
WiMed: An Infrastructure-less Approach to
Wireless Diagnosis

Kaushik Lakshminarayanan Srinivasan Seshan
Peter Steenkiste

June 2011
CMU-CS-11-118

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This research is funded in part by NSF under award numbers CNS-0434824 and CNS-0520192.
An earlier version of this paper appeared at the ACM SIGCOMM Workshop on Home Networks, HomeNets’11 [16]

Keywords: wireless networks, heterogeneous environments, monitoring, diagnosis, perfor-
mance, 802.11, Bluetooth, interference

Abstract

The availability of unlicensed spectrum coupled with the increasing popularity of wireless com-
munication has given rise to a diverse range of wireless technologies that compete for spectrum. In
particular, 802.11 devices face a host of problems such as interference with other 802.11 devices
(hidden terminals) as well as with technologies like Bluetooth and ZigBee. Inferring the cause of
wireless performance problems based on observations from a single node is hard. Past work on
wireless diagnosis has made use of monitoring infrastructures with co-ordinated observations from
multiple monitors to tackle this problem.
In this paper, we try to answer the question: ”how can we enable users to reason about wireless per-
formance variations without requiring elaborate instrumentation and infrastructure support?”. We
propose WiMed, a tool that uses only local physical layer measurements from commodity 802.11
NICs (at the node being diagnosed) to diagnose a variety of performance-related problems. We
have implemented a WiMed prototype using the MadWifi driver for Atheros NICs. Our results
show that WiMed can diagnose non-802.11 interference better than existing systems. WiMed’s
time allocation map shows how the medium is utilized, which is useful in identifying performance
bottlenecks.

1 Introduction
The dependence on wireless technologies has been increasing over the last decade, and wireless
links have been replacing wired networks in many scenarios. Unfortunately, the behavior and per-
formance of wireless links is often highly dependent on the surrounding environmental conditions.
For example, walls and distance between a transmitter and a receiver result in poor signal strength,
which, in turn, results in low bandwidth and high loss rates. Similarly, interference from nearby
transmitters sharing the same spectrum can also impact performance. Despite the widespread use
of wireless networks, an 802.11 user experiencing performance problems has few tools to help
identify the cause of these problems, let alone address them.

This lack of tools is due to three key reasons. First, numerous transmitters using a wide range
of link technologies such as 802.11, Bluetooth and ZigBee, share the unlicensed portions of the
spectrum like the 2.4GHz ISM band. This leads to unpredictable interference and interactions
between devices. Second, many of the performance problems that users encounter are due to
problems at the physical layer and are hidden by layers of abstraction in both the system hardware,
drivers and operating system. Third, existing wired networking tools such as traceroute and ping
are rarely appropriate since they focus on node-level or routing-level failures and do not deal with
link-layer problems.

We argue that an architecture for diagnosing wireless problems (in particular, for 802.11)
should delegate as much work as possible to the end-device. If realized, this would eliminate
the need for a separate monitoring infrastructure and make wireless diagnosis as easy as diagnosis
in wired networks. The diagnosis architecture could also use the access point to help diagnose,
as the link that is been diagnosed is between the end-device and the access point. In some cases,
the diagnosing ability could be further improved by using the knowledge of other nodes in the
network. However, the ability to diagnose should not entirely depend on other wireless nodes or a
customized infrastructure. Towards this goal, this paper presents techniques to identify causes of
performance problems, in particular, those faced by 802.11 links in heterogeneous environments.

Research on tools for wireless performance diagnosis have produced two types of solutions:
infrastructure designs for monitoring wireless networks, and tools for addressing configuration
failures. Our work is complementary to efforts to diagnose configuration-based problems ([1,
7, 2], which deal with problems establishing a connection between the client and the AP such as
WEP/WPA and DHCP problems. This paper focuses on diagnosing performance problems created
by a variety of causes, and has more in common with the efforts to create infrastructures to monitor
wireless network operation.

Existing wireless monitoring infrastructures have been designed in the context of diagnosing
performance problems in enterprise wireless networks [9, 8, 6, 17]. These architectures use mon-
itors throughout the enterprise network to get different views of the environment and they try to
diagnose by combining these views. Another direction of research [1, 7, 19] uses wireless clients
around the client being diagnosed to troubleshoot problems. There has also been work on identify-
ing hidden and exposed terminals in 802.11 using conflict graphs [12, 3]. Most of the research in
wireless diagnosis has been under the premise that the nodes experiencing performance problems
cannot do meaningful diagnosis in isolation. While using a group of nodes (peers, special pur-
pose monitor nodes) simplifies diagnosis, this is not always practical (e.g. in residential WLANs).

1

Figure 1: Taxonomy of causes of 802.11 performance problems

Moreover, there is considerable overhead in setting up the monitoring infrastructure for perform-
ing coordinated diagnosis. Finally, previous work has largely focused on WiFi-only networks and
provides no way for users to understand what is happening in the wireless ether. Recent work [5]
attempts to perform cross-protocol interference diagnosis, but the preliminary work presented does
not identify interference from specific technologies.

This paper makes the following contributions:

1. We systematically classify causes of wireless problems using a top-down approach in a man-
ner that is amenable to understanding 802.11 performance.

2. We present a study how physical layer properties such as bit error patterns and medium
busy times measured using commodity 802.11 NICs can be used to identify the cause of
interference from non-802.11 devices.

3. We have built a tool that provides a time-domain view of how the medium is used in a given
802.11 channel based on local observations alone.

We first provide a taxonomy for classifying the broad range of problems in the space (Section
2). We then explain the diagnostic framework of WiMed in Section 3 before detailing on the
implementation details (Section 4). Section 5 evaluates our diagnosis modules as well as our entire
system. We compare and contrast WiMed with past approaches in Section 6 and summarize our
work in Section 7.

2 Taxonomy of Causes
We account for the performance degradation that 802.11 clients can experience by breaking down
the causes of such problems into two classes – medium access and packet delivery (see Figure 1).
This is based on the observation that 802.11 goodput depends on, first, the opportunity to send
a packet (CSMA/CA) and once an opportunity is there, the efficiency of packet delivery. This

2

classification is critical to understanding the wireless performance experienced by clients in an
802.11 LAN. We study this taxonomy in more detail before presenting our diagnosis procedure.

