
Register Allocation Aware Instruction Selection

David Ryan Koes
October 2009

CMU-CS-09-169

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

In existing optimization frameworks, compiler passes are not tightly integrated and often work
at cross purposes. In this report we describe an integration framework for the key backend com-
piler optimizations of register allocation and instruction selection: Register Allocation Aware
Instruction Selection (RA2ISE). We discover that the fundamental building block of the RA2ISE
framework, register allocation aware tiles (RAATs), introduce significant complexity into the
network flow model of register allocation. It is unlikely that efficient and effective solution tech-
niques exist when RAATs are incorporated into the model. We also explore the merits of another
component of the RA2ISE framework, feedback driven instruction selection and find that the
expected benefits are far outweighed by the necessary costs.

This research was sponsored by the National Science Foundation under grant numbers CCF-0702640, CCR-
0205523, EIA-0220214, and IIS-0117658; and Hewlett Packard under grant number 1010162.

The views and conclusions contained in this document are those of the author and should not be interpreted as
representing the official policies, either expressed or implied, of any sponsoring institution, the U.S. government or
any other entity.

Keywords: Compilers, Register Allocation, Instruction Selection, Backend Optimization

1

In existing optimization frameworks, compiler passes are not tightly integrated and often

work at cross purposes. The absence of integration has a negative effect on code quality as is

highlighted by studies in adaptive and iterative compilation [1, 2, 4, 9, 12, 13]. These studies

exhaustively search for better orderings and combinations of existing compiler optimizations.

Average performance improvements of 5%–20% are found and some numerical kernels increase

in performance by as much as 4x. In an optimization framework with tightly integrated passes,

the pass execution order and optimization behavior would be dependent on both the input code

and the context and feedback of the integrated optimization passes.

In this report we describe an attempt to integrate instruction selection and register allocation

into a single feedback-driven optimization framework. We consider the state-of-the-art NOLTIS

instruction selector [6, 7] and a progressive register allocator that is based on a highly expressive

global MCNF model of register allocation [7, 8]. Instruction selection and register allocation are

essential components of the compiler backend. Together they are responsible for the translation

of the compiler’s target-independent intermediate representation into target-specific assembly.

However, it is clear that instruction selection and register allocation do not function in isolation;

indeed, they are tightly intertwined and, ideally, a principled compiler backend would seek to

integrate these two problems. This report proposes the Register Allocation Aware Instruction

SElection (RA2ISE) optimization framework and explores the fundamental limitations of this

framework.

Instruction selection and register allocation are interdependent. Register allocation is con-

strained by the instruction sequence generated by instruction selection. Conversely, the quality

of the instruction selection directly depends upon the accuracy of tile costs. These tile costs are

inherently inaccurate since spills, register preferences, and move coalescing may change the in-

structions corresponding to a tile. For example, although the instruction sequence of Figure 1(a)

contains fewer instructions, it may actually end up with more instructions than that of Figure 1(c)

if the register allocator can successfully coalesce the move instructions, as shown in Figure 1.

In the RA2ISE framework, instruction selection and register allocation are incorporated into a

feedback loop in which each phase can influence the other phase as shown in Figure 2.

2

movl (p),t1
leal (x,t1),t2
leal 1(y),t3
leal (t2,t3),r

(a)

⇒
movl (ecx),ebx
leal (edx,ebx),edx
leal 1(eax),eax
leal (edx,eax),eax

(b)

movl x,t1
addl t1,(p)
movl y,t2
incl t2
movl t2,r
addl r,t1

(c)

⇒
movl edx,edx
addl edx,(ecx)
movl eax,eax
incl eax
movl eax,eax
addl eax,edx

(d)

Figure 1: An example of the interaction between instruction selection and register allocation.
Sequence (a) is shorter than sequence (c). However, register allocation can coalesce the move
instructions in (c) resulting in a shorter post-allocation sequence. (d).

