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Abstract

We consider the problem of admission control in resource sharing systems, such as web
servers and transaction processing systems, when the job size distribution has high vari-
ability, with the aim of minimizing the mean response time. It is well known that in
such resource sharing systems, as the number of tasks concurrently sharing the resource
is increased, the server throughput initially increases, due to more efficient utilization
of resources, but starts falling beyond a certain point, due to resource contention and
thrashing. Most admission control mechanisms solve this problem by imposing a fixed
upper bound on the number of concurrent transactions allowed into the system, called
the Multi-Programming-Limit (MPL), and making the arrivals which find the server full
queue up. Almost always, the MPL is chosen to be the point that maximizes server effi-
ciency.
In this paper we abstract such resource sharing systems as a Processor Sharing (PS) server
with state-dependent service rate and a First-Come-First-Served (FCFS) queue, and we
analyze the performance of this model from a queueing theoretic perspective. We start by
showing that, counter to the common wisdom, the peak efficiency point is not always op-
timal for minimizing the mean response time. Instead, significant performance gains can
be obtained by running the system at less than the peak efficiency. We provide a simple
expression for the static MPL that achieves near-optimal mean response time for general
distributions.
Next we present two traffic-oblivious dynamic admission control policies that adjust the
MPL based on the instantaneous queue length while also taking into account the vari-
ability of the job size distribution. The structure of our admission control policies is a
mixture of fluid control when the number of jobs in the system is high, with a stochastic
component when the system is near-empty. We show via simulations that our dynamic
policies are much more robust to unknown traffic intensities and burstiness in the arrival
process than imposing a static MPL.
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Figure 1: A prototypical service rate curve. The peak efficiency point for the curve shown is K∗ = 5.

1 Introduction

The notion of time-sharing has been around since the earliest days of operating systems,
as described in the first paper on Unix [22]. Time-sharing has several benefits. First, given
that jobs often need different resources (CPU, I/O) at different times, time-sharing allows
for increased throughput, typically allowing two jobs to complete in the same time as one,
since they aren’t likely to need the same resources at the same time. Another major benefit
of time-sharing is that it allows small jobs to get out quickly; the small jobs are not stuck
queueing behind big jobs as they would be in a first-come-first-served (FCFS) system, and
therefore they don’t have to suffer the delays of waiting for big jobs to complete.

However, as many researchers have observed, time-sharing is most effective when there
is a fixed Multi-Programming-Limit (MPL) imposed, so that not too many jobs can time-
share at once. Allowing too many jobs to time-share can lead to thrashing (due to the
context-switching overhead), and reduced overall performance. This point has been ob-
served time and time again starting with operating systems papers in the 1970’s [8] and
1980’s [5, 2], and continuing to more recent Web server design papers [9, 12], and data-
base implementation papers [23, 11]. Specifically, a system has a service rate curve which
shows that the “speed” of the system increases when the number of jobs in the system
increases from 1 to 2, and increases again as the number increases from 2 to 3, but the
system speed starts to drop as the number of jobs in the system increases beyond some
point. Figure 1 shows a typical service rate curve (see, e.g. [25, Figure 2]).

Model

To model a time-sharing system, we start with a G/G/1/PS queue where PS denotes
“processor sharing,” meaning that if there are n jobs in the system, they each receive
1
n

th of the system’s processing capacity. We will assume that the job sizes (or service
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requirements) are independently and identically drawn from a general distribution, and
we will use X to denote such a generic random variable. We will use C2 to denote the
squared coefficient of variation (SCV) of X :

C2 =
var(X)

E[X]2

and throughout assume that E[X] = 1 without loss of generality. In order to capture
the fact that the speed of the system depends on the number of jobs at the server, we
assume that our G/G/1/PS server has state-dependent service rates µ(n). That is, when
the number of jobs at the server is n, the speed of the server is µ(n), where µ(n) is chosen
to match the system’s service rate curve (Figure 1). As an example, a job of size x seconds
which is sharing the server with n jobs (including itself) for its entire duration would
require x

µ(n)
· n time to complete. We assume that the µ(n) curve is unimodal, that is,

initially it is non-decreasing and then after some point the curve switches to being non-
increasing. We define K ′ to be the smallest MPL which achieves the maximum speed,
and K∗ to be the largest MPL which achieves the maximum speed. For the µ(n) curve in
Figure 1, K ′ = 4 and K∗ = 5.