2.1 Medium Access and Load-based Problems
802.11 nodes must gain access to the medium using CSMA/CA in order to send a packet. Be-
cause CSMA/CA guarantees equal long-term channel access probability, frequency of access to
the medium depends on mainly two factors – contention (number of nodes competing with a given
node) and the utilization of the medium by other nodes. In the former case, the probability of
gaining access to the medium decreases as the number of contenders increases. In the latter case,
the frequency of access to the medium goes down if other nodes occupy the channel for a longer
time when they gain access.

2.1.1 Contention

There are several CCA (Clear Channel Assessment) modes defined in the IEEE standard. For in-
stance, mode 1 corresponds to energy detection above a threshold, mode 2 corresponds to detecting
any valid 802.11-modulated signal and mode 3 is a combination of modes 1 and 2, i.e. any valid
802.11 modulated signal above a threshold. Considering only 802.11 nodes, 802.11 MAC (with
exponential backoff) is packet-fair, i.e. the number of packets a node can send over a period of
time is inversely related to the number of contenders in the vicinity of the node. This means that a
high density of nodes adversely affects the probability of getting access to the medium for each of
these nodes. This may or may not be the desired outcome depending on whether a subset of these
nodes are exposed terminals or not. Exposed terminals are those nodes that are within carrier sense
range of the sender but not the receiver. This clearly leads to sub-optimal use of the medium. If
mode 1 is used, 802.11 nodes will contend for the medium with other RF devices, which increases
the time required to gain access to the medium. In scenarios where the non-802.11 devices do not
defer or backoff in an 802.11-like fashion, mode 1 could lead to 802.11 always deferring to other
RF devices.

2.1.2 Other Causes

While the number of contenders reduces the probability of getting an opportunity to send, other
contenders can delay access to the medium for a sender by using unnecessarily low rates. For
example, if a node using 54Mbps competes with another node that uses 1Mbps, then the node using
54Mbps will get access to the medium less frequently compared to the case where both nodes are
using 54Mbps. This is despite the fact that the nodes get “fair” access to the medium in either
situation. This is referred to as the rate anomaly problem. While this might not have a concrete
remedy (i.e. the node using 1Mbps may be doing so because of low SNR), this still contributes
towards inefficient use of the medium and helps in reasoning about the observed performance [10].

The IEEE standard does not require broadcast traffic to perform random backoff. As a result, a
high fraction of broadcast traffic could decrease the probability of access to the medium for unicast

3

 0

 0.05

 0.1

 0.15

 0.2

 0 10 20 30 40 50
 0

 20

 40

 60

 80

 100
F

ra
ct

io
n

B
us

y

P
ac

ke
t E

rr
or

s

Time (sec)

802.11
Medium

CRC
PHY

(a) 802.11 interference (20 to 40 sec) causing CRC and
PHY errors. MAC busy time and medium busy time
are almost equal.

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

 0 20 40 60 80 100 120 140 160
 0

 5

 10

 15

 20

F
ra

ct
io

n
B

us
y

P
ac

ke
t E

rr
or

s

Time (sec)

802.11
Medium

CRC
PHY

(b) Bluetooth interference (30 to 120 sec) causing
CRC and PHY errors. Medium-busy time is higher
than MAC-busy time indicating non-802.11 signal.

Figure 2: Interference with an 802.11 link due to different sources causing performance drop.
802.11 and non-802.11 interferers can be detected by tracking MAC-busy and medium-busy times.

traffic, leading to unfairness. Unfairness could also arise if there are misbehaving nodes that are
not following the 802.11 standard for channel access.

2.2 Packet Delivery-related Problems
Once an 802.11 sender gets access to the medium, it has to make efficient use of the opportunity.
Efficient use of the medium depends on two parameters – the probability that the packet is delivered
successfully to the intended receiver and the rate at which the packet is sent (for now, we do not
consider the acknowledgment for the delivered packet). Assuming the SINR model and constant
thermal noise, probability of packet delivery for a given data rate depends on signal strength at the
receiver (after attenuation or fading) and the presence of interferers (802.11 and non-802.11).

2.2.1 802.11 Interference

Packet delivery probability is considerably affected by interference. Hidden 802.11 terminals can
cause interference at the receiver as they are not in the sensing range of the sender. While the
hidden terminal problem does not occur frequently, when it does occur, it can cause the throughput
of the nodes involved to collapse. We performed controlled experiments on a wireless network
emulator [13] using our monitoring infrastructure, where we track the medium-busy time and
the MAC-busy time (details in Section 3). Figure 2 (a) shows how performance is affected in
the presence of a hidden terminal problem. It is also easy to see that the curves corresponding to
medium-busy and MAC-busy times are close to each other due to the absence of non-802.11 signal.
These kinds of hidden terminal scenarios can affect even planned deployments as the clients can
still be mobile.

4

Figure 3: Illustration of WiMed framework

2.2.2 Non-802.11 Interference

Prior research [11, 14] has shown that commodity 802.11 cards are vulnerable to both wideband
interference (e.g. microwave ovens) and narrow-band interference (e.g. Bluetooth). Unfortunately,
these devices share the 2.4GHz ISM band with 802.11 devices and with their increasing popularity
over the last decade, tend to be one of the primary causes of interference with 802.11 devices.
Again, we performed controlled experiments on the wireless emulator to find the impact of Blue-
tooth interference in a setup where we had a Bluetooth link causing interference at an 802.11
receiver. Figure 2 (b) shows that 802.11 performance is affected considerably in the presence of
Bluetooth interference, causing both CRC errors and PHY errors (as reported by the NIC). It is
also easy to see that the medium utilization tracking mechanism used in WiMed (top curve) shows
non-802.11 activity when compared to the MAC busy time calculated using the length of 802.11
frames (bottom curve) between 30 and 120 sec.

2.2.3 Other Causes

An 802.11 node sending at a rate that is lower than optimal does not utilize the medium efficiently
leading to performance drop. In addition, this could lead to the rate anomaly problem as viewed by
other nodes in the network. On the other hand, when an 802.11 node sends at a rate that is higher
than the optimal rate for the SNR of the node at the node’s receiver, the bit error rate (BER) goes
up, thus wasting the transmission opportunity.

