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Abstract

Concolic execution is a technique for program analysis that makes the val-
ues of certain inputs symbolic, symbolically executes a program’s code, and
computes a symbolic logical formula to represent a desired behavior of the
program under analysis. The computed formula is then solvedby a decision
procedure to determine whether the desired behavior is feasible and, if so,
provide an example program input that satisfies the formula.Concolic execu-
tion and similar techniques have widely been applied to a variety of security-
related applications including automatic test input generation, vulnerability
discovery, exploit generation, signature generation, protocol reverse engineer-
ing, and detecting deviations between software implementations.

Although there has been a great success in applying it to various security-
related applications, a basic implementation of concolic execution only works
well on small programs and scaling it to real-world binary programs is diffi-
cult. One reason is that programs often contain certain codeconstructs that
are difficult to reason about directly such as loops and encoding functions.
Another reason is that the number of symbolic formulas growsdrastically in
proportion to the size of the program being analyzed.

These observations led us to develop three scaling techniques for concolic
execution. The first scaling technique, loop-extended concolic execution, fo-
cuses on improving the efficiency of concolic execution whenanalyzing pro-
gram portions that involve loops. The second technique, decomposition and
re-stitching of concolic execution, addresses the issue that arose from the pres-
ence ofencoding functions, which are difficult to reason about automatically.
The third technique uses the state model of the program underanalysis to
guide concolic execution. Our techniques work on program binaries and do
not require the presence of source code or debugging information in the bina-
ries.

We apply our scaled concolic execution to a variety of security-related
applications. For each of our scaling techniques, we demonstrate that they
significantly improve the performance and usability of automatic test input
generation and vulnerability discovery, which are previously known applica-
tions of concolic execution. We also study unexplored applications of con-
colic execution in security-related problems such as malware genealogy and
protocol model inference.
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Chapter 1

Introduction

1.1 Introduction

In this thesis, we develop techniques that scale concolic execution to broad classes of
binary programs and apply it to a variety of security-related applications. We demon-
strate that our scaling techniques significantly improve the performance and usability of
previously known applications of concolic execution such as vulnerability discovery and
signature generation. We then study further unexplored uses of concolic execution in
security-related problems such as malware genealogy and protocol model inference.

Concolic execution is a technique for program analysis. By making the value of the
program input symbolic, it symbolically executes a program’s code and computes values
for program variables in form of symbolic logical formulas.A computed formula is then
provided to and can be solved by a decision procedure to determine whether it is possible
for the corresponding variable to have some specific concrete value and what value the
input must be, in the first place, for this to be feasible. Concolic execution and similar
techniques have widely been applied to a variety of security-related applications. One of
their most prevalent applications isautomatic test input generation(also referred to as
program state-space exploration) [21, 22, 23, 53, 54, 109]. In this application of concolic
execution, a program is concretely executed once with some initial input. Then, a concolic
execution engine can examine the branch conditions along the executed control-flow path
and use a decision procedure to find an input that would reverse a branch condition from
true to false or vice-versa. The process is repeated iteratively to discover more inputs that
trigger new control-flow paths, and thus more program statesto be tested. This technique
is particularly useful for automatic generation of high-coverage test inputs and for software
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vulnerability discovery. Other security-related applications of concolic execution include
vulnerability-based signature generation [13, 17], exploit generation [3, 64], protocol re-
verse engineering [18], and detecting deviations between software implementations [12].

Although there has been a great success in applying it to various security-related appli-
cations, a basic implementation of concolic execution onlyworks well on small programs
or on program procedures and scaling it to real-world binaryprograms is difficult. One
reason is that programs often contain certain code constructs that are difficult to reason
about directly. Common examples of such code constructs are loops and encoding func-
tions such as decryption and checksum computation. Their existence results in symbolic
formulas that tend to be large, complicated, and difficult tosolve. Another reason is that
the number of symbolic formulas grows drastically in proportion to the size of the program
being analyzed. Without proper prioritization schemes, the overall approach becomes less
and less efficient.

These observations led us to develop techniques that scale concolic execution to broad
classes of binary programs. Our techniques work on program binaries and do not require
the presence of source code or debugging information in the binaries. This provides us two
key benefits toward security-related applications. First,it allows us to readily analyze a
wide range of closed source software including commercial off-the-shelf (COTS) software
and malware, which are already distributed in binary forms.In various cases, the users of
COTS may want to analyze security properties of COTS because there is no guarantee that
the software would be free of security flaws. In such situations, the ability to analyze the
software from the binary directly is useful because the COTS developers may decide not
to share the source code and related documentations. Similarly, in the case of malware,
the identity of malware author is usually unknown at the timeof its discovery and it thus
leaves only the captured malware binaries as a starting point for security analysts. Second,
the program binary is what gets executed and thus provides a more faithful representation
of the program than the source code does. Semantics of the binary and the source code
may vary slightly due to compiler errors and optimizations.

In this thesis, we are interested in programs that read and process some input and be-
have deterministically with respect to this input. Depending on the program and the goal of
our analysis, the input can be anything including command line arguments, physical files,
incoming network traffic, and the return values of system calls. Determinism provides us
a guarantee that repeatedly executing a program with the same input always provides the
same result. When performing concolic execution, determinism can be achieved on any
programs by disabling run-time randomization, enforcing the same random seeds, or con-
sidering run-time non-deterministic variables as parts ofthe program input. In most cases,
the presence or absence of randomization do not affect the results of our analysis.
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Figure 1.1: Summary of Techniques and Applications.

This thesis consists of two main parts: techniques and applications. Figures 1.1 sum-
marizes the techniques covered in this thesis and the security-related applications they en-
able. Unshaded boxes are the traditional technique and application already known prior to
our work. Shaded boxes are novel techniques and novel applications first proposed in this
thesis. In particular, we develop three techniques for scaling concolic execution. The first
scaling technique, loop-extended concolic execution, focuses on improving the efficiency
of concolic execution when analyzing program portions thatinvolve loops. The second
technique, decomposition and re-stitching of concolic execution, addresses the issue that
arose from the presence ofencoding functions, which are difficult to reason about auto-
matically. The third technique, model-assisted concolic execution, uses the state model
of the program under analysis to guide concolic execution. For each of our scaling tech-
niques, we demonstrate that they significantly improve the performance and usability of
automatic test input generation and vulnerability discovery, which are previously known
applications of concolic execution.

We also study unexplored applications of concolic execution in security-related prob-
lems such as malware genealogy and protocol model inference. We show that our tech-
niques enable some of these previously unexplored applications which were hindered by
the scalability issue of concolic execution. In particular, loop-extended concolic execu-
tion allows us to describe vulnerability conditions in termof loop-related properties and
lengths of input fields. A subsequent work [17] uses such vulnerability conditions to au-
tomatically generate vulnerability-based signatures that help detect malicious exploitation
of the vulnerabilities. Another technique, decompositionand restitching, let us symboli-
cally reason about the behaviors of malware, even when its communication is encrypted,
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and thus enable our study in malware genealogy. And by alternating our model-assisted
concolic execution technique with L*, an existing online technique for inferring the high-
level model of an application, we are able to improve the end results of both techniques
and apply the combined technique to infer the protocol modelof complex applications
such as Samba and VNC with little manual intervention.

1.2 Main Contributions

In this section, we introduce the three scaling techniques we develop, and the security-
related applications that the techniques enable.

1.2.1 Loop-extended Concolic Execution

Concolic execution and similar techniques have been widely used for finding and under-
standing software bugs, including security-relevant ones. To find software bugs, concolic
execution first concretely executes a program, with some initial input, to create a path
and then computes symbolic logical formulas to represent the branch conditions along the
executed control-flow path. Through manipulation of the formulas, such as negation of
a particular branch condition, a concolic execution enginecan generate a new formula,
which is then solved with a decision procedure. If a solutionexists, the solution represents
a new program input that shall take the program along a different control-flow path. The
process is repeated iteratively to create inputs that coverdifferent control-flow paths and
may trigger hidden bugs in the program.

If a bug has already been observed and a sample buggy input hasbeen given, concolic
execution can be used to diagnose the bug. Again, one can concretely execute the pro-
gram, with the buggy input being treated as symbolic, and examine the branch conditions
that lead to the point of program failure. Other conditions on the value of input that trig-
ger the bug can also be extracted using this approach. Previous researches [13, 17] have
shown that these conditions, known asvulnerability conditions, are useful for automat-
ically generating signatures to filter attacks, or to help a security analyst understand the
vulnerability.

Problem Overview. Although concolic execution has been successfully used in the afore-
mentioned applications, its existing approach is limited to examining behavior of a pro-
gram one execution path at a time. This poses a significant challenge in making concolic
execution scalable. When analyzing larger programs, the technique becomes less and less
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effective, largely due to the combinatorial explosion in the number of feasible execution
paths.

This shortcoming becomes more apparent when concolic execution has to deal with
loops, especially those whose number of loop iterations is controlled by the program in-
put. In such cases, there are potentially many distinct execution paths to be examined
individually, with each of those paths representing a different number of loop iterations
being executed. Although the examined paths are distinct, their effects on the program’s
overall semantic may vary only slightly and a thorough exploration of such loops may be
unnecessary. Simple heuristics, such as considering only execution paths with the same
number of loop iterations as in the original program execution, can mitigate this combina-
torial explosion problem. However, these heuristics will fail to expose bugs that are related
to loops, such as buffer overflows, which are common and tend to be security-relevant.

In this thesis, we develop a new scaling technique, loop-extended concolic execution,
which provides a middle ground for handling loops. Loop-extended concolic execution
abstracts the effect of loops over all execution paths and summarizes them into a small
and concise set of symbolic formulas. It does not suffer fromthe combinatorial explosion
induced by the presence of loops but is yet able to reason about program behaviors related
to the number of loop iterations.

Intuition and Approach. The traditional technique of concolic execution considersonly
direct data dependencies of program variables. When considering loops that iterate through
program inputs, the formulas based on direct data dependency tend to be repetitive and
high in number because each single loop iteration results inone distinct formula and thus
make concolic execution unscalable. Our intuition is to replace these repetitive formulas
with a more concise set of simplified formulas that are based on loop dependency instead.
Thus, the goal of loop-extended concolic execution is to infer these loop-related formulas
so that we can later perform symbolic reasoning on them. Specifically, the repetitive for-
mulas are those from the loop exit conditions and the loop-related formulas are inferred
from the loop invariants, which are properties that hold throughout the execution of the
loop. Because the size of formula set is reduced from being bounded by the number of
loop iteration to being bounded by the number of loop invariants, concolic execution is
more scalable.

We need to express explicitly the inferred loop-related formulas so that we can pass
them to the decision procedure. To achieve this, we introduce two new kinds of symbolic
variables: loop trip counts and auxiliary variables. The loop-related formulas will be
expressed in terms of existing symbolic variables as well asthese new symbolic variables.
A loop trip count represents the number of iterations each loop has been iterated at a
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specific point along the program execution. Thus, the numberof loop trip counts will be
the same as the number of loop occurrences. Anauxiliary variablerepresents a property
of the program input such as the length of an input field and an index to a field delimiter,
which could affect the number of loop iterations during program execution. The number
of auxiliary variables depends on how many variable-lengthfields there are in the program
input.

Loop-extended concolic execution consists of two steps. Inthe first step, loop-extended
concolic execution performs a one-pass forward symbolic analysis along a dynamic exe-
cution trace to determine dependencies of program variables on the loop trip counts. In
particular, it searches for variables whose value is a linear function of one or more loop
trip counts. If found, the linear function is the loop-related formula we seek and shall be
added to the set of formulas that will be provided later to a decision procedure. Also, the
formulas that were previously induced from the corresponding loop exit conditions shall
be removed from the formula set.

In the second step, our technique heuristically analyzes how the program uses loops to
access its input and searches for linear relationships between the auxiliary variables and
the loop trip counts. These linear relationships allow our technique to express in symbolic
formulas how loop-dependent variables relate to the lengths and counts of elements in
the program input. These formulas are added to the set of formulas to be processed by
a decision procedure. Because the auxiliary variables are symbolic in the formulas we
provided to the decision procedure, the outputs we receive from the decision procedure
will include the satisfying assignment for the auxiliary variables as well. Because the
auxiliary variables represent properties of the program input such as the length of an input
field and an index to a field delimiter, we can reconstruct new satisfying inputs of varied
length.

Results. We have implemented our approach and applied it to discoveryand subsequent
diagnosis of buffer overflow vulnerabilities. We perform our analysis on a standard bench-
mark suite and on real-world software. The benchmark suite we use was previously pub-
lished by researchers at the MIT Lincoln Laboratories [122]. It contains 14 samples in-
spired by vulnerabilities in open-source network servers.Starting from sample benign
inputs, our tool discovers all known bugs denoted by the benchmark suite. Most of the
bugs are found in just a few minutes. In addition to the known bugs, our tool also discov-
ers a new bug in one benchmark.

As full-scale case studies, we test our approach on three real-world Windows and
Linux programs which are known to have buffer overflow bugs. Our tool discovers four
bugs in these programs in a few minutes. We also note that the computed symbolic formu-
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las, which represents vulnerability conditions and thus corresponds to the generated buggy
inputs, contains auxiliary variables that denote the lengths of input fields. They are more
accurate and usable than those given in previous work [37], which lacks a notation to refer
to the length of an input field.

To confirm the value of our approach, we count the number of concrete executions
needed to discover each bug using our approach and that of using our implementation of
the traditional (Section 2.4), and we compare them. In most cases, our approach signifi-
cantly reduces the number of executions required to discover buffer overflow bugs.

Contributions.

• Loop-extended concolic execution: We introduce a new scaling technique for con-
colic execution that incorporates the semantics of loops into the traditional analysis.
Our technique abstracts the effect of loops over all execution paths and summa-
rizes them into a small and concise set of symbolic constraints. The technique
works by introducing new symbolic variables that representthe number of loop
iterations, using forward symbolic analysis to determine the generalized effects of
these new symbolic variables on other program variables, and replacing loop-related
constraints induced from individual execution paths with asmall and concise set of
generalized constraints.

• Improved vulnerability discovery: We implement our scaling technique and use it
to find vulnerabilities in both a standard benchmark suite and three real-world pro-
grams. After generating only a handful of candidate inputs,our tool successfully
discovers bugs in software. In most cases, our scaling technique significantly re-
duces the number of executions required to discover buffer overflow bugs.

• Vulnerability conditions with field lengths: By introducingauxiliary variables to
represent features of an input grammar such as lengths and repetition counts, loop-
extended concolic execution allows us to describe vulnerability conditions in term
of loop-related properties and lengths of input fields. Subsequent work [17] uses
such vulnerability conditions to automatically generate vulnerability-based signa-
tures that help filter future attacks of known vulnerabilities.
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1.2.2 Decomposition and Re-stitching of Encoding Functions

Problem Overview. Concolic execution naturally has issues when a program underanaly-
sis contains encoding functions.Encoding functionsinclude tasks such as data decryption
and encryption, data decompression and compression, and the computation of checksums
and hash functions. When being symbolically reasoned about,encoding functions result in
symbolic formulas that can be difficult to solve. This is not surprising because functions
such as cryptographic hash functions are designed against finding any input that would
provide the same hash as the original input. In particular, the problem we address is how
to scale concolic execution to automatically generate testinputs for programs that use
encoding functions.

Scaling concolic execution in the presence of encoding functions provides the first step
toward answering another interesting security-related question: can we find and exploit
vulnerabilities in malware? Although vulnerability discovery has long been an important
task in software security, little research has addressed vulnerabilities in malware. Encod-
ing functions are used widely in malware as well as in benign software. Many instances of
malware such as trojans and botnets uses communication overencrypted channels to avoid
being detected by network intrusion detection systems (NIDS). Improvement on the han-
dling of encoding functions in concolic execution will greatly assist security researchers
on malware analysis.

Intuition and Approach. To address the problem, we develop a novel technique that im-
proves concolic execution on programs that use encoding functions. The intuition behind
our technique is that it is possible to perform concolic execution without having to sym-
bolically reason about encoding functions head-on. In particular, we avoid the complexity
caused by encoding functions by identifying and bypassing them so that we can concen-
trate on performing symbolic reasoning on the rest of the program. Once having obtained
partial results, we re-stitch them with the effect of the bypassed encoding functions using
means other than symbolic reasoning to get a complete result. Because the technique is
based on decomposing (factoring) the formulas induced by a program into subsets, solv-
ing only a subset, and then re-stitching the solutions back,we refer to our technique as
decomposition and re-stitching.

Our technique starts by identifying encoding functions in the program execution and
determining which form of decomposition is applicable for each encoding function. Other
researchers have previously proposed algorithms to distinguish certain types of encoding
functions from other functions in a program [114, 115] but they do not perfectly suit our
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purpose. We thus propose a new identification technique based on our intuition regarding
the complexity caused by encoding functions: that the outputs of encoding functions con-
tain a very high degree of mixtures from parts of the input, resulting in symbolic formulas
that are difficult to solve.

To identify encoding functions, we perform a trace-based dependency analysis that is
a general kind of dynamic tainting. Our analysis assigns an identifier to each input byte,
and determines, for each value in an execution, which subsetof input bytes it depends on.
We call the size of the subset the byte’staint degree. If the taint degree of a byte is larger
than a configurable threshold, we refer to it as high-taint-degree. Encoding functions are
functions that produce high-taint-degree buffer as output.

After the encoding functions have been identified, we apply the traditional approach
of concolic execution to generate the path constraint for the previously observed execu-
tion. A path constraint is a conjunction of smaller formulasinduced from the instructions
along the program execution and these formulas are annotated with the identifiers of the
function they are induced from. We decompose the generated constraint to separate the
conjoined formulas, single out those that come from encoding functions, conjoin the rest
of the formulas to obtain a smaller constraint, and pass the constraint (now unrelated to
encoding functions) to a solver. The constraint solution represents a partial input, which
requires re-stitching to obtain the final input.

How to perform re-stitching depends on how the encoding function itself is used. For
a function that decrypts or decompresses input data, we haveto obtain its corresponding
inverse function (i.e., encryption or compression) and supply this inverse function with a
partial constraint solution (coming from the manipulationof decrypted input data) to get a
complete (i.e., encrypted or compressed) solution. Finding the inverse function is possible
by means of browsing and filtering through a list of candidatefunctions. For a function
that computes and compares checksums, re-stitching is performed simply by concretely
executing the function again on a partial constraint solution — a solution with everything
but a correct checksum — to obtain a matching checksum that belongs to the final solution.

To determine how the encoding functions are used, our approach performs dynamic
dependency analysis on the program execution trace to analyze how data is used inside
and outside of the encoding functions and compares that against some pre-defined rules.
For a decryption/decompression function, the data used by the function must never been
used again later in the program. For a checksum function, itsoutput must be used in a
conditional check against a part of the program data that is disjoint from its input and that
part of the program data must not be used elsewhere. According to our pre-defined rules,
the usual usage pattern of performing a checksum verification on decrypted data will sat-
isfy both rules and two-step decomposition and re-stitching can be performed. However,
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other usage patterns that combine multiple encoding functions may violate our pre-defined
rules.

If an encoding function does not satisfy any pre-defined rules or if the inverse func-
tions for functions like decryption and decompression are not present, decomposition and
re-stitching is not possible. Our technique detects when such a case occurs and opts to
perform concolic execution in a traditional brute-force manner.

Results. We have added an implementation of decomposition and re-stitching as an ex-
tension to our traditional concolic execution tool. We apply the tool, with and without
the new scaling technique, to analyze four different samples of malware that extensively
make use of encoding functions and demonstrate the improvement that results from the
scaling technique. Under the traditional settings, the tool finds two bugs in two malware
samples and runs out of memory on the other two families. Under the improved settings,
the tool finds six bugs in all four malware samples and never runs out of memory. As a
proof of concept, we successfully create an exploit attack that, once provided to the mal-
ware, triggers the hidden bug and uninstalls the malware from a host machine. To the best
of our knowledge, our malware analysis is the first automatedstudy of vulnerabilities in
malware, though on a very small sample set.

We also retest the discovered buggy inputs on other malware instances from the same
families and successfully trigger similar failure conditions in those instances as well. Some
of these instances in the same family are first reportedly seen more than a few months apart.
This implies that the bug, the encoding functions have not changed through time.

Contributions.

• Decomposition and re-stitching: We develop a technique that scales concolic execu-
tion to reason about programs that use encoding functions. The technique is based
on decomposing the formulas induced by a program, solving only a subset, and then
re-stitching the solutions into a complete result. The technique evidently improves
the speed and reduces the memory usage of a concolic execution engine, making it
more practical.

• Vulnerability discovery in malware: We use a concolic execution engine, coupled
with our decomposition and re-stitching technique, to find bugs in malware instances
that use encoding functions. We find six and publicly disclose five vulnerabilities in
four malware instances that we analyzed. To the best of our knowledge, our malware
analysis is the first automated study of vulnerabilities in malware.
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• Malware genealogy: We also use the vulnerabilities we foundto assist in the study of
malware genealogy. We find that each of discovered vulnerabilities also appears in
multiple variants in the same malware families and can be triggered using the same
buggy input. Our study demonstrates that there are components in malware that tend
to stay unchanged over time and thus could be used to identifythe malware family
to which an unknown suspicious binary belongs.

1.2.3 Model-assisted Concolic Execution

Problem Overview. Programs that maintain an ongoing interaction with its environment,
like servers and web services, tend to get executed for a longperiod of time and thus
performing state-space exploration (also referred to as automatic test input generation)
using concolic execution on such programs can be time consuming. Nevertheless, we
observe that the traditional approach of concolic execution can be improved if guided with
the abstract model of the program under analysis. The abstract model could provide high-
level information about the structure of program state space. By knowing how close (or
how far) the analysis is from important states in the program, we shall be able to efficiently
prioritize the overall process.

To simplify the problem of finding the right abstract model ofthe programs under
analysis, we focus our technique on network applications that communicate with their
environment through a protocol.

Approach. We propose an approach to combine an existing model inference technique
with concolic execution. Our approach has three iterative steps. First, we use the existing
technique to automatically infer an abstract finite-state model of a program’s interaction
with its environment. Second, we use the inferred model to guide concolic execution and
to improve the state-space exploration. Third, if the exploration phase discovers new types
of protocol messages, we refine the abstract model and repeatthe process from the second
step. We refer to our approach asmodel-assisted concolic execution.

We useMealy machinesto represent abstract protocol models. A Mealy machine is
a finite state machine in which, at each particular state, an input from the environment
determines what the output the model will emit and what stateshall be transitioned into.
Because the model is abstract, multiple distinct values of concrete program message (i.e.,
input or output) may be represented by the same abstract message. Our technique requires
that the user provides an output message abstraction function. Anabstraction functionis
a function that finds an abstract message which corresponds to a given concrete message.
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Unlike one of our own prior work [27], our technique does not require an input message
abstraction function.

Our technique requires a set of sample input messages that can be fed to the observed
application. These sample input messages may be obtained from the live traffic. In its
first step, our technique uses an existing black box inference algorithm, calledL∗ [2],
to infer an abstract finite-state model of a network application using the set of sample
program input messages. In a nutshell,L∗ systematically feeds the network application
under analysis with combinatorial sequences of the sample input messages (a message
may appear in a sequence more than once), observes the network traffic induced by each
message sequence, and soundly constructs a finite-state model that matches the observed
traffics. Naturally, having a bigger set of sample input messages will result in a more
complete model but will also require longer time to process.

In the second step, our technique uses the inferred model to guide a traditional concolic
execution engine to discover more program input messages. In particular, for each of the
states found in the inferred model, we feed a sequence of input messages known to lead
the program to that particular state and perform concolic execution from that point on for
an allotted time.

Finally, our automated technique selectively adds some of the newly discovered input
messages to the current set of known input messages and againprovides the set toL∗ to
infer an improved abstract model. We then repeat the processfrom the second step. In
each iteration, the inferred protocol model will become closer to a complete model. After
some number of iterations, no new state will be found and the model is converged.

Results.

We extend our traditional concolic execution engine with our technique and perform
experiments with servers from two well-known network protocols: RFB (commonly known
as VNC) and SMB. In particular, we pick Vino VNC 2.26.1 as a representative server for
the RFB protocol and Samba 3.3.4 for the SMB protocol. After a few iterations, our tech-
nique successfully infers protocol models of both servers.Our technique discovers all
the input messages (i.e., message types) as described by theRFB protocol specification1

and as shown in the Samba source code2. It also generates, for each server, a finite state
machine that resembles what the ideal protocol model would be.

One of the most prevalent applications of concolic execution is vulnerability discovery
and our technique finds seven vulnerabilities in Vino VNC 2.26.1, RealVNC 4.1.2, and

1http://www.realvnc.com/docs/rfbproto.pdf
2http://www.samba.org
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Samba 3.3.4 within 2.5 hours of concolic execution per state. We use the RFB model
inferred by the analysis of Vino VNC to guide concolic execution of RealVNC. Our intu-
ition is that RealVNC is another variant of servers that implements RFB protocol and thus
should respect the same protocol model as Vino VNC does.

To confirm the value of our approach, we also compare the results of our vulnerability
discovery against that of our implementation of the traditional approach (Section 2.4).
When running for the same amount of wall clock time, a traditional concolic execution
engine discovers only one of seven vulnerabilities found byour new technique. We also
illustrate that our new technique is superior to the traditional approach in reaching deep
states of the inferred protocol.

Contributions.

• Model-assisted concolic execution: We develop an iterative process of combining
concolic execution with knowledge of an abstract model of the program under anal-
ysis. Our technique helps scale concolic execution to largenetwork applications that
communicate with their environment through some protocols. A complete protocol
model is not our prerequisite because our technique can iteratively infer and refine
an abstract model that represents the high-level logic of the network applications
being analyzed.

• Vulnerability discovery in network servers: Our tool discovers seven vulnerabilities
(four of which are new) in four applications that we analyze.We also show that
our technique performs faster and deeper state-space exploration than the traditional
approach.

• Protocol model inference: Given an output abstraction function, our approach it-
eratively infers and refines a model of the protocol as implemented by a program.
Unlike the prior work, it requires no input abstraction function, which is usually not
trivial and must be provided by the end users. Thus, our work contributes toward a
more automated approach for reverse-engineering protocols.

1.3 Organization of the Thesis

The rest of this thesis is organized into three parts. In the first part, we discuss the tradi-
tional approach of concolic execution and its prevalent application of automatic test input
generation. In Chapter 2, we discuss our implementation of technique and a sample case
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study of how we use the tool to discover a new vulnerability ina commercial software
product.

In the second part, we discuss the shortcomings of traditional concolic execution, detail
our techniques for addressing the issues, and describe unexplored applications of concolic
execution that our new techniques enable. This part consists of three chapters. Chapter 3
describes loop-extended concolic execution, a technique that focuses on improving the
efficiency of concolic execution when analyzing program portions that involve loops, and
its application to vulnerability discovery and diagnosis of buffer overflows. Chapter 4
discusses the technique of decomposition and re-stitching, which addresses issues that
arise from the presence of encoding functions, and how we adapt the technique to assist
in malware analysis. Chapter 5 details the technique of combining concolic execution and
automatic protocol model inference to improve both automatic test input generation and
protocol reverse-engineering.

In the final part, Chapter 6 provides further discussion on thepotential integration of
our proposed techniques and the conclusion remarks.
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Chapter 2

Concolic Execution of Binary Programs

2.1 Introduction

Designing secure systems is an exceptionally difficult task. Even a single bug hidden in an
inopportune place can create catastrophic security holes.Considering the size of modern
software systems, searching for and exterminating all the hidden bugs is a daunting task.
Thus, development of tools and techniques that help reducing the severity of these security
holes is of critical importance.

Testing plays an important role in finding bugs in a software product. Unlike static
code analysis techniques like code review, inspection, andproof of correctness, testing
involves monitoring actual program execution in hope of observing unexpected behaviors
(e.g., program crashing or program prematurely terminated) which imply the existence of
bugs. Programs under test are executed multiple times with different input values. Because
the entire input set of programs tend to be too large to exhaustively test, usually only a
subset are selected. Choosing a good subset contributes significantly to the effectiveness
of a test process and can be done manually by test experts who have enough understanding
of the program under test. However, such manual selection oftest inputs is expensive and
error-prone. Thus, various approaches to automatic test input generation/selection have
been developed and adopted, ranging from random selection and heuristic-based selection
to control flow-based selection and data flow-based selection [9, 80, 108].