To complete our model, we now add an MPL parameter which limits the number of jobs
that are allowed to concurrently share the server to some number MPL=K, and forces all
remaining jobs to wait in a First-Come-First-Served (FCFS) buffer. We assume that the job
sizes of the jobs in the system are not known, and size-based prioritization is not possible.
We denote our model by the notation G/G/PS-MPL. Figure 2 depicts a G/G/PS-MPL
system with MPL=4. When we additionally assume the arrival process to be Poisson,
we will denote the system by M/G/PS-MPL. Throughout, we assume load-dependent
service rates µ(n). So, for example, if there are n = 10 jobs in the G/G/PS-4 system, the
server speed will be µ(4), since only 4 jobs time-share the server, while if there are n¡4
jobs in the system, the speed will be µ(n). Thus the response time for a job of size x will
be its queueing time plus its service time, where the service time will typically be x

µ(4)
· 4,

assuming that there are at least 4 jobs in the system during the job’s time in system.

The interesting question for the G/G/PS-MPL model is, of course:

What is the optimal MPL, so as to minimize mean response time?

Obviously, the service rate curve plays a large role in the answer. In fact, computer sys-
tems papers would have us believe that the service rate curve provides the entire answer
to this question: Simply choose that MPL that maximizes efficiency, e.g., [1, 5, 9]. For the
curve shown in Figure 1, this would mean choosing the MPL to be K ′ = 4 or K∗ = 5.
In this paper, we will show that this obvious answer can be far from correct, when job
size variability is high. We will also ask and answer the even harder question of how
to dynamically vary the MPL when the arrival rate is not known and as load conditions
change.

When the job size distribution is Exponential, the answer is straightforward: We always
want to operate at the peak efficiency point, regardless of the arrival process. The question
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Figure 2: A G/G/PS-MPL queue with MPL = 4. Only 4 jobs can simultaneously share the server. The
rest must wait outside in FCFS order.

of choosing an optimal MPL becomes interesting when the job size distribution exhibits
high variability, since with high variability job size distributions, it is known that PS has
a much better performance than FCFS because time sharing prevents small jobs from
getting blocked behind big jobs. However, by letting too many jobs into the server, the
system efficiency drops.

Prior Work

Unfortunately, the question of choosing an optimal MPL for high variability job size dis-
tributions is difficult to answer since there is no known analysis even under a Poisson
arrival process with a fixed arrival rate. This is not surprising because the M/G/PS-MPL
model is a generalization of the classical M/G/K multiserver system where there are K
identical servers, each of which can process at most one job at a time, and a FCFS buffer
where jobs queue up when all the K servers are busy. The M/G/K multiserver system can
be modeled by an M/G/PS-MPL system with MPL = K, and µ(n) = µ · n, where µ is the
speed of the individual servers. The performance analysis of the M/G/K system is still
largely an open problem. While the performance analysis of the Processor-Sharing queue
has been well understood for years, and research on the M/G/1/PS queue has been abun-
dant [13, 14, 7, 15, 26, 28, 6], very little is known about the M/G/PS-MPL queue. Most
analyses of the M/G/PS-MPL queue do not allow for load-dependent service rates. For
example, Itzhak and Halfin [3] derive a 2-moment approximation for the mean response
time for the M/G/PS-MPL queue where the service rate is fixed, while Zhang and Zwart
[27] derive a heavy-traffic diffusion approximation for M/G/PS-MPL (which they refer
to as the Limited Processor Sharing queue) with a fixed service rate. There is one analysis
of the M/G/PS-MPL that does involve state-dependent service rates, see Rege & Sen-
gupta [20]. However [20] requires that job sizes are exponentially-distributed while we
are focusing on high-variability job size distributions which are more representative of
computer workloads. While Fredericks [10] warns that the exponential job size distribu-
tion is not a good indicator of performance of the M/G/PS-MPL with high variability, he
does not derive an approximation that allows for higher variability. Finally none of the
above theoretical papers have tried to answer the question of how to set the MPL so as to
minimize the mean response time.