Instruction Selection Register Allocation

Register Allocation Aware
Instruction Tiles

Modified Tile Costs

Figure 2: The feedback loop at the heart of RA2ISE. The instruction selector selects Register
Allocation Aware Tiles (RAATs), which enable the register allocator to make some instruction
selection decisions at allocation time. Conversely, the results of register allocation are sent back
to the instruction selector in the form of modified tile costs.

3

(int)

x:16

y:32

(a)

sign extend x→ y

x\y eax edx · · · mem
eax cwtl(1) movsx(4)
edx movsx(4) movsx(4)
...
mem movsx(5) movsx(5)

(b)

Figure 3: A register allocation aware tile for sign extension. The tile (b), matches the IR oper-
ation (a). The cost of the tile (here determined by code size) depends on the eventual allocation
of the input (x) and output (y) of the operation. In some cases multiple instructions might be
necessary. For example, if both x and y are in memory, a store instruction has to be generated.
The register allocator is assumed capable of generating this store, and so the tile does not need
to represent this case.

In order to enable communication between instruction selection and register allocation, the

RA2ISE framework utilizes Register Allocation Aware Tiles (RAATs). RAATs are more flexible

than traditional instruction tiles:

• A RAAT does not necessarily correspond directly to a single instruction sequence. Instead,

a RAAT represents several functionally equivalent potential instruction sequences and the

final instruction sequence is chosen by the register allocator.

• A RAAT does not have a single fixed cost. Instead, its cost is modified based on the results

of register allocation.

Like a traditional instruction tile, a RAAT represents a mapping from an expression tree inter-

mediate representation to an assembly sequence. Unlike traditional tiles, this mapping is not

one-to-one and there is no single fixed cost for the tile. Instead, the final assembly sequence and

cost are determined by the results of register allocation. This dependancy is represented by a ta-

ble relating the possible allocation class assignments of the inputs and outputs of the RAAT to the

final assembly sequence and cost. An example of a sign extension RAAT is shown in Figure 3.

This RAAT explicitly encodes the benefit of both operands being in eax (a smaller instruction

can be used) and the cost of the input operand being in memory (an additional byte is necessary

4

*

+

4x:32

y:32

z:32

(a)

plus (mult x,4), y → z

z :eax

x\y eax edx · · · mem

eax leal(3) sall;addl(6)

edx leal(3)
...

mem

plus (mult x,4), y → z

z :edx

x\y eax edx · · · mem

eax leal(3)

edx leal(3) sall;addl(6)
...

mem
...

(b)

Figure 4: A register allocation aware tile (a) for a more complicated expression tree (b). In
this case it is impossible for x and y to be allocated to the same register since their live ranges
overlap, but if y is in memory and x and z are allocated to the same register then y can be directly
accessed with the addl instruction. Although this code sequence is no smaller than loading y
into a register and using the leal instruction, it does require one less register. In RA2ISE, the
register allocator makes the final decision as to which sequence to generate.

1 THE PROBLEM WITH RAATS 5

to store the stack offset). Larger RAATs that potentially resolve to multiple instructions can also

be used, as shown in Figure 4.

In the RA2ISE framework instruction selection is first done using RAATs with optimistic

costs. This result is then used by the register allocator to find an allocation. Given this allocation,

each RAAT can then be transformed into a final instruction sequence which could potentially

exceed the initial optimistic cost assumptions. Violations of the optimistic cost model are then

relayed back to the instruction selector in the form of tile cost modifications and the feedback

loop is repeated as necessary.

The success of the RA2ISE framework depends on the expressiveness and flexibility of the

supported RAATs and the ability of the register allocator to effectively incorporate RAATs into

its model. The next section describes some limitations of the global MCNF model of register

allocation when modeling truly expressive RAATs. Then an implementation of tile cost mod-

ification based on the results of register allocation is described and examined. Finally, overall

results for the implemented RA2ISE framework are detailed.

