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Abstract

Mesh generation is a tool for discretizing functions by discretizing space. Tradi-

tionally, meshes are used in scientific computing for finite element analysis. Algorithmic

ideas from mesh generation can also be applied to data analysis.

Data sets often have an intrinsic geometric and topological structure. The goal

of many problems in geometric inference is to expose this intrinsic structure. One

important structure of a point cloud is its geometric persistent homology, a multi-

scale description of the topological features of the data with respect to distances in the

ambient space.

In this thesis, I bring tools from mesh generation to bear on geometric persistent

homology by using a mesh to approximate distance functions induced by a point cloud.

Meshes provide an efficient way to compute geometric persistent homology. I present

the first time-optimal algorithm for computing quality meshes in any dimension. Then,

I show how these meshes can be used to provide a substantial speedup over existing

methods for computing the full geometric persistence information for range of distance

functions.
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Chapter 1

Introduction

1.1 Mesh Generation

The goal of mesh generation is to decompose a geometric domain into simple elements. For example,

the square on the left in Figure 1.1 is decomposed into triangles. A discrete description of a space

allows for discrete approximations to functions on that space. Thus, mesh generation is ubiquitous

in physical simulation where it allows for the numerical solution to partial differential equations.

Figure 1.1: Left: The Delaunay triangulation of a set of points. The triangulation decomposes the
convex closure of the points. Right: The Voronoi diagram of the same set of points. The diagram
decomposes all of R2.

The decompositions in this thesis all come from the Delaunay triangulation or its dual, the

Voronoi diagram. Roughly speaking, the Delaunay triangulation of a set of points P ⊂ R
2 has a

triangle for every 3 points whose circumscribing circle contains no other points of P . The Voronoi

diagram is dual to the Delaunay triangulation. It decomposes the plane into polygons called Voronoi

cells, one for each q ∈ P , such that the Voronoi cell of q is the set of all points whose nearest neighbor

in P is q. Figure 1.1 shows a simple example of a Delaunay triangulation and a Voronoi diagram

on the same set of points. There is a natural way to define Delaunay triangulations and Voronoi

diagrams in higher dimensions (see Chapter 2). One advantage of using the Delaunay triangulation
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for mesh generation is that it gives a unique decomposition of space defined only by the set of

vertices. Thus, we will speak primarily about point sets and the decomposition will be secondary,

used mainly for definitions and proofs.

Let P be a set of n points in R
d. A mesh generation algorithm will output a superset M of

P such that the Voronoi cells have aspect ratio at least some constant. That is, the cells (modulo

some on the boundary) should all be sufficiently “round”. The set M along with the Delaunay

triangulation of M is called the mesh. The extra points added are called Steiner points. The

size of the mesh is its number of points, |M |. This is to be distinguished from the complexity of

VorM , which is the number of cells in the Voronoi diagram of M .

We will focus on three main goals of mesh generation:

1. The mesh should conform to a set of input points. That is, every input point should appear

as a vertex in the output.

2. The mesh should satisfy some quality condition. That is, every cell in the output should be

geometrically “nice”, where several different metrics of quality are used in practice.

3. The mesh should have optimal size. Up to constant factors, no other conforming, quality

mesh can have fewer vertices.

For many meshing applications, the conforming condition is extended to also include higher

order features such as edges, faces, or even piecewise-smooth complexes. In this thesis, we limit

the input to points, which is most relevant when using meshes to do data analysis; the input points

are the data.

There are several metrics used to measure the quality of a mesh. For example, in 2D tri-

angulation, the measure of the smallest angle is commonly used. The idea behind these quality

metrics is to give a purely geometric condition that can give guarantees about how well a mesh

will work for a given application. For example, the quality a mesh influences the quality of a

solution in finite element analysis [SF73]. Much work has been done on mesh quality measures

(see [She02b, BA76, MTTW95, MTTW99] for discussion on mesh quality conditions relevant to

Delaunay meshing). For triangulations and other simplicial meshes, the ratio of the circumradius

to the shortest edge may be used in place of the angle condition (see Figure 1.2). A similar notion

of quality may be defined on the Voronoi diagram. It is called the aspect ratio of the Voronoi cells

and is illustrated in Figure 1.3 (see page 9 for a formal definition).

These quality conditions may leave some simplices called slivers which are known to be problem-

atic in physical simulation. However, there are many theoretical and practical approaches to dealing

with slivers in meshes [CDE+00, ELM+00, Li00, LT01, EG02, Li03, Lab06]. Despite this wealth of

research directed at removing slivers, it remains a major research problem in mesh generation.

Figure 1.4 shows an example of a set of points, its Voronoi diagram, and the Voronoi diagram

after Steiner points were added. Note that the Voronoi cells of the input points are long and skinny,

whereas the output Voronoi cells are round.

The third goal of size optimality requires lower bounds. To prove these lower bounds, we use

the Ruppert local feature size fP : Rd → R≥0, defined as the distance to the second nearest

2
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Figure 1.2: The ratio of the radius of a triangle to the length of its shortest edge is a commonly
used measure of mesh quality.

R
R

r

r

Figure 1.3: The aspect ratio of a Voronoi cell is illustrated with two examples. Note that although
the Voronoi cells are geometrically similar, they have different aspect ratios because the vertices
are not in the same relative location within the cells.

point of P . Ruppert’s seminal result on the analysis of 2-dimensional Delaunay refinement reduces

the problem of bounding the mesh size to a geometric problem of bounding the integral of a certain

measure over the input domain Ω [Rup95]. His method generalizes naturally to R
d to give the

following.

|M | = Θ

(∫

Ω

dx

fP (x)d

)

.

Note that the statement here contains a big-Θ and not a big-O. Consequently, the analysis doesn’t

require computing this integral, we only need the upper bound because the matching lower bound

guarantees the result will be “optimal”. This may seem a bit strange with respect to traditional

analysis of algorithms. While it does yield a guarantee of “optimality”, it does not yield a simple

description of the asymptotic complexity as a function of n. That is, we don’t get a clear explanation

of what optimal means. In fact, the bound cannot be stated directly as a function of n because the

integral depends on geometric properties of the input P and the input domain Ω.

We could try to add another parameter to capture this geometric structure of the input. For

example, letting ∆ denote the spread of the input (the ratio of the largest to smallest pairwise

3



Figure 1.4: An example of point meshing.

distances), it is not difficult to prove that

|M | = O(n log∆).

This is a conceptual improvement in that it may be easier to think about (and write down) such a

bound, but it adds a good deal of slack. There are simple examples such that |M | = O(n), and yet

n log∆ = n2.

In Chapter 3, we present an approach that gives a tighter bound. Consider any ordering on the

points of P such that p1 and p2 are the farthest pair and let Pi be the ith prefix of this ordering,

i.e. Pi = {p1, . . . , pi}. Let θi =
fPi

(pi)

fPi−1
(pi)

be the ratio of the distances to the second nearest and

nearest neighbor of pi among the first i− 1 points. Assuming a reasonably sized bounding domain

around P , we will prove that the size of an optimal mesh is

|M | = Θ

(

n
∑

i=3

(1 + log
1

θi
)

)

.

That is, the contribution of each point is the change in the log of its feature size before and after

insertion. The fraction θi is close to 1 when pi is roughly equidistant from its nearest and second

nearest neighbors among the first i − 1 points. We say pi is θ-medial if θi is larger than some

constant θ. When θ is understood, we just say pi is medial. If there exists an input ordering so

that each pi is medial then the output size will be O(n).

The new bound is asymptotically tight. It also gives an important new insight into the way

that we analyze mesh sizing. It reduces the analysis to finding an ordering. For example, to show

that an output mesh has linear size, it suffices to find a well-paced ordering, i.e. one such that

each pi is medial. Such an ordering is not guaranteed to exist.

Sometimes, it is possible to turn an analytic tool into an algorithm. For example, one could

hope to build a meshing algorithm that works by explicitly or implicitly finding an ordering that

maximizes θi. It turns out that this is exactly what happens in the Sparse Voronoi Refinement

4



(SVR) algorithm of Hudson et al [HMP06, HMP07]. In SVR, the mesh is constructed incremen-

tally. An input point is inserted only if it is medial. Otherwise, a Steiner point is added. The

running time of SVR is O(n log∆ + |M |). Thus, we see a return of the dependence on the spread

as a result of the point location cost.

We eliminate the dependence on the spread in Chapter 4 where we introduce a method for

ordering the input points so the total work of point location is only O(n log n). We replace the

usual quality condition on the aspect ratio of Voronoi cells with a notion of hierarchical quality

in which the domain is partitioned into a hierarchical tree of sets so that although individual

Voronoi cells may have bad aspect ratio, the union of all the cells in a subtree does have good

aspect ratio. This insight strengthens the analogy of Voronoi refinement mesh generation with the

closely related class of algorithms that use compressed quadtrees. The result is NetMesh, the

first algorithm to achieve optimal O(n log n+ |M |) running time for conforming mesh generation of

point sets. Moreover, NetMesh can return a hierarchical quality mesh of size O(n) in O(n log n)

time.

The Ruppert lower bound required us to leave the class of bounded aspect ratio Voronoi di-

agrams in order to guarantee a linear size output on all inputs. In Chapter 5, we explore how a

slight change in the definition of a quality mesh can circumvent these lower bounds. The NetMesh

algorithm can be modified to produce Voronoi diagrams in which every cell is fat, the ratio of the

radii of smallest containing ball and the largest contained ball is bounded by some constant. This

is very close to the usual definition of quality for Voronoi diagrams; it only relaxes the requirement

that the aspect ratio be measured with respect to balls centered at the point generating the Voronoi

cell.

We prove that this slight change in the definition results in some very nice consequences. For

example, the Ruppert lower bound can be completely overcome; we prove a linear upper bound on

the size of a fat mesh. The full complexity of a fat Voronoi diagram, the sum of the numbers of

faces for each dimension, is only linear in the number of vertices. The main focus of Chapter 5 is

on bounding the complexity of individual cells of a fat Voronoi diagram. Thus, the average case

complexity results known for general fat complexes can sometimes be improved to worst case results

when the complex has the special structure of a Voronoi diagram. From an algorithmic perspective,

the worst case bound is important because local operations updating a Voronoi diagram will have

complexity that depends on the local complexity.

1.2 Geometric Persistent Homology

The second part of this thesis addresses a new application area for Voronoi refinement meshing

techniques: topological data analysis. The relatively new field of topological data analysis, attempts

to extract topological information from unstructured points, usually assumed to lie in a metric (or

geometric) space. It has been applied successfully to many problem domains, including image

analysis[CIdSZ08], biology[SMI+08, CBK09], and sensor networks[dSG07b, dSG07a]. See also the

survey by Carlsson for background on the topological view of data [Car09].
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One of the most widely used techniques of topological data analysis is persistent homology [ELZ02,

ZC05]. We address the question of how to approximate the geometric persistent homology of a

point set in R
d. This is a method for extracting some topological information about the shape

underlying a point cloud in Euclidean space at different scales. In Chapter 6, we give the basic

topological background on homology, persistent homology, and related algorithms.

The new meshing methods developed in the first half of the thesis are particularly useful for

geometric persistent homology. First, the mesh gives a good approximation to the types of smooth

functions considered for geometric persistent homology, namely distance-like functions. Second,

the algorithm may be run directly on the linear size hierarchical mesh, thus we can dispense with

all of the output sensitive terms in the analysis, beating the Ruppert bound. This is important

because it shows that for a real problem, relaxing the meshing quality definition still results in

a useful complex. Chapter 7 covers the simple case when the desired function is the distance to

the point cloud. Chapter 8 extends the mesh-based persistence method to more general distance

functions considered in the literature, as well as to sequences of related distance functions.
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Chapter 2

Basic Definitions and Notation

2.1 Points, Vectors, and Distances.

We will treat points of d-dimensional Euclidean space as vectors in R
d. As such, we denote the

Euclidean distance between two points x, y ∈ Rd as |x−y|. Moreover, we allow the usual operations

of scalar multiplication and addition on points. For subsets of Rd, the plus sign (+) denotes the

Minkowski sum, A + B = {a + b : a ∈ A, b ∈ B}. For example, if S is the unit sphere in R
d

centered at the origin, c is any point, and r is a nonnegative real number, then rS + {c} is the

sphere of radius r centered at c. We will abuse notation slightly and write rS + c when it is clear

that c represents the singleton set {c}. We will also define the distance from a point x to a set S

as d(x, S) = infy∈S |x− y|. The diameter of a closed set S is the maximum distance between any

pair of points in S, diameter(S) = maxp,q∈P |p − q|. A set is bounded if diameter(S) is finite

and unbounded otherwise. Let sP denote the minimum distance between distinct points of P :

sP = minp,q∈P,p 6=q |p− q|. The ratio of the largest to smallest pairwise distances among point of P

is called the spread and is denoted ∆. Formally,

∆ =
diameter(P )

sP
.

A function f : R
d → R is t-Lipschitz if f(x) ≤ f(y) + t|x − y| for all x, y ∈ R

d. More

generally, for a map f between any pair of metric spaces (X1,d1) and (X2,d2), f is t-Lipschitz

if d2(f(x), f(y)) ≤ td1(x, y) for all x, y ∈ X1. For example, the distance to a finite set of points

P ⊂ R
d is 1-Lipschitz because d(x, P ) ≤ d(y, P ) + |x− y| for any x, y ∈ R

d.

We write ball(c, r) to denote the open ball of radius r centered at c, and ball(c, r) to denote

the closed ball of radius r centered at c. The volume of a set X is denoted Vol(X). The volume of

the d-dimensional unit ball is Vd := Vol(ball(0, 1)). The diameter of a set X is the supremum of

the distances between pairs of points of X and is denoted diameter(X).

Let X ⊂ R
d be any set and let x =

∑

xi∈X λixi be a linear combination of the points of X.

Such a linear combination is affine if the sum of the coefficients is 1. It is nonnegative if the
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coefficients are nonnegative. It is convex if it both affine and nonegative. The affine closure of

X, denoted aff(X), is the set of all affine combinations of points of X. The cone of X, denoted

cone(X), is the set of all nonnegative combinations of points in X. The convex closure of X,

denoted conv(X), is the set of all convex combinations of points in X.

The intersection of a finite set of closed halfspaces is a polyhedron. The convex closure of a

finite set of points is a polytope. The “Main Theorem” of polytopes says that a polytope is a

polyhedron and a bounded polyhedron is a polytope [Zie95, Thm. 1.1]. The book by Ziegler [Zie95]

is a good reference for polytope theory and we have adopted many of his notations and conventions

in this thesis.

Let X be a polyhedron and let H be a halfspace containing X. If F is the hyperplane bounding

H, then Y = X ∩ F is a face of X. The face Y is itself a polyhedron and its dimension, dim(Y )

is the dimension of the affine space aff(Y ). We also consider X to be a face of itself. The faces of

dimension 0 are called vertices, faces of dimension 1 are called edges and the faces of dimension

dim(X)− 1 are facets. The empty set ∅ is face of every polyhedron and has dimension −1.

2.2 Complexes.

An abstract simplicial complex K is a family of subsets of a vertex set V that is closed under

taking subsets. A subset σ ∈ K is called a simplex and its dimension is one less than its

cardinality, dim(σ) = |σ| − 1. The empty simplex {∅} is an element of every simplicial complex

and its dimension is −1. A subset σ of a simplex σ′ is itself a simplex and we say that σ is a

face of σ′. The subset operation induces a partially ordered set (or poset) on the simplices in an

abstract simplicial complex. Notice that an abstract simplicial complex is defined here without any

reference to a geometric embedding.

When the vertex set of an abstract simplicial complex is a set of points in R
d, there is a natural

mapping of the complex to R
d by mapping to conv(σ). We get an embedded simplicial complex

if for every pair of simplices (σ1, σ2),

conv(σ1 ∩ σ2) = conv(σ1) ∩ conv(σ).

The underlying space of an embedded simplicial complex K is
⋃

σ∈K conv(σ).

More generally, a polyhedral complex C is a finite collection of polyhedra such that

1. the empty polyhedron is in C,
2. for all X ∈ C, the faces of X are in C, and
3. for all X,Y ∈ C, X ∩ Y is a face of both X and Y .
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2.3 Voronoi and Delaunay.

Let P be a finite set of points in R
d. The Voronoi cell of u ∈ P is the set of all points in R

d that

have v as a nearest neighbor among the points of P . Formally, the Voronoi cell of u is defined as

VorP (u) = {x ∈ R
d : d(x, P ) = |x− u|}.

Note that VorP (u) is a closed, convex polyhedron, though it may be unbounded. The collection of

Voronoi cells and their face posets decompose all of Rd into polyhedral complex called the Voronoi

diagram, denoted VorP . We will often use the term corner rather than vertex to describe the 0-

dimensional faces of the Voronoi cells to avoid ambiguity with the Delaunay vertices. In particular,

every Voronoi cell VorP (u) has a farthest corner which is the corner of the cell farthest from u.

The Delaunay complex is the dual complex to the Voronoi diagram. It has a cell for every

maximal cospherical subset X of P such that the circumscribing ball of X contains no points of P

in its interior. If no subset of d + 2 points of P are cospherical then we say that P is in general

position and the resulting Delaunay complex will be an embedded simplicial complex known as

the Delaunay triangulation. We will assume throughout that P is in general position. The

circumball of a Delaunay simplex is the unique ball of minimum radius circumscribing the vertices.

The circumballs of the Delaunay simplices are called D-balls. The centers of the D-balls are the

corners of the Voronoi cells. The duality relationship between the Delaunay triangulation and

the Voronoi diagram is useful for algorithms because it allows a single data structure to represent

either (or both). The book by Edelsbrunner [Ede01] is a good resource for the basics of Delaunay

triangulations, Voronoi diagrams, and related algorithms.

2.4 Mesh Generation.

Given a point p ∈ P and its Voronoi cell V = VorP (p), we define the in-radius rp as the radius

of the largest ball centered at p contained in V . Similarly, the out-radius Rp is the radius of the

smallest ball centered at p that contains all of the corners of V . Thus, for unbounded Voronoi cells,

the out-radius is still bounded. The aspect ratio of V is
Rp

rp
. A set of points P is τ-well-spaced

if for all p ∈ P ,
Rp

rp
≤ τ .

The meshing problem for points is defined as follows.

• Input: a set of points P and a parameter τ .

• Output: a τ -well-spaced superset M of P and VorM .

Since the Voronoi diagram is determined uniquely by the point set, we will often refer to M as the

mesh and let its induced Voronoi/Delaunay structure remain implicit. We adopt the convention

that n denotes the input size, |P |, and m denotes the output size, |M |. In other literature on

Voronoi diagrams, it is common to refer to the points of M as “sites”, however, in this work, we

adopt the intuition from mesh generation and call them vertices (the points of M are the vertices

of the Delaunay triangulation).
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The basic analytic tool used in mesh generation is the local feature size function, which

assigns a nonnegative real number to every point in R
d. It is defined with respect to a point set P

as the distance to the second nearest neighbor:

fP (x) = inf{r : |ball(x, r) ∩ P | ≥ 2}.

In a good aspect ratio mesh M , the feature size at a vertex v ∈ M gives an approximation to the

in-radii of VorM (v). The feature size also induces a measure on R
d defined for any set A ⊂ R

d as

∫

A

dx

fP (x)d
.

The integral above is known as the feature size integral and it is the primary tool in mesh size

analysis.

It is often useful to have a weaker condition for point sets than τ -well-spaced. One such condition

is provided by the notions of medial points and well-paced orderings defined as follows. Let P be

a set of points and let P ′ = P ∪ {q} for some q /∈ P . The point q is θ-medial with respect to P if
fP ′(q)
fP (q) ≥ θ. Equivalently, the ratio of the nearest to second nearest neighbors to q in P is at least θ.

An ordering on a set P ⊂ R
d is a θ-well-paced ordering if

1. |p1 − p2| = diameter(P ), and

2. pi is θ-medial with respect to {p1, . . . , pi−1} for all i = 1 . . . n.

The term well-paced refers to the rate of change of the feature size function as points are added

according to the given ordering. In this case, no single point causes a drastic change in the feature

size. We will prove in Chapter 3 that well-paced points in a reasonably sized bounding domain can

be augmented with only a constant factor more points to produce a well-spaced mesh.

We augment the input points P with points on the surface of a bounding box or a bounding

ball of extra points to ensure that the boundary of the point set is uniform. This is a standard

practice in mesh generation, and in previous work, we showed that the effect on the total mesh size

is negligible [HMPS09]. We will always choose the diameter of the bounding ball to be no more

than a constant times larger than the diameter of P .

10



2.5 Notation

Here is a reference list of common notation used throughout the text.

d: the ambient dimension of the input

R: the real numbers

R≥0: the nonnegative real numbers

R
d: the affine space of d-dimensional points

P : a set of points in R
d

ball(c, r): the open ball of radius r centered at c

ball(c, r): the closed ball of radius r centered at c

diameter(S): the distance between the farthest pair of points of S

|S|: the cardinality of the set S

n: the size of the input set P , i.e. n = |P |
M : a superset of P

Ω: The bounding domain, a subset of Rd

VorS: The Voronoi diagram of a point set S

VorS(p): The Voronoi cell of the point p in Vor(S).

Vor(p): The Voronoi cell of the point p in Vor(S), when S is assumed

DelS : The Delaunay triangulation of S

Vol(X): The volume of the set X

Vd: The volume of the d-dimensional unit ball

K: A simplicial complex

∂(X): The boundary of the set X
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Chapter 3

Mesh Size Analysis

3.1 Introduction

Many of the results in this thesis depend on our ability to bound (both from above and below) the

number of vertices in the output of the Voronoi Refinement algorithm. In its simplest form, this

algorithm starts with the Voronoi diagram of the input and repeatedly adds the farthest corner

of any Voronoi cell with aspect ratio greater than some constant τ > 2 until all have good aspect

ratio. The remarkable simplicity of this algorithm has led to its widespread use1, but its analysis

is nontrivial. In this chapter, we present a new way to compute asymptotically tight per-instance

bounds on the output size.

We begin in Section 3.2 with a description of the Voronoi refinement algorithm. Then, in

Section 3.3, we prove bounds on the feature size of the output of htis algorithm. This is the first

step towards a generalization of the classical mesh sizing bounds of Ruppert [Rup95] in Section 3.4.

Ruppert’s analysis was limited to two-dimensions. We give extend it to higher dimensions and give

special attention to bounding the dependence on the dimension. Such an analysis surely exists in

the folklore, but we present it for three important reasons. One, we need a clear statement and

proof from which to build new theorems. Two, it is the starting point and gives some intuition for

our instance-optimal bounds. Three, it gives a simple instance of the pattern that we will follow

for our later analysis of a new, state-of-the-art meshing algorithm.

To get Voronoi refinement to terminate, one must be a bit careful around the boundary. In

Section 3.5, we

Well-spaced points require that all of the near neighbors of every point are approximately the

same distance away. For well-paced points, we only require that the first two nearest neighbors

are approximately the same distance away. In Section 3.8, we show how to bound the feature

size integral by looking at how medial each input vertex is. This allows us to derive the desired

per-instance bounds.

1This algorithm is most commonly seen in its dual formulation as Delaunay refinement.
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3.2 The Basic Voronoi Refinement Algorithm

Voronoi refinement has its roots in a closely related algorithm known as Delaunay refinement,

first developed by Paul Chew for 2-dimensional meshing [Che89]. In Delaunay refinement, the

algorithm iteratively adds Steiner points to a Delaunay triangulation as long as there are triangles

with small angles. To eliminate a triangle with a small angle, a Steiner point is added at the

circumcenter of the vertices of the triangle. This process continues until all angles are larger than

some user-defined constant. In dimensions higher than 2, the small angle condition is replaced with

the radius-edge condition [MTTW99].

The dual view of Delaunay refinement is Voronoi refinement. As long as there is a Voronoi

cell of aspect ratio greater than some constant, the farthest corner of the offending Voronoi cell is

added.

Figure 3.1: In the VoronoiRefine algorithm, a Voronoi cell of bad aspect ratio is identified (left).
The farthest corner of the offending cell is added to the Voronoi diagram (center). This process is
repeated until all of he Voronoi cell have good aspect ratio (right).

Recall that the Voronoi/Delaunay duality implies that Voronoi cell corners are exactly the

circumcenters of Delaunay simplices. The algorithms are not identical, but a Voronoi aspect ratio

of τ implies a radius-edgs ratio bound of 2τ .

The algorithm takes an optional set of extra points N that are permitted to have aspect ratio τ

or greater. Usually, N provides an outer boundary to the input set. In the course of refinement, the

algorithm ignores the vertices of N . We give an explicit construction for a choice of N in Section 3.5

that guarantees termination. However, for many critical pieces of the analysis, the choice of N is

arbitrary.

The basic Voronoi refinement algorithm is as follows. It is illustrated in Figure 3.1

VoronoiRefine (P , N , τ)

let M ← P ∪N

while there is some v ∈M \N with aspect ratio of Vor(v) > τ

let c be the farthest corner of Vor(v).
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let M ←M ∪ {c}
return M

Note that the algorithm does not specify the order in which in the bad aspect ratio cells are

processed. One popular choice is to refine the largest cells first. This is sometimes called top-down

refinement.

3.3 Bounding the feature size of the output

It is not obvious that Voronoi refinement terminates, because for some inputs and choices of τ , it

will run forever. In this section, we prove that the feature size function fM , defined with respect to

the output set M = VoronoiRefine(P,N, τ) is not too small compared to the input feature size

fP . This is the first step towards showing that the algorithm terminates and moreover in Section 3.4

that the output has optimal size.

For an ordered set of points M with order relation ≺, the insertion radius λv of v ∈M is the

distance to its nearest predecessor:

λv = min
u≺v
|u− v|.

The term insertion radius comes from the algorithm; it is the largest radius r such that ball(v, r)

contains no previously inserted vertices at the time v is inserted.

The following lemma shows it suffices to bound the insertion radii of a set of points in order to

bound the output feature size.

Lemma 3.3.1. Let f : Rd → R be a t-Lipschitz function and let K > 0 be a constant, Let M be

an ordered set of points and let N ⊂ M be a prefix of the ordering. If f(v) ≤ (K − t)λv for all

v ∈M \N then

f(v) ≤ KfM (v)

for all v ∈M \N .

Proof. Let v ∈ M \ N be any point and let u be its nearest neighbor in M (other than itself) so

that fM (v) = |u− v|. Let ≺ denote the order relation on M . If u ≺ v then f(v) ≤ Kλv = KfM (v).

So, we may assume v ≺ u, and so λu ≤ |u − v| and u /∈ N . So, f(v) ≤ f(u) + t|u − v| ≤
(K − t)λu + t|u− v| ≤ KfM(v).

To apply Lemma 3.3.1 in the analysis of VoronoiRefine, the natural choice is f = fP which

is 1-Lipschitz. This allows us to prove the main theorem of this section.

Theorem 3.3.2. Let P ⊂ R
d be a set of at least two points and let N be an optional set of boundary

points such that fP (v) = fP∪N (v) for all v ∈ P . Let M = VoronoiRefine(P,N, τ) for τ > 2. For

all v ∈M \N ,

fP (v) ≤ KfM (v),

where K = 2τ
τ−2 .
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Proof. Lemma 3.3.1 implies that it suffices to show that fP (u) ≤ (K − 1)λu for all u ∈M \N . We

will prove this by induction on the number of Steiner points added. Let Mi denote the mesh vertices

after i Steiner points have been added. In the base case, M0 \ N = P , so fP (u) = fP∪N (u) ≤ λu

for all u ∈M0 \N , which is less than (K − 1)λu because K > 2.

Assume inductively that fP (u) ≤ (K − 1)λu for all u ∈Mi \N . Let v be (i+1)st Steiner point

added. Let x ∈Mi \N be a vertex whose Voronoi cell had poor quality, initiating the insertion of

v. Let y be the nearest neighbor of x in Mi.

fP (v) ≤ fP (x) + |x− v| [fP is 1-Lipschitz]

≤ KfMi
(x) + |x− v| [by induction and Lemma 3.3.1]

≤ K|x− y|+ |x− v| [definition of y]

≤
(

2K

τ
+ 1

)

|x− v| [Vor(x) had aspect ratio > τ ]

= (K − 1)|x− v|
[

K =
2τ

τ − 2

]

= (K − 1)λv . [definition of x]

The proof of Theorem 3.4.1 reveals an important property of Delaunay/Voronoi refinement:

there is nothing sacrosanct about corners. The proof only requires that |x− y| ≤ 2
τ |u − v|. Thus,

the algorithm can be modified to add any point of Vor(v) that is sufficiently far from v and the

bounds will still apply. This property is exploited in many algorithms to achieve meshes that are

smaller [Üng09], conform to higher order features [She97, She02a, Rup95], and can be computed

quickly [HMP06].

This theorem is almost sufficient to imply the termination of the VoronoiRefine algorithm.

If we also have the guarantee that all Steiner points are contained in some compact subset Ω ⊂
R
d, then termination is guaranteed by a packing argument; each pair of output points has some

minimum separation and the total volume of Ω is bounded. This guarantee is proven in the next

section.

3.4 Optimality of the Voronoi Refinement Algorithm

Throughout, P will denote the set of input points in R
d and M = VoronoiRefine(P,N, τ) will

denote the output vertices for some τ > 2 independent of the dimension. The goal of this section is

to present upper and lower bounds on |M |. The upper bounds are achieved by the VoronoiRefine

algorithm. The lower bounds hold for all τ -well-spaced supersets of P subject to mild boundary

conditions. Up to constant factors, the upper and lower bounds match.
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3.4.1 Upper Bounds

We prove the upper bounds in a bit more generality. Rather than sticking to a particular sizing

function such as the local feature size, we show that the same arguments will work for any Lipschitz

function that bounds the size of the Voronoi cells. At first this may seem strange because the bounds

are first given in a form completely independent of the input set P . Then we will show that plugging

fP , the feature size with respect to the input, into the bounds gives the desired result. The more

general conditions will be useful later.

Theorem 3.4.1. Let P be a set of points in R
d and let Ω ⊂ R

d be a convex set. Let M ⊃ P be

a set of mesh vertices and let M ′ ⊂ M be the subset of vertices v such that VorM (v) ⊆ Ω. Let

f : Rd → R≥0 be a 1-Lipschitz function. If f(v) < cfM (v) for some constant c and all vertices

v ∈M ′, then

|M ′| <
(

(2c+ 1)d

Vd

)
∫

Ω

dx

f(x)d
.

Proof. Recall that rv = fM (v)
2 denotes the in-radius of VorM (v). Since f is 1-Lipschitz, the hypoth-

esis that f(v) < cfM (v) and the definition of fM imply

f(x) < (2c+ 1)rv (3.1)

for all v ∈M ′ and all x ∈ ball(v, rv). We can now derive the following upper bound.

∫

Ω

dx

f(x)d
≥
∑

v∈M ′

∫

VorM (v)

dx

f(x)d
[

VorM (v) ⊆ Ω for all v ∈M ′]

≥
∑

v∈M ′

∫

ball(v,rv)

dx

f(x)d
[f is nonnegative and ball(v, rv) ⊂ Vor(v)]

>
∑

v∈M ′

∫

ball(v,rv)

dx

((2c + 1)rv)d
[by (3.1)]

=
∑

v∈M ′

Vdr
d
v

(2c+ 1)drdv

[

∫

ball(v,rv)
dx = Vdr

d
v

]

= |M ′|
(

Vd

(2c+ 1)d

)

[simplify]

3.4.2 Lower Bounds

As with the upper bounds, the lower bounds are with respect to any convex subset Ω ⊂ R
d. We

prove that if there is a subset of vertices whose Voronoi cells have bounded aspect ratio and cover

Ω then there must be some minimum number of them which depends on the aspect ratio bound

and the feature size integral.
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Theorem 3.4.2. Let P be a set of points in R
d and let Ω ⊂ R

d be a convex set. Let M ⊃ P be

a set of mesh vertices and let M ′ ⊂ M be the subset of vertices v such that VorM (v) ∩ Ω 6= ∅. If

VorM (v) is bounded and has aspect ratio at most τ for all v ∈M ′, then

|M ′| >
(

1

τdVd

)∫

Ω

dx

fP (x)d
.

Proof. For all v ∈M ′ and all x ∈ Vor(v),

fP (x) ≥ fM (x) ≥ rv. (3.2)

Because the Voronoi cells of M ′ are τ -quality, for each v ∈M ′,

Vor(v) ⊂ ball(v, τrv). (3.3)

∫

Ω

dx

fP (x)d
≤
∑

v∈M ′

∫

Vor(v)

dx

fP (x)d
[Cover Ω with Voronoi cells]

≤
∑

v∈M ′

∫

Vor(v)

dx

rdv
[by (3.2)]

<
∑

v∈M ′

∫

ball(v,τrv)

dx

rdv
[by (3.3)]

=
∑

v∈M ′

Vdτ
drdv

rdv
[evaluate the integral]

= |M ′|
(

τdVd

)

[simplify]

3.5 The bounding domain and its boundary net

The Voronoi diagram decomposes all of Rd, but we want to restrict our attention only to a bounded

subset. Moreover, it may continue to refine Voronoi cells everywhere in the space. The upper bounds

of Section 3.4 show that the algorithm has a kind of “local termination”. For any bounded subset

of space, there will only be a constant number of mesh vertices placed there.

There are many approaches to dealing with the possibly unbounded behavior of mesh refinement

algorithms. For example, some authors [CDE+00] have considered periodic point sets where every

point x in the box [0, 1)d is treated as an equivalence class of points x + z for z ∈ Z
d. Another

popular approach is to contain the points in a bounding domain such as a box or a ball. For the case

of bounding balls, Cohen-Steiner et al. [CSdVY04] introduced the Split-on-sphere method which

causes new points near the boundary to get placed exactly on the boundary instead. In that context
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the goal was not to curb infinite behavior on the outside of the mesh but rather to deal with infinite

refinement near small angles in the input for meshes that conform not just to point sets but also to

higher order features. This is the same problem turned inside out and numerous methods have been

proposed to produce a finite mesh in these settings [CP03, PW04, CDR05, CDRR05, RW08, Phi09].

Other simple approaches can also be employed to keep the mesh refinement bounded. For

example, it suffices to choose a sufficiently large ball containing the input and refuse to add any

Steiner points outside that ball. The local termination upper bounds of Section 3.4 guarantee that

only a finite number of points will be added and thus the algorithm will terminate.

In this section, we give a specific construction of a subset Ω ⊂ R
d and a collection of points

N ⊂ ∂Ω that surround the input. We then show that the vertices of VoronoiRefine(P,N, τ)

stay bounded within Ω throughout the algorithm. This is based on a idea first proposed by Hud-

son [Hud07], though we will get slightly tighter bounds, partly because the VoronoiRefine al-

gorithm as stated in this chapter, does not attempt to refine these boundary vertices. Later, in

Chapter 4, we will use a similar set of bounding points in order to enclose small subsets of the

input. There, we will find that these subsets are critical to producing linear size meshes for a

slightly relaxed notion of quality.

For the input set P , we assume without loss of generality that some p ∈ P is the origin. Let

δ := diameter(P ).

Let

rΩ := (K
√
2 + 2)δ,

where K = 2τ
τ−2 and τ is the desired Voronoi aspect ratio bound. The bounding domain of the

set P is

Ω := ball(0, rΩ).

Let Ω := Ω ∪ ∂Ω denote the closure of Ω. The outer annulus of Ω is

AΩ := Ω \ ball(0, rΩ − δ).

