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Abstract 

 
The goal of this paper is to build robust human action recognition for real world 
surveillance videos. Local spatio-temporal features around interest points provide 
compact but descriptive representations for video analysis and motion recognition. 
Current approaches tend to extend spatial descriptions by adding a temporal component 
for the appearance descriptor, which only implicitly captures motion information. We 
propose an algorithm called MoSIFT, which detects interest points and encodes not only 
their local appearance but also explicitly models local motion. The idea is to detect 
distinctive local features through local appearance and motion. We construct MoSIFT 
feature descriptors in the spirit of the well-known SIFT descriptors to be robust to small 
deformations through grid aggregation. We also introduce a bigram model to construct a 
correlation between local features to capture the more global structure of actions. The 
method advances the state of the art result on the KTH dataset to an accuracy of 95.8%. 
We also applied our approach to 100 hours of surveillance data as part of the TRECVID 
Event Detection task with very promising results on recognizing human actions in the 
real world surveillance videos.  
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1. Introduction 
Visual surveillance systems collect huge amounts of video but a human must still 

review most of the data to extract informative knowledge. Our goal is to enable automatic 
recognition of many different types of behavior, without careful labeling, over large 
archives. Once events and behaviors are recognized, the results are used for retrieval, 
alerting and summarization of the data.  

Methods based on feature descriptors around local interest points are now widely used 
in object recognition. This part-based approach [16] assumes that a collection of 
distinctive parts can effectively describe the whole object. Compared to global 
appearance descriptions, a part-based approach has better tolerance to posture, 
illumination, occlusion, deformation and cluttered background. Recently, spatio-temporal 
local features have been used for motion recognition in video. The spatio-temporal 
features share some of the same desirable properties as local features of images and also 
achieve good performance on human action recognition tasks [1, 2, 3, 4, 5, 6, 7]. 

The key to the success of part-based methods is that the interest points are distinctive 
and descriptive. Therefore, interest point detection algorithms play an important role in a 
part-based approach. The straightforward way to detect a spatio-temporal interest point is 
to extend a 2D interest point detection algorithm. Laptev et al. [1] extended 2D Harris 
corner detectors to a 3D Harris corner detector, which detects points with high intensity 
variations in both spatial and temporal dimensions. On other words, a 3D Harris detector 
finds spatial corners with velocity change. This detector can produce compact and 
distinctive interest points. However, since the assumption of change in all 3 dimensions is 
quite restrictive, very few points results and many motion types may not be well 
distinguished. Dollar et al. [4] discarded spatial constraints and focused only on the 
temporal domain. Since they relaxed the spatial constraints, their detector detects more 
interest points than a 3D Harris detector by applying Gabor filters on the temporal 
dimension to detect periodic frequency components. Although they state that regions with 
strong periodic responses normally contain distinguishing characteristics, it is not clear 
that periodic movements are sufficient to describe complex actions. Oikonomopoulos et 
al. [7] computed the entropy of small spatio-temporal volumes and select volumes with 
large entropy as interest points. 

The above detection methods find informative but fairly sparse interest points among 
video cuboids. In contrasts, the highly successful Scale-Invariant Feature Transform 
(SIFT) for object recognition detects many interest points in an image and descriptors of 
these points are used to match static objects. Since recognizing human motion is more 
complicated than object recognition, motion recognition is likely to require with 
enhanced local features that provide both shape and motion information.  