Recently, concolic execution and other related techniques [65] have been popular for
automatically generating test inputs for software systems[21, 22, 49, 53, 54, 82, 102, 113].
Concolic execution is a combination of concrete execution and symbolic reasoning. In its
first step, it concretely executes a program under test with some initial input to create
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a concrete path. It then considers the seen input as symbolicand computes symbolic
logical formulas to represent the branch conditions along the executed control-flow path.
Through manipulation of the formulas, such as negation of a particular branch condition,
it crafts new formulas, which can then be solved by a decisionprocedure. If a solution
exists, the solution represents a new program input that shall take the program along a
different control-flow path. From an instance of concrete execution, multiple new program
inputs may get generated. The whole process is repeated withthese new program inputs
to generate even more program inputs that cover more unseen control-flow paths. By
systematically exploring the program state space and generating one program input for
each unique control-flow path, concolic execution ensures that the generated test inputs
are not redundant and thus contributes to the area of efficient software testing.

In addition to automatic test input generation, concolic execution has been used in other
areas as well. The application most related to test input generation is vulnerability-based
signature generation [13, 17]. When a vulnerability is found(e.g., a crash discovered via
automatic test input generation) and is reproducible, one can use concolic execution to per-
form symbolic reasoning along a faulty execution path and thus can obtain symbolic pred-
icate on the program input that would lead the program along the same path and trigger the
same vulnerability. This symbolic predicate can be used as asignature for detecting and
protecting against malicious inputs that may potential harm the system. Because the sym-
bolic predicate is not restricted to any particular concrete input, this type of vulnerability-
based signature has zero false positive. In addition to automatic test input generation
and vulnerability-based signature generation, other known security-related applications of
concolic execution and similar techniques include exploitgeneration [3, 25, 64], protocol
reverse engineering [18], and detecting deviations between software implementations [12].

We build BitFuzz, a trace-based concolic execution system, on top of the BitBlaze [105]
platform for binary analysis. We successfully use BitFuzz for automatic test input gener-
ation and for finding bugs in software. BitFuzz tests a varietyof Windows and Linux
programs without the need of source code. The list of software we have tested includes
commercial software like Cardiac Science G3 AEDUpdate software [57], server applica-
tions such as RealVNC1 and Samba2, and malware such as Zbot [40] and MegaD [77].
The standard version of BitFuzz implements the traditional approach of concolic execu-
tion. For many other software products, test input generation with the traditional approach
alone does not yield good results. We additionally applied scaling techniques we develop
to make it more practical. Thus, we discuss our test results on those software products in
Chapter 3-5, where we also discuss our scaling techniques.

1http://www.realvnc.com
2http://www.samba.org
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1 void process_command (char* msg) {
2 char num;
3 if (msg[0] % 8 == 0)
4 num = msg[0] - 8;
5 else
6 num = msg[0];
7 if (num == ’P’) // ASCII of P = 80
8 if (msg[1] == ’Y’) // ASCII of Y = 89
9 abort(); // represent a point of failure

10 return;
11 }

Figure 2.1: A Running Example.

2.2 Concolic Execution for Test Input Generation

In this section, we detail the steps taken by our traditionalconcolic execution tool to au-
tomatically generate test inputs for a given program. For simplicity, we describe the algo-
rithm by example, leaving formal details of concolic execution to other literature in this
area [53, 101].

Figure 2.1 contains a short C function. We use this function as a running example to
illustrate how to perform concolic execution for automatictest input generation, treating
its string argument as symbolic. For a conditional statement, we call the executions from
the conditional statement line to the first line in the true block and the false blocka pair
of branches. Thus, in the example function, conditional statements areon line 3, 7, and 8,
and pairs of branches are(3→ 4, 3→ 6), (7→ 8, 7→ 10), and(8→ 9, 8→ 10).

Concolic execution performs symbolic reasoning on concreteexecution paths and
thus requires concrete inputs. Suppose that we have an initial input string “AB” (ASCII
code = 65 and 66) and that concolic execution denotes the input as a string of sym-
bolic charactersS0S1. The concrete execution path with respect to this input willbe
2→ 3→ 6→ 7→ 10. The full path predicate, which is the conjunction of conditions
derived from statements along the execution path is¬(S0 ≡ 0 mod 8) ∧ (num = S0) ∧
¬(num = 80). As you can see, the condition derived from a false branch (i.e., Line 3
and 7) is of the form¬P whenP is the condition shown in a conditional statement. For
the same conditional statement, a true branch will simply give a conditionP . An assign-
ment statement gives an equality condition in the same way Line 6 gives the condition
num = S0 as shown in the path predicate.
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For each condition derived from a conditional statement (known asbranch condition),
concolic execution modifies the path predicate by negating the branch condition and re-
moving the conditions that come from subsequent statements. In our running example,
the initial path predicate has two branch conditions and thus there will be two modified
predicates:¬¬(S0 ≡ 0 mod 8) and¬(S0 ≡ 0 mod 8) ∧ (num = S0) ∧ ¬¬(num = 80).
Each of the modified predicates are given to a constraint solver to solve for a sample input
that would lead the execution along a different execution path, which is similar to the orig-
inal execution path from the beginning down to the branch with the negated condition, if
feasible. In this case, the first modified predicate is feasible. The satisfying input for this
predicate is any byte string of which the first byte is a multiple of 8. Although there are
many possible satisfying inputs, the constraint solver will only give one example of them.
We will assume that the constraint solver provides us a satisfying input string “PB” (ASCII
code = 80 and 66) for this predicate. The second predicate is not feasible because its first
clause and third clause are in conflict (i.e., 80 is a multipleof 8). Thus, the constraint
solver will tell us it is infeasible and nothing is to be done for this predicate.

The process is repeated. A concrete execution of the function with the newly generated
input string “PB” will be along the path2→ 3→ 4→ 7→ 10. The full path predicate is
(S0 ≡ 0 mod 8) ∧ (num = S0 − 8) ∧ ¬(num = 80). Because both branches of the first
conditional statement (Line 3) have been executed, we do notneed to generate a modified
predicate for that particular branch. Thus, concolic execution generates only one modified
predicate with respect to the second conditional statement(Line 7), (S0 ≡ 0 mod 8) ∧
(num = S0 − 8) ∧ ¬¬(num = 80). The predicate is satisfiable and we will assume that
the constraint solver provides us a satisfying input string“XB” (ASCII code = 88 and 66).

The process is repeated again. A concrete execution of the function with the new input
string “XB” will be along the path2→ 3→ 4→ 7→ 8→ 10. The full path predicate is
(S0 ≡ 0 mod 8)∧ (num = S0− 8)∧ (num = 80)∧¬(S1 = 89). Because all branches of
the first and the second conditional statements (Line 3 and 7)have been executed, only one
modified predicate is generated. The predicate is with respect to the third conditional state-
ment (Line 8) and it is(S0 ≡ 0 mod 8) ∧ (num = S0 − 8) ∧ (num = 80) ∧ ¬¬(S1 = 89).
The predicate is satisfiable and we will assume that the constraint solver provides us a sat-
isfying input string “XY” (ASCII code = 88 and 89).

When the function is executed with the new input, a hidden point of failure is reached
and a bug is found. The path is2→ 3→ 4→ 7→ 8→ 9. Because all branches of all
conditional statements along the path have been executed, neither a new predicate nor a
new input is generated.

As the function has been executed with the initial input and all other newly generated
inputs, the automatic test input generation process is complete. The technique finds a
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concise set of test inputs that comprises four strings “AB”, “PB”, “XB”, and “XY”. The
input string “XY” triggers a hidden failure in the function.This string is the only faulty
two-byte string. Random test input generation, which is another automatic technique, will
have a2−16 success rate per each randomly selected input, to find the hidden failure. Thus,
concolic execution is much better in term of the quality of test inputs generated and is a
more favorable approach.

Although we uses a C function as a running example, our implementation of concolic
execution works with binary programs and its algorithm is roughly the same as described
in this walk-through.

2.3 Other Known Applications of Concolic Execution

In addition to automatic test input generation, concolic execution and related techniques
have also been applied to other security-related areas as well. In this section, we briefly
describe those applications.

Signature generation. Signature-based input filtering tests program inputs against a set
of malicious input signatures and raises a warning when theyare matched. It provides a
fast and important means to protect a computer when patches for software vulnerabilities
are not yet available or have not yet been applied. The key challenge to signature-based
defense is to automatically generate small and efficient signatures that have both few false
positives and few false negatives. One approach to this problem is to generate exploit-
based signatures by extracting patterns that appeared in the observed exploits [70, 87, 111].
However, signatures generated by this approach can have high false positive and negative
rates, especially when the exploits have many polymorphic variants.

Another approach to signature generation is to construct vulnerability-based signa-
tures [13, 17] by analyzing the vulnerable program and the actual conditions needed to
exploit the vulnerability. Given a vulnerable program and apoint of vulnerability, this
approach uses concolic execution to generate an input predicate that drives the program to
the point of vulnerability. The generated signature is simply a conjunction of this pred-
icate and the condition on the program input that exploits the vulnerability. Although
vulnerability-based signatures may consist of complex constraints and may take a longer
time to match against compared to regular expression-basedsignatures, they are more ap-
plicable because they have no false positive.

Protocol reverse engineering.One goal of protocol reverse engineering is to automati-
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Figure 2.2: Overview of How BitFuzz Utilizes the Existing Components

cally extract the format of protocol input messages. Techniques for input format extraction
can be classified into techniques that analyze the patterns of the valid inputs [35, 68] and
techniques that analyze how a program processes inputs [20,36, 117]. The second kind
of techniques performs better when it observes more processing of program inputs. Thus,
it benefits greatly from a high coverage set of test inputs generated using concolic execu-
tion [18].

Deviation detection. Different implementations that handle the same message protocol
usually contain deviations, which are differences in how they process the same inputs. De-
tecting these deviations is important for several applications [12, 98]. Because differences
between implementations often imply that one of them has an error, deviation detection
can be used to detect potential errors in one of the programs.It can also be used to gener-
ate fingerprints, which are inputs used to remotely identifywhich applications or operating
system a host is running. Lastly, in the case of two versions of the same software, it can
be used to incrementally generate new test cases for a regression test suite, by focusing on
inputs that cause the software to behave differently after it has been updated. Given two
binary implementations and a sample input of a specific knowntype, previous work [12]
uses concolic execution and constraint solving to automatically generate new inputs that
demonstrate deviations between implementations.

2.4 BitFuzz: Our Concolic Execution Engine

We implement our symbolic reasoning engine, called BitFuzz.BitFuzz is written in
OCaml, Python, and C/C++, and runs on a Linux system. BitFuzz doesnot require source
code of the program being analyzed. It analyzes Intel x86 binaries running in a Windows

20



or Linux OS, and is extensible to analyze binaries in other architectures and other oper-
ating systems. BitFuzz symbolically reasons about a subjectprogram to generate a high
coverage set of inputs that exercise feasible program paths. To address the general scal-
ability issue of concolic execution, we extend BitFuzz with scaling techniques which are
discussed in Chapter 3-5.

As illustrated in Figure 2.2, BitFuzz is implemented using several existing components
in the BitBlaze [105] platform for binary analysis. TEMU, the first existing component,
is an extensible whole-system emulator. It is used to execute the subject program in its
expected operating system environment (such as unmodified versions of Windows XP and
Ubuntu Linux). The relevant inputs to the program are markedand tracked using dynamic
taint analysis: they can come from the virtual keyboard, from a disk file, from a network
message, or from any specially designated API routine. BitFuzz uses TEMU to observe
the instructions that operate on the inputs, and to save themto anexecution trace filethat
also records the inputs and their arguments. This trace file is parsed using the Vine toolkit,
the second existing component, which comprises an intermediate language and analysis
library that represents the precise semantics of the original Intel x86 machine instructions
using a small set of more general and simpler operations. BitFuzz uses the Vine toolkit
to analyze and extract the symbolic path predicate from the intermediate representation
of the trace. Finally, it queries a constraint solver, the third existing component, to solve
whether the symbolic path predicate is satisfiable and to provide an example input whose
assignment would satisfy the path predicate. The experiments in this thesis use STP [48],
a complete decision procedure incorporating the theories of arrays and bit-vectors, as a
constraint solver for BitFuzz.

In the context of automatic test input generation, BitFuzz follows the technique de-
scribe in Section 2.2. It modifies the path predicate by negating one of the branch condi-
tions in depth-first order and removing the conditions that come from subsequent branches.
It then queries the decision procedure to solve the modified predicate for an input that will
direct the program to a different path starting at the modified branch. BitFuzz repeats this
process to generate inputs that explore various program paths. It negates each symbolic
branch condition that appears in a trace to generate more inputs. And for each unique
input, BitFuzz reruns TEMU to collect the corresponding trace.

Rather than being limited to a simple back-and-forth alternation, BitFuzz maintains
two priority queues, one for candidate inputs and another for collected execution traces,
as illustrated in Figure 2.3. Each input gives a trace and each trace can yield multiple
new inputs. The traces that visit a larger number of new basicblocks, unexplored by
the prior traces, have higher priority. The inputs generated by negating branch conditions
inside newly discovered basic blocks also have higher priority. Similar to the prioritization
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Figure 2.3: Architecture of BitFuzz
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schemes described in the related work [15, 54], our priorityqueues are biased toward
finding new program paths.

Vulnerability detection. BitFuzz supports several techniques for vulnerability detection
and reports any inputs flagged by these techniques. It detects program termination and in-
valid memory access exceptions. Executions that exceed a timeout are flagged as potential
infinite loops. It also uses TEMU’s taint propagation moduleto identify whether the input
(e.g., network data) is used in the program counter or in the size parameter of a memory
allocation.

Distributed environment. BitFuzz is designed to be scalable and distributed; it can be
run on a single machine and on multiple machines that share resources. We have success-
fully run a parallel distributed version of BitFuzz across multiple machines under DETER
Security testbed [8]. We have also setup BitFuzz on Amazon EC2 cloud with a goal of
letting users try whether the approach of concolic execution is applicable to their security
analysis needs.
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Chapter 3

Loop-extended Concolic Execution

3.1 Introduction

A key limitation of traditional concolic execution (or TCE for short) is that it interacts
poorly with loops, a common programming construct. Specifically, it generalizes a pro-
gram execution only to a set of executions that follow exactly the same number of loop
iterations for each loop as in the original concrete execution (with exception of the path
predicate in which one of the loop exit conditions is negated). For instance when tradi-
tional concolic execution is applied to test case generation to increase coverage, it will
be unable (in one iteration) to generate an input that forcesexecution down a different
branch than in the original execution, if taking that branchis only feasible with a different
number of loop iterations. In other words, in traditional concolic execution, the values
of a symbolic variable reflect only the data dependencies on the symbolic inputs; control
dependencies, including loop dependencies, are ignored.

We proposeloop-extended concolic execution(or LECE for short), which generalizes
from a concrete execution to a set of program executions which may contain a different
number of iterations for each loop as in the original execution. In loop-extended concolic
execution, in addition to the data dependencies on inputs, the value of a symbolic variable
also captures certain loop dependent effects.

At a high level, our approach works by introducing new symbolic variables to represent
the number of times each loop in the program has executed. In addition to maintaining
the data dependencies of program state variables on inputs as in TCE, LECE performs a
more detailed analysis to identify loop-dependent variables, for instance finding variables
whose value is a linear function of one or more loop executioncounts. It also relates
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loop execution counts to features of the program input, introducing auxiliary variables to
capture the lengths and repetition counts of fields in a knowninput grammar. Together,
these constraints allow LECE to additionally express how loop-dependent variables relate
to the lengths and counts of elements in the program input.

Loop-extended concolic execution can make bug-finding tools more effective and al-
low test-case generation to reach high coverage more quickly. Capturing more program
logic in symbolic constraints allows LECE to reason about loop-related constraints with a
decision procedure, rather than requiring iterative undirected search as with TCE.

The power of LECE is crucial for several important applications. As sample applica-
tions, we use loop-extended concolic execution to discoverand diagnose buffer-overflow
vulnerabilities, one of the most important classes of software errors that allow attackers
to subvert programs and systems. Intuitively, LECE is powerful enough to express the
effect of varying features of the input, such as number of fields or their lengths (which, in
turn, affect the loop iteration counts), on program variables in a single step. This allows
new vulnerabilities to be discovered using many fewer iterations than traditional concolic
execution. In addition, for a known vulnerability, our techniques are useful to diagnose
a set of general conditions under which it may be exploited. These conditions are useful
for understanding the vulnerability, testing for it, fixingit, and blocking attacks targeting
it [13, 31, 32, 37, 47, 54, 119, 120, 122].

Because concolic execution is often used in security-related applications such as this
one, it is important that it works well for binary programs for which source code is not
available. Our algorithms are designed with this constraint in mind. They overcome some
of the challenges inherent in targeting binaries—such as recovering program structures
like the boundaries of loops, which appear trivially in the original source.

We have built a full implementation of this technique, usinga dynamic tool to collect
program traces and an off-the-shelf decision procedure to simplify and solve constraints.
Our tool discovers and diagnoses vulnerabilities in both a standard benchmark suite and
three real-world programs on Windows and Linux. Our resultsshow that LECE is prac-
tically effective, and confirms that the behavior of loops inreal programs is often very
regular.

3.2 Overview

In this section, we first motivate our approach with an example showing the limitation of
traditional concolic execution, then give an overview of our technique of loop-extended
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concolic execution.

3.2.1 Motivation and Challenges

Using concolic execution to generalize over observed program behavior is a powerful tech-
nique because it combines the strengths of dynamic and static analysis. However, the core
traditional concolic execution technique corresponds to an analysis of just one control-
flow path in a program, which is a significant limitation in programs that contain loops.
Next, we show this limitation with a specific example.

Consider a simplified example of a function in an HTTP server, shown in Figure 3.1,
that processes HTTP GET requests. The program first checks that the request’s method
field has the valueGET on line 9, and then proceeds to parse the URI and version fields
into separate buffers on lines 12–16 and 18–22 respectively. It rejects this request if the
version number is unsupported. Finally, it records the URI requested by the client and the
version number in a comma separated string denoted bymsgbuf on lines 26-30, which it
subsequently logs by invokingLogRequest on line 32.

Readers may have already noticed that this code is vulnerableto a buffer overflow, but
suppose we were attempting to check for such vulnerabilities using a traditional concolic
execution technique. For instance, in the course of its exploration, such an iterative test
generation tool might consider the program inputGET x y. It will trace the execution
of the program with this input, which causes the program to reach the error condition on
line 24. In order to explore the rest of the function, the exploration tool needs to find a
program input that passes the checks on line 23. However, a single path does not contain
enough information to reason about the length check, because thever_len variable is
not directly dependent on any byte of the input: traditionalconcolic execution would not
mark it as symbolic. At this point, testing tools based on concolic execution will usually
attempt to explore other program paths, but without information from the first path to guide
them, they can only choose further paths in an undirected fashion, such as by trying to take
a different direction at one of the branches that occurred onthe observed path. (Such tools
treat the execution of a loop simply as a sequence of branches, one for each time the loop
end test is executed.) For instance, a tool might determine that changing the last character
of the input from a newline toz would cause the loop at line 18 to run for one additional
iteration. A series of many such changes would be required before the version field was
long enough to pass the check.

Similarly, consider the execution of the program on the normal program inputGET
/index.html HTTP/1.1. For this simple function, a single input already exercisesa
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1 #define URI_DELIMITER ’ ’
2 #define VERSION_DELIMITER ’\n’
3

4 void process_request(char * input)
5 {
6 char URI[80], version[80], msgbuf[100];
7 int ptr=0, uri_len=0, ver_len=0, i, j;
8

9 if (strncmp input, "GET ", 4) != 0)
10 fatal("Unsupported request");
11 ptr = 4;
12 while (input[ptr] != URI_DELIMITER) {
13 if (uri_len < 80)
14 URI[uri_len] = input[ptr];
15 uri_len++; ptr++;
16 }
17 ptr ++;
18 while (input[ptr] != VERSION_DELIMITER) {
19 if (ver_len < 80)
20 version[ver_len] = input[ptr];
21 ver_len++; ptr++;
22 }
23 if (ver_len < 8 || version[5] != ’1’)
24 fatal("Unsupported protocol version");
25

26 for (i=0,ptr=0; i < uri_len; i++, ptr++)
27 msgbuf[ptr] = URI[i];
28 msgbuf[ptr++] = ’,’;
29 for (j = 0; j < ver_len; j++, ptr++)
30 msgbuf[ptr] = version[j];
31 msgbuf[ptr++] = ’\0’;
32 LogRequest(msgbuf);
33 }

Figure 3.1: A Simplified Example from an HTTP Server that Handles Requests of the
Form:"GET " URI " " Version "\n"
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Figure 3.2: Overview of Our LECE Tool and Accessory Components. LECE, our main
contribution, enhances concolic execution for directly input-dependent data values, as
in traditional concolic execution, with symbolic analysisof the effects of loops (Sec-
tion 3.3.1) and an analysis that links loops to the input fields they process (Section 3.3.2).
Additional components, described in Sections 3.4 and 3.5, support LECE and particular
applications such as detecting and diagnosing security bugs.

large proportion of the code (for instance, it executes all of the lines of non-error code in
the figure). However, examining this single path is not enough to elucidate the relation-
ship between the variableptr and the input, because that relationship involves control
dependencies.

3.2.2 Technique Overview

We propose a new type of concolic execution,loop-extended concolic executionor LECE,
which captures the effects of more related program executions than just a single path (as
in traditional concolic execution), by modeling the effects of loops.

Broadly, the goal of loop-extended concolic execution is to extend the symbolic expres-
sions computed from a single execution by incorporating additional information reflecting
the effects of loops that were executed. In traditional concolic execution, the values of
variables are either concrete (i.e., constant, representing a value that does not directly de-
pend on the symbolic input) or are represented by a symbolic expression (for instance,
the sum of an input byte and a concrete value). However, some of the values considered
concrete by traditional concolic execution are in fact indirectly dependent on the input be-
cause of loops. In loop-extended concolic execution, thesevalues can also be represented
symbolically, and variables whose values were already symbolic because of a direct input
dependency can have a more general abstract value.

To make loop-extended concolic execution more tractable, we split the task into two
parts by introducing a new class of symbolic variables, which we call trip counts. Each
loop in the program has a trip count variable that representsthe number of times the loop
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has executed at any moment. Then to obtain the relationship between a symbolic values
and the program input, we separately obtain first the relationships between the symbolic
values and one or more trip counts (in addition to their direct relationships with the input,
as in traditional concolic execution), and then the relationships between the program’s trip
counts and the program input:

• Step 1: Symbolic analysis of loop dependencies.To determine dependencies on
loop trip counts, we use a program analysis that maintains the trip counts as symbolic
variables that are implicitly incremented for each new loopiteration, and then looks
for relationships between those variables and others in theprogram. (This is done at
the same time as the analysis tracking direct dependencies as in TCE, and the results
combined in single symbolic expressions.) Specifically, wehave found that looking
for linear functions of the trip counts covers the most important loop dependent
variables without excessive analysis cost. Traditional induction variable is one of
such variable, as it depends on a particular loop that it resides in, but not vice versa.
Our loop dependent variable may depend on trip counts of multiple loop occurrences
in a program.

• Step 2: Constraints linking the input grammar to loops. Loops are often used
when fields of the input are of variable length, such as character strings and se-
quences of data of the same type. Our approach takes advantage of this connection
by using a grammar that specifies the inputs to the program, and matching loops
with the parts of the input over which they operate. In particular, the approach intro-
ducesauxiliary input variables to capture features of the grammar such as lengths
and repetition counts.

A summary of the components of our system is shown in Figure 3.2; the center box,
LECE, represents the primary contribution of this research.

To summarize our approach, we now return to the example of Figure 3.1 and explain
how loop-extended symbolic execution is more helpful to ourvulnerability testing appli-
cation.

1. In the first step, the symbolic loop dependence analysis expresses various program
values in terms of four trip count symbolic variablesTCi, one for each loopi in
the program. For instance, the value of the variableptr at the end of execution
is abstracted by the expressionTC3 + TC4 + 2, and similarlyuri len = TC1,
ver len = TC2, i = TC3, andj = TC4. The path predicate is also maintained
(as in traditional concolic execution). In this example, for instance,i < uri len
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inside the third loop, while the negation holds after the loop has completed, and
similarly for j andver len.

2. In the second step, we link the trip counts to auxiliary variables representing fea-
tures of the input. In the running example, the execution counts of the first two
loops are equal to the lengths of input fields:TC1 = Length(URI) andTC2 =
Length(V ersion).

In the case of vulnerability checking, we would combine these symbolic constraints
describing a class of program executions with the conditionfor a violation of the security
policy. In this case, for instance, the array access on line 30 will fail if ptr ≥ 100. Then in
the same way as in a traditional concolic execution approach, we can pass these conditions
to a decision procedure to determine whether an exploit is possible, and if so, determine
specific values for input variables that will trigger it. In this case, the decision procedure
will report that an overflow is possible, specifically on an input for which Length(URI)+
Length(V ersion) ≥ 99.

Applying the approach to binaries. Because we wish to use these analysis techniques
for security applications, it is an important practical consideration that they work on bi-
nary programs for which source code is not available. This adds further challenges for our
approach: for instance, purely static analysis is more difficult on binaries because much
of the structure that existed in the source code has been lost. (And of course, the real
constraints we generate do not contain variable names, which we added in the example for
readability.) It is in part for this reason that the concolicexecution approach is valuable
in the first place, so we choose algorithms to retain these benefits in our extension. For
instance, even though the technique we use to infer linear relationships between variables
is closely related to a sound static analysis approach, we donot limit it to finding rela-
tionships that could hold on all possible inputs. Instead, our goal is to combine static and
dynamic analysis to produce results that cover as large as possible a range of inputs for
which we can still produce useful results.

Use of an input grammar. Information that constrains the space of valid inputs to a pro-
gram, in the form of a grammar or otherwise, is key to scaling input space exploration
beyond the limits of brute-force exhaustive search. Previous research using concolic ex-
ecution [17, 52, 74] demonstrates the benefit of using an input grammar for this purpose.
In the application domains we target, suitable grammars areeasily available, so we simply
use them. However, for domains in which grammars are not already available, previous
research shows how a grammar can be inferred [20, 71, 117]; such a system could easily
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be combined with ours.

3.3 Algorithms

In this section, we discuss the algorithmic details of the key steps in loop-extended con-
colic execution introduced in Section 3.2. Section 3.3.1 describes the analysis that iden-
tifies relationships between values of variables and numbers of loop iterations (step 1).
Section 3.3.2 outlines techniques to capture the relationships between loops and the input,
using auxiliary variables in the external specification of the input grammar (step 2).

The steps described below require accessory components to extract control flow graphs
from binaries, make irreducible CFGs reducible, extract sizes of allocated objects, and
parse input grammars. The details of these components, which form the preparation phase
for steps outlined here, are given later in Section 3.5.

Loop detection.Our approach uses an existing static loop detection technique to identify
all loops in the subject program. To achieve this, it uses an accessory component (to be
discussed in Section 3.5) to obtain the control flow graph of the program. Then, it applies
a static loop detection algorithm [84, pp. 191–197] to identify natural loops in the control
flow graph by means of searching for back edges. Aback edgem → n is an edge in the
control flow graph whose terminal noden dominates its initial nodem (i.e., every path
from the entry of the control flow graph to the nodem contains the noden). For each back
edgem → n found, a correspondingnatural loopis a subgraph whose node set includes
n and any nodes that can reachm without visitingn, and whose edge set contains all the
edges connecting nodes in the node set. The noden is called theloop entryof the natural
loop. A natural loop has one loop entry but may have multiple back edges. A loop entry is
unique to each natural loop; two loops that share the loop header are actually considered
as a single natural loop.

For each natural loop, the algorithm gives us the address of each loop entry, the address
pairs that compose each loop back edge (a loop may have multiple back edges), and the
loop exit condition. Our approach then uses these addressesin a pass over the dynamic
execution trace to detect the occurrences of loops in the execution and uses this information
to assist the symbolic trip count analysis (Section 3.3.1).The loop exit conditions are used
to determine the relationship between loops and the programinputs (Section 3.3.2) and to
generate loop-extended symbolic constraints (Section 3.4.1).