The bounding domain and outer annulus are illustrated in Figure 3.2.

We must be careful to keep the refinement process bounded within Ω. Some Voronoi cells are

unbounded, however, it will suffice to guarantee that this set is small and moreover, that all of the

corners of the Voronoi diagram are contained in Ω. We will explicitly pick a small set of vertices on

the boundary of Ω and then prove that our choice of bounding points keeps the refinement process

contained in the domain.

The boundary net of Ω is a maximal set of points N ⊂ ∂Ω such that

1. for all x ∈ ∂Ω, d(x,N) ≤ δ, and

2. for all u, v ∈ N , |u− v| > δ.

The first condition is a covering constraint; it says that the balls of radius δ centered at points
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of N cover ∂Ω. The second condition is a packing condition; it says that the balls of radius δ
2

centered at points of N are disjoint. Such a set N is sometimes referred to as metric δ-net. It can

be constructed by a simple greedy algorithm, at each step adding a point of ∂Ω farthest from the

current set. Up to constant factors this algorithm is optimal and gives a net of size |N | ≤ KO(d) (see

Matousek [Mat02][Lemma 13.1.1] for a proof). In fact, this greedy algorithm is a kind of Voronoi

refinement restricted to the sphere because the farthest point from the current set is a corner of

the Voronoi diagram on the sphere.

Ω

AΩ

δ

δ

rΩ

Figure 3.2: The black points are the input points P and the white points on the boundary of Ω are
the boundary net N .

For a point set M , there is no general bound on the diameter of the set of corners of VorM as a

function only of diameter(M). However, choosing a boundary net in this way guarantees that all

of the corners of the Voronoi diagram stay close in the course of the VoronoiRefine algorithm.

Towards proving this guarantee, we start with the following lemma.

Lemma 3.5.1. Let Ω be the bounding domain of a point set P and let N be a boundary net of Ω.

If M is set of points such that P ∪N ⊂ M ⊆ Ω and no vertex of M lies in the outer annulus AΩ

then all corners of VorM are contained in Ω.

Proof. Suppose for contradiction that c /∈ Ω for some corner c of VorM as in Figure 3.3. The corner

c has a corresponding Delaunay simplex σ ⊂ M containing at least one vertex v ∈ M \N . Let z

be the intersection of the segment cv with ∂Ω. Observe that ball(c, |c − v|) is a Delaunay ball so

it is empty of points of M . Since ball(z, |z − v|) ⊂ ball(c, |c − v|), it is also empty of points of M

and so |z−v| = d(z,M). The covering condition on the boundary net guarantees that d(z,N) ≤ δ.

So, we conclude

d(v, ∂Ω) ≤ |z − v| = d(z,M) ≤ d(z,N) ≤ δ,

which implies v ∈ AΩ, a contradiction.
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AΩ

≤ δ

c

z

v

δ

Figure 3.3: A Delaunay ball with circumcenter c that lies outside of Ω has a vertex v ∈M \N on
its boundary that lies in the outer annulus AΩ.

The preceding lemma implies that as long as no vertices are added to the outer annulus in

the course of the algorithm, then no corner will lie outside of Ω. This fact allows us to prove the

following Lemma, which guarantees that the output of VoronoiRefine(P,N, τ) is contained in

Ω.

Lemma 3.5.2. If M = VoronoiRefine(P,N, τ) for a domain Ω then M ⊂ Ω.

Proof. The proof will be by induction on the number of Steiner points. Assume inductively that

the mesh vertices Mi after i Steiner points have been added are contained in Ω \ AΩ. The base

case is a mesh composed of only the points P ∪ N , which which satisfy the inductive hypothesis

by construction. Let v be the (i + 1)st Steiner point added. By induction and Lemma 3.5.1, we

know that v ∈ Ω. Suppose for contradiction that v ∈ AΩ. Since v is a Voronoi corner, it has d+ 1

nearest neighbors at the time it is inserted at least one of which is not in N ; call it u. We first

bound |u− v| from below using the bounds on the feature size.

|u− v| ≥ fM (v) [u, v ∈M ]

≥ fP (v)

K
[by Theorem 3.3.2]

>
rΩ − 2δ

K
. [fP (x) > (rΩ − 2δ) for all x ∈ AΩ]

We now bound |u− v| from above using the conditions on the boundary net.

|u− v| ≤ d(v,N) [N ⊂Mi]

≤ δ
√
2.

[

d(x,N) ≤ δ
√
2 for all x ∈ AΩ

]
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The preceding inequalities imply that

rΩ − 2δ

K
< δ
√
2,

and thus, rΩ < δ(K
√
2 + 2) = rΩ, a contradiction.

3.6 Termination of Voronoi Refinement

Theorem 3.3.2 shows that the feature size of the output of Voronoi refinement is bounded from

below by a constant times the feature size of the input. The upper bound of Theorem 3.4.1 says

that any set of points satisfying such a bound in a convex set Ω, has size bounded from above

by a constant times the feature size integral. Moreover, the lower bound of Theorem 3.4.2 says

that the number of vertices in Ω for any bounded aspect ratio Voronoi diagram must be at least a

constant times the feature size integral. By choosing the domain Ω and the boundary net N as in

Section 3.5, we can contain all of the mesh vertices to lie within Ω. Putting these together, we get

upper and lower bounds on the output size of VoronoiRefine(P,N, τ) in the following theorem.

Theorem 3.6.1. Let P ⊂ R
d be a finite set of points, let Ω ⊂ R

d and N ⊂ ∂Ω be a boundary

domain and net as constructed in Section 3.5, and let τ be a constant greater than 2. If M =

VoronoiRefine(P,N, τ) then

Cτ−d < |M | < C(2K + 1)d + |N |,

where C = 1
Vd

∫

Ω
dx

fP (x)d
and K = 2τ

τ−2 .

Proof. The upper bound is a direct application of Theorem 3.4.1 using f = fP .

For the lower bound, we break the feature size integral into two parts by partitioning Ω into

B = ball(0, rΩ2 ) and Ω\B. Voronoi cells from the boundary net N do not intersect B and all other

Voronoi cells have aspect ratio at most τ . So, Theorem 3.4.2 implies that

|M \N | >
(

1

τdVd

)
∫

B

dx

fP (x)d
. (3.4)

Moreover, fP (x) ≥ rΩ
3 for all x ∈ Ω \ B (slightly better constants are possible, but these will
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suffice). So,

∫

Ω\B

dx

fP (x)d
≤
∫

Ω\B

3ddx

rdΩ

[

fP (x) ≥
rΩ
3

]

≤ dVd

(

3

rΩ

)d ∫ rΩ

rΩ
2

rd−1dr [rewrite in polar coordinates]

=

(

3d −
(

3

2

)d
)

Vd. [evaluate]

< |N |Vd.
[

|N | > 3d
]

(3.5)

To complete the proof, we sum the bounds on the integral over B and Ω \B:

∫

Ω

dx

fP (x)d
=

∫

B

dx

fP (x)d
+

∫

Ω\B

dx

fP (x)d
[partition Ω]

< |M \N |(τdVd) + |N |Vd [by (3.4) and (3.5)]

< |M |(τdVd).

The two main ingredients in this bound will be seen again in Chapter 4: a bound on the

output feature size in terms of the input feature size and the integral of the input feature size

over the domain. One interpretation is that the feature size induces a measure on the space which

approximately counts the number of mesh vertices. The total measure is the feature size integral

and thus the total number of vertices is bounded by computing this integral. In Section 3.8, we

give a novel method for bounding this integral, and thus for bounding the size of an optimal mesh.

3.7 Over-Refinement

The mesh sizing bounds of Section 3.4 apply for a very broad class of functions, not just the local

feature size function. Often, it is useful to refine the mesh to a scale much smaller than the local

feature size, in particular for the function fε(x) = εfP (x). Theorem 3.4.1 applies also in this case.

Since this will come up repeatedly, it is worthwhile to make the analysis explicit and to explain the

associated algorithm.

According to Theorem 3.4.1, we know that

|Mε| = VdO

(
∫

Ω

dx

fε(x)d

)

,

for any mesh Mε sized according to fε. Using the definition of fε, this implies that

|Mε| = ε−dO(|M |),
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where M is sized according to the local feature size.

To compute Mε, it suffices to be able to compute fε, or equivalently fP . Then, the construction

is straightforward:

1. Construct M .

2. Refine the Voronoi cell of a vertex v if rv > fε(v). Otherwise, terminate.

3. Add Steiner points until quality is achieved.

4. Return to step 2.

To show that this algorithm terminates with the desired bounds, we must prove a generalization

of Theorem 3.3.2, which applies to any Lipschitz function f ≤ KfP . The upper bound on f is just

the bound achieved when no extra refinement happens.

Theorem 3.7.1. Let f ≤ (K − t)fP be a t-Lipschitz function, where K = max{ 2tτ
τ−2 , 1 + 2t}. Let

M be a mesh constructed from P by Voronoi Refinement with over-refinement down to size f with

bounding net N . For all v ∈M \N ,

f(v) ≤ KfM(v).

Proof. Lemma 3.3.1 implies that it suffices to show that f(v) ≤ (K − t)λv for all v ∈ M \N . We

will prove this by induction on the number of Steiner points. Let Mi be the mesh after i Steiner

points have been added. In the base case, M0 \ N = P , so f(v) ≤ (K − t)fP (v) ≤ (K − t)λv for

v ∈M0 \N .

Assume inductively that f(u) ≤ (K− t)λu for all u ∈Mi. Let v be (i+1)st Steiner point as the

farthest corner of Vor(x) for some x ∈ Mi \ N . There are two cases to consider, either VorMi
(x)

had aspect ratio greater than τ or Vor(x) was too large compared to f(x). The former case, as we

will see, is nearly identical to the main step in Theorem 3.3.2.

Case 1: VorMi
(x) had bad aspect ratio. Let y be the nearest neighbor of x in Mi.

f(v) ≤ f(x) + t|x− v| [f is t-Lipschitz]

≤ KfMi
(x) + t|x− v| [by induction and Lemma 3.3.1]

≤ K|x− y|+ t|x− v| [definition of y]

≤
(

2K

τ
+ t

)

|x− v|
[

|x− y| < 2|x− v|
τ

by our algorithm

]

≤ (K − t)|x− v|
[

K ≥ 2tτ

τ − 2
by definition

]

= (K − t)λv . [by the definition of x]

Case 2: VorMi
(x) was too large compared to f(x). Too large means that rx > f(x) where

rx is the in-radius of Vor(x). Now, |x − v| ≥ rx, because v is on the boundary of VorMi
(x) and

ball(x, rx) ⊂ VorMi
(x). So, f(x) ≤ |x − v|, allowing us to derive the following to complete the
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proof.

f(v) ≤ f(x) + t|x− v| [f is 1-Lipschitz]

≤ (1 + t)|x− v| [f(x) ≤ |x− v|]
≤ (1 + t)λv [by the definition of x]

≤ (K − t)λv. [K ≥ 1 + 2t by definition]

The preceding Theorem, implies a general method for over-refining meshes down to some given

sizing function f . The primary limitation to using many such functions is our ability to compute

them efficiently. For the special case of fε, it suffices to compute fP . After constructing M ,

fP (x) can be computed in constant time by simply identifying Voronoi cell of VorM containing x.

Moreover, this only takes constant time, because each insertion after M is constructed is the corner

of a Voronoi cell of a vertex v and the nearest neighbor of v in M has already been computed. Both

of these facts depend on the constant complexity of cells in good aspect ratio Voronoi diagrams

(see for example [MTTW99, HMP06] or in Chapter 4 for a more general setting). Thus, the total

time to do the over-refinement is O(|Mε|) after M has been computed.

3.8 Analysis for well-paced points

From the analysis in Section 3.4, the mesh size is within a constant factor of the feature size integral.

It’s not hard to check that the feature size integral over all of Rd goes to to infinity, because if

the domain Ω to be meshed is arbitrarily large, then the output must also be arbitrarily large.

Consequently, we restrict our attention to bounding domains Ω that are only a constant factor

larger than the diameter of the input. Even in such cases, the feature size integral is not necessarily

bounded by any function of n. It is not too difficult to prove that the integral is always bounded

from above by n log∆ where ∆ is the spread of the input, but that analysis is rarely tight. Instead,

we prove tight, per-instance bounds on the mesh size.

Our analysis has the added advantage that it makes clear what regions of the domain cause the

mesh size to go superlinear. Thus, it gives us a clear guide on how to relax the usual mesh quality

conditions to guarantee a linear size mesh, as we will see in Chapter 4. The main result of this

section, Theorem 3.8.1, gives us a way to compute the mesh size. These bounds are tight. The

main tools of the analysis are medial points and well-paced orderings (see page 10 for definitions).

We can now state the main result of this section. Its proof will be broken up into two parts:

the upper bound in Lemma 3.8.5 and the lower bound in Lemma 3.8.7.

Theorem 3.8.1. Let P = {p1 . . . , pn} be an ordered set of points such that |p1−p2| = diameter(P )

and let Pi = {p1, . . . , pi} be the prefixes of this ordering for i = 1 . . . n. Let Ω ⊂ R
d be a bounding
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domain such that

ball(p1, 3diameter(P )) ⊆ Ω ⊆ ball(p1, cdiameter(P )),

for some constant c ≥ 3.
∫

Ω

dx

fP (x)d
= Θ

(

n
∑

i=3

ln
1

θi

)

−O(n),

where θi =
fPi

(pi)

fPi−1
(pi)

.

Up to the additive factor of n, the bound is tight. This theorem and Theorem 3.6.1 imply the

following corollary.

Corollary 3.8.2. Let P ⊂ R
d be a set of points admitting a θ-well-paced ordering for θ ≤ 1

2 ,

let N be a boundary net as constructed in Section 3.5, and let τ be a constant greater than 2. If

M = VoronoiRefine(P,N, τ), then |M | = O(n log 1
θ ).

3.8.1 Upper bounds on the feature size integral

The proof of the upper bound on the feature size integral will follow a simple pattern. First, we

prove a bound for inputs consisting of only two points (Lemma 3.8.3). Then, we bound the change

in the integral upon adding a single new point (Lemma 3.8.4). Finally, we apply this Lemma

inductively to get the final bound (Lemma 3.8.5).

Lemma 3.8.3. If P = {p, q} and Ω ⊂ ball(p, c|p − q|) for some constant c > 1, then

∫

Ω

dx

fP (x)d
≤ Vd(1 + ln(2c)).

Proof. For all x ∈ R
d, fP (x) ≥ max{12 |p − q|, |x − p|}. So, we can rewrite the integral in polar

coordinates (centered at p) and bound it as follows.

∫

Ω

dx

fP (x)d
≤ dVd

(

∫ 1
2
|p−q|

0

rd−1dr

(12 |p− q|)d +

∫ c|p−q|

1
2
|p−q|

rd−1dr

rd

)

≤ dVd

(

1

d
+ ln

(

2c|p − q|
|p− q|

))

= Vd(1 + ln(2c)).

We now bound the change in the feature size integral induced by the addition of a single point.

Lemma 3.8.4. Let P be a point set and let P ′ = P ∪ {q}. If q is θ-medial with respect to P then

∫

Ω

(

1

fP ′(x)d
− 1

fP (x)d

)

dx ≤ Vd

(

1 + d ln
3d

θ

)

.
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Proof. Let U be the subset of Rd where fP 6= fP ′ . Clearly, the integral is 0 outside U , so we can

restrict our attention to U . Let R be the distance from q to the nearest point of P . For all points

x in the ball B = ball(q, R2 ), fP ′(x) ≥ R
2 , so

∫

B

(

1

fP ′(x)d
− 1

fP (x)d

)

dx ≤
∫

B

(

2

R

)d

dx = Vd.

The definitions imply an upper bound on fP and a lower bound on fP ′ for any point x ∈ U :

fP (x) ≤ |x− q|+ R

θ
, (3.6)

fP ′(x) ≥ |x− q|. (3.7)

The upper bound follows because q is θ-medial. The lower bound follows because q must be one of

the two nearest neighbors of x if fP (x) 6= fP ′(x). We apply these bounds as follows.

∫

U\B

(

1

fP ′(x)d
− 1

fP (x)d

)

dx ≤
∫

U\B

(

1

|x− q|d −
1

(|x− q|+R/θ)d

)

dx [by (3.6) and (3.7)]

≤
∫

Rd\B

(

1

|x− q|d −
1

(|x− q|+R/θ)d

)

dx [integrand is nonnegative]

= dVd

∫ ∞

R/2

(

1

rd
− 1

(r +R/θ)d

)

rd−1dr [in polar coordinates]

< dVd ln
3d

θ
. [Lemma 3.10.1]

The final inequality follows from a straightforward calculus exercise (the full proof may be found

in Lemma 3.10.1 below). To bound the integral over all of Ω, we simply add the bounds on the

integral over B and U \B.

Lemma 3.8.5. Let P = {p1 . . . , pn} be an ordered set of points with prefixes Pi = {p1, . . . , pi} such
that |p1 − p2| = diameter(P ). Let Ω ⊂ ball(p1, cdiameter(P )) for some constant c > 1 be the

bounding region. Then,

∫

Ω

dx

fP (x)d
< Vd

(

1 + ln(2c) +
n
∑

i=3

(

1 + d ln
3d

θi

)

)

,

where θi =
fPi

(pi)

fPi−1
(pi)

.

Proof. By definition, each point pi is θi-medial with respect to Pi−1. By Theorem 3.4.1, it will

suffice to bound the feature size integral, which may rewritten as a telescoping sum:

∫

Ω

dx

fP (x)d
=

∫

Ω

dx

fP2(x)
d
+

n
∑

i=3

(
∫

Ω

dx

fPi
(x)d

−
∫

Ω

dx

fPi−1(x)
d

)

.
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Now, by Lemma 3.8.4 we can simplify this to get

∫

Ω

dx

fP (x)d
<

∫

Ω

dx

fP2(x)
d
+ Vd

(

n
∑

i=3

(

1 + d ln
3d

θi

)

)

.

The base case of the telescoping sum is handled by Lemma 3.8.3 to complete the proof.

3.8.2 Lower bounds on the feature size integral

Lemma 3.8.6. Let P be a set of at least 2 points and let P ′ = P ∪ {q} for some q ∈ R
d. Let

Ω ⊂ R
d be a set containing ball(q, 2diameter(P ′)). If

fP ′(q)
fP (q) = θ then

∫

Ω

(

1

fP ′(x)d
− 1

fP (x)d

)

dx ≥ Vd

(

d ln 1
θ

3d
+ θd − 1

)

Proof. Let R = fP ′(q) Let U = {x : R
2 ≤ |x− q| ≤ R

2θ}. For all x ∈ U ,

fP (x) ≥
R

2θ
, and

fP ′(x) ≤ 3|x− q|.

The lower bound follows because q is θ-medial: there is at most one point of P in ball(q, Rθ ) and

therefore at most one point in ball(x, R
2θ ). The upper bound follows because fP ′(x) ≤ fP ′(q)+|x−q|

and fP ′(q) = R ≤ 2|x− q| by the definition of U .

∫

U

(

1

fP ′(x)d
− 1

fP (x)d

)

dx ≥
∫

U

(

1

(3|x − q|)d −
(2θ)d

Rd

)

dx

≥ dVd

∫ R
2θ

R
2

(

1

(2r)d
− (2θ)d

Rd

)

rd−1dr

= dVd

((

1

3d

∫ R
2θ

R
2

dr

r

)

+
θd − 1

d

)

= Vd

(

d ln 1
θ

3d
+ θd − 1

)

The lower bound is not informative if θ is large. This is unavoidable because the addition of a

1-medial point may have a negligibly small effect on the feature size integral. When we apply the

lower bound to a set of n points, we get the following.
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Lemma 3.8.7. Let P = {p1 . . . , pn} be an ordered set of points with prefixes Pi = {p1, . . . , pi}. Let

Ω ⊂ R
d be a set containing ball(p, 3diameter(P )) for some p ∈ P .

∫

Ω

dx

fP (x)d
> Vd

(

d

3d

n
∑

i=3

ln
1

θi
− n

)

,

where θi =
fPi

(pi)

fPi−1
(pi)

.

Proof. By definition, each point pi is θi-medial with respect to Pi−1. Consequently, the result

follows directly from Lemma 3.8.6.

3.9 Concluding Remarks

This chapter gave a relatively complete look at bounding mesh sizes in terms of the local feature

size, from generalizations of the classic Ruppert bounds to tight to per-instance bounds. We now

have a good set of structural theorems to attack some of the problems that come up later in the

thesis.
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3.10 Technical Lemmas

Lemma 3.10.1. Given positive constants θ ≤ 1, c, and R,

∫ ∞

R/c

(

1

rd
− 1

(r + R
θ )

d

)

rd−1dr < ln
d(c+ 1)

θ
.

Proof. We bound this integral using the change of variables u = R
rθ + 1 as follows.

∫ ∞

R/c

(

1

rd
− 1

(r + R
θ )

d

)

rd−1dr =

∫ 1+c/θ

1

(

(

θ(u− 1)

R

)d

−
(

θ(u− 1)

Ru

)d
)

(

Rd

θd(u− 1)d+1

)

du

=

∫ 1+c/θ

1

(

1− 1

ud

)(

1

u− 1

)

du

=

∫ 1+c/θ

1

(

ud − 1

ud(u− 1)

)

du

=

d−1
∑

i=0

∫ 1+c/θ

1
ui−ddu

= ln
(

1 +
c

θ

)

+

d−2
∑

i=0

(

(1 + c
θ )

i−d+1

i− d+ 1
− 1

i− d+ 1

)

= ln
(

1 +
c

θ

)

+

d−1
∑

j=1

(

1

j
− 1

j(1 + c
θ )

j

)

< ln
(

1 +
c

θ

)

+ ln d

≤ ln
d(1 + c)

θ
.
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Chapter 4

An Optimal Algorithm for Meshing

Point Sets

4.1 Overview

We present NetMesh, a new algorithm that produces a conforming Delaunay mesh for point

sets in any fixed dimension with guaranteed optimal mesh size and quality. Our comparison based

algorithm runs in time O(n log n+m), where n is the number of input vertices and m is the number

of output vertices, and with constants depending only on the dimension and the desired element

quality bounds. It can terminate early in O(n log n) time returning a O(n) size Voronoi diagram

of a superset of P with a relaxed quality bound, which again matches the known lower bounds.

The previous best results in the comparison model depended on the log of the spread of

the input, the ratio of the largest to smallest pairwise distance among input points. We reduce

this dependence to O(log n) by employing the theory of range space ǫ-nets, a sequence of ǫ-nets

determine the insertion order in an incremental Voronoi diagram. We generate a hierarchy of well-

spaced meshes and use these to show that the complexity of the Voronoi diagram stays linear in

the number of points throughout the construction.

4.2 Meshing point sets

In this chapter we present a new algorithm for meshing point sets in fixed dimension. This is

the first algorithm we know of that is work-optimal in the comparison-based model in the sense

of [Yao81]. Known work-efficient algorithms for meshing are one of two types. The first of these

are based on incremental refinement of the Voronoi diagram or Delaunay triangulation. The only

work-efficient of these in higher dimension performs a recursive Voronoi refinement where at all

times a “quality” Voronoi mesh is maintained. Unfortunately, this leads to work of O(n log∆+m)

where ∆ is the spread of P [HMP06, HMP07]. The second type uses a quadtree to generate a mesh.

Work-efficient versions use bit manipulation of the coordinates of the points to efficiently help with
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the point location [MV00, BET99, HPÜ05]. These algorithms are not optimal in the comparison

model and possibly more importantly, it is not known how to efficiently handle higher dimensional

features (segments, facets) with these methods.

Our algorithm uses range space ǫ-nets to determine the insertion order of the input points to

improve the work bound for point sets with large spread. Clarkson used a similar method for doing

point location in a Voronoi diagram [Cla88]. In our approach, since we also add some Steiner points,

we can guarantee that the total size of the intermediate Voronoi diagrams are only linear size. This

insertion order requires us to maintain a Voronoi diagram that need not have good aspect ratio in

the usual sense.

Our algorithm will generate a linear-size mesh in fixed constant dimensions. In their 1994

paper Bern, Eppstein, and Gilbert showed how to generate such a linear-size mesh with no large

angles [BEG94]. In a later paper we gave a Voronoi refinement algorithm that also generates linear

size meshes, [MPS08] but had a running time of only O(n log∆).

Because a standard good aspect ratio mesh is too large, we maintain a weaker but sufficient

condition, bounded ply. Throughout the life of the algorithm we maintain a mesh that is of bounded

ply which will be used to bound the point location work and the work to determine the insertion

order:

Definition. A Voronoi Diagram of a domain Ω is k-ply if for every point x ∈ Ω at most k D-balls

contain x in their interior.

Using the bounded-ply property we can afford to maintain a copy of each uninserted point in

each Delaunay ball that contains it. We pick an insertion ordering so that the number of uninserted

points stored in a Delaunay ball decreases geometrically, which we achieve using ǫ-nets.

Let P be the input points and M be points that have been inserted into the mesh so far

including the Steiner points. We say that M is an ǫ-net for P if any ball whose interior is disjoint

from M contains at most ǫn points from P (we give the formal definition of range space ǫ-nets in

Section 4.10). We show, given a mesh M that is an ǫ-net, how to pick at most a constant number

of points per Delaunay ball so that after their insertion the new mesh will be a ǫ/2-net. Thus,

a round consists of adding these new input points plus a constant factor more Steiner points so

that we recover a bounded-ply mesh. After O(log n) rounds the process terminates with a constant

ply mesh of size O(n). This output can then be finished to a standard good aspect ratio mesh in

output sensitive O(m) time if desired.

4.3 Beating the Spread

The spread of a point set is the ratio of the largest to smallest interpoint distances, and is denoted as

∆. It is a (geo)metric rather than a combinatorial property; given a set of points P , its cardinality

may be n but its spread is not in general bounded by any function of n. It is not uncommon to

see a dependence on the spread in the analysis of algorithms in computational geometry and finite
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metric spaces. Though rarely a problem in practice, it does thwart the most basic principle in the

analysis of algorithms, to bound the complexity in terms of the input size.1

Consider two classic data structures, the quadtree and the kd-tree. The quadtree partitions

space geometrically, breaking squares into 4 pieces of equal size. The kd-tree partitions the input

points combinatorially into sets of equal cardinality. These data structures demonstrate the

difference between geometric and combinatorial divide and conquer. The quadtree has depth log∆

whereas the kd-tree has depth log n. Unfortunately, many computational problems from nearest

neighbor search to network design problems depend on (geo)metric information that is lost when

doing a combinatorial divide and conquer. Thus, for many problems, the best known algorithms

depend on the spread in either time or space complexity or both.

One approach to dealing with the spread is to restrict the computational model. If coordinates

are restricted to be log n-bit integers then the spread is O(n). If we use floating point numbers, the

spread is O(2n). These assumptions about the bit representation of the input also allow for fast

computation of logarithms as well as the floor and ceiling functions. These computations are usually

omitted from the basic operations of the real RAM model often used in computational geometry

to extend the comparison sorting model from the real line to d-dimensional Euclidean space. In

their work on metric nets, Har-Peled and Mendel correctly argue that if one can do arithmetic

in constant time, it is natural to expect also to perform other operations of size O(log log∆) in

constant time [HPM06]. This is certainly the case for many practical implementations of geometric

algorithms. However, it is interesting, both in theory and in practice to explore ways of eliminating

the dependence on the spread without resorting to specialized bit operations–in theory because it

probes the limits of an important computational model and in practice because it allows one to work

with a minimal set of primitives with minimal assumptions about the low-level data representation.2

In mesh generation, a dependence on the spread creeps in from two different sources, in the

output size and the in the cost of point location. The previous state of the art in comparison based

point meshing requires O(n log∆+m) work, where the first term is the cost of point location and

the second is the output sensitive term. Even for point set inputs, the lower bounds on quality

meshes imply that m may also depend on the spread. Thus, to avoid depending on the spread, we

must both optimize point location and also relax the quality condition. This is why our algorithm

has two phases, one that produces a linear size Voronoi diagram of a superset in O(n log n) time

and one that refines that mesh to quality in O(m) time.

4.4 Sparse Refinement and Point Location

There are two immediate challenges to time-optimal meshing. The first challenge is the complexity

of general Voronoi diagrams, which can be as large as Ω(n⌈d⌉). This challenge was met by the Sparse

1One can get around this by making assumptions about the bit representations of the inputs. We will address
this as well.

2Recall that in the popular CGAL library, all primitives are implemented for several different kernels, all use a
small, unified interface.
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Voronoi Refinement (SVR) algorithm of Hudson et al. [HMP06]. Their algorithm guarantees that

the complexity of the Voronoi diagram remains linear in the number of vertices at every stage of

the algorithm. The second challenge is to efficiently handle point location; to add a point to a

Voronoi diagram, one must first locate that point in the current Voronoi diagram. This is where

SVR falls short of optimality.

In this section, we give an overview of how SVR avoids the worst case complexity of Voronoi

diagrams. Then we explain the basic point location paradigm used by both SVR and the NetMesh

algorithm to be presented in Section 4.7. This will give a foundation for understanding the new

ideas introduced in NetMesh to achieve optimality.

Sparse Voronoi Refinement. Recall that in the VoronoiRefine algorithm defined in Sec-

tion 3.2, all of the input points are added prior to the insertion of any Steiner points. The key

insight of SVR is to interleaves the insertion of input points and Steiner points. In doing so, the

algorithm requires two extra pieces. First, input points are only added if they are “close” to the

current Voronoi diagram. Second, the Steiner points may not be added “too close” to uninserted

input points. The former notion of closeness is ε-mediality (see page 10). The latter notion of

closeness causes the algorithm to yield by adding an input point p rather than a Steiner point v if

the distance from p to v is less than γ times the radius of the empty ball around v.

By only inserting ε-medial points and yielding when appropriate, SVR maintains a good aspect

ratio Voronoi diagram at every stage of the algorithm. Consequently, the total work is output

sensitive. This approach has also been generalized to more complex inputs than just point sets,

considering also piecewise linear complexes [HMP06].

Point Location. The bottleneck for the running time of Voronoi refinement is point location.

Recall, that in the standard incremental Voronoi (or Delaunay) algorithm, the first step to inserting

a new point is to find that point in the current diagram. A natural and highly effective technique

for doing this point location is to eagerly store the uninserted points in the D-balls of each Voronoi

diagram as the algorithm progresses. Points are moved whenever an insertion changes a D-ball

locally.

In SVR, this approach corresponds to a geometric divide and conquer, similar in spirit to

quadtree methods, because after a constant number of moves, the size (radius) of the balls contain-

ing any point goes down by a constant factor. Thus, in SVR a single input point may be moved

Θ(log∆) times. In this chapter, we show how to modify the algorithm so that only O(log n) moves

are necessary. One way to view these results is as a way to achieve similar properties to compressed

quadtrees without leaving the comparison model or privileging any fixed set of coordinate axes.

4.5 Hierarchical Meshes and Hierarchical Quality
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Figure 4.1: A domain hierarchy as a collection of sets (left) and its tree structure (right).

Domains. A domain Ω ⊂ R
d is defined by a center cΩ, a radius rΩ, and a collection of disjoint

open balls B1, . . . , Bk ⊂ BΩ = ball(cΩ, rΩ) such that

Ω = BΩ \
(

k
⋃

i=1

Bi

)

.

The ball BΩ is called the bounding ball of Ω and SΩ = ∂BΩ is the bounding sphere of Ω.

We get a hierarchy of domains if the balls removed from BΩ are the bounding balls of other

domains. Formally, a domain hierarchy is set H of disjoint domains with a unique parent p(Ω)

of each Ω ∈ H except for a unique root domain Ωroot such that:

1. for any pair Ω,Ω′ ∈ H, p(Ω′) = Ω if and only if SΩ′ ⊂ Ω, and

2.
⋃

Ω∈H
Ω = BΩroot .

The parent relation induces a tree structure on the domains of H with root at Ωroot. The set of all

domains Ω′ ∈ H such that p(Ω′) = Ω is denoted children(Ω).

Cages. Given a domain Ω, we want to add vertices near SΩ to limit the interaction between the

inside and the outside of Ω. We will have two parameters, δ determining the density of these points,

and γ determining how nearly cospherical they are. We call such a set CΩ of vertices a cage and

we require the following three properties, where r = (1− δ − γ)rΩ and S = (1− δ − γ)SΩ.

1. [Nearness Property] For all v ∈ CΩ, d(v, S) ≤ γr.

2. [Covering Property] For all x ∈ S, d(x,CΩ) ≤ (δ + γ)r.

3. [Packing Property] For all distinct u, v ∈ CΩ, |u− v| ≥ (δ − 2γ)r.

These three properties are illustrated in Figure 4.2

To construct such a set of points, we start with a cage template T of points on the unit

sphere S. The points of T are a metric space δ-net on S (not to be confused with the range space

nets used elsewhere in this chapter). That is, for all x ∈ S, d(x, T ) ≤ δ and for each distinct pair
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S

Nearness Covering Packing

Figure 4.2: The three properties of the cage vertices.

u, v ∈ T , |u − v| ≥ δ. Such sets are known to exist and can be constructed using a simple greedy

algorithm [Gon85, Mat02].

For a domain Ω we construct its cage by adding for each x ∈ cΩ + rT , a new point x′ such that

|x− x′| ≤ γr. It is easy to check that this set of points will satisfy the three properties of a cage.

Definition. A cage CΩ centered at c with radius r is ε-encroached or simply encroached by a

point p /∈ CΩ if either

1. p is an input point in annulus(c, εr, r), (inner-encroachment), or

2. p is an input or Steiner point in annulus(c, r, 2rε ), (outer-encroachment).

Roughly speaking, non-encroached cages have room on the inside (w.r.t. input points) and room on

the outside (w.r.t. all mesh vertices).

Hierarchical Meshes.

Definition. A hierarchical mesh is a mesh M along with a domain hierarchy HM such that:

1. M has a vertex at the center of every domain, i.e. cΩ ∈M for all Ω ∈ HM

2. No domain is ε-encroached.

Given a hierarchical mesh M and Ω ∈ HM , we define MΩ to be the points of M contained in

Ω plus the centers of the children of Ω in HM . Formally,

MΩ = (M ∩ Ω) ∪ {cΩ′ : Ω′ ∈ children(Ω)}.

We call this the set M restricted to the domain Ω, and it is well defined for any domain Ω and

any set M that contains the centers of the children of Ω. In particular, for a subset P ⊂ M ,

PΩ = P ∩MΩ.

In a hierarchical mesh, we can also define the Voronoi cell of a cage CΩ as

VorM (CΩ) =
⋃

u∈M∩BΩ

VorM (u).
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Definition. We say that a hierarchical mesh M is τ-quality if the following conditions are met:

1. For every non-cage vertex v ∈M , VorM (v) has aspect ratio at most τ .

2. For every Ω ∈ HM , VorM (CΩ) has aspect ratio at most τ .

3. No domain in HM is ε-encroached.

Figure 4.3: Quality cells of a vertex (left) and a cage (right).

The four constants γ, δ, ε, and τ are called the meshing parameters. Throughout, they are

assumed to be fixed constants independent of the dimension.

Definition. For a set M and a domain Ω, the feature size is a function fΩM : Rd → R that maps

a point x to the distance to its second nearest neighbor among the points of MΩ.

We are mainly interested in the feature size of the input and of the mesh, fΩP and fΩM respectively,

over the domains of MH .