The goal of this paper is to achieve robust human action recognition in the TREC Video 
Retrieval Evaluation (TRECVID 2008) [8] real-world London Gatwick airport 
surveillance videos. We first re-examine spatio-temporal feature detection and 
description for improved recognition performance. We observed that humans can 
distinguish actions from the appearance of feature points and their movements. Therefore, 
we propose an algorithm called MoSIFT, inspired by the Scale Invariant Feature 
Transform (SIFT) [9] but developed for video interest points and features instead of 
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image points/features. Our main insight is to treat spatial dimensions and temporal 
dimension separately. We nominate candidate points by detecting distinctive appearances 
and extract spatio-temporal local features if the candidate points contain movement. This 
detection algorithm extracts a good number of interest points. A MoSIFT descriptor is 
designed to represent the feature point in two parts: The first is an aggregated histogram 
of gradients (HoG) to describe the spatial appearance. The second part is an aggregated 
histogram of optical flow (HoF) which indicates the movement of the feature point. The 
aggregation of histograms provides better invariance to any deformation. We also 
propose a bigram model to capture more global shape and sequence information. The 
bigram can be defined as a pair-wise constraint and is auxiliary to a unigram bag-of-word 
feature in any local feature approach. 

We describe the MoSIFT algorithm for interest point detection and feature description 
in section 2. Section 3 discusses our pair-wise constraint model, which is derived from 
bigram models in text classification. In section 4, we present experimental performance 
results on the KTH dataset [2] and analyze the very large TRECVID London Gatwick 
surveillance dataset as an example of a real world application. We conclude with future 
work and a summary. 

 

2. MoSIFT 
This section presents our MoSIFT algorithm to detect and describe spatio-temporal 

interest points. In part-based methods, there are three major steps: detecting interest 
points, constructing a feature descriptor, and building a classifier. Detecting interest 
points reduces the whole video from a volume of pixels to compact but descriptive 
interest points. Therefore, we desire to develop a detection method, which detects a 
sufficient number of interest points containing the necessary information to recognize a 
human action. The MoSIFT algorithm detects spatially distinctive interest points with 
substantial motions. We first apply the well-know SIFT algorithm to find visually 
distinctive components in the spatial domain and detect spatio-temporal interest points 
with (temporal) motion constraints. The motion constraint consists of a 'sufficient' 
amount of optical flow around the distinctive points. Details of our algorithm are 
described in the following sections. 
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Pair of frames 

2.1 MoSIFT interest point detection 
Figure 2 demonstrates our MoSIFT algorithm. The algorithm takes a pair of video 

frames to find spatio-temporal interest points at multiple scales. Two major computations 
are applied: SIFT point detection and optical flow computation according to the scale of 
the SIFT points.  

SIFT interest points are scale invariant and all scales of an image must be considered. 
Lowe [9] used a Gaussian function as a scale-space kernel to produce a scale space of the 
image. The whole scale space is divided into a sequence of octaves and each octave is 
divided into a sequence of intervals, where each interval is a scaled frame. The number of 
octaves and intervals is determined by the frame size. The size relationship between two 
adjacent octaves is in powers of 2. The first interval in the first octave is the original 
frame. In each octave, the first interval is denoted as ( )yxI , . We can denote each interval 
as 

 

( ) ( ) ( ) (1)                  ,,,,, yxIkyxGkyxL ∗= δδ  
 

where  is the convolution operation in∗ x and , and y ( )δkyxG ,,  is a Gaussian 
smoothing function. Difference of Gaussian (DoG) images are then computed by 
subtracting adjacent intervals 

Figure 2: System flow graph of the MoSIFT algorithm. A 
pair of frames is the input. Local extremes of DoG and 
optical flow determine the MoSIFT points for which 
features are described. 
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( ) ( ) ( ) (2)     )1(,,,,,, δδδ −−= kyxLkyxLkyxD  
 

Once the pyramid of DoG images has been obtained, the local extremes 
(minima/maxima) of the DoG images across adjacent scales are used as  the interest 
points. This is done by comparing each pixel in the DoG images to its eight neighbors at 
the same interval and nine corresponding neighboring pixels in each of the neighboring 
intervals. The algorithm scans through each octave and interval in the DoG pyramid and 
detects all possible interest points at different scales. 