We also consider using a dynamic approach to detect loop occurrences in the execution
trace [66]. The approach requires less setup as it does not requires a control flow graph
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Trace ::= Stmt∗

Stmt ::= lhs← e | assert(cond)
lhs ::= v | ∗v
cond ::= e1 = e2 | e1 < e2 | ¬cond′ | cond1 ∧ cond2 | cond1 ∨ cond2
e ::= v | ∗v | c | e1 ◦ e2 where◦ ∈ {+,−, ∗, /,%, ...}, v is a variable,

andc is a constant

Table 3.1: Syntax of an execution trace.

and works on any execution trace (e.g., can be used against packed malware). However,
it is less reliable because it does not detect every kind of loops in the trace [66] and also
requires heuristics to find the loop exit conditions. Becausethe knowledge of exit condi-
tions is crucial to our overall approach, we choose the static loop detection approach over
its dynamic counterpart.

3.3.1 Symbolic Analysis of Loop Dependencies

In order to generalize its description of computations thatinvolve loops, our approach must
determine the relationship between loop-dependent variables and the loops in which they
are modified. To achieve this, our approach performs a one-pass forward symbolic analysis
along a dynamic execution trace. Specifically, it searches for variables whose value is a
linear function oftrip count variables. Each of these trip count variables represents the
number of iterations each loop executes.

There are two advantages of our dynamic analysis approach over a completely static
one such as the induction variable identification approach commonly performed in com-
pilers [1, pp. 687–688]. First, our approach keeps track of dependencies on loop execution
counts even after the loop itself has finished, and combines dependencies on multiple loop
occurrences. In contrast, a static induction variable analysis only reasons about induction
variables with respect to one particular loop. Second, our approach is performed on a dy-
namic trace and thus does not require a conservative alias analysis, which is often a source
of scalability challenges and/or imprecision in static analysis.

Analysis algorithm. The goal of our algorithm is to find the linear relationship between
loop-dependent variables and the loops they depend on. For each loop occurrencel in the
program, we introduce a symbolic trip count variableTCl, which represents the number of
iterations the loop has executed. The core of an abstract value in our analysis is a symbolic
linear expression whose terms are trip counts, with integerscaling factors and an integer
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constant term. For instance, the abstract value10+4 ·TC1+2 ·TC2 would correspond to
a variable initialized as 10, then incremented by 4 on each iteration of the first loop and by
2 on each iteration of the second loop. If a variable is loop-dependent, its abstract value
will have at least one trip count term. Otherwise, it will be either a constant or undefined.

Our dynamic analysis algorithm for determining the linear relationship between vari-
ables and loops is shown in Figure 3.3 and Figure 3.4. An abstract value is stored in a
record data typeabstrval (lines 1–5), which comprises an integer constant termc and
integer vectorv representing scaling factors of the trip count terms. For example, if the
number of loop occurrences is 5, the abstract value10 + 4 · TC1 + 2 · TC2 would corre-
spond to<c=10, v=[4,2,0,0,0]>. Thus, the length of the vectorv is bounded by
the number of loop occurrences in the trace. If an abstract value is not linear to the trip
counts, a nil record is used.

The goal of our algorithm is to obtain an abstract store, which is a map of a variable
(temporaries and machine registers in our machine-level trace) or a memory location to its
abstract value. This map is represented in our algorithm by the data typeabstrmap (line
6). It allows us to determine the relationship between variables and loops at any point
throughout the execution trace.

The main routine of our algorithm isanalyzeTrace (lines 8–26). Given an execu-
tion trace (syntax shown in Table 3.1),analyzeTrace performs a pass over the trace to
compute and updateM , which is the abstract store at that particular point in the execution.

When propagating through a loop occurrence,analyzeTrace usesl, P [l] to keep
record of the abstract store at the end of the most recently completed loop iteration, or
at the loop entry if we are within the first iteration (lines 14–17, 19–23). Upon reaching
the end of each loop iteration, the recorded abstract store and the current abstract store
are used to compute an abstract value for each variable in term of loop trip counts and to
verify any abstract values computed in prior iterations (routinejoinIterations). In
particular, at the end of the first iteration, the scaling factor of the loop trip count term
is computed as the change in the abstract value from when it was at the beginning of the
iteration (lines 32–34). At the end of other iterations, we verify this same scaling factor
against the ones computed in the prior iterations. If they donot match, it means that the
variable is not loop dependent (lines 35–37). Once a variable is deemed not to be loop
dependent, it stays that way under the loop under analysis isterminated (lines 31 and 38).

analyzeTrace also calls a routineanalyzeStmt (the routine has two helper rou-
tines —abstrEval andlookupAndStore) to update the abstract store with the side
effect of each assignment statement (lines 43–47); statement of other types are ignored
(line 48–49). If the source of the assignment is a variable, amemory location, or a con-
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stant, its abstract value is directly inherited to the destination (lines 55–57). If the source
is an arithmetic operation that involves a summation, a subtraction of two loop-dependent
values, or a multiplication of a loop-dependent value and a constant, we compute a linear
formula for the destination (lines 58–69). A multiplication of two loop-dependent values
and other operations do not result in a loop-dependent value(lines 70–71).

For instance, consider the analysis of loop 3 on lines 26–27 of Figure 3.1. At the begin-
ning of the loop,ptr has the abstract value<c=0,v=[0,0,0]> and the abstract store is
recorded. Then,ptr is incremented and thus have the abstract value<c=1,v=[0,0,0]>.
At the end of the first iteration, the recorded abstract valueand the current abstract value
are used to obtain a new abstract value<c=0,v=[0,0,1]>, which will pass the verifi-
cation at the end of each subsequent iteration. The effect ofthe increments on lines 28 and
31 and loop 4 on lines 30–31 are analyzed in a similar way, giving a final abstract value
for ptr of <c=2,v=[0,0,1,1]>, which corresponds to2 + TC3 + TC4.

Our approach bypasses the issues that arises from conservative alias analysis by distin-
guishing memory locations using the concrete addresses observed in the execution trace.
When a symbolic value is used as a memory address (e.g., indexing an array), our approach
use the concrete address value, as is common in traditional concolic execution (lines 46
and 56).

Our approach also aims to identify as many as possible abstract values that are linear
expressions, so that they are available for our subsequent analysis. To achieve this, we
allow our tool to convert non-linear abstract values (represented by nil record) to the con-
stant value representing the value the variable had in the concrete trace at the point. This is
similar in effect to removing from consideration all the executions on which that variable
had any other value, though less drastic because those executions can still contribute to
the generality of other abstract values. Given that there isa limit to the amount of gener-
ality our abstract values can represent, this conversion reflects a judgment that it is more
valuable for them to abstract over variation that occurs close to the point where they are
queried. For instance, if the combined effect of two nested loops is nonlinear, our analysis
will retain the dependence on the inner loop’s trip count.

Theoretically, it is not clear when the best points to convert an abstract value in this
way would be: for instance, delaying a conversion at one program point might remove
the need to convert another value later. However, we have hadgood results by performing
the conversion eagerly just before a non-linear abstract value would otherwise propagate.
Specifically, it is performed at the end of each loop iteration after the abstract value has
been computed or has been verified (lines 37–38).
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1 type abstrval = record {c: int, v: int[]};
2 /* Represent abstract values:
3 c+v[0]·TC1+v[1]·TC2+...+v[N-1]·TCN, when v has size N.
4 c , when v is nil.
5 NON-LINEAR , when the record is nil. */
6 type abstrmap = map {string -> abstrval};
7

8 procedure analyzeTrace(trace : Trace) returns abstrmap {
9 M : abstrmap = {};

10 P : abstrmap[loop occurrences in the trace];
11 l, i : int;
12

13 for each stmt in trace {
14 if (stmt is a loop entry) {
15 l = the loop that starts at stmt;
16 P[l] = M.copy;
17 }
18 M = analyzeStmt(stmt, M);
19 if (stmt is an end of some loop iteration) {
20 l = the loop whose one of its iterations ends at stmt;
21 i = number of complete iterations of the loop l at stmt;
22 joinIterations(l, i, P[l], M); /* M modified */
23 P[l] = M.copy;
24 }
25 }
26 }
27

28 procedure joinIterations(l, i : int, P, M : abstrmap) {
29 for each key v in M {
30 p = P[v]; m = M[v];
31 if (p is not nil && m is not nil && p.v == m.v) {
32 if (i == 1) { /* Infer an abstract value */
33 M[v].c = p.c;
34 M[v].v[l] = m.c - p.c;
35 } else if (p.v[l] == m.c - p.c) {
36 /* The existing abstract value is valid. Do nothing. */
37 } else M[v] = < c = concreteValue(v) , v = nil >;
38 } else M[v] = < c = concreteValue(v) , v = nil >;
39 }
40 }

Figure 3.3: First Part of the Pseudocode for Our Symbolic Analysis.
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41 procedure analyzeStmt(stmt : Stmt, M : abstrmap) returns abstrmap {
42 match stmt with
43 lhs ← e:
44 match lhs with
45 v: M[v] = abstrEval(e, M);
46 ∗v: M["m@" + concreteValue(v)] = abstrEval(e, M);
47 return M; /* M is modified */
48 assert(cond):
49 return M; /* M is unchanged */
50 }
51

52 procedure abstrEval(e : e, M : abstrmap) returns abstrval {
53 m1, m2 : abstrval;
54 match e with
55 v: return lookupAndStore(v, M);
56 ∗v: return lookupAndStore("m@" + concreteValue(v), M);
57 c: return < c = c , v = nil >;
58 e1 ◦ e2:
59 m1 = abstrEval(e1); m2 = abstrEval(e2);
60 if (m1 is nil || m2 is nil) return nil; /* NON-LINEAR */
61 else if (m1.v is nil && m2.v is nil)
62 return < c = m1.c ◦ m2.c , v = nil >;
63 else if (◦ ∈ {+, −})
64 return < c = m1.c ◦ m2.c , v = m1.v ◦ m2.v >;
65 else if (◦ ∈ {∗})
66 if (m1.v == nil)
67 return < c = m1.c ◦ m2.c , v = m1.c ◦ m2.v >;
68 else if (m2.v == nil)
69 return < c = m1.c ◦ m2.c , v = m2.c ◦ m1.v >;
70 else return nil; /* NON-LINEAR */
71 else return nil; /* NON-LINEAR */
72 }
73

74 procedure lookupAndStore(v : v, M : abstrmap) returns abstrval {
75 if (v is not a key in M)
76 M[v] = < c = concreteValue(v) , v = nil >;
77 return M[v]; /* M may be modified */
78 }

Figure 3.4: Second Part of the Pseudocode for Our Symbolic Analysis.

37



3.3.2 Linking Loops to Input

When the symbolic analysis discussed in Section 3.3.1 is complete, the symbolic expres-
sions for program state variables that our tool has producedwill be in terms of the trip
count variables. To obtain the relationship between the program state variables and the
input, we need to obtain the relationship between the trip count variables and the input.
In general, such relationships might be very complicated. However, we leverage the ob-
servation that often such trip count variables relate to certain features of the structure of
the input such as the length of a variable-length field (such as a string) or the number of
records of the same type (callediterative fields).

To precisely capture these repetitive features of program inputs, which are missing
from descriptions like context-free grammars, we introduce the concept ofauxiliary at-
tributes. For instance, we introducelengthattributes to represent the size of fields that
might vary in length, andcountattributes to represent the number of times iterative fields
are repeated. Auxiliary attributes are associated with grammatical units at any level (e.g.,
terminals and non-terminals in a context-free grammar), such as Length(URI) for the
length of a URI field in the HTTP grammar. They can also be systematically added to an
existing parser as an attribute grammar (as inyacc [61]); for instance, the length for a
non-terminal in a rule can be computed as the sum of the lengths on the right-hand side of
the rule. In some cases, the value of an auxiliary attribute is provided in another field of
the input. Our technique can take advantage of auxiliary attributes that appear in the input
in this way, but it also uses them in ways that do not require them to appear in the input.

The goal for the linking step is to identify loop-computed values in the program that
represent auxiliary attributes; for instance, if a loop is used to compute the length of a field.
Previous work [20] shows that automatic inference of variables that iterate over multiple
variable-length fields is feasible, and more recently Caballero et al. show how to relate
certain program variables to features of an input grammar [17]. We use similar techniques
based on the same intuition; we determine that a loop’s iteration count is the length of a
field if its exit condition checks either a delimiter for the field or a value derived from a
length or an auxiliary attribute of the field. In more detail,we use the following steps:

1. Relate data-dependent bytes to fields. As in traditional concolic execution, our tool
determines for each variable in the trace which input byte(s) (identified by offset) it
directly depends on. Our tool also parses the input according to the known grammar,
and so determines which protocol field contains each input byte. Therefore, one
simple way of matching variables with one or more input fieldsis to combine these
two mappings. For instance, in the example of Figure 3.1, thebufferURI contains
the contents of the fieldURI.
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2. Identify variable length fields, counts, and delimiters. The input grammar also iden-
tifies which fields correspond to the lengths or iteration counts of other fields, and
our tool maps this information through direct dependenciesto determine program
variables that represent lengths and counts. Also, we use the grammar to determine
which values are used as delimiters to signal the end of a variable-length field. For
instance, in the HTTP grammar, the fieldURI is delimited by a space character.

3. Identify variables used in loop exit conditions. By analyzing loops as described
in Section 3.5, our tool determines which variables are usedin the conditions that
determine when to exit a loop. For instance, the loop on lines26–27 of Figure 3.1 is
guarded by a condition on the variablesi anduri_len.

4. Recognize loops over delimited fields. If the exit condition of a loop compares bytes
of a field to a value that is the delimiter of the field, then we link the iteration count of
the loop to the length of the field. For instance, in Figure 3.1, the loop on lines 12-16
compares each byte of the URI field to a space, which is known from the grammar
to be the delimiter of the URI, so the execution count of that loop is the length of the
field (TC1 = Length(URI)). In other situations, a loop may process several bytes
on each iteration, which gives a relation with a scale factor. For instance, if each
iteration processes a 4-byte word, the field length is equal to 4 times the loop trip
count.

5. Recognize loops over counted fields. If the exit condition of a loop compares a
variable to a value that is identified in the grammar as the length of a field or the
counter for a repeated field, then we link the iteration countof the loop to that length
or count field. As in the case of a delimited field, the scale factor between the field
and the trip count may not be 1, for instance if a loop process several items in each
iteration.

While these techniques are not enough to recognize every loopthat might be written,
they represent the most common patterns, and we have found them to be sufficient to
capture the relationships for both length and count attributes in practice.

3.4 Applying LECE

In this section we describe how to apply LECE to test generation and in problems about
security bugs in software. First, we describe the primitiveoperation of using LECE to
determine how a given predicate might be satisfied during program execution: on a single
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program path, but perhaps involving different numbers of loop iterations. We then show
how to use this primitive for improving coverage in test generation, discovering previously
unknown security bugs, and diagnosing the cause of a bug given only an execution that
exercises it.

3.4.1 Loop-extended Condition Analysis

A basic use of traditional concolic execution is to determine the conditions under which a
predicate at a program location can be true. For instance, the predicate might be a branch
condition, a programmer-provided assertion, or an array bounds check. We start with the
predicate (which we will call thequery predicate), associated with a program point, and
an execution that reaches that point, but does not satisfy the predicate. Then the task is to
determine the conditions on an input to the program that could cause execution to follow
the same path, but cause the query predicate to be true. Usingloop-extended concolic
execution, we enhance this condition analysis by taking into account other program exe-
cutions that are similar to the observed one, but might involve different numbers of loop
executions. Once the predicate has been chosen, this loop-extended condition analysis
takes the following 3 steps:

1. Derive symbolic expressions in terms of inputs.Given the original execution trace,
our tool first performs loop-extended concolic execution onthe trace as described
in previous sections. The result of this step gives a symbolic expression for each
program state variable that depends on the inputs, including both data dependencies
and control dependencies introduced by loops.

2. Instantiate query predicate.Our tool instantiates the query predicate by using the
symbolic expression computed for each variable that appears in the predicate.

3. Solve constraints.The query predicate can be satisfied if there exist inputs to the pro-
gram that simultaneously cause it to reach the location of the predicate, and satisfy
the predicate. Therefore, our tool conjoins a path condition with the query predi-
cate, and passes this formula to a decision procedure to determine if it is satisfiable.
Constraints in the path condition that arise from loop exit conditions are removed,
since they are superseded by loop-dependent symbolic expressions. Our implemen-
tation uses STP [48], an SMT solver that represents machine values precisely as
bounded bit vectors. If the formula is solvable, STP returnsa satisfying assignment
to its free variables, which represent particular input bytes and auxiliary attributes.
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A grammar-based input generation tool [11, 52] can then be used to produce a ver-
sion of the initial input, modified according to the satisfying assignment, which is
a candidate to satisfy the predicate. When the constraints require that a length or
a count be larger, our approach heuristically repeats elements from the initial input
until the result is long enough.

3.4.2 Uses for Loop-extended Conditions

Loop-extended condition analysis has many applications. In this section, we describe
three: improving the coverage of test generation based on concolic execution, discovering
violations of security properties, and diagnosing the exploit conditions of a security flaw.

3.4.2.1 Improving Test Generation

Test generation is the task of discovering inputs to a program that cause it to explore
a variety of execution paths. Traditional concolic execution can be used in an iterative
search process to find such inputs [22, 53, 102], but it does not cope well with program
branches that involve loop-dependent values; using LECE instead allows test generation
to achieve higher coverage.

The basic operation in such an iterative search is to take an execution path and a branch
along that path, andreversethe branch: find an input that causes execution to reach that
branch, but then take the opposite direction. Reversing a branch is just an application
of the primitive of Section 3.4.1, where the query predicateis a branch condition or its
negation. The benefit of using loop-extended concolic execution instead of traditional
concolic execution in test generation can be seen in two aspects: First, an LECE-based
exploration is able to reverse branches whose conditions involve loop-dependent values;
in a tool based on TCE, by contrast, loop-dependent values arenot considered symbolic.
Second, an iterative search performed with LECE is more directed, since the conditions it
reasons about capture the effect on values computed in loops. For instance, if a subsequent
branch depends on a loop-derived value, LECE-based search requires only one iteration
to determine a number of iterations of the loop to reverse thecondition. The length check
on line 23 in the example of Figure 3.1 shows this benefit: an LECE-based generation tool
can immediately construct an input with a long-enough version field, because the length is
a symbolic variable, while a TCE-based tool could only stumble on such an input by trial
and error.
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3.4.2.2 Vulnerability Discovery

Many classes of security vulnerabilities can occur when asecurity predicateis violated
during program execution. For instance, given a program that writes to an array, a buffer
overflow occurs if the index of a write to an array is outside ofthe correct bounds. In a
program that uses machine integers to compute the length of adata structure, an integer
overflow vulnerability occurs if a computation gives the wrong result when truncated to
word size. To check whether program logic is sufficient to prevent such failures, the prob-
lem of vulnerability discovery, or “fuzzing,” asks whetherthere is a program input that
could violate the security predicate. Vulnerability discovery is similar to test case gener-
ation; the only difference is the additional checking of a security predicate at each dan-
gerous operation. Thus, like test generation, it can be performed using our loop-extended
condition analysis: the query predicate is just the negation of the security predicate.

Loop-extended concolic execution is a particularly good match for discovering vul-
nerabilities related to input processing, because the datastructure size values that are
misused in buffer overflow and integer overflow vulnerabilities are often processed using
loops. The buffer overflow in Figure 3.1 is typical in this way. Depending on the security
property, some preprocessing might be needed to precisely define the security predicate
describing how an operation might be unsafe: for instance, when checking for a buffer
overflow, to determine the length of the vulnerable buffer. We will discuss some practical
aspects of such preprocessing in Section 3.5.

3.4.2.3 Vulnerability Diagnosis

If a vulnerability has already been exploited by an attacker, another important application
is diagnosing it: extracting a set ofvulnerability conditions(general constraints on the
values of inputs that exploit the vulnerability). Diagnosis is an important problem in secu-
rity because vulnerability conditions are useful for automatically generating signatures to
search for or filter attacks, or to help a security analyst understand a vulnerability.

Vulnerability diagnosis is again based on the loop-extended condition analysis primi-
tive of Section 3.4.1: in fact, the combination of a path predicate and a negated security
predicate gives a vulnerability condition. However, concolic execution typically generates
thousands of constraints, so our tool performs several optimizations to simplify them into
a smaller set, as discussed in Section 3.5. Such simplification is particularly important for
applications involving manual analysis, but a compact condition is also more efficient for
use by later automated tools.

Some forms of vulnerability diagnosis could be performed using TCE, but a TCE-
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based diagnosis would be too narrow for many applications, including most buffer over-
flows. For instance, a TCE-based diagnosis of the web server inFigure 3.1 could capture
some generality in the contents of the input fields, but it would restrict their lengths to the
particular values seen in the sample exploit. A filter based on such a diagnosis could be
easily bypassed by an attack that used a different length URI.By contrast, LECE finds
conditions that are more general; for instance, in the example of Figure 3.1, it finds that
msgbuf can be overflowed by inputs of arbitrary size, as long as the sum of the lengths
of two fields is at least 99.

3.5 Implementation

We have implemented the core loop-extended concolic execution component described
earlier in OCaml, and the protocol format linkage in OCaml combined with C and Python
code to integrate with off-the-shelf parsers. We utilized our existing binary analysis infras-
tructure [10, 105] for taking an execution trace and gettingthe semantics of x86 instruc-
tions.

The rest of this section describes several additional components we developed to real-
ize our proposed primitives and heuristics that make this approach practical when working
with binaries.

Memory layout extraction. Our tool infers on its own the memory allocations made by
the program at different points during the program execution. Then, the tool checks these
allocations for overflows in pointer accesses. When dealing with dynamic allocation, it
uses the arguments to memory allocation functions as being recorded by TEMU (part
of our infrastructure discussed in Section 2.4). For stack-based memory accesses, we
implemented a stack bound inference technique called stackanalysis [100], though more
detailed techniques [4, 5] could alternatively be used.

Loop information extraction. Our infrastructure uses the IDA Pro tool [60] to disassem-
ble binaries and we reused the static loop detection algorithms [84, pp. 191–197] existing
in our infrastructure [17]. There are two notable additional caveats which were useful for
obtaining results for our case studies.

1. Addition of dynamic edges.The presence of indirect call and jump instructions
hinders static CFG extraction: an analysis may completely miss code blocks that are
reachable only through indirect jumps. Our static control flow graph extraction is
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supplemented with indirect jump targets observed in the trace, which allow many
more loops to be discovered. For instance, such loops were critical to obtaining
accurate results in the SQL Server case study of Section 3.6.2.

2. Irreducible loops.Unlike in high-level languages, loops in binaries are oftenirre-
ducible. We dealt with this by employing node-splitting techniques [1, pp. 684–685]
to make loops reducible so that they can be identified in the control flow graph by
means of searching for back edges.

Protocol Grammar. Our existing infrastructure interfaces with Wireshark [116], an off-
the-shelf IDS/IPS, to obtain protocol grammars of network protocols we study.

Input Generation. We find that a relatively simple input generation approach works well
with our LECE implementation: when a constraint requires that a length or count be larger,
we repeat elements from the initial input until the result islong enough. In more general
examples where the field being extended is subject to more additional constraints, one
could also leverage grammar-based input generation approach [11, 52].

Constraint simplification. Our tool performs live-variable analysis to remove irrelevant
constraints. It then performs constant folding on the remaining constraints, and sim-
plifies them using the algebraic simplification routines built-in with the STP constraint
solver [48].

3.6 Experimental Evaluation

We evaluated the effectiveness of loop-extended concolic execution by applying it to dis-
covery and subsequent diagnosis of buffer overflow vulnerabilities. We selected two kinds
of subject programs for this evaluation. For comparison with other implementations,
which require source code and/or run only on Linux, we use standard benchmark suites
containing known overflows. To test the practical utility ofour tool, we use real-world
Windows and Linux applications with historic vulnerabilities. Our tool discovers all the
benchmark overflows, as well as those in real-world applications, by generating just a few
candidate inputs.

In addition to a subject binary program and an initial program input, our system also
requires the following data to complete each of the experiments.
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• Extra inputs

– Grammar of the program input (obtained using Wireshark)

– Program disassembly (required for loop detection, obtained using IDA Pro)

• Data automatically inferred by our system

– Stack and heap memory layout (required for overflows detection)

– Locations of indirect jumps/calls (to improve loop detection)

3.6.1 Evaluation on a Benchmark Suite

As benchmarks, we used a set of 14 samples extracted from vulnerabilities in open-source
network servers (BIND, Sendmail, and WuFTP) by researchers at the MIT Lincoln Labo-
ratories [122], which range between 200 and 800 lines of codeeach. (These are the same
benchmark programs used by Xu et al. [120].)

Replacing TCE with LECE would be beneficial throughout input space exploration in
vulnerability discovery, since symbolic expressions for loop-dependent values allow more
branches to be reversed, as discussed in Section 3.4.2.1. However, it can be difficult to
fairly compare concolic execution tools on an end-to-end basis, because of differences in
input assumptions and search heuristics. Therefore, we confine our evaluation to the last
stage of vulnerability search by starting both our tool and aTCE tool with a program input
that reaches the line of code where a vulnerability occurs, but does not exploit it. These
inputs are short and/or close to usual program inputs, so they could be found relatively
easily by either a TCE-based or an LECE-based approach (thoughthe time required would
still be highly dependent on the initial input and search heuristics used). Therefore, the
results on these inputs provide a bound on the performance ofan end-to-end system: if
a tool is unable to find a vulnerability given the hint of a nearby input, it would also be
unable to find it starting from a completely unrelated input.

Results and New Bugs.The upper half of Table 3.2 shows the results of our tool on the
Lincoln Labs overflow benchmarks. The first column identifieseach benchmark, and the
second column summarizes the input grammar our tool uses. The third and fourth columns
show the initial input our tool started with, and the exploitinput it found. The fifth column
shows the number of candidate inputs our tool generates (after the slash), and the number
of those that in fact cause an overflow (before the slash). Thesixth column shows the total
runtime of our tool, starting with the initial input trace and including all the discovered
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Program Input Format Initial Input Exploit Input Bug / Time (s) Loop-Dep.
Candidate Conditions

BIND 1 DNS QUERY 104 bytes, RDLen=48 RDLen=16 1/5 2511 16
BIND 2 DNS QUERY 114 bytes, RDLen=46 RDLen=30 1/4 2155 12
BIND 3 DNS IQUERY 39 bytes, RDLen=4 RDLen=516 1/2 586 13
BIND 4 DOMAINNAME “web.foo.mit.edu” “web.foo.mit.edu” (64 times) 1/1 4464 52
Sendmail 1 Byte Array “<><><>” “<>” (89 times) 4/5 672 1
Sendmail 2 struct passwd (Linux) (“”,“root”,0,0,“root”,“”,“”) (“”,“root”,0,0,“rootroo”,“”,“”) 1/1 526 38
Sendmail 3 [String]N [“a=\n”]2 [“a=\n”]59 1/4 626 18
Sendmail 4 Byte Array “aaa” “a” (69 times) 1/1 633 2
Sendmail 5 Byte Array “\\\” “\” (148 times) 3/3 18080 6
Sendmail 6 OPTION◦’ ’ ◦ARG “-d aaaaaaaaaa-2” “-d 4222222222-2” 1/1 676 11
Sendmail 7 DNS Response Fmt TXT Record : “aaa” Record : “a” (32 times) 1/1 237 16
WuFTP 1 String “aaa” “a” (9 times) 2/2 483 5
WuFTP 2 PATH “aaa” “a” (10 times) 1/1 197 29
WuFTP 3 PATH “aaa” “a” (47 times) 1/1 109 7

GHttpd Method◦URI◦Version “GET /index.html HTTP/1.1” “GET ”+188 bytes + “ HTTP/1.1” 2/2 1562 41
SQL Server Command◦DBName x04 x61 x61 x61 x04 x61(194 bytes) 1/3 205 1
GDI (Not required) 1014 bytes, INP[19:18]=0x0182 INP[19:18]=0x4003 1/1 353 2

Table 3.2: Discovery Results for Benchmarks and Real-world Programs. A circle (◦) represents concatenation. In
[X]k, k denotes the auxiliary count attribute specifying the number of times elementX repeats.
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overflows. (The seventh column will be discussed in Section 3.6.3.) All experiments were
performed on a 3GHz Intel Core 2 Duo with 4GB of RAM.