While there is a large body of work on adaptive load control and admission control in
resource-sharing systems, all of the existing work either ignores the crucial point of load-
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dependent service rates at the server, or the effect of job size variability. Elnikety et al.
[9] propose monitoring the load of the server and admitting tasks as long as the resulting
load does not exceed the peak efficiency point. Blake [5] also proposes operating at the
peak efficiency point, but uses the fraction of jobs waiting in the virtual memory queue
as an indicator of thrashing to control the MPL. Kamra et al. [12] model the server as an
ideal M/G/1/PS system thereby ignoring the state-dependence of the service rate. They
monitor the response time of the departing jobs, and adjust the dropping probability of
the arriving requests to achieve target response time for the admitted tasks. Our solu-
tions differ from [12] in that we do not drop requests. Heiss and Wagner [11] propose a
feedback mechanism to monitor the effect that changing the MPL has on the performance
metric of interest. However, as the authors observe, this requires monitoring at least hun-
dreds of departures before a control decision can be taken. Another drawback of the
solution proposed in [11] is that the authors assume the system reaches stationarity after
the control decision has been taken. This assumption is hardly justified, and can cause in-
correct decisions due to a delay between the time the control action is taken, and the time
its effect is observed. Schroeder et al. [23] consider the problem of setting a static MPL in
the presence of variable job sizes, but the emphasis of [23] is to find a sufficiently small
MPL so that class-based task prioritization can be done in the FCFS queue. Schroeder
et al. also develop a feedback based controller based on measuring the throughput and
response times, but ignore the state-dependence of service rate. Van der Weij, Bhulai and
van der Mei [24] also look at admission control in a PS queue under the assumption that
the job size distribution is of phase type and the phases of all the jobs in the system are
known. The authors assume a constant µ(n), and characterize the optimal admission con-
trol policy. In contrast, we assume that no information about the job sizes is available and
hence size-based prioritization is not possible.

Contributions of this paper

To the best of our knowledge, we are the first to consider the question of controlling the
multi-programming limit in a resource-sharing system by taking into account both the
service rate curve, and the high variability of the job size distribution. Our paper has two
principal contributions:

1. Optimal traffic-aware static policies
We derive the first approximation for mean response time for the M/G/PS-MPL queue
with state-dependent service rates, and extend this approximation for GI/G/PS-MPL sys-
tems. The approximation enables us to choose the MPL that minimizes mean response
time. Via extensive simulation experiments, we demonstrate that the optimal MPL setting
can be much higher than the peak efficiency point, under job size variability characteristic
of computer workloads. In fact, we show examples where the optimal MPL operates the
system at 85% of the peak efficiency, while dropping the mean response time by more than
65%. Our results are verified across a variety of job size distributions including Weibull,
Pareto and Hyperexponential distributions. We refer to the static policy which uses the
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optimal static MPL as the OPT-STATIC policy.

2. Near-optimal traffic-oblivious dynamic policies
The above results assume jobs arrive according to a Poisson process with a known ar-
rival rate and propose the best static MPL. However, we are interested in scenarios where
the mean arrival rate may not be known, or the arrival process may not even be Pois-
son, exhibiting burstiness or temporal correlations. Our goal is to design light-weight
MPL control policies that adapt to the traffic characteristics. By light-weight policies,
we mean policies which take decisions based only on the instantaneous number of jobs
in the buffer, Q(t), and the instantaneous number of jobs at the server, K(t).

We first consider the setting where the arrival process is known to be Poisson, but with
an unknown mean arrival rate. We find that, unsurprisingly, static MPLs are very poor
in handling uncertainty in the mean arrival rate. We then propose two light-weight MPL
control policies, LIGHT-APPROX and POISSON-APPROX that robustly handle uncertainty
in the mean arrival rate. The key idea in our approach is that by considering a special
class of job size distributions, the 2-phase degenerate hyperexponential distribution, we
are able to incorporate the effect of job size variability in our optimization problem, while
(Q(t), K(t)) remains a Markov process. Thus, the control policies we obtain are a function
only of (Q(t), K(t)). Via simulations we show that both LIGHT-APPROX and POISSON-
APPROX are robust at adapting to unknown mean arrival rate, resulting in near-optimal
mean response time (under 19%) for a wide range of arrival rates when compared to the
optimal static MPLs for each arrival rate.

