomposition techniques are symmettiica sense that each of the
sub-components of the program are analyzed in a similarwilaile a key aspect of our ap-
proach is that different components are analyzed diffgreht analysis and verification,

82

decomposition at the level of functions, as in systems ligeufh [118], is often called
a compositional approach. In the context of tools based owal@ execution, Gode-
froid [51] proposes a compositional approach that perfarareolic execution separately
on each function in a program. Because this is a symmetriaigeé, it would not address
our problem of encoding functions that are too complex tdyaeeeven in isolation. More
similar to our approach is grammar-based fuzzing [17, 5Rjctvis an instance of serial
decomposition. However parsers require different speeidlitechniques than encoding
functions.

4.8 Conclusion

We have presented a new approach, stitched concolic ezacti allow analysis in the
presence of functionality that would otherwise be difficdaitanalyze. Our techniques
for automated identification, decomposition, and re4stitg allow our system to bypass
functions like decryption and checksum verification to findyb in core program logic.
Specifically, these techniques enable the first automatety sif vulnerabilities in mal-
ware. Our BitFuzz tool finds 6 unique bugs in 4 prevalent madwamilies. These bugs
can be triggered over the network to terminate or take cbwofr@ malware instance.
These bugs have persisted across malware revisions fohsyamtd even years. There are
still many unanswered questions about the applicationse#rdal concerns surrounding
malware vulnerabilities, but our results demonstrate thaterabilities in malware are an
important security resource that should be the focus of mesearch in the future.

83

84

Chapter 5

Model-assisted Concolic Execution

5.1 Introduction

In this chapter, we propose a new technique for exploringptbgram’s state-space. The
technique explores the program execution space autoriyatigacombining exploration
with learning of an abstract model of program’s state sps@re precisely, it alternates
(1) concolic execution to explore the program’s state-spand (2) thelL* [2] online
learning algorithm to construct high-level models of theetspace. Such abstract models,
in turn, guide further search. In contrast, the prior stgiaee exploration techniques
treat the program as a flat search-space, without distihogisstates that correspond to
important input processing events.

Upon closer examination of concolic execution, we iderditi@o of its weaknesses
that can be improved. First, concolic execution has no feghl information about the
structure of the overall program state-space. Thus, it basay of knowing how close
(or how far) it is from reaching important states in the peogrand is likely to get stuck in
local state-subspaces, such as loops. Second, unlikeareprecedures that learn search-
space pruning lemmas from each iteration (e.g.,/[121])caobnexecution only tracks the
most promising path prefix for the next iteration![53], buedmot learn in the sense that
information gathered in one iteration is used either to prilne search-space or to get to
interesting states faster in later iterations.

These two insights led us to develop an approach — Mode$tassConcolic Execu-
tion (MACE) — that learns from each iteration and constructisitée-state model of the
search-space. We primarily target applications that raairdn ongoing interaction with
its environment, like servers and web services, for whichigefistate model is frequently

85

a suitable abstraction of the communication protocol, gdemented by the application.
At the same time, we both learn the protocol model and exghetmodel to guide the
search.

MACE relies upon concolic execution to discover the protacessages, uses a special
filtering component to select messages over which the msdishined, and guides further
search with the learned model, refining it as it discovers massages. Those three com-
ponents alternate until the process converges, autorthatioBerring the protocol state
machine and exploring the program’s state-space.

We have implemented our approach and applied it to four seapplications (two
SMB and two RFB implementations). MACE significantly improvbe line coverage
of the analyzed applications, and more importantly, disced four new vulnerabilities
and three known ones. One of the discovered vulnerabiligiesived Gnome’s “Blocker”
severity, the highest severity in their ranking system nraathat the next release cannot
be shipped without a fix.

5.2 Related Work

Model-guided testing has a long history. The hardwarertgstommunity has developed

modeling languages, like SystemVerilog, that allow vesificn teams to specify input

constraints that are solved with a decision procedure t@mgé® random inputs. Such
inputs are randomized, but adhere to the specified constraml therefore tend to reach
much deeper into the tested system than purely random @etsstraint-guided random

test generation is a staple of hardware testing. The safta@nmunity developed its own

languages, like Spect [7], for describing abstract so#fwaodels. Such models can be
used effectively as constraints for generating tests [1d@|have to be written manually,

which is both time consuming and requires a high level of eige

Grammar inference (e.g., [42]) promises automatic infeeasf models, and has been
an active area of research in security, especially apphiguidtocol inference. Comparetti
et al. [29] infer incomplete (possibly missing transitipmpsotocol state machines from
messages collected by observing network traffic. To redue@timber of messages, they
cluster messages according to how similar the messagesdiea similar their effects
are on the execution. Comparetti et al. show how the inferretbpol models can be
used for fuzzing. Our work shares similar goals, but feataréew important differences.
First, MACE iteratively refines the model using concolic extan for the state-space
exploration. Second, rather than filtering out individuassages through clustering of
individual messages, we look at the entire sequences. 1 tisea path in the current

86

state machine that produces the same output sequence,caeddise corresponding input
sequence. Otherwise, we add all the input messages to theexfor inferring the state
machine in the next iteration. Third, rather than using ttferred model for fuzzing, we
use the inferred model to initialize state-space explonatid a desired state, and then run
concolic execution from the initialized state.

In the work [27] prior to ours, the authors proposed an aétive protocol state ma-
chine inference approach. There they assume the end usald provide abstraction
functions that abstract concrete input and output messatgean abstract alphabet, over
which they infer the protocol. Designing such abstractionctions is sometimes non-
trivial and requires multiple iterations, especially fooprietary protocols, for which spec-
ifications are not available. In our approach, we drop theirement for user-provided
input message abstraction, but we do require a user-pmrbddgput message abstraction
function. The output abstraction function determines tranglarity of the inferred ab-
straction. The right granularity of abstraction is impattéor guiding state-space explo-
ration, because too fine-grained abstractions tend to bexpensive to infer automati-
cally, and too abstract ones falil to differentiate intergsprotocol states. Furthermore,
the prior work is a purely black-box approach, while in oupgach we do code analysis
at the binary level in combination with grammatical infezen

In this thesis, we analyze implementations of protocolsafbich the source code or
specifications are available. However, MACE could also bel dse inference of pro-
prietary protocols and for state-exploration of closedrse third-party binaries. In that
case, the users would need to rely upon the prior researcbntsiract a suitable output
abstraction function. The first step in constructing a flg@utput abstraction function is
understanding the message format. Cui et al.|[35, 36] and léabait al. [20] proposed
approaches that could be used for that purpose. Furthegwdoynatic protocol inference
technique has to deal with encryption. In our study, we syngainfigure the analyzed
server applications so as to disable encryption, but thghtmot be an option when infer-
ring a proprietary protocol. Our technique of decompositmd restitching discussed in
Chaptef 4, though not yet, could be integrated with MACE to et encryption. The
work of Caballero et al! [18] and Wang et al. [115] also addrsegmtential techniques to
automatic reverse-engineering of encrypted messages.

Software model checking tools, like SLAM![6] and Blast [S8)jcrementally build
predicate abstractions of the analyzed software, but shstiaetions are very different
from the models inferred by the protocol inference techegji28) 29]. Such abstractions
closely reflect the control-flow structure of the softwarenirwhich they were inferred,
while our inferred models are more abstract and tend to hie dorrelation with the
low-level program structure. Further, depending on thergrice approach used, the in-

87

ferred models can be minimal (like in our work), which makesdgnce of state-space
exploration techniques more effective.

The Synergy algorithm_[55] combines model-checking andcobo execution to try
to cover all abstract states of a program. Our work has notanhbio produce proofs,
and we expect that our approach could be used to improve tiebko execution part of
Synergy and other algorithms that use concolic executi@aasmponent.

The Ketchum approach [59] combines random simulation teedaihardware circuit
into an interesting state (according to some heuristia),@@rforms local bounded model
checking around that state. After reaching a predefineddyd(etchum continues random
simulation until it stumbles upon another interestingestathere it repeats bounded model
checking. Ketchum became the key technology behind Mag#laone of the most suc-
cessful semi-formal hardware test generation tools. MACEdmailar dynamics, but the
components are very different. We use tig2] finite-state machine inference algorithm
to infer a high-level abstract model and declare all theestat the model as interesting,
while Ketchum picks interesting states heuristically. Whdetchum uses random simula-
tion, we drive the analyzed software to the interestingedbgtfinding the shortest path in
the abstract model. Ketchum explores the vicinity of indérg states via bounded model
checking, while we start concolic execution from the inséirgy state.

5.3 Problem Definition and Overview

We begin this section with the problem statement and a liasetimptions that we make.
Next, we discuss possible applications of MACE. At the enchif $ection, we introduce
the concepts and notation that will be used throughout thetein.

5.3.1 Problem Statement

We have three mutually supporting goals. First, we wish tomatically infer an abstract
finite-state model of a program’s interaction with its eomiment, i.e., a protocol as im-
plemented by the program. Second, once we infer the modelyigleto use it to guide
a combination of concrete and symbolic execution in ordémfarove the state-space ex-
ploration. Third, if the exploration phase discovers nepety of messages, we wish to
refine the abstract model, and repeat the process.

There are two ways to refine the abstract finite-state modefdaing more states,
and by adding more messages to the state machine’s inputtfmutpalphabet, which can

88

@)

(b)

Figure 5.1: An Abstract Rendition of the MACE State-Space Bpgilon. The figure
on the left shows an abstract model, i.e., a finite-state macmferred by MACE. The
figure on the right depicts clusters of concrete states ofattayzed application, such
that clusters are abstracted with a single abstract stageiniét the abstract model with
L*, initialize the analyzed application to the desired state] then use the state-space
exploration component of MACE to explore the concrete chgsté states.

result in inference of new transitions and states. Black béerénce algorithms, liké*
[2], infer a state machine over a fixed-size alphabet bytitexiy discovering new states.
Such algorithms can be used for the first type of refinemeny.téaditional program state-
space exploration technique could be used to discover nput {{or output) messages,
but adding all the messages to the state machine’s alphabetd render the inference
computationally infeasible. Thus, we also wish to find aeeff/e way to reduce the size
of the alphabet, without missing states during the infeeenc

The constructed abstract model can guide the search in maysy. Whe approach we
take is to use the abstract model to generate a sequenceuts thpt will drive the abstract
model and the program to the desired state. After the progeaches the desired state,
we explore the surrounding state-space using a combinafi@ymbolic and concrete
execution. Through such exploration, we might visit nunoerstates that are all abstracted
with a single state in the abstract model and discover neut&ipat can refine the abstract
model. Figuré 5]1 illustrates the concept.

In our work, we make a few assumptions:

89

Determinism We assume the analyzed program’s communication with its@mwient is
deterministic, i.e., the same sequence of inputs alwags leesthe same sequence of
outputs and the same state. In practice, programs can esbibe non-determinism,
which we are abstracting away. For example, the same inpsgage could produce
two different outputs from the same state. In such a caseuivbgih output mes-
sages in the same equivalence class by adjusting our oldpuaetion (see below).

Resettability We assume the analyzed program can be easily reset to i stétte. The
reset may be achieved by restarting the program, re-iizitigl its environment or
variables, or simply initiating a new client connection.plractice, resetting a pro-
gram is usually straightforward, since we have a complet¢robof the program.

Output Abstraction Function We assume the existence of an output abstraction function
that abstracts concrete response (output) messages feosetver into an abstract
set of messages (alphabet) used for state machine inferémg@actice, this as-
sumption often reduces to manually identifying which sud of output messages
will be used to distinguish output message types. The ouwtipinabet, in MACE,
determines the granularity of abstraction.

5.3.2 Applications

The primary intended application of MACE is state-space @gtion of programs com-
municating with their environment through a protocol, etgetworked applications. We
use the inferred protocol state machine as a map that tehswigo quickly get to a par-
ticular part of the search-space. In comparison, modelkthgand concolic execution
approaches consider the application’s state-space fldtdamot attempt to exploit the
structure in the state machine of the communication prétdeough which the appli-
cation communicates with the world. Other applications GAGE include proprietary
protocol inference, extension of the existing protocadl sestes, conformance checking of
different protocol implementations, and fingerprintingraplementation differences.