Our LECE tool discovers most of the bugs in just a few minutes, requiring only a
few candidate inputs each. In each case, we supplied a small benign input, and the tool
automatically found that a longer input could cause an overflow. Our tool also discovered
an apparently new bug in one of the Lincoln Labs benchmarks: in addition to the known
overflows (marked with/* BAD */ comments in the benchmark code) our tool finds a
new overflow on line 340 of the functionparse_dns_reply in Sendmail benchmark
7. (In the other cases where our tool reports multiple overflowing inputs, they were a set
of related errors marked in the benchmark.)

Comparison with Splat. Xu et al. [120] suggest a different approach to making TCE
work better for certain buffer overflows, by abstracting over the length of string buffers.
Specifically, their length abstraction technique requiresprogrammer-supplied source code
annotation to mark a chosen prefix of the relevant buffer’s contents as symbolic. In con-
trast, our technique automatically extracts memory buffers and their dependency on the
input fields using a combination of static and dynamic analysis. More importantly, LECE
does not need any information about string-manipulating functions, but instead uses in-
put grammar to assist its analysis. Our key enhancement to handle loop dependencies is
practically sufficient to reason about the implementationsof the string functions for our
applications. As a result, LECE can reason about vulnerabilities present in custom oper-
ations on array inputs that may not use any common string operations (examples of these
are available in our studied benchmarks).

Though the Lincoln Labs benchmarks were also studied by Xu etal. [120], a head-
to-head empirical comparison was not possible. Unfortunately, because of the way the
original benchmarks are designed to be self-contained, it was unclear which buffers (and
which parts) were annotated as program inputs in their work.For instance, the BIND 2
benchmark exercises code from BIND that parses a DNS packet, and also includes code
to generate an appropriate packet. In Xu et al. [120], it was unclear which value in the
packet generation process was treated as the input. As shownin Table 3.2, we considered
the whole packet itself to be the input, so that only an input that is a mostly syntactically
correct packet will cause an overflow. We believe our choice makes for a more realistic
evaluation, but it implies that a direct comparison of the tools’ execution times would not
be meaningful.

Our tool was able to find exploits for the two benchmarks (Sendmail 1 and 5) on which
Splat times out. (In the case of Sendmail 5, the total runningtime of our tool to evaluate 3
candidate inputs is longer than the two-hour timeout used with Splat, but our tool reports
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its first vulnerability before two hours have elapsed.) On the remaining benchmarks, our
tool reproduces Splat’s positive results on the complete programs.

Accuracy of candidate inputs. In the fifth column, Table 3.2 shows the number of can-
didate test inputs our tool generated in the process of finding each exploit. The fact that
only a few tests were required (on average,62.5% of the candidates our tool generates are
real exploits) demonstrates the targeted nature of LECE-based search: the tool efficiently
chooses appropriate loop iteration counts and prunes buffer operations that are safe, con-
centrating on the most likely vulnerability candidates. Ofcourse, since the candidates are
concrete inputs that can be automatically tested, failed candidates are not reported: the
tool gives no false positive results.

3.6.2 Evaluation on Real-World Programs

As full-scale case studies, we took 3 real-world Windows andLinux programs which are
known to have buffer overflow vulnerabilities. These include the program targeted by the
infamous Slammer worm in 2003 [83], the one affected by a recent GDI vulnerability in
2007 [78], and an HTTP server [50]. Table 3.2 summarizes the vulnerabilities in these
programs and the input grammars our tool used. We gave benigninitial inputs to these
programs that are representative of normal inputs that theywould receive in practice.

Starting with a benign input, our tool uses just one iteration of LECE to discover buffer
overflows in all 3 real world programs. The bugs found in the GDI and SQL cases are the
same reported earlier in these programs, as we manually confirmed. For ghttpd, our tool
discovers two buffer overflow vulnerabilities in theLog function in util.c. One of
these is described in previous research using this subject program [31]. The new over-
flow involves a separate buffer and would need a separate fix. These results are shown in
Table 3.2; next we explain each vulnerability in more detail.

GHttpd vulnerability. GHttpd is a Linux web server; we use version 1.4.3. We send an
initial benign input,GET /index.html HTTP/1.1, to the running web service, and
it responds normally. Given a trace of this execution and theHTTP grammar, our tool
discovers 2 potential buffers to overflow and generates candidate exploits for each. These
inputs are the same as the initial input except that their URI fields have lengths of 188 and
140 bytes respectively. Testing confirms that both candidates indeed cause overflows: the
shorter request overflows one buffer, and the longer one overflows both that buffer and a
subsequent one.
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SQL Server vulnerability. This vulnerability is a stack-based overflow in Microsoft’s
SQL Server Resolution Service (SSRS), which listens for UDP requests on port 1434.
Based on its specification [79], one valid message format contains 2 fields: a header byte
of value 4, followed by a string giving a database name. We send the SSRS service a
benign request that consists of the header byte and a string “aaa”, to which the service
responds correctly. Given the trace and the input grammar, our tool finds 3 potential
buffers to overflow and generates one candidate inputs for each. Our automated testing
reports that one candidate, which is 195 bytes long, overflows a buffer that is the same one
exploited by the SQL Slammer worm. (The other two candidate inputs are longer than
the maximum-length UDP packet, so they are discarded duringtesting and not reported.)
The fact that such large inputs could be generated in a singlestep, rather than via a long
iteration process, shows the power of LECE.

GDI vulnerability. This vulnerability in the Microsoft Windows Graphic Rendering En-
gine was patched in 2007. We created a benign and properly formatted WMF image file
using Microsoft PowerPoint, containing only the text “aa”; the file is 1014 bytes long.
We attempt to open the file using a sample application and record the program execu-
tion. Without using an input grammar, our tool discovers a potential buffer read overflow
and creates an exploit input, which crashes the sample application. The only differences
between the exploit and the benign input are the values in bytes 18 and 19 (shown in Ta-
ble 3.2). Comparing with a grammar for the WMF format, these bytes correspond to the
size of the image field.

3.6.3 Further Applications

Improving test coverage.Though our evaluation does not focus on the exploration phase
of vulnerability detection, our experiments do demonstrate a feature of loop-extended con-
colic execution that makes it more effective in obtaining input space coverage. As de-
scribed in Section 3.4.2.1, LECE improves on TCE by finding symbolic expressions for
more branch conditions that depend on the number of times loops execute, making it pos-
sible for a coverage tool to reverse them. To measure this effect, we give in the last column
of Table 3.2 the number of branches for which our tool found a loop-dependent condition
but no directly input-dependent condition, so that an LECE-based tool would be able to
reverse them but a TCE-based tool would not. The count is a number of unique program-
counter locations (i.e., static and context-insensitive), and excludes loop exit conditions.
For instance, one of the 29 loop-dependent conditions in WuFTP 2 is a length check (on
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line 464) intended to prevent the buffer overflow. Because thecheck is faulty, it is false
on both our benign and exploit inputs, but exploring both sides would be critical for an
exploration task, such as verifying the lack of overflows in afixed version. The condition
is immediately apparent to our tool, but would not be considered symbolic under standard
TCE.

Vulnerability diagnosis. Our tool can also be used for vulnerability diagnosis: to finda
general set of conditions under which an exploit occurs. Diagnosis is most useful when
a vulnerability is already being used by attackers, and it isimportant to understand and
defend against attacks quickly: vulnerability conditionscan accelerate or replace manual
analysis of an exploit, and be used to generate filters to detect or block attacks. But to be
useful, such conditions must be broad enough to cover a largeclass of attacks.

We used our tool to perform diagnosis on the same real-world programs described in
Section 3.6.2. Either a publicly available exploit, or the exploits generated by our discov-
ery tool, could be used and produce the same results.

Our tool’s diagnoses, summarized in Table 3.3, are more accurate and usable than those
given in previous work [37]. For instance, for the MicrosoftSQL Server vulnerability, the
condition our tool generates states that the vulnerable field’s length must be greater than 64
bytes, whereas the buffer overrun vulnerability conditiongenerated in previous work states
that the length must be at least 97 bytes [37]. This difference turns out to be significant.
Because we have no access to source code, we validated our results experimentally by
supplying inputs of various sizes to the server. We found that when the vulnerable field has
a size larger than 64 bytes, the overflow overwrites pointerswith invalid values, causing
an exception when these values are dereferenced.

Also note that most diagnoses of buffer overflows, includingthe GHttpd and SQL
Server examples shown in Table 3.3, could not be produced by astandard TCE tool, which
lacks even a notation to refer to the length of an input field.

3.7 Limitations

Although we found that LECE provides enhancement to concolicexecution and can be
applied to various security-related applications as discussed in Section 3.6, it is valuable
to discuss some key limitations of the technique.

First, LECE uses static loop detection technique instead of detecting them during pro-
gram execution, which would make the overall technique dynamic and applicable for any
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Program Buffer size Condition for overflow Constraint
(bytes) generation time (s)

GHttpd (1) 220 URI.len > 172 420 + 23
GHttpd (2) 208 URI.len > 133 420 + 140
SQL Server 128 DBName.len > 64 192
GDI 4096 (2·INP[19:18])>>2 < 0 200

Table 3.3: Diagnosis Results on Real-world Software. Generation time for GHttpd con-
sists of the pre-processing time (420 s) and the post-processing time (23 s and 140 s) for
each condition.

executables. As a result, LECE requires a control flow graph ofa program under analysis
which may be difficult to retrieve for obfuscated programs. We choose the static approach
because it provides the loop exit conditions which are crucial to our overall approach.
The dynamic approach, on the other hand, would require unproven heuristics to identify
loop exit condition. Second, it relies heavily on the presence of input grammar, which
may not be readily available. Even though previous work [20]has proposed a technique
for automatic inference of proprietary input formats, the correctness of the resulting for-
mats cannot be fully guaranteed and the technique is not robust against obfuscation. Third,
LECE requires a heuristic for extending the length of an inputfield, by repeatedly concate-
nating elements from the initial input field until it reachesthe desired length. Although
the heuristic works fine in our experiment, it is possible that the extended field may be
subject to additional constraints. Finally, LECE only consider linear relationship between
loop trip counts and variables, which is not applicable to many input formats that contain
nested fields.

3.8 Related Work

This section discusses two classes of related research: first, other work on analysis ap-
proaches similar to our loop-extended concolic execution;then, work that also addresses
the problem of discovering and/or diagnosing buffer-overflow attacks.

3.8.1 Analysis Approaches

Extensions to traditional concolic execution. Several previous approaches have ex-
tended traditional concolic execution with additional information about the program or its
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possible inputs. Previous grammar-based approaches [17, 51, 52, 74] have taken advan-
tage of knowledge of which program inputs are legal to reducethe size of the search space
when generating new inputs. By comparison, our use of an inputgrammar in Section 3.3.2
is focused on extracting more information from a single execution. The Splat tool of Xu et
al. [120] also targets the problem of buffer-overflow diagnosis, but they do not explicitly
model loop constructs as in loop-extended concolic execution. An empirical and analyt-
ical comparison to their approach is presented in Section 3.6.1. Pre- and post-conditions
can summarize the behavior of a function so that it need not bereanalyzed [51], similar to
how our approach avoids the need to reanalyze with differentnumbers of loop iterations.
If repeated constraints are generated, they can also be later removed by optimizations such
as constraint subsumption [54].

Static analysis.Determining linear (technically, “affine”) relationshipsamong the val-
ues of variables, as our analysis in Section 3.3.1 does, is a classic problem of static program
analysis, pioneered by Karr [62]. Like many properties thatinvolve multiple variables, it
can potentially become expensive. For instance the polyhedron technique [33] requires
costly conversion operations on a multi-dimensional abstract representation. More recent
research has considered restricted abstract domains that allow for more efficient compu-
tation, such as “octagons” [81] and “pentagons” [72]. The techniques of M̈uller-Olm and
Seidl [85] have the advantage of giving precise results evenwith respect to overflow, but
their runtime is a high power of the number of variables in a program (k7 for the interpro-
cedural case). Random analysis [56] can also be used to determine linear relationships,
with a small probability of error. For the simpler case we consider, it is sufficient to take a
more efficient non-relational approach: we express the values of program variables not in
terms of each other but in terms of a small set of auxiliary trip-count variables.

3.8.2 Discovering and Diagnosing Buffer Overflows

Buffer-overflow vulnerabilities are a critical security challenge, and many approaches tar-
get them. Sound static analysis holds the possibility of eliminating false negatives, but in
practice buffer overflow checking is difficult enough that sound analysis is possible only
for small programs with extensive user annotation [44]. More comparable to our approach
are scalable bug-finding tools [47, 119]. However, pure static analysis approaches suffer
from false positives, which tool users must examine by hand.For instance, one com-
parison [122] using the same benchmarks we use in Section 3.6.1 found that many tools
produced so many false positives they did only slightly better than chance. Dynamic anal-
ysis techniques, on the other hand, avoid false positives byexamining programs as they
execute [32, 34, 88]. However, the requirement of running onall executions means that
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the overhead of dynamic analysis tools can limit their applicability. Concolic execution
combines static and dynamic techniques to generalize from observed executions to simi-
lar unobserved ones, and loop-extended concolic executionextends this generalization to
include loops.

Our vulnerability diagnosis using loop-extended concolicexecution extends previous
diagnosis approaches based on traditional concolic execution [13, 14, 31]. Bouncer [31]
employs source-code-based static alias analysis along with TCE. ShieldGen [37] uses a
protocol-specification-based exploration of the input space to diagnose a precise vulnera-
bility condition. However, in contrast to our work, it treats the program as a black-box,
ignoring the implementation. In addition, it does not capture complex relationships be-
tween fields that may be necessary to exploit a vulnerability. For instance, as its authors
point out, ShieldGen cannot capture the condition that the combined length of two fields
must exceed a buffer size for exploit (as in the example of Section 3.2), while our tech-
niques can.

3.9 Conclusion

We propose loop-extended concolic execution, a new type of concolic execution that gains
power by modeling the effects of loops. It introduces trip count variables with a symbolic
analysis of linear loop dependencies, and links them to features in a known input gram-
mar. We apply this approach to the problem of detecting and diagnosing buffer overflow
vulnerabilities, in a tool that operates on unmodified Windows and Linux binaries. Rather
than trying a large number of inputs in an undirected way, ourapproach often discov-
ers an overflow on the first candidate it tries. Our tool finds all the vulnerabilities in the
Lincoln Labs benchmark suite and gives accurate symbolic conditions describing real vul-
nerabilities. These results suggest that loop-extended concolic execution has the potential
to make many kinds of program analysis, including importantsecurity applications, faster
and more effective.
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Chapter 4

Decomposition and Re-stitching

4.1 Introduction

Vulnerability discovery inbenignprograms has been an important task in software se-
curity: identifying software bugs that may be remotely exploitable and creating program
inputs that demonstrate their existence. However, finding vulnerabilities inmalwarehas
not been studied. Do malicious programs have vulnerabilities? Do different binaries of the
same malware family share vulnerabilities? How do we automatically discover vulnerabil-
ities in malware? What are the implications of vulnerabilitydiscovery to malware defense,
law enforcement and cyberwarfare? In this thesis we take thefirst step in addressing these
questions. In particular, we propose new symbolic reasoning techniques for automatic
input generation in the presence of complexencoding functionsand demonstrate the ef-
fectiveness of our techniques by examining and finding bugs in real-world malware. Our
study also shows that vulnerabilities can persist for yearsacross malware revisions. We
hope our work will spur discussions in the implications of malware vulnerability discovery
to malware defense, law enforcement and cyberwarfare.

Concolic execution and related techniques can be used for vulnerability discovery in
malware just like in benign software. However traditional concolic execution is ineffec-
tive in the presence of certain common computation tasks, including the decryption and
decompression of data, and the computation of checksums andhash functions. We call
theseencoding functions. Encoding functions result in symbolic formulas that can bedif-
ficult to solve, which is not surprising, given for instance that cryptographic hash functions
are designed to be impractical to invert [86]1. Encoding functions are used widely in mal-

1Inversion of hash and checksum function in this thesis refers to finding any input that would provide the
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ware (and also in many benign applications). In our experiments, the traditional concolic
execution approach fails to explore the execution space of the malware samples effectively.

To address the challenges posed by the presence of encoding functions, we propose
a new approach,stitchedconcolic execution. This approach first identifies potential en-
coding functions and their inverses, if any. Then, it decomposes the symbolic constraints
from the execution, separating the constraints generated by each encoding function from
the constraints in the rest of the execution. The solver doesnotattempt to solve the (hard)
constraints induced by the encoding functions. It focuses on solving the (easier) con-
straints from the remainder of the execution. Finally, it re-stitches the solver’s output by
either using the inverses of the encoding functions or by solving related constraints, creat-
ing a program input that can be fed back to the unmodified program.

For instance, our approach can automatically identify thata particular function in an
execution is performing some expensive computation on the input, e.g., decrypting the
input. Rather than using symbolic execution inside the decryption function, it applies
symbolic execution on the outputs of the decryption function, producing constraints for
the execution after the decryption. Solving those constraints generates an unencrypted
message. Then, it executes the inverse (encrypt) function on the unencrypted message,
generating an encrypted message that can be fed back to the program.

More generally, we identify two kinds of computation that make such decomposition
possible: computations that transform data into a new form that replaces the old data (such
as decompression and decryption), and side computations that relate a constrained value
to an otherwise unconstrained value (such as checksums). For clarity, we explain these
techniques in the context of concolic execution, but they are equally applicable to concrete
fuzz (random) testing (e.g., [45, 106]) and taint-directedfuzzing [49].

We implement our approach as a set of additions to a system forautomated concolic ex-
ecution of off-the-shelf x86 executables in binary form, implemented using our BitBlaze
infrastructure [10, 105]. Our re-stitching approach enables the first automated study of
bugs in malware: our tool finds several new, remotely trigger-able bugs in prevalent mal-
ware programs such as botnet clients and trojans. Vulnerabilities in botnet clients could
allow a third party to terminate or take control a bot, so theyare a powerful tool for either
defensive or malicious purposes. To confirm the value of our approach, we show that our
tool would be unable to find most of the bugs we report without the new techniques we
introduce.

Malware vulnerabilities have a great potential for different applications such as mal-
ware removal or cyberwarfare. Some malware programs such asbotnet clients are de-

same hash as the original input.
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ployed at a scale that rivals popular benign applications. For instance, the recently-disabled
Mariposa botnet was sending messages from more than 12 million unique IP addresses at
the point it was taken down, and stole data from more than 800,000 users [69]. Our goal
in this research is to demonstrate that finding vulnerabilities in widely-deployed malware
such as botnet clients is technically feasible. However, the implications of the usage of
malware vulnerabilities require more investigation. For example, some of the potential
applications of malware vulnerabilities raise ethical andlegal concerns that need to be ad-
dressed by the community. Thus, another goal of this research is to raise awareness and
spur discussion in the community about the positives and negatives of the different uses of
malware vulnerabilities.

4.2 Problem Definition & Overview

In this section, we describe the problem we address and give an overview of our approach.

4.2.1 Problem Definition

Our problem is how to perform concolic execution in the presence of encoding functions.

Often there are parts of a program that are not amenable to concolic execution. A class
of common culprits, which we callencoding functions, includes many instances of decryp-
tion, decompression, and checksums. For instance, consider the code in Figure 4.1, which
is an idealized example modeled after a botnet client. Afterreceiving a message (struct
msg) from the network, it first decrypts the body of the message using AES [39], verifies
that it has a correct SHA-1 hash [86], and then takes a malicious action such as sending
spam based on a command in the message. Concolic execution attempts to create a new
valid input by solving a formula corresponding to the path condition for an execution path.
Suppose we run the program on a message that causes the bot to participate in a DDOS
attack: at a high level, the path condition takes the form

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧m′[0] = 101 (4.1)

wherem andh1 represent two relevant parts of the program input treated assymbolic:
m is the message bodym->message, andh1 is the message checksumm->hash. Dec
represents the operation of AES decryption, while SHA1 is the SHA-1 hash function. To
see whether it can create a message to cause a different action, concolic execution will
attempt to solve the modified path condition

m′ = Dec(m) ∧ h1 = SHA1(m′) ∧m′[0] 6= 101 (4.2)
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1 struct msg {
2 long msg_len;
3 unsigned char hash[20];
4 unsigned char message[];
5 };
6 void process(unsigned char* network_data) {
7 int *p;
8 struct msg *m = (struct msg *) network_data;
9 aes_cbc_decrypt(m->message, m->msg_len, key);

10 p = compute_sha1(m->message, m->msg_len);
11 if (memcmp(p, m->hash, 20))
12 exit(1);
13 else {
14 int cmd = m->message[0];
15 if (cmd == 101)
16 ddos_attack(m);
17 else if (cmd == 142)
18 send_spam(m);
19 /* ... */
20 }
21 }

Figure 4.1: A Simplified Example of a Program that Uses Layered Input Processing. The
encoding functions include decryption (line 9) and a securehash function for integrity
verification (lines 10-12).
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which differs from the original in inverting the last condition.

However solvers tend to have a very hard time with conditionssuch as this one. As
seen by the solver, the Dec and SHA1 functions are expanded into a complex combination
of constraints that mix together the influence of many input values and are hard to reason
about [41]. The solver cannot easily recognize the high-level structure of the computation,
such as that the internals of the Dec and SHA1 functions are independent of the parsing
conditionm′[0] 6= 101. Such encoding functions are also just as serious an obstacle for
related techniques like concrete and taint-directed fuzzing. Thus, the problem we address
is how to perform input generation (such as via concolic execution) for programs that use
encoding functions.

4.2.2 Approach Overview

We propose an approach ofstitchedconcolic execution to perform input generation in the
presence of encoding functions. We first discuss the intuition behind it, outline the steps
involved, and then explain how it applies to malware vulnerability finding.

Intuition. The insight behind our approach is that it is possible to avoid the problems
caused by encoding functions, by identifying and bypassingthem to concentrate on the
rest of the program, and re-stitching inputs using concreteexecution. For instance in the
path condition of formula 4.2, the first and second constraints come from encoding func-
tions. Our approach can verify that they are independent from each other and the message
parser (exemplified by the constraintm′[0] 6= 101) within the high-level structure of input
processing and checking. Thus these constraints can be decomposed, and the solver can
concentrate on the remainder. Solving the remaining constraints gives a partial input in
the form of a value form′, and our system can then re-stitch this into a complete program
input by concretely executing the encoding functions or their inverses, specificallyh1 as
SHA1(m′) andm as Dec−1(m′).

Many encoding functions use keys or seeds which can be observed during program
execution. Our approach heuristically assumes that the inverses are using the same key.
Thus, it will not work on functions that use public-key cryptography. We discuss this
limitation in Section 4.6.2.

Stitched concolic execution. In outline, our approach proceeds as follows. As a first
phase, our approach identifies encoding functions (such as decryption and checksums)
based on a program execution. Then in the second phase, our approach augments explo-
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ration based on concolic execution by adding decompositionand re-stitching. On each
iteration of exploration, we decompose the generated constraints to separate those related
to encoding functions, and pass the constraints unrelated to encoding functions to a solver.
The constraint solution represents a partial input; the approach then re-stitches it, with
concrete execution of encoding functions and their inverses, into a complete input used
for a future iteration of exploration. If as in Figure 4.1 there are multiple layers of encod-
ing functions, the approach decomposes each layer in turn, and then reverses the layers in
re-stitching. Since our approach is used with and based on dynamic analysis, it is not a
requirement that it be sound over all possible executions; we judge the re-stitching by the
program inputs it generates, which we can check by executingthem.

Finding vulnerabilities in malware. We implement the approach as a scaling tool for
BitFuzz (discussed in Section 2.4). We use BitFuzz to find vulnerabilities in malware pro-
grams. Many such malware samples, e.g., bots, act as networkclients that start connections
to remote C&C servers. Thus, the input that BitFuzz needs to feed to the program in each
iteration is often the response to some request sent by the program. Previous exploration
tools for binaries do not support such network clients and have focused on programs that
read input from the file system or network servers that receive network data directly from
the exploration tool. One goal for BitFuzz is to be able to explore such network client pro-
grams without a real connection to the Internet, what we callInternet in your workstation.
For malware, this means that we do not need to worry about malicious behavior leaking to
the Internet. To enable such exploration we have developed aset of tools, which we detail
in Section 4.4.

4.3 Stitched Concolic Execution

In this section we describe key aspects of our approach: the conditions under which a
program’s constraints can be decomposed and re-stitched (Section 4.3.1), techniques for
choosing what components’ constraints to decompose (Section 4.3.2), and how to repeat
the process when there are multiple encoding layers. (Section 4.3.3). An overview of the
system architecture is shown in Figure 4.3.

4.3.1 Decomposition and Re-Stitching

In this section we describe the principles of our decomposition and re-stitching approach
at two levels: first at the level of constraints between program values, and then more
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Figure 4.2: A Graphical Representation of the Two Styles of Decomposition Used in Our
Approach. Ovals and diamonds represent computations, and edges represent the depen-
dencies (data-flow constraints) between them. On the left isserial layering, while on the
right is side-condition layering.

abstractly by considering a program as a collection of functional elements.

4.3.1.1 Decomposing Constraints

One perspective on decomposition is to consider a program’sexecution as inducing con-
straints among program values. These are the same constraints that are represented by for-
mulas in symbolic execution: for instance, that one value isequal to the sum of two other
values. The constraints that arise from a single program execution have the structure of a
directed acyclic graph whose sources represent inputs and whose sinks represent outputs;
we call this theconstraint graph. The feasible input-output pairs for a given execution
path correspond to the values that satisfy such a constraintsystem, so input generation can
be viewed as a kind of constraint satisfaction problem.

In this constraint-satisfaction perspective, analyzing part of a program separately cor-
responds to cutting the constraints that link its inputs to the rest of the execution. For
a formula generated by concolic execution, we can make part of a formula independent
by renaming the variables it refers to. Following this approach, it is not necessary to ex-
tract a component as if it were a separate program. Our tool can simply perform concolic
execution on the entire program, and achieve a separation between components by using
different variable names in some of the extracted constraints.
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Figure 4.3: Architectural Overview Showing the Parts of OurDecomposition-based Input
Generation System. The steps labeled decomposition and re-stitching are discussed in
Section 4.3.1, while identification is discussed in Section4.3.2. The parts of the system
shown with a gray background are the same as would be used in a non-stitching concolic
execution system. The steps above the dotted line are performed once as a setup phase,
while the rest of the process is repeated for each iteration of exploration.

We propose two generic forms of decomposition, which are illustrated graphically in
Figure 4.2. For each form of decomposition, we explain whichparts of the program are
identified for decomposition, and describe what local and global dependency conditions
are necessary for the decomposition to be correct.

One set of global dependency conditions are inherent in the graph structure shown in
Figure 4.2. If each node represents the constraints generated from one component, then
for the decomposition to be correct, there must not be any constraints between values
that do not correspond to edges in Figure 4.2. For instance the componentf2 in serial
decomposition must not access the input directly.

Serial decomposition.The first style of decomposition our approach performs is between
successive operations on the same information, in which thefirst layer is a transformation
producing input to the second layer. More precisely, it involves what we call asurjective
transformation. There are two conditions that define a surjective transformation. First,
once a value has been transformed, the pre-transformed formof the input is never used
again. Second, the transformation must be an onto function:every element in its codomain
can be produced with some input. A functiony = x2 which returns a signed 32-bit integer
is an example of functions that do not satisfy this condition. The codomain of this func-
tion contains232 elements, including negative integers which are not possible output of the
function. In Figure 4.2,f1 is the component that must implement a surjective transforma-
tion. Some examples of surjective transformations includedecompression and decryption.
The key insight of the decomposition is that we can analyze the part of the program down-
stream from the transformation independently, and then simply invert the transformation
to re-stitch inputs. For instance, in the example of Figure 4.1, the decryption operation is
a surjective transformation that induces the constraintm′ = Dec(m). To analyze the rest
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of the program without this encoding function, we can just rename the other uses ofm′ to
a new variable (saym′′) that is otherwise unconstrained, and analyze the program as if m′′

were the input. Bypassing the decryption in this way gives

h1 = SHA1(m′′) ∧m′′[0] = 101 (4.3)

as the remaining path condition.