5

When an 802.11 network has both 802.11b and 802.11g nodes, APs use what is called 802.11g
protection mode [9]. In this mode, the 802.11g nodes in the network send a CTS-to-self frame
before sending a packet to ensure backward-compatibility with the 802.11b nodes. Unfortunately,
this leads to lower throughput and higher latency for 802.11g clients (similar to using lower rate).
Sometimes, APs have conservative timeouts for switching to the normal mode during which all the
nodes will be unnecessarily using the protection mode.

Measurements in enterprise WLANs have shown that clients try to associate with APs that are
more than 20 meters away even in deployments where the average distance between a client and
the nearest AP is only around 10 meters [6]. Since RF signals attenuate with distance, this can lead
to links with low SNRs. At very low SNRs, bit error rates increase even if the lowest available rates
are used. This leads to inefficient use of the medium for the weak links and other stronger links
(rate anomaly). The received signal strength could also be low for other reasons, such as fading
due to multipath or obstacles in the environment.

3 Diagnosis Framework
The WiMed framework consists of a passive monitoring stage and an optional active probing stage
as shown in Figure 3. The passive monitoring stage attempts to detect the cause of the performance
problem, if one exists, using either lightweight coarse-grained or more heavyweight fine-grained
techniques. WiMed can then use the output of the passive monitoring phase and choose to do
active tests to further improve detection confidence. In this paper, we present mostly results for
fine-grained passive monitoring as it gives us the highest fidelity. Active probing allows us to
obtain more detailed information, and it does not require additional measurement infrastructure.
While active probing can be useful, it has the potential to change the network behavior leading to
other problems.

3.1 Passive Monitoring
The passive monitoring stage record two traces. Packet traces identify overheard 802.11 packets
with relevant meta data (e.g. RSSI, etc.). Kernel log traces include timestamped values of relevant
registers on the NIC. The traces are collected using a second 802.11 NIC connected to the node
being diagnosed. This card is used in monitor mode tuned to the channel used by the primary
802.11 card. Thus, the second card overhears all 802.11 packets in that channel that can be de-
coded partially or fully. We require the second NIC only to overcome limitations in current driver
architectures that do not allow us to monitor with high fidelity on a NIC that is already associated
with an access point. This setup allows us to track many physical layer features including:

• Signal strength, transmission rate, MAC sequence number and length of frames received

• Type of packet errors (e.g., CRC, PHY errors)

• Medium-busy times as sensed by the Atheros NIC. This is the time during which there are
active transmissions on the channel using any technology.

6

Figure 4: A simple case of trace merging. Tn represents packet timestamp, Sn and En denote the
start and end timestamp of a medium-busy region.

• MAC-busy time. This is the time during which 802.11 transmissions are active. This is
computed using packets decoded in the packet trace.

• 802.11 clients that can be heard

Medium-busy times are recorded as values of a NIC register that keeps track of the cycles (of
the NIC clock) when the medium was sensed as busy (energy detection). In order to synchro-
nize the kernel log trace with the packet trace, we also record the corresponding driver timestamp.
More details on the implementation of the logging procedure are explained in Section 4. In coarse-
grained passive monitoring, we record the medium-busy register values at the granularity of a
packet event (i.e. whenever we receive a packet), whereas in fine-grained passive monitoring, we
track this register at the granularity of a few microseconds. We do this to get a better picture of
the channel usage. We also get the entire payload of packets received in fine-grained monitor-
ing instead of just the first 68 bytes in coarse-grained mode. While the wireless node can run
coarse-grained monitoring continuously due to minimal overhead, fine-grained passive monitoring
is performed only when the user initiates the diagnosis procedure as it has a high overhead.

3.2 Trace Merging
The tcpdump and the kernel log traces are synchronized and merged to get a unified view of the
wireless activity in the medium. The merging procedure is straightforward in the case of coarse-

7

grained monitoring, but it is more involved in fine-grained monitoring. In the latter case, we must
compare busy regions identified by the register (from kernel log) with the packet reception regions
(from tcpdump) and produce a trace with 802.11 packets and medium busy regions (excluding the
time periods with decoded packets) interspersed. An abstract version of the above procedure is
illustrated in Figure 4. We also annotate the medium busy regions based on whether they overlap
with the 802.11 packets or not. This annotation is used in the analysis to determine the presence
of non-802.11 transmitters. We can also make use of this annotated information to find the start or
end times of the interferer’s transmission for packets that get corrupted due to interference, though
this is not currently implemented in our prototype. As detailed later in Section 4, the medium busy
regions in the merged trace do not always indicate the presence of non-802.11 transmitters.

3.3 Analysis
The diagnostic procedure uses the merged trace as input to extract the features mentioned in Section
3.1. It then outputs the confidence level for the existence of performance problems and their causes
based on specific detectors.

First, packet-level features such as signal strength and transmission rate are directly extracted
from the merged trace. Then, features such as the cumulative medium busy time and loss rates are
maintained using a sliding window to average out spikes in activity. Finally, at each packet event,
this sliding window is updated and a set of confidence values is calculated for each of the high
level problem indicators such as interference, presence of non-802.11 activity and contention.

We use the medium-busy register to track regions where the medium was sensed as busy. In
the trace merging stage, we identify regions where medium was sensed as busy but no 802.11
packets were present in the packet trace, as explained above. In the analysis stage, this is used
as an indicator of the level of non-decodable energy present in the medium. We calibrate the
environment during a relatively quiet period when there are no non-802.11 devices active (e.g.,
nights) to quantify the default level. We perform the calibration to take into account the fact that
there could be packets with very low RSSI that are detected partially by the medium-busy register
but not decoded by the NIC. During diagnosis, as this level increases, we increase the confidence
in the presence of a non-802.11 source.

Procedures 1, and 2 give the methods for detecting interference and contention in passive mode.
Confidence value calculation is along the same lines, but instead of giving a Boolean output based
on a threshold, we map it to the interval [0, 1] based on deviation from a threshold. In Procedure
1, hashCrcErr(rate)(ss) represents the number of errors found in all packets received at rate
Mbps (including packets that were not sent to the node being diagnosed) with signal strength
between ss − δ and ss + δ dBm. hashMyCrcErr(rate)(ss) represents the number of errors
found in packets destined to the client in question, received at rate Mbps with signal strength
between ss − δ and ss + δ dBm. Also, isFEH() finds if any of the elements of the error table
exceeds a threshold. Method isDIFSpluskTS() checks to see if the packet spacing is equal to DIFS
+ k×Slot Time in which case, the packet is marked as one that contended with some other node.