5.3.3 Preliminaries
Following our prior work [[217], we us&lealy machine§7€] as abstract protocol models.

Mealy machines are natural models of protocols becausesfiemify transition and output
functions in terms of inputs. Mealy machines are defined boe:

90

Input segs
Seed messages FM Shortest transfer State-space
L* sequence explorer — + Input

4 generator . —— and output
- ——> sequences

_—

Set of State-space ’

input 4 _—

explorer
messages
Filter |«

Figure 5.2: The MACE Approach Diagram. THe algorithm takes in the input and
output alphabets, over which it infers a state-machiié. sends queries and receives
responses from the analyzed application, which is not shoviime figure. The result of
inference is a finite-state machine (FSM). For every statkannferred state machine, we
generate a shortest transfer sequence (Section 5.3.3p#udtes the desired state, starting
from the initial state. Such sequences are used to iniidle state-space explorer, which
runs concolic execution after the initialization. The stapace explorers run the analyzed
application (not shown) in parallel.

Definition 1 (Mealy Machine) A Mealy machine}l/, is a six-tuple(@, X7, X0, 0, A, qo),
where(is a finite non-empty set of stateg,c () is the initial state >}; is a finite set of
input symbols (i.e., the input alphabeX), is a finite set of output symbols (i.e., the output
alphabet),0 : Q x ¥; — (@ is the transition relation, and : Q x ¥X; — Y, is the
output relation.

We extend the) and A relations to sequences of messages sg---;---s,-1 € 2}
as usual, e.gq (q,s0 - s1-52) = (6 (d(q,50),51),52) andA (g, so - s1-$2) = A(q, So) -
A(0(q,80),81)-A(d(q,s0-s1),s2). Todenote sequences of input (resp. output) messages
we will use lower-case letters ¢ (resp.o). Fors € 3%, m € X, thelength|s| is defined
inductively: |e] = 0,|s - m| = |s| + 1, wheree is the empty sequence. If for some
state machind/ = (Q, X1, X0, 9, A, qo) and some state € @ there iss € X7 such that
d(qo,s) = q, we say there is a path from to ¢, i.e., thatq is reachable from the initial
state, denoteg, — ¢. SinceL* infers minimal state machines, all states in the abstract
model are reachablg/[2]. In general, each state could baabbeby multiple paths. For
each state, we (arbitrary) pick one of the shortest paths formed by aisege of input
messages, such that, —— ¢, and call it ashortest transfer sequence

Our search process discovers numerous input and outputgesssand using all of
them for the model inference would not scale. Thus, we hecaily discard redundant
input messages, defined as follows:

91

Definition 2 (Redundant Input Symbols)et M = (Q,%;, 0,0, A, ¢o) be a Mealy ma-
chine. A symboln € X; is said to be redundant if there exists another symholec X;,
such thatm # m’ andVq € Q . A(q,m) = A(g,m') A d(q,m) = d(q,m’).

We say that a Mealy machink/ = (Q,%;,¥0,d, A\, q) is complete iffd(q,:) and
A(q, 1) are defined for every € @ andi € ¥;. MACE infers complete Mealy machines.
There is also another type of completeness — the completaridbe input and output
alphabet. MACE cannot guarantee that the input alphabetngplete, meaning that it
might not discover some types of messages required to inéefull state machine of the
protocol.

To infer Mealy machines, we use Shahbaz and Groz's [104hmanf the classical
L* [2] inference algorithm. We describe only the intuition mehl*, as the algorithm is
well-described in the literature.

L* is an online learning algorithm that proactively probesacklbox with sequences
of messages, listens to responses, and builds a finite statkime from the responses.
The black box is expected to answer the queries in a faithtll, (t is not supposed to
cheat) and deterministic way. Each generated sequente fstem the initial state, mean-
ing that L* has to reset the black box before sending each sequence.it@ocwerges,
L* conjectures a state machine, but it has no way to verify thaeiquivalent to what the
black box implements. Three approaches to solving thislprothave been described in
the literature. The first approach is to assume an existerareaacle capable of answer-
ing theequivalence queriesL* asks the oracle whether the conjectured state machine is
equivalent to the one implemented by the black box, and theleresponds either with
‘yes'’ if the conjecture is equivalent, or with a counterexdenwhichL* uses to refine the
learned state machine and make another conjecture. Thegsrsoguaranteed to terminate
in time polynomial in the number of states and the size of tipeii alphabet. However, in
practice, such an oracle is unavailable. The second appisdo generate randosam-
pling queriesand use those to test the equivalence between the conjectdrine black
box. If a sampling query discovers a mismatch between a camgand the black box,
refinement is done the same way as with the counterexammésvthuld be generated
by equivalence queries. The sampling approach providestapilistic guarantee|[2] on
the accuracy of the inferred state machine. The third agbroealled black box model
checking [96], uses bounded model checking to compare thpawoire with the black
box. This approach requires that the input alphabetf the checked system is known
and its guarantees depend on the time and space resouroés@peof the three options
for checking conjectures, we chose to check conjecturegise sampling approach (the
second approach).

92

As discussed in Sectidn 5.8.1, MACE requires an output messastraction function
ao : Mo — Yo, whereM, is the set of all concrete output messages, to abstractetencr
output messages into the abstract output alphabet. Toi§mopk notation, we overload
the output abstraction function to operate on message segsi@s follows:

Leto = opo; - - - 0,1 € M be a sequence of concrete output messages. Its abstrac-
tion functionag : MJ, — X is defined asvo(0) = ap(op)ao(01) - - - ao(on-1).

Unlike the prior work[2[7], MACE requires no input abstractifunction.

5.4 Approach

We begin this section by a high-level description of MACH)slrated in Figure 512. After
the high-level description, each section describes a ntajmponent of MACE: abstract
model inference, concrete state-space exploration, aedrii of redundant concrete in-
put messages together with the abstract model refinement.

5.4.1 A High-Level Description

Suppose we want to infer a complete Mealy machife- (Q, %, X0, 9, A, qo) represent-
ing some protocol, as implemented by the given program. \&femas to know the output
abstraction functiorv, that abstracts concrete output messages iijo To bootstrap
MACE, we also assume to have an initial g C >; of input messages, which can be
extracted from a regression test suite, collected by obsgthe communication of the
analyzed program with the environment, or obtained from DAIRd similar approaches
[21,122, 53| 102]. The initiat;, alphabet could be empty, but MACE would take longer
to converge. In our work, we used regression test suitesgedwith the analyzed appli-
cations, or extracted messages from a single observed coivation session if the test
Suite was not available.

Next, we use Shahbaz and Groz’s [104] varianL.bfalgorithm to infer the first state
machineM, = (Qo, 210, X0, do, Ao, ¢)) With 3o andX, as the abstract alphabets. The
L* algorithm also maintains a data structure (called obsenvaable [2]) that contains
a set of shortest transfer sequenggs—>+ ¢, one for each inferred state € Q,. We
use such sequences to drive the program to one of the costatts represented by the
abstract state. Since each abstract state could correspond to a largechifstoncrete
states (Fid.5l1), we use concolic execution to exploreltisters of concrete states around
abstract states.

93

The state-space exploration generates sequences of imgret and the correspond-
ing output messages. Using the output abstraction funetigrwe can abstract the con-
crete output message sequences into sequencesgyvetowever, we cannot abstract the
concrete input messages into a subset gfas we do not have the concrete input message
abstraction function. Using all the concrete input messdge the L*-based inference
would be computationally infeasible. The state-spaceagatibn discovers hundreds of
thousands of concrete messages, because we run the egplgriadse for hundreds of
hours, and on average, it discovers several thousand neswetermessages per hour.

Thus, we need a way to filter out redundant messages and keepék that will allow
L* to discover new states. The filtering is done as follows. $8pghats = sy---s,_1 IS
a sequence of concrete input messages generated from thes¢iom phase and € 7, a
sequence of the corresponding abstract output messaggeerilem a brute-force search
(over all permutations) for a sequence of abstract inputsagess < >;, such that)/,
accepts generating. If such a sequence is found, we discardOtherwise, we include
to the refined input alphab&l;; all concrete messagesof the sequence, for any; such
that0 < j < n, because at least one of these concrete messages cangeitesata new
state or a new transition.

With the new abstract input alphal¥et;, we infer a new, more refined, abstract model
M, and repeat the process. If the number of messages is finittharakploration phase
either terminates or runs for a predetermined bounded anubaime, MACE terminates
as well.

5.4.2 Model Inference with L*

MACE learns the abstract model of the analyzed program bytaarisg sequences of

input messages, sending them to the program, and reasdyong the responses. For the
inference, we use Shahbaz and Groz’s [104] variant’ofor learning Mealy machines.

The inference process is similar as in our prior work [27].

In every iteration of MACE L* infers a new state machine ovgy; and the new mes-
sages discovered by the state-space exploration guidéd,;pgnd conjectured/; ., a
refinement of)M;. Out of the three options for checking conjectures disalisseSec-
tion[5.3.3, we chose to check conjectures using the sampfipgoach. We perform the
check aftertM AC'E completes all of its iterations, but in no experiment we perfed did
sampling discover any new states.

94

5.4.3 The State-Space Exploration Phase

We use the model inferred in Section 514.2 to guide the sipéee exploration. For ev-
ery stateg’ € ; of the just inferred abstract modéf;, we compute a shortest transfer
sequence of input messages from the initial stgteSuppose the computed sequence is
s € ¥}, With s = sq---s,-1, we drive the analyzed application to a concrete state
abstracted by the' state in the abstract model. All messagesfor any j such that

0 < j < n, are concrete messages either from the set of seed meseageserated

by previous state-space exploration iterations. Thusptbeess of driving the analyzed
application to the state being analyzed consists of onlyprding a shortest path if/; to

the state, collecting the input messages along thqu’atﬁ» q¢*, and feeding that sequence
of concrete messages into the application.

Once the application reaches in the state being analyzeg run concolic execution
from that state to explore the surrounding concrete stéiggie[5.1). In other words,
the transfer sequence of input messages produces a conaretehich is then followed
by symbolic execution that computes the corresponding-patidition. Once the path-
condition is computed, concolic execution resumes its abearploration. We bound the
time allotted to exploring the vicinity of every abstractgt In every iteration, we explore
only the newly discovered states, i.€),;,\Q;_;. Re-exploring the same states over and
over would be unproductive.

Thanks to the abstract model, MACE can easily compute thessacg input mes-
sage permutations required to reach any abstract mode] gtstt by computing a shortest
path. On the other hand, approaches that combine concretgyarbolic execution have
to negate multiple predicates and get the decision proeewugenerate the required se-
guence of concrete input messages to get to a particula: ACE has more control
over this process, and our experimental results show tleanhtitreased control results in
higher line coverage, deeper analysis, and more vulnérabifound.

5.4.4 Model Refinement

The exploration phase described in Secfion 5.4.3 genesdtage number (hundreds of
thousands in our setting) of new concrete messages. Uding thlem to refine the ab-
stract model is both unrealistic, as inference is polynbmithe size of the alphabet, and
redundant, as many messages are duplicates and belongsamtleeequivalence class. To
reduce the number of input messages used for inference, Cettgd al. [29] propose a
message clustering technique. We take a different approach

95

In the spirit of concolic execution, the exploration phasé/as the path-condition
(using a decision procedure) to generate new concretesnpuire precisely, sequences
of concrete input messages. During the concrete part ofxplemtion phase, such se-
guences of input messages are executed concretely, whidrages the corresponding
sequence of output messages. We abstract the generatethseqd output messages us-
ing ap. If the abstracted sequence can be generated by the cubsima@ model, we
discard the sequence; otherwise we add all the correspprdincrete input messages to
Y.1;. We define this process more formally:

Definition 3 (Filter Function) Let M (resp..M) be a (possibly infinite) set of all pos-
sible concrete input (resp. output) messages.sLets - - - s;5-1 € M7 (resp.o € Mp)

be a sequence of concrete input (resp. output) messagestaidh| = |o|. We assume
that each input message produces; as a response. Let/; € A be the abstract model
inferred in the last iteration anc! the universe of all possible Mealy machines. The filter
functionf : A x M} x M}, — 2M1 is defined as follows:

(0 if 3te ;. \(t) = aolo)
f(M;,s,0) = { {s;10<j<|sl} otherwise

In practice, a single input message could produce eitheesponse or multiple out-
put messages. In the first case, our implementation geseaatartificial no-response
message, and in the second case, it picks the first produdpdtauessage. A more
advanced implementation could infer a subsequential diases [112], instead of a finite-
state machine. A subsequential transducer can transdugg@isput into multiple output
messages.