Side-condition decomposition. The second style of decomposition our approach per-
forms separates two components that operate on the same data, but can still be considered
mostly independent. Intuitively, afree side-conditionis a constraint on part of a program’s
input that can effectively be ignored during analysis of therest of a program, because it
can always be satisfied by choosing values for another part ofthe input. We can be free
to change this other part of the input if it does not participate in any constraints other than
those from the side-condition. More precisely, a program exhibiting a free side-condition
takes the form shown in the right-hand side of Figure 4.2. Theside-condition is the con-
straint that the predicatep must hold between the outputs off1 andf2. The side-condition
is free because whatever value the first half of the input takes,p can be satisfied by making
an appropriate choice for the second half of the input. An example of a free side-condition
is that the checksum computed over a program’s input (f1) must equal (p) the checksum
parsed from a message header (f2). Section 4.3.2.1 discusses how a free side-condition
can be identified.

To perform decomposition given a free side-condition, we simply replace the side-
condition with a value that is always true. For instance the SHA-1 hash of Figure 4.1
participates in a free side-conditionh1 = SHA1(m′′) (assuming we have already removed
the decryption function as mentioned above). Buth1 does not appear anywhere else among
the constraints, so we can analyze the rest of the program as if this condition were just the
literal true. This gives the path condition:

true∧m′′[0] = 101 (4.4)

4.3.1.2 Re-Stitching

After decomposing the constraints, our system solves the constraints corresponding to the
remainder of the program (excluding the encoding function(s)), as in non-stitched concolic
execution, to give a partial input. The re-stitching step builds a complete program input
from this partial input by concretely execution encoding functions and their inverses. If
the decomposition is correct, such a complete input is guaranteed to exist, but we construct
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it explicitly so that the exploration process can re-execute the program from the beginning.
Once we have found a bug, a complete input confirms (independent of any assumptions
about the analysis technique) that the bug is real, allows easy testing on other related
samples, and is the first step in creating a working exploit.

For serial decomposition, we are given an input tof2, and the goal is to find a corre-
sponding input tof1 that produces that value. This requires access to an inversefunction
for f1; we discuss finding one in Section 4.3.2.2. (Iff1 is many-to-one, any inverse will
suffice.) For instance, in the example of Figure 4.1, the partial input is a decrypted mes-
sage, and the full input is the corresponding AES-encryptedmessage.

For side-condition decomposition, we are given a value for the first part of the input
that is processed byf1. The goal is to find a matching value for the rest of the input that is
processed byf2, such that the predicatep holds. For instance, in Figure 4.1,f1 corresponds
to the functioncompute_sha1, f2 is the identity function copying the valuem->hash,
andp is the equality predicate. We find such a value by executingf1 forwards, finding a
value related to that value byp, and applying the inverse off2. A common special case is
thatf2 is the identity function and the predicatep is just equality, in which case we only
have to re-runf1. For Figure 4.1, our tool must simply re-applycompute_sha1 to each
new message.

4.3.1.3 The Functional Perspective

A more abstract perspective on the decomposition our technique performs is to consider
the components of the program as if they were pure functions.Of course the real programs
we analyze have side-effects: a key aspect of our implementation is to automatically ana-
lyze the dependencies between operations to understand which instructions produce values
that are read by other instructions. We summarize this structure to understand which opera-
tions are independent from others. In this section, we show this independence by modeling
a computation as a function that takes as inputs only those values the computation depends
on, and whose outputs encompass all of its side effects. Thisrepresentation is convenient
for formally describing the conditions that enable decomposition and re-stitching.

Serial decomposition applies when a program has the functional form f2(f1(i)) for
input i, and the functionf1 (the surjective transformation) is onto: all values that might
be used as inputs tof2 could be produced as outputs off1 for some input. Observe that
the fact thati does not appear directly as an argument tof2 implies thatf2 has no direct
dependency on the pre-transformed input. For re-stitching, we are given a partial inputx2

in f(x2), and our tool computes the corresponding full input asx1 = f−1
1 (x2).
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For side-condition decomposition, we say that a predicatep is a free side-condition
in a program that has the functional formf4(f3(i1), p(f1(i1), f2(i2))), where the input is
in disjoint partsi1 andi2. Heref2 is a surjective transformation andp is a surjective or
right-total relation: for ally there exists anx such thatp(x, y) is true. Whenp is a free
side-condition, the effect of decomposition is to ignoref1, f2, andp, and analyze inputsi1
as if the program weref4(f3(i1), true). This gives a partial inputx1 for the computation
f4(f3(x1), true). To create a full input, we must also find an additional inputx2 such that
p(f1(x1), f2(x2)) holds. Our tool computes this using the formulax2 = f−1

2 (p−1(f1(x1))).

4.3.2 Identification

The previous section described the conditions under which decomposition is possible; we
next turn to the question of how to automatically identify candidate decomposition sites.
Specifically, we first discuss finding encoding functions in Section 4.3.2.1, and then how
to find inverses of those functions when needed in Section 4.3.2.2.

4.3.2.1 Identifying Encoding Functions

There are two properties of an encoding function that make itprofitable to use for decom-
position in our approach. First, the encoding function should be difficult to reason about
symbolically. Second, the way the function is used should match one of the decomposition
patterns described in Section 4.3.1. Our identification approach is structured to check these
two kinds of properties, using a common mechanism of dynamicdependency analysis.

Dynamic dependency analysis.For identifying encoding functions, we perform a trace-
based dependency analysis that is a general kind of dynamic tainting. The analysis as-
sociates information with each value during execution, propagates that information when
values are copied, and updates that information when valuesare used in an operation to
give a new value. Equivalently, this can be viewed as propagating information along edges
in the constraint graph (taking advantage of the fact that the execution is a topological-
order traversal of that graph). Given the selection of any subset of the program state as
a taint source, the analysis computes which other parts of the program state have a data
dependency on that source.

Identifying high taint degree. An intuition that partially explains why many encoding
functions are hard to reason about is that they mix together constraints related to many
parts of the program input, which makes constraint solving difficult. For instance, this
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is illustrated by a contrast between an encryption functionthat uses a block cipher in
CBC mode, and one that uses a stream cipher. Though the functions perform superficially
similar tasks, the block cipher encryption is a barrier to concolic execution because of its
high mixing, while a stream cipher is not. Because of the lack of mixing, a constraint
solver can efficiently determine that a single plaintext byte can be modified by making a
change to the corresponding ciphertext byte. We use this intuition for detecting encoding
functions for decomposition: the encoding functions we areinterested in tend to mix their
inputs.

We can potentially use dynamic dependency analysis to trackthe dependencies of val-
ues on any earlier part of the program state; for instance we have experimented with treat-
ing every input to a function as a dependency (taint) source.But for our study, we confine
ourselves to using the inputs to the entire program (i.e., from system calls) as dependency
sources. To be precise our analysis assigns an identifier to each input byte, and deter-
mines, for each value in an execution, which subset of the input bytes it depends on. We
call the number of such input bytes the value’staint degree. If the taint degree of a byte is
larger than a configurable threshold, we refer to it as high-taint-degree. We group together
a series of high-taint-degree values in adjacent memory locations as a single buffer; our
decomposition applies to a single such buffer.

This basic technique could apply to buffers anywhere in an execution, but we further
enhance it to identify functions that produce high-taint-degree buffers as output. This has
several benefits: it reduces the number of candidate buffersthat need to be checked in
later stages, and in cases where the tool needs to later find aninverse of a computation
(Section 4.3.2.2), it is convenient to search using a complete function. Our tool heuristi-
cally considers a buffer to be an output of a function if it is live at the point in time that a
return instruction is executed. Also, we heuristically identify a function that includes the
complete encoding functionality by searching for the first high-taint-degree computation
that the output buffer depends on, and choosing the functionthat encloses both this first
computation and the output buffer.

In the example of Figure 4.1, the buffers containing the outputs ofaes_cbc_decrypt
andcompute_sha1 would both be found as candidates by this technique, since they
both would contain bytes that depend on all of the input bytes(the final decrypted byte,
and all of the hash value bytes).

Checking dependence conditions.Values with a high taint degree as identified above are
candidates for decomposition because they are potentiallyproblematic for symbolic rea-
soning. But to apply our technique to them, they must also appear in a proper context in the
program to apply our decomposition. Intuitively the structure of the program must be like
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those in Figure 4.2. To be more precise, we describe (in-)dependence conditions that limit
what parts of the program may use values produced by other parts of the program. The
next step in our identification approach is to verify that theproper dependence conditions
hold (on the observed execution). This checking is needed toavoid improper decomposi-
tions, and it also further filters the potential encoding functions identified based on taint
degree. If the dependence conditions on the program structure are not satisfied, our tech-
nique cannot be applied and thus concolic execution has to beperformed in a traditional
brute force manner. Although satisfying situations can be very limited, the structures of
the program as in Figure 4.2 match common, non-obfuscated usages of encoding functions
and thus extend the applications of concolic execution to a larger set of programs.

Intuitively, the dependence conditions require that the encoding function be indepen-
dent of the rest of the program, except for the specific relationships we expect. For serial
decomposition, our tool checks that the input bytes that were used as inputs to the surjec-
tive transformation are not used later in the program. For side-condition decomposition,
our tool checks that the result of the free side-condition predicate is the only use of the
value computed from the main input (e.g., the computed checksum), and that the remain-
ing input (e.g., the expected checksum from a header) is not used other than in the free
side-condition. Our tool performs this checking using the same kind of dynamic depen-
dency analysis used to measure taint degree.

In the example of Figure 4.1, our tool checks that the encrypted input toaes_cbc_decrypt
is not used later in the program (it cannot be, because it is overwritten). It also checks that
the hash buffer pointed to byh is not used other than in thememcmp on line 11, and that
the bufferm->hash, containing the expected hash value, is not used elsewhere.

Identifying new encoding functions.The identification step may need to be run in each
iteration of the exploration because new encoding functions functions may appear that had
not been seen in previous iterations. As an optimization, BitFuzz runs the identification
on the first iteration of the exploration, as shown in Figure 4.3, and then, on each new
iteration, it checks whether the solver times out when solving any constraint. If it does, it
re-runs the identification on the current execution trace.

A graph-based alternative.Our taint-degree dependency analysis can be seen as simple
special case of a broader class of algorithms that identify interesting parts of a program
from the structure of its data dependency (data-flow) graph.The approach we currently
use has efficiency and simplicity advantages because it can operate in one pass over a trace,
but in the future we are also interested in exploring more general approaches that explicitly
construct the dependency graph. For instance, the interface between the two stages in a
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serial decomposition must be a cut in the constraint graph, and we would generally expect
it to be minimal cut in the sense of the subset partial order. So we can search for candidate
serial decompositions by using a maximum-flow-minimum-cutalgorithm as in McCamant
and Ernst’s Flowcheck tool [75].

4.3.2.2 Identifying Inverse Functions

Recall that to re-stitch inputs after serial decomposition,our approach requires the inverses
of surjective transformation functions. This requirementis reasonable because surjective
functions like decryption and decompression are commonly the inverses of other functions
(encryption and compression) that apply to arbitrary data.These functions and their in-
verses are often used in concert, so their implementations can often be found in the same
binaries or in publicly available libraries (e.g., [89, 123]). Thus, we locate relevant inverse
functions by searching for possible functions in the code being analyzed as well as in pub-
licly available libraries. If a possible inverse function requires a key or a seed, we supply
it with the same key/seed used in the execution trace by the encoding function.

Specifically, we check whether two functions are each others’ inverses by random
testing. Iff andf ′ are two functions, and for several randomly-chosenx andy, f ′(f(x)) =
x andf(f ′(y)) = y, thenf andf ′ are likely inverses of each other over most of their
domains. Supposef is the encoding function we wish to invert. Starting with allthe
functions from the same binary module that were exercised inthe trace, we infer their
interfaces using our previous BCR tool [16]. To prioritize thecandidates, we use the
intuition that the encryption and decryption functions likely have similar interfaces. For
each candidate inverseg, we compute a 4-element feature vector counting how many of
the parameters are used only for input, only for output, or both, and how many are pointers.
We then sort the candidates in increasing order of the Manhattan distances (sum of absolute
differences) between their features and those off .

For each candidate inverseg, we executef ◦ g andg ◦ f on k random inputs each,
and check whether they both return the original inputs in allcases. If so, we consider
g to be the inverse off . To match the output interface ofg with the input interface of
f , and vice-versa, we generate missing inputs either according to the semantics inferred
by BCR tool2, or randomly; if there are more outputs than inputs we test each possible
mapping. Increasing the parameterk improves the confidence in resulting identification,
but the choice of the parameter is not very sensitive: test buffers have enough entropy that
even a single false positive is unlikely, but since the testsare just concrete executions, they

2BCR tool infers various semantics related to system operations, including field lengths, IP addresses,
timestamps, and filenames.
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are inexpensive. If we do not find an inverse among the executed functions in the same
module, we expand the search to other functions in the binary, in other libraries shipped
with the binary, and in standard libraries.

For instance, in the example of Figure 4.1, our tool requiresan AES encryption func-
tion to invert the AES decryption used by the bot program. In bots it is common for the
encryption function to appear in the same binary, since the bot often encrypts its reply
messages with the same cipher, but in the case of a standard function like AES we could
also find the inverse in a standard library like OpenSSL [89].

Once an inverse function is identified, we use our previous BCR tool to extract the
function [16]. The hybrid disassembly technique used by BCR tool extracts the body of
the function, including instructions that did not appear inthe execution, which is important
because when re-stitching a partial input branches leadingto those, previously unseen,
instructions may be taken. If the inverse function requiresa key or a seed, we supply it
with the same key/seed used in the execution trace by the encoding function.

4.3.3 Multiple Encoding Layers

If a program has more than one encoding function, we can repeat our approach to de-
compose the constraints from each encoding function in turn, creating a multi-layered
decomposition. The decomposition operates from the outside in, in the order the encoding
functions are applied to the input, intuitively like peeling the layers of an onion. For in-
stance, in the example of Figure 4.1, our tool decomposes first the decryption function and
then the hash-checking function, finally leaving only the botnet client’s command parsing
and malicious behavior for exploration.

4.4 Implementation

In this section we provide implementation details for our scaling tool and describe our
Internet-in-a-Workstation environment.

4.4.1 Decomposition and Re-stitching of Concolic Execution

We implement our approach as a scaling tool for BitFuzz, a system discussed in Sec-
tion 2.4. BitFuzz is implemented using the BitBlaze [105] platform for binary analysis,
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which includes TEMU, an extensible whole-system emulator that implements taint prop-
agation. BitFuzz supports several techniques for vulnerability detection and reports any
inputs flagged by these techniques. It detects program termination and invalid memory
access exceptions. Executions that exceed a timeout are flagged as potential infinite loops.
It also uses TEMU’s taint propagation module to identify whether the input (e.g., network
data) is used in the program counter or in the size parameter of a memory allocation.

Following the approach introduced in Section 4.3.1.1, our system implements decom-
position by making local modifications constraints generated from execution, with some
additional optimizations. For serial decomposition, it uses a TEMU extension mechanism
called a hook to implement the renaming of symbolic values. As a further optimization,
the hook temporarily disables taint propagation inside theencoding function so that no
symbolic constraints are generated. To save the work of recomputing a checksum on each
iteration in the case of side-condition decomposition, ourtool can also directly force the
conditional branch implementing the predicatep to take the same direction it did on the
original execution.

4.4.2 Internet-in-a-Workstation

We have developed an environment where we can run malware in isolation, without wor-
rying about malicious behavior leaking to the Internet. Many malware programs, e.g.,
bots, act as network clients that start connections to remote C&C servers. Thus, the input
that BitFuzz needs to feed to the program in each iteration is often the response to some
request sent by the program.

All network traffic generated by the program, running in the execution monitor, is
redirected to the local workstation in a manner that is transparent to the program under
analysis. In addition, we have developed two helper tools: amodified DNS server which
can respond to any DNS query with a preconfigured or randomly generated, IP address,
and a generic replay server. The generic replay server takesas input an XML file that
describes a network dialog as an ordered sequence of connections, where each connection
can comprise multiple messages in either direction. It alsotakes as input the payload of
the messages in the dialog. Such generic server simplifies the task of setting up different
programs and protocols. Given a network trace of the communication we generate the
XML file describing the dialog to explore, and give the replayserver the seed messages
for the exploration. Then, at the beginning of each exploration iteration BitFuzz hands
new payload files (i.e., the re-stitched program input) to the replay server so that they are
fed to the network client program under analysis when it opens a new connection.
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4.5 Experimental Evaluation

This section evaluates our approach by finding bugs in malware that uses complex en-
coding functions. It demonstrates that our decomposition and re-stitching approach finds
some bugs in malware that were not previously found, and thatit significantly increases
the efficiency of the exploration in other cases. It presentsthe malware bugs we find and
shows that these bugs have persisted in the malware familiesfor long periods of time,
sometimes years.

Malware samples. The first column of Table 4.1 presents the four popular families of
malware that we have used in our evaluation. Zbot, also knownas Zeus and Kollah, is
a malware kit that allows malware authors to generate their own variant of password-
stealing botnets. Malware from this family is first seen in 2007 and has evolved over time
since. The bot program communicates with the C&C server usingthe HTTP protocol
using RC4 encryption on the payload with the key specified by themalware author [46].
MegaD or Ozdok is a prevalent spam botnet that accounted for 35.4% of all spam in the
Internet in a December 2008 study and accounts for 15% as of April 2010 [73]. Previous
work shows that MegaD’s C&C communication is protected usinga proprietary block
encryption algorithm [18]. Gheg, also known as Tofsee and Mondera, is a spam botnet
that can route its spam messages through the victim’s ISP server and has 60,000 estimated
member as reported in a February 2010 study [63]. It encryptstraffic from the C&C server
using proprietary protocol on port 443. Cutwail is a bot program in a Pushdo family that
is first seen in 2007 and accounts for 7% of Internet spam from approximately 1.5 million
bots in April 2010 [73]. The bot uses RC4 encryption for its C&C communication [107].

All four malware families act as network clients, that is, when run they attempt to
connect to a remote C&C server rather than opening a listeningsocket and await for com-
mands. All four of them encrypt their network communicationto avoid signature-based
NIDS detection, and make it harder for analysts to reverse-engineer their C&C protocol.
In addition to encryption, Zbot also uses an MD5 cryptographic hash function to verify the
integrity of a configuration file received from the server. The presence of a hash checksum
will frustrate black-box analysis such as random fuzz testing, since most randomly gener-
ated input will have an incorrect checksum and so will be rejected at an early stage of the
program’s input processing.

Experimental setup.For each bot we are given a network trace of the bot communication
from which we extract an XML representation of the dialog between the bot and the C&C
server, as well as the payload of the network packets in that dialog. This information is
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Name
Program Input size # Instruction Decryption or checksum/hash Runtime
size (KB) (bytes) (×103) Algorithm Maximum (sec)

taint degree

Zbot 126.5 5269 1307.3 RC4-256 1 92
MD5 4976

MegaD 71.0 68 4687.6 64-bit block cipher 8 105
Gheg 32.0 271 84.5 8-bit stream cipher 128 5

Cutwail 50.0 269 23.1 byte-based cipher 1 2

Table 4.1: Summary of the Applications on Which We Performed Identification of Encoding Functions.
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needed by the replay server to provide the correct sequence of network packets to the bot
during exploration. For example, this is needed for MegaD where the response sent by
the replay server comprises two packets that need to be sent sequentially but cannot be
concatenated together due to the way that the bot reads from the socket. As a seed for the
exploration we use the same content observed in the dialog captured in the network trace.
Other seeds can alternatively be used. Although our setup can support exploring multiple
connections, currently, we focus the exploration on the first connection started by the bot.

For the experiments we ran BitFuzz on a 3GHz Intel Core 2 Duo Linux workstation
with 4GB of RAM running Ubuntu Server 9.04. The emulated guestsystem where the
malware program runs is a Microsoft Windows XP SP3 image with512MB of emulated
RAM.

In each of our experiments, our system only used a malware sample and a network
trace as its inputs. In the experiments that require inversefunctions, our system was able to
successfully extract the inverse functions from executiontraces. However, successful ex-
traction is actually not guaranteed. This limitation will be discussed later in Section 4.6.2.

4.5.1 Identification of Encoding Functions and Their Inverses

The first step in our approach is to identify the encoding functions. The identification of the
encoding functions happens on the execution trace producedby the seed at the beginning
of the exploration. We set the taint degree threshold to 4, sothat any byte that has been
generated from 5 or more input bytes is flagged. Table 4.1 summarizes the results. The
identification finds an encoding function in three of the foursamples: Gheg, MegaD, and
Zbot. For Cutwail, no encoding function is identified. The reason for this is that Cutwail’s
cipher is simple and does not contain any mixing of the input,which is the property that our
encoding function identification technique detects. Without input mixing the constraints
generated by the cipher are not complex to solve. We show thisin the next section. In
addition, Cutwail’s trace does not contain any checksum functions.

For Zbot, the encoding function flagged in the identificationcorresponds to the MD5
checksum that it uses to verify the integrity of the configuration file it downloads from the
C&C server. In addition to the checksum, Zbot uses the RC4 cipherto protect its commu-
nication, which is not flagged by our identification technique described in Section 4.3.2.1.
This happens because RC4 is a stream cipher that does no mixing of the input, i.e., it does
not use input or output bytes to update its internal state. The input is simply combined
with a pseudo-random keystream using bit-wise exclusive-or. Since the keystream is not
derived from the input but from a key in the data section, it isconcrete for the solver. Thus,

73



the solver only needs to invert the exclusive-or computation to generate an input, which
means that RC4 introduces no hard-to-solve constraints. As a result, we do not perform
decomposition and restitching on the program conditions that come from the RC4 cipher.

For the other two samples (Gheg and MegaD) the encoding function flagged by the
identification corresponds to the cipher. MegaD uses a 64-bit block cipher, which mixes 8
bytes from the input before combining them with the key. Gheg’s cipher uses a one-byte
key that is combined with the first input byte to produce a one-byte output that is used also
as key to encode the next byte. This process repeats and the mixing (taint degree) of each
new output byte increases by one. Neither Gheg nor MegaD usesa checksum.

Once the encoding functions have been identified, BitFuzz introduces new symbols
for the outputs of those encoding functions, effectively decomposing the constraints in the
execution into two sets and ignoring the set of hard-to-solve constraints introduced by the
encoding function.

The results of our encoding function identification, for thefirst iteration of the explo-
ration, are summarized in Table 4.1, which presents on the left the program name and
program size, the size of the input seed, and the number of instructions in the execution
trace produced by the seed. The decryption or checksum column describes the algorithm
type and the maximum taint degree the algorithm produces in the execution. We display
all decryption and checksum algorithms known to appear in the execution, regardless of
whether our tool considers them encoding functions (i.e., having Maximum taint degree
of 5 or higher) or not. The rightmost column shows the runtimeof the identification algo-
rithm, which varies from a few seconds to close to two minutes. Because the identification
is reused over a large number of iterations, the amortized overhead is even smaller.

Identifying the inverse functions. For Gheg and MegaD, BitFuzz needs to identify the
inverse of the decryption function so that it can be used to re-stitch the inputs into a new
program input for another iteration. (The encryption function for MegaD is the same one
identified in previous work [16]; we use it to check the accuracy of our new identification
approach.)

As described in Section 4.3.2.2, BitFuzz extracts the interface of each function in the
execution trace that belongs to the same module as the decoding function, and then priori-
tizes them by the similarity of their interface to the decoding function. For both Gheg and
MegaD, the function with the closest prototype is the encryption function, as our tool con-
firms by random testing withk = 10 tests. These samples illustrate the common pattern
of a matching encryption function being included for two-way communication, so we did
not need to search further afield for an inverse.
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Name
Vulnerability Disclosure Encoding Search time (min.)

type public identifier functions scaled baseline

Zbot
Null dereference OSVDB-66499 [94] checksum 17.8 >600

Infinite loop OSVDB-66500 [93] checksum 129.2 >600
Buffer overrun OSVDB-66501 [92] checksum 18.1 >600

MegaD Process exit n/a decryption 8.5 >600

Gheg Null dereference OSVDB-66498 [91] decryption 16.6 144.5

Cutwail Buffer overrun OSVDB-66497 [90] none 39.4 39.4

Table 4.2: Description of the Bugs Our System Finds in Malware. The column “scaled”
shows the results from the BitFuzz system including our decomposition and re-stitching
techniques, while the “baseline” column gives the results with these techniques disabled.
“>600” means we run the tool for 10 hours and it is yet to find the bug.

4.5.2 Decomposition vs. Non-Decomposition

In this section we compare the number of bugs found by BitFuzz when it uses decompo-
sition and re-stitching, which we callfull BitFuzz, and when it does not, which we call
vanilla BitFuzz. Full BitFuzz uses the identified decoding functions to decompose the
constraints into two sets, one with the constraints introduced by the decryption/checksum
function and the other with the remaining constraints afterthat stage. In addition, each it-
eration of MegaD and Gheg uses the inverse function to re-stitch the inputs into a program
input. Vanilla BitFuzz is comparable to basic previous execution tools. In both full and
vanilla cases, BitFuzz detects bugs using the techniques described in Section 4.4.

In each iteration of its exploration, BitFuzz collects the execution trace of the malware
program starting from the first time it receives network data. It stops the trace collection
when the malware program sends back a reply, closes the communication socket, or a bug
is detected. If none of those conditions is satisfied the trace collection is stopped after 2
minutes. For each collected trace, BitFuzz analyzes up to thefirst 200 input-dependent
control flow branches and automatically generates new constraints that would explore new
paths in the program. It then queries STP to solve each generated set of constraints, uses
the solver’s response to generate a new input, and adds it to the pool of inputs to test on
future iterations. Because constraint solving can take a very long time without yielding
a meaningful result, BitFuzz discards a set of constraints ifSTP runs out of memory or
exceeds a 5-minute timeout for constraint solving.

We run both vanilla and full BitFuzz for 10 hours and report thebugs found, which
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are summarized in Table 4.2. Detailed descriptions of the bugs follow in Section 4.5.3.
We break the results in Table 4.2 into three categories. The first category includes Zbot
and MegaD for which full BitFuzz finds bugs but Vanilla BitFuzz does not. Full BitFuzz
finds a total of four bugs, three in Zbot and one in MegaD. Threeof the bugs are found in
under 20 minutes and the second Zbot bug is found after 2 hours. Vanilla BitFuzz does not
find any bugs in the 10-hour period. This happens due to the complexity of the constraints
being introduced by the encoding functions. In particular,using full BitFuzz the 5-minute
timeout for constraint solving is never reached and STP never runs out of memory, while
using vanilla BitFuzz more than 90% of the generated constraints result in STP running
out of memory.

The second category comprises Gheg for which both vanilla and full BitFuzz find
the same bug. Although both tools find the same bug, we observethat vanilla BitFuzz
requires almost ten times as long as full BitFuzz to do so. The cipher used by Gheg uses a
one-byte hardcoded key that is combined with the first input byte using bitwise exclusive-
or to produce the first output byte, that output byte is then used as key to encode the
second byte also using bitwise exclusive-or and so on. Thus,the taint degree of the first
output byte is one, for the second output byte is two and so on until the maximum taint
degree of 128 shown in Table 4.1. The high maximum taint degree makes it harder for the
solver to solve and explains why vanilla BitFuzz takes much longer than full BitFuzz to
find the bug. Still, the constraints induced by the Gheg cipher are not as complex as the
ones induced by the Zbot and MegaD ciphers and the solver eventually finds solutions for
them. This case shows that even in cases where the solver willeventually find a solution,
using decomposition and re-stitching can significantly improve the performance of the
exploration.

The third category comprises Cutwail for which no encoding functions with high taint
degree are identified and thus vanilla BitFuzz and full BitFuzzare equivalent.

In summary, full BitFuzz using decomposition and re-stitching clearly outperforms
vanilla BitFuzz. Full BitFuzz finds bugs in cases where vanillaBitFuzz fails to do so due
to the complexity of the constraints induced by the encodingfunctions. It also improves
the performance of the exploration in other cases were the encoding constraints are not as
complex and will eventually be solved.