4.6 Additively-Weighted Voronoi Diagrams

There is a natural generalization of Voronoi diagrams in which the points are permitted to have

weights that affect the distance additively. For a point v, let wv be the weight of v. The distance

between two weighted points is defined as

dw(u, v) = |u− v| − wu − wv.

Given a finite set of weighted points M , this distance is extended to all of Rd by assuming that

wx = 0 for all x ∈ R
d \M . An equivalent formulation simply measures the distance between the

spheres of radius wu and wv centered at u and v respectively. For a point set M , we define the

additively-weighted Voronoi cell of a point v ∈M to be

Vor(v) = {x ∈ R
d : min

u∈M
dw(u, x) = dw(v, x)}.
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The additively-weighted Voronoi diagram is the cell complex decomposing R
d obtained by

taking all of the additively-weighted Voronoi cells. This definition generalizes the standard Voronoi

diagram, which may be viewed as an additively-weighted Voronoi diagram for points of 0 weight.

The additively-weighted Voronoi diagram is different from the more common notion of weighted

Voronoi diagrams obtained by replacing the distance function with the power distance. The cells

of the additively-weighted diagram are not necessarily polyhedra nor are they necessarily convex.

Still, it is possible to extend basic properties of Voronoi diagrams to the case of additive weights.

The in-radius of a Voronoi cell Vor(v) is defined as

in-radius(Vor(v)) := max{r : ball(v, r) ⊂ Vor(v)},

and similarly, the out-radius is defined as

out-radius(Vor(v)) := min{r : Vor(v) ⊂ ball(v, r)}.

Note that ball(v, r) in the above definitions is a Euclidean ball, not a ball with respect to the

weighted distance dw. We say that u and v are neighbors if Vor(u) ∩Vor(v) 6= ∅. The in-radius of

Vor(v) may also be defined as 1
2dw(u, v) + wv, where u is the nearest among the neighbors of v in

additive distance. The aspect ratio of Vor(v) is the ratio of the out-radius to the in-radius.

Approximation by Cages. The additively-weighted Voronoi diagram can be approximated

by a regular Voronoi diagram by replacing the weighted points with a small cage of new vertices at

distance wv from each weighted point v. The approximate cells are the union of the Voronoi cells

of the cage vertices. These approximate cells can also be used to get a good approximation of the

in-radius and out-radius of the weighted Voronoi cell. Let v be a vertex with cage vertices C. The

neighbors of C are those vertices v that share a Voronoi face with a vertex in C but are not in

C ∪ {v}. The in-radius of the approximate Voronoi cell is 1
2dw(u, v) + wv, where u is the nearest

among the neighbors of C in additive distance. Since the neighbors necessarily have weight 0, this

reduces to |v−u|+wv

2 .

Recall that for unweighted points M , the feature size function fM : Rd → R is the distance to

the second nearest point of M . So, in the absence of weights, the in-radius of Vor(v) is 1
2 fM (v) and

if the aspect ratio is τ and the out-radius is R then fM (v) = 2R
τ . If the points have weights then

the definition of fM is the same as if the points have no weights. The following lemma shows how

the feature size relates to the out-radius and aspect ratio of the weighted Voronoi cells.

Lemma 4.6.1. Let v be a point in a weighted set M . Let r be the in-radius of Vor(v). If wa ≤
ε(|a− b| − wb) for all a, b ∈M , then

2r(1− ε)

1 + ε
≤ fM (v) ≤ 2r

1− ε

Proof. Let x and y be the nearest points to v in Euclidean and weighted distance respectively (it

could be that x = y). So, 2r = |v − y|+ wv − wy and fM (v) = |x− v|. By assumption, wv and wy
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are both less than ε|v − y|. So, it follows that

(1− ε)|v − y| ≤ |v − y|+ wv − wy ≤ (1 + ε)|v − y|. (4.1)

This assumption and the definitions of u and y also imply that

(1− ε)|v − y| ≤ |x− v| ≤ |v − y|. (4.2)

So, the result follows from (4.1) and (4.2).

When we choose sufficiently dense cages, nearly the same bounds apply for the approximate

weighted Voronoi cells:

Lemma 4.6.2. Let v be a vertex or a cage in a hierarchical mesh M . Let r be the in-radius of

Vor(v) and let c be the center of v. If no cages are ε-encroached for ε sufficiently small, then

r ≤ fΩM (c) ≤ 3r,

where Ω is the domain containing the boundary of Vor(v).

4.7 The Algorithm

4.7.1 Overview of the Algorithm

Like SVR, the core of the NetMesh algorithm is an incremental construction of a Voronoi diagram

with the refinement steps to maintain mesh quality. There are five main concerns. The algorithm

must (1) order the input points. These points are added one at a time in an (2) incremental

construction. After each insertion, Steiner points are added in a (3) refinement phase that

recovers the quality invariant. All the while, uninserted points are organized in a (4) point

location data structure. Once all of the inputs have been added, an optional (5) finishing

procedure turns the linear-size hierarchical mesh into a standard well-spaced mesh. Each of these

concerns will be addressed in more detail below, but first we will describe the main ideas used and

how they fit together.

Point Location. The point location data structure associates each point with each D-ball that

contains it. So, it is easy to report the set of D-balls containing an input point and similarly, to

report the set of points in a D-ball. These associations are updated locally every time a new point

changes the underlying Delaunay triangulation. We will prove that no point is ever in more than

a constant number of D-balls and thus the size of this structure will not exceed O(n).

Incremental updates. In SVR, every insertion is medial. This is critical to maintain quality

in the mesh throughout the algorithm. In theNetMesh algorithm, we change the domain hierarchy

before inserting each point to guarantee that it is medial in whatever domain contains it. We show

that this is sufficient to get the same guarantees as in SVR. Thus, we can insert the points in any

order.
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Ordering the input with ǫ-nets. The theory of range space ǫ-nets is used to choose the

input insertion order. One round of the algorithm consists of the union of a collection of ǫ-nets for

the input points for each D-ball, where the ranges are open balls. It is known that such sets exist,

are small, and can be found quickly and deterministically [Cha00]. The points in any round may

be inserted in any order, after which, the next round is computed. In each round, the maximum

number of points stored in any D-ball goes down by a constant factor, so the total number of rounds

is O(log n).

Refinement. The refinement, or cleaning phase of the algorithm is a standard Voronoi refine-

ment in that it adds Steiner points at the farthest corner of any cell with bad aspect ratio. As

in SVR, if the Steiner point is sufficiently close to an uninserted input point p, then p is added

instead. One slight change is that we maintain the aspect ratio of the Voronoi cells of cages, but

do not require the cage vertices themselves to have good aspect ratio Voronoi cells.

Finishing the mesh. The algorithm produces a quality hierarchical mesh of linear size. If

one wants to extend this mesh to a standard well-spaced mesh, it is a straightforward procedure to

do this in O(m) time, where m is the number of vertices in an optimal-size, well-spaced superset

of P . This finishing process can run quickly because it need not do any point location (all of the

input points have already been inserted).

4.7.2 Point Location Operations

Each uninserted input point p stores a list of D-balls that contain it as well as a list of cages that it

encroaches. The set of all D-balls in a mesh M is DBalls(M). Similarly, each D-balls B has a list

of uninserted vertices that it contains, Uninserted(B). With each change in the Voronoi diagram,

these lists are updated. We say that the points are “stored in the balls” to simplify the description

of this list upkeep. A point will generally be contained in several D-balls. The uninserted points

are moved out of D-balls that have been destroyed and into newly created D-balls. This shuffling

of points between D-balls is the work of point location. A point is touched in this process if it is

moved into a new ball or even if it is considered for moving into a new ball. We count the point

location work from the perspective of the uninserted input points.

There are four main point location operations needed.

1. Find the D-balls containing a point to insert it into the Voronoi diagram.

2. Find the nearest and second nearest neighbor of a point in its domain in order to compute

its mediality, which is the ratio of these distances.

3. Find any cages encroached by a given point.

4. Find a nearby input point to yield to, when inserting a Steiner point.

The first operation is trivial.

For cage vertices v in a domain Ω, let center(v) be the vertex at the center of Ω. Let B(x) be the

set of D-balls containing x. Let V (B) be the d+1 vertices of the Delaunay simplex corresponding

to the D-ball B. Let U(x) =
⋃

B∈B(x) V (B). If Ω is the domain containing x, then the nearest and
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second nearest neighbors of x in MΩ are in U(x) or {center(v) : v ∈ U(x)}, so it is easy to identify

them. Call these vertices nx and sx respectively. Thus, Mediality(x) = |x−nx|
|x−sx| can be computed

in time O(|B(x)|).
The set of cages outer-encroached by a point x is denoted OutEncroach(x). Similarly, the

set of cages inner-encroached by x is InEncroach(x). Computing these sets for input points

is easy because this information is stored with the points. At the time a cage is created, any

encroaching input points must be relocated, so the encroachment is discovered at that time. To

check encroachment of Steiner points, it suffices to observe that if a Steiner point x encroaches a

cage C, then some vertex of C must appear in U(x). So, there are only O(|U(x)|) cages to check

and each check takes constant time.

To find a point to yield to, we simply need to check for input points in a small empty ball around

the proposed input point. This is trivial for Steiner points added during refinement because the

Steiner point is the center of a D-ball B and thus we only need to check Uninserted(B). For cage

vertices v, the search requires us also to check the points in Uninserted(B) for each B ∈ B(v).

In both cases, the points checked in this process also need to be checked for relocation when the

new vertex is inserted. Thus, the cost for this search is dominated by the cost of relocating points,

which we analyze in detail later.

4.7.3 Incremental Updates to Hierarchical Meshes

The basic operation in incremental Voronoi diagrams is Insert(v), which adds the vertex v to the

Voronoi diagram and updates the point location data structures. To keep this operation constant

time (not counting the cost of point location), we must guarantee that |B(v)| is a constant because

every D-ball in B(v) is destroyed by the insertion. This is done by making sure that every new

insertion is medial. Before the new point is inserted, we update the domain hierarchy. If the point

was not medial, then it must be significantly closer to its nearest neighbor than it second nearest

neighbor, and thus we add or expand cage around the nearest neighbor. We must also update the

domain hierarchy of the new point encroaches on an existing cage.

Insert(x ∈ R
d)

for each C in OutEncroach(x): ReleaseCage(C)

Add x to VorM and update the point location structure.

YieldingInsert(x ∈ R
d)

let v be the nearest neighbor of x in the current mesh.

if there is an input point p in ball(x, γ|x − v|)
then Insert(p) else Insert(x)

There are three basic cage operations:
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NewCage(p ∈ P, r ∈ R)

Initialize a new cage.

for each x ∈ T , YieldingInsert(rx+ p).

ReleaseCage(C : cage)

for each cage vertex v in C push v to the RefineList.

Delete the cage C

GrowCage(C : cage)

Let x be the center of C and let r be its radius.

if in-radius(Vor(C)) ≥ r
ε2 then NewCage(x, rε).

ReleaseCage(C).

Equipped with the cage operations, we define the following routine. Its purpose is to rearrange

the domain hierarchy by creating or growing new cages so that a new vertex v can be added to a

domain in which it is medial.

InsertInput(p ∈ P )

let u be the nearest neighbor of v in MΩ

if Mediality(p) ≤ ε then NewCage(u, |u− p|/ε)
for each C in InEncroach(p): GrowCage(C)

Insert(p)

4.7.4 Refinement

The algorithm maintains a list of cells with bad aspect ratio called RefineList. The cleaning

procedure goes through this list and refines these cells until none are left. The RefineList is

updated every time a Voronoi cell changes. The structure of the Voronoi diagram makes it easy to

check the aspect ratio of a cell and Theorem 4.8.1 implies that this can be done in constant time.

If a cell’s aspect ratio was good but goes bad, it is added to the list. If its aspect ratio was bad but

becomes good, it is removed from the list.

Clean(M : Mesh)

while RefineList is not empty

let v ∈ RefineList

let x be the farthest corner of Vor(v) from v

YieldingInsert(x)
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4.7.5 Input Ordering with ǫ-Nets

We employ the theory of range space ǫ-nets to order the inputs for insertion. The following is a

special case of Theorem 4.6 from [Cha00] when the range space is defined by open balls.

Theorem 4.7.1. Let P ⊂ R
d be a set of n points and let ǫ ∈ (0, 1). There exists an al-

gorithm Net(ǫ, P ) that runs in O( 1
ǫ2
(log 1

ǫ )
d+1n) time and returns a subset N ⊆ P such that

|N | = O(1ǫ log
1
ǫ ) and any open ball that contains ǫn points of P also contains a point of N . In

particular, for constant ǫ the running time is linear and the net is of constant size.

Using the Net algorithm as a black box, we select the next round of points to insert as follows.

SelectRound(M : mesh)

N ← ∅
for each B ∈ DBalls(M)

N ← N ∪Net( 1
2d ,Uninserted(B))

return N

If the maximum number of uninserted points in a D-ball of some mesh is k, then after adding

the points chosen by SelectRound, this maximum is at most k
2 . This follows from the fact that

every new D-ball is covered by at most d of the old D-balls (see Theorem 4.10.1). So, the total

number of rounds is at most ⌈log n⌉. We can now give the main loop of the algorithm.

NetMesh(P : points)

Initialize an empty mesh M

Uninserted← P

let c, r be such that P ⊂ ball(c, r)

OuterCage = NewCage(c, rε)

while Uninserted is not empty

V = SelectRound(M)

for each v ∈ V

InsertInput(v)

Clean(M)

return M

4.7.6 Finishing the Mesh

The output of NetMesh is a quality hierarchical mesh. If the desired output is a well-spaced

mesh according to the traditional definition, i.e. quality with a single domain, then some finishing

procedure is required. Fortunately, it is trivial given the cage operations defined above:
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FinishMesh(M : Mesh)

while there exists a cage C other than OuterCage

GrowCage(C)

Clean(M)

Since the cages are not encroached, they have some space around them. The FinishMesh procedure

simply grows the cages until this space is filled. No new cages are formed and no point location

work on input points is required.

Note that finishing the hierarchical mesh in this way may result in a mesh with more than a

linear number of points because well-spaced meshes are subject to potentially superlinear (or even

superpolynomial!) lowerbounds. This is why we consider the finishing operation to be optional.

4.8 Overview of the Analysis

An intermediate mesh, Mi, is the mesh after i vertices or cages have been inserted during the

incremental construction. To analyze theNetMesh algorithm, we will prove that two invariants are

maintained for each intermediate mesh: the feature size invariant and the quality invariant.

Definition. A hierarchical mesh M of an input set P satisfies the feature size invariant if for

all domains Ω ∈ HM and all vertices v ∈MΩ

fΩP (v) ≤ KfΩ
M(v),

where K is a constant that depend only on the mesh parameters.

Definition. A hierarchical mesh M satisfies the quality invariant if each intermediate mesh Mi

is τ ′-quality for some constant τ ′ depending only on the meshing parameters.

The quality invariant is useful because of several properties of quality meshes.

Theorem 4.8.1. If M is a τ -quality mesh, then

1. no point of Rd is contained in more than O(1) D-balls,

2. no D-ball intersects more than O(1) other D-balls, and

3. no vertex of M has more than O(1) Delaunay neighbors.

These structural results about quality meshes are known for the case of a single domain [MTTW99,

HMP06]. To extend them to the case of a quality hierarchical meshes follows the same methods

as in previous work. The three conclusions are proven in Theorems 4.11.5, 4.11.9, and 4.11.7

respectively.
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Over a single domain, the results of Chapter 3 show that the feature size invariant suffices to

prove that the number of vertices is bounded (up to constants) by the feature size integral:

∫

Ω

dx

fΩP (x)
d
.

In previous work [MPS08], we showed that the feature size integral is O(n) when the input points

satisfy a certain spacing condition. We prove that in each domain Ω of the hierarchy, the points of

PΩ satisfy this spacing condition (Lemma 4.9.3), allowing us to prove that the total output size is

O(n) (Theorem 4.9.4).

Theorem 4.8.1 and the quality invariant imply that the cost to update the Voronoi diagram for

a single insertion is constant. That is, the number of combinatorial changes to the Voronoi diagram

is constant for each insertion. Thus, since the total number of points added is O(n), the total work

is O(n), not counting the cost of point location.

To bound the cost of point location, we first show that at most a constant number of vertices

are added to any D-ball in the course of a round (Lemma 4.13.2). This is then used to show that

the total amount of point location work is O(n) per round. Since there are only O(log n) rounds,

the total work is O(n log n) as desired.

Finally, in Section 4.14, we show that the FinishMesh procedure runs in O(m) time. This

allows us to conclude the following theorem about the overall running time.

Theorem 4.8.2. Given n points P ⊂ R
d, the NetMesh algorithm produces a hierarchical quality

mesh of size O(n) in O(n log n) time. If this is followed by the FinishMesh procedure, the output

is a well-spaced mesh of size O(m) in O(n log n+m) time.

4.9 Size Bounds

In this section we will show that the output of NetMesh has linear size. The analysis will follow

a straightforward strategy. We will argue that the algorithm never inserts a vertex too close to an

existing vertex. This is known as the insertion radius invariant, and it allows us to prove that

the feature size invariant holds for all intermediate meshes. We use this to prove that for all

domains Ω, MΩ has size linear in |PΩ| from which the overall bound follows. This strategy is not

new; it parallels closely the approach of Ruppert [Rup95] for Delaunay refinement and its sparse

version introduced by Hudson, Miller, and Phillips [HMP06]. We have adapted it to the case of

hierarchical meshes.

We say that a hierarchical mesh M is constructed incrementally if the vertices are added one

at a time and the domains are adjusted before every insertion so that no domain is encroached. In

particular, the algorithm given is such an incremental construction. The intermediate mesh after i

points and cages have been added is denoted by Mi, its domain hierarchy HMi
is denoted Hi, and

Pi = P ∩Mi is the set of inputs inserted thus far. Define the insertion radius of the ith vertex

added v as λv = fΩMi
(v), where Ω ∈ Hi is the domain into which v was inserted.
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Definition. A hierarchical mesh M of an input set P constructed incrementally satisfies the in-

sertion radius invariant if for all domains Ω ∈ Hi for all i and all vertices v ∈MiΩ

fΩPi
(v) ≤











K ′
Cλv if v is inserted as a cage vertex,

K ′
Sλv if v is inserted as a circumcenter, and

K ′
Iλv if v is inserted as an input vertex

where K ′
C ,K

′
S, and K ′

I are constants that depend only on the mesh parameters.

The following lemma states that as long as the insertion radius of every vertex is not too small

then the distance to its nearest neighbor is also not too small. Its proof is straightforward and

reserved for the appendix.

Lemma 4.9.1. If M is a hierarchical mesh constructed incrementally that satisfies the insertion

radius invariant, then M also satisfies the feature size invariant.

Lemma 4.9.1 implies that in order to prove that the spacing of the points in the final mesh is

good, it will suffice to show that the algorithm maintains the insertion radius invariant throughout.

This is proven in the following lemma.

Lemma 4.9.2. The hierarchical mesh M constructed by the NetMesh algorithm satisfies the

insertion radius invariant.

Proof. We proceed by induction on the total number of vertices added. Let v be the ith vertex

added and let Ω be the domain it is inserted into.

Case 1: v is a cage vertex. Since PΩ contains at least the center of Ω, the feature size is

bounded as fΩP (v) ≤ rΩ. By construction, adjacent cage vertices are at least αrΩ apart, where

α = (δ − 2γ)(1 − δ − γ). So, λv ≥ αrΩ. Combining these two facts and choosing K ′
C ≥ 1+ε

α yields

fΩPi
(v) ≤ K ′

Cλv as desired.

Case 2: v is a clean move. Steiner points are added when some vertex (or cage) u ∈ Mi−1Ω

has aspect ratio greater than τ . Let Vu denote this poor aspect ratio cell. Let w be the nearest

neighbor of u in MΩ, so fΩM (u) = |u−w|. In case we yielded in order to insert v, let v′ be the true

circumcenter that we tried to insert. The yielding condition guarantees that

|v − v′| ≤ γ|u− v′|. (4.3)

Since u or w or both can be the center of a child domain of Ω, we need to also consider vertices

u′, w′ of M that define the insertion radius of v and the in-radius of Vu respectively. Since w does

not encroach a domain at u and |u− w| ≤ |u− v′|, it follows that

|u− u′| ≤ ε|u− v′|. (4.4)

The D-ball centered at v′ has radius |u′ − v′| and is empty of vertices, so λv ≥ |u′ − v′| − |v − v′|.
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Using the triangle inequality, (4.3), and (4.4), we can bound the insertion radius as follows.

|u− v′| ≤ βλv. (4.5)

where, β = 1
1−ε−γ . Since w is closer to u than v, fΩMi−1

(u) = fΩMi
(u) and fΩPi−1

(u) = fΩPi
(u). So, we

can use induction and Lemma 4.9.1 to get that

fΩPi
(u) ≤ K ′

I |u− w|. (4.6)

We use K ′
I because it is the largest of the K ′ constants.

We may now derive a bound on fΩPi
(v) as follows.

fΩPi
(v) ≤ fΩPi

(u) + |u− v|
[

fΩPi
is 1-Lipschitz

]

≤ fΩPi
(u) + |u− v′|+ |v′ − v| [triangle inequality]

≤ fΩPi
(u) + (1 + γ)|u− v′| [by (4.3)]

≤ K ′
I |u−w|+ (1 + γ)|u− v′| [by (4.6)]

≤
(

3K ′
I

τ
+ 1 + γ

)

|u− v′| [Vu aspect ratio > τ ]

≤
(

3K ′
I

τ
+ 1 + γ

)

βλv [by (4.5)]

So, setting K ′
S ≥

(

3K ′
I

τ + 1 + γ
)

β yields the desired bound.

Case 3: v is an input. Choose u such that λv = |u − v| and let j and Ωj be the time that u

was inserted and the domain it was inserted into respectively. If u ∈ CΩ, then v encroaches on Ω,

which is impossible. If u is an input vertex then λv = fΩ
P (v) so we are done. So, we may assume

that u is a Steiner point, inserted either as either a circumcenter or as a cage vertex that was later

released.

We define K ′
u = K ′

S in the former case and K ′
u = K ′

C in the latter. By choosing K ′
I ≥

K ′
u

γ + 1,

we can now derive the following bound.

fΩPi
(v) ≤ fΩPi

(u) + |u− v|
[

fΩPi
is 1-Lipschitz

]

≤ f
Ωj

Pj
(u) + |u− v| [by Lemma 4.17.1]

≤ K ′
uλu + |u− v| [by induction]

≤
(

K ′
u

γ
+ 1

)

|u− v| [because u did not yield to v]

≤ K ′
I |u− v|

[

K ′
u

γ
+ 1 ≤ K

]

= K ′
Iλv. [λv = |u− v|]
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Lemma 4.9.3. Let q and q′ be any two input points and let r be the distance between them. If

A = annulus(q, 2r, 6r
ε3
) contains no input points, then q and q′ are inside some cage contained in

A for all intermediate meshes after each has been inserted.

Sketch. Let p1, . . . , pk be all input points in ball(p, 2r) ordered by the order in which they were

inserted. Clearly q and q′ are among the pi’s. The proof is a straightforward induction on k,

requiring us only to show that each insertion leaves the desired cage around the previous set.

The constant 6
ε3 was carefully chosen to make this work. The full proof is Lemma 4.17.4 in the

appendix.

We can now prove that the output mesh has size linear in the input size.

Theorem 4.9.4. If M is the output of the NetMesh algorithm for an input set P , then |M | =
O(|P |).

Proof. Let Ω be any domain in the output. Let p1 . . . , pj be the vertices of PΩ ordered such that

for each i = 3 . . . j, fPΩ
i
(pi)/fPΩ

i−1
(pi) ≥ 12

ε3
+ 1, where Pi = {p1, . . . , pi}. Lemma 4.9.3 guarantees

that such an ordering can be found by a trivial greedy algorithm (see Lemma 4.17.3 for details of

the construction).

In Chapter 3, we showed if PΩ can be ordered this way then any well-spaced superset satisfying

the bound in Lemma 4.9.2 has size O(|PΩ|). So, in particular |MΩ| = O(|PΩ|). Now, we observe

that because every domain contains at least 2 input points,
∑

Ω |PΩ| < 2|P |. So, the total mesh

size can be bounded as |M | ≤∑Ω |MΩ| = O(
∑

Ω |PΩ|) = O(|P |).

4.10 Range Spaces and ǫ-Nets

In this section we discuss ideas and definitions from hypergraph and range space theory that we

will need in our meshing algorithm. We will also give a distance measure derived from a range

space that is useful for our analysis. A range space or hypergraph is a pair (X,R) where X is

a set and R is a collection of sets called ranges. A range space ǫ-net for (X,R) is a subset N

of X such that N ∩R 6= ∅ for all R ∈ R such that |R ∩X| ≥ ǫ|X|.
Throughout this discussion the ranges will be open balls in R

d including those with infinite

radius, i.e. halfspaces. For a subset M ⊂ R
d, define:

BM = {B : B is a ball and B ∩M = ∅}.

A useful subset of BM is the set of D-balls of M :

DM = {B ∈ BM : B is a D-ball of M}.

The following geometric lemma is useful for translating between statements about D-balls and

statements about arbitrary empty balls in the space.
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Theorem 4.10.1 (D-ball Cover Theorem). If M ⊂ R
d and B ∈ BM then B is covered by at most

d D-balls of DM and these d balls all share a common point.

The proof is in Appendix 4.16.

Let GBM
be the graph with vertex set BM and edges for each pair of balls that intersect. For any

x, y ∈ R
d \M , let dBM

(x, y) be the length of the shortest path in GBM
between a ball containing x

to a ball containing y. Define GDM
and dDM

similarly. These distances are related by the following

lemma.

Lemma 4.10.2. If M ⊂ R
d is finite then dDM

≤ 2dBM

Proof. Let x, y ∈ R
d be any pair of points and let s = dBM

(x, y). It will suffice to find D-balls

E1, . . . , E2s ∈ DM such that x ∈ E1, y ∈ E2s, and each Ei ∩ Ei+1 is nonempty. By the definition

of dBM
, there exists balls B1, . . . , Bs ∈ BM such that x ∈ B1, y ∈ Bs, and each Bi ∩ Bi+1 is

nonempty. Let zi be a point in Bi∩Bi+1 for i = 1 . . . s− 1 and define z0 := x and zs := y. Now, by

Theorem 4.10.1, there are d D-balls covering each Bi and they all have a common intersection. So,

letting E2i−1 and E2i be the D-balls among these that contain zi−1 and zi gives the desired path

of length at most 2s in GDM
.

4.11 Bounding the ply

In this section, we prove that the D-balls have constant ply, a fact that is useful for many parts

of the analysis. In particular this is important for showing that the cost of a single insertion is

constant. The constant ply can then be used to show that the degree of the intersection graph of

the D-balls is bounded by a constant, and moreover, that the degree of every vertex of the Delaunay

1-skeleton is bounded by a constant. The latter bound implies that the total complexity of the

Delaunay triangulation is linear in the number of vertices.

These results are known in the case of Voronoi diagrams with bounded aspect ratio [MTTW99],

but we extend them to hold when there is a domain hierarchy rather than a single domain. To

begin, we give some lemmas about the limited interaction between the different domains in the

hierarchy.

Lemma 4.11.1. Let (M,H) be a hierarchical mesh with cages. For any domain Ω, every D-ball

B that intersects B′
Ω = ball(cΩ, (1 − 2δ − 2γ)rΩ) is contained in BΩ.

Proof. Suppose for contradiction that there exists a D-ball B = ball(c, r) such that both B ∩ B′
Ω

and B \BΩ are nonempty. Let z be the projection of c onto the sphere {x : |x− c| = (1− δ−γ)rΩ}.
By the cage spacing properties, there is some vertex u in CΩ such that |u − z| < (δ + γ)rΩ.

Next, |c − z| ≤ r − (δ − γ)rΩ by our supposition and the triangle inequality. So, it follows that

|c− u| ≤ |u− z|+ |z− c| < r. However, this implies that u ∈ B, contradicting the assumption that

B is a D-ball.
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Lemma 4.11.2. Let M be a τ -quality hierarchical mesh with parameters such that ε + ε2 < 1 −
2δ − 2γ. If Ω1, Ω2, Ω3 are three nested domains in HM , i.e. Ω1 = p(Ω2) and Ω2 = p(Ω3) then no

D-ball intersects both Ω1 and Ω3.

Proof. Suppose for contradiction that some ball B intersects both Ω1 and Ω3. Let c2 and c3 be the

centers of Ω2 and Ω3 respectively. Since c2 does not encroach the outside of Ω3 and c3 does not

encroach the inside of Ω3 we have that

1

ε
rΩ3 ≤ |c2 − c3| ≤ εrΩ2 . (4.7)

Let x be a point of B ∩ Ω3. By (4.7) and the triangle inequality, |x − c2| ≤ (ε + ε2)rΩ2 . Since

ε + ε2 < 1 − 2δ − 2γ, Lemma 4.11.1 implies that B is contained in BΩ2 and therefore is disjoint

from Ω1, a contradiction.

Lemma 4.11.3. Let M be a τ -quality hierarchical mesh and let Ω be any domain in HM . If B is

a ball of radius r centered in BΩ empty of points in M and x ∈ B, then

fΩM(x) ≥ c4.11.3r,

where c4.11.3 =
1

24τ2

Proof. The proof of Lemma 6.1 from [HMP06] may be repeated verbatim here even though the

Voronoi cells are defined differently because the proof only uses the the in-radius and out-radius

conditions which are well-defined.

Lemma 4.11.4. Let M be a τ -quality mesh with ε < 1
3 . Let B = ball(c, r) be a D-ball corresponding

to a simplex σ ⊂ M and let x be a point of B. If Ω is a domain such that the ancestor of some

vertex of σ in MΩ is not the nearest neighbor of x in MΩ, then

fΩM (x) ≤ 3r.

Proof. Let u′ be the ancestor of u in MΩ assumed to exist, and thus fΩ
M (x) ≤ |x − u′|. Since no

domains are ε-encroached, |u′−u| ≤ ε|u′− v|, and thus, by the triangle inequality |u′−u| ≤ ε|u−v|
1−ε .

Since u and v are on the boundary of B, |u − v| ≤ 2r and so, using the assumption that ε < 1
3 ,

|u − u′| ≤ r. Because x ∈ B, |x − u| ≤ 2r. Using the triangle inequality and the preceding

inequalities, we get fΩ
M (x) ≤ |x− u|+ |u− u′| ≤ 3r.

Theorem 4.11.5. A τ -quality hierarchical mesh has ply at most c4.11.5 where c4.11.5 depends only

on the meshing parameters.

Proof. Let x be any point and let Ω be the domain containing x. Let S be the set of D-balls

containing x. For any σ ∈ DelM , let Bσ be its D-ball and let Ωσ be the least common ancestor

domain of its vertices. Let nx be the nearest neighbor of x in MΩ and let Ω′ be the child domain

of Ω centered at nx (if it exists).
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There are two corner cases that we need to eliminate first: these are balls Bσ in S such that

1. Ω′ = Ωσ, or

2. Ω = Ωσ and Bσ is not centered in Ω.

In both of these cases, Bσ spans the bounding sphere of either Ω or Ω′. So, Lemmas 4.11.1 and 4.11.8

imply that there are only a constant number of such balls. Let S′ be the subset of S formed by

removing this constant sized set of balls.

Consider the following two subsets of S′.

S1 = {Bσ ∈ S′ : Ω = Ωσ or Ω = p(Ωσ)}
S2 = {Bσ ∈ S′ : p(Ω) = Ωσ or p(Ω) = p(Ωσ)}

By Lemma 4.11.1, S1 and S2 cover all of S′. Thus it will suffice to prove these sets have constant

size. Ignoring the overlap, these two cases correspond to counting the balls that contain x that

come from its own domain or children and those that come from a parent or sibling domain. In fact,

the two cases are completely symmetric. The rest of the proof will show that |S1| is a constant. It

can then be repeated for the second case by inserting S2 and p(Ω) in place of S1 and Ω.

The set of vertices on simplices whose D-balls are in S1 is V = {v ∈ σ : Bσ ∈ S1}. Let v′

denote the ancestor in MΩ of any vertex v ∈ V , and define V ′ = {v′ : v ∈ V }. We will first show

that |V | ≤ c4.11.8|V ′|. Then we will show that |V ′| ≤ α, where α =
(

24τ
c4.11.3

)d
. Every D-ball in S1

corresponds to some subset of d+ 1 points of V so will conclude that |S1| ≤
( |V |
d+1

)

≤ (αc4.11.8)
d+1.

Claim: |V | ≤ c4.11.8|V ′|.
Fix some v ∈ V ′. Let U = {u ∈ V : u′ = v′} It will suffice to show that |U | ≤ c4.11.8. If v

′ ∈ Ω, then

v = v′ and so |U | = 1. So, we may assume that v′ is the center of some domain Ωv′ whose parent is

Ω. Note that Bσ ∩ Ω is nonempty for all Bσ ∈ S1. So, any u ∈ U came from a ball Bσ that spans

the bounding sphere of Ωv′ . Thus, Lemmas 4.11.1 and 4.11.8 implies that |U | ≤ c4.11.8.

Claim: |V ′| ≤ α, where α =
(

24τ
c4.11.3

)d
.

Let rmin and rmax be the minimum and maximum radii among the balls of S1. By Lemma 4.11.3,

fΩM (x) ≥ c4.11.3rmax. Lemma 4.11.4 implies that fΩM (x) ≤ 3rmin. Combining these two facts, we see

that all of the balls have radii that differ by at most a constant:

rmax ≤
3rmin

c4.11.3
. (4.8)

Consider any ball Bσ ∈ S1 with a vertex v ∈ σ. The bounded aspect ratio condition implies

that

fΩ
M (v′) ≥ rmin

τ
. (4.9)
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The vertices v′ ∈ V ′ are not too far from x compared to the radii of the balls:

|v′ − x| ≤ |v − v′|+ |v − x| [by the triangle inequality]

≤ |v − v′|+ 2rmax [v, x ∈ B ∈ S1]

≤ εfΩM (v′) + 2rmax [non-encroachment]

≤ 3rmax.

[

ε ≤ 1

3
and Lemma 4.11.4

]

(4.10)

We can now show that |V ′| ≤ α by a volume packing argument. Specifically, let U =

{ball(v′, rmin
2τ ) : v′ ∈ V ′}. Note that |U | = |V ′|. By (4.9), these balls are disjoint. By (4.10), these

balls are contained in a ball of radius 4rmax. Applying (4.8), we conclude that |U | ≤
(

24τ
c4.11.3

)d
.

Corollary 4.11.6. Every vertex v in a τ -quality hierarchical mesh M is in at most (d + 1)c4.11.5

Delaunay simplices.

Proof. Let U be a set of d+1 points in ball(c, r) such that v ∈ conv(U) and r is sufficiently small

so that every D-ball with v on its boundary intersects U . By Theorem 4.11.5, there are only c4.11.5

D-balls intersecting any point in U , so the total number of Delaunay simplices containing v is at

most (d+ 1)c4.11.5.

Theorem 4.11.7. Let M be a τ -quality mesh and let GDel be the graph formed by the 1-skeleton

of DelM . The maximum degree of any node of GDel is bounded by a constant that depends only on

the meshing parameters.

Proof. Let v ∈M be any vertex. Note that every simplex containing v in DelM has a corresponding

D-ball with v on its boundary. Corollary 4.11.6 implies that there are only (d+1)c4.11.5 such D-balls.

Each such ball contributes at most d edges, so the total is at most d(d+ 1)c4.11.5.