Once the exploration phase is done, we apply the filter fandi all newly found
input and output sequencegsando”, and refine the alphab&}; by adding the messages
returned by the filter function. More precisely:

Y1) < X U U f(M;, s*, ")
k

In the next iterationL* learns a new model/;, ,, a refinement of\/;, over the refined
alphabet;;1).
5.5 Implementation

In this section, we describe our implementation of MACE. Thiecomponent sends
gueries to and collects responses from the analyzed sangkthus can be seen as a client

96

sending queries to the server and listening to the correpgmesponses. Section 5)5.1
explains this interaction in more detail. Section 5.5.2/eys the main model inference
optimizations, including parallelization, caching, artefing. Finally, Section 5.513 dis-

cusses our implementation of the state-space exploration.

55.1 L*asaClient

Our implementation of.* infers the protocol state machine over the concrete inpdt an
abstract output messages. As a clidritfirst resets the server, by clearing its environment
variables and resetting it to the initial state, and therdsdahe concrete input message
sequences directly to the server.

Servers have a large degree of freedom in how quickly they teareply to the queries,
which introduces non-deterministic latency that we wardvoid. For one server appli-
cation we analyzed (Vino), we had to slightly modify the sgreode to assure immediate
response. We wrote wrappers aroundploé¢ | andr ead system calls so the server im-
mediately respond to thé*'s queries, modifying eight lines of code in Vino. Without
these modifications, our implementation would still work take a longer time to run.

5.5.2 Model Inference Optimizations

We have implemented the&* algorithm with distributed master-worker parallelizatiof
queries.L* runs in the master node, and distributes its queries amang/dinker nodes.
The worker nodes compute the query responses, by sendingphiesequences to the
server, collecting and abstracting responses, and setidngback tal*.

Since model refinement requirds to make repeated queries across iterations, we
maintain a cache to avoid re-computing responses to théooiy seen queried.” looks
up the input in the cache before sending queries to workeesiod

As L*’s queries could trigger bugs in the server applicatiorpoeses could be incon-
sistent. For example, i£* emits two sequences of input messagemdt, such that is a
prefix of ¢, then the response toshould be a prefix of the responsett@efore adding an
input-output sequence pair to the cache, we check thateapifixes are consistent with
the newly added pair, and report a warning if they are instest.

After each inference iteration, we analyze the state madifind redundant messages
(Definition[2) and discard them. This simple, but effectioptimization reduces the load
on the subsequent MACE iterations. This optimization is eisflg important for inferring

97

the initial state machine from the seed inputs.

5.5.3 State-Space Exploration

Our implementation of the state-space exploration cansistwo components: a short-
est transfer sequence generator and the state-spaceegxpl@hortest transfer sequence
generator is implemented through a simple modification effth algorithm. The algo-
rithm maintains a data structure (called observation t@j)e¢hat contains a set of shortest
transfer sequences, one for each inferred state. We maudifglgorithm to output this set
together with the final model. MACE uses sequences from thedatinch and initialize
state-space explorers.

We use BitFuzz, our concolic execution engine discussed atid®e2.4, as a state-
space explorer. BitFuzz’s execution monitor, which is astaxg component called TEMU
(discussed in Chaptér 2.4, provides the capability to sade@store program snapshots.
To perform model-assisted exploration from a desired statiee model, we first set the
program state to the snapshot of the initial state. Then,nve the program to the desired
state using the corresponding shortest transfer sequamdestart concolic execution from
that state.

In all our experiments, we used the snapshot capabilityifothle server boot process.
More precisely, we boot the server, make a snapshot, andlrthreaexperiments on the
snapshot. We do not report the code executed during the bt line coverage results.

5.6 Experimental Evaluation

To evaluate MACE, we infer server-side models of two widelpldged network proto-
cols: Remote Framebuffer (RFB) and Server Message Block (SME)RHB protocol is
widely used in remote desktop applications, including GNE©Wino and RealVNE. Mi-
crosoft's SMB protocol provides file and printer sharingvieetn Windows clients and
servers. Although the SMB protocol is proprietary, it wagerse-engineered and re-
implemented as an open-source system, called Samba. S#ovisiateroperability be-
tween Windows and Unix/Linux-based systems. In our expemis) we use Vino 2.26.1
and Samba 3.3.4 as reference implementations to infer tteqmi models of RFB and
SMB respectively. We discuss the result of our model infeeein Sectioh 5.612.

Vvino is the default remote desktop application in GNOME rilisttions; RealVNC reports over 100
million downloads (http://www.realvnc.com).

98

Once we infer the protocol model from one reference impldéatem, we can use it to
guide state-space exploration of other implementatiorth@same protocol. Using this
approach, we analyze RealVNC 4.1.2 and Windows XP SMB, witheunferring the
protocol state machine.

MACE found a number of critical vulnerabilities, which we dliss in Sectioh 5.6.3.
In Sectior 5.6 4, we evaluate the effectiveness of MACE, bymaring it to the baseline
state-space exploration component of MACE without guidance

5.6.1 Experimental Setup

For our state-space exploration experiments, we used tHEERESecurity testbed [8]
comprised of 3GHz Intel Xeon processors. For runnirigand the message filtering, we
used a few slower 2.27GHz Intel Xeon machines. When comp&iAGE against the
baseline approach, we sum the inference and the state-egplmration time taken by
MACE, and compare it to running the baseline approach for #mesamount of time.
This setup gives a slight advantage to the baseline appiwesduse inference was done
on slower machines, but our experiments still show MACE isi§icantly superior, in
terms of achieved coverage, found vulnerabilities andarapion depth.

In addition to a subject binary program and a set of previogsllected incoming
packets, our implementation also requires knowledge ofgidormats for message ab-
stractions. In each of our experiments, this knowledge viraimed manually from the
protocol specifications. The detail of each abstractiohbeilmentioned in Sectidn 5.6.2.

5.6.2 Model Inference and Refinement

We used MACE to iteratively infer and refine the protocol medd#IRFB and SMB, using
Vino 2.26.1 and Samba 3.3.4 as reference implementatiepgcévely. Tablé€ 511 shows
the results of iterative model inference and refinement o nd Samba.

As discussed in Sectidn 5.4.2, once MACE terminates, we ctieekinal inferred
model with sampling queries. We used 1000 random sampliegiegicomposed of 40
input messages each, and tried to refine the state machinad&yhat MACE inferred.
The sampling did not discover any new state in any experinvererformed.

Vino. For Vino, we collected a 45-second network trace of a remes&tp session, using
kr dc (KDE Remote Desktop Connection) as the client. During thisises the Vino
server received a total of 659 incoming packets, which wensiclered as seed messages.

99

Program | lter. | |Q| | |X;] | |Xo| | Tot. Learning
(Protocol) Time (min)
Vino 1st 7 8 7 142
(RFB) 2nd| 7| 12 8 8
Samba 1st | 40| 40| 14 2028
(SMB) 2nd | 84| 54| 24 1840
3rd | 84| 55| 25 307

Table 5.1: Model Inference Result at the End of Each Iterafidre second column iden-
tifies the inference iteration. Thg column denotes the number of states in the inferred
model. TheX; (resp.Xp) column denotes the size of the input (resp. output) alpthabe
The last column gives the total time (sum of all parallel jodgether) required for learn-
ing the model in each iteration, including the message filgetime. The learning process
is incremental, so later iterations can take less time, e®liher conjecture might need a
small amount of refinement.

For abstracting the output messages, we used the messagayphe encoding type of
the outbound packets from the server. MACE inferred thealhmiodel consisting of seven
states, and filtered out all but 8 input and 7 output messageshown in Figure 5.8a.

Using the initial inferred RFB protocol model, the stateegaxplorer component of
MACE discovered 4 new input messages and refined the modelneithedges without
adding new states (Figufe 513b). We manually inspected ¢hdyndiscovered output
message (label R6 in Figure 513b) and found that it representaitgoing message type
not seen in the initial model.

Since MACE found no new states that could be explored withtdie space explorer,
the process terminated. Through manual comparison witRE protocol specification,
we found that MACE has discovered all the input messages atiteadtates, except the
states related to authentication and encryption, both a¢lwive disabled in our experi-
ments. Further, MACE found all the responses to client’s iq&r

We also performed an experiment with authentication enbf#acryption was still
disabled). In this experiment, we used the first byte of eagbsage for output abstraction
because it corresponds to the location of the message typtharencoding type used in
the experiment with authentication disabled. With thisfouration, MACE discovered
only three states, because it was not able to get past th&sthracused during authen-

2There are two other output message types that are trigggréliebserver’s GUI events and thus are
outside of our scope.

100

2,3,4,5,6,7,8/T
1,3,4,5,6,7,8/T
1,4,8/T

(a) Original Vino’'s RFB Model Based on Observed Live Traffic.

2,3,4,56,7,8,9,10,11,12/T
1,3,4,5,6,7,8,9,10,11,12/T
1,4,8,12/T

1,2,9,10,12/T @

11/R6 1,2,9,10,12/T

3,5,6,7,10,11/R3

1,2,3,4,5,6,7,8,9,10,11,12/T

(b) Final Vino’s RFB Model Inferred by MACE.

Figure 5.3: Model Inference of Vino’'s RFB protocol. Statesvinich MACE discovers
vulnerabilities are shown in grey. The edge labels showish®f input messages and the
corresponding output message separated by/trsyimbol. The explanations of the state
and the input/output message encodings are in Figure 5.4.

tication, but discovered an infinite loop vulnerability thaan be exploited for denial-
of-service attacks. For this configuration to work, furtirgegration of MACE and the
decomposition and restitching technique, discussed in &€hdp or other techniques for
reverse-engineering of message encryptioni[18, 115] arered.

Samba.For Samba, we collected a network trace of multiple SMB s@ssiusing Samba’s
gent est test suitd, which generates random SMB operations for testing SMBeserv
We used the defauljent est configuration, with the default random number generator
seeds. To abstract the outbound messages from the seruesed¢he SMB message type
and status code fields; error messages were abstracted sirigla error message type.
The Samba server received a total of 115 input messageswhioh MACE inferred an
initial SMB model with 40 states, with 40 input and 14 outpwdssages (after filtering out
redundant messages). Figlhre 5.5a shows the initial model.

In the second iteration, MACE discovered 14 new input and 10 m&put messages
and refined the initial model from 40 states to 84 states. To@etconverged in the third
iteration after adding a new input and a new output messatioutiadding new states.

3http://samba.orgftridge/sambaesting/

101

Label | Description

client’s protocol version

byte 0x01 (securityType=None, clientlnit)
setPixelFormat message

setEncodings message
frameBufferUpdateRequest message
keyEvent message

pointer event message

clientCutText message

byte 0x22

malformed client’s protocol version
frameBufferUpdateRequest message with bpp=8 and ftrue-
color=false

12 | malformed client’s protocol version

(a) Input Legend.

©CoO~NO UL WNPE

e
= O

Label | Description
R1 | server’s protocol version
R2 | server’s supported security types
R3 | serverlnit message
R4 | framebufferUpdate message with default encoding
R5 | framebufferUpdate message with alternative encoding
R6 | setColourMapEntries message
N no explicit reply from server
T socket closed by server

(b) Output Legend.