Interference detection in WiMed uses Bit Error Timing Analysis (BETA) to identify the pres-
ence of interference due to specific non-802.11 sources. Whenever it sees a packet (destined to
the node being diagnosed) that has been corrupted, it tries to find a copy of the packet that was

8

Figure 5: Bit error timing analysis (BETA) for Bluetooth

retransmitted and received successfully. Once this is done, it identifies the bit errors in the cor-
rupted packet to form bit error peaks. These peaks are regions that correspond to transmissions of
the interfering source. Using these inferred interfering transmissions, BETA is used to determine
the protocol of the interfering transmission (similar to what is done in RFDump [15]). The tim-
ing analysis uses known protocol timing parameters such as Bluetooth time slots (625 µsec) and
microwave oven’s AC frequency timing. Figure 5 illustrates how BETA works in the case of a
Bluetooth interferer. We believe that BETA can also be used to detect the presence of 802.11 inter-
ference when used in conjunction with traces from multiple nodes in the environment. However,
in our current prototype, we detect 802.11 interference through elimination only (i.e., interference
without the presence of non-802.11 interferers means it is 802.11 interference).

While we have only implemented and evaluated detectors for diagnosing problems related to
interference and contention, WiMed can use existing mechanisms to detect other performance
problems. For example, since we record signal strength of packets, attenuation can be detected
whenever received signal strength drops below some threshold. Also, as we maintain statistics of
packet loss rates for different received signal strengths, 802.11 rate-related problems can also be
diagnosed.

Procedure 1 Interference detection (Passive)
fineErrHigh: isFEH(hashCrcErr, hashPhyErr)
myFineErrHigh: isFEH(hashMyCrcErr, hashMyPhyErr)

if myfineErrHigh then
if nonWiFiTimeHigh then

report(“interference”, “non-WiFi”)
else

report(“interference”, “WiFi”)
end if

else
if fineErrHigh then

report(“potential interference”, NULL)
end if

end if

9

Procedure 2 Contention detection
currStart: Start time of the current frame
currEnd: End time of the current frame
prevEnd: End time of the previous frame
nextStart: Start time of the next frame

if isDIFSpluskTS(currStart - prevEnd) then
conTentionTime + = (currPktDuration + IFS)

else
if isDIFSpluskTS(nextStart - currEnd) then

contentionTime + = (currPktDuration + IFS)
end if

end if
if contentionTime / totalTime > threshold then

report(”contention”, NULL)
end if

3.4 Confidence Metrics
We use different metrics for expressing the confidence in the presence of performance problems
as well as the cause of the problem. For example, there is a confidence level associated with both
the presence of non-802.11 interference and the cause being a Bluetooth interferer (which can be
combined to express the confidence of the problem being Bluetooth interference). These values
reflect on a scale of 0 to 1, how confident WiMed is, in the particular cause for an existing problem.
Suppose cβ−bt, cβ−µw denote the confidence metric value for the existence of timing patterns in bit
errors corresponding to Bluetooth and microwave respectively, and cif , cnwf denote the confidence
metric values for the presence of some interference (based on one of the three cases in Procedure 1)
and the presence of a non-WiFi transmitter. If CBT , CµW , CWF , Ccont represent the instantaneous
confidence metric values for Bluetooth interference, microwave interference, 802.11 interference
and 802.11 contention respectively, then we define:

CBT = cif .cnwf .cβ−bt, (1)

CµW = cif .cnwf .cβ−µw, (2)

CWF = cif .(1− cnwf), (3)

Ccont = (1 +
numCl

maxCl
).

contTrafT ime

nonContTrafT ime
.w2 (4)

where,

w∗ =

(
5.

contTrafT ime + nonContTrafT ime

totalT ime

)
− 0.5, (5)

w =


0 if w∗ < 0,

w∗ if w∗ ∈ [0, 1],
1 if w∗ > 1.

10

The above equations 1, 2, 3 are similar to probability estimation based on independence as-
sumption of the relevant variables in the expression. Equation 4 weights the current fraction of
non-contention to contention time utilization (calculated based on IFS and corresponding packets
involved) by a quadratic term which equals a scaled value of the current MAC utilization (mapping
[0, 0.1) to 0, [0.1, 0.3] to [0, 1] scaled linearly and (0.3, 1] to 1).

3.5 Active Probing
We do not evaluate active diagnosis in this paper, but here we outline how it could be used to make
the detection slightly more robust. After getting clues from the passive monitoring phase, we could
use active probing to find the cause at a finer granularity in order to:

• Determine more rigorously the source of interference using dense probes. Dense probes
can induce more packet errors, which in turn can increase our confidence in the detection
outcome. Also, the user can move the device (spatially) to change the RSSI and then, observe
the effect on performance. On the other hand, we can also reduce our RSSI and determine
more accurately the start of interfering transmission as the bit error rate is expected to be
higher.

• Find at a finer granularity the contending nodes in 802.11 by making sure we have at least
one packet in the transmission queue at any point of time and study our backoff behavior.

• Determine the optimal rate to use by trying different rates and calculating the throughput
directly (instead of predicting using metrics)

• Determine hidden terminals by repeating experiments with RTS/CTS both enabled and dis-
abled.

3.6 Performance Monitoring and Reasoning
WiMed outputs the confidence values for the presence of certain specific problems based on the
metrics described in Section 3.4. In the process of communicating these confidence levels, WiMed
uses some history (based on sliding window) to weight the confidence values accordingly. For
instance, if on most occasions, presence of a Bluetooth interferer is detected, then a smaller weight
is given to the confidence value for the detection of a Microwave interferer as it is most likely a
false positive (though this is theoretically possible when both interferers are present).

Though the above output gives the user hints on what could be the cause for performance
problems, it does not tell the user the extent to which a problem degrades the throughput. As a
first step towards this goal, we have built a performance monitoring tool that prescribes a time
break down for various events in the wireless medium. This time allocation tool uses the detection
results to appropriately mark regions in time with events such as packet transmission, non-802.11
transmission and successful 802.11 packet reception (see Table 1). This helps the user understand
the impact of problems detected, as we will show in Section 5.3.