However, SIFT is designed to detect distinctive interest points in a still image. The 
candidate points are distinctive in appearance, but they are independent of the motions or 
actions in video. For example, a cluttered background can produce many interest points 
unrelated to human actions. Clearly, only interest points with sufficient motion will 
provide the necessary information for action recognition. The widely used optical flow 
approach detects the movement of a region by calculating where a region moves in the 
image space by measuring temporal differences. Compared to video cuboids or volumes, 
optical flow explicitly captures the magnitude and direction of a motion, instead of 
implicitly modeling motion through appearance change over time. Our belief is that 
explicit motion measurement is essential for recognizing actions. 

In the interest point detection part of the MoSIFT algorithm, optical flow pyramids are 
constructed over two Gaussian pyramids. Multiple-scale optical flows are calculated 
according to the SIFT scales.  A local extreme from DoG pyramids can only become an 
interest point if it has sufficient motion in the optical flow pyramid. We assume that a 
complicated action can be represented by the combination of a reasonable number of 
interest points. Therefore, we do not assign strong constraints to spatio-temporal interest 
points. As long as a candidate interest point contains a minimal amount of movement, the 
algorithm will extract this point as a MoSIFT interest point. MoSIFT interest points are 
scale invariant in the spatial domain. However, they are not scale invariant in the 
temporal domain. Temporal scale invariance could be achieved by calculating optical 
flow on multiple scales in time. However, we want to select distinctive interest points 
with sufficient motion where humans could ‘see’ the action based on these points and 
machines could learn an action model. Therefore, a small motion is sufficient at each 
interest point rather than imposing a complex motion constraint. Ultimately, this is still 
an open research topic. 

 
2.2 MoSIFT feature description 
In most current work on action recognition, much emphasis is placed on interest point 

detection and action model learning. However, the feature descriptor is an important step 
which is almost ignored. Most work [1,2,4,5] uses histograms of gradients to describe the 
appearance of interest volumes or cuboids. Some recent work [10,11] includes 
histograms of optical flow to boost performance. 

Since MoSIFT point detection is based on DoG and optical flow, it is natural that our 
descriptor leverages these two features. Instead of combining a complete HoF classifier 
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Figure 3: Grid aggregation for SIFT/MoSIFT feature 
descriptors. Pixels in a neighborhood are grouped into 4x4 
regions. An orientation histogram with 8 bins is formed for 
each region resulting in a 128 element vector. MoSIFT 
concatenates aggregated grids for both appearance and motion 
for a 256 element descriptors vector.  

with a complete HoG classifier, we build a single feature descriptor, which concatenates 
both HoG and HoF into one vector, which is also called ‘early fusion’. We believe 
appearance and motion information together are the essential components for a classifier. 
Since an action is only as represented by a set of spatio-temporal point descriptors, the 
descriptor features critically determines the information used by later recognition steps.  

It is often underappreciated that the original SIFT descriptor captures local appearance 
with an aggregated histogram of gradients from neighboring regions. This gives the SIFT 
descriptor better tolerance to partial occlusion and deformation. When an interest point is 
detected, a dominant orientation is calculated and all gradients in the neighborhood are 
rotated according to the dominant orientation to achieve rotation invariance. The 
magnitude and direction for the gradient are calculated for every pixel in a region around 
the interest point in the Gaussian-blurred image L. An orientation histogram with 8 bins 
is formed, with each bin covering 45 degrees. Each sample in the neighboring window is 
added to a histogram bin and weighted by its gradient magnitude and its distance from 
the interest point. Pixels in the neighboring region are normalized into 256 (16x16) 
elements. Elements are grouped as 16 (4x4) grids around the interest point. Each grid has 
its own orientation histogram to describe sub-region orientation. This leads to a SIFT 
feature vector with 128 dimensions (4x4x8 = 128). Each vector is normalized to enhance 
invariance to changes in illumination. Figure 3 illustrates the SIFT descriptor grid 
aggregation idea. 