4.5.3 Malware Vulnerabilities

In this section we present the results of our manual analysisto understand the bugs dis-
covered by BitFuzz and our experiences reporting the bugs.
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Zbot. BitFuzz finds three bugs in Zbot. The first one is a null pointer dereference. One
of the C&C messages contains an array size field, which the program uses as the size
parameter in a call toRtlAllocateHeap. When the array size field is larger than the
available memory left in its local heap, the allocation returns a null pointer. The return
value of the allocation is not checked by the program, which later attempts to write to the
buffer, crashing when it tries to dereference the null pointer.

The second bug is an infinite loop condition. A C&C message comprises of a sequence
of blocks. Each block has a 16-byte header and a payload. One of the fields in the header
represents the size of the payload,s. When the trojan program finishes processing a block,
it iteratively moves to the next one by adding the block size,s + 16, to a cursor pointer.
When the value of the payload size iss = −16, the computed block size becomes zero,
and the trojan keeps processing the same block over and over again.

The last bug is a stack buffer overrun. As mentioned above, a C&C message comprises
of a sequence of blocks. One of the flags in the block header determines whether the block
payload is compressed or not. If the payload is compressed, the trojan program decom-
presses it by storing the decompressed output into a fixed-size buffer located on the stack.
When the length of the decompressed payload is larger than thebuffer size, the program
will write beyond the buffer. If the payload is large enough,it will overwrite a function
return address and can eventually lead to control flow hijacking. This vulnerability is ex-
ploitable and we have successfully crafted a C&C message thatexploits the vulnerability
and hijacks the execution of the malware.

MegaD. BitFuzz finds one input that causes the MegaD bot to exit cleanly. We analyzed
this behavior using the MegaD grammar produced by previous work [18] and found that
the bug is present in the handling of theping message (type0x27). If the bot receives a
ping message and the bot identifier (usually set by a previously received C&C message)
has not been set, then it sends a replypongmessage (type0x28) and terminates. This be-
havior highlights the fact that, in addition to bugs, our stitched concolic execution can also
discover C&C messages that cause the malware to cleanly exit (e.g., kill commands), if
those commands are available in the C&C protocol. These messages cannot be considered
bugs but can still be used to disable the malware. They are specially interesting because
they may have been designed to completely remove all traces of the malware running in
the compromised host. In addition, their use could raise fewer ethical and legal questions
than the use of an exploit would.

Gheg. BitFuzz finds one null pointer dereference bug in Gheg. The bugis similar to
the one in Zbot. One of the C&C messages contains an array size field, whose value
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is multiplied by a constant (0x1e8) and the result used as thesize parameter in a call to
RtlAllocateHeap. The return value of the allocation is not checked by the program
and the program later writes into the allocated buffer. When the array size field value is
larger than the available memory in its local heap, the allocation fails and a null pointer is
returned. The program fails to check that the returned valueis a null pointer and tries to
dereference it.

Cutwail. BitFuzz finds a buffer overrun bug that leads to an out-of-bounds write in Cut-
wail. One of the received C&C messages contains an array. Eachrecord in the array has
a length field specifying the length of the record. This field is used as the size parameter
in a call toRtlAllocateHeap. The returned pointer is appended to a global array that
can only hold 50 records. If the array in the received messagehas more than 50 records,
the 51st record will be written outside the bounds of the global array. Near the global
array, there exists a pointer to a private heap handle and theout-of-bounds write will over-
write this pointer. Further calls toRtlAllocateHeap will then attempt to access the
malformed heap handle, and will lead to heap corruption and acrash.

Reporting the bugs. We reported the Gheg bug to the editors of the Common Vulner-
abilities and Exposures (CVE) database [38]. Our suggestionwas that vulnerabilities in
malware should be treated similarly to vulnerabilities in commercial or open source pro-
grams, of course without reporting back to the developers. However, the CVE editors
felt that malware vulnerabilities were outside the scope oftheir database. Subsequently,
we reported the Gheg vulnerability to the Open Source Vulnerability Database (OSVDB)
moderators who accepted it. Since then, we have reported allother vulnerabilities except
the MegaD one, which may be considered intended functionality by the botmaster. Ta-
ble 4.2 presents the public identifiers for the disclosed vulnerabilities. We further address
the issue of disclosing malware vulnerabilities in Section4.6.

4.5.4 Bug Persistence over Time

Bot binaries are updated very often to avoid detection by anti-virus tools. One interesting
question is how persistent over time are the bugs found by BitFuzz. To evaluate this, we
retest our crashing inputs on other binaries from the same malware families. Table 4.3
shows all the variants, with the shaded variants corresponding to the ones explored by
BitFuzz and mentioned in Table 4.1.

We replay the input that reproduces the bug BitFuzz found on the shaded variant on the
rest of variants from the same family. As shown, the bugs are reproducible across all the
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Family MD5 First seen Reported by

Zbot
0bf2df85*7f65 Jun-23-09 Prevx
1c9d16db*7fc8 Aug-17-09 Prevx
7a4b9ceb*77d6 Dec-14-09 ThreatExpert

MegaD

700f9d28*0790 Feb-22-08 Prevx
22a9c61c*e41e Dec-13-08 Prevx
d6d00d00*35db Feb-03-10 VirusTotal
09ef89ff*4959 Feb-24-10 VirusTotal

Gheg

287b835b*b5b8 Feb-06-08 Prevx
edde4488*401e Jul-17-08 Prevx
83977366*b0b6 Aug-08-08 ThreatExpert
cdbd8606*6604 Aug-22-08 Prevx
f222e775*68c2 Nov-28-08 Prevx

Cutwail
1fb0dad6*1279 Aug-03-09 Prevx
3b9c3d65*07de Nov-05-09 Prevx

Table 4.3: Bug Reproducibility Across Different Malware Variants. The shaded variants
are the ones used for exploration.

variants we tested. This means for instance that the MegaD bug has been present for at least
two years (the time frame covered by our variants). In addition, the MegaD encryption
and decryption functions (and the key they use), as well as the C&C protocol have not
changed, or barely evolved, through time. Otherwise the bugwould not be reproducible
in older variants. The results for Gheg are similar. The bug reproduces across all Gheg
variants, although in this case our most recent sample is from November 2008. Note that,
even though the sample is relatively old it still works, meaning that it still connects to a
C&C server on the Internet and sends spam. For Zbot, all three bugs reproduce across
all variants; this means they have been present for at least 6months. These results are
important because they demonstrate that there are components in bot software, such as
the encryption functions and C&C protocol grammar, that tendto evolve slowly over time
and thus could be used to identify the family to which an unknown binary belongs, one
widespread problem in malware analysis.

4.6 Discussion

In light of our results, this section provides additional discussion on the applications for
the discovered bugs and associated ethical considerations. Then, it presents a potential
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scenario for using the discovered bugs, and describes some limitations of our approach.

4.6.1 Applications and Ethical Considerations

Malware vulnerabilities could potentially be used in different “benign” applications such
as remediating botnet infestations, for malware genealogysince we have shown that the
bugs persist over long periods of time, as a capability for law enforcement agencies, or as a
strategic resource in state-to-state cyberwarfare [95]. However, their use raises important
ethical and legal questions. For example, there may be a danger of significant negative
consequences, such as adverse effects to the infected machines. Also, it is unclear which
legal entity would perform such remediation, and whether currently there exists any entity
with the legal right to take such action. On the other hand, having a potential avenue for
cleanup and not making use of it also raises some ethical concerns since if such remedi-
ation were effective, it would be a significant service to themalware’s future third-party
victims (targets of DDoS attacks, spam recipients, etc.). Such questions belong to recent
and ongoing discussions about ethics in security research (e.g., [43]) that have not reached
a firm conclusion.

Malware vulnerabilities could also be used for malign purposes. For instance, there are
already indications that attackers are taking advantage ofknown vulnerabilities in web in-
terfaces used to administer botnets to hijack each other’s botnets [40]. This raises concerns
about disclosing such bugs in malware. In the realm of vulnerabilities in benign software,
there has been significant debate on what disclosure practices are socially optimal and
there is a partial consensus in favor of some kind of “responsible disclosure” that gives
authors a limited form of advance notice. However, it is not clear what the analogous best
practice for malware vulnerabilities should be. We have faced this disclosure issue when
deciding whether to publicly disclose the vulnerabilitieswe found and to which extent we
should describe the vulnerabilities. We hope the vulnerabilities reported here do provide
an appropriate level of details.

Potential application scenario. While we have not used our crashing inputs on bots in
the wild, here we hypothetically discuss one possible scenario of how one might do so.
The malware programs we analyze start TCP connections with a remote C&C server. To
exploit the vulnerabilities we have presented, we need to impersonate the C&C server and
feed inputs in the response to the initial request from the malware program. This scenario
often happens during a botnet takedown, in which law enforcement or other responding
entities identify the IP addresses and DNS names associatedwith the C&C servers used by
a botnet, and appeal to relevant ISPs and registrars to have them de-registered or redirected
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to the responders. The responders can then impersonate the C&C server: one common
choice is asinkhole serverthat collects statistics on requests but does not reply. But such
responders are also in a position to perform more active communication with bots, and for
instance vulnerabilities like the ones we present could be used for cleanup if the botnet
does not support cleanup via its normal protocol. For example, such a scenario happened
recently during the attempted MegaD takedown by FireEye [77]. For a few days FireEye
ran a sinkhole server that received the C&C connections from the bots. This sinkhole
server was later handed to the Shadowserver Foundation [103].

4.6.2 Limitations

We have found our techniques to be quite effective against the current generation of mal-
ware. But since malware authors have freedom in how they design encoding functions, and
an incentive to avoid analysis of their programs, it is valuable to consider what measures
they might take against analysis.

Preventing access to inverses.To stitch complete inputs in the presence of a surjective
transformation, our approach requires access to an appropriate inverse function: for in-
stance, the encryption function corresponding to a decryption function. So far, we have
been successful in finding such inverses within the malware binary. If the inverses were
not present in the binary, we could find them from standard sources. However, these ap-
proaches could be thwarted if malware authors made different choices of cryptographic
algorithms. For instance, malware authors could design their protocols using asymmetric
(public-key) encryption and digital signatures. Since we would not have access to the pri-
vate key used by the C&C server, we could not forge the signature in the messages sent
to the bot. We could still use our decomposition and re-stitching approach to find bugs in
malware, because the signature verification is basically a free side-condition that can be
ignored. However, we could only build an exploit for our modified bot, as other bots will
verify the (incorrect) signature in the message and reject it. Currently, most malware do
not use public-key cryptography, but that may change. In therealm of symmetric encryp-
tion, malware authors could deploy different non-standardalgorithms for the server-to-bot
and bot-to-server directions of communication: though nottheoretically infeasible, the
construction of an encryption implementation from a binarydecryption implementation
might be challenging to automate. For instance, Kolbitsch et al. [67] faced such a situa-
tion in recreating binary updates for the Pushdo trojan, which was feasible only because
the decryption algorithm used was weak enough to be invertedby brute force for small
plaintexts.
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Obfuscating encoding functions. Malware authors could potentially keep our system
from finding encoding functions in binaries by obfuscating them. General purpose packing
is not an obstacle to our dynamic approach, but more targetedkinds of obfuscation would
be a problem. For instance, our current implementation recognizes only standard function
calls and returns, so if a malware author rewrote them using non-standard instructions our
tool would require a corresponding generalization to compensate. Further along the arms
race, there are also fundamental limitations arising from our use of a dynamic dependency
analysis, similar to the limitations of dynamic taint analysis [24].

4.7 Related Work

One closely related recent project is Wang et al.’s TaintScope system [114]. Our goals
partially overlap with theirs in the area of checksums, but our work differs in three key
aspects. First, Wang et al.’s techniques do not apply to decompression or decryption.
Second, TaintScope performs exploration based on taint-directed fuzzing [49], while our
system harnesses the full generality of concolic execution. Third, Wang et al. evaluate their
tool only on benign software, while we perform the first automated study of vulnerabilities
in malware.

The encoding functions we identify within a program can alsobe extracted from a
program to be used elsewhere. The Binary Code Reuse [16] and Inspector Gadget [67]
systems can be used to extract encryption and checksum functionalities, including some of
the same ones our tool identifies, for applications such as network defense. Our application
differs in that our system can simply execute the code in its original context instead of
extracting it. Inspector Gadget [67] can also perform so-called gadget inversion, which
is useful for the same reasons as we search for existing inverse functions. However, their
approach does not work on strong cryptographic functions.

Previous work in protocol reverse engineering has used alternative heuristics to iden-
tify cryptographic operations in malware binaries. For instance ReFormat [115] and Dis-
patcher [18] propose detecting such functions by measuringthe ratio of arithmetic and bit-
wise instructions to other instructions. Our use of taint degree as a heuristic is more specif-
ically motivated by the limitations of concolic execution:for instance a simple stream
cipher would be a target of the previous approaches but is notfor our approach.

Decomposition is a broad class of techniques in program analysis and verification,
but most previous decomposition techniques are symmetric in the sense that each of the
sub-components of the program are analyzed in a similar way,while a key aspect of our ap-
proach is that different components are analyzed differently. In analysis and verification,
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decomposition at the level of functions, as in systems like Saturn [118], is often called
a compositional approach. In the context of tools based on concolic execution, Gode-
froid [51] proposes a compositional approach that performsconcolic execution separately
on each function in a program. Because this is a symmetric technique, it would not address
our problem of encoding functions that are too complex to analyze even in isolation. More
similar to our approach is grammar-based fuzzing [17, 52], which is an instance of serial
decomposition. However parsers require different specialized techniques than encoding
functions.

4.8 Conclusion

We have presented a new approach, stitched concolic execution, to allow analysis in the
presence of functionality that would otherwise be difficultto analyze. Our techniques
for automated identification, decomposition, and re-stitching allow our system to bypass
functions like decryption and checksum verification to find bugs in core program logic.
Specifically, these techniques enable the first automated study of vulnerabilities in mal-
ware. Our BitFuzz tool finds 6 unique bugs in 4 prevalent malware families. These bugs
can be triggered over the network to terminate or take control of a malware instance.
These bugs have persisted across malware revisions for months, and even years. There are
still many unanswered questions about the applications andethical concerns surrounding
malware vulnerabilities, but our results demonstrate thatvulnerabilities in malware are an
important security resource that should be the focus of moreresearch in the future.
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Chapter 5

Model-assisted Concolic Execution

5.1 Introduction

In this chapter, we propose a new technique for exploring theprogram’s state-space. The
technique explores the program execution space automatically by combining exploration
with learning of an abstract model of program’s state space.More precisely, it alternates
(1) concolic execution to explore the program’s state-space, and (2) theL∗ [2] online
learning algorithm to construct high-level models of the state-space. Such abstract models,
in turn, guide further search. In contrast, the prior state-space exploration techniques
treat the program as a flat search-space, without distinguishing states that correspond to
important input processing events.

Upon closer examination of concolic execution, we identified two of its weaknesses
that can be improved. First, concolic execution has no high-level information about the
structure of the overall program state-space. Thus, it has no way of knowing how close
(or how far) it is from reaching important states in the program and is likely to get stuck in
local state-subspaces, such as loops. Second, unlike decision procedures that learn search-
space pruning lemmas from each iteration (e.g., [121]), concolic execution only tracks the
most promising path prefix for the next iteration [53], but does not learn in the sense that
information gathered in one iteration is used either to prune the search-space or to get to
interesting states faster in later iterations.

These two insights led us to develop an approach — Model-assisted Concolic Execu-
tion (MACE) — that learns from each iteration and constructs afinite-state model of the
search-space. We primarily target applications that maintain an ongoing interaction with
its environment, like servers and web services, for which a finite-state model is frequently
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a suitable abstraction of the communication protocol, as implemented by the application.
At the same time, we both learn the protocol model and exploitthe model to guide the
search.

MACE relies upon concolic execution to discover the protocolmessages, uses a special
filtering component to select messages over which the model is learned, and guides further
search with the learned model, refining it as it discovers newmessages. Those three com-
ponents alternate until the process converges, automatically inferring the protocol state
machine and exploring the program’s state-space.

We have implemented our approach and applied it to four server applications (two
SMB and two RFB implementations). MACE significantly improvedthe line coverage
of the analyzed applications, and more importantly, discovered four new vulnerabilities
and three known ones. One of the discovered vulnerabilitiesreceived Gnome’s “Blocker”
severity, the highest severity in their ranking system meaning that the next release cannot
be shipped without a fix.

5.2 Related Work

Model-guided testing has a long history. The hardware testing community has developed
modeling languages, like SystemVerilog, that allow verification teams to specify input
constraints that are solved with a decision procedure to generate random inputs. Such
inputs are randomized, but adhere to the specified constraints and therefore tend to reach
much deeper into the tested system than purely random tests.Constraint-guided random
test generation is a staple of hardware testing. The software community developed its own
languages, like Spec# [7], for describing abstract software models. Such models can be
used effectively as constraints for generating tests [110], but have to be written manually,
which is both time consuming and requires a high level of expertise.

Grammar inference (e.g., [42]) promises automatic inference of models, and has been
an active area of research in security, especially applied to protocol inference. Comparetti
et al. [29] infer incomplete (possibly missing transitions) protocol state machines from
messages collected by observing network traffic. To reduce the number of messages, they
cluster messages according to how similar the messages are and how similar their effects
are on the execution. Comparetti et al. show how the inferred protocol models can be
used for fuzzing. Our work shares similar goals, but features a few important differences.
First, MACE iteratively refines the model using concolic execution for the state-space
exploration. Second, rather than filtering out individual messages through clustering of
individual messages, we look at the entire sequences. If there is a path in the current
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state machine that produces the same output sequence, we discard the corresponding input
sequence. Otherwise, we add all the input messages to the setused for inferring the state
machine in the next iteration. Third, rather than using the inferred model for fuzzing, we
use the inferred model to initialize state-space exploration to a desired state, and then run
concolic execution from the initialized state.

In the work [27] prior to ours, the authors proposed an alternative protocol state ma-
chine inference approach. There they assume the end users would provide abstraction
functions that abstract concrete input and output messagesinto an abstract alphabet, over
which they infer the protocol. Designing such abstraction functions is sometimes non-
trivial and requires multiple iterations, especially for proprietary protocols, for which spec-
ifications are not available. In our approach, we drop the requirement for user-provided
input message abstraction, but we do require a user-provided output message abstraction
function. The output abstraction function determines the granularity of the inferred ab-
straction. The right granularity of abstraction is important for guiding state-space explo-
ration, because too fine-grained abstractions tend to be tooexpensive to infer automati-
cally, and too abstract ones fail to differentiate interesting protocol states. Furthermore,
the prior work is a purely black-box approach, while in our approach we do code analysis
at the binary level in combination with grammatical inference.

In this thesis, we analyze implementations of protocols forwhich the source code or
specifications are available. However, MACE could also be used for inference of pro-
prietary protocols and for state-exploration of closed-source third-party binaries. In that
case, the users would need to rely upon the prior research to construct a suitable output
abstraction function. The first step in constructing a suitable output abstraction function is
understanding the message format. Cui et al. [35, 36] and Caballero et al. [20] proposed
approaches that could be used for that purpose. Further, anyautomatic protocol inference
technique has to deal with encryption. In our study, we simply configure the analyzed
server applications so as to disable encryption, but that might not be an option when infer-
ring a proprietary protocol. Our technique of decomposition and restitching discussed in
Chapter 4, though not yet, could be integrated with MACE to dealwith encryption. The
work of Caballero et al. [18] and Wang et al. [115] also addresses potential techniques to
automatic reverse-engineering of encrypted messages.

Software model checking tools, like SLAM [6] and Blast [58], incrementally build
predicate abstractions of the analyzed software, but such abstractions are very different
from the models inferred by the protocol inference techniques [28, 29]. Such abstractions
closely reflect the control-flow structure of the software from which they were inferred,
while our inferred models are more abstract and tend to have little correlation with the
low-level program structure. Further, depending on the inference approach used, the in-
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ferred models can be minimal (like in our work), which makes guidance of state-space
exploration techniques more effective.

The Synergy algorithm [55] combines model-checking and concolic execution to try
to cover all abstract states of a program. Our work has no ambition to produce proofs,
and we expect that our approach could be used to improve the concolic execution part of
Synergy and other algorithms that use concolic execution asa component.

The Ketchum approach [59] combines random simulation to drive a hardware circuit
into an interesting state (according to some heuristic), and performs local bounded model
checking around that state. After reaching a predefined bound, Ketchum continues random
simulation until it stumbles upon another interesting state, where it repeats bounded model
checking. Ketchum became the key technology behind MagellanTM, one of the most suc-
cessful semi-formal hardware test generation tools. MACE has similar dynamics, but the
components are very different. We use theL∗ [2] finite-state machine inference algorithm
to infer a high-level abstract model and declare all the states in the model as interesting,
while Ketchum picks interesting states heuristically. While Ketchum uses random simula-
tion, we drive the analyzed software to the interesting state by finding the shortest path in
the abstract model. Ketchum explores the vicinity of interesting states via bounded model
checking, while we start concolic execution from the interesting state.

5.3 Problem Definition and Overview

We begin this section with the problem statement and a list ofassumptions that we make.
Next, we discuss possible applications of MACE. At the end of this section, we introduce
the concepts and notation that will be used throughout the chapter.

5.3.1 Problem Statement

We have three mutually supporting goals. First, we wish to automatically infer an abstract
finite-state model of a program’s interaction with its environment, i.e., a protocol as im-
plemented by the program. Second, once we infer the model, wewish to use it to guide
a combination of concrete and symbolic execution in order toimprove the state-space ex-
ploration. Third, if the exploration phase discovers new types of messages, we wish to
refine the abstract model, and repeat the process.

There are two ways to refine the abstract finite-state model; by adding more states,
and by adding more messages to the state machine’s input (or output) alphabet, which can
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(a)

(b)

Figure 5.1: An Abstract Rendition of the MACE State-Space Exploration. The figure
on the left shows an abstract model, i.e., a finite-state machine, inferred by MACE. The
figure on the right depicts clusters of concrete states of theanalyzed application, such
that clusters are abstracted with a single abstract state. We infer the abstract model with
L∗, initialize the analyzed application to the desired state,and then use the state-space
exploration component of MACE to explore the concrete clusters of states.

result in inference of new transitions and states. Black box inference algorithms, likeL∗

[2], infer a state machine over a fixed-size alphabet by iteratively discovering new states.
Such algorithms can be used for the first type of refinement. Any traditional program state-
space exploration technique could be used to discover new input (or output) messages,
but adding all the messages to the state machine’s alphabetswould render the inference
computationally infeasible. Thus, we also wish to find an effective way to reduce the size
of the alphabet, without missing states during the inference.

The constructed abstract model can guide the search in many ways. The approach we
take is to use the abstract model to generate a sequence of inputs that will drive the abstract
model and the program to the desired state. After the programreaches the desired state,
we explore the surrounding state-space using a combinationof symbolic and concrete
execution. Through such exploration, we might visit numerous states that are all abstracted
with a single state in the abstract model and discover new inputs that can refine the abstract
model. Figure 5.1 illustrates the concept.

In our work, we make a few assumptions:
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Determinism We assume the analyzed program’s communication with its environment is
deterministic, i.e., the same sequence of inputs always leads to the same sequence of
outputs and the same state. In practice, programs can exhibit some non-determinism,
which we are abstracting away. For example, the same input message could produce
two different outputs from the same state. In such a case, we put both output mes-
sages in the same equivalence class by adjusting our output abstraction (see below).

Resettability We assume the analyzed program can be easily reset to its initial state. The
reset may be achieved by restarting the program, re-initializing its environment or
variables, or simply initiating a new client connection. Inpractice, resetting a pro-
gram is usually straightforward, since we have a complete control of the program.

Output Abstraction Function We assume the existence of an output abstraction function
that abstracts concrete response (output) messages from the server into an abstract
set of messages (alphabet) used for state machine inference. In practice, this as-
sumption often reduces to manually identifying which sub-fields of output messages
will be used to distinguish output message types. The outputalphabet, in MACE,
determines the granularity of abstraction.

5.3.2 Applications

The primary intended application of MACE is state-space exploration of programs com-
municating with their environment through a protocol, e.g., networked applications. We
use the inferred protocol state machine as a map that tells ushow to quickly get to a par-
ticular part of the search-space. In comparison, model checking and concolic execution
approaches consider the application’s state-space flat, and do not attempt to exploit the
structure in the state machine of the communication protocol through which the appli-
cation communicates with the world. Other applications of MACE include proprietary
protocol inference, extension of the existing protocol test suites, conformance checking of
different protocol implementations, and fingerprinting ofimplementation differences.

5.3.3 Preliminaries

Following our prior work [27], we useMealy machines[76] as abstract protocol models.
Mealy machines are natural models of protocols because theyspecify transition and output
functions in terms of inputs. Mealy machines are defined as follows:
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Figure 5.2: The MACE Approach Diagram. TheL∗ algorithm takes in the input and
output alphabets, over which it infers a state-machine.L∗ sends queries and receives
responses from the analyzed application, which is not shownin the figure. The result of
inference is a finite-state machine (FSM). For every state inthe inferred state machine, we
generate a shortest transfer sequence (Section 5.3.3) thatreaches the desired state, starting
from the initial state. Such sequences are used to initialize the state-space explorer, which
runs concolic execution after the initialization. The state-space explorers run the analyzed
application (not shown) in parallel.

Definition 1 (Mealy Machine). A Mealy machine,M , is a six-tuple(Q,ΣI ,ΣO, δ, λ, q0),
whereQ is a finite non-empty set of states,q0 ∈ Q is the initial state,ΣI is a finite set of
input symbols (i.e., the input alphabet),ΣO is a finite set of output symbols (i.e., the output
alphabet),δ : Q × ΣI −→ Q is the transition relation, andλ : Q × ΣI −→ ΣO is the
output relation.

We extend theδ andλ relations to sequences of messagess = s0 · · ·1 · · · sn−1 ∈ Σ∗
I

as usual, e.g.,δ (q, s0 · s1 · s2) = δ (δ (δ (q, s0) , s1) , s2) andλ (q, s0 · s1 · s2) = λ (q, s0) ·
λ (δ (q, s0) , s1)·λ (δ (q, s0 · s1) , s2). To denote sequences of input (resp. output) messages
we will use lower-case letterss, t (resp.o). Fors ∈ Σ∗

I ,m ∈ ΣI , the length|s| is defined
inductively: |ǫ| = 0, |s · m| = |s| + 1, whereǫ is the empty sequence. If for some
state machineM = (Q,ΣI ,ΣO, δ, λ, q0) and some stateq ∈ Q there iss ∈ Σ∗

I such that
δ(q0, s) = q, we say there is a path fromq0 to q, i.e., thatq is reachable from the initial
state, denotedq0

∗
−→ q. SinceL∗ infers minimal state machines, all states in the abstract

model are reachable [2]. In general, each state could be reachable by multiple paths. For
each stateq, we (arbitrary) pick one of the shortest paths formed by a sequence of input
messagess, such thatq0

s
−→ q, and call it ashortest transfer sequence.

Our search process discovers numerous input and output messages, and using all of
them for the model inference would not scale. Thus, we heuristically discard redundant
input messages, defined as follows:
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Definition 2 (Redundant Input Symbols). LetM = (Q,ΣI ,ΣO, δ, λ, q0) be a Mealy ma-
chine. A symbolm ∈ ΣI is said to be redundant if there exists another symbol,m′ ∈ ΣI ,
such thatm 6= m′ and∀q ∈ Q . λ(q,m) = λ(q,m′) ∧ δ(q,m) = δ(q,m′).

We say that a Mealy machineM = (Q,ΣI ,ΣO, δ, λ, q0) is complete iffδ(q, i) and
λ(q, i) are defined for everyq ∈ Q andi ∈ ΣI . MACE infers complete Mealy machines.
There is also another type of completeness — the completeness of the input and output
alphabet. MACE cannot guarantee that the input alphabet is complete, meaning that it
might not discover some types of messages required to infer the full state machine of the
protocol.

To infer Mealy machines, we use Shahbaz and Groz’s [104] variant of the classical
L∗ [2] inference algorithm. We describe only the intuition behind L∗, as the algorithm is
well-described in the literature.