Figure 5.4: Explanation of States and Input/Output Messag¢he State Machine from
Figurel5.3.

102

4/R23 134/R23|
iL,15/T
1L,15/T

[L,15/T|

Wx‘ E" 37/R{ABIRAB4IR2 11%

I A
- A | —— s a— A = S e
W(m@@ /R W 34/R237/R1214/R1)|8/R234/R23
TSAeR R
\,‘..' W ..{b So— A*‘ = h,15/ o 3
1,15/T' @ML 1‘15/ ’11/R1 h15/T h,15/T
L1S/TIL 15T\ (1,15/5p7 1577/ & 1.15T ASIT 1157
1,15/T\ | (1,15/T} @ﬂ@ 1,15/T 1,15/T, 1,157
w. 1,15/T
1,15/T J

(a) The Initial SMB Model Inferred from the Seed Messages.
_]

SEEE

N

XN

—))

(b) Converged SMB Model.

Figure 5.5: The Inferred SMB Model from Samba.

Table[5.1 summarizes all three inference rounds. The cgademodel is depicted in
Figure[5.5b.

Manually analyzing the inferred state machine, we found $bane of the discovered
input messages have the same type, but different paramatetsherefore have different
effects on the server (and different roles in the protocACE discovered all the 67
message types used in Samba, but the concrete messagedaptbgithe decision proce-
dure during the state-space exploration phase often hatidnmessage parameters, so the
server would simply respond with an error. Such responsesticefine the model and
are filtered out during model inference. In total, MACE wascassful at generate valid
messages with 23 (out of 67) message types, which is an iraprent over 13 message
types exercised by the test suite.

103

Label | Desc. Label | Desc. Label | Desc. Label | Desc.

1 negprot 15 | invalid 29 | checkpath|| 43 | fclose

2 sesssetupX| 16 | rmdir 30 | mkdir 44 | ulogoffX

3 sesssetupX| 17 | readX 31 | mv 45 | fclose

4 tconX 18 | Iseek 32 | open 46 | trans

5 unlink 19 | close 33 | open 47 | tdis

6 trans2 20 | ntrename|| 34 | ntcreateX|| 48 | findnclose

7 trans2 21 | openX 35 | mv 49 | dskattr

8 rmdir 22 | mkdir 36 | trans2 50 | findclose

9 rmdir 23 | ntcreateX|| 37 | openX 51 | exit

10 | mkdir 24 | ntcreateX|| 38 | trans2 52 | dskattr

11 | mkdir 25 | trans2 39 | setatr 53 | ctemp

12 | tconX 26 | trans2 40 | ntcreateX 54 | getatr

13 | nttrans 27 | lockingX 41 | dskattr 55 | create

14 | mkdir 28 | writeX 42 | fclose

(a) Input Legend.
Label | Desc. Label | Desc. Label | Desc.

R1 | mkdir_success R10 | exit.success R19 | ulogoffX_success
R2 | rmdir_success R11 | transsuccess R20 | tconX_success
R3 | opensuccess R12 | openXsuccess R21 | dskattrsuccess
R4 | createsuccess R13 | trans2success R22 | fclosesuccess
R5 | mv_success R14 | findclosesuccess R23 | ntcreateXsuccess
R6 | getatrsuccess R15 | findnclosesuccess E | error
R7 | setatrsuccess R16 | tdis_.success T session terminate
R8 | ctempsuccess R17 | negprotsuccess by server
R9 | checkpathsuccess| R18 | sesssetupXuccess

(b) Output Legend.

Figure 5.6: Explanation of Input/Output Messages of théeStéachine from Figurg 515.

104

We identified several causes of incompleteness in messagevery. First, mes-
sage validity is configuration dependent. For examplesih@ol open, spool wite,
spool cl ose andspool r et ur nqueue message types need an attached printer to be
deemed valid. Our experimental setup did not emulate theptimmenvironment, pre-
cluding us from discovering some message types. Secondgke sicho message type
generated by MACE induced the server to behave inconsigtantl we discarded it due
to our determinism requirement. Although this is likely aybn Samba, this behavior is
not reliably reproducible. We exclude this potential bugnirthe vulnerability reports that
we provide later. Third, our infrastructure is unable tolgp@the system calls and other
code executed in the kernel space. In effect, the computad@ljc constraints are under-
constrained. Thus, some corner-cases, like a specific catndn of the message type and
parameter (e.g., a specific file name), might be difficult toegate. This is a general prob-
lem when the symbolic formula computed by symbolic execuisounderconstrainted.

In our experiments, we used Samba’s default configurationyhich encryption is
disabled. The SMB protocol allows null-authenticationssass with empty password,
similar to anonymous FTP.

MACE converged relatively quickly in both Vino and Samba axpents (in three it-
erations or less). We attribute this mainly to the grantyarf abstraction. A finer-grained
model would require more rounds to infer. The granularitglogtraction is determined by
the output abstraction function, (Sectlon 513.1).

5.6.3 Discovered Vulnerabilities

We use the inferred models to guide the state-space explo@timplementations of the
inferred protocol. After each inference iteration, we cathie number of newly discovered
states, generate shortest transfer sequences (Secti8h f613those states, initialize the
server with a shortest transfer sequence to the desiredy(déscovered) state, and then
run 2.5 hours of state-space exploration in parallel fohesmwly discovered state. The
input messages discovered during those 2.5 hours of siate€xploration per state are
then filtered and used for refining the model (Section 5.4Fr the baseline concolic
execution without model guidance, we rl{(p| parallel jobs with different random seeds
for each job for 15 hours, whet€)| is the number of states in the final converged model
inferred for the target protocol. Different random seedsiarportant, as they assure that
each baseline job explores different trajectories witheprogram.

We rely upon the operating system runtime error detectiodetect vulnerabilities,

105

but other detectors, like Valgriﬂdcould be used as well. Once MACE detects a vul-
nerability, it generates an input sequence required foroding the problem. When
analyzing Linux applications, MACE reports a vulnerabiltyen any of the critical ex-
ceptions 8§l G LL, SI GTRAP, SI GBUS, SI GFPE, andSI GSEGQV) is detected. For Win-
dows programs, a vulnerability is found when MACE traps a talhtdl | . dl | ::

Ki User Except i onDi spat cher and the value of the first function argument repre-
sents one of the critical exception codes.

MACE found a total of seven vulnerabilities in Vino 2.26.1, R&C 4.1.2, and
Samba 3.3.4, within 2.5 hours of state-space exploratiorsfage. In comparison, the
baseline concolic execution without model-guidance, ¢banly one of those vulnerabil-
ities (the least critical one), even when given the equiviaté 15 hours per state. Four
of the vulnerabilities MACE found are new and also presenhalatest version of the
software at the time of writing. The list of vulnerabilitissshown in Tablé€ 5]2. The rest
of this section provides a brief description of each vulbéits.

Vino. MACE found three vulnerabilities in Vino; all of them are neline first one (CVE-
2011-0904) is an out-of-bounds read from arbitrary memoopations. When a certain
type of the RFB message is received, the Vino server parsendlsage and later uses
two of the message value fields to compute an unsanitizeyg sndax to read from. A
remote attacker can craft a malicious RFB message with a aegg halue for one of the
fields and exploit a target host running Vino. The Gnome @tdgbeled this vulnerability
with the “Blocker” severity (bug 641802), which is the highssverity in their ranking
system, meaning that it must be fixed in the next release. MAXREJ this vulnerability
after 122 minutes of exploration per state, in the first tiera(when the inferred state
machine has seven states, Tdble 5.1). The second vulrigr§6V/E-2011-0905) is an
out-of-bounds read due to a similar usage of unsanitizey andices; the Gnome project
labeled this vulnerability (bug 641803) as “Critical”, thecend highest problem sever-
ity. This vulnerability is marked as a duplicate of CVE-200904, for it can be fixed
by patching the same point in the code. However, these twaevabilities are reached
through different paths in the finite-state machine moddlthe out-of-bounds read hap-
pens in different functions. These two vulnerabilities aceually located in a library used
by not only Vino, but also a few other programs. According tebian security trackBr
kdenetwork 4:3.5.10-2 is also vulnerable.

The third vulnerability (CVE-2011-0906) is an infinite loojeund in the configura-
tion with authentication enabled. The problem appears vtheVino server receives an

4http://valgrind.org/
Shttp://security-tracker.debian.org/tracker/CVE-2@aD4

106

authentication input from the client larger than the autivation checksum length that it
expects. When the authentication fails, the server clogeslignt connection, but leaves
the remaining data in the input buffer queue. It also entetsfarred-authentication state
where all subsequent data from the client is ignored. Thises an infinite loop where
the server keeps receiving callbacks to process inputsttth@és not process in deferred-
authentication state. The server gets stuck in the infiadp bnd stops responding, so we
classify this vulnerability as a denial-of-service vulalaitity. Unlike all other discovered
vulnerabilities, we discovered this one wheh hung, rather than by catching signals or
trapping the exception dispatcher. Currently, we have noafaletecting this vulnerabil-
ity with the baseline, so we do not report the baseline re$oitCVE-2011-0906.

Samba. MACE found 3 vulnerabilities in Samba. The first two vulneiiigis have
been previously reported and are fixed in the latest versfoB8amba. One of them
(CVE-2010-1642) is an out-of-bounds read caused by the ushga unsanitized Se-
curity_Blob_Length field in SMB’s SessiasetupAndX message. The other (CVE-2010-
2063) is caused by the usage of an unsanitized field in thedbbytte parameters” part
of an SMB LogoffAndX message. The third one is a null pointer dereferenceszhby
an unsanitized Byt€ount field in the SessiaSetupAndX request message of the SMB
protocol. To the best of our knowledge, this vulnerabiligsmever been publicly reported
but has been fixed in the latest release of Samba. We did net kbout any of these
vulnerabilities prior to our experiments.

RealVNC. MACE found a new critical out-of-bounds write vulnerability RealVNC.
One type of the RFB message processed by RealVNC contains th liegld. The Re-
alVNC server parses the message and uses the length fieldhateano access the process
memory without performing any sanitization, causing anaftibounds write.

Win XP SMB. The implementation of Win SMB is partially embedded into keznel,
and currently our concolic execution system does not hahelé&ernel operating system
mode. Thus, we were able to explore only the user-space amengp®that participate in
handling SMB requests. Further, we found that many invob@dponents seem to serve
multiple purposes, not only handling SMB requests, whiclkesaheir exploration more
difficult. We found no vulnerabilities in Win XP SMB.