MoSIFT adapts the idea of grid aggregation in SIFT to describe motions. Optical flow 
detects the magnitude and direction of a movement. Thus, optical flow has the same 
properties as appearance gradients. The same aggregation can be applied to optical flow 
in the neighborhood of interest points to increase robustness to occlusion and deformation. 
The main difference to appearance description is in the dominant orientation. Rotation 
invariance is important to appearance since it provides a standard to measure the 
similarity of two interest points. In surveillance video, rotation invariance of appearance 
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remains important due to varying view angles and deformations. Since surveillance video 
is captured by a stationary camera, the direction of movement is actually an important 
(non-invariant) vector to help recognize an action. Therefore, we omit adjusting for 
orientation invariance in the MoSIFT motion descriptors. The two aggregated histograms 
(appearance and optical flow) are combined into the MoSIFT descriptor, which now has 
256 dimensions. 

 

3. Bigram model of video code words 
The bag-of-words feature representation is often used to represent a motion event using 

spatio-temporal interest points. A video codebook is constructed by clustering spatio-
temporal interest points. Each interest point is then assigned to its closest vocabulary 
word (a cluster) and the histogram of video words is computed over a space-time volume 
to describe an action. 

A bag-of-words feature representation is easy to compute and efficient for describing an 
action. However, its histogram does not contain any spatial and temporal constraints, 
which leads to loss of shape and periodicity information. In text analysis, a bigram model 
is often used to capture the co-occurrence of adjacent words in order to boost 
classification results [13]. We can apply this idea to video code words. Although it is 
computationally intractable to model all possible sequences of video code words in a 
space-time volume, co-occurrence of only two video words requires minimal 
computation and provides some spatial and temporal constraints that help model shape 
and periodic motion.  

We first define adjacent video words as a pair of video words which co-occur in a kernel 

where  and  denote the spatial and temporal boundary. Experience has shown that 
good vocabulary sizes for action recognition are in the range of a hundred to a thousand 
words. Pair-wise correlations can result in very large numbers of pairs. Some research 
[14,15] reduces the number of correlations by clustering. Instead, we select bigrams 
based on their tf-idf weight (term frequency-inverse document frequency) which is 
common in information retrieval and text classification. Term frequency (tf) is the 
frequency of a bigram in the dataset. Inverted document frequency (idf) indicates how 
informative a bigram is by dividing the number of all actions by the number of actions 
containing this bigram, and then taking the logarithm of the quotient. All bigrams can 
then be ranked by their tf-idf weights and we pick a sufficient number of bigrams to 
provide extra constraints to enrich the bag-of-word features and boost action 
classification performance. 

sd td

As we pick  bigrams with video codebook of m  vocabularies, the histogram size will 
be . We calculate the histogram as a vector: 

n
mn+

( ) ( )
{ }

( ) ( )( ) (4)                     ,exp,

(3)                     ,11ˆ
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Figure 4: Some examples of MoSIFT from KTH dataset.  In left two 
columns, from top to bottom are boxing, handwaving and walking. In 
right two columns, from top to bottom are handclapping, jogging and 
running. Green circle indicates interest points and purple arrow shows 
the direct to move. From image sequence, jogging and running are very 
similar. 

where{ is the set of interest points with vocabulary label i and }ip ip  is the size of this 
vocabulary.C is the set of interest points around interest point p and ( )cph ,  is a weighting 
function for a pair of interest points. If the pair is far apart, it contributes less to the 
histogram. g is a fixed parameter of ( )cph , and ( )cpdis , measures the distance between 
interest points, a Euclidean distance in our case. 

 
4. Experimental results 
We first evaluate our algorithm on the KTH human motion dataset. The goal is to 

compare the performance to existing methods on a common standard. We then apply the 
framework to the London Gatwick airport surveillance dataset which consists of 100 
hours of real world surveillance video by five cameras. 