1 The Problem with RAATs

Ideally, the model used by the register allocator would be able to support arbitrary RAATs, such

as those shown in Figures 3 and 4. That is, the relationship between RAAT operand allocations

and the respective costs could be completely nonuniform with no particular structure. The global

MCNF model of register allocation naturally supports tiles where the cost of an allocation deci-

sion is determined solely by an individual variable’s allocation. For example, in the tile 3(b) the

cost of allocating x to memory can be accurately represented. However, the cost of allocating x

to eax can not be modeled exactly since this cost is determined by the allocation of y. In order

to support more expressive RAATs, additional constraints must be added to the global MCNF

model. Unfortunately, as we shall see, adding even a relatively simple constraint that ties the

allocation of two variables together significantly reduces the solvability of the model.

1 THE PROBLEM WITH RAATS 6

move x→ y

x\y eax edx · · ·

eax (0) movl(2)

edx movl(2) (0)
...

(a)

plus x, y→ z

z :eax

x\y eax edx · · ·

eax addl(2) addl(2)

edx addl(2) leal(3)
...

z :edx

x\y eax edx · · ·

eax leal(3) addl(2)

edx addl(2) addl(2)
...

...

(b)

Figure 5: Two RAATs representable in the global MCNF model using simple tied constraints.
In these examples the cost of each instruction sequence is its size.

Figure 6: Two quantities may be tied together even if their live ranges conflict. In this example,
t1 and t2 are both live after the highlighted instruction. However, if t1 has been previously
evicted to memory, it is still possible to allocate t1 and t2 into the same register at the high-
lighted instruction thus providing a benefit from a tied constraint.

1.1 Modeling Tied Constraints

A tied constraint simply states that there is a cost benefit if two variables (one an input operand

and the other an output operand) are allocated to the same register. Two examples of RAATs that

can be fully modeled in the global MCNF model through the use of tied constraints are shown

1 THE PROBLEM WITH RAATS 7

in Figure 5. In the case of a move instruction, Figure 5(a), if both the input and output operands

of the move can be allocated to the same register than the instruction can be eliminated. When

choosing an instruction selection for a simple addition, Figure 5(b), the smaller addl instruction

can be used if the output operand (z) is allocated to the same register as either one of the input

operands (x or y). Note that in both these cases, the tied constraint may still be satisfiable

even when the tied input operand is live out of the instruction if the value in that operand has

been previously stored to memory as shown in Figure 6. In order to effectively optimize for

tied constraints, the full context of register allocation is needed. Although implementing tied

constraints is not sufficient to support arbitrary RAATs, implementing these simple constraints is

the first step towards supporting more complex, expressive constraints, and an evaluation of the

consequences of implementing these simple constraints is useful in evaluating the advisability of

implementing more complex, expressive constraints.

Tied constraints are incorporated into the global MCNF data structure by adding an annota-

tion to an instruction group node that describes the benefit of allocating two operands to that same

node. More formally, the term −tcj
benefittc

j is added to the objective function and the following

constraints are added to the integer linear programming model:

tcj ≤ xq1

ij

tcj ≤ xq2

jk

Here q1 and q2 are the two variables (commodities) being tied together at instruction node j; q1

is the input operand, traversing edge xij , and q2 is the output operand, traversing xjk. The new

quantity tcj can only be one if both q1 and q2 are allocated to the same node j. The benefit of q1

and q2 being tied together is represented by tcbenefit in the objective function. Since the goal is

to minimize the objective function, tcj will be one whenever q1 and q2 have the same allocation.

The addition of tied constraints to the global MCNF model of register allocation presents

several problems. Since these constraints are not hard constraints (all solutions that are feasible

in the original model are still feasible in the expanded model), there is no need to relax them.