107

Program Vulnerability Type | Disclosure ID Iter. | Jobs Search Time
(1Q) MACE Baseline
perjob| total | perjob total
(min) | (hrs)| (min) (hrs)
Vino Wild read (blocker) | CVE-2011-0904 1/2 7 122 15| >900| >105
Out-of-bounds read| CVE-2011-0905| 1/2 7 31 4| >900| >105
Infinite loop CVE-2011-0906 | 1/2 7 1 1 N/A N/A
Samba Buffer overflow CVE-2010-2063| 1/3 84 88| 124| >900| >1260
Out-of-bounds read| CVE-2010-1642 | 1/3 84 10 14| >900| >1260
Null-ptr dereference Fixed w/o CVE 1/3 84 8 12 430 602
RealVNC Out-of-bounds write CVE-2011-0907 | 1/1 7 17 2| >900| >105
Win XP SMB | None None None 84| >150| >210| >900| >1260

Table 5.2: Description of the Found Vulnerabilities. The upper half of the table (Vind @amba) contains results for the
reference implementations from which the protocol model was inferreile We bottom half (Real VNC and Win XP SMB)
contains the results for the other implementations that were explored usingehednmodel (from Vino and Samba). The
disclosure column lists Common Vulnerabilities and Exposures (CVE) numbsignad to vulnerabilities MACE found. The
new vulnerabilities ardtalicized The 1 symbol denotes a vulnerability that could not have been detected by thénkas
approach, because it lacks a detector that would register non-termingf@riound it with MACE, because it causdd to
hang. The “Iter.” column lists the iteration in which the vulnerability was found e total number of iterations. The “Jobs”
column contains the total number of parallel state-space exploration jobsiurhber of jobs is equal to the number of states in
the final converged inferred state machine. The baseline experimedmwasvith the same number of jobs running in parallel
as the MACE experiment. The MACE column shows how much time passed lagfiesest one parallel state-space exploration
job reported the vulnerability and the total runtime (number of jgbsme to the first report) of all the jobs up to that point.
The “Baseline” column shows runtimes for the baseline concolic executiooutithodel guidance. We set the timeout for the
MACE experiment to 2.5 hours per job. The baseline approach foundooeyulnerability, even when allowed to run for 15
hours (per job). The- ¢ entries mean that the vulnerability was not found within time

08

i

Program Sequential Instruction Coverage Total crashes
(Protocol) Time (Unique locations)
(min) | Baseline] MACE | improvement| Baseline] MACE
Vino (RFB) 1200| 129762| 138232 6.53% 0 (0) 2(2)
Samba (SMB) 16775| 66693| 105946 58.86%| 20(1)| 21(5)
RealVNC (RFB) 1200] 39300] 47557 21.01% 00 72
Win XP (SMB)t 16775 90431| 112820 24.76% 0 (0) 0 (0)

Table 5.3: Instruction Coverage Results. The table shows the instruction covenagebér of
unique executed instruction addresses) of MACE after 2.5 hours tfrexion per state in the final
converged inferred state machine, and the baseline concolic execut@mtge amount of time
equivalent to (time MACE required for inferring the final state machineumber of states in the
final state machinex 2.5 hours), shown in the second column. For example, from Table 5.1, we
can see that Samba inference took the tot&l0@B + 1840 + 307 = 4175 minutes and produced
an 84-state model. Thus, the baseline approach was g§ivenl150 + 4175 = 16775 minutes to
run. The last two columns show the total number of crashes each appgonam, and the number
of unique crash locations (EIPS) in parenthesis. Due to a limitation of our implkatnen of the
state-space exploration (user-mode only), the baseline result for WndB SMB (marked) was
so abysmal, that comparing to the baseline would be unfair. Thus, we cothputén XP SMB
baseline coverage by running Samhbgént est test suite.

109

5.6.4 Comparison with the Baseline

We ran several experiments to illustrate the improvemeMACE over the baseline con-

colic execution approach. First, we measured the instmatoverage of MACE on the

analyzed programs and compared it against the baselineag®/eSecond, we compared
the number of crashes detected by MACE and by the baselin@agpiover the same

amount of time. This number provides an indication of howedse the execution paths
discovered by each approach are: more crashes imply mogesdigearched paths. Fi-
nally, we compared the effectiveness of MACE and the baselipeoach to reach deep
states in the final inferred model.

Instruction Coverage. In this experiment, we measured the numbers of unique imstru
tion addresses (i.e., EIP values) of the program binary &ridbraries covered by MACE
and the baseline approach. These numbers show how efftog\agpproaches are at un-
covering new code regions in the analyzed program. For \RealVNC, and Samba, we
used concolic execution as the baseline approach and raxpeeiment using the setup
outlined in Section 5.611. We ran MACE allowing 2.5 hours atstspace exploration per
each inferred state. To provide a fair comparison, we rarbtseline for the amount of
time that is equal to the sum of the MACE’s inference and sipteze exploration times.
As shown in Tablé 5]3, our result illustrates that MACE pregd significant improve-
ment in the instruction coverage over concolic execution.

As mentioned before, our tool currently works on user-sgmograms only. Because
Windows SMB is mostly implemented as a part of the Windows&krthe results of
the baseline approach were abysmal. To avoid a straw manauop, we chose to
compare against Sambajent est test suite, regularly used by Samba developers to
test the SMB protocol. Using the test suite, we generatesezpiences and measure the
obtained coverage. As for other experiments, we allocdtedsame amount of time to
both the test suite and MACE. The experimental results gledmbw MACE'’s ability to
augment test suites manually written by developers.

Number of Detected Crashes.Using the same setup as in the previous experiment, we
measured the number of crashing input sequences geneya¢adib approach. We report
the number of crashes and the number of unique crash losatiBrom each category
of unique crash locations, we manually processed the fitstrigported crashes. All the
found vulnerabilities (Tablé_5.2) were found by procesdimg very first crash in each
category. All the later crashes we processed were justntar@ the first reported crash.
MACE found 30 crashing input sequences with 9 of them haviriguencrash locations

110

1 2 1 1 1 10 256 25 13 4 1

100 % [M---M----Weo- oo oo m Mmoo Xemo oMo K
80 % | -
04 | ‘\ i

60 % “‘4 11
40 % | - 8 _

MACE -=-X--- h
20% 1 Baseling ---m-= “\\0 0 0 1
0 % — . e s a

o 1 2 3 4 5 6 7 8 9 10

Figure 5.7: SMB Exploration Depth. The inferred state maeldan be seen as a directed
graph. Suppose we compute a spanning tree (e.g., [30])tadtaygh. The root of the graph
is at level zero. Its children are at level one, and so on. Thedi shows the percentage
of states visited at each level by MACE and the baseline approdhe numbers above
points show the number of visited states at the given defta.shaded area clearly shows
that MACE is superior to the baseline approach in reaching d¢&tes of the inferred
protocol.

(the EIP of the crashed instruction). In comparison, thelas approach only found 20
crashing input sequences, all of them having the same avaalidn.

Exploration Depth. Using the same setup as for the coverage experiment, we reeasu
how effective each approach is in reaching deep states.nféeed state machine can be
seen as a directed graph. Suppose we compute a spanning.ged¢30]) of that graph.
The root of the graph is at level zero. Its children are atllene, and so on. We measured
the percentage of states reached at every level. Figureldarlycshows that MACE is
superior to the baseline approach in reaching deep statles inferred protocol.

111

5.7 Limitations

Completeness is a problem for any dynamic analysis technfyeeordingly, MACE can-
not guarantee that all the protocol states will be discaleirecompleteness stems from
the following: (1) each state-space explorer instance fona bounded amount of time
and some inputs may simply not be discovered before the timé®) among multiple
shortest transfer sequences to the same abstract state, idk¥one, potentially miss-
ing further exploration of alternative paths, (3) simijadmong multiple concrete input
messages with the same abstract behavior, MACE picks oneocaisitlers the rest redun-
dant (Definitior[2).

Our approach to model inference and refinement is not eptanelomatic: the end
users need to provide an abstraction function that abstcacicrete output messages into
an abstract alphabet. Coming up with a good output abstraftticction can be a difficult
task. If the provided abstraction is too fine-grained, maaference may be too expensive
to compute or may not even converge. On the other hand, teeréf model may fail
to distinguish two interesting states if the abstractioto@scoarse-grained. Nevertheless,
our approach provides an important improvement over oor prork [28], which requires
abstraction functions for both input and output messages.

When using our approach to learn a model of a proprietary pobta certain level of
protocol reverse-engineering is required prior to runiCE. First, we need a basic
level of understanding of the protocol interface to be abledrrectly replay input mes-
sages to the analyzed program. For example, this may reguemvriting the cookie or
session-id field of input messages so that the sequencerappaiatinguishable from real
inputs to the target program. Second, our approach reqarappropriate output abstrac-
tion, which in turn requires understanding of the outputsage formats. Message format
reverse-engineering is an active area of research [2063%U8 of the scope of our study.

Encryption is a difficult problem for every (existing) protd inference technique. To
circumvent the issue, we configure the analyzed progranm® muse encryption. However,
for proprietary protocols, such a configuration may not kalatsle and a further integra-
tion of MACE and the decomposition and restitching technjgliscussed in Chaptér 4,
or other techniques for reverse-engineering of messaggmion |18, 115] are required.

5.8 Conclusion

We have proposed MACE, a new approach to software state-gpgbaration. MACE
iteratively infers and refines an abstract model of the mwitoas implemented by the

112

program, and exploits the model to explore the programtestpace more effectively. By
applying MACE to four server applications, we show that MACE iffiproves coverage

up to 58.86%, (2) discovers significantly more vulneraietit(seven vs. one), and (3)
performs significantly deeper search than the baselineoappr

We believe that further research is needed along sevemdtitins. First, a deeper
analysis of the correspondence of the inferred finite stateais to the structure and state-
space of the analyzed application could reveal how modeilsidze used even more effec-
tively than what we propose here. Second, it is an open gquestiether one could design
effective automatic abstractions of the concrete inputsagss. The filtering function we
propose here is clearly effective, but might drop importaassages. Third, the finite-state
models might not be expressive enough for all types of agptins. For example, subse-
guential transducers [112] might be the next, slightly mexpressive, representation that
would enable us to model protocols more precisely, withagniiBcantly increasing the
inference cost. Fourth, MACE currently does no white box gsia besides concolic exe-
cution for discovering new concrete input messages. MACHdcalso monitor the value
of program variables, consider them as the input and theubofghe analyzed program,
and automatically learn the high-level model of the progsastate-space. This extension
would allow us to apply MACE to more general classes of progtam

113

114

Chapter 6

Conclusion

6.1 Potential Integration of the Proposed Techniques

The scaling techniques presented in this thesis could legriaiied but such integration
has not materialized. The level of re-engineering effoqureed is a major reason we
decided not to go on with the integration. This section wiladiss the issue as well as
other challenges that would arise when integrating outrsgéchniques together.

Currently, our implementation — specifically its legacy cament called TEMU (dis-
cussed in Sectidn 4.4) — could reliably save a program sta{eamce; further saves tend
to damage the TEMU disk images we used for the experimentslU'Es developed as an
extension of QEMU version 0.9.1 [97], which it inherits tinediability issue from. Since
the time of TEMU implementation, QEMU has been re-engingdérem the ground up
to resolve various issues including the aforementionadbidity issue, and the older ver-
sion, from which TEMU is based on, is no longer supported. Bsedhe new version
of QEMU is significantly different from the old version, TEMhAs to be reimplemented
if it were to support the new version of QEMU and to resolve ril@bility issue. This
reimplementation has not completely materialized.

One requirement for a successful integration of our teakesgs the ability to save
and restore the program state efficiently. If we were to comlstitched concolic exe-
cution with the other two techniques, we need to be able tdlkartases when there are
multiple instances of serial decomposition (e.g., mudtighcrypted input fields controlled
by a loop for LECE and sequences of encrypted message for MAGE)ch a case, our
implementation must perform re-stitching at the entry afteancoding functions, in the
reverse order. The ability to save and restore the prograta sfficiently at each function

115

entry is required. This means that the lengthy reimplentiemtaf TEMU is needed and
thus we decided not to go on with the integration.

Integrating LECE and stitched concolic execution would regjturther assumptions
and heuristics to link the techniques together. Considahegcase in which a loop op-
erates on a variable-length input field inside a decompra&$ecryption function, LECE
alone would try to generate constraints based on the loophafdnction input but stitched
concolic execution would try to avoid solving such constitai As a result, we need to
link the LECE-generated constraints to other constraintside the encoding function.
For example, we might use program analysis to compose a nestramt based on the
relationship between the length of the input and the outpatdecompression/decryption
function (e.g., that they are of the same length), and conjovith the LECE-generated
constraints. The conjoined constraint would be in term$efftnction output (instead of
the function input) and stitched concolic execution carspe® the decision procedure.

Integrating LECE into MACE's state-space exploration stegc{®n[5.4.8) would im-
prove the performance of MACE further. Instead of spendinghmiime inside loops,
state-space exploration using LECE would focus on the dveffaicts of the loops and
could explore more states. The new input messages genel@ied each concolic exe-
cution step would be of variable length instead of fixed land#owever, if not handled
properly, the generation of variable length input messagmdd slow down MACE sig-
nificantly when complex long messages are repeatedly fekl isaMACE later on. To
avoid such a setback, we have to tweak the decision procsduhat, whenever possible,
it preferably generates short messages rather than therlongs.