Next, we consider the setting where not only is the mean arrival rate not known, but the
arrival process is also bursty. We demonstrate that both LIGHT-APPROX and POISSON-
APPROX are simultaneously robust to unknown mean arrival rate and burstiness of the
arrival process, resulting in less than 25% higher mean response time than the mean re-
sponse time for the optimal traffic-aware static MPL in the worst case. Surprisingly, we
find that if the mean arrival rate is known, a static MPL optimized for a Poisson arrival
process with the given mean arrival rate is also near-optimal when the arrival process is
bursty with that mean arrival rate (that is, the interarrival times are i.i.d. but not Expo-
nentially distributed). However, burstiness can greatly worsen the performance of static
policies when the mean arrival rate is unknown.

Outline

In Section 2, we solve the problem of choosing the optimal static MPL for a general job
size distribution under the assumption that the arrival process is Poisson with a known
mean arrival rate. In Section 3, we begin by demonstrating that the approach of choosing
a single static MPL is fundamentally limited in its ability to handle variability in traffic
arrival patterns. In Sections 3.2 and 3.3, we construct our dynamic MPL control policies
LIGHT-APPROX and POISSON-APPROX, respectively. In Section 3.4, we evaluate these
dynamic policies with respect to (i) robustness to unknown arrival rate, and (ii) robustness
to burstiness of the arrival process. Finally we compare our traffic-oblivious dynamic
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policies to the optimal traffic-aware static MPL policy.

2 Choosing the best static MPL

Our first goal in this paper is to address the question of how to optimally set a multi-
programming limit in a resource-sharing system so as to minimize the mean response time
(equivalently, minimize the mean number of jobs in the system). We assume that the ar-
rival process is Poisson with a known mean arrival rate, and that the job size distribution
is known. In Section 2.1, we present some stochastic monotonicity results for the perfor-
mance of PS-MPL systems under fairly general job size distributions which motivate the
need to appropriately choose the MPL based on the job size distribution. In Section 2.2,
we provide a simple approximation for the mean number of jobs in an M/G/PS-MPL
system with state-dependent service rate involving only the first two moments of the job
size distribution, and demonstrate a job size distribution for which the approximation is,
in fact, exact. In Section 2.3, we present the OPT-STATIC policy, which uses our approxi-
mation to choose a static MPL based on the mean arrival rate and the first two moments
of the job size distribution. Even though our approximation involves only the first two
moments of the job size distribution, we show via experiments that it leads to optimal or
near-optimal MPL selection for a range of distributions used to model computer work-
loads.

2.1 Stochastic monotonicity results

Let F be a distribution function for a non-negative random variable X , and f be the
corresponding density function.

Definition 2.1 Distribution F is said to belong to the class DFR (IFR) if the function h(x) =
f(x)

1−F (x)
is decreasing (increasing).

Definition 2.2 Distribution F is said to belong to the class DMRL (IMRL) if the function
R(a) = E[X − a|X ≥ a] is decreasing (increasing).

The classes IMRL (Increasing Mean Residual Life, also referred to as NWUE for New
Worse than Used in Expectation) and DFR (Decreasing Failure Rate) both capture the
notion that young jobs (those who have received less service) are more likely to finish
earlier than old jobs. The condition DFR is equivalent to saying that the residual life
of young jobs is stochastically smaller than the residual life of old jobs, while IMRL is
equivalent to saying that the mean residual life of young jobs is smaller than the mean
residual life of old jobs.

The following is a corollary of [18, Theorem 1].

Proposition 2.3 In a G/G/PS-MPL system with a DFR job size distribution, the number of jobs
in the system at any time is a stochastically decreasing function of the MPL K, for K ≤ K∗. For
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an IFR distribution, the number of jobs in the system is a stochastically increasing function of the
MPL K, for K ≥ K ′.

A similar proposition can be proven for the mean number of jobs (equivalently mean
response time) by relaxing the assumptions on the arrival process and the job size distri-
bution.

Proposition 2.4 In an M/G/PS-MPL system with an IMRL job size distribution, the mean
number of jobs in the system is a decreasing function of the MPL K, for K ≤ K∗. For a DMRL
distribution, the mean number of jobs in the system is an increasing function of the MPL K, for
K ≥ K ′.