11

4 Implementation
WiMed’s monitoring component is built on the MadWifi driver for the Atheros chipset. We use an
Atheros PCMCIA card based on the AR5212 chipset as the secondary NIC (in monitor mode). We
use tcpdump to get the packet trace along with the entire payload. We have modified the driver
to record the frame length captured (from the frame descriptor in the driver) through the radiotap
header and correspondingly modified tcpdump to be able to read it. The AR5K PROFCNT RXCLR
register is read every 2 µs to track the time periods when the medium is busy. In this section, we
look at challenges in implementing fine-grained monitoring while keeping limitations of buffering
and the CPU load on the diagnosis node in mind. We then briefly look at some of the implemen-
tation details of the diagnosis procedures which use the monitoring data to detect performance
problems.

The medium-busy register is a counter that maintains the number of cycles (of the NIC clock)
the medium was sensed as busy. In coarse-grained monitoring, this register is read whenever a
packet is received along with the timestamp. In the case of fine-grained monitoring, this register
is read every 2 microseconds in a tight loop. If we were to run this continuously, the diagnostic
node would become unresponsive. As a trade-off between measurement fidelity and machine load,
we run this loop for a time period just less than one jiffy (which is one tick of the system timer
interrupt), and then schedule the same function for the next jiffy and so on. Note that we cannot
schedule this function at a granularity of less than a jiffy. Although we can perform this at a scale
of multiple jiffies, there is also a trade-off between measurement fidelity and the amount of data
we write to the kernel log buffer. Here, we do not record the timestamps each time we read the
register, as it takes a couple of microseconds to read and record the timestamp. The amount of data
that is being written to the kernel log is reduced by doing this. So, we record timestamps at the
start and end of each loop (jiffy) and then interpolate for each observation. Moreover, we record
just the start and end of a region where we sense the medium busy instead of recording the entire
trace of the register at each iteration. The value of jiffy in the platform used for our experiments
is 4 ms. Since the above functions are implemented in the driver, this portion of WiMed runs in
kernel space.

The trace merging and diagnosis modules are written in perl and run in user space. The pro-
cedures used in diagnosis are outlined in Section 3. We now explain the implementation details
of non-802.11 source detection and interference detection in this section. We use thresholding
for detecting the presence of non-WiFi signal in the medium. Since any non-decodable WiFi sig-
nal would be treated as a non-WiFi signal by WiMed, we calibrate the fraction of non-WiFi to
WiFi signal as seen from the location where the wireless node is situated. The diagnosis module’s
confidence in the presence of non-WiFi signal is based on how much the current value of the pa-
rameter is above the calibrated value. With respect to interference detection, we use fixed values
for expected packet error rates for packets received at different rates and at different SNRs (signal-
to-noise ratio). Since it is hard to collect the entire matrix of values, we empirically calculated
a few points in this matrix and interpolated (or extrapolated) as the case may be. Also, we only
calculate packet error rates for 1500-byte packets and use it as a conservative estimate. However,
the accuracy of the diagnosis modules is not entirely dependent on the exact values of error rates.
This is because we use a continuous range of confidence values instead of binary thresholds and

12

 0

 5

 10

 15

 20

−100 −95 −90 −85 −80 −75 −70 −65 −60

E
rr

o
r

(u
s
)

Signal Strength (dBm)

Median error
Mean error

(a) 802.11

 0

 500

 1000

 1500

 2000

 0 500 1000 1500 2000 2500 3000C
u
m

u
la

ti
v
e
 n

u
m

b
e
r

o
f
p
a
c
k
e
ts

Packet Length (us)

Medium−busy register
Driver timestamp

(b) Bluetooth

Figure 6: Accuracy of register tracking for 802.11 and Bluetooth

further, only if the confidence values of multiple features are high, will the resulting confidence
be high. We use a moving window of hundreds of packets to maintain various parameters such as
packet error rates and medium busy time.

5 Evaluation
In this section, we first evaluate the accuracy of the medium-busy register in detecting the presence
of 802.11 and non-802.11 sources. Then we show results for interference detection in the presence
of different kinds of interferers and also, contention detection.

5.1 Accuracy of sensing
As described in Section 4, we use the medium busy register to track if there is any signal present
in the environment. We compare this with the time occupied by demodulated 802.11 packets to
infer the nature of the signal. First, we show that tracking this register gives us an idea of when
the medium is being utilized and whether there is presence of 802.11 or non-802.11 signal. The
following experiments were performed on a wireless emulator testbed [13].

5.1.1 802.11

First, we sampled the value of the register at successive 802.11 packet receptions and used the
difference of these values to calculate the packet lengths as seen by the register. In the emulator,
we set up experiments with a single link and varied the loss on the link to see the accuracy of the
register for different received signal strength values. We see (Figure 6 (a)) that the error in packet
lengths reported by this register is negligible for signal strength greater than -90 dBm. In order
to show that tracking the register works even at a finer granularity (smaller packets), we did an
experiment where we sampled this register periodically every 20 µs from the start to the end of
several packets which spanned a few milliseconds. We then calculated the difference between the
actual utilization using timestamps (t2 − t1) and the utilization computed using register tracking
(reg(t2)−reg(t1))). We found that the mean error in medium utilization computation using register
tracking was only 0.1 µs (0.5 %).