6.2 Conclusion

Concolic execution of program code is important for secemgtated applications. How-
ever, basic implementations of concolic execution onlykweell on certain classes of
programs, such as commercial software and malware for wdoahnce code is not avail-
able. In this thesis, we have developed scalable technthaeextend symbolic reasoning
to more classes of binary programs. We have demonstratéduhacaling techniques
significantly speed up the process of automatic test inpoéiggion, which is the most
common application of concolic execution. We have also shthat our techniques en-
able some of these previously unexplored applicationd) sscmalware genealogy and
protocol model inference, which were hindered by the sdahalssue of concolic execu-
tion.

Poor handling of loops is a known issue of the traditionalrapph of concolic exe-

116

cution. The approach is limited to examining behavior of agpam one execution path
at a time and thus becomes susceptible to the combinatap&son in the number of
feasible execution paths which is prominent with the erisgeof loops. In this thesis,
we have developed a new scaling technique, loop-extendecbto execution, which
provides a middle ground for handling loops. Through autrsoftware vulnerability
discovery, we have confirmed that our scaling techniquafggntly reduces the number
of program executions required to discover buffer overflogd We have also shown that
loop-extended concolic execution allows us to describ@enalbility conditions in term
of loop-related properties and lengths of input fields angshanprove defense against
future attacks of known vulnerabilities.

Data decryption, data encryption, and the computation etkbums and hash func-
tions are difficult to reason about automatically. Concokeaition naturally has issues
when a program under analysis contains such functions. dceas this issue, we have
developed a technique that scales concolic execution soneabout programs that use
encoding functions. The technique is based on decomposenfptmulas induced by a
program, solving only a subset, and then re-stitching th&isas into a complete result.
Through automatic malware vulnerability discovery, wednakiown that our scaling tech-
niques improve the speed and reduces the memory usage otalicaxecution engine,
making it more practical. Using the vulnerabilities we fduwe have surveyed and con-
firmed our hypothesis that there are components in malwarehviénd to evolve slowly
over time and thus could be used to identify the malware faanil unknown suspicious
binary belongs to.

To help scale concolic execution to large network applicegithat communicate with
their environment through some protocols, we have develapeterative process of com-
bining concolic execution with knowledge of an abstract elad the program under anal-
ysis. Our technique can iteratively infer and refine an alostmodel that represents the
high-level logic of the network applications being analyz&hrough vulnerability discov-
ery, we have illustrated that our combined technique perédiaster and deeper program
analysis than the traditional approach.

Altogether, we have shown that concolic execution tectesqran be scaled to broad
classes of programs and are useful in a variety of importourgty applications. We hope
that the study presented in this thesis will encourage éuntbsearch of applying concolic
execution and other related techniques to any securiiteglissues that may arise in the
near future.

117

118

Bibliography

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

A. V. Aho, M. S. Lam, R. Sethi, and J. D. UllmarCompilers: Principles, Tech-
nigues and ToolsAddison Wesley, second edition, 2006] B3, 44

D. Angluin. Learning regular sets from queries and ceuvexamplesinformation
and Computation75(2):87-106, 1987.1P, 85,188, 89] 01, [02,[93, 98

T. Avgerinos, S. K. Cha, B. L. T. Hao, and D. Brumley. AEG: Antatic exploit
generation. IMNetwork and Distributed System Security Sympospages 283—
300, Feb. 201112, 16

G. Balakrishnan and T. W. Reps. Analyzing memory access&86 executables.
In Compiler ConstructionApr. 2004.[48

G. Balakrishnan and T. W. Reps. DIVINE: Discovering VatebIN Executables.
In Verification, Model Checking, and Abstract Interpretatia®MCAI), Jan. 2007.
43

T. Ball, R. Majumdar, T. Millstein, and S. Rajamani. AutoncaPredicate Ab-
straction of C Programs. IRLDI'01: Proc. of the ACM SIGPLAN 2001 Conf. on
Programming Language Design and Implementatimiume 36 ofACM SIGPLAN
Notices pages 203-213. ACM Press, 2001] 87

M. Barnett, R. Deline, M. Bhndrich, B. Jacobs, K. R. Leino, W. Schulte, and
H. Venter. Verified software: Theories, tools, experimentsapter The Spec# Pro-
gramming System: Challenges and Directions, pages 144-S@hger-Verlag,
2008.[86

T. Benzel, R. Braden, D. Kim, C. Neuman, A. Joseph, K. SklowerQOstrenga,
and S. Schwab. Design, deployment, and use of the DETERetksibProc. of the
DETER Community Workshop on Cyber Security Experimentatidiast on DE-
TER Community Workshop on Cyber Security ExperimentationasidUSENIX
Association, 2007, 28,99

119

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

D. L. Bird and C. U. Munoz. Automatic generation of randonif-edecking test
caseslBM Systems JournaR2(3):229-245, 1983, 15

BitBlaze: Binary analysis for computer securityhtt p: // bi t bl aze. cs.
ber kel ey. edu/ . 43,56

N. Bjgrner, N. Tillmann, and A. Voronkov. Path feasitjlianalysis for string-
manipulating programs. [hools and Algorithms for the Construction and Analysis
of SystemaVar. 2009 [41], 44

D. Brumley, J. Caballero, Z. Liang, J. Newsome, and D. Sofayvards automatic
discovery of deviations in binary implementations with kggtions to error de-
tection and fingerprint generation. RFroceedings of the 16th USENIX Security
Symposiumpages 213-228, Berkeley, California, USA, Aug. 2007. USENBX
sociation[P[16, 20

D. Brumley, J. Newsome, D. Song, H. Wang, and S. Jha. Tds\antomatic genera-
tion of vulnerability-based signatures.IBEE Symposium on Security and Privacy

May 2006.[2[¥, 16,19, 26,53

D. Brumley, H. Wang, S. Jha, and D. Song. Creating vulnétakignatures using
weakest pre-conditions. l@omputer Security Foundationduly 200758

J. Burnim and K. Sen. Heuristics for scalable dynami¢ tgsheration. InPro-
ceedings of the 23rd IEEE/ACM International Conference oro#atted Software
Engineering pages 443-446, 2008.123

J. Caballero, N. M. Johnson, S. McCamant, and D. Song. Bioagle extraction
and interface identification for security applications.NBSS’10: Proceedings of
the 17th Annual Network and Distributed System Security Ssionpopages 391—
408, Reston, VA, USA, Mar. 2010. Internet Sociétyl 68,6984,

J. Caballero, Z. Liang, P. Poosankam, and D. Song. Tosvgederating high cov-
erage vulnerability-based signatures with protocoHl@anstraint-guided explo-
ration. INRAID’09: Proceedings of the 12th International SymposiunRecent
Advances in Intrusion Detectiprolume 5758 ol ecture Notes in Computer Sci-
ence Heidelberg, Germany, Sept. 2009. Springét] 2] B] B4, 9631,[38[4B, 52,
83

J. Caballero, P. Poosankam, C. Kreibich, and D. Song.dditier: Enabling active
botnet infiltration using automatic protocol reverse-eegring. INCCS’09: Pro-
ceedings of the 16th ACM Conference on Computer and Commums&gcurity

120

http://bitblaze.cs.berkeley.edu/
http://bitblaze.cs.berkeley.edu/

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

pages 621-634, New York, NY, USA, Nov. 2009. ACM.[2] 16, [20,[72,/82[87,
[101[112

J. Caballero, P. Poosankam, S. McCamant, D. Babic, andmy.30nput generation
via decomposition and re-stitching: Finding bugs in ma&van Proceedings of the
17th ACM Conference on Computer and Communication Sec@hycago, IL,
October 2010 Vi

J. Caballero, H. Yin, Z. Liang, and D. Song. Polyglot: Auotatic extraction of pro-
tocol message format using dynamic binary analysisC@8&’07: Proc. of the 14th
ACM Conf. on Computer and Communications Secupgges 317-329. ACM,
2007.[20[31, 38,51, 87, 112

C. Cadar, D. Dunbar, and D. Engler. KLEE: Unassisted andraatic generation
of high-coverage tests for complex systems programsO$DI'08: Proceedings
of the 8th USENIX Symposium on Operating Systems Design gohenh@ntation

pages 209-224, Berkeley, California, USA, Dec. 2008. USENBbsdkiation.[11,
(15,93

C. Cadar and D. R. Engler. Execution generated test casms:ttimake systems
code crash itself. IBPIN’05: Proceedings of the 12th International SPIN Worksho
on Model Checking Softwargolume 3639 ot.ecture Notes in Computer Science
pages 2-23, Heidelberg, Germany, Aug. 2005. Springér.] 41,03

C. Cadar, V. Ganesh, P. M. Pawlowski, D. L. Dill, and D. R. Eeng EXE: Auto-
matically generating inputs of death. @omputer and Communications Security
Nov. 2006.[1

L. Cavallaro, P. Saxena, and R. Sekar. On the limits ofrmttion flow techniques
for malware analysis and containment. MMVA'08: Proceedings of the Fifth
Conference on Detection of Intrusions and Malware & VulneigbAssessment
volume 5137 ofLecture Notes in Computer Sciengages 143-163, Heidelberg,
Germany, July 2008. Springér.182

S. K. Cha, T. Avgerinos, A. Rebert, and D. Brumley. Unleaghmayhem on binary
code. InProc. of the IEEE Symposium on Security and Priv&an Francisco, CA,
May 2012[16

C. Y. Cho, D. Babt, P. Poosankam, K. Z. Chen, E. X. Wu, and D. Song. MACE:
Model-inference-assisted concolic exploration for peotoand vulnerability dis-
covery. InProceedings of the 20th USENIX Security Symposkam Francisco,
CA, Aug. 20111

121

[27] C.Y. Cho, D. Babg, R. Shin, and D. Song. Inference and analysis of formal nsodel
of botnet command and control protocols. @CS’10: Proc. of the 2010 ACM
Conf. on Computer and Communications Secupigges 426—-440. ACM, 2010.

[12,[87[90[98, 94

[28] C. Y. Cho, J. Caballero, C. Grier, V. Paxson, and D. Song.ghtsifrom the in-
side: A view of botnet management from infiltration. IWWEET'10: Proc. of the
3rd USENIX Workshop on Large-Scale Exploits and Emergerdakfmpages 1-1.
USENIX Association, 201087, 112

[29] P. M. Comparetti, G. Wondracek, C. Kruegel, and E. Kirdaospex: Protocol
specification extraction. I8&P’09: Proc. of the 2009 30th IEEE Symposium on
Security and Privacypages 110-125. IEEE Computer Society, 200984, 87, 95

[30] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stdmtroduction to Algo-
rithms The MIT Press, 2nd edition, 200L_x[i, 111

[31] M. Costa, M. Castro, L. Zhou, L. Zhang, and M. Peinado. BeundSecuring
software by blocking bad input. I8ymposium on Operating Systems Principles

Oct. 200720, 48, 53

[32] M. Costa, J. Crowcroft, M. Castro, A. Rowstron, L. Zhou, L aflg, and P. Barham.
Vigilante: End-to-end containment of internet worms.Siymposium on Operating
Systems Principle®©ct. 200526, 52

[33] P. Cousot and N. Halbwachs. Automatic discovery of lmesatraints among vari-
ables of a program. IRrinciples of Programming Language¥an. 197852

[34] J. R. Crandall, S. F. Wu, and F. T. Chong. Minos: Architegfsupport for pro-
tecting control data. IMCM Transactions on Architecture and Code Optimization
pages 359-389, Dec. 2006.] 52

[35] W. Cui, J. Kannan, and H. J. Wang. Discoverer: Automatatqrol reverse engi-
neering from network traces. Froc. of 16th USENIX Security Symposjypages
1-14. USENIX Association, 2007. 20,187,112