Proof: From [21, Theorem 3.14], for IMRL distributions, it suffices to prove that for
all x, the quantity V̄x, which denotes the mean workload in the system due to jobs with
attained service less than x, is decreasing in the MPL K for K ≤ K∗. From the proof of [18,
Theorem 1], this is easily seen to hold. The proof for DMRL distributions is analogous.

Intuitively, when the job size distribution is DFR or IMRL, we prefer to serve young jobs
as they are more likely to finish earlier. By choosing an MPL smaller than K∗, we do not
gain serving capacity, since K∗ achieves the maximum speed, and simultaneously lim-
its the ability of new jobs (which are likely to be small) to enter service. Similarly, for
IFR or DMRL job size distributions, we prefer to serve old jobs as they are more likely
to finish earlier. By choosing an MPL larger than K ′, we do not gain aggregate serving
capacity, and we simultaneously reduce the capacity available to old jobs, as young jobs
are allowed into service. Job size distributions belonging to class DFR and IMRL corre-
spond to distributions which are more variable than the Exponential distribution, and the
above results show that there is no benefit in running at an MPL smaller than K∗ in this
case. However, there might be benefit in operating at an MPL higher than K∗, increasing
the chance for small jobs to enter service and finish quickly even while losing aggregate
service capacity in the process, as we show next.

2.2 2-moment approximation for M/G/PS-MPL

As mentioned earlier, there are no known analytical expressions or approximations for
the mean number of jobs in an M/G/PS-MPL system with state-dependent service rate.
We now propose a simple approximation for the mean number of jobs in an M/G/PS-
MPL system involving only the first two moments of the job size distribution.

Proposition 2.5 Let E[N ] denote the mean number of jobs in an M/G/PS-MPL system with
arrival rate λ, state-dependent service rate µ(n) when there are n jobs at the PS server, with
MPL=K, and a general job size distribution with mean 1 and SCV C2. Then,

E[N ] ≈ E
[
NS

Exp(K)
]
+

C2 + 1

2
E
[
NQ

Exp(K)
]

(1)

where E
[
NQ

Exp(K)
]

and E
[
NS

Exp(K)
]
, respectively, denote the mean number of jobs in the FCFS

Queue and at the PS Server in an M/M/PS-MPL with the same state-dependent service rates as
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the original M/G/PS-MPL system, with MPL=K and Exponential job size distribution with mean
1. The expressions for E

[
NQ

Exp(K)
]

and E
[
NS

Exp(K)
]

are given by:

E
[
NQ

Exp(K)
]

=
φK+1

1 +
∑∞

i=1 φi

(
1

1− λ
µ(K)

)2

E
[
NS

Exp(K)
]

=

∑K
i=1 i · φi + K ·

∑∞
i=K+1 φi

1 +
∑∞

i=1 φi

where φi’s are the ratio of the stationary probabilities and the idle probability for an M/M/PS-MPL,
and are given by:

φi =

Πi
j=1

λ
µ(j)

1 ≤ i ≤ K,

φK ·
(

λ
µ(K)

)i−K

i > K.

Proposition 2.5 can be seen as a generalization of the Lee and Longton [16] approximation
for the mean number of jobs in an M/G/K system, and agrees with the approximation
given by [3] when the service rate is independent of the state. In Proposition 2.7, we show
that approximation (1) is in fact exact for a degenerate hyperexponential distribution, H∗,
with mean 1 and squared of coefficient of variation C2.

Definition 2.6 A degenerate hyperexponential distribution with mean 1 and SCV C2 is de-
fined by:

H∗(C2) ∼

{
0 with probability 1− q = C2−1

C2+1

Exp
(

2
C2+1

)
with probability q = 2

C2+1

where Exp(ν) denotes an Exponential random variable with mean 1/ν.

Proposition 2.7 The mean number of jobs in an M/H∗(C2)/PS-MPL system with arrival rate
λ, state-dependent service rate µ(n) when there are n jobs at the PS server, and MPL=K is given
by:

E
[
NH∗(C2)(K)

]
= E

[
NS

Exp(K)
]
+

C2 + 1

2
E
[
NQ

Exp(K)
]

where E
[
NQ

Exp(K)
]

and E
[
NS

Exp(K)
]

are as defined in Proposition 2.5.