Although this simplifies the task of finding feasible solutions, it also means that Lagrangian

relaxation cannot be used to push the found solutions closer to optimal, as is the case with

1 THE PROBLEM WITH RAATS 8

!"#

$!"#

%!"#

&!"#

'!"#

(!"#

)!"#

*!"#

+!"#

,!"#

$!!"#

-.#/012#3.456780465# 9:;<#/012#3.45678046# =<>#/012#3.45678046#

!
"
#$
"
%
&'
(
)'
*
+
%
$,
(
%
-'

?1850@A1#

:BCD8AE#F461G78A06H#I8B#

:BCD8AE#-.#I8B#

Figure 7: Optimality gap introduced when tied constraints are added to the model. For all the
functions in a small benchmark suite the optimal solution is calculated for the original global
MCNF model, the model with tied constraints implementing the move RAAT of Figure 5(a),
and the model with tied constraints implementing the lea/add RAAT of Figure 5(b). Approx-
imately 20% of the functions had an integrality gap. In some cases, likely due to the presence
of an integrality gap and the need to perform branch and bound search, only feasible, not prov-
ably optimal, solutions were found by the CPLEX solver within the hour time limit when tied
constraints were present.

the bundle constraints in the model. More importantly, even if a highly effective heuristic for

satisfying these constraints could be developed, the existence of these constraints fundamentally

alters the nature of the model.

1.2 Solving Tied Constraints

One of the advantages of the global MCNF model of register allocation coupled with progressive

solution techniques is that a meaningful upper bound on the optimality of a solution can be

computed. This is possible because, empirically, there is rarely an integrality gap; that is, the

value of the linear relaxation is equal to the integer solution. Unfortunately, when tied constraints

are added to the model this property disappears. This is demonstrated empirically in Figure 7.

We consider a subset of the MediaBench [10] benchmark suite consisting of the benchmarks

dijkstra, g721, mpeg2, patricia, qsort, sha, and stringsearch. The reduced size of this benchmark

set allows us to use ILOG CPLEX [5] to find optimal solutions to the register allocation problem

when targeting 32-bit x86 and optimizing for code size. Using the original global MCNF model,

1 THE PROBLEM WITH RAATS 9

r1 r2

k1

Network containing
k2 sink

r1 r2

k2

k1

Network containing
k2 sink

k1=
k2k1=k2

Network containing
k1 source

k2

Network containing
k1 source

Figure 8: Tied constraints introduce an integrality gap. In this example an optimal solution for
the flows of k1 and k2 can be achieved using only integral flows unless tied constraints are added
to the problem. The existence of a tied constraint decreases the optimal value of the solution by
the benefit of the tied constraint and necessitates that fractional flows be used in the optimal
solution.

none of the functions compiled had a definite integrality gap (although in one case the solver time

limit expired before a provably optimal solution was found). However, when tied constraints are

added to the model approximately 20% of the functions compiled have an integrality gap. The

introduction of these integrality gaps results in an order of magnitude increase in the amount of

time it takes to find an optimal solution using CPLEX. The progressive solution techniques used

by the register allocator are also negatively affected by the presence of integrality gaps since tight

lower bounds cannot be computed.

Unfortunately, the introduction of integrality gaps is fundamental to the nature of the con-

straint. Consider the case where in the optimal (integer) solution it is undesirable to satisfy the

tied constraint. This means that the cost of assigning the two variables of the constraint to the

same register is greater than the benefit. However, in the linear relaxation of the problem, it is

1 THE PROBLEM WITH RAATS 10

Figure 9: Code size improvement of models with tied constraints. Adding tied constraints to the
register allocation model to represent both move RAAT of Figure 5(a) and the lea/add RAAT
of Figure 5(b) results in code size improvements when the model is solved to optimality across
a small benchmark suite. The baseline model always implements simple additions with an add
instruction since this results in better average code size than when a lea instruction is always
used.

possible to modify the integer optimal solution to satisfy the tied constraint without incurring any

additional costs. As an example, consider the following scenario, which is illustrated in Figure 8.

Assume that in the integer optimal solution, variables k1 and k2 are allocated to distinct registers

r1 and r2 respectively. If k1 and k2 are part of a tied constraint tcj , then the cost of the linear

relaxation can be improved by tcj
benefit simply by dividing the flows of k1 and k2 equally between

r1 and r2. That is, k1 is allocated to half of r1 and half of r2. Unless there is a strong preference

in the model for k1 to be in r1 or k2 to be in r2, which is uncommon, this will improve the cost

of the linear relaxation resulting in an integrality gap.