[836] W. Cui, M. Peinado, K. Chen, H. J. Wang, and LunfBriz. Tupni: Automatic re-
verse engineering of input formats. @CS’08: Proceedings of the 15th ACM Con-
ference on Computer and Communications Secupigges 391-402. ACM, 2008.
20,[87[11P

122

[37] W. Cui, M. Peinado, H. J. Wang, and M. Locasto. Shieldgamomatic data patch
generation for unknown vulnerabilities with informed pradp. In I[EEE Symposium
on Security and PrivagyMay 2007 [7[26, 50, 53

[38] CVE: Common vulnerabilities and exposurés.t p: // cve. mitre. org/ .[78

[39] J. Daemen and V. RijmefThe Design of Rijndael: AES - The Advanced Encryption
Standard Springer, Heidelberg, Germany, Mar. 2002] 57

[40] D. Danchev. Help! someone hijacked my 100k+ Zeus batnet
Feb. 20009. htt p: // ddanchev. bl ogspot. com’ 2009/ 02/
hel p- soneone- hi j acked- my- 100k- zeus. ht nl . [16,[80

[41] D.De, A. Kumarasubramanian, and R. Venkatesan. Inveiaitacks on secure hash
functions using SAT solvers. IBAT’'07: Proceedings of the Tenth International
Conference on Theory and Applications of Satisfiability iligstvolume 4501 of
Lecture Notes in Computer Sciengmages 377-382, Heidelberg, Germany, 2007.
Springer[5P

[42] C. de la Higuera. Grammatical Inference: Learning Automata and Grammars
Cambridge University Press, 2010.] 86

[43] D. Dittrich, F. Leder, and T. Werner. A case study in e#thidecision making regard-
ing remote mitigation of botnets. WECSR’10: Workshop on Ethics in Computer
Security Researgh.ecture Notes in Computer Science, Heidelberg, Germany, Ja
2010. Springef_80

[44] N. Dor, M. Rodeh, and M. Sagiv. CSSV: towards a realistial tor statically
detecting all buffer overflows in C. IRrogramming Language Design and Imple-
mentation June 200352

[45] J. W. Duran and S. C. Ntafos. An evaluation of random negstilEEE Trans.
Software Eng.10(4):438-444, 1984. 56

[46] N. Falliere and E. Chien. Zeus: King of the bots, 2009http://
WWw. symant ec. com cont ent/ en/ us/ ent er pri se/ medi a/
security response/ whi t epapers/zeus_ki ng_of bots. pdf.

(71

[47] V. Ganapathy, S. Jha, D. Chandler, D. Melski, and D. VitBlffer overrun detec-
tion using linear programming and static analysis.Clmmputer and Communica-
tions SecurityOct. 200324, 52

123

http://cve.mitre.org/
http://ddanchev.blogspot.com/2009/02/help-someone-hijacked-my-100k-zeus.html
http://ddanchev.blogspot.com/2009/02/help-someone-hijacked-my-100k-zeus.html
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeus_king_of_bots.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeus_king_of_bots.pdf
http://www.symantec.com/content/en/us/enterprise/media/security_response/whitepapers/zeus_king_of_bots.pdf

[48] V. Ganesh and D. L. Dill. A decision procedure for bitet@rs and arrays. In
CAV’07: Proceedings of the 19th International Conference om@ater Aided
Verification volume 4590 olecture Notes in Computer Sciengages 519-531,
Heidelberg, Germany, July 2007. Sprinder (21,40, 44

[49] V. Ganesh, T. Leek, and M. C. Rinard. Taint-based direatkeidlebox fuzzing. In
ICSE’09: Proceedings of the 31st International Conferenc&oftware Engineer-
ing, pages 474-484, Washington, DC, USA, May 2009. IEEE Compuieie§.
15,5682

[50] ghttpd.htt p: // gazt ek. sf. net/ghttpd/.

[51] P. Godefroid. Compositional dynamic test generatiolPOPL'07: Proceedings of
the 34th ACM SIGPLAN-SIGACT Symposium on Principles of ProgiamLan-
guagespages 47-54, New York, NY, USA, Jan. 2007. ACM] 52, 83

[52] P. Godefroid, A. Kigun, and M. Y. Levin. Grammar-based whitebox fuzzing. In
PLDI'08: Proceedings of the ACM SIGPLAN 2008 Conference orgrRarmming
Language Design and Implementatigrages 206—215, June 2008] 31],[41,[44, 52,
83

[53] P. Godefroid, N. Klarlund, and K. Sen. DART: directed@uated random test-
ing. In PLDI'05: Proceedings of the ACM SIGPLAN Conference on Prognamgy
Language Design and Implementatigrages 213—-223, New York, NY, USA, June
2005. ACM.[1[15[111, 41, 85,93

[54] P. Godefroid, M. Y. Levin, and D. A. Molnar. Automated itdbox fuzz testing. In
NDSS’08: Proceedings of the Network and Distributed Systenri8eSymposium
Reston, VA, USA, Feb. 2008. The Internet Sociély. 1/ 15[23526

[55] B. S. Gulavani, T. A. Henzinger, Y. Kannan, A. V. Nori, aBdK. Rajamani. SYN-
ERGY: a new algorithm for property checking. F8E’06: Proc. of the 14th ACM
SIGSOFT Int. Symp. on Foundations of Software Enginegpages 117-127.
ACM, 2006.[88

[56] S. Gulwani and G. C. Necula. Discovering affine equaditising random interpre-
tation. InPrinciples of Programming Language¥an. 200352

[57] S.Hanna, R. Rolles, A. Molina-Markham, P. Poosankam,K afd D. Song. Take
two software updates and see me in the morning: The case ftarase security
evaluations of medical devices. Rroceedings of the 2nd USENIX Workshop on
Health Security and Privacy (HealthSe&an Francisco, CA, Aug. 2011.]16

124

http://gaztek.sf.net/ghttpd/

[58] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. SaféaVerification with
Blast. INSPIN’03: Proc. of the 10th Int. Workshop on Model Checking difvizoe,
volume 2648 oLNCS pages 235-239. Springer-Verlag, 2003. 87

[59] P. H. Ho, T. Shiple, K. Harer, J. Kukula, R. Damiano, V. Bexto, J. Taylor, and
J. Long. Smart simulation using collaborative formal anddation engines. In
ICCAD’00: Proc. of the 2000 IEEE/ACM Int. Conf. on Computer-aidkssign
pages 120-126. IEEE Press, 2000. 88

[60] IDA Pro. http://ww. hex-rays. com i dapro/.[43

[61] S. C. Johnson. Yacc: Yet another compiler-compiler.hfgcal Report (Computer
Science) No. 32, Bell Laboratories, July 1975] 38

[62] M. Karr. Affine relationships among variables of a pragr. Acta Informatica
6:133-151, 1974. 52

[63] M. Kassner. The top 10 spam botnets: New and improveb, Z&10.ht t p: //
bl ogs. t echrepublic. com coni 10t hi ngs/ ?p=1373.[71

[64] A. Kiezun, P. J. Guo, K. Jayaraman, and M. D. Ernst. Automatic icreatf SQL
injection and cross-site scripting attacks.IG5E’09: Proceedings of the 31st In-
ternational Conference on Software Engineeripgges 199-209, Washington, DC,
USA, May 2009. IEEE Computer Sociefy.[2] 16

[65] J. C. King. Symbolic execution and program testi@@mmunications of the ACM
19(7):385-394, 1976. 15

[66] M. Kobayashi. Dynamic characteristics of looSEE Transactions on Computers
33(2):125-132, Feb. 1984.132,]33

[67] C. Kolbitsch, T. Holz, C. Kruegel, and E. Kirda. Inspectdadget: Automated
extraction of proprietary gadgets from malware binari@sSP’10: Proceedings of
the 31st IEEE Symposium on Security and Privatgshington, DC, USA, May
2010. IEEE Computer Society. 181,182

[68] C. Leita, K. Mermoud, and M. Dacier. Scriptgen: an auttedsascript generation
tool for Honeyd. InProceedings of the 21st Annual Computer Security Applinatio
ConferenceDec. 200520

[69] J. Leyden. Monster botnet held 800,000 people’s detail The Reg-
ister, Mar. 2010. http://ww. t heregi ster. co. uk/ 2010/ 03/ 04/
mar i posa_pol i ce_hunt nore_bot herders/.[54

125

http://www.hex-rays.com/idapro/
http://blogs.techrepublic.com.com/10things/?p=1373
http://blogs.techrepublic.com.com/10things/?p=1373
http://www.theregister.co.uk/2010/03/04/mariposa_police_hunt_more_botherders/
http://www.theregister.co.uk/2010/03/04/mariposa_police_hunt_more_botherders/

[70] Z. Li, M. Sanghi, Y. Chen, Ming-Yang Kao, and B. Chavez. Hamgst signature
generation for zero-day polymorphic worms with provabl@aek resilience. In
Proceedings of the IEEE Symposium on Security and Prj\\ay 200619

[71] Z. Lin, X. Jiang, D. Xu, and X. Zhang. Automatic protodormat reverse engi-
neering through context-aware monitored executionNétwork and Distributed
System Securityeb. 2008[_31

[72] F. Logozzo and M. Bhndrich. Pentagons: a weakly relational abstract donuaiin f
the efficient validation of array accesses. Symposium on Applied Computjng
Mar. 200852

[73] M86 Security Labs. Botnet statistics for week ending iApt, 2010, Apr. 2010.
http://ww. nB6security.conil| abs/bot _statistics.asp.[/1

[74] R. Majumdar and R.-G. Xu. Directed test generation usymglslic grammars. In
Automated Software Engineeringov. 2007 [31 52

[75] S. McCamant and M. D. Ernst. Quantitative informationwflas network flow
capacity. InPLDI'08: Proceedings of the ACM SIGPLAN 2008 Conference on
Programming Language Design and Implementatipages 193-205, New York,
NY, USA, June 2008. ACM_68

[76] G. H. Mealy. A method for synthesizing sequential citsuBell System Technical
Journal 34(5):1045-1079, 1955. B0

[77] Smashing the Mega-D/Ozdok botnet in 24 houfs.t p: // bl og. fi reeye.
com resear ch/ 2009/ 11/ smashi ng- t he- ozdok. ht m . [16,[81

[78] Microsoft Corporation. Microsoft security bulletin N03-046: Vulnerability in
GDI could allow remote code execution, Aug. 20071 48

[79] Microsoft Corporation.SQL Server Resolution Protocol Specificatidan. 2009.
Revision 0.6.1[49

[80] B. P. Miller, L. Fredriksen, and B. So. An empirical studytioe reliability of unix
utilities. Communications of the ACN3(12):32-44, 1990. 15

[81] A. Miné. The octagon abstract domakigher-Order and Symbolic Computation
19(1):31-100, Mar. 2006. 52

126

http://www.m86security.com/labs/bot_statistics.asp
http://blog.fireeye.com/research/2009/11/smashing-the-ozdok.html
http://blog.fireeye.com/research/2009/11/smashing-the-ozdok.html

[82] D. Molnar, X. C. Li, and D. Wagner. Dynamic test generatio find integer bugs in
x86 binary Linux programs. liRProceedings of the 18th USENIX Security Sympo-
sium pages 67-81, Berkeley, California, USA, Aug. 2009. USEND§dsation.