Lemma 4.11.8. Let (M,H) be a hierarchical mesh with no encroached cages. Let Ω ∈ H be

a domain such that fΩP (z) ≤ KfΩM (z) for all z ∈ Ω. The number of vertices of M contained

in A = annulus(cΩ, 2εrΩ, rΩ) is at most some constant c4.11.8 depending only on the meshing

parameters.

Proof. For points z in A, we know that fΩP (z) ≥ εrΩ because CΩ is not encroached. It follows that

for all z ∈ M ∩ A, fΩM (z) ≥ ε
K rΩ. So, there must be disjoint balls of radius at least ε

2K rΩ around

each such z. Therefore, a simple packing completes the proof.

Theorem 4.11.9. Let M be a τ -quality mesh and let GD be the intersection graph of the D-balls

of DelM . The maximum degree of any node of GD is bounded by a constant c4.11.9 that depends only

on the meshing parameters.

Proof. Let B = ball(c, r) be any D-ball and let Ω be the domain containing its center. Let S be the

set of D-balls intersecting B. We will show that |S| ≤ c4.11.9 by bounding separately the number
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of such balls with radius at least βr and those with radius less than βr, where β is a constant

independent of the dimension.

Let S1 = {b ∈ S : radius(b) ≥ βr}. Observe that for any b ∈ S1, Vol(b∩ball(c, 1+2β)) ≥ βd
Vd.

Theorem 4.11.5 implies that ball(c, r + 2βr) is covered at most t times by the D-balls of S1 and

thus by volume packing,

|S1| ≤ t(2 +
1

β
)d.

We will now bound the size of S2 = {b ∈ S : radius(b) < βr}. Let B′ = ball(c′, r′) be a D-ball

of S2 and let V be the vertices of the Delaunay simplex corresponding to B′. Let h : DM → M

be a map that takes a D-ball B′ to an arbitrary vertex its corresponding Delaunay simplex. Let

g : S → MΩ be a map defined as g(B′) = lcaMΩ
(h(B′)). As a shorthand, we write g(S) to

denote
⋃

B′∈S{g(B′)}. The map g allows us to charge the balls of S to nearby vertices in MΩ. In

Lemma 4.11.10, we prove that

|g(S2)| ≤ c4.11.10.

Then, in Lemma 4.11.11, we prove that

|g−1(v)| ≤ c4.11.11,

for all v ∈MΩ. Together these allow us to conclude that

|S2| =
∑

v∈g(S2)

|g−1(v)| ≤ c4.11.10c4.11.11.

So, setting c4.11.9 = t(2 + 1
β )

d + c4.11.10c4.11.11, we conclude that

|S| = |S1|+ |S2| ≤ c4.11.9.

Lemma 4.11.10. If S2 is a collection of D-balls of radius at most βr intersecting a D-ball B =

ball(c, r), then |g(S2)| ≤ c4.11.10, where β =
c4.11.3

4 r and c4.11.10 is a constant that depends only the

meshing parameters.

Proof. Fix some B′ ∈ S2 and let r′ be its radius. Let Ω be the domain containing c. Let u = h(B′)

and v = g(B′). If u, v ∈ Ω then u = v and |u − v| = 0. The cage construction guarantees

that if u, v /∈ Ω then |u − v| ≤ (1 − δ + γ)|c − v|. Using the triangle inequality, we know that

|c− v| ≤ r + 2r′ + |u− v|. Combining these inequalities, we get that

|c− v| ≤ αr, (4.11)

where α = 1+2β
δ−γ .

We want to prove that the vertices of g(S2) are not too close together. To do this, we will
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bound the feature size at v ∈ g(S2). There are two cases to consider. First, if |u − v| > βr then

fΩM (v) ≥ βr because the cage centered at v that contains u cannot intersect any point of MΩ (other

than v itself). Second, if |u − v| ≤ βr then fΩM (v) ≥ fΩM (z) − |z − u| − |u − v|, where z ∈ B ∩ B′.

Since z ∈ B and B is centered in Ω, Lemma 4.11.3 implies that fΩM ≥ c4.11.3r = 4βr. Since z and u

are in B′, |z − u| ≤ 2r′ ≤ 2βr. So in this case as well, we conclude that

fΩM (v) ≥ βr. (4.12)

We can now complete the proof with a volume packing argument. For each v ∈ g(S2), we

consider the ball bv = ball(v, β2 r). Inequality (4.12) implies that these balls are disjoint. More-

over, (4.11) implies that these balls are all contained in ball(c, (α+ β
2 )r). It follows that the number

of balls bv can be at most c4.11.10 =
(

2α
β + 1

)d
.

Lemma 4.11.11. For all v ∈MΩ, |g−1(v)| ≤ c4.11.11, where c4.11.11 is a constant that depends only

on the meshing parameters.

Proof. Let U = {h(B′) : B′ ∈ g−1(v)}. Corollary 4.11.6 implies that |g−1(v)| ≤ (d + 1)c4.11.5|U |.
So, it will suffice to prove that |U | ≤ c4.11.11

(d+1)c4.11.5
.

Fix B′ = ball(c′, r) ∈ g−1(v) and let u = h(B′). If u ∈ MΩ then u = v and |U | = 1. So, we

may assume that there is some domain Ω′′ ∈ children(Ω) centered at v. Let r′′ be the radius of Ω′′.

There are two cases to consider.

Case 1: u ∈ U1 = {u ∈ U : |u− v| ≤ 2εr′′}. Lemma 4.11.1 implies that B′ ⊂ BΩ′′ . Lemma 4.11.2

implies that r′ ≥ (1 − 2δ − 2γ − 2ε)r′′. Theorem 4.11.5 says that BΩ′′ can only be covered c4.11.5

times by the balls B′. So, by volume packing |U1| ≤ α, where α = (1− 2δ − 2γ − 2ε)−d.

Case 2: u ∈ U2 = {u ∈ U : |u− v| > 2εr′′}. Lemma 4.11.8 implies that |U2| ≤ c4.11.8.

We now conclude that |U | = |U1|+ |U2| ≤ α+ c4.11.8. Choosing c4.11.11 = (d+1)c4.11.5(α+ c4.11.8)

completes the proof.

4.12 The Quality Invariant

In this section, we will prove that NetMesh maintains the quality invariant throughout the course

of the algorithm. As shown in Section 4.11, this is an important property to have. Our goal will

be to prove the following.

Theorem 4.12.1. For any input, the intermediate meshes of the NetMesh algorithm are τ ′′-

quality, where τ ′′ depends only on the mesh parameters.

The proof will follow directly from Lemmas 4.12.2 and 4.12.8 below. The former guarantees

that the quality is bounded after every call to InsertInput. The latter guarantees that the quality

is bounded throughout the Clean operation.
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4.12.1 Quality during input insertion.

In this section, we will show that starting with a τ -quality mesh and inserting an input point

results in a τ ′-quality mesh where τ ′ is a constant that depends only on the meshing parameters.

Throughout this section, let M be the τ -quality starting mesh and let M ′ be the mesh after

executing InsertInput(v) for some v ∈ P . Whenever we refer to a cell VorM (u) or VorM ′(u), ru

and r′u denote the respective in-radii and Ru, R
′
u denote the out-radii. We say that a cell VorM (u)

is caged during InsertInput if a new cage is added that is contained in VorM (u).

Lemma 4.12.2. There is a constant τ ′ depending only on the meshing parameters such that the

mesh after every call to InsertInput is τ ′-quality.

Proof. The Clean procedure explicitly guarantees that the starting mesh M is τ -quality. We need

to prove that all cells VorM ′(u) (excepting cage vertices) have aspect ratio at most τ ′, i.e. R′
u

r′u
≤ τ ′.

Fix one such u. There are four different cases to consider:

1. The Voronoi cell in M , VorM (u), had aspect ratio at most τ .

2. u = CΩ is a newly created cage.

3. u was a cage vertex in M that got released.

4. u = v is the newly inserted input vertex.

Case 1: VorM (u) had aspect ratio at most τ . If VorM (u) was caged during InsertInput

then Lemma 4.12.4 implies that VorM ′(u) has aspect ratio at most c4.12.4. Otherwise, Lemma 4.12.3

implies that ru ≤ c4.12.3r
′
u. In this case, the out-radius cannot go up with the addition of more points

so R′
u ≤ Ru. Thus, since Ru ≤ τru, we get that R′

u ≤ c4.12.3τr
′
u as desired.

Case 2: u = CΩ is a newly created cage. For this case, Lemma 4.12.7 implies that R′
u ≤

c4.12.7r
′
u.

Case 3: u was a cage vertex in M that got released. If u is caged then Lemma 4.12.4

implies that its aspect ratio is at most c4.12.4. Otherwise, Lemma 4.12.3 implies that ru ≤ c4.12.3r
′
u.

Let CΩ be the released cage and let c be its center. The cage spacing guarantees that rΩ ≤ sru,

where s = (δ − γ)(1− δ − γ). So, it follows that

rΩ ≤ c4.12.3sr
′
u. (4.13)

Now, we must consider the cases where v encroached the inside or the outside of Ω. For an outer

encroachment, Lemma 4.12.5 implies that Rc ≤ c4.12.5rΩ, where Rc is the out-radius of VorM (CΩ).

The out-radius of a cage is strictly greater than the out-radius of its cage vertices, so R′
u < Rc and

thus by (4.13), R′
u < c4.12.5c4.12.3sr

′
u.

For an inner encroachment, we call GrowCage, which conditionally adds a larger cage around

the existing cage before releasing it. Lemma 4.12.6 implies that R′
u ≤ c4.12.6rΩ. So, (4.13) implies

R′
u ≤ c4.12.6c4.12.3sr

′
u.

Case 4: u = v is the newly inserted input vertex. Note that in all of the preceding cases,

inserting u only increased the aspect ratio bound. Consequently, by the time InsertInput actually
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adds u to the mesh, it is added to a quality mesh M ′′ with the same domain hierarchy as M ′. Let

Ω be the domain u is inserted into. Let w be the nearest vertex to u in M ′′
Ω. Note that u is ε-medial

in M ′′, for otherwise we would have created a new domain or yielded when inserting w, and so

fΩM ′′(u) ≤ 1
ε |u − w| ≤ 3

εr
′
u. Since M ′′ is quality and the D-ball centered at the farthest corner of

VorM ′(u) is empty in M ′′, Lemma 4.11.3 implies that R′
u ≤ c4.11.3f

Ω
M ′′(u). Thus, R′

u ≤ 3c4.11.3
ε r′u.

Lemma 4.12.3. If VorM ′(u) is cell that is not caged during InsertInput(v), then ru ≤ c4.12.3r
′
u.

Proof. We show the nearest neighbor of VorM ′(u) cannot be too close. If it has a new nearest

neighbor, it can only be from a neighboring cage recently added or the new input vertex. Since

u does not encroach any new cages, they can only decrease the in-radius by a 1 − ε factor. Since

it was not caged, v must have been medial and therefore r′u can only go down by a ε
2 factor. So,

choosing c4.12.3 =
2

ε(1−e) suffices to yield ru ≤ c4.12.3r
′
u as desired.

Lemma 4.12.4. If VorM ′(u) is caged during InsertInput(v), then R′
u ≤ c4.12.4r

′
u, where c4.12.4

depends only on the meshing parameters.

Proof. Let CΩ be the cage. The new Voronoi cell is contained in the newly formed domain, so

R′
u ≤ rΩ. If any other point was added to Ω, then it must have been v and so by construction,

r′u ≥ ε
2rΩ. So, it suffices to choose c4.12.4 =

2
ε .

The following two lemmas show that cage vertices released in the algorithm have out-radii

bounded by a constant times the radius of the cage they belonged to.

Lemma 4.12.5. Let CΩ be a cage in a hierarchical mesh M and let Ω′ = p(Ω). Suppose there

exists a point v that is ε-medial in Ω′ and outer encroaches CΩ. If VorM (CΩ) has aspect ratio

at most τ then the out-radius of VorM (CΩ) is at most c4.12.5rΩ, where c4.12.5 depends only on the

meshing parameters.

Proof. Let R denote the out-radius of VorM (CΩ) and let c be the center of CΩ. Since the aspect

ratio is at most τ , it follows that R ≤ τ fΩ
′

M (c). Let w be the second nearest neighbor of v in MΩ′ .

Then, we can bound fΩ
′

M (c) as follows.

fΩ
′

M (c) ≤ fΩ
′

M (v) + |c− v|
[

fΩ
′

M is 1-Lipschitz
]

(4.14)

≤ |v − w|+ |c− v| [by the choice of w] (4.15)

≤ (1 +
1

ε
)|c− v| [v is ε-medial] (4.16)

≤ 1 + ε

ε2
rΩ. [v encroaches Ω] (4.17)

So, it suffices to choose c4.12.5 =
τ(1+ε)

ε2
.

Lemma 4.12.6. Let CΩ be a cage in a hierarchical mesh M . Let M ′ be the resulting mesh after

GrowCage(CΩ). If VorM (CΩ) has aspect ratio at most τ then the out-radius of VorM ′(u) is at

most c4.12.6rΩ for all u ∈ CΩ, where c4.12.6 depends only on the meshing parameters.
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Proof. Let Ru denote the out-radius of VorM ′(u). In the GrowCage routine, either a new cage is

added or it is not. In the former case, the new cage has radius rΩ
ε so Ru ≤ rΩ

ε in this case. If the

new cage is not added, it is because, rC ≤ rΩ
ε . Because we assumed that the Voronoi cell of CΩ

had aspect ratio at most τ , it follows that RC ≤ τrC ≤ τrΩ
ε . By the definition of RC , we have that

Ru ≤ RC and thus Ru ≤ τrΩ
ε as desired.

Lemma 4.12.7. If u = CΩ is a cage added during InsertInput, then the R′
u ≤ c4.12.7r

′
u, where

c4.12.7 depends only on the meshing parameters.

Proof. If u is caged, then Lemma 4.12.4 implies R
′
u ≤ c4.12.4r

′
u. So, we may assume that u is not

caged. Let c be the center of Ω and Ω′ is the previous domain that CΩ as inserted into. So,

fΩ
′

M (c) = 3ru and thus Lemma 4.12.3 implies that

fΩ
′

M (c) ≤ 3c4.12.3r
′
u. (4.18)

Let B be the D-ball centered at the far corner x of VorM ′(u) and let r be its radius. So,

R′
u ≤ r + rΩ. Since CΩ is not encroached, we have that rΩ ≤ r and thus

R′
u ≤ 2r. (4.19)

Since B was empty in M , Lemma 4.11.3 implies that there is a y ∈ Ω such that

fΩ
′

M (y) ≥ c4.11.3r. (4.20)

So, fΩ
′

M (y) ≤ fΩ
′

M (c) + rΩ by the Lipschitz property of fΩ
′

M . Next, rΩ < r′u, so (4.18) implies that

fΩ′

M (y) ≤ (3c4.12.3 + 1)r′u. So, by (4.20),

r ≤ c4.11.3(3c4.12.3 + 1)r′u. (4.21)

Therefore, (4.19) and (4.21) imply that R′
u ≤ 2c4.11.3(3c4.12.3+1)r′u. Choosing c4.12.7 = 2c4.11.3(3c4.12.3+

1) completes the proof.

4.12.2 Quality during the refinement process.

Lemma 4.12.8 (Clean preserves quality). Let M ′ be any intermediate mesh in the course of

running Clean(M) on a τ ′-quality mesh M . Then, M ′ is τ ′′-quality, where τ ′′ depends only on

the meshing parameters.

Proof. Let V = VorΩM ′(v) for some v ∈M ′
Ω and Ω ∈ HM ′. We need to prove that the aspect ratio

RV

rV
is at most τ ′′. There are two cases: V is the Voronoi cell of a vertex or V is the Voronoi cell of

a cage.

Case 1: V is the Voronoi cell of the vertex v. First, we observe that there is D-ball

B = ball(x,RV ) centered on the farthest corner of V . By Lemma 4.11.3, RV ≤ 24τ ′2fΩM (v). Now,

57



we observe that rV ≥ 1
3 f

Ω
M ′(v) by Lemma 4.6.2. We apply Lemma 4.18.1 to get that rV ≥ 1

3K ′ f
Ω
M (v).

So, we get that RV

rV
≤ 72K ′τ ′2.

Case 2: V is the Voronoi cell of a cage centered at v. Since no new cages are created

during Clean, it must be that v ∈ M . Let c be the center of the cage C that contains v. The

cage spacing guarantees that rV ≥ δ−2γ
2 |c − v|. Let s be the Steiner point whose insertion caused

C to be released. Let M ′′ be the mesh it was inserted into and let Ω′ be the domain it encroached.

Now, RV cannot be larger than the out-radius of Vor(C) in M ′′, which, in turn, is at most RC , the

out-radius of Vor(C) in M because Voronoi cells can only shrink during cleaning. We now bound

RC as follows:

RC ≤ τ ′rC
[

because M is τ ′-quality
]

(4.22)

≤ τ ′fΩ
′

M (c) [by Lemma 4.6.2] (4.23)

≤ τ ′K ′fΩ
′

M ′′(c). [by Lemma 4.18.1] (4.24)

Now, since s was inserted by a Clean operation into Ω′, fΩ
′

M ′′(c) ≤ 3|c − s|. Moreover, since s

encroaches, we have that |c− s| ≤ |c−v|
ε . So, we conclude that

RV ≤
3τ ′K ′(1 + ε)

ε(1 − ε)(δ − 2γ)
rv.

4.13 Point Location Analysis

Definition. A vertex v ∈M touches an uninserted point u ∈ P \M if when v was inserted into

M there were intersecting D-balls Bu and Bv containing u and v respectively.

The quality invariant and Theorem 4.8.1 guarantee that only a constant number of balls are

created or destroyed during an insertion, so the total amount of point location work done on any

input point is O(t), where t is the number of times it was touched.

Theorem 4.13.1. The total cost of point location in the NetMesh algorithm is O(n log n).

Proof. As noted before, it suffices to count the number of touches on uninserted input points

throughout the algorithm. Since there are only O(log n) rounds, it will suffice to show that no

input point can be touched more than a constant number of times in a single round.

LetM be the mesh at the start of a round. Consider any point p ∈ P . We will show that p cannot

be touched more than a constant number of times in this round. By definition, a point x touches p

if dDM′ (p, x) ≤ 1 in the mesh M ′ just prior to inserting x. So, it follows that dBM
(p, x) ≤ 1 because

D-balls in M ′ are empty of points of M . Moreover, by Lemma 4.10.2, dDM
(p, x) ≤ 2. Therefore,

the set of points that can touch p this round are all contained in one of the constant number of

D-balls that are within 2 hops of p in GDM
. In Lemma 4.13.2 below, we show that only a constant
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number of points are added to any D-ball in a single round. Thus, the total number of points that

can touch p in a round is at most a constant.

Lemma 4.13.2. In any round starting with a mesh M , at most a constant number of points are

added to any D-ball of M .

Proof. Fix a particular round and let B be a D-ball of M . Let M ′ denote the mesh at the end of

the round. Let P ′ denote the input points of M ′. We wish to upper bound the number of points

of M ′ in B. By standard mesh size analysis,

|M ′ ∩B| =
∑

Ω∈HM′

O

(

∫

BΩ∩B

dx

fΩ
P ′
Ω
(x)d

)

≤
∑

Ω∈HM′

O

(

∫

BΩ∩B

dx

fΩ
P ′
Ω∪MΩ

(x)d

)

. (4.25)

Lemma 4.13.3 shows that there are only c4.13.3 terms in this summation and Lemma 4.13.6 shows

each term is at most c4.13.6. Thus, we conclude that |M ′ ∩B| ≤ c4.13.3c4.13.6.

Lemma 4.13.3. Let M and M ′ be the meshes before and after a round of the NetMesh algorithm.

For any D-ball B in M ′, at most a constant number of domains of HM ′ intersect B.

Proof. Let x be the center of B. There are only a constant number of domains of HM intersecting

B, because each contains a D-ball intersecting B and Theorem 4.8.1 implies there can only be a

constant number of such balls. Any newly created domains must have been caused by the insertion

of an input point y ∈ M ′ \M . However, if the new domain intersects B then either y caused a

cage from M to grow or dBM
(x, y) ≤ 5. In either case, there are only a constant number of new

domains intersecting B.

In the following lemmas, we fix a particular domain Ω and use the following simplified notations.

We number the k input points added this round as P ′
Ω \ PΩ = {p1, . . . , pk} where the ordering is

the one given in Lemma 4.13.4 below. The part of the ball of Ω contained in B is defined as

A = BΩ ∩B. The near input points are denoted Q and are formally defined as

Q = {q ∈ P ′
Ω \ PΩ : dBM

(q, x) ≤ 5 for some x ∈ B}.

The index set of the far input points is I = {i : pi /∈ Q} and I0 = I ∪ {0}. Let Si = MΩ ∪
{p1, . . . , pi} and set S0 = M . The function fi is equal to fΩSi

.

We partition the set A into pieces based on which far point was the last to affect the feature

size:

Uj = {x ∈ A : max{i ∈ I : fi(x) 6= fi−1(x)} = j}

and

U0 = A \
⋃

j∈I
Uj.
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Define hi and hij as

hi =

∫

A

dx

fi(x)d

and

hij =

∫

Uj

dx

fi(x)d
.

Since A is the disjoint union of {Uj : j ∈ I0},

hi =
∑

j∈I0
hij .

Lemma 4.13.4. There exists an ordering {p1, . . . , pk} of P ′
Ω \PΩ, such that hi− hi−1 ≤ c4.13.4, for

all i = 1 . . . k.

Proof. The desired ordering is a so-called well-paced ordering. It is one for which fΩSi
(pi) ≥

αfΩSi−1
(pi) for all i. In previous work [MPS08], we showed that the change in the feature size

integral over any domain is at most a constant after inserting a well-paced point. Calling this

constant c4.13.4, it will suffice to show that P ′
Ω \ PΩ is well-paced with respect to MΩ. This requires

the same case analysis as used in Lemma 4.17.4, though it is easier in this case because we only

require the inputs to be well-paced with respect to M −Ω rather than the stronger condition that

they be well-paced with respect to the bounding cage. Alternatively, one could get an explicit

ordering directly from the algorithm by keeping a list for each domain, appending new input points

to the list corresponding to the domain that contains them, and appending the list for a released

domain to the list of its parent. That the resulting list satisfies the well-paced condition is immediate

from the algorithm and the feature size invariant.

Lemma 4.13.5. |Q| ≤ c4.13.5, where c4.13.5 is a constant that depends only on d and the meshing

parameters.

Proof. By definition, q ∈ Q implies that dBM
(q, x) ≤ 5 for some x ∈ B. It is easily checked that

Theorem 4.11.9 and Lemma 4.10.2 implies that at most 10c4.11.9 D-balls can contain points of Q.

Each round is defined by selecting only a constant size net from each D-ball. So each D-ball only

contributes at most a constant number of points to Q and thus the total size of Q is at most a

constant.

Lemma 4.13.6.
∫

BΩ∩B
dx

fΩ
P ′
Ω
∪MΩ

(x)d
≤ c4.13.6, where c4.13.6 is a constant that depends only on d and

the meshing parameters.

Proof. In our simplified notation, the statement reduces to proving that hk ≤ c4.13.6. Writing hk as
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a telescoping sum, we get

hk = h0 +
k
∑

i=1

(hi − hi−1)

= h0 +
∑

pi∈Q
(hi − hi−1) +

∑

i∈I
(hi − hi−1)

≤ h0 + c4.13.4c4.13.5 +
∑

i∈I
(hi − hi−1) [by Lemmas 4.13.4 and 4.13.5]

Far input points cannot change the feature size by very much. This is formalized in Lemma 4.19.2,

where it is proven that
∑

i∈I
(hi − hi−1) ≤ (c4.19.2 − 1)h0.

The feature size in an empty ball cannot be too small compared to its radius. Specifically,

Lemma 4.19.3 shows that h0 ≤ c4.19.3. So setting c4.13.6 = c4.13.4c4.13.5+c4.19.2c4.19.3 suffices to complete

the proof. See Appendix 4.19 for Lemmas 4.19.2 and 4.19.3 and their proofs.

4.14 Finishing the mesh

The finishing process takes a hierarchical quality mesh and returns a well-spaced mesh.

Theorem 4.14.1. Given a hierarchical quality mesh, the FinishMesh procedure runs in O(m)

time, where m is the size of the output mesh.

Proof. The GrowCage and Clean procedures preserve the quality of the mesh, so each insertion

takes constant time. There is no point location work to be done, so the total running time is linear

in the number of points added.

4.15 Conclusion and Future Work

In this chapter, we have given an algorithm for generating quality hierarchical meshes of point sets

with size O(n) in O(n log n) time. We also showed how to extend these hierarchical meshes to

traditional well-spaced meshes in optimal output-sensitive time O(n log n+m). The algorithm and

its analysis introduce novel uses of ǫ-nets and the linear-size meshing theory introduced in [MPS08].

Future Work We have restricted our discussion to the case of point set inputs. We expect it

should now be possible to design a work efficient algorithm for inputs with higher dimensional

features such as segments and faces. The algorithm presented is basically a work efficient parallel

algorithm. It should be possible to show the present algorithm runs in polylog parallel time with

no increase in work and thus beating the time and work bounds in parallel SVR [HMP07].
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Yet another issue is integrating ideas from the NetMesh algorithm into the already relatively

fast SVR code [AHMP07]. Future experiments in this direction are in order. The algorithm removes

the spread term in the run time for the mesh based persistent homology algorithms [HMOS10]. It

may also have applications for efficient surface reconstruction especially in the higher dimensional

cases[Dey07].

4.16 The Ball Cover Theorem

In this section we prove that any open ball that contains no points from a set P is covered by d

D-balls of DelP . The main tool we use is Carathéodory’s Theorem.

4.16.1 Carathéodory’s Theorem

Carathéodory’s Theorem is a classic result on convex sets that is critical to our proof of the D-ball

Cover Theorem (Theorem 4.10.1).

Theorem 4.16.1 (Carathéodory’s Theorem). Let A ⊂ R
d. If x ∈ cone(A) then x ∈ cone(A′) for

some A′ ⊆ A such that |A′| ≤ d. If x ∈ conv(A) then x ∈ conv(A′) for some A′ ⊆ A such that

|A′| ≤ d+ 1.

We will need the following extended form of Carathéodory’s Theorem for V-polyhedra, i.e. those
formed by the Minkowski sum of a polytope and a cone.

Corollary 4.16.2. If x ∈ conv(A) + cone(B), then there exist subsets A′ ⊂ A and B′ ⊂ B such

that

x ∈ conv(A′) + cone(B′) and |A′|+ |B′| ≤ d+ 1.

Moreover, if |A′| = 0 then |B′| ≤ d.

Proof. Using the cone form of Carathéodory’s Theorem, it suffices to observe that

x ∈ conv(A) + cone(B) if and only if

[

x

1

]

∈ cone

[

A B

1 0

]

.

We will also make use of the following technical lemma related to V-polyhedra.

Lemma 4.16.3. If cone(v) ⊆ conv(A) + cone(B) for some v ∈ R
d then v ∈ cone(B).

Proof. We will prove the contrapositive. Suppose that v /∈ cone(B). Then for a sufficiently large t,

d(tv, cone(B)) > maxa∈A |a|. Let z = a+ b be the nearest point of conv(A) + cone(B) to tv, where
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a ∈ conv(A) and b ∈ conv(B).

|tv − z| ≥ |tv − b| − |z − b|
= |tv − b| − |a|
> 0.

Thus, tv /∈ conv(A) + cone(B) and therefore cone(v) 6⊆ conv(A) + cone(B).

Lemma 4.16.4. If c is a point in the V-polyhedron conv(Q) + cone(H), where c 6= 0 and Q 6= ∅,
then for all x ∈ R

d, either or both of the following hold:

1. xT (q − c) ≥ 0 for some q ∈ Q, or

2. xTh > 0 for some h ∈ H.

Proof. Let the coefficients αi and βj be such that

c =

|Q|
∑

i=1

αiqi +

|H|
∑

j=1

βjhj ,

where αi, βj ≥ 0 and
∑

αi = 1. Suppose for contradiction that xT (qi − c) < 0 for all qi ∈ Q, and

xThj ≤ 0 for all hj ∈ H. So, it follows that

|Q|
∑

i=1

αix
T (qi − c) +

|H|
∑

j=1

βjx
Thj < 0.

Factoring this expression implies that

xT





|Q|
∑

i=1

αiqi +

|H|
∑

j=1

βjhj −
|Q|
∑

i=1

αic



 < 0.

However, the left side of the above inequality simplifies to xT (c− c) = 0, a contradiction.

Lemma 4.16.5. If c ∈ cone(H) for some H ⊂ R
d and Bc is a ball centered at c that does not

contain the origin, then for all x ∈ Bc, there exists h ∈ H such that xTh > 0.

Proof. Since c ∈ cone(H), there are nonnegative coefficients {βh}h∈H such that c =
∑

h∈H αhh. Fix

any x ∈ Bc. Since 0 /∈ Bc, |c− x| < |c− 0| and therefore xT c > |x|
2 > 0. Suppose for contradiction

that xTh ≤ 0 for all h ∈ H. Then xT c =
∑

h∈H αhx
Th ≤ 0, a contradiction.

4.16.2 A simpler version of the D-ball Cover Theorem

We warm up with a simpler version of the main result. It deals with the special case of balls

centered in bounded Voronoi cells. It only proves the weaker bound of d+1 rather d balls to cover

and it does not prove that the covering balls are pairwise intersecting.
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We start with a lemma that gives a sufficient condition for a point x to be in a bounded D-ball

Bq.

Lemma 4.16.6. Let c, q, and v be three points such that vT q = vT c = 0. Let Bq be an open ball

centered at q with v on its boundary. Let Bc be an open ball centered at c that does not contain v.

If x ∈ Bc and xT (q − c) ≥ 0 then x ∈ Bq.

Proof. Let x ∈ Bc and xT (q − c) ≥ 0 according to the hypothesis. Since xT (q − c) ≥ 0, we have

that

xT q ≤ xT c. (4.26)

Since x ∈ Bc and v /∈ Bc, |c− x| < |c− v| and therefore because vT c = 0,

xTx− 2xT c < vT v. (4.27)

It will suffice to prove that |q − x| < |q − v|. This follows from the following inequalities.

|q − x|2 = qT q − 2xT q + qT q

≤ qT q − 2xT c+ qT q [by (4.26)]

≤ vT v + qT q [by (4.27)]

≤ |q − v|2.
[

because vT q = 0
]

Theorem 4.16.7. Let M be a finite set. For any ball Bc ∈ BM centered in a bounded Voronoi cell,

there is a collection of at most d+ 1 D-balls that cover Bc.

Proof. Let c be the center of Bc and let v be the nearest neighbor of c in M . By Carathéodory’s

Theorem, there exists a subset Q of the corners of Vor(v) such that c ∈ conv(Q) and |Q| ≤ d + 1.

So, for any x ∈ R
d, there is a q ∈ Q such that xT (q − c) ≥ 0. Each q ∈ Q corresponds to a

D-ball Bq of radius |q − v|. Without loss of generality, we may assume v is the origin. Therefore,

Lemma 4.16.6 implies that x ∈ Bq.

4.16.3 The D-ball Cover Theorem

To prove the more general ball cover theorem, we need to be more careful to deal with infinite

D-balls. The infinite D-balls are those corresponding to the facets of the convex hull of M . Thus,

they are in correspondence with the unbounded 1-faces of VorM . The Voronoi cells of VorM are V-
polyhedra. That is, they can be written as the Minkowski sum of a convex polytope and a polytopal

cone. So, there exists finite sets A,B such that VorM (v) = conv(A) + cone(B). Moreover, the set

A is a subset of the Voronoi corners and B is a subset of the normals of the facets of conv(M).

Thus, the points of A and the vectors of B are all in correspondence with the D-balls of DM .
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Theorem 4.16.8 (The D-ball Cover Theorem). For all B ∈ BM , there exist d D-balls b1, . . . , bd ∈
DM such that B ⊆ ⋃d

i=1 bi. Moreover, these D-balls have a nonempty, common intersection.

Proof. Let c be the center of B and let v be the nearest neighbor of c in M . Consider the ray

starting from v that passes through c parameterized as r(t) = v + t(c − v) for t ≥ 0. We must

distinguish between the cases where r(t) ∈ Vor(v) for all t ≥ 0 and where there is some t for which

r(t) /∈ Vor(v).

Case 1: r(t) ∈ Vor(v) for all t ≥ 0. Voronoi cells are V-polyhedra and can be written as

Vor(v) = conv(Q) + cone(H) where Q is a subset of D-ball centers and H is a set of normals of

unbounded D-balls. Without loss of generality, we may assume that v = 0. By Carathéodory’s

Theorem, there is a subset H ′ ⊆ H of size d such that c ∈ cone(H ′). So, Lemma 4.16.5 implies

that for all x ∈ B there is an h ∈ H ′ for which xTh > 0. So, B is covered by the d unbounded

D-balls corresponding to the vectors in H ′. Moreover, cTh > 0 and therefore, the chosen D-balls

have a common intersection at c.

Case 2: r(t) /∈ Vor(v) for some t ≥ 0. In this case, the ray must leave the Voronoi cell and so

for some t′, the point c′ = r(t′) is in Vor(u)∩Vor(v) for some u in M . The set Vor(u)∩Vor(v) is a
d− 1-dimension V-polyhedron, and thus can be written as conv(Q) + cone(H) where Q is a subset

of D-ball centers and H is a set of normals of unbounded D-balls. So, by Carathéodory’s Theorem,

there are subsets Q′ ⊂ Q and H ′ ⊆ H such that c ∈ conv(Q′) + cone(H ′) and |Q′| + |H ′| ≤ d.

Without loss of generality, we may assume v+u
2 is the origin. For q ∈ Q′ or h ∈ H ′ let Bq and

Bh be the bounded and unbounded D-balls corresponding to q and h respectively. Fix any x ∈ B.

Lemma 4.16.4 implies that xT (q − c) ≥ 0 for some q ∈ Q′ or xTh > 0 for some h ∈ H ′. In the

former case, Lemma 4.16.6 implies that x ∈ Bq. In the latter case, x ∈ Bh, because 0 is on the

boundary of Bh for all h ∈ H.

We now observe that 0 ∈ Bq for all q ∈ Q′, because |q − v|2 = |q|2 + |v|2 > |q − 0|2. So, the

bounded D-balls all have a common intersection at 0 and in fact at a sufficiently small open ball

U centered at 0. So the intersection of U with the relative interior of cone(H ′) is contained in the

common intersection of the chosen D-balls.

4.17 Technical Lemmas for Size Bounds

The following useful lemma guarantees that the feature size of any mesh vertex is maximized at the

time it is inserted. Such a fact would be trivial if not for the possibility to change the underlying

domains.

Lemma 4.17.1. If M is a hierarchical mesh constructed by the NetMesh algorithm, then for all

v ∈M ,

max
i

max
Ω∈Hi:
v∈MiΩ

fΩPi
(v) = f

Ωj

Pj
(v),

where j is the insertion time of v and Ωj ∈ Hj is the domain it is inserted into.
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Proof. If v /∈ P then Ωi is the unique domain such that v ∈ MΩi
. However, PjΩj

⊆ PiΩi
. Thus,

fΩi

Pi
(v) ≤ f

Ωj

Pj
(v) for non-input points.

If v ∈ P , then it is possible for v to be in more than one MΩ. Clearly, the input feature size of v

will be maximized at the highest domain in the hierarchy that contains it, i.e. at the largest scale.