The integrality gaps resulting from introducing tied constraints into the model have a definite

negative impact on the solvability of the model. However, the addition of tied constraints does

have a small, but not insignificant, impact on the quality of the solution. As shown in Figure 9,

the addition of each RAAT type to the model results in a fraction of a percent improvement in

code size although the combined effect of the different RAAT types is subadditive. This suggests

that a model that can explicitly and exactly represent fully expressive RAATs would have ad-

vantages over the unmodified global MCNF model. Unfortunately, supporting fully expressive

RAATs drastically impacts the solvability of the global MCNF model. Therefore, an entirely

2 MODIFYING TILE COSTS 11

new modeling framework must be developed, less principled ad-hoc approaches have to be used,

or heavy-weight solution techniques, such as branch and bound, must be used.

The global MCNF model of register allocation is a natural and intuitive representation that is

amenable to effective progressive solution techniques. Although tied constraints do not integrate

well into the model, its many other advantages outweigh this limitation. It is worth noting that

this limitation is not unique to the global MCNF model. No other register allocation framework

fully and expressively integrates the benefits modeled by tied constraints. Instead, ad-hoc heuris-

tic techniques are used. An ad-hoc heuristic approach is equally applicable to the global MCNF

model when using a heuristic solver. Allocation decisions that satisfy a tied constraint are simply

given a preference over similarly priced alternative allocation decisions. This is a not a principled

approach since the benefits of the tied constraints are not explicitly modeled and the cost/benefit

tradeoff of satisfying the tied constraint is not explicit. Therefore, it is not surprising that this

approach results in decidedly mixed results. In fact, when evaluated on the benchmark suite of

Figure 9 there is an overall slight degradation of code quality (0.03% larger). As an alternative

to a heuristic approach, heavy-weight solution techniques, such as branch and bound, could be

used. These approaches, which are all variants on exhaustive search, dramatically increase com-

pile time and are only appropriate when code quality and optimality guarantees are of utmost

importance.

We conclude that a practical principled framework for incorporating fully expressive RAATs

into register allocation requires a significant advancement beyond the current state-of-the-art.

However, it is possible that some of the benefit of the proposed RA2ISE framework can be

gained by providing feedback from the register allocator to the instruction selector. This is done

by having the register allocator modify the instruction tile costs.

2 Modifying Tile Costs

The NOLTIS algorithm performs near-optimal linear-time instruction selection. Given a set of

tiles that represent machine instructions, the NOLTIS algorithm finds an optimal or close to op-

timal tiling of an expression DAG. In order for an optimal tiling to correspond to an optimal

2 MODIFYING TILE COSTS 12

opb opc

opa

opd

t3

t4

t5

t6
t7

t5

...
opd t5 ←
opb t4 ← t5,t6
opac t3 ← t4,t5,t7

...

(a)

...
opd r1 ←
opb r2 ← r1,r2
load r3 ← M7
opac r1 ← r2,r1,r3

...

(b)

opb opc

opa

opd
MEM

(c)

opb opc

opa

opd

t3t4

t5

t6
t7

t5

...
opd t5 ←
opb t4 ← t5,t6
opc t3 ← t5,t7

...
MEM

(d)

...
opd r1 ←
opb r2 ← r1,r2
opc r2 ← r2,M7

...

(e)

Figure 10: Feedback directed instruction selection. (a) Instruction selection and (b) register allo-
cation are performed as usual in the first phase. (c) The results of register allocation are then back
annotated onto the expression DAG indicating what edges are likely to carry values that are in
memory. (d) In the second phase, instruction selection is performed on this modified expression
DAG using tile costs that more accurately reflect the likely results of register allocation. (e) Reg-
ister allocation is then performed using the new register-allocation aware instruction sequence.