13

 0

 0.3

 0.6

 0 50 100 150 200 250

Time (sec)

Unknown non−802.11 interference

 0

 0.3

 0.6
Microwave interference

 0

 0.3

 0.6
802.11 interference

 0

 0.3

 0.6

D
e
te

c
ti
o
n
 c

o
n
fi
d
e
n
c
e

Bluetooth interference

(a) Bluetooth interference (60 to 160 sec)

 0

 0.3

 0.6

 0.9

 0 50 100 150 200 250

Time (sec)

Unknown non−802.11 interference

 0

 0.3

 0.6

 0.9
Microwave interference

 0

 0.3

 0.6

 0.9
802.11 interference

 0

 0.3

 0.6

 0.9

D
e
te

c
ti
o
n
 c

o
n
fi
d
e
n
c
e

Bluetooth interference

(b) Microwave interference (60 to 160 sec)

Figure 7: Bluetooth and Microwave interference as detected by WiMed

5.1.2 Bluetooth

We also conducted a similar experiment for Bluetooth. We used l2ping utility to send 800
pings of length 2600 µs (and an equal number of MAC-level acknowledgments). Figure 6 (b)
shows the cumulative distribution of the packet lengths as reported by an 802.11 monitor node
using the latter tracking mechanism. The two curves correspond to packet lengths calculated using
medium-busy register values (reg(t2) − reg(t1)) and timestamps (t2 − t1), where t1 and t2 are
the starting and ending timestamp of a frame found using energy detection (based on the medium-
busy register values). We see clear steps at 150 µs and 2150 µs corresponding to the L2CAP pings
and the MAC-level acknowledgments. The number of ping-sized packets (and ACK-sized frames)
reported is roughly as expected (i.e., 200 out of 800 as an 802.11 channel occupies 20 MHz out
of the 79 Bluetooth channels). However, the reported length of both these frames are slightly
shorter than the expected length (by about 20 % of actual length) when using the former method.
This indicates that the energy detection as performed by the 802.11 receiver of a Bluetooth signal
(narrow-band) is not accurate, but at the granularity of a packet, using the latter method works
well.

5.2 Accuracy of detection
We now evaluate some of the diagnosis components of WiMed in the real-world and show their
accuracy. For this purpose, we used a laptop with two 802.11 NICs (Intel and Atheros chipsets),

14

 0

 0.3

 0.6

 0.9

 0 50 100 150 200 250

Time (sec)

Unknown non−802.11 interference

 0

 0.3

 0.6

 0.9
Microwave interference

 0

 0.3

 0.6

 0.9
802.11 interference

 0

 0.3

 0.6

 0.9

D
e
te

c
ti
o
n
 c

o
n
fi
d
e
n
c
e

Bluetooth interference

(a) 802.11 hidden terminal interference (60 to 160 sec)

 0

 0.3

 0.6

 0.9

 0 50 100 150 200 250

Time (sec)

Unknown non−802.11 interference

 0

 0.3

 0.6

 0.9
Microwave interference

 0

 0.3

 0.6

 0.9
802.11 interference

 0

 0.3

 0.6

 0.9

D
e
te

c
ti
o
n
 c

o
n
fi
d
e
n
c
e

Bluetooth interference

(b) Cordless phone interference (60 to 160 sec)

Figure 8: 802.11 and cordless phone interference as detected by WiMed

one in managed mode and the other in monitor mode. WiMed has been installed on this laptop and
uses the Atheros-based NIC. We set up experiments in which we introduced one known problem
at a time and studied how the WiMed prototype fairs in each of the scenarios. In every experiment,
the NIC in managed mode pinged a machine in the LAN at the rate of 10 pings a second using
1464 byte frames.

5.2.1 Bluetooth Interference

Figure 7 (a) shows how the confidence values of the interference detectors change over time in
the presence of Bluetooth interference (between 60 sec and 160 sec). For inducing Bluetooth
interference, we use the Bluetooth radio on the laptop to send packets (using l2ping utility) to a
mobile phone. We see that the Bluetooth detector has fairly high confidence about the presence
of a Bluetooth interferer between 60 sec and 160 sec, during which the Bluetooth radio on the
laptop was active. Although, the microwave detector also has some confidence about the presence
of microwave, we see that it is significantly lower than that of the Bluetooth detector. However,
WiMed has very low confidence for the presence of an 802.11 interferer. This is more important as
it is able to differentiate between an 802.11 interferer and a non-802.11 (Bluetooth) interferer. The
graph has intermediate spikes instead of a continuous line because the confidence value peaks only
when there are packet reception errors. Though the confidence values is exponentially averaged,
the decay factor is set fairly high to ensure that the detection confidence does not become stale and
to show when exactly performance problems were faced by the system.

15

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200

D
e

te
c
ti
o

n
 c

o
n

fi
d

e
n

c
e

Time (sec)

Contention

Figure 9: Contention as detected by WiMed using passive fine-grained analysis (60 sec to 160 sec)
for the same trace as 802.11 interference

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

C
D

F

Fractional Deviation from Expected Timing

t = 2500
t = 1250

t = 625

Figure 10: Timing behavior detection (TDMA) of a cordless phone based on BETA

5.2.2 Microwave Interference

We performed a similar experiment with a microwave interferer. We used a residential microwave
oven placed at a distance of about 6 feet from the laptop. A microwave oven, because of its wider
frequency range of use and higher power, causes interference to 802.11 packets irrespective of
the channel used. Figure 7 (b) shows the detection confidence of the three interference detectors.
Unlike the previous experiment, there is a clear difference in the output of the non-802.11 interfer-
ence detectors. While the microwave detector has a very high confidence, the Bluetooth detector
has a very low confidence. The 802.11 detector has zero confidence in most of the region where
there was interference except for the start and end of the interference region. This phenomenon is
because the non-802.11 presence detected at the beginning and end of the region was less than the
detection threshold.

5.2.3 802.11 Interference

A hidden terminal in 802.11 is one where there is an 802.11 sender that is hidden from another
802.11 sender, but the receiver of at least one of them can hear both of them. We induced this sce-
nario by modifying the driver using the patch provided by [4] to disable clear channel assessment,
backoff behavior etc., so that the 802.11 node behaved like a hidden node. The diagnostic laptop
was placed a few feet from the hidden laptop. The hidden laptop sent broadcast pings at the rate
of 20 per second to increase the probability of collision. From Figure 8 (a), we see that while the

16

802.11 detector reported high confidence during the interference period (60 sec to 160 sec), the
other two detectors barely reported anything at all.

5.2.4 Contention

Now, we used the same trace as in the above experiment (802.11 interference) to plot the confidence
level of the contention detector. Since the hidden laptop and the diagnosed laptop were within
carrier sense range, the latter still contended for using the medium with the former (though the
reverse is not true). Figure 9 shows the confidence of the contention detector. During the active
period of the hidden node, we see that the contention detector reported high confidence. This along
with the above observation, could be used to detect the presence of a hidden 802.11 terminal with
a higher confidence.