At time j, this domain is Ωj Just as with the Steiner point case, any changes to this highest level

domain do not eliminate any input points and therefore fΩi

Pi
(v) ≤ f

Ωj

Pj
(v) in this case as well.

Lemma 4.17.2. Let M be a τ -quality hierarchical mesh constructed incrementally. Given two

vertices u, v ∈M , if u was inserted before v then λv ≤ |u−v|
1−ε .

Proof. Let i be the insertion time of v and let Ω ∈ Hi be the domain it was inserted into. So,

λv = fΩMi
(v). If either u ∈ MiΩ or u /∈ BΩ then λv ≤ |u − v|. So we may assume u ∈ BΩ \M ′

Ω

and thus for some Ω′ ∈ children(Ω), u ∈ BΩ′ . Since v does not encroach on Ω′, we have that

|cΩ′ − v| ≤ |u−v|
1−ε . Moreover, cΩ′ ∈MΩ, so λv ≤ |cΩ′ − v| ≤ |u−v|

1−ε as desired.

Lemma (Lemma 4.9.1). If M is a hierarchical mesh constructed incrementally that satisfies the

insertion radius invariant, then M also satisfies the feature size invariant.

Proof. Let Ω be any domain and let v be any vertex of MΩ. Let u be the nearest neighbor of v

in MΩ. This implies that fΩM (v) = |u − v| and so it will suffice to prove fΩP (v) ≤ Kv|u − v|. Let

i (respectively j) be the insertion time of v (respectively u) and let Ωi (Ωj respectively) be the

domain it was inserted into. Let K ′
v ∈ {K ′

C ,K
′
S ,K

′
I} be the appropriate constant depending on

how v was inserted and similarly for K ′
u. We choose K so that

K ≥ max{K ′
C ,K

′
S ,K

′
I}

1− ε
+ 1 (4.28)

There are two cases to consider.

Case: u inserted before v:

fΩP (v) ≤ fΩi

Pi
(v) [by Lemma 4.17.1]

≤ K ′
vλv [by assumption]

≤ K ′
v
|u− v|
1− ε

[by Lemma 4.17.2]

< K|u− v|. [by (4.28)]
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Case: v inserted before u:

fΩP (v) ≤ fΩP (u) + |u− v|
[

fΩP is 1-Lipschitz
]

≤ f
Ωj

Pj
(u) + |u− v| [by Lemma 4.17.1]

≤ K ′
uλu + |u− v| [by assumption]

≤ K ′
u

|u− v|
1− ε

+ |u− v| [by Lemma 4.17.2]

≤ K|u− v|. [by (4.28)]

Lemma 4.17.3. Let Ω be any domain in the output. There exists an ordering p1 . . . , pj of the

vertices of PΩ such that for each i = 3 . . . j, fΩPi
(pi)/f

Ω
Pi−1

(pi) ≥ 12
ε3

+ 1, where Pi = {p1, . . . , pi}.

Proof. The desired ordering can be found by starting with the two farthest points of PΩ as p1 and

p2 followed by greedily adding any point that satisfies the desired property. Suppose this process

gets stuck after adding i points and some j − i points are leftover. Let p ∈ Pi be such that some

leftover point lies in VorPi
(p) and let q be the farthest such point from p. Let p′ be the nearest

neighbor of p in Pi. Let r = fPΩ
i
(q) = |p − q|. Since the ordering was stuck, it must be that

|q−p′|/|q−p| ≥ 12
ε3
+. By the triangle inequality, |p′−p| ≥ |p′−q|− |p−q|. Combining the previous

two statements give that |p′−p| ≥ 12r
ε3

. By our choice of p′ as the nearest neighbor of p, we get that

annulus(p, 2r, 6rε3 ) is contained in VorPi
(p). Moreover, by our choice of q, this annulus is empty of

points from PΩ, contradicting Lemma 4.9.3.

Lemma 4.17.4. Let q and q′ be any two input points and let r be the distance between them. If

A = annulus(q, 2r, 6r
ε3
) contains no input points, then q and q′ are inside some cage contained in

A for all intermediate meshes after each has been inserted.

Proof. Let p1, . . . , pk be all input points in ball(p, 2r) ordered by the order in which they were

inserted. Clearly q and q′ are among the pi’s. We will proceed by induction on k. In the base case,

there are only two points, p1 and p2. Let Ω be the domain into which p2 was inserted and P ′ and

M ′ be the input and mesh vertices in the domain just after insertion. Since A contains no input

points and fΩP is Lipschitz, fΩP (p1) ≥ 6r
ε3
− 2r ≥ 4r

ε3
. So, by Lemma 4.9.2, fΩM (p1) ≥ 4r

Kε3
. Since the

algorithm chooses ε < 1
K , we have that fΩM (p1) ≥ 4r

ε2
and therefore, using the Lipschitz property,

fΩM (p2) ≥ fΩM (p1) − |p1 − p2| ≥ 4r( 1
ε2
− 1). After insertion, we have that fΩM ′(p2) ≤ 4r, because

p1 ∈M ′
Ω. So, the ratio of nearest to second nearest neighbor distances for p2 is bounded as

fΩM ′(p2)

fΩM (p2)
≤ 4r

4r( 1
ε2
− 1)

< ε.

Thus, the algorithm adds a cage around p1 and p2 as desired.
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The inductive step has two cases. Either the ith point is added inside or outside the cage

surrounding the first i− 1 points (guaranteed to exist by induction). The latter case is identical to

the base case, so it only remains to consider the case where pi lies inside the cage from the previous

round. If pi does not encroach this cage, then it remains and we are done. If pi does encroach this

cage, then it will grow by a factor of 1
ε . However, it’s total size cannot exceed

1
ε2 times the distance

from pi to the center because otherwise it would not encroach. This distance is at most 4r, so the

cage is in A. Thus, the grown cage also satisfies the induction hypothesis and we are done.

4.18 Technical lemmas regarding the feature size function

The following lemma extends the feature size invariant to mesh vertices in BΩ \MΩ.

Lemma 4.18.1. If (M,H) is a hierarchical mesh of an input set P such that the feature size

invariant holds and no domain is ε-encroached then for all domains Ω ∈ H then for all u ∈M∩BΩ,

fΩP (u) ≤ αfΩM (u),

where α is a constant depending only on the meshing parameters.

Proof. Fix a domain Ω and a vertex u ∈M ∩BΩ. If u ∈MΩ, then the feature size invariant implies

the desired result. So, we may assume that u /∈ MΩ. Let v be the nearest neighbor of u in MΩ.

Since u does not ε-encroach on any domains, we have that

|u− v| ≤ εfΩM (v). (4.29)

So,

fΩM (v) ≤ 1

1− ε
fΩ
M(u), (4.30)

because fΩM is Lipschitz.

fΩP (u) ≤ fΩP (v) + |u− v|
[

fΩP is 1-Lipschitz
]

≤ KfΩM (v) + |u− v| [by the feature size invariant]

≤ (K + ε)fΩM (v) [by (4.29)]

≤ K + ε

1− ε
fΩM (u). [by (4.30)]

For quality meshes, it is possible to extend the feature size invariant to all points in the plane.

Lemma 4.18.2. If M is a τ ′-quality mesh of an input set P such that the feature size invariant

holds and no domain is ε-encroached then for all domains Ω ∈ HM then for all x ∈ BΩ,

fΩP (u) ≤ βfΩM (u),
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where β is a constant depending only on the meshing parameters.

Proof. Fix a domain Ω and a point x ∈ BΩ. Let u be the nearest neighbor of x in M . Observe

that u ∈ BΩ. So by the Lipschitz property of fΩP and Lemma 4.18.1,

fΩP (x) = αfΩM (u) + |u− x|.

Because fΩM is also 1-Lipschitz,

fΩP (x) = αfΩM (x) + (1 + α)|u− x|.

Because we chose u to be the nearest neighbor, the diametral ball of u and x is empty and centered

in BΩ. Thus, Lemma 4.11.3 implies that

|u− x| ≤ 24τ ′2fΩM (x).

So, choosing β = α+ (1 + α)24τ ′2 we have that fΩP (x) ≤ βfΩM (x) as desired.

4.19 Technical Lemmas for the Point Location Analysis

Lemma 4.19.1. For all i ∈ I and x ∈ Ui, f0(x) ≤ c4.19.1fi(x), where c4.19.1 =
1

1−e .

Proof. Fix an index i ∈ I and a point x ∈ Ui. Suppose for contradiction that fi(x) < (1− e)f0(x).

We will show that dBM
(x, pi) ≤ 5, contradicting the hypothesis that i ∈ I.

Recall that for x ∈ Ui, fi(x) 6= fi−1(x). Combined with our supposition that fi(x) < (1−e)f0(x),
this implies that there can be at most one point of MΩ in ball(x, 1

1−e |x − pi|). Call this point z

and let Z denote the set of points of M whose ancestor in MΩ is z.

We will construct a chain of balls B1, . . . , B6 from pi to x. To do this, the following claim is

useful.

If y ∈ ball(x, |x − pi|) does not encroach any domain of HM ′ then ball

(

x+ y

2
,
|x− y|

2

)

∩M ⊆ Z.

We will give the construction using this claim and then give its proof.

Let B1 be the maximal ball of BM tangent to pi centered on xpi. If x ∈ B1, then dBM
(x, p1) ≤ 1,

so we may assume that x /∈ B1 and therefore B1 ⊂ ball(x, |x− pi|). So the claim implies that some

vertex of Z is on the boundary of B1.

Let B4 be the maximal ball of BM tangent to x centered on xz. As with B1, we may assume

that pi /∈ B4 and thus the claim implies some vertex of Z is on the boundary of B4.

If Z = {z} then z ∈ ∂(B1) ∩ ∂(B4) and thus dBM
(x, pi) ≤ 1. So, we may assume that there is

some domain Ω′ ∈ HM ′ centered at z whose parent is Ω. Let r′ be the radius of Ω′. Since Ω′ is not

encroached and ε < 1
3 , annulus(z, r

′, 3r′) is empty of points of M . Any two points a, b of such an

annulus have dBM
(a, b) ≤ 3. This is easily seen by considering the plane through a, b, and z and
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packing the annulus with balls of radius r′ as in Figure 4.4. Since both B1 and B6 intersect the

annulus, we may choose a ∈ B1 and b ∈ B6 and let B2, . . . , B5 be the balls packing the annulus on

the shortest path from a to b. The balls B1, . . . , B6 witness that dBM
(x, pi) ≤ 5 as desired.

a

b

Figure 4.4: Any two points a, b ∈ annulus(z, r′, 3r′) have dBM
(a, b) ≤ 3.

To conclude the proof, we need only prove the claim. Let B′ = ball(c, r) be the ball under

consideration where c = x+y
2 and r = |x−y|

2 . Suppose for contradiction that there exists w ∈
B′ ∩ (M \ Z). Then, |c− w| < r = |x− c|. Let v be the ancestor of w in MΩ and note that v 6= z.

Observe that |x − y| ≤ (1 − ε)|x − v| for otherwise f0(x) ≤ |x − v| ≤ 1
1−εfi(x) contrary to our

supposition. It follows that

|x− v| ≥ 2εr

1− ε
. (4.31)

We can now bound |v − w| in terms of r as follows.

|v − w| ≤ ε|y − v| [y does not encroach]

≤ ε(|y − c|+ |c− w|+ |w − v|) [by the triangle inequality]

<
2εr

1− ε
. [|y − c| = r and |c− w| < r] (4.32)

This allows us to derive the following contradiction.

|c− w| ≥ |x− v|+ |v − w| − |c− x| [by the triangle inequality]

>

(

2r

1− ε
− 2ε

1− ε
− 1

)

r [by (4.31) and (4.32)]

= r.

Lemma 4.19.2.
∑

i∈I(hi − hi−1) ≤ (c4.19.2 − 1)h0.
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Proof. First, we bound hjj using Lemma 4.19.1 as follows.

hjj =

∫

Uj

dx

fj(x)d
≤ cd4.19.1

∫

Uj

dx

f0(x)d
= cd4.19.1h0. (4.33)

For any i ∈ I, define i∗ to be the largest element of I0 less than i. If i, j ∈ I and i > j, then

hij −h(i−1)j = 0 as guaranteed by the definition of Uj . Because fi ≤ fi′ for all i ≤ i′, h(i−1)j ≥ hi∗j

for all i. The desired bound is now proven as follows.

∑

i∈I
(hi − hi−1) ≤

∑

j∈I0

∑

i∈I:i≤j

(hij − h(i−1)j)

≤
∑

j∈I0

∑

i∈I:i≤j

(hij − hi∗j) [i∗ ≤ i− 1]

=
∑

j∈I0
(hjj − h0j)

≤
∑

j∈I0
(cd4.19.1 − 1)h0j [by (4.33)]

= (cd4.19.1 − 1)h0.

Choosing c4.19.2 = cd4.19.1 completes the proof.

Lemma 4.19.3. h0 ≤ c4.19.3.

Proof. There are four types of domains to consider: the smallest domain Ω such that B ⊂ BΩ,

domains Ω such that |MΩ| = 0, domains Ω such that |MΩ| = 1, and domains Ω such that MΩ

contains an entire cage CΩ′ of some domain Ω′ ∈ HM . In the first case, the result follows easily

from Lemma 4.11.3. In the second case, fΩM =∞, and thus, the integral evaluates to 0. In the third

case, it is easy to evaluate the integral directly using polar coordinates to find that it is constant.

The last case is the interesting one. We use the coarse bounds that fΩM (x) ≥ δrΩ′ for (1 −
δ − γ)rΩ′ ≤ |x − cΩ| ≤ 2rΩ′ and fΩM (x) ≥ 1

2 |x − cΩ| for |x − cΩ| > 2rΩ′ . Integrating with polar

coordinates centered at cΩ yields an answer O(log rΩ
rΩ′

). Only a constant number of points in a

round may cause Ω′ to grow because all but one must lie in the Voronoi cell of CΩ and thus they

are all within a constant D-ball distance of one another. So, rΩ
rΩ′

= O(1) and thus the integral also

evaluates to O(1).
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Chapter 5

On Fat Voronoi Diagrams

A Voronoi diagram is β-fat if every cell C is contained in a ball at most β times larger than a

ball that it contains. We explore the complexity of cells in fat Voronoi diagrams in R
d with care

to understand the dependence on d. Using standard methods, we prove that the average number

of neighbors of any cell is (4β)d. We then generalize this approach to give a worst case bound

of (4β)d log τ neighbors, where τ is the aspect ratio of the Voronoi cell as defined in the Voronoi

Refinement meshing literature. Note that all of these bounds are independent of the number of

input points. We prove a stronger result in the plane, namely, that no cell in a fat planar Voronoi

diagram has more than 6π
arcsin 1

4β

neighbors. This is in marked contrast to the situation for general

planar Voronoi diagrams or even general fat complexes, both of which may have cells of linear

complexity. These general upper bounds are complemented by a lower bound on the complexity of

fat Voronoi diagrams in Rd, which says that the total number of faces in the diagram is 2Ω(d)
(√

d
β

)d
.

Interestingly, this shows that although the worst-case complexity of Voronoi diagrams is avoided

by fat Voronoi diagrams, so too is the best case.

5.1 Introduction

Many geometric search data structures employ decompositions of space into fat cells to achieve

faster search, better approximation for proximity queries, and lower total complexity (as measured

by the number of faces) when compared to their non-fat alternatives. In this chapter, we explore

the special case of fat Voronoi diagrams with a particular emphasis on bounding the complexity

of the cells locally and understanding the dependence of the dimension, providing both upper and

lower bounds.

We prove that no cell in a fat planar Voronoi diagram has more than O(1) neighbors. We also

prove a bound in higher dimensions on the local complexity that depends on a geometric property

of the cells. These general upper bounds are complemented by a nontrivial lower bound on the

complexity of fat Voronoi diagrams.

Let M be a set of n points in R
d. Recall that the Voronoi cell of a point v ∈ M is the set of
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all points of Rd that have v as a nearest neighbor in M . The in-ball of Vor(v) is the largest ball

contained in Vor(v). It is denoted bv and its radius is rv. The out-ball of Vor(v) is its smallest

enclosing ball. It is denoted Bv and its radius is Rv. We say that Vor(v) is β-fat if Rv/rv ≤ β. We

say that a Voronoi diagram is β-fat if every cell is β-fat.

Recall that the definition of aspect ratio is similar to fatness with the added constraint that the

in-ball and out-ball are centered at v. Although bounded aspect ratio implies fatness, the converse

does not hold (see Figure 5.1). It is known that for all fat complexes, the number of neighbors of

a cell is O(1) on average. However, it is possible to improve these bounds to worst-case guarantees

when the complex is a Voronoi diagram. In Section 5.3, we prove that the total complexity of

a β-fat Voronoi diagram is O(n) and then generalize this to a bound on the complexity of the

cells in any dimension, where the bound depends on the log of the aspect ratio of the cells. This

generalizes the bounds for the complexity of bounded aspect ratio Voronoi diagrams used in mesh

generation [MTTW99, HMP06].

r

R

r

R

Figure 5.1: The cell on the left has good aspect ratio. The cell on the right is fat but it does not
have good aspect ratio.

For the case of planar Voronoi diagrams, we prove a stronger bound, showing that no cell

has more than a constant number of neighbors (see Section 5.4). Such a result does not hold for

general planar Voronoi diagrams or for general fat complexes. There even exist simple examples

where weighted fat Voronoi diagrams have cells with O(n) neighbors (see Figure 5.2), so the result

is not at all obvious. The proof method here is novel in that it exploits a tradeoff between angles

in the Voronoi cell and angles in the Delaunay link (the polygon formed by the union of Delaunay

triangles sharing a vertex). We conjecture that a similar bound holds for higher dimensions as well.

In Section 5.5, we turn our attention to lower bounds. We show that when β is a constant,

the complexity of a cell in a fat Voronoi diagram is at least 2Ω(d log d). Although an integer lattice

gives rise to Voronoi cells with only 2O(d) faces, the fatness of the cubical cells is only
√
d. This

lower bound shows exactly the tradeoff between the fatness and the best-case complexity. Thus,

fat Voronoi diagrams are bounded away from both the best-case and the worst-case complexity of

Voronoi diagrams in general.
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Figure 5.2: Right: A fat Voronoi cell can have arbitrarily many neighbors but at least some of
them must be “skinny”. Left: If weights are allowed on the vertices, the corresponding weighted
Voronoi diagram can be fat and yet have unbounded maximum degree.

5.2 Related Work

The notion of fat objects is quite common in computational geometry. Though several different

definitions exist in the literature, the differences are small (mostly just constant factors) for convex

polytopes as in the case of Voronoi cells. These definitions arise naturally in settings where the

bounds depend on packing arguments. In many cases, fatness is a convenience that permits better

analyses, such as in the case of range searching and point location [OvdS94, dB95]. Fatness has also

been considered for robot motion planning and ray shooting [vdSHO93, vdSO94, dB05, AdG08].

The problem of explicitly computing fat partitions of space was considered by Damian-Iordache [DI04].

Fatness is also a virtue when the complexes are used for point location and proximity search prob-

lems [DGK99, MM99, Gra10].

Erickson gives a thorough analysis of the blowup in Voronoi diagram complexity in low dimen-

sions [Eri01] building on the classical results showing that Voronoi diagrams can have complex-

ity Θ(n⌈d/2⌉) by Klee [Kle80] and Seidel [Sei87]. Researchers have also looked at the complexity

of Voronoi diagrams of random points, showing that this worst case complexity is not the norm.

For example, Dwyer proved that n independent and identically distributed points sampled uni-

formly from a ball have a Voronoi diagram with O(n) complexity [Dwy91]. This result was later

extended by Bienkowski et al. to random samples from a cube [BDadHS05]. The linear complexity

of Voronoi diagrams with bounded aspect ratio (a subset of fat Voronoi diagrams) is exploited in

mesh generation [MTTW99] and is a primary motivation for the current research.

5.3 Fat Linear Complexity

The total complexity of a complex of fat objects has been studied in the context of robot motion

planning [vdSHO93]. The trick to bounding the complexity is to bound the number of larger

neighbors of any cell by volume packing arguments. As shown in the recent paper by Gray, this

trick is directly applicable to the case of fat Voronoi diagrams [Gra10]. Thus, the number of (d−1)-

dimensional faces of the Voronoi diagram is 2O(d)n and the total complexity is 2O(d2)n counting
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faces of all dimensions.1 Although the methods are quite standard and the proofs are not difficult,

we present the full proofs of these results in Theorems 5.3.1 and 5.3.2 below for three reasons: one,

previous proofs use a different definition of fatness that can hide the dependence on the dimension,

which is critical to our analysis; two, we prove slightly tighter bounds on the total complexity with

respect to the dependence on d; and three, the proofs introduce the machinery necessary to prove

a local complexity bound in Theorem 5.3.3.

We begin by ordering the vertices of M by the radius of their in-balls, so u ≺ v when ru < rv,

and ties are broken arbitrarily.

ru

ru

w

vcvu

x

uc

Figure 5.3: The ball at w has is contained in Vv and has radius ru.

Theorem 5.3.1 (Fat Linear Complexity). Let M be a set of n points in R
d. If VorM is β-fat, then

the number of edges in DelM is at most (4β)d|M |.

Proof. We will charge each edge to its smaller neighbor with respect to the ≺ relation. In this way,

it will suffice to show that the number of larger neighbors of any vertex is (4β)d. Let u be any

vertex and let v be any Delaunay neighbor of u such that u ≺ v as in Figure 5.3. Let x be a point

in Vor(u) ∩Vor(v) and let cu be the center of bu, the in-ball of Vor(u). Since both x and cu are in

Bu, their distance is bounded as |x− cu| ≤ (2β − 1)ru.

Let cv denote the center of bv. Since Vor(v) is convex and contains both v and bv, for any

α ∈ [0, 1], the ball centered at wα = αcv + (1 − α)x with radius αrv is contained in Vor(v). In

particular, if α = ru/rv and w = wα, then ball(w, ru) ⊂ Vor(v). Moreover, because x and cv are

contained in Bv,

|x− w| = α|x− cv| ≤ α2Rv ≤ 2βru.

So, by the triangle inequality, |cu − w| ≤ (4β − 1)ru.

We complete the proof by the following volume packing argument. For any larger neighbor v

of u, there is a corresponding w so that ball(w, ru) is contained in B = ball(cu, 4βru). Since these

balls are disjoint (each is in a different Voronoi cell), their total volume cannot exceed the volume

1The actual bound proved by Gray is 22
O(d)

[Gra10], however it is a simple exercise to tighten this bound by a
slightly more careful analysis as shown in Theorem 5.3.2.
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of B. So, the number of larger neighbors of u is at most

Vol(B)

Vol(ball(wα, ru))
=

(4βru)
d
Vd

rduVd
= (4β)d.

This idea easily extends to give the bound on the number of faces of other dimensions.

Theorem 5.3.2. Let M be a set of n points in R
d. If VorM is β-fat, then the number of faces in

VorM is at most (4β)d
2
n.

Proof. Counting the faces of the Voronoi diagram is equivalent to counting simplices in the Delaunay

triangulation. Using the total ordering ≺ on the vertices, we charge each simplex to its minimum

vertex. So, each vertex u can only be charged for a simplex if that simplex contains only larger

neighbors of u and u itself. By the preceding theorem, there are only (4β)d such neighbors so the

total number of j-simplices charged to any vertex is
((4β)d

j

)

. Summing over all values of j from 1

to d yields the desired bound.

The preceding theorems imply an average-case bound on the complexity of the individual cells.

In the rest of this chapter, we will explore the different ways these average-case bounds can be

improved to worst-case bounds.

5.3.1 A Bound on the Local Complexity

In this section we adapt the proof technique from Section 5.3, to prove a worst-case bound on the

number of neighbors of a cell in terms of both its aspect ratio and its fatness. We conjecture that

the dependence on the aspect ratio is not necessary, but such a theorem has proved elusive. Still,

the main theorem of this section generalizes the known results for Voronoi diagrams of bounded

aspect ratio [MTTW99].

Theorem 5.3.3. Let M be a set of n points in R
d. If VorM is β-fat, then for any vertex p ∈ M ,

p has at most (8β)d log τ neighbors, where τ is the aspect ratio of Vor(p).

Proof. Let q1, . . . , qt be the neighbors of p. For each qi, let ball(ci, ri) be the in-ball of Vor(qi) and

let Ri be the radius of the out-ball of Vor(qi). Let xi be the point of Vor(p) ∩Vor(qi) closest to p.

Let αi =
|xi−p|
2βri

. Note that αi < 1 because

αi =
|xi − p|
2βri

=
|xi − q|
2βri

<
2Ri

2βri
≤ 1.

We define a new ball centered at a point wi = αici + (1 − αi)xi with radius r′i = αiri. As before,

the convexity of Vor(qi) implies that ball(wi, r
′
i) ⊂ Vor(qi).
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We will show that wi is not too far from p, but first we must show that wi is not too far from

xi.

|wi − xi| = αi|xi − ci| [by the definition of wi]

≤ αi(2Ri − ri) [because the out-ball of Vor(q) contains ball(ci, ri)]

≤ αi(2βri)− αiri [because Vor(q) is β-fat]

= |xi − p| − r′i.
[

by the definition of αi and r′i
]

Applying the triangle inequality, we get that |p − wi| ≤ 2|p − xi| − r′i. Thus, for each qi, the ball

Bi = ball(wi, r
′
i) is contained in ball(p, 2|xi − p|). Any two such balls are disjoint because each is

contained in a different Voronoi cell.

We partition the neighbors of p based on their distance to p into layers Lj = {qi : s2j ≤ |xi−p| <
s2j+1}, where s = minqi |p − xi|. We have shown that the balls {Bi : qi ∈ Lj} are all contained in

ball(p,maxqi∈Lj
2|xi − p|) which is contained in ball(p, s2j+2)). So, we may bound the volume of

the larger ball by the sum of the volumes of the contained balls, since all are disjoint:

Vol(ball(p, s2j+2)) >
∑

qi∈Lj

Vol(ball(wi, r
′
i)).

Therefore,

(s2j+2)d ≥
∑

qi∈Lj

(r′i)
d ≥

(

s2j

2β

)d

|Lj |.

It follows that |Lj | ≤ (8β)d. There are at most log τ such levels Lj , so there are at most (8β)d log τ

neighbors of p.

Note that this proof requires that the complex is a Voronoi diagram. Indeed, the theorem

is false without this assumption, unlike the preceding theorems which apply (in slightly modified

form) for general fat complexes.

5.4 Local Complexity in the plane

In this section, we prove that the cells of planar fat Voronoi diagrams have constant complexity.

Let VorM be a fat Voronoi diagram. For any p ∈M , let Qp be the set of Delaunay neighbors of p.

That is, for each q ∈ Qp, there is a Voronoi edge (u, v) dual to the Delaunay edge (p, q). For input

points in general position, there is a unique edge eu (ev) in the Voronoi diagram that emanates

from u (respectively v) but is not a boundary edge of Vor(p). Let ℓu and ℓv be the lines containing

eu and ev respectively. We define two relevant angles:

1. θq := the angle between ℓu and ℓv.
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σ

θVoronoi cell

Delaunay link

Figure 5.4: The proof of Theorem 5.4.5 uses the Voronoi cell and the dual Delaunay link. There is
a natural tradeoff between the angle σ subtended from p by an edge of the Voronoi cell and θ, the
angle between the normals of the dual Delaunay edges. Although, the Voronoi cell is convex, the
Delaunay link may not be so one must take care to maintain signs of angles.

2. σq := ∠vpu = ∠uqv.

We observe the following fact about these angles.

∑

q∈Qp

θq ≤ 2π and
∑

q∈Qp

σq ≤ 2π. (5.1)

The first inequality sums the change in the normals along the Delaunay link of p which is a simple

closed curve and thus yields 2π, possibly omitting the non-negative angle at p. The second inequality

follows directly from the convexity of Vor(p). In both cases equality holds for Voronoi cells that do

not intersect the boundary of the bounding region. This gives us two ways to measure the angles,

one from the perspective of the Delaunay triangulation and the other from the perspective of the

Voronoi diagram. Ultimately, we will show that at least one of σq or θq must be larger than a fixed

constant for each neighbor q. This will allow us the bound the size of Qp.

Let q ∈ Qp be any neighbor of p and let (u, v) be the Voronoi edge dual to (p, q) as illustrated

in Figure 5.5. Assume without loss of generality that |q − u| ≤ |q − v|. To simplify notation, let

σ = σq and let θ = θq. Let r be the radius of the in-ball of Vor(q). Let h be the distance from v to

ℓu. We bound h in the following lemma.

Lemma 5.4.1. h ≤ 2βr sinσ

Proof. Let q′ be the point on ℓu such that ∠uq′v = σ. We see that h = |q′ − v| sinσ. Thus, it will
suffice to bound |q′− v|. Let S be the circumcircle of u, v, and q and let c be its center. The point

q′ is also on this circle because ∠uqv = ∠uq′v = σ.

If c is inside the triangle △uqv then we observe that this triangle is acute and its smallest

enclosing ball is S. The radius of the smallest enclosing ball of Vor(q) must be at least the radius

of S because △uqv ⊂ Vor(q). Therefore, |q − v′| ≤ 2|q − c| ≤ 2βr.

If c is outside the triangle △uqv then the asumption that |q−u| ≤ |q− v| implies that |q′− v| ≤
|q − v| ≤ 2βr. So, we conclude that |q′ − v| ≤ 2βr and thus, h ≤ 2βr sinσ as desired.
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Vor(q)

Vor(p)

q

c

q’

v

u

h

θ

σ

ℓu

ℓv

σ

Figure 5.5: An illustration of the proofs of the lemmas on the local complexity of fat Voronoi
diagrams in the plane. The trick is to compare σ and θ by comparing each to h.

Lemma 5.4.2. If θ ≥ 0 then max{σ, θ} ≥ arcsin 1
4β .

Proof. Since β > 1 and σ > 0, the result is trivial for θ ≥ π
2 . So, we may assume that cos θ > 0.

Let c be the center of the in-ball of Vor(q). Clearly, c has distance at least r from ℓu. Let z be

the point on this ball closest to ℓv. So the distance from z to ℓu is at least r + r cos θ, and since

cos θ > 0,

d(z, ℓu) ≥ r. (5.2)

Since z is in the in-ball, it is also in Vor(q) and thus

|z − v| ≤ 2βr. (5.3)

So, we derive the following lower bound on h.

h = d(v, ℓu) [by definition]

≥ d(z, ℓu)− |z − v| sin θ [by the triangle inequality]

≥ r − 2βr sin θ. [by the inequalities (5.2) and (5.3)]

Applying the upper bound on h from Lemma 5.4.1, we get that

r − 2βr sin θ ≤ h ≤ 2βr sinσ,

and thus,
1

2β
≤ sinσ + sin θ.

The above inequality implies the lemma because 0 ≤ θ, σ ≤ π.

Lemma 5.4.3. If θ < 0 then σ ≥ arcsin 1
β .
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Vor(q)

Vor(p)

q

v

u

hσ

ℓu

ℓv

z θ-

Figure 5.6: When θ < 0, the intersection of ℓu and ℓv lies on the other side of the line segment uv.
Since these lines are support lines for the Voronoi cell of q, it is clear that σ ≥ −θ.

Proof. When θ ≤ 0 we have h ≥ 2r, which, combined with Lemma 5.4.1, implies

2r ≤ 2βr sinσ.

The statement follows directly from this inequality.

Lemma 5.4.4. If θ < 0 then σ + θ ≥ 0.

Proof. Let w = ℓu ∩ ℓv. Since θ < 0, w is on the same side of the line segment uv as q. Moreover,

all of Vor(q) and in particular q is contained in △uvw (see Figure 5.6). It follows that

σ = ∠uqv ≥ ∠uwv = −θ,

and so we get the desired result by adding θ to both sides.

We are now ready to prove the main theorem of this section. It states that the local complexity

of fat Voronoi diagrams in the plane is a constant that depends only on the fatness of the Voronoi

diagram.

Theorem 5.4.5. If VorM is β-fat then for all p ∈M , p has at most 6π
arcsin 1

4β

Delaunay neighbors.

Proof. Let p be any vertex and let Q be the set of Delaunay neighbors of p. Partition Q based on

the magnitude of θq into

Q− = {q ∈ Q : θq < 0} and
Q+ = Q \Q−.
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We will bound the size of each set individually. Using Lemma 5.4.3, we derive the following.

2π ≥
∑

q∈Q
σq [by Equation (5.1)]

≥
∑

q∈Q−

σq [because σq ≥ 0 for all q ∈ Q]

≥ |Q−| arcsin 1

β
. [by Lemma 5.4.3]

This implies that |Q−| ≤ 2π
arcsin 1

β

. We now bound |Q+| as follows.

4π ≥
∑

q∈Q
σq + θq [by Equation (5.1)]

≥
∑

q∈Q+

σq + θq [by Lemma 5.4.4]

≥
∑

q∈Q+

max{σq, θq} [because σq, θq ≥ 0]

≥ |Q+| arcsin 1

4β
. [by Lemma 5.4.2]

This implies that |Q+| ≤ 4π
arcsin 1

4β

. So we see that

|Q| = |Q−|+ |Q+| ≤ 2π

arcsin 1
β

+
4π

arcsin 1
4β

<
6π

arcsin 1
4β

.

The preceding proof does not use the fact that the Voronoi cell of p is fat, only that all of its

neighbors are fat. In fact, one could adapt this proof to show that any Voronoi diagram in which

the neighbors of any skinny cell are all fat has constant local complexity. This same notion was

encountered by Maneewongvatana and Mount in their work on kd-trees [MM99]. In that setting,

they analyzed a splitting heuristic for kd-trees and showed that although it doesn’t guarantee all

cells are fat, it does achieve similar properties to fat decompositions because the neighbors of skinny

cells are all fat.

5.5 Lower bounds

In this section, we show that any β-fat Voronoi Diagram has at least 2Ω(d log d)n faces when β is a

constant independent of d. The lower bound also shows how the complexity varies when the fatness

depends on the dimension. A nice example of this occurs when the point set is an integer lattice.

In this case, the local complexity is only 2d, but this does not violate the lower bound because high
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dimensional cubes are not fat; their fatness is only
√
d. The theorem shows that the fatness must

reach Ω(
√
d) in order to reduce the local complexity to 2O(d).

Theorem 5.5.1. If VorM is a β-fat Voronoi diagram in R
d, then every vertex of M has at least

2Ω(d)
(√

d
β

)d
faces in its Voronoi cell.

We postpone the proof until we have established the necessary definitions and a lemma. We

start with a couple standard definitions from convex geometry.2 For any vertex p ∈M , let s1 . . . sk

be the simplices of DelM with a vertex at p. For any set of points A, recall that cone(A) denotes

the nonnegative, linear combinations of points of A (summing coordinate-wise),

cone(A) =







∑

ai∈A
ciai : ci ≥ 0







.

The polar A◦ of a set A ⊂ R
d is defined as.

A◦ = {y ∈ R
d : yTa ≤ 1 for all a ∈ A}.

Let s be any simplex with a vertex at p and let Cs = cone({p− q : q ∈ s}). There is a circumcenter

x dual to s at a vertex of Vor(p). Let Cx = {y − x : |y − p| ≤ |y − q| for all q ∈ s}. Note that

Cs = C◦
x.

Let b be the in-ball of Vor(p). If we let Bx denote cone({y−x : y ∈ b}), then we have Bx ⊂ Cx.