2 MODIFYING TILE COSTS 13

instruction selection, the tile costs must accurately reflect the realities of the final code quality

metric. Unfortunately, when viewed in a larger context, the tile costs used by the instruction

selector are inherently inaccurate. NOLTIS, and other instruction selection algorithms, assume

an idealized machine model with an infinite register set. In actuality, the cost of instruction tiles

should include costs related to register allocation, such as spill costs and the cost of memory

operands. The RA2ISE framework attempts to resolve this discrepancy by allowing for feed-

back from the register allocator to the instruction selector. In this section we investigate the

practicality and effectiveness of register allocation provided feedback on instruction selection.

In order to implement a feedback driven system it is necessary to execute at least two passes

of instruction selection and register allocation. The first pass performs a preliminary selection

and then the register allocator determines the register or memory assignment of variables. These

locations are then mapped back onto the corresponding edges in the original expression DAG. If

there is no location assigned to an edge in the expression DAG (because the edge is internal to a

first phase instruction tile) then the value for this edge is extrapolated from the connected edges.

These edge annotations are then used to refine the costs of tiles. For example, if a value is in

memory and an instruction cannot directly access memory, the cost of a load is included in the

total cost of the tile. Alternatively, if the instruction can directly access memory, then only the

cost of incorporating a memory operand into the instruction is included in the tile cost. A second

pass of instruction selection and register allocation is then performed using these modified tiles.

Since the second phase of register allocation may have a different result than the first phase, the

modified tile costs are not perfectly accurate. However, it seems reasonable to assume that these

feedback derived costs will be more accurate than the unmodified costs. The complete tool-flow

is shown in Figure 10.

We have implemented a prototype feedback-directed instruction selection system within

LLVM 2.1 [11] using the NOLTIS instruction selector. In our prototype system we limit our-

selves to considering only costs relative to values being allocated to memory. Because of its

CISC instruction set and limited register set we target the 32-bit x86 architecture. We optimize

for code size since improved instruction selection can reduce code size significantly. The pro-

totype system was used to compile the Mibench [3] benchmark suite. Despite the improved tile

3 SUMMARY 14

costs derived from the register allocation provided feedback, the resulting code size improve-

ment of our system was a microscopic 0.0015% with only three of 6147 functions showing any

improvement. Additional iterations of the feedback loop yielded zero additional benefit. Clearly,

despite the presence of more accurate tile costs, feedback-directed instruction selection as im-

plemented in our system provides essentially zero benefit.

The cause of this disappointing result becomes clear when the behavior of the instruction

selector is examined. Although the tile costs are properly modified, in almost all cases the mod-

ified costs do not change the resulting tiling. This is in large part due to the relatively simple

single-instruction tiles used and the design of the x86 ISA. For most tile decisions either none

of the tiles can directly access memory, or the best tile is already capable of accessing memory.

In these cases, modifying the tile costs to reflect the cost of an operand being allocated to mem-

ory does not change the outcome of the tiling. It is possible that if more complex tiles, such as

the RAATs described in Figure 4, were used then feedback-direct instruction selection would be

more successful. Unfortunately, as described in Section 1, such RAATs are not practical within

our register allocation framework. Considering the extra compile-time overhead of executing

two full passes, feedback-directed instruction selection is unlikely to have much practical value

unless a RAAT-friendly framework can developed.

3 Summary

In this report we explored the feasibility of tightly integrating instruction selection and regis-

ter allocation. We described an integration framework, RA2ISE. Unfortunately, we discover

that the fundamental building block of the RA2ISE framework, register allocation aware tiles

(RAATs), introduce significant complexity into the network flow model of register allocation. It

is unlikely that efficient and effective solution techniques exist when RAATs are incorporated

into the model. We also explore the merits of another component of the RA2ISE framework,

feedback driven instruction selection and find that the expected benefits are far outweighed by

the necessary costs.