5.2.5 Unknown Interference

In order to test WiMed’s diagnosis capability, we introduced an unknown interferer in the form
of a 2.4 GHz DSS cordless phone and conducted several experiments. Figure 8 (b) shows the
output of one such experiment. We see that though it is detected as non-802.11 interference, it
is classified as Bluetooth interference. However, there were no Bluetooth devices active close to
the 802.11 receiver. In order to understand this misclassification, we fixed an initial interference
start time as a reference point and plotted the absolute deviation of the start times of the remaining
bit error peaks (detected as Bluetooth) from the expected timing for various values of TDMA slot
times. Assuming that the detection of start times of interfering transmissions is accurate, a low
deviation for a give slot time T0 would mean that the TDMA slot time of the interferer is a multiple
of T0. Figure 10 shows the cumulative distribution of the fractional deviation from expected timing
behavior. We can see clearly that the TDMA behavior of the cordless phone matches with a slot
time of 1250 µs (while a slot time of 625 µs also works, a slot time of 2500 µs does not). This is
very close to Bluetooth’s timing behavior, which explains our results.

The above experiment shows that we can develop automated mechanisms for detecting un-
known types of interferers if they have distinct timing properties. Having said this, there could
also be scenarios (like above) where multiple technologies exhibit similar kind of timing behav-
ior, which could make it harder to pin down on the exact cause. However, from our experiments,
we see that interference is most often correctly classified as 802.11/non-802.11 interference. This
itself goes a long way in aiding the user to diagnose such problems.

5.3 Performance monitoring
In the previous section, we looked at how well the detection schemes work under real-world sce-
narios. Detection provides an idea of what the cause of the performance problem could be, but it
does not tell us how much each of these causes impacts the performance. We have incorporated
a performance monitoring tool in WiMed that provides a time break-up of how the medium is
utilized. It gives the user an idea of how the spectrum is utilized and can provide insight in how
impact the identified problems may have on performance. This is a first step towards a mechanism

17

RXI-U-NI Packets received by the node (RX) and destined to the node (I) that are unsuccess-
ful/have errors (U) and the cause is identified as non-Wifi interference (NI) that is not
Bluetooth

RXI-U-WI Similarly for Wifi-interference
RXI-S Packets successfully received by the node and destined to the node
TX Packets transmitted by the node
IFS Time attributed to interframe spacing
RXO-C Packets received by the node (RX), but not destined to the node (O), identified as

packets that had an IFS preceding/succeeding the packet (instead of idle time)
RXO-NC Packets that do not have an IFS-based spacing preceding or succeeding it
NW Time attributed to signal that could not be decoded by the NIC (identified as medium

busy, but not decoded)

Table 1: Notation used for the graphs

that can automatically quantify the impact of problems on performance. Table 1 gives the notation
used in Figures 11 (a) and (b).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0 50 100 150 200 250

F
ra

ct
io

n
of

 ti
m

e

Time (s)

RXI-U-NI
RXI-U-WI

RXI-S
TX

RXO-C + IFS
RXO-NC

NW

(a) Bluetooth experiment

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 50 100 150 200 250

F
ra

ct
io

n
of

 ti
m

e

Time (s)

RXI-U-NI
RXI-U-WI

RXI-S
TX

RXO-C + IFS
RXO-NC

NW

(b) 802.11 experiment

Figure 11: Time utilization map of the wireless environment in the presence of Bluetooth and
802.11 interference

As we see in Figure 11 (a), the graph corresponding to RXI-U-NWI and NW occupy about
20% of the medium each during the interference period (corresponding to the Bluetooth experi-
ment in Section 5.2, Figure 7 (a)). This shows that the interference was strong enough to affect
the throughput considerably. Though the 802.11 client was sending (and hence, receiving) pings
at a constant frequency, there are regions in the graph corresponding to RXI-S where there are
spikes. These are primarily due to the fact that the secondary NIC was able to decode a bunch of
successive retransmitted packets, which were not decoded by the primary NIC. On the other hand,
Figure 11 (b) (802.11 experiment in Section 5.2, Figure 8 (a)) shows that the interference by the
hidden terminal (RXI-U-WI) has not affected the throughput as much by interference compared
to contention (RXO-C + IFS). This is consistent with the fact that there were only 184 corrupted

18

packets (destined to the node) in the 802.11 experiment compared to 1607 in the Bluetooth exper-
iment.

6 Related Work
Client Conduit [1] was one of the first proposed architectures for diagnosis in 802.11 networks.
WiFiProfiler [7] addresses the problem of diagnosis in 802.11 hot-spot scenario and like [1], largely
looks at configuration/connectivity-related issues such as AP detection, association, DHCP and
DNS problems.

Jigsaw [9, 8] and Wit [17] monitor 802.11 packets from different vantage points. By merging
traces from these locations, they try to find the cause of the problem (throughput/latency). DAIR
[6] monitors enterprise 802.11 networks using a dense deployment of monitor nodes. It attempts to
address performance issues in 802.11 networks using location information. Jigsaw, Wit and DAIR
represent the current state-of-the-art in wireless diagnosis. However, these systems require a lot of
infrastructure to be functional.

MOJO [19] attempts to tackle the problem of fine-grained diagnosis with the help of a similar
distributed setup. The range of problems addressed by MOJO is limited and like the above systems
requires fairly complex infrastructure (i.e. requires wireless peers to combine observations from
these peers). WiMed is probably closest to MOJO in spirit, but diagnoses problems in a top-down
fashion and attempts to do delve deeper into the physical and MAC layer to get a better picture
of the wireless environment. Moreover, WiMed tries to diagnose based on local measurements at
the node and hence pushes the envelope on local diagnosis. Wherever applicable, this could be
integrated with a distributed mechanism to perform more sophisticated global diagnosis. RFDump
[15] uses software-defined radio to get a packet-level trace of all wireless technologies. This makes
interference diagnosis easier and provides a local diagnosis mechanism, but requires relatively
expensive SDR hardware as against cheap commodity NICs. Finally, there has been research on
use of active approaches such as bandwidth tests [18] and micro-probing [3] to build conflict graphs
for understanding 802.11 interference. These approaches try to solve 802.11-specific problems and
deal with only a subset of performance problems in wireless systems.

Spectrum MRI [5] is a recent project that attempts to perform cross-protocol interference diag-
nosis. However, their preliminary efforts to diagnose these problems are based on coarse param-
eters like retransmission rate and link occupancy. We believe that these high-level parameters are
unlikely to give insights into the technologies that are interferring with each other.