K-mean clustering is used to construct the video codebook. For classification, we use a 
support vector machine (SVM) with  kernel. The  kernel is defined as: 

2x 2x

 

( ) ( ) (5)                  ,1exp, ⎟
⎠
⎞

⎜
⎝
⎛−= jiji xxD

A
xxK
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Method Accuracy  
MoSIFT with Bigram 95.83% 

MoSIFT 95.0% 
MoSIFT detection with 
HoG & HoF & Bigram 93.33% 

MoSIFT detection with 
HoG & HoF 89.15% 

MoSIFT detection with 
HoF 86.10% 

MoSIFT detection with 
3D HoG 84.28% 

Temporal Gabor filter with 
3D HoG (from [4]) 81.50% 

3D Harris corner with 
3D HoG (from [2]) 71.72% 

 
Table 1: Comparison of different methods using the KTH dataset. HoG  and HoF here indicate 

histograms without grid aggregation. 3D HoG indicates the histogram is calculated from a space-time 
volume. 

method Accuracy  

MoSIFT 95.83% 
Laptev et al. [10] 91.8% 
Wong et al. [6] 86.62% 
Nieble et al. [5] 83.33% 
Dollár  et al. [4] 81.50% 
Schuldt et al. [2] 71.72% 

Ke et al. [3] 62.96% 
 

Table 2: Comparison of different methods using KTH 

where A is a scaling parameter that can be determined though cross-

validation. ( )ji xxD , is the distance defined as: 
2x

 

( ) ( ) (6)                           
2
1,

1

2

∑
= +

−
=

m

i ii

ii
ji wu

wuxxD
 

 

with  and . Prior work has shown that the kernel gives 
better performance with histogram features such as the bag of words [12]. Since we have 
multiple actions in both datasets, we adopted a one-vs-all strategy in the SVM classifiers. 

( )mi uux ,...,1= ( )mj wwx ,...,1= 2x

 

4.1 Action recognition using the KTH dataset 
The KTH human motion dataset is frequently used to evaluate event detection and 

recognition. It is also the largest widely available video dataset of human actions for 
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Figure 5: Confusion matrix of MoSIFT with bigrams for the KTH data. 
Jogging and running are the two most confusable actions.  

researchers to evaluate and compare. The dataset contains six types of human actions 
(walking, jogging, running, boxing, hand waving and hand clapping) performed by 25 
different persons. Each person performs the same action four times under four different 
scenarios (outdoors, outdoors at a different scale, outdoors with camera moving and 
indoors). The whole dataset contains 598 video clips and each video clip contains only 
one action. KTH provides a common benchmark to evaluate and compare algorithms.  

We extracted around 1.6 million interest points from the whole KTH dataset with the 
MoSIFT detector. Since the number of interest points is large, we randomly sampled 1% 
of the interest points to construct a video codebook. We chose a vocabulary size of 600 
words for our codebook. Earlier experiments had shown that the performance is stable 
with codebook sizes above 500 words. We follow [5] in performing leave-one-out cross-
validation to evaluate our approach. Leave-one-out cross-validation uses 24 subjects to 
build action models and then tests on the remaining subject. Performance is reported as 
the average accuracy of 25 runs. Figure 4 shows some MoSIFT detection examples. 

We first wanted to evaluate the utility of our MoSIFT interest point detector by 
comparing against the well-known temporal Gabor filter [4] and the 3D Harris corner 
detector [1]. To make this comparison fair, the 3D HoG descriptor is used in all three 
detectors. When we indicate HoG and HoF in Table 1, we specifically mean histograms 
which contain the whole region of interest without aggregating grids. 3D HoG indicates 
that the histogram of gradients is calculated from space-time cuboids. The bottom three 
lines in Table 1 show that the MoSIFT detector extracts sufficient interest points to 
recognize human actions, slightly outperforming the Gabor and 3D Harris methods.  