Polarity reverses containment, so C◦
x ⊂ B◦

x. Letting Bs be the cone polar to Bx, it follows that

Cs = C◦
x ⊂ B◦

x = Bs. (5.4)

The proof of the Lower Bound Theorem requires the following lemma whose purpose is to bound

the fraction of a ball’s volume that a Delaunay simplex may cover in terms of the dimension and

the fatness of the Voronoi diagram.

Lemma 5.5.2. Let VorM be a β-fat Voronoi diagram in R
d and let p be a point of M . For all

simplices s at p, Vol(Cs ∩ B) < Vd

2Θ(d)
(√

d
β

)d , where B is the unit ball centered at the origin.

Proof. Let H1 and H2 be the halfspaces normal to the axis of Bs at distances
1
2β and 1 respectively

that contain the origin. Since B ⊂ H2, it follows that Vol(Cs ∩ B) ≤ Vol(Cs ∩H2). The two sets

Cs ∩H2 and Bs ∩H2 are each the convex closure of a base and a vertex at the origin. Moreover,

their bases both lie in the boundary of H2 so the ratio of their volumes is equal to the ratio of the

d− 1-dimensional volumes of their bases. Since the base of Cs ∩Hs is a d− 1-simplex contained in

the d− 1-dimensional ball that is the base of Bs ∩H2, the ratio of their volumes is bounded using

2The reader is encouraged to read Barvinok [Bar02] for a nice treatment of convexity theory.
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Stirling’s approximation as follows.

Vol(Cs ∩H2)

Vol(Bs ∩H2)
≤ Vol(S)

Vd−1
≤ 1

2Θ(d)d
d
2

,

where S represents the regular d−1-simplex inscribed in the d−1-dimensional unit ball. By scaling

BS ∩H2 down by a factor of 2β, we get BS ∩H1, and therefore

Vol(BS ∩H2) = (2β)dVol(BS ∩H1).

Since BS ∩H1 ⊂ B, we have that Vol(BS ∩H1) < Vd. Combining the preceding statements, we

get

Vol(Cs ∩ B) < Vol(Cs ∩H2) ≤
Vol(Bs ∩H2)

2Θ(d)d
d
2

=
Vol(Bs ∩H1)

2Θ(d)
(√

d
β

)d
<

Vd

2Θ(d)
(√

d
β

)d
.

5.5.1 Proof of Theorem 5.5.1

Proof. Let p be any vertex and let s be a simplex of DelM with a vertex at p and a circumcenter

at x. Let θx and θs be the half-angles of the circular cones Bx and Bs respectively. Because the

cones are polar to each other, θx + θs =
π
2 . Because Vor(p) is β-fat, θx ≥ arcsin 1

2β . So,

cos θs ≥ cos

(

π

2
− arcsin

1

2β

)

=
1

2β
. (5.5)

Let B be the unit ball centered at the origin. The cones {Csi}ki=1 have disjoint interiors and

cover Rd. Applying Lemma 5.5.2 and a simple volume packing, we get that

Vd =
k
∑

i=1

Vol(Csi ∩ B) ≤
kVd

2Θ(d)
(√

d
β

)d
. (5.6)

It follows that k, the number of simplices at p, is at least 2Ω(d)
(√

d
β

)d
.

5.6 Concluding Remarks

We have presented a theory of fat Voronoi diagrams with an emphasis on bounding their complexity.

The original motivation for this work was for problems in mesh generation, and indeed this is an

area of ongoing work. However, we contend that bounding the complexity of these fat Voronoi

diagram is interesting on its own both as a special case of classic problems of bounding polytope

complexity and for its relation to fat complexes used in geometric search problems. We have given

a proof of the constant local complexity of fat Voronoi diagrams in the plane, a parameterized
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bound in higher dimensions, and a nontrivial lower bound.
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Chapter 6

Geometric Persistent Homology

6.1 Overview

In this chapter, we present a summary of basic definitions and results in the theory of persistent

homology. We start with topological definitions in Section 6.2.2, presenting topological spaces,

simplicial homology, homotopy equivalences, and singular homology. Then, in Section 6.3, we

define persistent homology and describe a basic algorithm for computing it. Next, we connect the

combinatorial theory to a geometric one in Section 6.4. We finish this introductory chapter with

an explanation of stability and approximation of persistence in Section 6.5.

6.2 Topology

In this section, we give the basic topological definitions that will be needed later. It is included

here for completeness, but the reader who is already familiar with topology may skip ahead.

6.2.1 Topological Spaces

A topological space is a set X together with a family O of subsets called open sets satisfying

the following conditions:

1. ∅ ∈ O,

2. X ∈ O,

3. for any Y ⊂ O, ⋃S∈Y S ∈ O, and

4. for any finite Y ⊂ O, ⋂S∈Y S ∈ O.

The most important topological space for this thesis is the standard topology on R
d generated

by the set of open balls, {ball(c, r) : c ∈ R
d, r ∈ R≥0}. We will also need to consider the subspace

topology, which is defined on a subset X ⊂ R
d to be the family of sets of the form Y ∩ X for

which Y is open in R
d.
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Abstract simplicial complexes do not have any geometry, however they can be embedded in

Euclidean space. An abstract simplicial complex with n vertices has a natural embedding in R
n

as a subcomplex of the standard simplex △n−1 = conv{e1, . . . , en}, where e1, . . . , en are the

standard basis vectors for R
n. Thus, when we speak of the topology of an abstract simplicial

complex, we are referring to the subspace topology it inherits from R
n in this embedding.

6.2.2 Simplicial Homology

There are several homology theories to choose from. We present simplicial homology over the field

Z2 of integers mod 2, which is particularly relevant to the situation often arising in computational

problems where topological spaces are represented by simplicial complexes. Assuming the coef-

ficients are in a field guarantees that the homology groups defined below are all vector spaces.

In general, homology may be defined over arbitrary rings. Our approach will be to first present

simplicial homology in purely a combinatorial and algebraic way. Then, we will show how this com-

binatorial approach is a special case of a more general approach using in linear algebra. Finally,

we will connect the theory of simplicial homology to a more general theory of singular homology,

which we will occasionally need later in the thesis. Though our treatment here is far from complete,

it will provide the necessary definitions and notation to understand the main results of Chapters 7

and 8. For a thorough treatment of algebraic topology, we suggest the book by Hatcher [Hat01].

For treatments directed more at a computer science audience, the books by Zomorodian [Zom09]

or Edelbrunner and Harer [EH09] are recommended. Lastly, for a combinatorial introduction to

topology, see the book by Henle [Hen79].

Let K be an abstract simplicial complex. A subset of k-simplices is a k-chain. A k-chain is a

formal sum of simplices We form the kth chain group Ck by defining addition as the symmetric

difference between sets. That is, for k-chains A and B, A+B := (A ∪B) \ (B ∩A).

+ =

Figure 6.1: The addition of two 1-chains. The two cycles are homologous because their difference
is the boundary of a 2-chain (i.e. a set of triangles).

A k-simplex σ = {v0, . . . , vk} has k + 1 simplices of dimension k − 1 on its boundary, denoted

σi = σ \ {vi} for i = 0 . . . k. The kth boundary operator ∂k takes a k-simplex σ to the set of

(k − 1)-simplices on its boundary,

∂kσ =

k
∑

i=0

σi
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We extend ∂k to all k-chains c ∈ Ck using addition,

∂kc =
∑

σ∈c
∂kσ.

The boundary operator induces two natural subgroups of Ck:

1. the kth cycle group Zk := ker ∂k = {c ∈ Ck : ∂kc = 0}, and
2. the kth boundary group Bk := im∂k+1 = {∂c : c ∈ Cp+1}.

Intuitively, the cycle group is the set of k-chains without boundary, like a cycle or set of cycles

in a graph or 1-chain. The boundary group is the set of k-chains that are the boundaries of

(k + 1)-chains.

It is an easy exercise to show that ∂k−1∂kc = ∅ for all k-chains c and therefore Bk is a subgroup

of Zk. Thus it is possible to define the kth homology group as

Hk = Zk/Bk = ker ∂k/im∂k+1.

The rank of the kth homology group is kth Betti number.

∂p+1 ∂p ∂p−1

0 0 0

Cp+1 Cp Cp−1

Zp−1ZpZp+1

Bp+1 Bp−1Bp

∂p+2

Figure 6.2: The relationship between the chain, cycle, and boundary groups is illustrated along
with their boundary images.

Representing chains as characteristic vectors over Z2 gives a basis for the chain group vector

space. Each boundary map ∂k is a linear map and may be written as a matrix in Z
nk−1×nk

2 , where

ni denotes the number of i-simplices in K for all i. The homology group Hk depends on both

the underlying space (K) and the coefficient ring (Z2), so it is sometimes written as Hk(K;Z2) or

simply Hk(K) when the coefficient ring is assumed.

6.2.3 Homotopy Equivalences

Let X and Y be two topological spaces and let f, g : X → Y be two continuous maps. A homotopy

between f and g is a continuous map H : [0, 1] ×X → Y such that H(0, x) = f(x) and H(1, x) =

g(x). In such cases, we say that f and g are homotopic.
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Let f : X → Y and g : Y → X be continuous maps. Let idX and idY be the identity maps on

X and Y . We say that X and Y are homotopy equivalent if the composition g ◦ f is homotopic

to idX and f ◦ g is homotopic to idY . We express this equivalence relation in symbols as X ≃ Y .

The maps f and g are called homotopy equivalences.

Homotopy equivalence is a strictly stronger invariant than homology equivalence. In particular,

homotopy equivalent spaces have the same homology. The converse does not hold.

When X is a subspace of Y , a retraction is a map X → Y that restricts to idY on Y . We say

that Y is a deformation retract of X if there is a retraction homotopic to idX . Intuitively, this

means that we can realize a homotopy equivalence between X and Y by “shrinking” X to Y .

6.2.4 Singular Homology

It will occasionally be necessary to go beyond simplicial homology. Singular homology is a more

general homology theory that allows us to define homology groups over topological spaces that are

not simplicial complexes. The k-chains in singular homology are generated by all continuous maps

from the standard k-simplex into the space. Thus, the dimension of the corresponding chain groups

is uncountably infinite. We won’t do computations on the singular homology, but we will use this

theory at times to compare the homology of topological spaces that are not simplicial complexes.

We will not give a formal treatment of the theory here, but instead refer the reader to the book by

Hatcher [Hat01]. For now, we draw attention to two important facts regarding singular homology.

1. The singular homology of a simplicial complex is isomorphic to its simplicial homology [Hat01][Thm.

2.27].

2. The singular homology groups of homotopy equivalent spaces are isomorphic [Hat01][Cor.

2.11].

6.3 Persistent Homology

Filtrations. A filtration is a nested family of topological spaces, parameterized by single vari-

able. We will focus on spaces that arise as subsets of Euclidean space. For example, a filtration

{Fα}α≥0 is a family of subsets Fα ⊂ R
d such that Fα ⊆ F β whenever α ≤ β. For any fixed α, the

set Fα has the subspace topology inherited from R
d.

One way to build a filtration is to consider a function f : Rd → R≥0 and define the sets in the

filtration as

Fα = {x ∈ R
d : f(x) ≤ α} = f−1[0, α].

Such a filtration is called the sublevel filtration of the function f . If the homology groups of every

space in a filtration have finite rank, then the filtration is said to be tame. All of the filtrations

considered here will be tame.

One simple example of a sublevel filtration that arises often in both theory and practice is

induced by the distance function to a finite point set P ⊂ R
d. In this case, the distance function
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to P is defined as

dP (x) = min
p∈P
|x− p|

and the α-subevel is known as the α-offsets

Pα = d−1
P [0, α] =

⋃

p∈P
ball(p, α).

Figure 6.3 shows Pα for several values of α.

Figure 6.3: A set of points P is sampled from the gray annulus. The topology of the α-offsets, Pα,
changes as the radius α increases.

The family of sublevel sets of dP is called the offsets filtration of P . This filtration has

played an important role in topological inference from point cloud data, where it has been used as

a central theoretical tool for proving the correctness of existing techniques [CL07, CO08, CSEH05,

NSW08a]. It is also known as the alpha-shape filtration [Ede95] and was the original filtration used

for persistent homology [ELZ02].

We will also consider filtrations defined on simplicial complexes. We say that simplicial complex

K is filtered by a function f : K → R≥0 if Kα = f−1[0, α] is a simplicial complex for all α ∈ R≥0.

Persistent Homology. Beginning with the work of Edelsbrunner, Letscher, and Zomorodian [ELZ02],

persistent homology has expanded into a large and active research area. They showed that it is

possible to track the the changes in homology over the course of a filtration. Instead of a static

snapshot of the topology of Fα, we get a summary of all topological changes in {Fα}α≥0, where

α is interpreted as time. The inclusion map i : Fα →֒ F β induces a homomorphism between the

corresponding homology groups iα,βk : Hk(F
α) → Hk(F

β). A non-bounding cycle C is born at

time α if α is the minimum such that C appears in Fα. A non-bounding cycle C dies at time β if

iα,βk (C) = 0 and iα,γk (C) 6= 0 for all γ < β. This is illustrated in Figure 6.4.

The output of the persistence algorithm is a collection of homology classes of each dimension

along with their birth and death times in the filtration. This is the persistence module [ZC05].

One output representations is the persistence diagram that marks each homology class with a

point in the plane, using the birth and death times as the x and y coordinates. Features that

persist for a long time, those with a large gap between birth and death times, appear far from the

diagonal y = x, whereas short-lived features (topological noise) concentrate around this diagonal.

An alternative representation of the output is a persistence barcode, which represents each
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00 0 0

Hp(K
i−1) Hp(K

i) Hp(K
j−1) Hp(K

j)

z

Figure 6.4: The inclusion map induces homomorphisms between the homology groups of the spaces
in a filtration. The cycle z is born at time i and dies at time j.

feature as an interval using the birth and death times as left and right endpoints. Thus, features

that persist for a long time, appear as long line segments, whereas short-lived features form short

segments.

The Persistence Algorithm. The persistence diagram of a filtered simplicial complex can be

computed using the persistence algorithm [ELZ02, ZC05]. Recall that for computing the homology

of a simplicial complex, it suffices to compute the ranks of the boundary operators. This is easily

done by row reduction.

For persistent homology a similar approach via row reduction works with just a little more

care. We represent boundary matrices of the filtration so that the rows and columns are ordered

according to the order of birth of the simplices. The persistence algorithm works by doing column

reduction with the added constraint that we must work from left to right and only ever subtract

columns to the left of the column we are trying to reduce. In the reduced matrix, the lowest one

in any row (if there is one) corresponds to the birth and death of a topological feature.

If the total number of simplices isN , then the running time of the algorithm is O(N3). In theory,

this may be improved to O(Nω), where ω is the matrix multiplication constant. For this reason,

computing simplicial filtrations of bounded size represents a large win for computing persistent

homology.

Related Algorithmic Results for Persistence If a space is filtered by more than one parame-

ter, we have amultifiltration. Carlsson, Singh, and Zomorodian gave a polynomial-time algorithm

for multidimensional persistence [CSZ10]. An alternative approach for dealing with more than one

parameter was given by Cohen-steiner, Edelsbrunner, and Morozov [CSEM06]. They give an algo-

rithm for computing a sequence of persistence diagrams called a vineyard with the corresponding

relationships between the features in the diagrams. Note that the vineyard approach differs from the

multi-dimensional persistence. Their algorithm computes each successive diagram using a constant

number of row operations for each pair of simplices transposed between the two filtrations. Thus,

given a complex K with n simplices and two different filtrations on K, the persistence diagram of the
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second filtration can be computed from the persistence diagram of the first filtration in O(n2) time

in the worst case, with better performance expected if the filtrations are similar. Zigzag persistence

is generalization of persistent homology developed by Carlsson and de Silva that allows for “filtra-

tions” that are do not necessarily grow monotonically [CdSM09, CdS10]. Milosavljevic, Morozov,

Skraba gave an algorithm that computes Zigzag persistence for simplicial complexes with deletions

and insertions in O(nω + n2 log n) time where ω is the matrix multiplication constant [MMS11].

6.4 Persistence and Geometry

Nerves. Given a collection of closed sets U , the nerve of U is a simplicial complex with vertex

set U and simplices for each collection of sets of U that have a common intersection. The Nerve

Theorem states that the nerve of collection of sets is homotopy equivalent to their union if all

intersections of finitely many sets are either empty or contractible. The family U is called a closed

cover of
⋃

u∈U u. If the sets of U are all convex, then they easily satisfy the hypothesis of the

Nerve Theorem and we call U a good closed cover.

Theorem 6.4.1. If X is a topological space and U = U1, . . . , Uk is a good closed cover, then X

and the nerve NU are homotopy equivalent.

Since homotopy equivalences induce isomorphisms between homology groups, we may interpret

the Nerve Theorem as a way to translate between the homology of general spaces and the simplicial

homology of some discretization. In order to extend this equivalence to persistent homology requires

a little more work. First, we recall the Persistence Equivalence Theorem of Zomorodian and

Carlsson [ZC05], which gives a general condition for two filtrations to have the same persistent

homology. Then, we will state the Persistent Nerve Lemma of Chazal and Oudot [CO08] that gives

proves sufficient conditions for a filtration and a filtration of good closed covers to have the same

persistent homology.

Theorem 6.4.2 (Persistence Equivalence Theorem [ZC05]). Let {Fα} and {Gα} be filtrations and

let φα : H(Fα) → H(Gα) be an isomorphism for all α ≥ 0. Consider the commutative diagram

where the maps H(Fα) → H(Fα) and H(Gα) → H(Gα) are induced by the inclusions Fα →֒ Fβ

and Gα →֒ Gβ :

Hk(Fα) → Hk(Fβ)

φα ↓ ↓ φβ

Hk(Gα) → Hk(Gβ)

If the diagram commutes for all 0 ≤ α ≤ β, then {Fα} and {Gα} have the same persistence diagram.

The Persistent Nerve Lemma says that if we have a good closed cover of a space in a filtration,

and the sets in the covers themselves form filtrations, then the filtration and its nerve filtration

have the same persistent homology. This is a very handy tool as it allows us to move easily between

filtrations on geometric spaces and filtered simplicial complexes.
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Lemma 6.4.3 (The Persistent Nerve Lemma [CO08]). Let X ⊆ X ′ be two paracompact spaces,

and let U = {Ua}a∈A and U ′ = {U ′
a′}a′∈A′ be good closed covers of X and X ′ respectively, based on

finite parameter sets A ⊆ A′ such that Ua ⊆ U ′
a for all a ∈ A. Then, the homotopy equivalences

NU → X and NU ′ → X ′ provided by the Nerve Theorem [Hat01, Corollary 4G.3] commute with

the canonical inclusions X →֒ X ′ and NU →֒ NU ′ at homology level.

Equivalence of Filtrations. It is often useful to replace one filtration with another that has

an equivalent persistence diagram. The following lemma gives three sufficient conditions for two

filtrations to yield equivalent persistence diagrams.

Lemma 6.4.4. Given two filtrations F = {Fα}α≥c and G = {Gα}α≥c, F and G have identical

persistence diagrams if any of the following conditions are met:

1. The canonical inclusion Fα →֒ Gα is a homotopy equivalence for all α ≥ c.

2. F and G are filtered simplicial complexes and there is a bijection φ : F∞ → G∞ that restricts

to a bijection for each Fα.

3. There exists good closed covers Uα = {Uα
i }i∈A of Fα and U ′

α = {U ′α
i }i∈A of F ′

α satisfying the

conditions of the Persistent Nerve Lemma for all α′ ≥ α ≥ c and Gα (G′
α) is the nerve of Uα

(U ′
α respectively).

Proof. In all three cases, the assumption leads to the existence of isomorphisms between the homol-

ogy groups Hk(Fα) and Hk(Gα) for all k and all α ≥ c. By the Persistence Equivalence Theorem,

it suffices to prove that these isomorphisms commute with the homomorphisms induced by the

inclusions Fα →֒ Fβ and Gα →֒ Gβ for all c ≤ α ≤ β. That is, we need to show that the following

diagram commutes.

Hk(Fα) → Hk(Fβ)
∼= ↓ ↓ ∼=

Hk(Gα) → Hk(Gβ)

The first condition and second conditions suffice because all of the maps commute at the set level

and therefore at the homology level as well. The third condition is a direct application of the

Persistent Nerve Lemma.

Notations for Complexes and Filtrations. We adopt the following notational conventions

for filtered complexes. Variables in uppercase calligraphy font such as A are simplicial complexes.

Superscripts on a complex indicate a subcomplex from the filtration corresponding to a particular

sublevel or scale, i.e. Aα is the subcomplex of A at scale α. A filtration in one variable will

be denoted {Aα
k} where it is assumed that the parameter is α ranging over all nonnegative real

numbers and k is fixed. For multifiltrations subscripts indicate the value of the second parameter,

k. The only multifiltrations we will use come from sequences of distance functions parameterized

by a positive integer k. Such a multifiltration will be denoted {Aα
k}k,α where it is assumed that α

ranges over the nonnegative reals and k ranges over the positive integers.
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6.5 Approximating Persistence Diagrams

The notion of approximate persistence diagrams comes naturally out of the notion of stability of

persistence diagrams [CSEH05]. For stability, the goal is to show that two similar inputs yield

similar outputs. For approximation, we replace one of these inputs with the true filtration that

we want to approximate, Pα
k in our case, and argue that our approximate filtration will produce a

persistence diagram that is provably close to the persistence diagram of the true of filtration.

First we need a notion of closeness for persistence diagrams. The bottleneck distance between

two multisets A,B ⊂ [0,+∞]2 is defined as

d∞
B (A,B) = min

γ
max
p∈A
‖p− γ(p)‖∞,

where ‖ · ‖∞ denotes the l∞-norm and γ ranges over all bijections from A to B. To make sure

that such bijections always exist, the diagonal {(x, x) : x ∈ [0,+∞]} is added to every persistence

diagram infinite multiplicity.

Proximity between filtrations is defined in terms of mutual nesting: specifically, two tame

filtrations F ,G are said to be ε-interleaved if we have Fα ⊆ Gα+ε and Gα ⊆ Fα+ε for all α ≥ 0.

Under this condition, it is known that the persistence diagrams DF and DG are ε-close in the

bottleneck distance [CCSG+09, CSEH05]. The formal statement goes as follows:

Theorem 6.5.1 (Stability [CCSG+09, CSEH05]). If two tame filtrations F ,G are ε-interleaved,

then d∞
B (DF ,DG) ≤ ε.

Multiplicative interleaving. Two filtrations F ,G are multiplicatively c-interleaved if

Fα
c
⊆ Gα ⊆ Fcα

for all α ≥ 0. For a filtration {Fα}, we can reparameterize it on the natural logarithmic scale by

defining

F ln
α = Feα ,

and

lnF := {F ln
α }α∈R

Multiplicative c-interleaving of F and G implies additive ln c-interleaving of lnF and lnG As a result,

multiplicative interleaving of filtrations implies the following weaker form of proximity between their

persistence diagrams, where the notation dln
D(F ,G) (called log-diagram distance) stands for the

quantity d∞
B (D lnF ,D ln G):

Corollary 6.5.2. If two filtrations F ,G are multiplicatively c-interleaved, then dln
D(F ,G) ≤ ln c.

A persistence diagram DF is (1+ε)-approximation to a persistence diagram DG if dln
D(F ,G) ≤

ln(1+ ε). This means that every point in the first diagram can be matched to a point in the second

such that the birth and death times differ by at most a factor of 1 + ε.
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Multiplicative approximation makes sense in the geometric setting because it corresponds to a

noise model in which the scale of the noise depends on the scale of the features. Although tighter

guarantees are possible with an additive interleaving, they come at the cost of assuming an absolute

bound on the scale of the noise everywhere. We can thus state a special case of the Strong Stability

Theorem of Chazal et al. [CCSG+09], rephrased into the language of multiplicative approximations.

Theorem 6.5.3. Let {Fα} and {Gα} be two tame filtrations. If Fα/c ⊆ Gα ⊆ F cα for all α ≥ 0,

then the persistence diagram of {Fα} is a c-approximation to the persistence diagram of {Gα}.
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Chapter 7

Geometric Persistent Homology for

Offsets using Meshes

7.1 Overview

We apply ideas from mesh generation to approximate the persistence diagram of the full offsets

filtration of a point cloud P ⊂ R
d. Classical approaches rely on the Čech, Rips, α-complex, or

witness complex filtrations of P , whose complexities scale badly with d. For instance, the α-

complex filtration incurs the nΩ(d) size of the Delaunay triangulation, where n = |P |. The common

alternative is to truncate the filtrations when the sizes of the complexes become prohibitive, possibly

before discovering the most relevant topological features. In this chapter we present a new collection

of filtrations based on the Delaunay triangulation of a mesh, whose sizes are reduced to 2O(d2)n. A

nice property of these filtrations is is that they are interleaved multiplicatively with the family of

offsets of P . Thus, the persistence diagram of P can be approximated in 2O(d2)n3 time in theory,

with a near-linear observed running time in practice. Consequently, our approach remains tractable

in medium dimensions, say 4 to 10.

7.2 Point sets at different scales

Persistent homology is a powerful tool for understanding the topological structure of a point cloud

across different scales. Given an appropriate simplicial complex and filtration, the short-lived

features are sampling noise, while long-lived features are significant. The persistence diagram aids

in analyzing the shape from which a point cloud was drawn.

Several filtrations have been used with success in the past, including the α-complex [Ede95] and

witness complex [dS08, dSC04] filtrations, which are based on the Delaunay triangulation of P or

an approximation of it, and the Čech [ES52] and Vietoris-Rips [Vie27] filtrations, which are derived

from the nerves of collections of congruent balls centered at the data points. In practice however,

the cost to build them makes their use prohibitive, even in medium dimensions, say 4 to 10. When
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Figure 7.1: When topological features appear at dramatically different scales, classic filtrations
reach a very high complexity before the largest features can be captured.

α becomes large, the size of the α-complex approaches that of the Delaunay triangulation: nΩ(d)

in d dimensions even for some relatively “nice” inputs [Eri01]. The sizes of the Čech, Rips and

(relaxed) witness complexes grow even more quickly, as 2Ω(n). If one restricts the complex to only

include simplices up to dimension d, the complexity is still nΘ(d).

To avoid this difficulty, researchers usually resort to truncating the filtrations at a prescribed

size limit. Truncation is equivalent to looking at the data at small scales only, and can make the

algorithm miss relevant structures at larger-scales. This can happen even in simple scenarios, such

as the one depicted in Figure 7.1. Another example of interest, inspired from [GO07], is described

in Figure 7.2 (left): it consists of a point cloud sampled evenly from a helicoidal curve drawn on

the Clifford torus in R
4. In this case, the point cloud admits at least three candidate underlying

spaces: at a small scale, the curve; at a larger scale, the torus; and at an even larger scale, the

3-sphere of radius
√
2 on which the Clifford torus is naturally embedded. One might also add the

point cloud itself and R
4 at either ends of the spectrum.

In order to analyze such data sets at different scales using only truncated filtrations, Chazal

and Oudot [CO08] proposed a landmarking strategy in the spirit of [GO07], which maintains a

growing subset of the data points, on which the simplicial complexes are built. However, their

approach produces a weaker form of data representation than persistence diagrams, which does not

explicitly correlate the features visible at different scales. As a result, they can get false positives

when retrieving the set of persistent topological features.

How Voronoi refinement helps. We generate a meshM = P∪S of well-spaced points and order

the simplices of its Delaunay triangulation according to a filter t : DelM → R. Several different filters

are analyzed, yielding filtrations with different properties: some are easier to build, others come

with better approximation guarantees. The choice of a particular filter depends on the application

and is left to the user. All of these filters are based on distances to the input point cloud P . We

show that the corresponding filtrations are interleaved on a logarithmic scale with the filtration

of the offsets of P , and thus produce accurate approximate persistence diagrams. Computing the
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Figure 7.2: The Clifford data set. Left: point cloud sampled uniformly along a periodic curve in
[0, 2π]2, then mapped onto a helicoidal curve drawn on the Clifford torus in R

4 via the canonical
embedding (u, v) 7→ (cos u, sinu, cos v, sin v). The rendering is via a projection into R

3. Right:
log-scale barcode obtained on this data set using the filtration of Section 7.4.2.

persistence diagram takes time cubic in the number of simplices and thus dominates our worst-case

2O(d2)n3 overall runtime. This bound, though large, is still a significant improvement over nΩ(d).

Moreover, in practice, the persistence diagram computation takes near-linear time (on an input

with 2O(d2)n simplices), which makes our approach tractable in small to medium dimensions (4-10)

for moderate input sizes (thousands to tens of thousands of points). A preliminary implementation

bears out these predictions (see Section 7.7).

We first present a simplified version in Section 7.4 that produces a filtration that is log(τ)-

interleaved with the offsets filtration of P , for some constant τ ≥ 2. The size of this filtration is

2O(d2)n log(∆), where ∆ denotes the spread of P . We then show in Section 7.5 how the interleaving

between our filtration and the offsets filtration can be tightened; we produce persistence diagrams

that are accurate within any arbitrarily small error. Finally, in Section 7.6 we concentrate on the

size of the filtration and show how to eliminate its dependence on the spread using hierarchical

meshes.

7.3 Preliminaries

7.3.1 Clipped Voronoi Diagrams and Voronoi Refinement

Let P be a finite set of points in general position in R
d with Voronoi diagram VorP and Delaunay

triangulation DelP . Since P is in general position, DelP is an embedded simplicial complex in R
d,
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whose underlying space is conv(P ).

Given a compact, convex bounding domain BB containing P , we consider the restrictions of

the Voronoi diagram and Delaunay triangulation to BB. Specifically, given a point p ∈ P , we call

Vor�(p) its Voronoi cell clipped to BB:

Vor�(p) = VorP (p) ∩BB.

We call Vor�(P ) the Voronoi diagram clipped to BB, and Del�(P ) is its dual complex, which

is a subcomplex of DelP . The aspect ratio of a clipped Voronoi cell is the same as the aspect ratio

of the unclipped cell as long as the clipping does not eliminate any corners of a Voronoi cell. In

particular, this happens when the clipping just eliminates the unbounded portion of a Voronoi cell

on on the boundary. By constructing a bounding domain and boundary net as in Section 3.5, we

can assume that no cell has its aspect ratio changed by the clipping.

Voronoi Refinement. TheNetMesh algorithm takes a finite point cloud P as input and returns

a finite superset M of P that satisfies the following properties:

(i) M is a point sampling of some bounding ball BB of radius O(diameter(P )) around the input

point cloud P ,

(ii) The Delaunay triangulation clipped to BB, Del�(M), is equal to the full Delaunay triangula-

tion DelM ,

(iii) The aspect ratios of the clipped Voronoi cells of the points of M are bounded from above by

an absolute constant τ ≥ 2,

(iv) The complexity of DelM is 2O(d2)|M |,
(v) The size of M is 2O(d)n log ∆, where ∆ is the spread of P .

The NetMesh algorithm can produce M in near-optimal 2O(d2)n log n + |M | time. As shown in

Chapter 4, it is possible to reduce the output-sensitive term |M | to 2O(d2)n by considering only

subsets that admit a well-paced ordering. This technique will be used in Section 7.6 to eliminate

the dependence on the spread in |M |.

7.4 The α-mesh filtration

Our strategy is to build a meshM on the input set P , and then filter DelM to obtain a filtration that

can be related to the sublevel filtration of dP . In Section 7.4.1 we present a simplified version of the

filter. The analysis of the basic filter relies on the same key ingredients as the full version and leads

to a partial approximation result (Theorem 7.4.5). In Section 7.4.2 we explain the limitations of the

basic filter and the modifications required to obtain a full approximation guarantee (Theorem 7.4.8).

7.4.1 Basic filter

Our input is a finite set P of points in general position in R
d. We first apply the NetMesh

algorithm to construct a superset M ⊇ P that satisfies conditions (i) through (v) of Section 7.3.1.
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We then define the filter t : DelM → R as follows.

t(σ) = max
v∈σ

dP (v).

We define the α-mesh filtration {Dα
M}α≥0 formally as the sublevel filtration of t. That is, for all

α ≥ 0, we let Dα
M be the subcomplex of DelM defined as

Dα
M = {σ ∈ DelM : t(σ) ≤ α}.

Equivalently, Dα
M contains all simplices of DelM whose vertices are contained in Pα. Note that if σ′

is a face of σ then t(σ′) ≤ t(σ), so the spaces forming the filtration are proper simplicial complexes,

and we have Dα
M ⊆ Dβ

M for all 0 ≤ α ≤ β.

Intuitively, the basic filter sorts the simplices of DelM by their distance to P , simulating within

DelM the growth of the offsets of P (see Figure 7.3 (right) for an illustration). As will be shown in

the analysis, the simulation process “works” because Voronoi cells have bounded aspect ratios.

Figure 7.3: From left to right: the offset Pα, the α-Voronoi V α
M and its dual α-mesh Dα

M .

Theoretical analysis. Our goal is to relate {Dα
M}α≥0 to the offsets filtration {Pα}α≥0. We do

the analysis in terms of a dual filtration, {V α
M}α≥0, based on the clipped Voronoi diagram Vor�(M)

(see Figure 7.3 (center) for an illustration). To each point v ∈ M we assign a closed convex set

Uα(v) as follows:

Uα(v) =

{

∅ if α < t(v),

Vor�(v) otherwise.
(7.1)

The α-Voronoi filtration {V α
M}α≥0 is defined by

V α
M =

⋃

v∈M
Uα(v).
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The collection Uα = {Uα(v)}v∈M forms a closed cover of V α
M . Let NUα denote the nerve of this

cover. Both Dα
M and NUα are embedded as subcomplexes of the full simplex 2M over the vertex

set M , and the following lemma stresses their relationship:

Lemma 7.4.1. For all α ≥ 0, the subcomplexes Dα
M and NUα of the full simplex 2M are equal.

Proof. Consider first the case of a 0-dimensional simplex σ = {v}. The definition of Dα
M states

that {v} ∈ Dα
M if and only if dP (v) ≤ α, which is also the criterion for which Uα is nonempty and

hence belongs to the collection Uα. Thus, {v} ∈ Dα
M ⇔ {v} ∈ NUα.

Consider now the case of a k-simplex σ = {v0, · · · , vk} for k > 0. The definition of Dα
M states

that σ ∈ Dα
M if and only if σ ∈ DelM and maxi t(vi) ≤ α, which is equivalent to

⋂k
i=0Vor(vi) 6= ∅

and maxi t(vi) ≤ α. Since Delsq(M) = DelM (assertion (ii) of Section 7.3.1),

k
⋂

i=0

Vor(vi) 6= ∅ ⇔
k
⋂

i=0

Vor(vi) ∩BB 6= ∅ ⇔
k
⋂

i=0

Vor�(vi) 6= ∅.

Hence, σ ∈ Dα
M if and only if σ ∈ NUα.

Since the sets Uα in the cover of V α
M are convex, we can apply the Persistent Nerve Lemma and

Lemma 7.4.1 to relate the persistence diagrams of {V α
M}α≥0 and {Dα

M}α≥0.

Lemma 7.4.2. For all r ≥ 0, the persistence diagrams of the filtrations {V α
M}α≥r and {Dα

M}α≥r

are identical.

Proof. Fix any r ≥ 0. We first use Lemma 6.4.4 to show that {V α
M} and {NUα} have identical

persistence diagrams. To apply Lemma 6.4.4 it suffices to observe that the sets Uα(v) satisfy the

conditions of the Persistent Nerve Lemma:

• the sets Uα(v) cover V
α
M ,

• each Uα(v) is are all convex, and thus form a good closed cover, and

• for α < β Uα(v) ⊆ Uβ(v).