Proof: We first observe that the H∗(C2) distribution consists of two classes of jobs, those
of size 0 and those belonging to the Exponential branch. The response time and hence
the number of jobs belonging to the Exponential class in the M/H∗(C2)/PS-MPL sys-
tem is not affected by the presence of zero-sized jobs. Therefore, the contribution to the
mean number of jobs in the system consisting of jobs in the Exponential class is precisely
E
[
NS

Exp

]
+ E

[
NQ

Exp

]
. The zero-sized jobs only contribute to the mean number in queue.
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However, since the scheduling policy is size-independent, the waiting time distribution
of a zero-sized job is the same as the waiting time distribution of a job belonging to the
Exponential class, but the arrival rate of zero-sized jobs is C2−1

2
times the arrival rate of the

Exponential class. Therefore, the contribution of the zero-sized jobs to the mean number
in system is C2−1

2
E
[
NQ

Exp

]
, proving the proposition.

In Section 2.4 we extend Proposition 2.5 to obtain an approximation for a GI/G/PS-MPL
system involving the first two moments of the interarrival time and job size distributions.

2.3 The OPT-STATIC policy

We now introduce the OPT-STATIC policy to choose a near-optimal static MPL. The OPT-
STATIC policy simply sets MPL = κ where κ denotes the MPL that minimizes the right
hand side of (1):

κ = arg min
K

{
E
[
NS

Exp(K)
]
+

C2 + 1

2
E
[
NQ

Exp(K)
]}

(2)

We now show that the OPT-STATIC policy is a good heuristic for minimizing the mean
response time in an M/G/PS-MPL system with known mean arrival rate. In Figure 3, we
present simulation results for the following three job size distributions all with mean 1 and
C2=19:

• Weibull distribution with scale parameter 1
6

and shape parameter 1
3
.

• Bounded Pareto distribution with shape parameter α = 1.1 and support [0.182, 178.759].

• A two-phase hyperexponential (H2) distribution whose parameters are chosen so
that, r, the fraction of the total load constituted by the phase with the smaller mean,
is 0.25.

The results in Figure 3 assume that the state-dependent service rates of the PS server are
given by the µ(n) curve shown in Figure 1. We will use the service rate curve shown in
Figure 1 in all the numerical and simulation evaluations in this paper. In Appendix ??,
we present detailed simulation results for more scenarios.

The main message of Figure 3 is that the optimal MPL can be much larger than the peak
efficiency MPL of K∗ = 5. For example, when λ = 0.8, the optimal static MPL for the
bounded Pareto distribution is 11 with a resulting mean number of jobs around 3.4, while
K∗ = 5 results in 35% larger mean number of jobs at approximately 4.6. Second, as can
be seen, even though approximation (1) is not extremely accurate at predicting the mean
number of jobs in the system for general distributions (in fact, it is possible to show that
no approximation based on only the first two moments can be), it is robust in predicting
the optimal or near-optimal MPL. Our approximation recommends MPL = 14 and the
mean number of jobs in the system using our recommended MPL is around 3.45.
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(b) λ = 0.8

4 6 8 10 12 14
7

8

9

10

11

12

13

14

MPL

E
[N

]

 

 

Pareto 1.1
Weibull
H

2
 (r=0.25)

Our approx.

(c) λ = 0.9

Figure 3: The mean number of jobs in the system vs. MPL for the following distributions, all with mean
1 and SCV 19: (i) Bounded Pareto distribution with shape parameter 1.1 (ii) Weibull distribution (iii) Two-
phase hyperexponential distribution with 25% of load constituted by the branch with the smaller mean.
The arrival process considered is Poisson with the indicated mean arrival rate, λ. For reference, we have
also shown our 2-moment approximation for the mean number of jobs in the system. The optimal MPL for
each curve is shown with a circle.

Using approximation (1), it is easy to see why the mean number of jobs in the system
is minimized at a larger MPL than the peak efficiency MPL of K∗ when job sizes have
high variability. To see this, start by considering the case of low variability: C2 = 1. For
this case, approximation (1) suggests that the optimal MPL is in fact K∗. As we increase
the MPL beyond K∗, if the traffic intensity is not very high, E

[
NQ

Exp

]
falls while E

[
NS

Exp

]
increases. For a high enough C2, the fall in C2+1

2
E
[
NQ

Exp

]
, and hence in the mean waiting

time in the FCFS buffer, will be larger than the rise in E
[
NS

Exp

]
, which is the component

representing the mean time to process a job at the PS server. Therefore, setting an MPL
higher than K∗, and allowing small jobs to overtake the big jobs, leads to an overall re-
duction in the mean response time.