REFERENCES 15

References
[1] L. Almagor, Keith D. Cooper, Alexander Grosul, Timothy J. Harvey, Steven W. Reeves,

Devika Subramanian, Linda Torczon, and Todd Waterman. Finding effective compilation
sequences. In LCTES ’04: Proceedings of the 2004 ACM SIGPLAN/SIGBED conference
on Languages, compilers, and tools for embedded systems, pages 231–239, New York, NY,
USA, 2004. ACM Press. ISBN 1-58113-806-7. doi: http://doi.acm.org/10.1145/997163.
997196. (document)

[2] G.G. Fursin, M.F.P. O’Boyle, and P.M.W. Knijnenburg. Evaluating iterative compilation.
In Proc. Languages and Compilers for Parallel Computers (LCPC), pages 305–315, 2002.
(document)

[3] M.R. Guthaus, J.S. Ringenberg, D. Ernst, T.M. Austin, T. Mudge, and R.B. Brown.
Mibench: A free, commercially representative embedded benchmark suite. IEEE Inter-
national Workshop on Workload Characterization, pages 3–14, December 2001. 2

[4] M. Haneda, P. M. W. Knijnenburg, and H. A. G. Wijshoff. Automatic selection of compiler
options using non-parametric inferential statistics. In PACT ’05: Proceedings of the 14th In-
ternational Conference on Parallel Architectures and Compilation Techniques (PACT’05),
pages 123–132, Washington, DC, USA, 2005. IEEE Computer Society. ISBN 0-7695-
2429-X. doi: http://dx.doi.org/10.1109/PACT.2005.9. (document)

[5] ILOG. ILOG CPLEX. http://www.ilog.com/products/cplex. 1.2

[6] David Koes and Seth Copen Goldstein. Near-optimal instruction selection on dags. In CGO
’08: Proceedings of the International Symposium on Code Generation and Optimization
(CGO’08), 2008. (document)

[7] David Ryan Koes. Towards a More Principled Compiler: Register Allocation and Instruc-
tion Selection Revisited. PhD thesis, Carnegie Mellon University, Pittsburgh, PA, October
2009. (document)

[8] David Ryan Koes and Seth Copen Goldstein. A global progressive register allocator. In
Proceedings of the 2006 ACM SIGPLAN conference on Programming Language Design
and Implementation, pages 204–215, New York, NY, USA, 2006. ACM Press. ISBN 1-
59593-320-4. doi: http://doi.acm.org/10.1145/1133981.1134006. (document)

[9] Prasad Kulkarni, Wankang Zhao, Hwashin Moon, Kyunghwan Cho, David Whalley, Jack
Davidson, Mark Bailey, Yunheung Paek, and Kyle Gallivan. Finding effective optimization
phase sequences. In LCTES ’03: Proceedings of the 2003 ACM SIGPLAN conference on
Language, compiler, and tool for embedded systems, pages 12–23, New York, NY, USA,
2003. ACM Press. ISBN 1-58113-647-1. doi: http://doi.acm.org/10.1145/780732.780735.
(document)

[10] Chunho Lee, Miodrag Potkonjak, and William H. Mangione-Smith. MediaBench: a tool
for evaluating and synthesizing multimedia and communications systems. In ACM/IEEE

http://www.ilog.com/products/cplex

REFERENCES 16

International Symposium on Microarchitecture, pages 330–335, 1997. URL http://
www.icsl.ucla.edu/˜billms/Publications/mediabench.ps. 1.2

[11] LLVM. The LLVM compiler infrastructure. http://llvm.org. 2

[12] Andy Nisbet. Gaps: A compiler framework for genetic algorithm (ga) optimised paralleli-
sation. In HPCN Europe, pages 987–989, 1998. (document)

[13] Spyridon Triantafyllis, Manish Vachharajani, and David I. August. Compiler optimization-
space exploration. The Journal of Instruction-Level Parallelism, 7:1–25, January 2005.
URL http://www.jilp.org/vol7. (document)

http://www.icsl.ucla.edu/~billms/Publications/mediabench.ps
http://www.icsl.ucla.edu/~billms/Publications/mediabench.ps
http://llvm.org
http://www.jilp.org/vol7

	1 The Problem with RAATs
	1.1 Modeling Tied Constraints
	1.2 Solving Tied Constraints

	2 Modifying Tile Costs
	3 Summary