L∗ is an online learning algorithm that proactively probes a black box with sequences
of messages, listens to responses, and builds a finite state machine from the responses.
The black box is expected to answer the queries in a faithful (i.e., it is not supposed to
cheat) and deterministic way. Each generated sequence starts from the initial state, mean-
ing thatL∗ has to reset the black box before sending each sequence. Onceit converges,
L∗ conjectures a state machine, but it has no way to verify that it is equivalent to what the
black box implements. Three approaches to solving this problem have been described in
the literature. The first approach is to assume an existence of anoraclecapable of answer-
ing theequivalence queries. L∗ asks the oracle whether the conjectured state machine is
equivalent to the one implemented by the black box, and the oracle responds either with
‘yes’ if the conjecture is equivalent, or with a counterexample, whichL∗ uses to refine the
learned state machine and make another conjecture. The process is guaranteed to terminate
in time polynomial in the number of states and the size of the input alphabet. However, in
practice, such an oracle is unavailable. The second approach is to generate randomsam-
pling queriesand use those to test the equivalence between the conjectureand the black
box. If a sampling query discovers a mismatch between a conjecture and the black box,
refinement is done the same way as with the counterexamples that would be generated
by equivalence queries. The sampling approach provides a probabilistic guarantee [2] on
the accuracy of the inferred state machine. The third approach, called black box model
checking [96], uses bounded model checking to compare the conjecture with the black
box. This approach requires that the input alphabetΣI of the checked system is known
and its guarantees depend on the time and space resources spent. Out of the three options
for checking conjectures, we chose to check conjectures using the sampling approach (the
second approach).
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As discussed in Section 5.3.1, MACE requires an output message abstraction function
αO :MO → ΣO, whereMO is the set of all concrete output messages, to abstract concrete
output messages into the abstract output alphabet. To simplify our notation, we overload
the output abstraction function to operate on message sequences as follows:

Let o = o0o1 · · · on−1 ∈ M
∗
O be a sequence of concrete output messages. Its abstrac-

tion functionαO :M∗
O → Σ∗

O is defined asαO(o) = αO(o0)αO(o1) · · ·αO(on−1).

Unlike the prior work [27], MACE requires no input abstraction function.

5.4 Approach

We begin this section by a high-level description of MACE, illustrated in Figure 5.2. After
the high-level description, each section describes a majorcomponent of MACE: abstract
model inference, concrete state-space exploration, and filtering of redundant concrete in-
put messages together with the abstract model refinement.

5.4.1 A High-Level Description

Suppose we want to infer a complete Mealy machineM = (Q,ΣI ,ΣO, δ, λ, q0) represent-
ing some protocol, as implemented by the given program. We assume to know the output
abstraction functionαO that abstracts concrete output messages intoΣO. To bootstrap
MACE, we also assume to have an initial setΣI0 ⊆ ΣI of input messages, which can be
extracted from a regression test suite, collected by observing the communication of the
analyzed program with the environment, or obtained from DART and similar approaches
[21, 22, 53, 102]. The initialΣI0 alphabet could be empty, but MACE would take longer
to converge. In our work, we used regression test suites provided with the analyzed appli-
cations, or extracted messages from a single observed communication session if the test
suite was not available.

Next, we use Shahbaz and Groz’s [104] variant ofL∗ algorithm to infer the first state
machineM0 = (Q0,ΣI0,ΣO, δ0, λ0, q

0
0) with ΣI0 andΣO as the abstract alphabets. The

L∗ algorithm also maintains a data structure (called observation table [2]) that contains
a set of shortest transfer sequencesq00

s
−→ q, one for each inferred stateq ∈ Q0. We

use such sequences to drive the program to one of the concretestates represented by the
abstract stateq. Since each abstract state could correspond to a large cluster of concrete
states (Fig. 5.1), we use concolic execution to explore the clusters of concrete states around
abstract states.
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The state-space exploration generates sequences of concrete input and the correspond-
ing output messages. Using the output abstraction functionαO, we can abstract the con-
crete output message sequences into sequences overΣ∗

O. However, we cannot abstract the
concrete input messages into a subset ofΣI , as we do not have the concrete input message
abstraction function. Using all the concrete input messages for theL∗-based inference
would be computationally infeasible. The state-space exploration discovers hundreds of
thousands of concrete messages, because we run the exploration phase for hundreds of
hours, and on average, it discovers several thousand new concrete messages per hour.

Thus, we need a way to filter out redundant messages and keep the ones that will allow
L∗ to discover new states. The filtering is done as follows. Suppose thats = s0 · · · sn−1 is
a sequence of concrete input messages generated from the exploration phase ando ∈ Σ∗

O a
sequence of the corresponding abstract output messages. Weperform a brute-force search
(over all permutations) for a sequence of abstract input messagest ∈ Σ∗

I0 such thatM0

acceptst generatingo. If such a sequence is found, we discards. Otherwise, we include
to the refined input alphabetΣI1 all concrete messagessj of the sequences, for anyj such
that0 ≤ j < n, because at least one of these concrete messages can generate either a new
state or a new transition.

With the new abstract input alphabetΣI1, we infer a new, more refined, abstract model
M1 and repeat the process. If the number of messages is finite andthe exploration phase
either terminates or runs for a predetermined bounded amount of time, MACE terminates
as well.

5.4.2 Model Inference withL∗

MACE learns the abstract model of the analyzed program by constructing sequences of
input messages, sending them to the program, and reasoning about the responses. For the
inference, we use Shahbaz and Groz’s [104] variant ofL∗ for learning Mealy machines.
The inference process is similar as in our prior work [27].

In every iteration of MACE,L∗ infers a new state machine overΣIi and the new mes-
sages discovered by the state-space exploration guided byMi, and conjecturesMi+1, a
refinement ofMi. Out of the three options for checking conjectures discussed in Sec-
tion 5.3.3, we chose to check conjectures using the samplingapproach. We perform the
check afterMACE completes all of its iterations, but in no experiment we performed did
sampling discover any new states.
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5.4.3 The State-Space Exploration Phase

We use the model inferred in Section 5.4.2 to guide the state-space exploration. For ev-
ery stateqi ∈ Qi of the just inferred abstract modelMi, we compute a shortest transfer
sequence of input messages from the initial stateqi0. Suppose the computed sequence is
s ∈ Σ∗

Ii. With s = s0 · · · sn−1, we drive the analyzed application to a concrete state
abstracted by theqi state in the abstract model. All messagessj, for any j such that
0 ≤ j < n, are concrete messages either from the set of seed messages,or generated
by previous state-space exploration iterations. Thus, theprocess of driving the analyzed
application to the state being analyzed consists of only computing a shortest path inMi to
the state, collecting the input messages along the pathqi0

+
−→ qi, and feeding that sequence

of concrete messages into the application.

Once the application reaches in the state being analyzedqi, we run concolic execution
from that state to explore the surrounding concrete states (Figure 5.1). In other words,
the transfer sequence of input messages produces a concreterun, which is then followed
by symbolic execution that computes the corresponding path-condition. Once the path-
condition is computed, concolic execution resumes its normal exploration. We bound the
time allotted to exploring the vicinity of every abstract state. In every iteration, we explore
only the newly discovered states, i.e.,Qi\Qi−1. Re-exploring the same states over and
over would be unproductive.

Thanks to the abstract model, MACE can easily compute the necessary input mes-
sage permutations required to reach any abstract model state, just by computing a shortest
path. On the other hand, approaches that combine concrete and symbolic execution have
to negate multiple predicates and get the decision procedure to generate the required se-
quence of concrete input messages to get to a particular state. MACE has more control
over this process, and our experimental results show that the increased control results in
higher line coverage, deeper analysis, and more vulnerabilities found.

5.4.4 Model Refinement

The exploration phase described in Section 5.4.3 generatesa large number (hundreds of
thousands in our setting) of new concrete messages. Using all of them to refine the ab-
stract model is both unrealistic, as inference is polynomial in the size of the alphabet, and
redundant, as many messages are duplicates and belong to thesame equivalence class. To
reduce the number of input messages used for inference, Comparetti et al. [29] propose a
message clustering technique. We take a different approach.
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In the spirit of concolic execution, the exploration phase solves the path-condition
(using a decision procedure) to generate new concrete inputs, more precisely, sequences
of concrete input messages. During the concrete part of the exploration phase, such se-
quences of input messages are executed concretely, which generates the corresponding
sequence of output messages. We abstract the generated sequence of output messages us-
ing αO. If the abstracted sequence can be generated by the current abstract model, we
discard the sequence; otherwise we add all the corresponding concrete input messages to
ΣIi. We define this process more formally:

Definition 3 (Filter Function). LetMI (resp.MO) be a (possibly infinite) set of all pos-
sible concrete input (resp. output) messages. Lets = s0 · · · s|s|−1 ∈ M

∗
I (resp.o ∈ M∗

O)
be a sequence of concrete input (resp. output) messages suchthat |s| = |o|. We assume
that each input messagesj producesoj as a response. LetMi ∈ A be the abstract model
inferred in the last iteration andA the universe of all possible Mealy machines. The filter
functionf : A×M∗

I ×M
∗
O → 2MI is defined as follows:

f(Mi, s, o) =

{

∅ if ∃t ∈ Σ∗
Ii . λi(t) = αO(o)

{sj | 0 ≤ j < |s|} otherwise

In practice, a single input message could produce either no response or multiple out-
put messages. In the first case, our implementation generates an artificial no-response
message, and in the second case, it picks the first produced output message. A more
advanced implementation could infer a subsequential transducer [112], instead of a finite-
state machine. A subsequential transducer can transduce a single input into multiple output
messages.

Once the exploration phase is done, we apply the filter function to all newly found
input and output sequencessk andok, and refine the alphabetΣIi by adding the messages
returned by the filter function. More precisely:

ΣI(i+1) ← ΣIi ∪
⋃

k

f(Mi, s
k, ok)

In the next iteration,L∗ learns a new modelMi+1, a refinement ofMi, over the refined
alphabetΣI(i+1).

5.5 Implementation

In this section, we describe our implementation of MACE. TheL∗ component sends
queries to and collects responses from the analyzed server,and thus can be seen as a client
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sending queries to the server and listening to the corresponding responses. Section 5.5.1
explains this interaction in more detail. Section 5.5.2 surveys the main model inference
optimizations, including parallelization, caching, and filtering. Finally, Section 5.5.3 dis-
cusses our implementation of the state-space exploration.

5.5.1 L∗ as a Client

Our implementation ofL∗ infers the protocol state machine over the concrete input and
abstract output messages. As a client,L∗ first resets the server, by clearing its environment
variables and resetting it to the initial state, and then sends the concrete input message
sequences directly to the server.

Servers have a large degree of freedom in how quickly they want to reply to the queries,
which introduces non-deterministic latency that we want toavoid. For one server appli-
cation we analyzed (Vino), we had to slightly modify the server code to assure immediate
response. We wrote wrappers around thepoll andread system calls so the server im-
mediately respond to theL∗’s queries, modifying eight lines of code in Vino. Without
these modifications, our implementation would still work but take a longer time to run.

5.5.2 Model Inference Optimizations

We have implemented theL∗ algorithm with distributed master-worker parallelization of
queries.L∗ runs in the master node, and distributes its queries among the worker nodes.
The worker nodes compute the query responses, by sending theinput sequences to the
server, collecting and abstracting responses, and sendingthem back toL∗.

Since model refinement requiresL∗ to make repeated queries across iterations, we
maintain a cache to avoid re-computing responses to the previously seen queries.L∗ looks
up the input in the cache before sending queries to worker nodes.

AsL∗’s queries could trigger bugs in the server application, responses could be incon-
sistent. For example, ifL∗ emits two sequences of input messages,s andt, such thats is a
prefix of t, then the response tos should be a prefix of the response tot. Before adding an
input-output sequence pair to the cache, we check that all the prefixes are consistent with
the newly added pair, and report a warning if they are inconsistent.

After each inference iteration, we analyze the state machine to find redundant messages
(Definition 2) and discard them. This simple, but effective,optimization reduces the load
on the subsequent MACE iterations. This optimization is especially important for inferring
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the initial state machine from the seed inputs.

5.5.3 State-Space Exploration

Our implementation of the state-space exploration consists of two components: a short-
est transfer sequence generator and the state-space explorer. A shortest transfer sequence
generator is implemented through a simple modification of the L∗ algorithm. The algo-
rithm maintains a data structure (called observation table[2]) that contains a set of shortest
transfer sequences, one for each inferred state. We modify the algorithm to output this set
together with the final model. MACE uses sequences from the setto launch and initialize
state-space explorers.

We use BitFuzz, our concolic execution engine discussed in Section 2.4, as a state-
space explorer. BitFuzz’s execution monitor, which is an existing component called TEMU
(discussed in Chapter 2.4, provides the capability to save and restore program snapshots.
To perform model-assisted exploration from a desired statein the model, we first set the
program state to the snapshot of the initial state. Then, we drive the program to the desired
state using the corresponding shortest transfer sequence,and start concolic execution from
that state.

In all our experiments, we used the snapshot capability to skip the server boot process.
More precisely, we boot the server, make a snapshot, and run all the experiments on the
snapshot. We do not report the code executed during the boot in the line coverage results.

5.6 Experimental Evaluation

To evaluate MACE, we infer server-side models of two widely deployed network proto-
cols: Remote Framebuffer (RFB) and Server Message Block (SMB). The RFB protocol is
widely used in remote desktop applications, including GNOME Vino and RealVNC1. Mi-
crosoft’s SMB protocol provides file and printer sharing between Windows clients and
servers. Although the SMB protocol is proprietary, it was reverse-engineered and re-
implemented as an open-source system, called Samba. Samba allows interoperability be-
tween Windows and Unix/Linux-based systems. In our experiments, we use Vino 2.26.1
and Samba 3.3.4 as reference implementations to infer the protocol models of RFB and
SMB respectively. We discuss the result of our model inference in Section 5.6.2.

1Vino is the default remote desktop application in GNOME distributions; RealVNC reports over 100
million downloads (http://www.realvnc.com).
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Once we infer the protocol model from one reference implementation, we can use it to
guide state-space exploration of other implementations ofthe same protocol. Using this
approach, we analyze RealVNC 4.1.2 and Windows XP SMB, withoutre-inferring the
protocol state machine.

MACE found a number of critical vulnerabilities, which we discuss in Section 5.6.3.
In Section 5.6.4, we evaluate the effectiveness of MACE, by comparing it to the baseline
state-space exploration component of MACE without guidance.

5.6.1 Experimental Setup

For our state-space exploration experiments, we used the DETER Security testbed [8]
comprised of 3GHz Intel Xeon processors. For runningL∗ and the message filtering, we
used a few slower 2.27GHz Intel Xeon machines. When comparingMACE against the
baseline approach, we sum the inference and the state-spaceexploration time taken by
MACE, and compare it to running the baseline approach for the same amount of time.
This setup gives a slight advantage to the baseline approachbecause inference was done
on slower machines, but our experiments still show MACE is significantly superior, in
terms of achieved coverage, found vulnerabilities and exploration depth.

In addition to a subject binary program and a set of previously collected incoming
packets, our implementation also requires knowledge of packet formats for message ab-
stractions. In each of our experiments, this knowledge was obtained manually from the
protocol specifications. The detail of each abstraction will be mentioned in Section 5.6.2.

5.6.2 Model Inference and Refinement

We used MACE to iteratively infer and refine the protocol models of RFB and SMB, using
Vino 2.26.1 and Samba 3.3.4 as reference implementations respectively. Table 5.1 shows
the results of iterative model inference and refinement on Vino and Samba.

As discussed in Section 5.4.2, once MACE terminates, we checkthe final inferred
model with sampling queries. We used 1000 random sampling queries composed of 40
input messages each, and tried to refine the state machine beyond what MACE inferred.
The sampling did not discover any new state in any experimentwe performed.

Vino. For Vino, we collected a 45-second network trace of a remote desktop session, using
krdc (KDE Remote Desktop Connection) as the client. During this session, the Vino
server received a total of 659 incoming packets, which were considered as seed messages.
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Program Iter. |Q| |ΣI | |ΣO| Tot. Learning
(Protocol) Time (min)

Vino 1st 7 8 7 142
(RFB) 2nd 7 12 8 8
Samba 1st 40 40 14 2028
(SMB) 2nd 84 54 24 1840

3rd 84 55 25 307

Table 5.1: Model Inference Result at the End of Each Iteration. The second column iden-
tifies the inference iteration. TheQ column denotes the number of states in the inferred
model. TheΣI (resp.ΣO) column denotes the size of the input (resp. output) alphabet.
The last column gives the total time (sum of all parallel jobstogether) required for learn-
ing the model in each iteration, including the message filtering time. The learning process
is incremental, so later iterations can take less time, as the older conjecture might need a
small amount of refinement.

For abstracting the output messages, we used the message type and the encoding type of
the outbound packets from the server. MACE inferred the initial model consisting of seven
states, and filtered out all but 8 input and 7 output messages,as shown in Figure 5.3a.

Using the initial inferred RFB protocol model, the state-space explorer component of
MACE discovered 4 new input messages and refined the model withnew edges without
adding new states (Figure 5.3b). We manually inspected the newly discovered output
message (label R6 in Figure 5.3b) and found that it representsan outgoing message type
not seen in the initial model.

Since MACE found no new states that could be explored with the state-space explorer,
the process terminated. Through manual comparison with theRFB protocol specification,
we found that MACE has discovered all the input messages and all the states, except the
states related to authentication and encryption, both of which we disabled in our experi-
ments. Further, MACE found all the responses to client’s queries2.

We also performed an experiment with authentication enabled (encryption was still
disabled). In this experiment, we used the first byte of each message for output abstraction
because it corresponds to the location of the message type and the encoding type used in
the experiment with authentication disabled. With this configuration, MACE discovered
only three states, because it was not able to get past the checksum used during authen-

2There are two other output message types that are triggered by the server’s GUI events and thus are
outside of our scope.
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S6

S0
/R1

2,3,4,5,6,7,8/T

S1
1/R2 1,3,4,5,6,7,8/T

S2

2/N 1,4,8/T

S3

2/R3

S5

3,5,6,7/R3

1,2/T5/R4
3,6,7,8/N

S4

4/N

1,2,3,4,5,6,7,8/T

1,2/T

3,4,6,7,8/N
5/R5

(a) Original Vino’s RFB Model Based on Observed Live Traffic.

S6

S0
/R1

2,3,4,5,6,7,8,9,10,11,12/T

S1
1/R2 1,3,4,5,6,7,8,9,10,11,12/T

S2

2/N 1,4,8,12/T

S3

2,9/R3
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3,5,6,7,10,11/R3

1,2,9,10,12/T

5/R4
11/R6

3,6,7,8/N
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1,2,3,4,5,6,7,8,9,10,11,12/T

1,2,9,10,12/T

3,4,6,7,8/N
5/R5

11/R6

(b) Final Vino’s RFB Model Inferred by MACE.

Figure 5.3: Model Inference of Vino’s RFB protocol. States inwhich MACE discovers
vulnerabilities are shown in grey. The edge labels show the list of input messages and the
corresponding output message separated by the ‘/’ symbol. The explanations of the state
and the input/output message encodings are in Figure 5.4.

tication, but discovered an infinite loop vulnerability that can be exploited for denial-
of-service attacks. For this configuration to work, furtherintegration of MACE and the
decomposition and restitching technique, discussed in Chapter 4, or other techniques for
reverse-engineering of message encryption [18, 115] are required.

Samba.For Samba, we collected a network trace of multiple SMB sessions, using Samba’s
gentest test suite3, which generates random SMB operations for testing SMB servers.
We used the defaultgentest configuration, with the default random number generator
seeds. To abstract the outbound messages from the server, weused the SMB message type
and status code fields; error messages were abstracted into asingle error message type.
The Samba server received a total of 115 input messages, fromwhich MACE inferred an
initial SMB model with 40 states, with 40 input and 14 output messages (after filtering out
redundant messages). Figure 5.5a shows the initial model.

In the second iteration, MACE discovered 14 new input and 10 new output messages
and refined the initial model from 40 states to 84 states. The model converged in the third
iteration after adding a new input and a new output message without adding new states.

3http://samba.org/∼tridge/sambatesting/
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Label Description
1 client’s protocol version
2 byte 0x01 (securityType=None, clientInit)
3 setPixelFormat message
4 setEncodings message
5 frameBufferUpdateRequest message
6 keyEvent message
7 pointer event message
8 clientCutText message
9 byte 0x22
10 malformed client’s protocol version
11 frameBufferUpdateRequest message with bpp=8 and true-

color=false
12 malformed client’s protocol version

(a) Input Legend.

Label Description
R1 server’s protocol version
R2 server’s supported security types
R3 serverInit message
R4 framebufferUpdate message with default encoding
R5 framebufferUpdate message with alternative encoding
R6 setColourMapEntries message
N no explicit reply from server
T socket closed by server

(b) Output Legend.

Figure 5.4: Explanation of States and Input/Output Messages of the State Machine from
Figure 5.3.
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(a) The Initial SMB Model Inferred from the Seed Messages.
0

1

1

2

1 5

1 ,15

3

2 4 4

1 ,15

4

3

4 4

1 ,15

5

4

1 ,15

4 7

6

2,3 ,7 ,18 ,19,20,21,26,35,41,55

7

9

8

1 1

9

1 4

1 0

2 2

1 1

2 4

1 2

3 4

1 3

3 7

1 4

4 0

1 5

4 4

1 ,15

4 7

4,5 ,6 ,8 ,10 ,12,13,16,17,25,28,29,30,31,32,33,39,43,52

9 1 1

1 4

2 2

3 7

4 4

1 6

2 4

1 7

3 4

1 8

4 0

1 ,15

4 7

1 0

4 4

1 9

2,3 ,6 ,7 ,18,19,20,21,26,35,37,41,55

1 ,15

4 7

8

4 4

2 0

2,3 ,18 ,19 ,20 ,21 ,26 ,41 ,55

2 1

1 4

2 2

2 2

2 3

2 4

2 4

3 4

2 5

3 5

2 6

3 7

2 7

4 0

1 ,15

4 7

4 4

1 1

2,3 ,7 ,18 ,19,20,21,26,35,41,55

2 8

2 2

2 9

2 4

3 0

3 4

3 1

3 7

3 2

4 0

1 ,15

4 7

1 6

4 4

1 1

1 4

3 3

2,3 ,7 ,18 ,19,20,21,35,37,41,55

3 4

2 4

3 5

4 0

1 ,15

4 7

1 1

1 4

3 6

5 1

4 7

4 4

2,3 ,7 ,18 ,19,20,21,35,37,41,55

1 4

5 1

1 ,15

4 7

4 4

4 0

5 1

1 ,15

4 4

2,3 ,7 ,18 ,19,20,21,35,37,41,55

1 1

1 4

5 1

4 7

1 ,15

1 ,15

4 7

4,5 ,6 ,8 ,9 ,10 ,12,13,16,17,22,25,26,28,29,30,31,32,33,39,43,52

4 4

1 1

1 4

5 1

1 ,15

4 7

4,5 ,6 ,8 ,9 ,10 ,12,13,16,17,22,25,26,28,29,30,31,32,33,39,43,52

4 4

1 1

1 4

5 1

1 ,15

4 7

4,5 ,6 ,8 ,9 ,10 ,12,13,16,17,22,25,26,28,29,30,31,32,33,39,43,52

4 4

1 1

1 4

5 1

1 ,15

4 7

1 0

4,5 ,8 ,9 ,11 ,12,13,14,16,17,22,25,28,29,30,31,32,33,39,43,52

4 4

1 ,15

4 7

8

4,5 ,6 ,7 ,9 ,10,11,12,13,16,17,25,28,29,30,31,32,33,39,43,52

4 4

1 4

2 2

3 5

3 7

4 1

2 4

4 2

3 4

4 3

4 0

1 ,15

4 7

84 4

2,3 ,18 ,19 ,20 ,21 ,26 ,35 ,41 ,55

4 5

2 2

4 6

2 4

4 7

3 4

4 8

3 7

4 9

4 0

4 7

1 6

8

4 4

1 45 0

2,3 ,18 ,19 ,20 ,21 ,37 ,41 ,55

5 1

2 4

5 2

3 5

5 3

4 0

1 ,15

4 7

8

4 4

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

1 4

5 4

5 1

1 ,15

8

4 4

5 1

1 ,15

4 7

4,5 ,6 ,8 ,9 ,10,12,13,14,16,17,25,28,29,30,31,32,33,39,43,52

4 4

1 1

2 2

3 7

1 ,15

4 7

4 4

3 7

8

3 8

4,5 ,6 ,7 ,9 ,10 ,11,12,13,16,17,22,25,26,28,29,30,31,32,33,39,43,52

5 8

1 4

5 9

5 1

1 ,15

4 7

8

4 4

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

1 4

5 1

1 ,15

4 7

1 6

4 4

1 1

2,3 ,7 ,18 ,19,20,21,35,37,41,55

6 0

2 4

6 1

4 0

1 ,15

4 7

4 4

1 1

5 5

2,3 ,7 ,18 ,19,20,21,35,37,41,55

6 2

5 1

1 ,15

4 7

4 4

1 15 6

2,3 ,7 ,18 ,19,20,21,35,37,41,555 1

1 ,15

4 7

3 9

4,5 ,6 ,8 ,9 ,10 ,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 1

6 3

5 1

4 7

4 4

1 1

5 7

2,3 ,7 ,18 ,19,20,21,35,37,41,55

5 1

1 ,15

4 7

1 6

4,5 ,6 ,8 ,9 ,10,12,13,17,22,25,26,28,29,30,31,32,33,39,43,52

4 4

1 1

1 4

6 4

2 4

6 5

4 0

1 ,15

1 6

5 1

4 4

1 1

1 4

2,3 ,7 ,18 ,19,20,21,35,37,41,55

1 ,15

4 7

5 1

4 4

1 4

2,3 ,7 ,18 ,19,20,21,35,37,41,55

1 ,15

4 7

2 4

3 7

4 0

4 4

3 2

2,3 ,7 ,18 ,19 ,20 ,21 ,35 ,41 ,55

1 1

1 ,15

4 7

2,3 ,7 ,18 ,19,20,21,35,37,41,55

4 4

5 1

1 1

1 4

1 ,15

4 7

4 4

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

8

5 1

1 4

1 ,15

4 7

4 4

2,3 ,7 ,18 ,19,20,21,35,37,41,55

1 1

5 1

1 ,15

4 7

3 7

4 4

2 4

4 0

4,5 ,6 ,8 ,9 ,10,12,13,16,17,22,25,26,28,29,30,31,33,39,43,52

3 2

1 1

1 4

1 ,15

4 7

4,5 ,6 ,7 ,9 ,10 ,11,12,13,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 4

5 1

4 7

8

4 4

1 4

5 1

1 ,15

4 7

8

4 4

4,5 ,6 ,7 ,9 ,10,11,12,13,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 4

5 1

1 ,15

8

4 4

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,16,17,25,28,29,30,31,32,33,39,43,52

6 6

2 4

6 7

3 4

6 8

4 0

1 ,15

4 7

4 4

1 6

8

6 9

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

7 0

2 4

7 1

4 0

1 ,15

4 7

4 4

8

7 2

5 1

1 ,15

4 7

4 4

8

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

1 ,15

4 7

4 4

8

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

7 3

5 1

1 ,15

4 7

4 4

8

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

5 1

1 ,15

4 7

1 6

8

4 4

4,5 ,6 ,7 ,9 ,10 ,11,12,13,17,22,25,26,28,29,30,31,32,33,39,43,52

1 4

3 5

7 4

2 4

7 5

4 0

1 ,15

4 7

5 1

8

1 4

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

7 6

1 6

4 7

1 6

4 4

1 1

7 7

2 4

7 8

4 0

1 ,15

4 7

4 4

5 1

1 4

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

1 6

1 ,15

4 4

2 4

3 7

4 0

8

3 2

2,3 ,18 ,19 ,20 ,21 ,41 ,55

3 5

1 4

1 ,15

4 7

4 4

4,5 ,6 ,8 ,9 ,10 ,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 1

5 1

1 ,15

4 7

4 4

4,5 ,6 ,8 ,9 ,10 ,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 1

1 ,15

4 7

4 4

4,5 ,6 ,8 ,9 ,10 ,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 1

5 1

1 ,15

4 7

4 4

8

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

5 1

1 ,15

4 7

4 4

3 7

8

3 2

2 4

4 0

4,5 ,6 ,7 ,9 ,10 ,11,12,13,16,17,22,25,26,28,29,30,31,33,39,43,52

3 5

1 4

1 ,15

4 7

1 6

4 4

5 1

1 1

2,3 ,7 ,18 ,19,20,21,35,37,41,55

1 ,15

4 7

1 6

5 1

1 1

2,3 ,7 ,18 ,19,20,21,35,37,41,55

4 7

4 4

3 7

4 03 2

2,3 ,7 ,18 ,19 ,20 ,21 ,35 ,41 ,55

1 1

1 ,15

4 7

4 4

2 4

4 0

4,5 ,6 ,8 ,9 ,10 ,12,13,14,16,17,22,25,26,28,29,30,31,33,39,43,52

1 1 1 ,15

1 6

4 4

5 1

4,5 ,6 ,8 ,9 ,10,12,13,17,22,25,26,28,29,30,31,32,33,39,43,52

1 1

1 4

1 ,15

4 7

4 4

5 1

4,5 ,6 ,8 ,9 ,10,12,13,17,22,25,26,28,29,30,31,32,33,39,43,52

1 4

1 ,15

4 7

4 4

8

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

5 1

1 ,15

4 7

4 4

8

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

1 ,15

4 7

4 4

8

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,16,17,22,25,26,28,29,30,31,32,33,39,43,52

5 1

1 ,15

4 7

4 4

1 6

8

4,5 ,6 ,7 ,9 ,10,11,12,13,14,17,22,25,26,28,29,30,31,32,33,39,43,52

7 9

2 4

8 0

4 0

1 ,15

4 7

4 4

1 6

5 1

8

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

1 ,15

4 7

1 6

5 1

8

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

4 7

4 4

2 4

3 7

4 03 2

8

2,3 ,18 ,19 ,20 ,21 ,35 ,41 ,55

1 ,15

4 7

4 4

3 7

3 2

8

2 4 4 0

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,16,17,22,25,26,28,29,30,31,33,39,43,52

1 ,15

4 4

85 1

4,5 ,6 ,7 ,9 ,10 ,11,12,13,17,22,25,26,28,29,30,31,32,33,39,43,52

1 4

1 6

1 ,15

4 7

4 4

8

1 4

1 6

1 ,15

4 7

8

5 1

4 4

1 4

2 4

3 4

3 7

4 0

8 1

2,3 ,18 ,19 ,20 ,21 ,26 ,35 ,41 ,55

8 2

2 2

1 ,15

4 7

1 6

4 4

5 1

4,5 ,6 ,8 ,9 ,10 ,12,13,14,17,22,25,26,28,29,30,31,32,33,39,43,52

1 ,15

4 7

1 6

4 4

5 1

4,5 ,6 ,8 ,9 ,10 ,12,13,14,17,22,25,26,28,29,30,31,32,33,39,43,52

1 1

1 ,15

4 7

4 4

1 6

8

5 1

4,5 ,6 ,7 ,9 ,10 ,11,12,13,14,17,22,25,26,28,29,30,31,32,33,39,41,43,52

1 ,15

4 7

4 4

1 6

8

5 1

4,5 ,6 ,7 ,9 ,10,11,12,13,14,17,22,25,26,28,29,30,31,32,33,39,43,52

1 ,15

4 7

8

5 1

1 4

3 7

2 4

3 4

4 0

4,5 ,6 ,7 ,9 ,10,11,12,13,16,17,25,28,29,30,31,32,33,39,43,52

2 2

4 7

8

4 4

1 4

2 4

4 0

1 6

8 3

2,3 ,18 ,19 ,20 ,21 ,35 ,37 ,41 ,55

1 ,15

4 7

8

4 4

1 4

5 1

2 4

4 0

1 6

4,5 ,6 ,7 ,9 ,10 ,11,12,13,17,22,25,26,28,29,30,31,32,33,39,43,52

(b) Converged SMB Model.