Lemma 7.4.1 implies that {Dα
M}α≥r and {NUα}α≥r have identical persistence diagram. So, the

persistence diagrams of the filtrations {V α
M}α≥r and {Dα

M}α≥r are also identical.

Let the clipped offsets be defined as follows, in analogy with the clipped Voronoi cells:

Pα
�
= {x ∈ BB : dP (x) ≤ α}.

Let also rP = 1
2 maxp∈P dM\{p}(p).

Lemma 7.4.3. For all α ≥ rP , V
α/τ
M ⊆ Pα

�
⊆ V τα

M .

Proof. Let x be a point of V
α/τ
M ⊆ BB, and let v ∈ M be such that x ∈ Uα/τ (v). Let also

p ∈ P be closest to v. If v ∈ S, then the fact that Uα/τ (v) 6= ∅ implies that |v − p| ≤ α/τ and
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Uα/τ (v) = Vor�(v). This implies that |x− p| ≤ |x− v|+ |v − p| ≤ |x− v|+ α/τ . Now, the aspect

ratio of Vor�(v) is at most τ (assertion (iii) of Section 7.3.1), implying that

|x− v| ≤ τ

2
dM\{v}(v) ≤

τ

2
|v − p| ≤ α

2
.

Thus, dP (x) ≤ |x−p| ≤ α(12+
1
τ ). Since τ ≥ 2, we conclude that dP (x) ≤ α. If now v ∈ P , then the

aspect ratio condition (assertion (iii) of Section 7.3.1) implies that |x− v| ≤ τ
2dM\{v}(v) ≤ rP ≤ α.

Hence, in all cases we have dP (x) ≤ |x− v| ≤ α, which means that x ∈ Pα
�
.

Let now x be a point of Pα
�
, and let v ∈ M and p ∈ P be closest to x. Then, x belongs both

to Vor�(v) and to the Euclidean ball of center p and radius α. It follows that dP (v) ≤ |v − p| ≤
|v − x|+ |x− p| ≤ 2|x− p| ≤ 2α ≤ τα. This means that Uτα(v) = Vor�(v), and since x ∈ Vor�(v),

x ∈ V τα
M as desired.

We now show that clipping offsets to BB does not change homotopy type as long as BB contains

the points set. Specifically, the following lemma shows that Pα
�
→֒ Pα is a homotopy equivalence.

A proof may be found in Section 7.9.

Lemma 7.4.4. Let B be a compact, convex set. If Q ⊂ B then for all α ≥ 0, the canonical

inclusion Qα ∩B →֒ Qα is a homotopy equivalence.

Using the above results we can conclude our analysis, which relates the diagrams of the trun-

cated filtrations {Pα}α≥rP and {Dα
M}α≥rP :

Theorem 7.4.5. On the natural logarithmic scale, the persistence diagrams of {Pα}α≥rP and

{Dα
M}α≥rP are ln τ -close in bottleneck distance, i.e. dln

D({Pα}α≥rP , {Dα
M}α≥rP ) ≤ ln τ .

Proof. By Lemma 7.4.4, the canonical inclusions Pα
�
→֒ Pα and P β

�
→֒ P β are homotopy equiv-

alences that commute with the inclusions Pα
�
→֒ P β

�
and Pα → P β for all β ≥ α ≥ 0, so the

filtrations {Pα}α≥0 and {Pα
�
}α≥0 have identical persistence diagrams. In addition, Lemma 7.4.2

implies that {Dα
M}α≥0 and {V α

M}α≥0 have identical persistence diagrams. The result follows then

from the interleaving of the truncated filtrations {Pα
�
}α≥rP and {V α

M}α≥rP (Lemma 7.4.3) and its

consequences on the proximity of their persistence diagrams (Corollary 6.5.2).

Intuitively, Theorem 7.4.5 means that homological features appearing in the offsets filtration

after time α = rP are captured by the α-mesh filtration with approximately same birth and death

times on the natural logarithmic scale. Features appearing before rP and dying after rP are also

captured, but starting at times as late as rP (the death times remaining approximately the same).

Finally, features appearing and dying before rp may not be captured at all.

7.4.2 Complete filter

The obvious drawback of the basic filter is that it only enables us to approximate the persistence

diagram of the offsets filtration after a certain time (Theorem 7.4.5). The reason is clear from the
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proof of Lemma 7.4.3: even though we have Pα
�
⊆ V τα

M for all α ≥ 0, the symmetric inclusion

V α
M ⊆ P τα

�
only holds when α ≥ rP , since the clipped Voronoi cells of the input points appear in

V α
M as soon as time α = 0 and they are not covered by Pα before α = τrP . In the dual α-mesh,

this phenomenon translates into the appearance of edges between the points of P as early as time

α = 0, whereas such edges should normally appear when α-balls around these points touch one

another. In this section we propose a solution to this issue, which consists in modifying the filter

of DelM so as to somewhat delay the appearances of the simplices incident to the points of P in

the α-mesh filtration. The rest of the approach remains unchanged, namely: we run the NetMesh

algorithm on the input point cloud P to get our vertex set M ⊇ P , then we define a modified filter

t̃ : DelM → R and build its sublevel filtration {D̃α
M}α≥0.

Filter modification. We follow the above recommendations and modify our filter to be a little

more careful in the region close to the input points. Let s(v) = 1
2fM(v) if v ∈ P and s(v) = dP (v)

otherwise, where fM denotes the Ruppert local feature size of M . Then, we modify our filter as

follows:

t̃(σ) =

{

dP (v) if σ is a vertex v ∈M ,

max
v∈σ

s(v) otherwise.

The difference between this filter and the one of Section 7.4.1 resides in the second item, which

delays the times at which the Delaunay simplices incident to the points of P appear.

Theoretical analysis. We redo the analysis of Section 7.4.1 using a modified dual filtration

{Ṽ α
M}α≥0. We only detail the changes to be made to the statements and proofs. Each point v ∈M

is assigned a convex set Ũα(v) as follows:

Ũα(v) =











∅ if α < t̃(v),

ball(v, α) if v ∈ P and t̃(v) ≤ α < s(v),

Vor�(v) otherwise.

(7.2)

The filtration {Ṽ α
M}α≥0 is defined by Ṽ α

M =
⋃

v∈M Ũα(v) for every α ≥ 0. As in Section 7.4.1,

the collection of the sets Ũα(v) forms a good closed cover of Ṽ α
M , and the sets themselves are

monotonically increasing with α. Therefore, the same arguments as in the proof of Lemma 7.4.2

show that {Ṽ α
M}α≥0 and {ÑUα}α≥0 have identical persistence diagrams, where ÑUα denotes the

nerve of the cover {Ũα(v) : v ∈ M, Ũα(v) 6= ∅}. Moreover, the following analog of Lemma 7.4.1

relates {ÑUα}α≥0 to {D̃α
M}α≥0:

Lemma 7.4.6 (analog of Lemma 7.4.1). For all α ≥ 0, D̃α
M and ÑUα (viewed as subcomplexes of

the full simplex 2M ) are identical.

Proof. Let σ = {v0, · · · , vk} ⊆M be a simplex. If k = 0, then our definitions imply that the vertex

σ = {v0} appears in ÑUα and in D̃α
M at the same time t̃(v0). If k > 0, then it follows from Eq.

(7.2) that σ must be a simplex of DelM in order to appear in ÑUα, since the balls ball(p, α) are

104



pairwise disjoint and disjoint from the Voronoi cells of the other points. Now, σ appears in ÑUα

at time maxi=1,··· ,k s(vi), which is also the time at which σ appears in D̃α
M .

It follows from Lemma 7.4.6 and preceding discussion that the filtrations {Ṽ α
M}α≥0 and {D̃α

M}α≥0

have identical persistence diagrams. Defining the clipped offsets Pα
�
as in Section 7.4.1, we can make

the interleaving between {Pα
�
}α≥0 and {Ṽ α

M}α≥0 hold over [0,+∞):

Lemma 7.4.7 (analog of Lemma 7.4.3). For all α ≥ 0, we have Ṽ
α/τ
M ⊆ Pα

�
⊆ Ṽ τα

M .

The proof of this result has the same flavor as the one of Lemma 7.4.3, but the details are

slightly more technical due to the more elaborate definition of the filter t̃ and associated Voronoi

filtration {Ṽ α
M}α≥0.

Proof. Let x be a point of Ṽ
α/τ
M ⊆ BB, and let v ∈ M be such that x ∈ Ũα/τ (v). If v ∈ P with

dM\{v}(v) > 2α/τ , then x ∈ ball(v, α/τ) and thus x ∈ P
α/τ
�
⊆ Pα

�
. If v ∈ P with dM\{v}(v) ≤

2α/τ , then condition (iii) of Section 7.3.1 guarantees that |x − v| ≤ α and thus x ∈ Pα
�
. If v ∈ S,

then the analysis is exactly the same as in the proof of Lemma 7.4.3. So, we have Ṽ
α/τ
M ⊆ Pα

�
.

For the second inclusion, let x be a point of Pα
�
. We want to show that x ∈ Ṽ τα

M . Let v ∈ M

be closest to x. If v ∈ P , then x ∈ ball(v, α) ∩ Vor�(v), which is included in Ũα(v) by definition

(recall that we have t̃(v) = 0). As a result, x ∈ Ṽ τα
M . If v ∈ S, then the analysis is the same as in

the proof of Lemma 7.4.3. So, we have Pα
�
⊆ Ṽ τα

M .

We can now conclude the analysis in the same way as in Section 7.4.1. On the one hand,

Lemma 7.4.6 and preceding discussion show that the filtrations {Ṽ α
M}α≥0 and {D̃α

M}α≥0 have iden-

tical persistence diagrams. On the other hand, Lemma 7.4.4 implies that the filtrations {Pα}α≥0

and {Pα
�
}α≥0 have identical persistence diagrams. Finally, Lemma 7.4.7 shows a full (multiplica-

tive) interleaving of {Ṽ α
M}α≥0 with {Pα

�
}α≥0, which by Corollary 6.5.2 implies that their persistence

diagrams are ln(τ)-close on the natural logarithmic scale. We thus obtain a stronger approximation

guarantee than with the basic filter:

Theorem 7.4.8 (analog of Theorem 7.4.5). On the natural logarithmic scale, the persistence dia-

grams of {Pα}α≥0 and {D̃α
M}α≥0 are ln τ -close in the bottleneck distance,

i.e. dln
D

(

{Pα}α≥0, {D̃α
M}α≥0

)

≤ ln τ .

7.5 Tighter Interleaving via Overmeshing

Let f : Rd → R be a sizing function. As long as f is bounded from above by the Ruppert local

feature size fP , NetMesh can return a mesh M such that the radius Rv of every Voronoi cell

Vor(v) is at most f(v). Given a parameter ε > 0, we will choose f be of the form ε
3(1+ε) fP . This

means that for any v ∈ M and any x ∈ Vor�(v), |x − v| ≤ ε
3(1+ε) fP (v). The standard mesh size
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analysis implies that the size m of our output mesh M will be bounded as follows:

m = O

(
∫

BB

1

f(z)d
dz

)

= O

(

(

3(1 + ε)

ε

)d ∫

BB

1

fP (z)d
dz

)

. (7.3)

In other words, our new sizing function f will only increase the mesh size by a factor of
(

3(1+ε)
ε

)d
.

Modified α-mesh filtration. As before, we run the SVR algorithm on the input point set P ,

but this time using the sizing function f described above. Letting M denote the output superset

of P , we modify the filter on DelM in such a way that the Voronoi cells of mesh vertices that are

significantly closer to a given point p ∈ P than to the others appear only once p lies within α/2 of

its nearest neighbor in P \ {p}.
More precisely, for every point x ∈ R

d let nx denote the point of P closest to x — if there are

two or more such points, then choose either of them as nx. We define the following function on the

mesh vertices:

∀v ∈M, s′(v) = max

{

dP (v),
1

2
fP (nv)

}

.

Note that when v belongs to P , we have nv = v and s′(v) = 1
2 fP (v). Also, if v is equidistant to two

vertices p, q ∈ P , then dP (v) ≥ 1
2 fP (p) and dP (v) ≥ 1

2 fP (q), so the choice of which serves as nv is

irrelevant. Our new filter t′ : DelM → R is defined as follows:

• for each vertex v, let t′(v) = 0 if v ∈ P and t′(v) = s′(v) if v ∈M \ P ,

• t′(σ) = maxi∈{0,··· ,k} s
′(vi) for each higher-dimensional simplex σ = {v0, · · · , vk}.

The modified α-mesh filtration {D′α
M}α≥ is defined as the sublevel filtration of t′, so once again

each space D′α
M is a subcomplex of DelM .

Approximation guarantee. Once again the analysis is done in terms of a dual filtration {V ′α
M}α≥0,

defined by V ′α
M =

⋃

v∈M U ′
α(v), where

U ′
α(v) =











∅ if v ∈M \ P and α < s′(v),

ball(v, α
1+ε) if v ∈ P and α < s′(v),

Vor�(v) otherwise.

Let U ′
α denote the collection of sets {U ′

α(v)}v∈M . In contrast with Section 7.4, the sets U ′
α(v) ∈

U ′
α are not monotonically increasing with α, the problem being that U ′

α(v) ⊆ U ′
β(v) when v ∈ P

and α < s′(v) ≤ β. Nevertheless, for our choice of sizing field f the family {V ′α
M}α≥0 is still a

filtration (see Lemma 7.5.2 below). The proof of this fact relies on the following technical result:

Lemma 7.5.1. For all v ∈ P , ball(v, s
′(v)
1+ε ) ⊆

⋃

u∈M :|u−v|≤s′(v) Vor�(u), where ε ≤ 1
2 is a user

defined parameter that controls the sizing function for M .

Proof. Assume for a contradiction that ball(v, s
′(v)
1+ε ) intersects Vor�(u) for some u ∈M such that

|u− v| > s′(v) = 1
2 fP (v), and let x be a point in the intersection. Using the triangle inequality, the
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quality of bound on the Voronoi cells, and the Lipschitz property of fP , we obtain:

|u− v| ≤ |v − x|+ |x− u| ≤ s′(v)
1 + ε

+
ε

3(1 + ε)
fP (u) ≤

1

2(1 + ε)
fP (v) +

ε

3(1 + ε)
fP (u)

≤ fP (v)

(

1

2(1 + ε)
+

ε

3(1 + ε)

)

+
ε

3(1 + ε)
|u− v|,

which implies that |u− v| ≤ fP (v)

(

1
2(1+ε)

+ ε
3(1+ε)

1− ε
3(1+ε)

)

= 1
2 fP (v), which contradicts our hypothesis.

Lemma 7.5.2. Given ε ≤ 1
2 , the family {V ′α

M}α≥0 is a valid filtration.

Proof. Let v ∈ M and β ≥ α ≥ 0. By definition, we have U ′
α(v) ⊆ U ′

β(v) unless v ∈ P and

α < s′(v) ≤ β, which is the case we will now address. In this case, we have U ′
α(v) = ball(v, α

1+ε)

and U ′
β(v) = Vor�(v). Let S denote the set M ∩ ball(v, s′(v)). For every u ∈ S we must have

v = nu, for otherwise the triangle inequality would imply that fP (v) ≤ |v − nu| < 2s′(v) = fP (v),

a contradiction. As a result, s′(u) = s′(v) ≤ β, and thus U ′
β(u) = Vor�(u). Then, Lemma 7.5.1

implies that U ′
α(v) ⊆

⋃

u∈S Vor�(u) =
⋃

u∈S U ′
β(u) ⊆ V ′β

M .

As in the previous sections, the filtration {V ′α
M}α≥0 is interleaved multiplicatively with {Pα

�
}α≥0:

Lemma 7.5.3. Given ε ≤ 1
2 , for all α ≥ 0, V ′α/(1+ε)

M ⊆ Pα
�
⊆ V ′α(1+ε)

M .

Proof. First we prove V ′α/(1+ε)
M ⊆ Pα

�
. Let x be a point in V ′α/(1+ε)

M , and let v ∈ M be such

that x ∈ U ′
α/(1+ε)(v). There are several cases to consider, depending on the value of α and on the

location of v. In each case, the goal is to show that dP (x) ≤ α.

Case 1: α/(1 + ε) < s′(v). In this case we have v ∈ P and U ′
α/(1+ε)(v) = ball(v, α/(1 + ε)2),

which gives dP (x) ≤ α
(1+ε)2

≤ α.

Case 2: α/(1 + ε) ≥ s′(v). Since fP is 1-Lipschitz, we have fP (v) ≤ fP (nv) + dP (v) ≤ 2s′(v) +

s′(v) = 3s′(v). Hence,

dP (x) ≤ dP (v) + |x− v| ≤ s′(v) + f(v) ≤ s′(v) +
ε

3(1 + ε)
fP (v) ≤ s′(v)(1 + ε) ≤ α.

Now we prove the other inclusion, namely Pα
�
⊆ V ′α(1+ε)

M . Let x be a point in Pα
�
, and let v ∈M

be closest to x. Then, x ∈ Vor�(v), and we will show that either x ∈ U ′
α(1+ε)(v) or x ∈ U ′

α(1+ε)(nv).

If α(1+ε) ≥ s′(v) then U ′
α(1+ε)(v) = Vor�(v), which contains x, so we may assume α(1+ε) < s′(v).

Case 1: v ∈ P . In this case we have U ′
α(1+ε)(v) = ball(v, α), which contains x by hypothesis.

Case 2: v ∈ M \ P and s′(v) = 1
2 fP (nv). As mentioned above, we may assume α < s′(v)

1+ε and

thus |x − nx| ≤ α < fP (nv)
2(1+ε) . The points x and v have a common nearest neighbor in P , because if
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nx 6= nv then we can derive the following contradiction:

fP (nv) ≤ |nv − nx| ≤ |nv − v|+ |v − x|+ |x− nx| ≤ dP (v) +
ε

3(1 + ε)
fP (v) + α

<
1

2
fP (nv) +

ε

3(1 + ε)
fP (nv) +

ε

3(1 + ε)
|v − nv|+

1

2(1 + ε)
fP (nv)

<

(

1

2
+

ε

2(1 + ε)
+

1

2(1 + ε)

)

fP (nv) = fP (nv).

Now, since α(1 + ε) < s′(v) = 1
2 fP (nv) = 1

2 fP (nx), we deduce that U ′
α(nx) = ball(nx, α(1 + ε)),

which contains x.

Case 3: v ∈M \P and s′(v) = dP (v). Again, we may assume α < s′(v)
1+ε and thus |x−nx| < s′(v)

1+ε .

However, we can derive the following contradiction proving this case impossible:

s′(v) = dP (v) ≤ |v − x|+ |x− nx|

<
ε

3(1 + ε)
fP (v) +

1

1 + ε
s′(v) ≤ ε

3(1 + ε)
fP (nv) +

ε

3(1 + ε)
dP (v) +

1

1 + ε
s′(v)

<
2ε

3(1 + ε)
s′(v) +

ε

3(1 + ε)
s′(v) +

1

1 + ε
s′(v) = s′(v).

It follows from Lemma 7.5.3 and Corollary 6.5.2 that the persistence diagrams of {V ′α
M}α≥0

and {Pα
�
}α≥0 on the natural logarithmic scale are ln(1 + ε)-close (and therefore ε-close) to each

other in the bottleneck distance. In addition, Lemma 7.4.4 tells us that {Pα
�
}α≥0 and {Pα}α≥0

have identical persistence diagrams. All that remains to be done now is relate {V ′α
M}α≥0 to our

simplicial filtration {D′α
M}α≥0. First, we prove that D′α

M coincides with the nerve of the collection

U ′
α (Lemma 7.5.5), which requires the following technical result:

Lemma 7.5.4. For all α ≥ 0 and all v ∈ P , if s′(v) > α then ball(v, α
1+ε) ∩ U ′

α(u) = ∅ for all

other u ∈M .

Proof. Suppose for a contradiction that there exists some u ∈ M such that U ′
α(v) ∩ U ′

α(u) 6= ∅. If

U ′
α(u) = ball(u, α

1+ε) then u ∈ P and we get the following contradiction:

fP (v) ≤ |u− v| ≤ 2α

1 + ε
< 2α < 2s′(v) = fP (v).

If U ′
α(u) = Vor�(u) then s′(u) ≤ α < s′(v). By Lemma 7.5.1, if the Voronoi cell Vor�(u) intersects

U ′
α(v) = ball(v, α

1+ε) then |u− v| ≤ s′(v). In this case, we get the following contradiction:

s′(v) =
1

2
fP (v) ≤

1

2
|v − nu| ≤

1

2
(|v − u|+ |u− nu|)

≤ 1

2
(s′(v) + dP (u)) ≤

1

2
(s′(v) + s′(u)) < s′(v).
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Lemma 7.5.5. The complex D′α
M coincides with the nerve of the cover U ′

α of V ′α
M .

Proof. For an input vertex p ∈ P , we have {p} ∈ D′α
M and U ′

α(p) 6= ∅ for any α ≥ 0. For a Steiner

vertex v ∈M \ P , {v} ∈ D′α
M ⇔ s′(v) ≥ α⇔ U ′

α(v) 6= ∅.
Let v ∈ P be a vertex such that s′(v) < α and thus U ′

α(v) = ball(v, α
1+ε). By Lemma 7.5.4,

{v} is the only simplex containing v in the nerve of

U ′α. particular ball(p, α
1+ε)∩ball(q, α

1+ε) = ∅. Similarly, Lemma 7.5.1 and the fact that Vor�(v) ⊂
ball(v, α

1+ε) imply that all the neighbors u of v in DelM have s′(u) < α and therefore U ′
α(u) = ∅.

It follows that {p} is also the only simplex containing v in D′α
M .

So, for any simplex σ = {v0, . . . , vk} with k ≥ 2 that appears in D′α
M or in the nerve of U ′

α, we

have U ′
α(vi) = Vor�(vi) for all i = 1 . . . k. Hence, σ ∈ D′α

M if and only if σ belongs to the nerve of

U ′
α.

Lemma 7.5.5 suggests to use the Persistent Nerve Lemma 6.4.3 to conclude that {D′α
M}α≥0

and {V ′α
M}α≥0 have identical persistence diagrams. Unfortunately, although the sets U ′

α(v) are

convex, they are not monotonically increasing with α, so they do not satisfy all the hypotheses

of the Persistent Nerve Lemma. Consequently, we need to go through an intermediate filtration,

{NU ′′
α}α≥0, where each space NU ′′

α is defined as the nerve of the collection of sets U ′′
α = {U ′′

α(v)}v∈M
where U ′′

α(v) = U ′
α(v) ∩ Vor�(v). Let V ′′α

M =
⋃

v∈M U ′′
α(v). Since the sets U ′′

α(v) are convex and

monotonically increasing with α, the Persistent Nerve Lemma 6.4.3 implies that {NU ′′
α}α≥0 and

{V ′′α
M}α≥0 have identical persistence diagrams. Now, the persistence diagram of {V ′′α

M}α≥0 is the

same as the one of {V ′α
M}α≥0, by the following result:

Lemma 7.5.6. For all α ≥ 0, the canonical inclusion V ′′α
M →֒ V ′α

M is a homotopy equivalence.

Proof. We will exhibit a deformation retraction of V ′α
M onto V ′′α

M . On each connected component

of V ′α
M separately. By Lemma 7.5.4, every vertex v ∈ P with s′(v) > α has the property that

U ′
α(v) is disjoint from all other sets U ′

α(u) and thus forms a separate connected component. On

this component the deformation retraction is easily defined using the metric projection onto the

convex set U ′′
α(v), as in Lemma 7.4.4. All other connected components of V ′α

M can be expressed as

unions of U ′
α(u)’s, each of which is equal to Vor�(u). For these components the identity map is a

trivial deformation retraction.

In addition, the persistence diagram of {NU ′′
α}α≥0 is the same as the one of {D′α

M}α≥0:

Lemma 7.5.7. For all α ≥ 0, NU ′′
α = D′α

M .

Proof. Observe that U ′′
α(v) ⊆ U ′

α(v) for all points v ∈ M , so NU ′′
α is naturally included in the

nerve of U ′
α, which by Lemma 7.5.5 coincides with D′α

M . For the other inclusion, we observe that

U ′
α(v) ⊆ U ′′

α(v) unless v ∈ P and α < s′(v). However, by Lemma 7.5.4, such vertices v only appear

in 0-simplices of D′α
M . These 0-simplices also appear in NU ′′

α since Vor�(v) ∩ ball(v, α
1+ε) 6= ∅, so

indeed, D′α
M ⊆ NU ′′

α.
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It follows from Lemmas 7.5.6 and 7.5.7 that {D′α
M}α≥0 and {V ′α

M}α≥0 have identical persistence

diagrams. This concludes our analysis and gives our main theoretical result:

Theorem 7.5.8. Given any user-defined parameter ε ∈ (0, 12 ] controlling the sizing function for

M , the persistence diagrams of {Pα}α≥0 and {D′α
M}α≥0 on the natural logarithmic scale are ε-close

in the bottleneck-distance, i.e. dln
D({Pα}α≥0, {D′α

M}α≥0) ≤ ε.

7.6 Recursively Well-Paced Subsets

7.6.1 Partitioning the input by scale

If α is significantly bigger than the distance between two points p and q in P , then intuitively, the

difference between the offsets Pα and (P \{q})α should also be small. In this section, we make this

intuition precise and show that the persistence diagram of the union of the clipped offsets of the

sets {Pi} is close to the persistence diagram of Pα.

Recall that the bounding ball of Pi is Bi = ball(pi, 2ri). The clipped offset of Pi is defined

to be the set Pα
i◦ = Pα

i ∩Bi. The union of these clipped offsets is defined to be Pα
∗◦ =

⋃

i P
α
i◦.

Let the extended bounding ball of Pi be Bi+ = ball(pi,
1−θ
2θ ri). We will also define the

extended clipped offsets Pα
i+ = Pα

i ∩Bi+. As with the clipped offsets, we define Pα
∗+ =

⋃

i P
α
i+.

We can also consider the extended clipped offsets of the entire set P , Pα
+ = Pα∩B1+. The extended

offsets are useful because they are clipped less aggressively than the regular clipped offsets, but, as

we will see, they have the same topology. This usefulness is demonstrated in the following Lemma.

Lemma 7.6.1. For all α ≥ 0, P
α/(1+3θ)
∗+ ⊆ Pα

+ ⊆ P
α(1+3θ)
∗+ .

Proof. For the first inclusion, let x be a point in P
α/(1+3θ)
∗+ . So, for some i, x ∈ P

α/(1+3θ)
i ∩ Bi+.

Since Pi ⊆ P , we have that Pα/(1+3θ) ⊆ Pα. Moreover, Bi+ ⊆ B1+ so x ∈ Pα ∩B1+ = Pα
+.

To prove the second inclusion, let x be any point in Pα
+ . We will show that x ∈ P

α(1+3θ)
∗+ . Let i

be the maximum such that x ∈ Bi+. Let nx be the nearest neighbor to x in P . Since x ∈ Pα, we

know that

|x− nx| ≤ α. (7.4)

If nx ∈ Pi then x is contained in Pα
i ∩Bi+ = Pα

i+, which is itself contained in P
α(1+3θ)
∗+ . So, we

may assume that nx /∈ Pi.

Choose j to be the largest such that nx ∈ Cj and pj ∈ Pi. Since nx ∈ Cj , the definition of rj

implies that

|nx − pj| ≤ rj . (7.5)

By our choice of i, we know that x /∈ Bj+ and thus

rj <
2θ

1− θ
|x− pj|. (7.6)
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We can show that x and pj are close using the triangle inequality as well as the inequalities

from equations (7.4), (7.5), and (7.6) as follows.

|x− pj | ≤ |x− nx|+ |nx − pj| < α+ rj ≤ α+
2θ

1− θ
|x− pj| ≤ α(1 + 3θ).

The last inequality uses the fact that θ ≤ 1
9 .

Lemma 7.6.2. The log-scale persistence diagrams of {Pα
∗◦} and {Pα} are 3θ-close in bottleneck

distance.

Proof. By Lemma 7.4.4, Pα →֒ Pα
+ is a homotopy equivalence, and so {Pα} and {Pα

+} have identical
persistence diagrams. The preceding lemma and Corollary 6.5.2 imply that dln

D({Pα
+}, {Pα

∗+}) ≤
log(1+3θ) ≤ 3θ. So, it will suffice to show that {Pα

∗+} and{Pα
∗◦} have identical persistence diagrams,

which we prove by showing that the inclusion map Pα
∗◦ →֒ Pα

∗+ is a homotopy equivalence.

The difference between Pα
∗◦ and Pα

∗+ is in the size of the balls used around each point set Pi.

Let Ai be the annulus between these two balls, i.e. Ai = Bi+ \Bi. The choice of 1−θ
θ ri as the outer

radius was precisely chosen so that the Ai’s are pairwise disjoint (this is the only place we use the

assumption that the ris are distinct). We use the metric projection πPα
∗◦ : Pα

∗+ → Pα
∗◦ piecewise on

the Ai. For any x, if πPα
∗◦(x) 6= x then x ∈ Ai for some i and πPα

∗◦(x) = (x−pi)max{2ri,α}
|x−pi| . From

the definition, πPα
∗◦ is also clearly 1-Lipschitz with the annuli. We can now follow exactly the same

arguments as in Lemma 7.4.4 to construct the homotopy equivalence and complete the proof.

7.6.2 Approximation Guarantee

We now prove that the α-mesh filtration, {Dα
M∗
}α≥0, is a good approximation to the offsets filtration

for computing persistence diagrams. First we will show that the persistence diagram of the α-

Voronoi filtration, {V α
M∗
}α≥0, is close to that of the offsets of P . This will be a straightforward

application of the results we have proved thus far. Second, we will show that {V α
M∗
}α≥0 and

{Dα
M∗
}α≥0 have identical persistence diagrams.

Lemma 7.6.3. For all α ≥ 0 and each mesh Mi, V
α/(1+ε)
Mi

⊆ Pα
i◦ ⊆ V

α(1+ε)
Mi

.

Proof. The interleaving can be shown by the exact same arguments as in Lemma 7.5.3.

Lemma 7.6.4. dln
D({V α

M∗
}α≥0, {Pα}α≥0) ≤ 3θ + ε.

Proof. We can apply the interleaving of Lemma 7.6.3 to each Mi to find that V
α/(1+ε)
M∗

⊆ Pα
◦ ⊆

V
α(1+ε)
M∗

. So, by Corollary 6.5.2, we have dln
D({V α

M∗
}α≥0, {Pα

∗◦}α≥0) ≤ log(1 + ε) ≤ ε. Applying

Lemma 7.6.2 and the triangle inequality completes the proof.

Let Dα
i =

⋃i
j=1D

α
Mj

. So, in particular, Dα
k = Dα

M∗
and Dα

i ⊆ Dα
M∗

for all i = 1 . . . k.

Lemma 7.6.5. If i ≤ j and α ≥ ri, then Dα
i →֒ Dα

j is a homotopy equivalence.
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Proof. We proceed by induction on j. The base case of j = i = 1 is trivial because then Dα
i =

Dα
j = Dα

1 . By induction, assume that the statement holds for j′ < j. It will suffice to show that

Dα
j−1 →֒ Dα

j is a homotopy equivalence and the desired homotopy equivalence can be constructed

by composition.

Since α ≥ ri > rj , it must be that Dα
Mj

= DelMj
and is thus homeomorphic to a ball and

contractible. The complex Dα
Mj

intersects Dα
j−1 only at the vertex pj. By contracting Dα

Mj
to pj

we get that Dj−1 →֒ Dj is a homotopy equivalence. Thus, by the inductive hypothesis and the

composition of homotopies, we get that Di →֒ Dj is a homotopy equivalence as desired.

When α is in the range [ri+1(1+ε), ri(1+ε)], the complex Dα
i is an embedded simplicial complex.

More importantly, the following Lemma shows that it is the nerve of a cover of V α
M∗

defined by the

sets Uα(v) = U jv
α (v), where jv is defined to be the maximum integer less than or equal to i such

that v ∈Mjv .

Lemma 7.6.6. For any i ∈ [0, k] and all α such that ri+1 ≤ α
1+ε ≤ ri, D

α
i coincides with the nerve

of {Uα(v)}v∈M[i]
.

Proof. First observe that Uα 6= ∅ if and only if {v} ∈ Dα
i so it will suffice to show that the two

complexes coincide for simplices of dimension ≥ 1.

First, we show that any simplex in Dα
i corresponds to a nonempty intersection of Uα(v)’s.

Suppose we have σ ∈ Dα
i . Then we have σ ∈ Dα

Mj
for some j ≤ i and so by the definition of Dα

Mj
, it

is the case that
⋂

v∈σ U
j
α(v) 6= ∅. It will suffice to jv = j for all v ∈ σ. Clearly, v ∈Mj for each vertex

v ∈ σ, so if jv 6= j then jv > j. Since v is in some 1-simplex in Dα
Mj

, α ≥ dPj
≥ 1−θ

θ rjv > rj(1 + ε).

By our hypothesis, this implies that jv > i. However, this is impossible by the definition of jv.

Now, we will show that if
⋂

v∈σ⊂M[i]
U(v) 6= ∅ then there is a corresponding simplex inDα

i . It will

suffice to show that if for any two vertices u, v, U(u)∩U (v) 6= ∅ then ju = jv, because this will imply

that U(v) = U j
α(v) for a fixed value of j and thus σ corresponds to a simplex inDα

Mj
⊆ Dα

i . Suppose

for contradiction that jv < ju for some such pair. Then, by our hypothesis, α
1+ε ≤ rju . Choose

x ∈ U(u)∩U(v). The set U(u) is contained in the bounding ball Bju , so |x− pju| ≤ rju. Let nv be

the nearest point in P to v as before. Because U(v) is nonempty, |v− nv| ≤ α By the interleaving,

we know that U(v) ⊆ Pα(1+ε) and so |x − nv| ≤ α(1 + ε) ≤ rju(1 + ε)2. Recalling that ε ≤ 1
2 , we

can combine these with the triangle inequality, to obtain that |pju−nv| ≤ rju(1+(1+ ε)2) ≤ 13
4 rju .

On the other hand, the well-paced construction guarantees that |pju−nv| ≥ 1−θ
2θ rju. Recalling that

θ < 1
9 , this implies that 4rju =

1− 1
9

2 1
9

rju ≤ |pju − nv| ≤ 13
4 rju, a contradiction.

Lemma 7.6.7. For any i ∈ [0, k] and all α, β such that ri+1 ≤ α ≤ β ≤ ri, the following diagram
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commutes at the homology level.

V α
M∗

→֒ V β
M∗

↓ ↓
Dα

i →֒ Dβ
i

↓ ↓
Dα

M∗
→֒ Dβ

M∗

Proof. The top half commutes at the homology level by Lemma 7.6.6 and the Persistent Nerve

Lemma. The bottom half commutes because all of the maps are inclusions and thus it induces a

commutative diagram at the homology level as well.

Lemma 7.6.8. D{Dα
M∗
}α≥0 = D{V α

M∗
}α≥0

Proof. We need to show the existence of homomorphisms to make the following diagram commute

where the horizontal maps are induced by inclusion.

Hk(V
α
M∗

) → Hk(V
β
M∗

)

↓ ↓
Hk(D

α
M∗

) → Hk(D
β
M∗

)

This follows from Lemma 7.6.7 by observing that the inclusion map V α
M∗
→֒ V β

M∗
can be decom-

posed into V α
M∗
→֒ V ri

M∗
→֒ · · · →֒ V

rj
M∗
→֒ V β

M∗
, and similarly for Dα

M∗
→֒ Dβ

M∗
.