[15

[83] D. Moore, V. Paxson, S. Savage, C. Shannon, S. Staniéordi N. Weaver. Inside
the Slammer wormlEEE Security and Privacyl(4):33—-39, July-Aug. 2003, 48

[84] S. Muchnick. Advanced Compiler Design and Implementatidkcademic Press,

1997.[32(4B

[85] M. Miller-Olm and H. Seidl. Analysis of modular arithmeti8CM Transactions
on Programming Languages and Systeg®¥5), Aug. 2007[_52

[86] National Institute of Standards and Technology, Gasburg, MD, USA.Federal
Information Processing Standard 180-2: Secure Hash Stahdaig. 200255, 57

[87] J. Newsome, B. Karp, and D. Song. Polygraph: Automdtiagnerating signa-
tures for polymorphic worms. IRroceedings of the IEEE Symposium on Security
and Privacy May 200518

[88] J. Newsome and D. Song. Dynamic taint analysis for aatandetection, analy-
sis, and signature generation of exploits on commoditywsot. InNetwork and
Distributed System Securjtlyeb. 2005[52

[89] OpenSSL: The open source toolkit for SSL/TLShtt p: // www. openssl .
or g/ .[68,[69

[90] OSVDB. Cutwail Bot svchost.exe CC Message Handling Remoterf@w, July
2010.ht t p: // osvdb. or g/ 66497.[75

[91] OSVDB. Gheg Bot RtlAllocateHeap Function Null Derefere®emote DoS, July
2010.ht t p: // osvdb. or g/ 66498.[75

[92] OSVDB. Zbot Trojan svchost.exe Compressed Input HagdRemote Overflow,
July 2010.ht t p: / / osvdb. or g/ 66501.[75

[93] OSVDB. Zbot Trojan svchost.exe Network Message Craftagdad Size Han-
dling Infinite Loop Remote DoS, July 20168t t p: / / osvdb. or g/ 66500. [78

[94] OSVDB. Zbot Trojan svchost.exe RtlAllocateHeap Funttidull Dereference Re-
mote DoS, July 201tht t p: / / osvdb. or g/ 66499. [75

127

http://www.openssl.org/
http://www.openssl.org/
http://osvdb.org/66497
http://osvdb.org/66498
http://osvdb.org/66501
http://osvdb.org/66500
http://osvdb.org/66499

[95] W. A. Owens, K. W. Dam, and H. S. Lin, editordechnology, Policy, Law, and
Ethics Regarding U.S. Acquisition and Use of Cyberattack Gdiias. The Na-
tional Academies Press, Washington, DC, USA, 2009. 80

[96] D. Peled, M. Y. Vardi, and M. Yannakakis. Black box cheuki In Proc. of the
IFIP TC6 WG6.1 Joint Int. Conf. on Formal Description Techreguor Distributed
Systems and Communication Protocols (FORTE XII) and ProtSpecification,
Testing and Verification (PSTV XI)Xfages 225-240. Kluwer, B.V., 1999.]192

[97] QEMU. htt p://wi ki . gemu. or g/ Mai n_Page. 115

[98] D. Qi, A. Roychoudhury, and Z. Liang. Test generationxpase changes in evolv-
ing progrms. InProceedings of the 25th IEEE/ACM International Conference on
Automated Software Engineering (AS&gptember 2010, 20

[99] P. Saxena, P. Poosankam, S. McCamant, and D. Song. bdepeded symbolic ex-
ecution on binary programs. I8STA'09: Proceedings of the 18th ACM/SIGSOFT
International Symposium on Software Testing and Anglysiges 225-236, New
York, NY, USA, July 2009. ACM Vi

[100] P. Saxena, R. Sekar, and V. Puranik. Efficient fine-g@hininary instrumentation
with applications to taint tracking. I€ode Generation and Optimizatip@pr.
2008.043

[101] E. J. Schwartz, T. Avgerinos, and D. Brumley. All you ewanted to know about
dynamic taint analysis and forward symbolic execution (bight have been afraid
to ask). INIEEE Symposium on Security and Privapgges 317-331, May 2010.
17

[102] K. Sen, D. Marinov, and G. Agha. CUTE: A concolic unittieg engine for C. In
European Software Engineering Conference held jointly withng@ations of Soft-
ware EngineeringSept. 200515, 41, 93

[103] Shadowserver foundatioht t p: / / ww. shadowser ver . or g/ . [81

[104] M. Shahbaz and R. Groz. Inferring Mealy machinesFhY09: Proc. of the 2nd
World Congress on Formal Methodsages 207-222. Springer, 2009] 02,93, 94

[105] D. Song, D. Brumley, H. Yin, J. Caballero, I. Jager, M. G, Z. Liang, J. New-
some, P. Poosankam, and P. Saxena. BitBlaze: A new approacmfmuter se-
curity via binary analysis (keynote invited paper). IRISS'08: Proceedings of

128

http://wiki.qemu.org/Main_Page
http://www.shadowserver.org/

[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

the 4th International Conference on Information Systemsii@gcvolume 5352 of
Lecture Notes in Computer Scienpages 1-25, Heidelberg, Germany, Dec. 2008.
Springer[16, 21, 48, 56, 69

M. Sutton, A. Greene, and P. Amirituzzing: Brute Force Vulnerability Discovery
Addison-Wesley, 200756

Cutwails poorly written code leads to heavy SSL traffieb. 2010. htt p://
bl og.threatfire. com 2010/ 02/ page/ 2.[71

J. Tian. Software Quality Engineering: Testing, Quality Assurarane] Quantifi-
able ImprovementWiley, 2005.[15

N. Tillmann and J. De Halleux. Pex: white box test gatien for .net. INTAP’08:
Proceedings of the 2nd international conference on Testispaioofs pages 134—
153, Berlin, Heidelberg, 2008. Springer-Verlag. 1

M. Veanes, C. Campbell, W. Grieskamp, W. Schulte, NnTalhn, and L. Nachman-
son. Formal methods and testing. chapter Model-baseddestiobject-oriented
reactive systems with spec explorer, pages 39—76. Spf\vaytag, 2008 86

S. Venkataraman, A. Blum, and D. Song. Limits of leagabased signature gener-
ation with adversaries. IRroceedings of the 16th Annual Network and Distributed
System Security Symposiureb. 2008[_119

J. M. Vilar. Query learning of subsequential transehsc InProc. of the 3rd Int. Col-
loquium on Grammatical Inference: Learning Syntax fromtSecespages 72—-83.
Springer-Verlag, 1996, 96, 1113

T. Wang, TaoWei, Z. Lin, and W. Zou. Intscope: Autoroatly detecting integer
overflow vulnerability in x86 binary using symbolic exeauti InNDSS’09: Pro-
ceedings of the 16th Annual Network and Distributed SystemriBe8ymposium
San Diego, CA, 2009.15

T. Wang, T. Wei, G. Gu, and W. Zou. TaintScope: A cheoksaware directed
fuzzing tool for automatic software vulnerability detecti InSP’10: Proceedings
of the 31st IEEE Symposium on Security and Priy&égshington, DC, USA, May
2010. IEEE Computer Societyi [8,182

Z. Wang, X. Jiang, W. Cui, X. Wang, and M. Grace. ReFormattomatic reverse
engineering of encrypted messages.EBORICS’09: 14th European Symposium

129

http://blog.threatfire.com/2010/02/page/2
http://blog.threatfire.com/2010/02/page/2

[116]
[117]

[118]

[119]

[120]

[121]

[122]

[123]

on Research in Computer Securityolume 5789 ofLecture Notes in Computer
Science pages 200-215, Heidelberg, Germany, Sept. 2009. Sprif@é82,[87,
[101[112

Wireshark.ht t p: / / www. wi r eshar k. or g.[44

G. Wondracek, P. M. Comparetti, C. Kruegel, and E. Kirdautomatic network
protocol analysis. IiNetwork and Distributed System Securfgb. 2008[_20, 31

Y. Xie and A. Aiken. Scalable error detection using leam satisfiability. In
POPL'05: Proceedings of the 32nd ACM SIGPLAN-SIGACT Sympasnminci-
ples of Programming Languaggsages 351-363, New York, NY, USA, Jan. 2005.
ACM.

Y. Xie, A. Chou, and D. Engler. ARCHER: Using symbolic, patimsitive analysis
to detect memory access errorsFundations of Software Engineering held jointly
with European Software Engineering Confergrigept. 200326, 52

R.-G. Xu, P. Godefroid, and R. Majumdar. Testing for bufbverflows with length
abstraction. Innternational Symposium on Software Testing and Anglykily

2008.[26[4K, 47, 52

L. Zhang, C. F. Madigan, M. H. Moskewicz, and S. Malikfi&gent conflict driven
learning in a boolean satisfiability solver. IBCAD’01: Proc. of the Int. Conf. on
Computer-Aided Desigmpages 279-285. IEEE Press, 2001. 85

M. Zitser, R. Lippmann, and T. Leek. Testing static gsa tools using exploitable
buffer overflows from open source code. Houndations of Software Engineering

Nov. 2004 [6[24, 45, 52
The zlib library.ht t p: / / www. zl i b. net /.

130

http://www.wireshark.org
http://www.zlib.net/

	1 Introduction
	1.1 Introduction
	1.2 Main Contributions
	1.2.1 Loop-extended Concolic Execution
	1.2.2 Decomposition and Re-stitching of Encoding Functions
	1.2.3 Model-assisted Concolic Execution

	1.3 Organization of the Thesis

	2 Concolic Execution of Binary Programs
	2.1 Introduction
	2.2 Concolic Execution for Test Input Generation
	2.3 Other Known Applications of Concolic Execution
	2.4 BitFuzz: Our Concolic Execution Engine

	3 Loop-extended Concolic Execution
	3.1 Introduction
	3.2 Overview
	3.2.1 Motivation and Challenges
	3.2.2 Technique Overview

	3.3 Algorithms
	3.3.1 Symbolic Analysis of Loop Dependencies
	3.3.2 Linking Loops to Input

	3.4 Applying LECE
	3.4.1 Loop-extended Condition Analysis
	3.4.2 Uses for Loop-extended Conditions
	3.4.2.1 Improving Test Generation
	3.4.2.2 Vulnerability Discovery
	3.4.2.3 Vulnerability Diagnosis

	3.5 Implementation
	3.6 Experimental Evaluation
	3.6.1 Evaluation on a Benchmark Suite
	3.6.2 Evaluation on Real-World Programs
	3.6.3 Further Applications

	3.7 Limitations
	3.8 Related Work
	3.8.1 Analysis Approaches
	3.8.2 Discovering and Diagnosing Buffer Overflows

	3.9 Conclusion

	4 Decomposition and Re-stitching
	4.1 Introduction
	4.2 Problem Definition & Overview
	4.2.1 Problem Definition
	4.2.2 Approach Overview

	4.3 Stitched Concolic Execution
	4.3.1 Decomposition and Re-Stitching
	4.3.1.1 Decomposing Constraints
	4.3.1.2 Re-Stitching
	4.3.1.3 The Functional Perspective

	4.3.2 Identification
	4.3.2.1 Identifying Encoding Functions
	4.3.2.2 Identifying Inverse Functions

	4.3.3 Multiple Encoding Layers

	4.4 Implementation
	4.4.1 Decomposition and Re-stitching of Concolic Execution
	4.4.2 Internet-in-a-Workstation

	4.5 Experimental Evaluation
	4.5.1 Identification of Encoding Functions and Their Inverses
	4.5.2 Decomposition vs. Non-Decomposition
	4.5.3 Malware Vulnerabilities
	4.5.4 Bug Persistence over Time

	4.6 Discussion
	4.6.1 Applications and Ethical Considerations
	4.6.2 Limitations

	4.7 Related Work
	4.8 Conclusion

	5 Model-assisted Concolic Execution
	5.1 Introduction
	5.2 Related Work
	5.3 Problem Definition and Overview
	5.3.1 Problem Statement
	5.3.2 Applications
	5.3.3 Preliminaries

	5.4 Approach
	5.4.1 A High-Level Description
	5.4.2 Model Inference with L*
	5.4.3 The State-Space Exploration Phase
	5.4.4 Model Refinement

	5.5 Implementation
	5.5.1 L* as a Client
	5.5.2 Model Inference Optimizations
	5.5.3 State-Space Exploration

	5.6 Experimental Evaluation
	5.6.1 Experimental Setup
	5.6.2 Model Inference and Refinement
	5.6.3 Discovered Vulnerabilities
	5.6.4 Comparison with the Baseline

	5.7 Limitations
	5.8 Conclusion

	6 Conclusion
	6.1 Potential Integration of the Proposed Techniques
	6.2 Conclusion

	Bibliography