We then evaluated the efficiency of different descriptors. The MoSIFT detector was 
used with four different descriptors: 3D HoG, HOF, HoG & HoF, and grid aggregated 
HoG & HoF. The true MoSIFT descriptor is defined as the latter, i.e. grid-aggregated 
HoG and HoF.  As mentioned in section 2, 3D HoG is often used and encodes motion by 
spatio-temporal appearance.  In this evaluation, we compare explicit motion descriptors 
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against implicit motion descriptors. Grid aggregated histogram descriptors theoretically 
should have better tolerance to occlusion, deformation and small shifts. We also want to 
illustrate that this comprehensive descriptor can substantially improve action recognition 
performance. Table 1 shows that 3D HoG representation results in an accuracy of 84.28% 
which is clearly better than the other interest point detectors. The performance gets 
another boost of 5% (to 89.15%) when we switch from 3D HoG to the combination of 
HoG and HoF. Note that in the HoG descriptor we only extract 2D HoG, which mainly 
represents shape. By adding grid aggregation, we improve the results another 6% 
(95.00%), which to our knowledge is the highest published result using a part-based 
method. The results support our notion that the descriptor is very important and provides 
a critical bridge from the video content to the feature space for machine learning. 

The last evaluation on the KTH dataset relates to global information. In section 3, we 
obtained pair-wise constraints to enrich local features with shape and time sequence 
information by using a bigram model. We added bigrams our bag-of –word features in 
two different ways: the MoSIFT detector with non-aggregated HoG & HOF and the 
MoSIFT detector with full MoSIFT descriptor (aggregated HoG & HOF). The size of the 
kernel is 5x5x60, which is 5 pixels in the spatial dimensions and 60 frames in the 
temporal dimension. The number of bigrams we used was 300, which was determined to 
by reasonable through cross-validation.  In fact, cross-validation shows that the first 300 
bigrams significantly improve recognition performance. Beyond that, performance 
initially remains stable and eventually declines slightly as the number of bigram increases 
further. Table 1 shows that the bigram model improves the weaker descriptor by a 
substantial amount from 89.15% to 93.33%. However, it provides only a small 
improvement over the MoSIFT descriptor (95% to 95.83%). The high accuracy of the 
MoSIFT detector and descriptor at 95% means that among the 24 actions a subject 
performs, only 1 action is misrecognized. For certain actions in KTH such as running v.s. 
jogging, we found that even humans have difficulties in distinguishing them. Figure 5 
shows the confusion table from our best result (MoSIFT with bigrams). 

 
4.2 Event recognition using the Gatwick dataset 
The 2008 TRECVID surveillance event detection dataset was obtained from London 

Gatwick International Airport. It consists of 50-hours (5 days x 2 hours/day x 5 cameras) 
of video in the development set and 49-hours in the evaluation set. There are about 190K 
frames per 2-hour video with an image resolution 720 x 576. This dataset contains highly 
crowded scenes, severely cluttered background, large variance in viewpoints, and very 
different performances of the same actions; all embedded in a huge amount of data. 
Together, these characteristics make action detection on this dataset a formidable 
challenge. To the best of our knowledge, human action detection on such a large, 
challenging task with these practical concerns has not been evaluated and reported prior 
to TRECVID 2008. In this evaluation, 10 events are evaluated: ObjectPut, PeopleMeet, 
PeopleSplitUp, Pointing, CellToEar, Embrace, PersonRuns, ElevatorNoEntry, 
TakePicture, and OpposingFlow. Standardized annotations of actions in the 
development set were provided by NIST.  

Although this is ultimately a detection task ("find any event X"), we can also evaluate 
recognition ("what is this event") performance using the annotations provided by NIST. 
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Action Chance IG +  
3D HoG MoSIFT MoSIFT 

Bigram 

CellToEar 0.07 0.22 0.21 0.21 
Embrace 0.08 0.25 0.28 0.29 
ObjectPut 0.18 0.33 0.43 0.45 

PeopleMeet 0.22 0.33 0.41 0.44 
PeopleSplitUp 0.14 0.42 0.55 0.57 

Pointing 0.26 0.38 0.41 0.41 
PersonRuns 0.05 0.22 0.36 0.40 

Average 0.14 0.31 0.38 0.40 
 

Table 3: Comparison of different methods using the Gatwick dataset. We compare results using 
average precision (AP) as a metric. Chance denotes a random baseline. IG+HoG signifies that interest 
points were detected as high intensity gradients and HoG was used to describe these interest points 
[18]. MoSIFT indicates MoSIFT point detection and feature description without bigrams. MoSIFT 
Bigram indicates MoSIFT point detection and feature description with bigrams. 