We can now state the main Theorem, which follows directly from the preceding Lemmas and

the triangle inequality.

Theorem 7.6.9. The persistence diagrams of {Pα}α≥0 and {Dα
M∗
}α≥0 on the natural logarithmic

scale are (3θ + ε)-close in the bottleneck distance, i.e. dln
D({Dα

M∗
}α≥0, {Pα}α≥0) ≤ 3θ + ε.

7.7 Experiments

As a proof of concept, we applied the approach of Section 7.4 to 2,000 points sampled on the

4-dimensional Clifford torus, as described in Figure 7.2. We modified a pre-existing SVR imple-

mentation [AHMP07] to run in 4D and compute the filtration of Section 7.4.2. We used the Plex

library [ZZZ] to compute the persistence diagram. To the 2,000 input data points, SVR added

approximately 71,000 Steiner points including a bounding box and achieved an aspect ratio bound

of τ = 3.08 (a value chosen for technical reasons related to the bounding box). In total, the mesh

contained about 2 million pentahedra, 12 million simplices overall. It took approximately 1 hour

to compute the mesh and filtration, and another 7 hours to compute the persistence diagram.

Figure 7.2 (right) displays the persistence diagram thus obtained as a persistence bar-

code [CZCG04]: Homological features are sorted first by their dimension, then by their start

time, and drawn as an interval. The interval with an arrow head with arrow heads extends to

infinity. The qualitative interpretation of the barcode is straightforward: scanning through the
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scales from smallest to largest, we see the point cloud, the helicoidal curve, the Clifford torus, the

3-sphere of radius
√
2, and finally the ambient space R

4, represented simply as a space with trivial

reduced homology groups. Note that the topological noise appearing in the 2-dimensional barcode

between -0.2 and 0 is made of many short intervals of length less than 0.05. The 3-sphere structure

is of particular interest because it had never been observed before, being too far from the beginning

of the filtration for Rips or Čech filtration techniques to capture it.

Quantitatively, the curve appears at time τα = −1.73, which corresponds roughly to half the

distance between consecutive points along the curve. The second 1-cycle of the torus appears

around τα = −1.2, which is only slightly sooner than the time (τα = −1.16) at which consecutive

periods of the curve start being connected in the offsets filtration. The 2-cycle of the torus appears

soon afterwards, since the square [0, 2π]2 gets filled in rapidly once consecutive periods of the curve

start being connected. The isolines u = Ct and v = Ct are mapped to unit circles in R
4, so both

the 1-cycles and the 2-cycle should disappear at τα = τ1 = 0 in the barcode, which is close to being

the case. Among the points that lie farthest away from the Clifford torus on the 3-sphere, we have

(
√
2, 0, 0, 0), whose their distance to the torus is

√

4− 2
√
2 ≈ 1.08, so the 3-sphere should appear

at τα = τ1.08 ≈ 0.08 in the barcode, which it does approximately. At the end of the barcode the

approximation quality worsens a bit: since the 3-sphere has radius
√
2, the 3-cycle should disappear

at τα = τ
√
2 ≈ 0.35, but in reality it does so sooner, around τα = 0.18. Nevertheless, the absolute

error is still within τ1.18, meaning that our result is as good as if a multiplicative 1.18-interleaving

had been obtained, whereas the aspect ratio bound τ used by the SVR algorithm was 3.08 (a value

chosen for technical reasons relating to SVR’s handling of the bounding box). So, it appears from

this analysis that the quality of approximation provided by our method can be significantly better

in practice than expected from the theory.

Comparison. The 4-skeleton of the Rips filtration of P reaches an equivalent size (2 million

pentahedra) as early as τα = −0.75, which makes it difficult with this budget to detect the torus,

and impossible to detect the 3-sphere. Increasing the limit to a mere τα = −0.5 already raises the

size of the Rips filtration to more than 10 million simplices. The Clifford torus is not a worst case

for the α-complex filtration. However, as mentioned, the α-complex is susceptible to pathological

behavior on some other very reasonable inputs.

Engineering issues. Our implementation is very preliminary and would benefit from substantial

engineering. In particular, the SVR implementation on which we based our filtering software adds

points to a bounding box to avoid dealing with Steiner points near the boundary of space. The

number of points on the bounding box is negligible in two and three dimensions, but outnumbered

our input for the four-dimensional example. The bounding box also limited the quality we could

practically achieve. In addition, since we did not have access to efficient staged predicates and

constructions in 4D, we used exact rational arithmetic, which in 3D slows SVR down by a factor

of worse than 20. Despite this, meshing was not the bottleneck compared to the persistence

computation using Plex.
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7.8 Discussion

Steiner point choice. Since all our filtrations are derived from the mesh DelM , their sizes (and

therefore the complexity of the whole approach) depend heavily on the size of M . Some work

has been done in two and three dimensions to optimize point placement (e.g. [Üng09]), reducing

the mesh size for any requested quality, or alternately in practice allowing better quality than is

theoretically achievable (i.e. allowing meshing to τ < 2). Furthermore, there is a huge industry

in mesh smoothing, which in practice improves the quality of a mesh as a post-processing step.

Reductions in the number of Steiner points are particularly important as the dimension increases,

whereas improving the quality improves the approximation.

Higher dimension. A major limitation of our approach resides in the fact that it is tied to the

ambient space R
d, which is fine in small to moderate dimensions but not in high dimensions. One

possibility for improvement would be to refine the approach and its analysis, so as to make its

complexity depend on the dimensionality of the topological features the user is interested in. For

instance, in scenarios where the data are high-dimensional but are known to lie on or close to low-

dimensional geometric structures of low dimensions, it would be interesting to devise a mechanism

that allows the user to capture the low-dimensional topological features at all scales, at a cost

that does not depend exponentially on the ambient dimension. Some work has been done in this

direction [CO08], mainly using Rips or witness complex filtrations, but it remains preliminary for

the moment. It would be interesting to see if meshing techniques could help in this context.

7.9 Technical Lemmas

Let K be a closed convex set in R
d, and let πK denote the metric projection onto K,

πK(x) = argmin
y∈K

|x− y|.

Lemma 7.9.1. For any compact convex set K ⊆ R
d, the projection πK is well-defined and 1-

Lipschitz over all of Rd.

Proof. First, we show that πK is well-defined. Let x be any point in R
d. Suppose for contradiction

that there were two points a, b ∈ K such that

|x− a| = |x− b| = dK(x).

Let c = a+b
2 be the point midway between a and b. Since K is convex, c ∈ K. However, |x− c| <

|x− a|, a contradiction.

We now show that πK is 1-Lipschitz, i.e. |πK(x)− πK(y)| ≤ |x− y| for all x, y ∈ R
d. Let x and

y be any two points in R
d and let x′ = πK(x) and y′ = πK(y) be their projections onto K. We may

assume x′ 6= y′ for otherwise |x′ − y′| ≤ |x− y| is trivial. Let L be the line through x′ and y′. The
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points x′′ = πL(x) and y′′ = πL(y) are the projections of x and y onto L. The distance between x′′

and y′′ may be bounded as follows.

|x′′ − y′′| =
(

x′ − y′

|x′ − y′|

)T

(x− y) ≤ |x− y|.

The point x′′ cannot lie in the line segment x′y′, because then x′′ would be closer to x than

x′. Similarly, y′′ /∈ x′y′. Also, x′′ and y′′ lie on opposite sides of x′y′ because x′ 6= y′. So,

|x′ − y′| ≤ |x′′ − y′′| ≤ |x− y| as desired.

Lemma (7.4.4). Let B be a compact, convex set. If Q ⊂ B then for all α ≥ 0, the canonical

inclusion Qα ∩B →֒ Qα is a homotopy equivalence.

Proof. Let πB denote the metric projection onto B, πB(x) = argminy∈B |x − y|. Lemma 7.9.1

ensures that πB is well-defined and 1-Lipschitz. Let x be a point of Qα, and let x′ = πB(x).

We will show that the line segment x, x′ is included in Qα. Let p ∈ Q be such that |x− p| ≤ α.

Since B contains Q, we have πB(p) = p, and therefore |p − x′| ≤ |p− x| since πB is 1-Lipschitz. It

follows that both x and x′ belong to ball(p, α). Since this ball is convex, it contains the whole line

segment x, y.

We will now construct a homotopy explicitly. Define F : [0, 1] × Qα → R
d as F (t, x) =

(1− t)x+ tπB(x). Since πB is 1-Lipschitz, F is continuous. In addition, the above discussion shows

that F (t,Qα) ⊆ Qα for all t ∈ [0, 1]. Also, since Qα ∩ B ⊆ B, the restriction of πB to Qα ∩ B is

the identity, as is the restriction of F . Finally, for all x ∈ Qα we have F (1, x) = πB(x) ∈ Qα ∩B.

Hence, F is a deformation retraction of Qα onto Qα∩B, which implies that the canonical inclusion

Qα ∩B →֒ Qα is a homotopy equivalence.
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Chapter 8

Geometric Persistent Homology for

General Distance Functions

8.1 Overview

A distance function can induce a shape from a point cloud P in R
d. For example, the α-offsets of

P is the set of points in R
d of distance at most α from P . Much is known about the geometry and

topology of offsets as well as how to compute them. As estimators of the shape, the offsets fail in

the presence of background noise and outliers.

To combat this problem, alternative distance functions can be used such as the kth nearest

neighbor distance. Rather than choosing k explicitly, we show how to build a multifiltered complex

that captures both the scale α and the smoothing parameter k. The persistence vineyard of this

multifiltration gives a picture of what topological features may be present in the data as well as

their robustness to change in both α and k.

To avoid the blowup in size of the underlying complex, one can also compute an approximation.

The goal is to produce a filtered complex of small size whose persistence diagram is provably close

to that produced by the true (k, α)-offsets. For this, we give a general approach to geometric

approximation of sublevel filtrations in constant dimensional Euclidean space. We show how to

(1 + ε)-approximate the persistence diagram of the sublevel filtration of any Lipschitz function

f ≥ d2
c for constant c > 0, where d2(x) is the distance from x to its 2nd nearest neighbor in P .

Moreover, if we have an ordered sequence of such functions, we can compute a single complex

that can be filtered for all of them. This is done by extending the mesh-based filtration algorithm

introduced in our previous work with Hudson, Miller, and Oudot [HMOS10]. As special cases,

this works for the kth nearest neighbor distance as well as the k-distances introduced by Chazal,

Cohen-Steiner, and Merigot [CCSM10].
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8.2 Offsets and De-noising

The beauty of persistent homology for topological data analysis is that it obviates the need to

choose an explicit scale at which to view the data. Instead, the algebraic structure of the problem

allows one to compute for all possible scales simultaneously. Not only does one skip the problem of

tuning parameters, but also the output shows explicitly which features are robust to perturbations

of the parameters. Unfortunately, de-noising the data often leads to new parameters to choose.

We show how to replace the Euclidean distance with a family of distance functions to de-noise the

data as part of the persistence computation. The result is a vineyard of persistence diagrams that

captures not only what topological features are present but also how robust they are to changes in

the de-noising parameter. We give exact constructions for the kth nearest neighbor distance and a

general approximation method for a broad class of distance-like functions.

In practice, geometric persistent homology has three phases: one statistical, one geometric, and

the third, topological [CIdSZ08]. First, the data is filtered for noise. Second, the geometry of the

points drives the construction of a filtered simplicial complex. Third, the persistent homology of

the filtered complex is computed. Usually, the emphasis is placed on the latter two phases with the

first treated as a necessary evil. And it is necessary; even a small number of outliers can generate

spurious persistent features that foil existing methods.

Traditionally, the process of de-noising the data introduces a new set of parameters that must

be tuned explicitly, one for the scale at which to define density and one to be the threshold between

signal and noise. So, although no explicit scale is chosen to compute the persistent homology, one

is chosen to de-noise the data. The problem is both aesthetic and practical. Not only would it be

more elegant to do all three phases without tuning any parameters, it would also be more useful,

as it has been observed that de-noising parameters can be difficult to choose [KC10].

We solve this problem by folding the noise removal phase into the persistence computation.

The result is a family of simplicial complexes filtered in two dimensions, capturing both the scale

of the data and the threshold for noise. This setting is closely related to density-based clustering in

which one may choose a smoothing parameter for a density estimator as well as a noise threshold.

Figure 8.1: The α-offsets overlaid with the (2, α)-offsets.

In the first part of this chapter, we replace the usual distance to the input set P , with the kth

nearest neighbor distance, dk. This replaces the α-offsets, Pα =
⋃

p∈P ball(p, α) with the (k, α)-

offsets, Pα
k = d−1

k (−∞, α] as our estimate of the shape at scale α (see Figure 8.1). This is closely

related to a common approach to de-noising data for topological data analysis points are treated
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as noise if the distance to their kth nearest neighbor is at least some threshold α (see [NSW08b]

and [CIdSZ08] for two notable examples). We show how to filter by α rather than fixing it in

advance.

We can now also vary k, which corresponds intuitively to the number of points that must

participate locally for a feature to be considered signal rather than noise. This is related to another

standard de-noising heuristic in which connected components corresponding to individual input

points are ignored, regardless of their persistence. The kth nearest neighbor distance takes that

intuition and encodes it in the distance function in a way that also applies to higher order features

generated by more than a single point (see Figure 8.2).

Figure 8.2: Two inputs yielding persistent 1-cycles with the same birth and death times. The cycle
on the left uses relatively few points while the cycle on the right uses many. Our approach allows
us to tell the difference between these two cases.

Contribution 1 We present barycentric multifiltrations, a natural way to filter a simplicial

complex by a second parameter. We then show that the barycentric mutifiltration of the Čech

filtration captures exactly the persistent homology of the (k, α)-offsets. This is then related to the

Rips complex.

Next, we turn our attention to approximation methods for a wider class of “distance-like” functions.

We extend the method of filtering triangulations generated by Voronoi refinement meshing. These

have the advantage that under mild sampling assumptions on the input, they maintain size that is

linear in the number of points.

Contribution 2 We prove approximation guarantees for mesh-based filtrations of more general

smooth functions. This allows us to construct a multifiltered complex that approximates the

(k, α)-offsets that is the same size as the corresponding mesh filtration for the α-offsets. Perhaps

surprisingly, for k > 1, both the filtration and its analysis are simpler than for the usual distance

function, d1. Thus these results are both simpler to understand and implement while also being

more generally applicable.
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8.3 Related Work

They give a simple update procedure to connect two filtrations on the same complex.

Independent of persistent homology, the problem of homology inference from discrete input has

also been the subject of much interest. Niyogi, Smale, and Weinberger showed that for sufficiently

dense samples on smooth manifolds, the offsets are in fact, homotopy equivalent to the underlying

manifold [NSW08a]. Chazal and Lieutier extended these results to the case of non-uniform and

noisy samples [CL08, CCSL09]. Both of these method are based on offsets.

Chazal et al. have looked at more exotic distance functions to do geometric inference in the

presence of noise, achieving very strong guarantees [CCSM10]. The issue of topological de-noising

has also been addressed by Kloke and Carlsson [KC10]. They present several examples where the

direct application of k-nearest neighbor distance de-noising fails because of the difficulty of picking

the relevant parameters. This is precisely the problem we propose to attack by folding the selection

of these parameters into the persistence algorithm itself, rather than treating the de-noising step

as an independent pre-process.

Filtering by the sublevels of dk differs from the use of the kth nearest neighbor graph is used

in pattern recognition (see [Mar04] for a survey) or in nonlinear dimensionality reduction (see

[BN01, RS00, dST02, TdS00] among others). In that context, the assumption is that the points

are sampled nearly uniformly from some unknown distribution so that areas of low density indicate

that the intrinsic metric has been stretched by the embedding. With the kth nearest neighbor

distance function, we are assuming only that the sample is “dense enough” in the input space. This

means that we do not infer information about the underlying metric structure, but we also require

less stringent sampling conditions in order to discover the relevant structure.

8.4 Background

Distance Functions and Offsets. Let P ⊂ R
d be a set of distinct points. We can generalize

the offsets of P by changing the distance function. Define the kth nearest neighbor distance,

dk, to be the distance to k points of P . That is,

dk(x) = min
S∈(Pk)

max
p∈S
|x− p|.

The sublevels of the kth nearest neighbor distance are the (k, α)-offsets, denoted Pα
k :

Pα
k = d−1

k (−∞, α].

Equivalently, the (k, α)-offsets are the points contained in at least k balls of radius α centered at

points in P (see Figure 8.1). Note that d1 is exactly dP and d2 is the Ruppert feature size fP .
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k-distances and distance-like functions. As shown by Merigot, a large range of “distance-

like” functions can be used to infer topology [Mér10]. Chazal et al. [CCSM10] and Kloke and

Carlsson [KC10] independently observed that the gradient of the distance function seems to be

especially useful in topological de-noising. This was made concrete in the notion of a distance to a

measure, which for point sets yields the k-distance:

Dk(x)
2 =

1

k

∑

p∈kNN(x)

|p− x|2,

where kNN(x) denotes the k nearest neighbors of x among the points of P [CCSM10]. Recently,

Guibas et al. demonstrated a method for computing k-distances using a small number of witness

points [GMM11]. In that paper, they give a coarser approximation than ours, but achieve smaller

complexity wih respect to the ambient dimension. As a corollary to our main theorem on mesh-

based filtrations, we will show that the persistent homology of the sublevel filtration of Dk can be

approximated over all scales. Moreover, the complex can be filtered by k as well.

8.5 Barycentric Multifiltration

As always, let P ⊂ R
d be a set of n points. Let S = {Sp ⊂ R

d : p ∈ P} be a family of closed sets

indexed by the points of P . For any subset u of P , let Tu be the intersection of the corresponding

sets:

Tu =
⋂

p∈u
Sp.

Let J be the nerve S realized with vertices in P :

J = {u ⊂ P : Tu 6= ∅}.

Let J̃ be the barycentric decomposition of J :

J̃ =
{

{u1, u2, . . .} ⊂ J : u1 ⊂ u2 ⊂ · · ·
}

.

Finally, we define J̃k as the subcomplex of J̃ induced on the vertices of cardinality at least k:

J̃k = {σ ∈ J̃ : for all v ∈ σ, |v| ≥ k}.

Note that in the special case where Sp = ball(p, α), J̃k = C̃αk .
We define the k-nerve of S to be the nerve of k-wise intersections among the sets of S:

Nk =

{

U ⊆
(

P

k

)

:
⋂

u∈U
Tu 6= ∅

}

.
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The barycentric decomposition of the k-nerve is denoted Ñk:

Ñk =
{

{u1, u2, . . .} ⊂ Nk : u1 ⊂ u2 ⊂ · · ·
}

.

The complex Ñk contains a lot of redundant information. Let V be the vertex set of Ñk. We

will define a map π : V → V that “projects” out a lot of this redundant information.

π(v) =

(⋃

u∈v u
k

)

.

We will use this map to compare some of the complexes defined above in Lemmas 8.5.1 and 8.5.3.

P
α

P
α

2
Ñ2 π(Ñ2)N2

Figure 8.3: The construction of the 2-nerve, its barycentric decomposition, and its image under π.

Lemma 8.5.1. For any finite collection of closed sets S, the complexes J̃k and π(Ñk) associated

with S are isomorphic.

Proof. We define a map φ from the vertex set of J̃k to the vertex set of π(Ñk) as φ(u) =
(u
k

)

. The

inverse of this map is φ−1(v) =
⋃

vi∈v vi. So, φ takes subsets u ⊂ P of size at least k such that

Tu 6= ∅ to the family of k-element subsets of u. It is easy to check that φ is a bijection. It will suffice

to prove that σ is a simplex of J̃k if and only if φ(σ) is a simplex of π(Ñk). Let σ = (u0, . . . , uj) ∈ J̃k
be any simplex. By the definition of J̃k, u0 ⊂ · · · ⊂ uj. For any pair of vertices ua and ub, ua ⊂ ub

if and only if φ(ua) ⊂ φ(ub). So σ ∈ J̃k if and only if φ(u0) ⊂ · · · ⊂ φ(uj), which holds if and only

if φ(σ) ∈ π(Ñk).

Before proceeding to prove the homotopy equivalence between π(Ñk) and Ñk, we give state a

minor technical lemma. It gives a sufficient combinatorial condition for the existence of a defor-

mation retraction between two simplicial complexes. It’s proof is a simple exercise in homotopy

theory and may be found in Section 8.8.

Lemma 8.5.2. Let K1 ⊂ K2 be simplicial complexes with vertex sets V1 and V2. Let π : V2 → V1

be a map that restricts to the identity on V1. If π(σ) ∈ K1 and σ ∪ π(σ) ∈ K2 for all σ ∈ K2 then

K1 is a deformation retract of K2.

Lemma 8.5.3. The complex π(Ñk) is a deformation retract of Ñk.
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Proof. Let V be the set of vertices of Ñk and let s = maxv∈V |v|. Let for i = 0 . . . s, define

Vi = {v ∈ V : |v| ≤ i} ∪ {π(v) : v ∈ V, |v| > i}

Let Ai be the subcomplex of Ñk induced on Vi. So

π(Ñk) = A0 ⊂ · · · ⊂ As = Ñk.

It will suffice to show that the inclusion Ai →֒ Ai+1 is a homotopy equivalence for all i. Lemma 8.5.2

gives a recipe for constructing such a homotopy equivalence from a map between the vertex sets.

Let πi : Vi → Vi−1 be defined as

πi(v) =

{

v if |v| < i

π(v) if |v| ≥ i

Lemma 8.5.2 will give the desired deformation retraction as long as the following conditions are

met.

(1) πi restricts to the identity on Vi−1,

(2) πi(σ) ∈ Ai−1 for all σ ∈ Ai, and

(3) (σ ∪ πi(σ)) ∈ Ai for all σ ∈ Ai.

Item (1) is obvious from the definitions. To prove (2) and (3), fix a simplex σ = (v0, . . . , vt) ∈ Ai

and let σ′ = σ ∪ πi(σ). If σ = σ′ then we are done, so we may assume that for some vertex vj ∈ σ,

π(vj) /∈ σ. Recall that the simplices of Ñk (and also Ai) are strictly nested sequences of vertices.

So, there is at most one such vertex vj, namely the one with cardinality i. We may therefore express

σ′ as σ ∪ {π(vj)}. Since σ ∈ Ai ⊂ Ñk,

v0 ⊂ · · · ⊂ vt.

Observe that v ⊆ π(v) for all v ∈ V and moreover that u ⊂ v if and only if π(u) ⊂ π(v). So, it

follows that

v0 ⊂ · · · ⊂ vj ⊂ π(vj) ⊂ π(vj+1) = vj+1 ⊂ · · · ⊂ vt.

This is a strictly nested sequence of the vertices of σ′ so σ′ ∈ Ai, proving (3). Moreover, π(σ) =

σ′ \ {vj} so π(σ) ∈ Ñk as well. Since π(σ) ⊂ Vi−1, we conclude that π(σ) ∈ Ai−1, proving (2).

The preceding lemmas are combinatorial statements and make no assumption about the topol-

ogy of the sets of S. The next theorem introduces such a topological hypothesis, requiring the

intersections to be well-behaved. It may be viewed as a generalization of the Nerve Theorem.

Theorem 8.5.4. Let S = {S1, . . . , Sn} be a family of sets. For any subset u ⊂ S, let Tu =
⋂

Si∈u Si.
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Let T = {Tu : u ∈
(P
k

)

}. If Tu is empty or contractible for each u ⊂ S, then

⋃

Tu∈T
Tu ≃ J̃k.

Proof. We first observe that Nk is the nerve of T . So the Nerve Theorem implies that
⋃

Tu∈T Tu ≃
Nk. A complex and its barycentric decomposition are homeomorphic so Nk ≃ Ñk. Combining

these facts with Lemmas 8.5.1 and 8.5.3 yields

⋃

Tu∈T
Tu ≃ Nk ≃ Ñk ≃ π(Ñk) ≃ J̃k.

P
α

P
α

2

C
α

N
α

2
Ñ

α

2

C̃
α

C̃
α

2

π(Ñα

2
)

Figure 8.4: We transform the collection of balls in two different ways to get equivalent complexes,
C̃αk (top) and π(Ñα

k ) (bottom) for k = 2.

The barycentric Čech complex. The vertices of the barycentric decomposition K̃ of a complex

K are simplices of K; they are sets. This leads to a natural filtration on K̃ defined to be {K̃k}k,
where K̃k is the subcomplex induced on the vertices of cardinality at least k (the filter parameter

here goes down rather than up but this is not a problem). If we have a filtered complex {Kα}α,
then we can apply this method to form the barycentric multifiltration, {K̃α

k }k,α. Let C̃α be

the barycentric decomposition of the Čech complex at scale α, and let {C̃αk }k,α be its barycentric

multifiltration. The following theorem establishes the equivalence of the persistence diagrams of

{C̃αk } and {Pα
k }.

Theorem 8.5.5. For any fixed k, the persistence diagram of the barycentric Čech filtration, {C̃αk },
is identical to the persistence diagram of the (k, α)-offsets, {Pα

k }.
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Proof. It suffices to demonstrate a family isomorphisms {C̃αk → Pα
k }α≥0 that commute at the

homology level with the canonical inclusions. We let Sα = {Sp = ball(p, α) : p ∈ P} be our

collection of closed sets. For this choice of S, J̃k = C̃αk . Let Nα
k be the k-nerve of Sα. We will show

that the following diagram commutes at the homology level, where the vertical maps are canonical

inclusions and the horizontal maps induce isomorphisms at the homology level.

C̃αk → π(Ñα
k ) →֒ Ñα

k → Nα
k → Pα

k

↓ ↓ ↓ ↓ ↓
C̃βk → π(Ñ β

k ) →֒ Ñ β
k → N β

k → P β
k

The first box commutes because Lemma 8.5.1 implies that C̃αk and π(Ñα
k ) are isomorphic simplicial

complexes. The second box commutes because Lemma 8.5.3 implies that the inclusion is a homotopy

equivalence. The third box commutes because Ñα
k and Nα

k are homeomorphic for all α and the

homeomorphism Ñ β
k → N

β
k restricts to the homeomorphism Ñα

k → Nα
k on Ñα

k . The fourth box

commutes by the Persistent Nerve Lemma and the observation that Ñα
k is the nerve of a good cover

of Pα
k .

The barycentric Rips complex Let R̃α denote the barycentric decomposition of the Rips

complex, Rα. The following theorem shows that the barycentric Rips complex can be used to

approximate the persistence diagram of the (k, α)-offsets in the same way that the Rips complex

is used for α-offsets.

Theorem 8.5.6. For any fixed k, the persistence diagram of the barycentric Rips filtration, {R̃α
k},

is a
√
2-approximation to the persistence diagram of the (k, α)-offsets {Pα

k } when the underlying

space is Euclidean, and is a 2-approximation for general metrics.

Proof. Let c be the interleaving constant equal to
√
2 in Euclidean space and 2 for general metrics. It

is known that the Rips and Čech complexes are interleaved, Cα ⊆ Rα ⊆ Ccα (see [dSG07a] for a proof

along with a slightly tighter dimension-dependent bound). This extends directly to an interleaving

between the barycentric Rips and barycentric Čech complexes. That is, C̃αk ⊆ R̃α
k ⊆ C̃cαk . This

interleaving, Theorem 6.5.3, and Theorem 8.5.5 imply the desired approximation guarantee.

8.6 Filtrations on Meshes

A clear drawback of the barycentric Čech multifiltration is that its size blows up quite rapidly.

In this section, we show how to use meshes to achieve a good approximation to the persistence

diagram. To accomplish this, we extend the work of the previous chapter to give a general condition

for which the mesh-based approach gives good approximatin guarantees. In the end, we will see that

not only can we get approximations for kth nearest neighbor distances but also for any sufficiently

large Lipschitz function.

Let M be a τ -well-spaced superset of the inputs set P . That is, VorM is a τ -quality mesh.
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For any function f : Rd → R, we can construct three natural filtrations based on f , VorM , and

DelM :

1. The sublevel filtration: {Fα}, where

Fα = f−1(−∞, α].

2. The Voronoi filtration: {Vα}, where

Vα =
⋃

v∈M
f(v)≤α

Vor(v).

3. The Delaunay Filtration: {Dα}, where

Dα = {σ ∈ DelM : ∀v ∈ σ, f(v) ≤ α}.

Observe that each Dα is the nerve of the family of convex sets {Vor(v) : v ∈ M,f(v) ≤ α}
and thus the Delaunay filtration is homotopy equivalent to the Voronoi filtration. We will follow

the pattern that algorithms operate on the Delaunay filtration and proofs work with the Voronoi

filtration.

Given a function f that is sufficiently large and sufficiently smooth, the Delaunay filtration on a

τ -quality Delaunay triangulation gives a constant factor approximation to the sublevel filtration of

f . Below, we discuss specific sufficient conditions for f and prove the corresponding approximation

guarantee in Theorem 8.6.3.

We start with a lemma that compares a function to an approximation that is constant on

Voronoi cells. A good approximation yields an interleaving of the corresponding filtrations, {Fα}
and {Vα}.

Lemma 8.6.1. If for all v ∈ M and all x ∈ Vor(v), 1
cf(x) ≤ f(v) ≤ cf(x) for some constant

c ≥ 1, then Vα/c ⊆ Fα ⊆ Vcα, for all α ≥ 0.

Proof. First we prove that Vα/c ⊆ Fα. If x is a point in Vα/c then f(v) ≤ α/c. It follows that

f(x) ≤ α, and so x ∈ Fα. Next, we prove that Fα ⊆ Vcα. If x is in Fα then f(x) ≤ α and thus

f(v) ≤ cα. It follows that Vor(v) ⊂ Vcα, and so x ∈ Vcα.

8.6.1 An ε-Refined Mesh

We will show that a mesh can be used to approximate the sublevel filtration of any sufficiently large

Lipschitz function f . We can compute the mesh M without regard to f except for its Lipschitz

constant and the constant c > 0 such that f ≥ d2
c . Moreover, the filtration will be Dα, so filtering

the mesh just requires that we evaluate the function at the vertices.
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Definition. A mesh M is ε-refined if for every mesh vertex v in M , the outer radius Rv is at

most εd2(v).

If the sample set P is well-paced the NetMesh algorithm augmented with the over-refinement

process defined in Section 3.7 can compute this linear size mesh O(n log n) time. The constants

will depend on ε.

Lemma 8.6.2. If M is ε-refined and f is a t-Lipschitz function with f ≥ d2
c for some constant

c > 0, then
1

1 + ε0
f(x) ≤ f(v) ≤ (1 + ε0)f(x).

for all v ∈M and x ∈ Vor(v), where ε0 =
ctε

1−ctε .

Proof. Let v ∈M and x ∈ Vor(v) be chosen arbitrarily. Then we may bound f(x) as follows.

f(x) ≤ f(v) + t|v − x| [f is t-Lipschitz]

≤ f(v) + tεd2(v) [Rv ≤ εd2(v)]

≤ c(1 + tε)f(v) [d2 ≤ cf ]

< (1 + ε0)f(v). [ε0 > ctε]

Similarly, we can bound f(v):

f(v) ≤ f(x) + t|v − x| [f is t-Lipschitz]

≤ f(x) + tεd2(v) [Rv ≤ εd2(v)]

≤ f(x) + ctεf(v) [d2 ≤ cf ]

≤ 1

1− ctε
f(x) [Collect terms]

= (1 + ε0)f(x)

[

1 + ε0 =
1

1− ctε

]

The preceding lemmas and Theorem 6.5.3 imply the following theorem.

Theorem 8.6.3. If M is an ε-refined mesh, and f ≥ d2
c is t-Lipschitz with c > 0, then the

persistence diagram of the Delaunay (or equivalently, the Voronoi) filtration on f and M is a
1

1−ctε -approximation to the persistence diagram of the sublevels filtration of f .

As before, the result for general functions applies easily to the class kth nearest neighbor distances

to yield the following theorem.

Corollary 8.6.4. If M is ε-refined and k ≥ 2, then the persistence diagram of the Delaunay (or

equivalently, the Voronoi) filtration on dk and M is a 1
1−ε -approximation to the persistence diagram

of the sublevels filtration of f . Similarly, the persistence diagram of the Delaunay (or equivalently,
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the Voronoi) filtration on Dkk and M is a 1
1−

√
2ε
-approximation to the persistence diagram of the

sublevels filtration of f .

Proof. First observe that dk and Dk are both 1-Lipschitz. Next observe that for k ≥ 2, dk ≥ d2

and Dkk ≥ d2√
2
. The latter follows because

Dk
2
k ≥ Dk

2
2 =

1

2
d1 +

1

2
d2 ≥

1

2
d2.

So the corollary follows from Theorem 8.6.3.

8.7 Conclusions and directions for future work

We have presented a set of filtrations to extend offset methods in persistent homology to kth nearest

neighbor distance functions. We showed how the barycentric decomposition of the Čech and Rips

complexes directly induces a filter parameterized k. We also showed how mesh-based methods

can be extended to provide strong guarantees for a wide class of functions. In particular, a single

ε-refined mesh can be filtered to give a 1 + ε-approximation to the (k, α)-offsets for any k ≥ 2,

yielding an efficient method for computing persistent homology in the presence of noise.

Another direction for future work is to extend this work to other statistical density estimators

or other distance functions. In both cases, there are multiple relevant variables that may be

incorporated into multifiltrations.

8.8 Technical Lemmas

Lemma (8.5.2). Let K1 ⊂ K2 be simplicial complexes with vertex sets V1 and V2. Let π : V2 → V1

be a map that restricts to the identity on V1. If π(σ) ∈ K1 and σ ∪ π(σ) ∈ K2 for all σ ∈ K2 then

K1 is a deformation retract of K2.

Proof. The complexes K1 and K2 have a natural embedding as subcomplexes of the standard

simplex in R
D where D = |V2|. We use underline to denote vertices, simplices, and complexes in

this embedding, i.e. v, σ, and K1. It will suffice to demonstrate a deformation retraction from K2

to K1.

For any x ∈ K2, let σx denote the unique minimal simplex of K2 such that x ∈ conv(σx). The

coefficients {λv : v ∈ σx} that realize this convex combination are the barycentric coordinates

of x:

x =
∑

v∈σx

λvv, ∀v ∈ σx : λv > 0,
∑

v∈σx

λv = 1.

Using the barycentric coordinates, we define the map π∗ : K2 → K1 by

π∗(x) =
∑

v∈σx

λvπ(v).
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This map is realized in R
D by a linear projection, and therefore is continuous. We also observe

that the image of π∗ does lie in K1 as asserted because for any x ∈ K2, π∗(x) ∈ conv(π(σx)) and

π(σx) ∈ K1 by the hypothesis of the lemma.

We now define the linear homotopy F as

F (t, x) = (1− t)x+ tπ∗(x).

Observe that for all x ∈ K2, F (0, x) = x and F (1, x) = π∗(x) ∈ K1. The homotopy is continuous

because π∗ is continuous (in fact, it can be realized by an affine map in R
D+1).

To show that F is a deformation retraction, it suffices to show that F (t, x) ∈ K2 for all t ∈ [0, 1].

Since x ∈ conv(σx) and π∗(x) ∈ conv(π(x)),

F (t, x) ∈ conv(σx ∪ π(σx)) = conv(σx ∪ π(σx)).

The hypothesis of the lemma says that σx ∪ π(σx) ∈ K2 so F (t, x) ∈ K2 as desired.
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