7 Conclusion
In this paper, we presented an architecture for diagnosing 802.11 problems without the use of
a dedicated infrastructure. We built a prototype using commodity 802.11 NICs to identify the
cause of wireless problems such as interference and contention. While this is only a first step
towards infrastructure-less diagnosis, we believe that adding such monitoring capability to APs
and clients could significantly alleviate the problems faced by wireless users, especially in chaotic

19

wireless deployments such as the home. Unlike existing systems which largely focus on WiFi-only
networks, WiMed extends its capability to diagnosing cross-protocol interference.

References
[1] Atul Adya, Paramvir Bahl, Ranveer Chandra, and Lili Qiu. Architecture and techniques for

diagnosing faults in ieee 802.11 infrastructure networks. In MobiCom ’04, Philadelphia, PA,
USA, 2004.

[2] Bhavish Aggarwal, Ranjita Bhagwan, Tathagata Das, Siddharth Eswaran, Venkata N. Pad-
manabhan, and Geoffrey M. Voelker. Netprints: diagnosing home network misconfigurations
using shared knowledge. In NSDI’09, Boston, MA, 2009.

[3] Nabeel Ahmed, Usman Ismail, Srinivasan Keshav, and Konstantina Papagiannaki. Online
estimation of rf interference. In CoNEXT ’08, Madrid, Spain, 2008.

[4] Eric Anderson, Gary Yee, Caleb Phillips, Douglas Sicker, and Dirk Grun-
wald. Commodity ar52xx-based wireless adapters as a research platform.
http://systems.cs.colorado.edu/wiki/CARP, April 2008.

[5] Akash Baid, Suhas Mathur, Ivan Seskar, Tripti Singh, Shweta Jain, Dipankar Raychaudhuri,
Sanjoy Paul, and Amitabha Das. Spectrum mri: Towards automated diagnosis of multi-
radio interference in the unlicensed band. In IEEE Wireless Communications and Networking
Conference, 2011.

[6] Ranveer Chandra, Jitendra Padhye, Alec Wolman, and Brian Zill. A location-based man-
agement system for enterprise wireless lans. In Proc. NSDI’07, Cambridge, MA, November
2007.

[7] Ranveer Chandra, Venkata N. Padmanabhan, and Ming Zhang. Wifiprofiler: cooperative
diagnosis in wireless lans. In MobiSys ’06, Uppsala, Sweden, 2006.

[8] Yu-Chung Cheng, Mikhail Afanasyev, Patrick Verkaik, Péter Benkö, Jennifer Chiang,
Alex C. Snoeren, Stefan Savage, and Geoffrey M. Voelker. Automating cross-layer diag-
nosis of enterprise wireless networks. In SIGCOMM ’07, Kyoto, Japan, 2007.

[9] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C. Snoeren, Geoffrey M. Voelker, and
Stefan Savage. Jigsaw: solving the puzzle of enterprise 802.11 analysis. In SIGCOMM ’06,
Pisa, Italy, 2006.

[10] Martin Heusse Franck, Franck Rousseau, Gilles Berger-sabbatel, and Andrzej Duda. Perfor-
mance anomaly of 802.11b. In IEEE Infocom ’03, San Francisco, CA, 2003.

[11] Ramakrishna Gummadi, David Wetherall, Ben Greenstein, and Srinivasan Seshan. Under-
standing and mitigating the impact of rf interference on 802.11 networks. In SIGCOMM ’07,
Kyoto, Japan, 2007.

20

[12] Kamal Jain, Jitendra Padhye, Venkata N. Padmanabhan, and Lili Qiu. Impact of interference
on multi-hop wireless network performance. Wirel. Netw., 11(4):471–487, 2005.

[13] Glenn Judd and Peter Steenkiste. Using emulation to understand and improve wireless net-
works and applications. In Proc. NSDI’05, Berkeley, CA, USA, 2005.

[14] A. Kamerman and N. Erkocevic. Microwave oven interference on wireless lans operating in
the 2.4 ghz ism band. Proc. PIMRC ’97, 3, Sep 1997.

[15] Kaushik Lakshminarayanan, Samir Sapra, Srinivasan Seshan, and Peter Steenkiste. Rfdump:
an architecture for monitoring the wireless ether. In CoNEXT ’09, Rome, Italy, 2009.

[16] Kaushik Lakshminarayanan, Srinivasan Seshan, and Peter Steenkiste. Understanding 802.11
performance in heterogeneous environments. In HomeNets ’11, Toroto, Canada, 2009.

[17] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahorjan. Analyzing the mac-level
behavior of wireless networks in the wild. In SIGCOMM ’06, Pisa, Italy, 2006.

[18] Jitendra Padhye, Sharad Agarwal, Venkata N. Padmanabhan, Lili Qiu, Ananth Rao, and Brian
Zill. Estimation of link interference in static multi-hop wireless networks. In IMC ’05,
Berkeley, CA, 2005.

[19] Anmol Sheth, Christian Doerr, Dirk Grunwald, Richard Han, and Douglas Sicker. Mojo:
a distributed physical layer anomaly detection system for 802.11 wlans. In MobiSys ’06,
Uppsala, Sweden, 2006.

21

	1 Introduction
	2 Taxonomy of Causes
	2.1 Medium Access and Load-based Problems
	2.1.1 Contention
	2.1.2 Other Causes

	2.2 Packet Delivery-related Problems
	2.2.1 802.11 Interference
	2.2.2 Non-802.11 Interference
	2.2.3 Other Causes

	3 Diagnosis Framework
	3.1 Passive Monitoring
	3.2 Trace Merging
	3.3 Analysis
	3.4 Confidence Metrics
	3.5 Active Probing
	3.6 Performance Monitoring and Reasoning

	4 Implementation
	5 Evaluation
	5.1 Accuracy of sensing
	5.1.1 802.11
	5.1.2 Bluetooth

	5.2 Accuracy of detection
	5.2.1 Bluetooth Interference
	5.2.2 Microwave Interference
	5.2.3 802.11 Interference
	5.2.4 Contention
	5.2.5 Unknown Interference

	5.3 Performance monitoring

	6 Related Work
	7 Conclusion