Figure 5.5: The Inferred SMB Model from Samba.

Table 5.1 summarizes all three inference rounds. The converged model is depicted in
Figure 5.5b.

Manually analyzing the inferred state machine, we found that some of the discovered
input messages have the same type, but different parameters, and therefore have different
effects on the server (and different roles in the protocol).MACE discovered all the 67
message types used in Samba, but the concrete messages generated by the decision proce-
dure during the state-space exploration phase often had invalid message parameters, so the
server would simply respond with an error. Such responses donot refine the model and
are filtered out during model inference. In total, MACE was successful at generate valid
messages with 23 (out of 67) message types, which is an improvement over 13 message
types exercised by the test suite.
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Label Desc.
1 negprot
2 sesssetupX
3 sesssetupX
4 tconX
5 unlink
6 trans2
7 trans2
8 rmdir
9 rmdir
10 mkdir
11 mkdir
12 tconX
13 nttrans
14 mkdir

Label Desc.
15 invalid
16 rmdir
17 readX
18 lseek
19 close
20 ntrename
21 openX
22 mkdir
23 ntcreateX
24 ntcreateX
25 trans2
26 trans2
27 lockingX
28 writeX

Label Desc.
29 checkpath
30 mkdir
31 mv
32 open
33 open
34 ntcreateX
35 mv
36 trans2
37 openX
38 trans2
39 setatr
40 ntcreateX
41 dskattr
42 fclose

Label Desc.
43 fclose
44 ulogoffX
45 fclose
46 trans
47 tdis
48 findnclose
49 dskattr
50 findclose
51 exit
52 dskattr
53 ctemp
54 getatr
55 create

(a) Input Legend.

Label Desc.
R1 mkdir success
R2 rmdir success
R3 opensuccess
R4 createsuccess
R5 mv success
R6 getatrsuccess
R7 setatrsuccess
R8 ctempsuccess
R9 checkpathsuccess

Label Desc.
R10 exit success
R11 transsuccess
R12 openXsuccess
R13 trans2success
R14 findclosesuccess
R15 findnclosesuccess
R16 tdis success
R17 negprotsuccess
R18 sesssetupXsuccess

Label Desc.
R19 ulogoffX success
R20 tconX success
R21 dskattrsuccess
R22 fclosesuccess
R23 ntcreateXsuccess
E error
T session terminated

by server

(b) Output Legend.

Figure 5.6: Explanation of Input/Output Messages of the State Machine from Figure 5.5.
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We identified several causes of incompleteness in message discovery. First, mes-
sage validity is configuration dependent. For example, thespoolopen, spoolwrite,
spoolclose andspoolreturnqueue message types need an attached printer to be
deemed valid. Our experimental setup did not emulate the complete environment, pre-
cluding us from discovering some message types. Second, a singleecho message type
generated by MACE induced the server to behave inconsistently and we discarded it due
to our determinism requirement. Although this is likely a bug in Samba, this behavior is
not reliably reproducible. We exclude this potential bug from the vulnerability reports that
we provide later. Third, our infrastructure is unable to analyze the system calls and other
code executed in the kernel space. In effect, the computed symbolic constraints are under-
constrained. Thus, some corner-cases, like a specific combination of the message type and
parameter (e.g., a specific file name), might be difficult to generate. This is a general prob-
lem when the symbolic formula computed by symbolic execution is underconstrainted.

In our experiments, we used Samba’s default configuration, in which encryption is
disabled. The SMB protocol allows null-authentication sessions with empty password,
similar to anonymous FTP.

MACE converged relatively quickly in both Vino and Samba experiments (in three it-
erations or less). We attribute this mainly to the granularity of abstraction. A finer-grained
model would require more rounds to infer. The granularity ofabstraction is determined by
the output abstraction function, (Section 5.3.1).

5.6.3 Discovered Vulnerabilities

We use the inferred models to guide the state-space exploration of implementations of the
inferred protocol. After each inference iteration, we count the number of newly discovered
states, generate shortest transfer sequences (Section 5.3.3) for those states, initialize the
server with a shortest transfer sequence to the desired (newly discovered) state, and then
run 2.5 hours of state-space exploration in parallel for each newly discovered state. The
input messages discovered during those 2.5 hours of state-space exploration per state are
then filtered and used for refining the model (Section 5.4.4).For the baseline concolic
execution without model guidance, we run|Q| parallel jobs with different random seeds
for each job for 15 hours, where|Q| is the number of states in the final converged model
inferred for the target protocol. Different random seeds are important, as they assure that
each baseline job explores different trajectories within the program.

We rely upon the operating system runtime error detection todetect vulnerabilities,
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but other detectors, like Valgrind4, could be used as well. Once MACE detects a vul-
nerability, it generates an input sequence required for reproducing the problem. When
analyzing Linux applications, MACE reports a vulnerabilitywhen any of the critical ex-
ceptions (SIGILL, SIGTRAP, SIGBUS, SIGFPE, andSIGSEGV) is detected. For Win-
dows programs, a vulnerability is found when MACE traps a callto ntdll.dll::
KiUserExceptionDispatcher and the value of the first function argument repre-
sents one of the critical exception codes.

MACE found a total of seven vulnerabilities in Vino 2.26.1, RealVNC 4.1.2, and
Samba 3.3.4, within 2.5 hours of state-space exploration per state. In comparison, the
baseline concolic execution without model-guidance, found only one of those vulnerabil-
ities (the least critical one), even when given the equivalent of 15 hours per state. Four
of the vulnerabilities MACE found are new and also present in the latest version of the
software at the time of writing. The list of vulnerabilitiesis shown in Table 5.2. The rest
of this section provides a brief description of each vulnerability.

Vino. MACE found three vulnerabilities in Vino; all of them are new.The first one (CVE-
2011-0904) is an out-of-bounds read from arbitrary memory locations. When a certain
type of the RFB message is received, the Vino server parses themessage and later uses
two of the message value fields to compute an unsanitized array index to read from. A
remote attacker can craft a malicious RFB message with a very large value for one of the
fields and exploit a target host running Vino. The Gnome project labeled this vulnerability
with the “Blocker” severity (bug 641802), which is the highest severity in their ranking
system, meaning that it must be fixed in the next release. MACE found this vulnerability
after 122 minutes of exploration per state, in the first iteration (when the inferred state
machine has seven states, Table 5.1). The second vulnerability (CVE-2011-0905) is an
out-of-bounds read due to a similar usage of unsanitized array indices; the Gnome project
labeled this vulnerability (bug 641803) as “Critical”, the second highest problem sever-
ity. This vulnerability is marked as a duplicate of CVE-2011-0904, for it can be fixed
by patching the same point in the code. However, these two vulnerabilities are reached
through different paths in the finite-state machine model and the out-of-bounds read hap-
pens in different functions. These two vulnerabilities areactually located in a library used
by not only Vino, but also a few other programs. According to Debian security tracker5,
kdenetwork 4:3.5.10-2 is also vulnerable.

The third vulnerability (CVE-2011-0906) is an infinite loop,found in the configura-
tion with authentication enabled. The problem appears whenthe Vino server receives an

4http://valgrind.org/
5http://security-tracker.debian.org/tracker/CVE-2011-0904
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authentication input from the client larger than the authentication checksum length that it
expects. When the authentication fails, the server closes the client connection, but leaves
the remaining data in the input buffer queue. It also enters adeferred-authentication state
where all subsequent data from the client is ignored. This causes an infinite loop where
the server keeps receiving callbacks to process inputs thatit does not process in deferred-
authentication state. The server gets stuck in the infinite loop and stops responding, so we
classify this vulnerability as a denial-of-service vulnerability. Unlike all other discovered
vulnerabilities, we discovered this one whenL∗ hung, rather than by catching signals or
trapping the exception dispatcher. Currently, we have no wayof detecting this vulnerabil-
ity with the baseline, so we do not report the baseline results for CVE-2011-0906.

Samba. MACE found 3 vulnerabilities in Samba. The first two vulnerabilities have
been previously reported and are fixed in the latest version of Samba. One of them
(CVE-2010-1642) is an out-of-bounds read caused by the usageof an unsanitized Se-
curity Blob Length field in SMB’s SessionSetupAndX message. The other (CVE-2010-
2063) is caused by the usage of an unsanitized field in the “Extra byte parameters” part
of an SMB LogoffAndX message. The third one is a null pointer dereference caused by
an unsanitized ByteCount field in the SessionSetupAndX request message of the SMB
protocol. To the best of our knowledge, this vulnerability has never been publicly reported
but has been fixed in the latest release of Samba. We did not know about any of these
vulnerabilities prior to our experiments.

RealVNC. MACE found a new critical out-of-bounds write vulnerabilityin RealVNC.
One type of the RFB message processed by RealVNC contains a length field. The Re-
alVNC server parses the message and uses the length field as anindex to access the process
memory without performing any sanitization, causing an out-of-bounds write.

Win XP SMB. The implementation of Win SMB is partially embedded into thekernel,
and currently our concolic execution system does not handlethe kernel operating system
mode. Thus, we were able to explore only the user-space components that participate in
handling SMB requests. Further, we found that many involvedcomponents seem to serve
multiple purposes, not only handling SMB requests, which makes their exploration more
difficult. We found no vulnerabilities in Win XP SMB.
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Program Vulnerability Type Disclosure ID Iter. Jobs Search Time
( |Q| ) MACE Baseline

per job total per job total
(min) (hrs) (min) (hrs)

Vino Wild read (blocker) CVE-2011-0904 1/2 7 122 15 >900 >105
Out-of-bounds read CVE-2011-0905 1/2 7 31 4 >900 >105
Infinite loop CVE-2011-0906† 1/2 7 1 1 N/A N/A

Samba Buffer overflow CVE-2010-2063 1/3 84 88 124 >900 >1260
Out-of-bounds read CVE-2010-1642 1/3 84 10 14 >900 >1260
Null-ptr dereference Fixed w/o CVE 1/3 84 8 12 430 602

RealVNC Out-of-bounds write CVE-2011-0907 1/1 7 17 2 >900 >105
Win XP SMB None None None 84 >150 >210 >900 >1260

Table 5.2:Description of the Found Vulnerabilities. The upper half of the table (Vino and Samba) contains results for the
reference implementations from which the protocol model was inferred, while the bottom half (Real VNC and Win XP SMB)
contains the results for the other implementations that were explored using the inferred model (from Vino and Samba). The
disclosure column lists Common Vulnerabilities and Exposures (CVE) numbers assigned to vulnerabilities MACE found. The
new vulnerabilities areitalicized. The † symbol denotes a vulnerability that could not have been detected by the baseline
approach, because it lacks a detector that would register non-termination. We found it with MACE, because it causedL∗ to
hang. The “Iter.” column lists the iteration in which the vulnerability was found and the total number of iterations. The “Jobs”
column contains the total number of parallel state-space exploration jobs. The number of jobs is equal to the number of states in
the final converged inferred state machine. The baseline experiment wasdone with the same number of jobs running in parallel
as the MACE experiment. The MACE column shows how much time passed beforeat least one parallel state-space exploration
job reported the vulnerability and the total runtime (number of jobs× time to the first report) of all the jobs up to that point.
The “Baseline” column shows runtimes for the baseline concolic execution without model guidance. We set the timeout for the
MACE experiment to 2.5 hours per job. The baseline approach found onlyone vulnerability, even when allowed to run for 15
hours (per job). The> t entries mean that the vulnerability was not found within timet.
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Program Sequential Instruction Coverage Total crashes
(Protocol) Time (Unique locations)

(min) Baseline MACE improvement Baseline MACE

Vino (RFB) 1200 129762 138232 6.53% 0 (0) 2 (2)
Samba (SMB) 16775 66693 105946 58.86% 20 (1) 21 (5)

RealVNC (RFB) 1200 39300 47557 21.01% 0 (0) 7 (2)
Win XP (SMB)† 16775 90431 112820 24.76% 0 (0) 0 (0)

Table 5.3: Instruction Coverage Results. The table shows the instruction coverage (number of
unique executed instruction addresses) of MACE after 2.5 hours of exploration per state in the final
converged inferred state machine, and the baseline concolic execution given the amount of time
equivalent to (time MACE required for inferring the final state machine+ number of states in the
final state machine× 2.5 hours), shown in the second column. For example, from Table 5.1, we
can see that Samba inference took the total of2028 + 1840 + 307 = 4175 minutes and produced
an 84-state model. Thus, the baseline approach was given84 × 150 + 4175 = 16775 minutes to
run. The last two columns show the total number of crashes each approach found, and the number
of unique crash locations (EIPs) in parenthesis. Due to a limitation of our implementation of the
state-space exploration (user-mode only), the baseline result for Windows XP SMB (marked†) was
so abysmal, that comparing to the baseline would be unfair. Thus, we computethe Win XP SMB
baseline coverage by running Samba’sgentest test suite.
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5.6.4 Comparison with the Baseline

We ran several experiments to illustrate the improvement ofMACE over the baseline con-
colic execution approach. First, we measured the instruction coverage of MACE on the
analyzed programs and compared it against the baseline coverage. Second, we compared
the number of crashes detected by MACE and by the baseline approach over the same
amount of time. This number provides an indication of how diverse the execution paths
discovered by each approach are: more crashes imply more diverse searched paths. Fi-
nally, we compared the effectiveness of MACE and the baselineapproach to reach deep
states in the final inferred model.

Instruction Coverage. In this experiment, we measured the numbers of unique instruc-
tion addresses (i.e., EIP values) of the program binary and its libraries covered by MACE
and the baseline approach. These numbers show how effectivethe approaches are at un-
covering new code regions in the analyzed program. For Vino,RealVNC, and Samba, we
used concolic execution as the baseline approach and ran theexperiment using the setup
outlined in Section 5.6.1. We ran MACE allowing 2.5 hours of state-space exploration per
each inferred state. To provide a fair comparison, we ran thebaseline for the amount of
time that is equal to the sum of the MACE’s inference and state-space exploration times.
As shown in Table 5.3, our result illustrates that MACE provides a significant improve-
ment in the instruction coverage over concolic execution.

As mentioned before, our tool currently works on user-spaceprograms only. Because
Windows SMB is mostly implemented as a part of the Windows kernel, the results of
the baseline approach were abysmal. To avoid a straw man comparison, we chose to
compare against Samba’sgentest test suite, regularly used by Samba developers to
test the SMB protocol. Using the test suite, we generate testsequences and measure the
obtained coverage. As for other experiments, we allocated the same amount of time to
both the test suite and MACE. The experimental results clearly show MACE’s ability to
augment test suites manually written by developers.

Number of Detected Crashes.Using the same setup as in the previous experiment, we
measured the number of crashing input sequences generated by each approach. We report
the number of crashes and the number of unique crash locations. From each category
of unique crash locations, we manually processed the first four reported crashes. All the
found vulnerabilities (Table 5.2) were found by processingthe very first crash in each
category. All the later crashes we processed were just variants of the first reported crash.
MACE found 30 crashing input sequences with 9 of them having unique crash locations
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Figure 5.7: SMB Exploration Depth. The inferred state machine can be seen as a directed
graph. Suppose we compute a spanning tree (e.g., [30]) of that graph. The root of the graph
is at level zero. Its children are at level one, and so on. The figure shows the percentage
of states visited at each level by MACE and the baseline approach. The numbers above
points show the number of visited states at the given depth. The shaded area clearly shows
that MACE is superior to the baseline approach in reaching deep states of the inferred
protocol.

(the EIP of the crashed instruction). In comparison, the baseline approach only found 20
crashing input sequences, all of them having the same crash location.

Exploration Depth. Using the same setup as for the coverage experiment, we measured
how effective each approach is in reaching deep states. The inferred state machine can be
seen as a directed graph. Suppose we compute a spanning tree (e.g., [30]) of that graph.
The root of the graph is at level zero. Its children are at level one, and so on. We measured
the percentage of states reached at every level. Figure 5.7 clearly shows that MACE is
superior to the baseline approach in reaching deep states inthe inferred protocol.
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5.7 Limitations

Completeness is a problem for any dynamic analysis technique. Accordingly, MACE can-
not guarantee that all the protocol states will be discovered. Incompleteness stems from
the following: (1) each state-space explorer instance runsfor a bounded amount of time
and some inputs may simply not be discovered before the timeout, (2) among multiple
shortest transfer sequences to the same abstract state, MACEpicks one, potentially miss-
ing further exploration of alternative paths, (3) similarly, among multiple concrete input
messages with the same abstract behavior, MACE picks one and considers the rest redun-
dant (Definition 2).

Our approach to model inference and refinement is not entirely automatic: the end
users need to provide an abstraction function that abstracts concrete output messages into
an abstract alphabet. Coming up with a good output abstraction function can be a difficult
task. If the provided abstraction is too fine-grained, modelinference may be too expensive
to compute or may not even converge. On the other hand, the inferred model may fail
to distinguish two interesting states if the abstraction istoo coarse-grained. Nevertheless,
our approach provides an important improvement over our prior work [28], which requires
abstraction functions for both input and output messages.

When using our approach to learn a model of a proprietary protocol, a certain level of
protocol reverse-engineering is required prior to runningMACE. First, we need a basic
level of understanding of the protocol interface to be able to correctly replay input mes-
sages to the analyzed program. For example, this may requireoverwriting the cookie or
session-id field of input messages so that the sequence appears indistinguishable from real
inputs to the target program. Second, our approach requiresan appropriate output abstrac-
tion, which in turn requires understanding of the output message formats. Message format
reverse-engineering is an active area of research [20, 35, 36] out of the scope of our study.

Encryption is a difficult problem for every (existing) protocol inference technique. To
circumvent the issue, we configure the analyzed programs notto use encryption. However,
for proprietary protocols, such a configuration may not be available and a further integra-
tion of MACE and the decomposition and restitching technique, discussed in Chapter 4,
or other techniques for reverse-engineering of message encryption [18, 115] are required.

5.8 Conclusion

We have proposed MACE, a new approach to software state-spaceexploration. MACE
iteratively infers and refines an abstract model of the protocol, as implemented by the
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program, and exploits the model to explore the program’s state-space more effectively. By
applying MACE to four server applications, we show that MACE (1) improves coverage
up to 58.86%, (2) discovers significantly more vulnerabilities (seven vs. one), and (3)
performs significantly deeper search than the baseline approach.

We believe that further research is needed along several directions. First, a deeper
analysis of the correspondence of the inferred finite state models to the structure and state-
space of the analyzed application could reveal how models could be used even more effec-
tively than what we propose here. Second, it is an open question whether one could design
effective automatic abstractions of the concrete input messages. The filtering function we
propose here is clearly effective, but might drop importantmessages. Third, the finite-state
models might not be expressive enough for all types of applications. For example, subse-
quential transducers [112] might be the next, slightly moreexpressive, representation that
would enable us to model protocols more precisely, without significantly increasing the
inference cost. Fourth, MACE currently does no white box analysis, besides concolic exe-
cution for discovering new concrete input messages. MACE could also monitor the value
of program variables, consider them as the input and the output of the analyzed program,
and automatically learn the high-level model of the program’s state-space. This extension
would allow us to apply MACE to more general classes of programs.
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Chapter 6

Conclusion

6.1 Potential Integration of the Proposed Techniques

The scaling techniques presented in this thesis could be integrated but such integration
has not materialized. The level of re-engineering effort required is a major reason we
decided not to go on with the integration. This section will discuss the issue as well as
other challenges that would arise when integrating our scaling techniques together.

Currently, our implementation — specifically its legacy component called TEMU (dis-
cussed in Section 2.4) — could reliably save a program state only once; further saves tend
to damage the TEMU disk images we used for the experiments. TEMU is developed as an
extension of QEMU version 0.9.1 [97], which it inherits thisreliability issue from. Since
the time of TEMU implementation, QEMU has been re-engineered from the ground up
to resolve various issues including the aforementioned reliability issue, and the older ver-
sion, from which TEMU is based on, is no longer supported. Because the new version
of QEMU is significantly different from the old version, TEMUhas to be reimplemented
if it were to support the new version of QEMU and to resolve thereliability issue. This
reimplementation has not completely materialized.

One requirement for a successful integration of our techniques is the ability to save
and restore the program state efficiently. If we were to combine stitched concolic exe-
cution with the other two techniques, we need to be able to handle cases when there are
multiple instances of serial decomposition (e.g., multiple encrypted input fields controlled
by a loop for LECE and sequences of encrypted message for MACE).In such a case, our
implementation must perform re-stitching at the entry of each encoding functions, in the
reverse order. The ability to save and restore the program state efficiently at each function
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entry is required. This means that the lengthy reimplementation of TEMU is needed and
thus we decided not to go on with the integration.

Integrating LECE and stitched concolic execution would require further assumptions
and heuristics to link the techniques together. Consideringthe case in which a loop op-
erates on a variable-length input field inside a decompression/decryption function, LECE
alone would try to generate constraints based on the loop andthe function input but stitched
concolic execution would try to avoid solving such constraints. As a result, we need to
link the LECE-generated constraints to other constraints outside the encoding function.
For example, we might use program analysis to compose a new constraint based on the
relationship between the length of the input and the output of a decompression/decryption
function (e.g., that they are of the same length), and conjoin it with the LECE-generated
constraints. The conjoined constraint would be in terms of the function output (instead of
the function input) and stitched concolic execution can pass it to the decision procedure.

Integrating LECE into MACE’s state-space exploration step (Section 5.4.3) would im-
prove the performance of MACE further. Instead of spending much time inside loops,
state-space exploration using LECE would focus on the overall effects of the loops and
could explore more states. The new input messages generatedduring each concolic exe-
cution step would be of variable length instead of fixed length. However, if not handled
properly, the generation of variable length input messageswould slow down MACE sig-
nificantly when complex long messages are repeatedly fed back to MACE later on. To
avoid such a setback, we have to tweak the decision procedureso that, whenever possible,
it preferably generates short messages rather than the longer ones.

6.2 Conclusion

Concolic execution of program code is important for security-related applications. How-
ever, basic implementations of concolic execution only work well on certain classes of
programs, such as commercial software and malware for whichsource code is not avail-
able. In this thesis, we have developed scalable techniquesthat extend symbolic reasoning
to more classes of binary programs. We have demonstrated that our scaling techniques
significantly speed up the process of automatic test input generation, which is the most
common application of concolic execution. We have also shown that our techniques en-
able some of these previously unexplored applications, such as malware genealogy and
protocol model inference, which were hindered by the scalability issue of concolic execu-
tion.

Poor handling of loops is a known issue of the traditional approach of concolic exe-
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cution. The approach is limited to examining behavior of a program one execution path
at a time and thus becomes susceptible to the combinatorial explosion in the number of
feasible execution paths which is prominent with the existence of loops. In this thesis,
we have developed a new scaling technique, loop-extended concolic execution, which
provides a middle ground for handling loops. Through automatic software vulnerability
discovery, we have confirmed that our scaling technique significantly reduces the number
of program executions required to discover buffer overflow bugs. We have also shown that
loop-extended concolic execution allows us to describe vulnerability conditions in term
of loop-related properties and lengths of input fields and helps improve defense against
future attacks of known vulnerabilities.

Data decryption, data encryption, and the computation of checksums and hash func-
tions are difficult to reason about automatically. Concolic execution naturally has issues
when a program under analysis contains such functions. To address this issue, we have
developed a technique that scales concolic execution to reason about programs that use
encoding functions. The technique is based on decomposing the formulas induced by a
program, solving only a subset, and then re-stitching the solutions into a complete result.
Through automatic malware vulnerability discovery, we have shown that our scaling tech-
niques improve the speed and reduces the memory usage of a concolic execution engine,
making it more practical. Using the vulnerabilities we found, we have surveyed and con-
firmed our hypothesis that there are components in malware which tend to evolve slowly
over time and thus could be used to identify the malware family an unknown suspicious
binary belongs to.

To help scale concolic execution to large network applications that communicate with
their environment through some protocols, we have developed an iterative process of com-
bining concolic execution with knowledge of an abstract model of the program under anal-
ysis. Our technique can iteratively infer and refine an abstract model that represents the
high-level logic of the network applications being analyzed. Through vulnerability discov-
ery, we have illustrated that our combined technique performs faster and deeper program
analysis than the traditional approach.

Altogether, we have shown that concolic execution techniques can be scaled to broad
classes of programs and are useful in a variety of important security applications. We hope
that the study presented in this thesis will encourage further research of applying concolic
execution and other related techniques to any security-related issues that may arise in the
near future.
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