There were a total of 6439 events in the development set. Due to the size of the dataset, 
we detected and extracted MoSIFT descriptors only every five frames. The size of the 
video codebook was increased to 1000 after cross validation on the development set. 
Since the data were captured over 5 different days, we used 5-fold cross validation to 
evaluate our performance (see Table 3). There are not enough annotated examples for 
OpposingFlow, ElevatorNoEntry and TakePicture to run cross validation. Therefore, 
we do not report performance of these three tasks. We use average precision (AP) as the 
metric, which is typical for TRECVD high-level feature recognition. We first extracted 
interest points with an intensity gradient method and described feature points by 3D HoG. 
The intensity gradient (IG) method relaxes the severe constraints of a 3D Harris detector. 
Instead of computing the second moment matrix, IG computes the sum of all three 
gradients in spatial and temporal dimensions. This results in interest points along edges, 
which are moving. This method is simple but produces a good number of interest points. 
Prior experimental result showed that this approach to feature point extraction can 
achieve a result comparable to 3D Harris corners and temporal Gabor filter [17]. As a 
descriptor, 3D HoG is extracted to represent space-time cuboids. The main differences 
between IG+3D HoG and MoSIFT are the scale invariance and the more comprehensive 
descriptor in MoSIFT.  

Our method does not require any additional information such as manual "hot spot" 
masking, people detection, or people tracking. MoSIFT also does not impose limitations 
as to how many actions can happen at once or require detailed annotations that mark 
where an action takes place. Table 3 shows that MoSIFT yields promising results in 
recognizing human actions in real world surveillance videos with an average relative 
increase of 22.5% to an absolute accuracy of 38% compared to prior work [18]. MoSIFT 
improves recognition of all actions except for CellToEar, where motion of moving the 
hand with a cell phone to the ear is exceedingly difficult to spot, even for a person. 
Several actions with clearly visible motions show dramatic increases in absolute 
recognition accuracy such as putting an object down (ObjectPut to 43%), people meeting 
(PeopleMeet to 45%), people splitting up (PeopleSplitUp to 55%) and running 
(PersonRuns to 36%). Sample actions and MoSIFT detected points are shown in Figure 6. 
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Figure 6: Some examples of MoSIFT detection. Top row shows a ObjectPut action. The second row is a CellToEar 
action (by the person sitting in the bottom left corner), the 3rd row is a PersonRuns action and the bottom row is 

PeopleMeet. Green circles indicate MoSIFT interest points and purple arrows show the direction in which the interest 
points are moving.   

We further combined top 500 bigrams from tf-idf ranking with MoSIFT. The bigram 
model slightly improved MoSIFT algorithm with additional global information. 

5. Conclusion and future works 
The paper has presented a new method, MoSIFT, to detect interest points and describe 

local features for human action recognition. MoSIFT treats the spatial domain and the 
temporal domain separately. Interest point detection is based on spatial appearance and 
‘sufficient’ motion. The feature descriptor captures both local appearance and motion as 
histograms of gradients in space and histograms of optical flow. The MoSIFT descriptor 
is made more robust through grid aggregation of both histograms. Pair-wise correlation is 
encoded as a bigram model with MoSIFT to provide additional structure and sequence 
information. This combination of techniques improves the state of art results on KTH to 
an accuracy of 95.8%. We also demonstrated that MoSIFT shows good results in a large 
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and complex real world surveillance dataset.   
The most challenging next step for us is to extend our method to action detection 

beyond the already respectable action recognition (classification). Additionally, we 
would like to not only detect behaviors but also locate them in the frame, something for 
which the bag of words approach is not well suited. 
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