We would like to point out that the question of choosing the optimal multi-programming
limit is closely related to the question of choosing the optimal number of servers in a
multiserver system (that is, one fast vs. K slow servers), such as the M/G/K, but with a
fundamentally different trade-off. In the presence of highly variable job sizes, one wants
to choose a large number of servers in a multiserver system to prevent small jobs from
getting blocked behind large jobs. Similarly, in the PS-MPL system, we want to choose
a high MPL to allow small jobs to overtake large jobs. In both cases, we are limited in
our ability to increase the parallelism due to capacity wastage. While in a multiserver
system, capacity is wasted when there are less than K jobs in the system, in the PS-MPL
system, capacity is wasted when the multi-programming limit K is set larger than the
peak efficiency point K∗, and there are more than K∗ jobs in the system. Therefore, in
a multiserver system, high parallelism (large number of servers) is preferred when the
traffic intensity is high, while in a PS-MPL system a high degree of parallelism (large
MPL) is preferred when the traffic intensity is low.
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2.4 Approximation for GI/G/PS-MPL

Proposition 2.8 Let E[N ] denote the mean number of jobs in a GI/G/PS-MPL system with
state-dependent service rate µ(n) when there are n jobs at the PS server, MPL=K, a general job
size distribution with mean 1 and SCV C2

s ≥ 1, and a general interarrival time distribution with
mean 1

λ
and SCV C2

a ≥ 1. Then,

E[N ] ≈ E
[
N ′S

Exp

]
+

C2
s + 1

2
E
[
N ′Q

Exp

]
where E

[
N ′S

Exp

]
and E

[
N ′Q

Exp

]
, denote, respectively, the mean number of jobs at the PS Server and

in the FCFS Queue in a BPP/M/PS-MPL system with the same state-dependent service rates
as the original GI/G/PS-MPL system, MPL=K, Exponential job size distribution with mean 1,
mean arrival rate λ and i.i.d. geometric batch sizes with mean C2

s +C2
a

C2
s +1

. The expressions for E
[
N ′S

Exp

]
and E

[
N ′Q

Exp

]
are given by

E
[
N ′S

Exp

]
=

∑K
i=1 i · φi + K ·

∑∞
i=K+1 φi

1 +
∑∞

i=1 φi

(3)

E
[
N ′Q

Exp

]
=

φK+1

1 +
∑∞

i=1 φi

(
C2

s + C2
a

(C2
s + 1)(1− γ)

)2

(4)

where

φi =

Πi
j=1

λ·(C2
s +1)+µ(j−1)·(C2

a−1)
(C2

s +C2
a)µ(j)

1 ≤ i ≤ K

φK ·
(

γ·(C2
s +1)+C2

a−1
C2

s +C2
a

)i−K

i > K

and γ = λ
µ(K)

.

In the special case of state-independent service rate, i.e. µ(n) = µ for all n, our approxi-
mation for the mean number in system simplifies to:

E[N ] ≈ (1− pb)
C2

s + C2
a

C2
s + 1

· ρ

1− ρ
+ pb

C2
s + C2

a

2
· ρ

1− ρ

where ρ = λ
µ

is the fraction of time the server is busy, and pb =
(
1− (1− ρ) C2

s +1
C2

s +C2
a

)K

denotes the probability (approximation thereof) that a job sees at least K jobs in the sys-
tem on arrival. The above approximation is similar to the heavy-traffic approximation for
GI/GI/PS-MPL systems with state-independent service rates proposed by Zhang and

Zwart [27], except that pb ≈ ρ
C2

s+1

C2
s+C2

a
K

in [27]. Indeed, in heavy-traffic (ρ → 1, K → ∞ as
ρK → θ for some constant θ), the two approximations converge.

Similar to Proposition 2.7, we can show the existence of a GI arrival process with an inter-
arrival time SCV of C2

a , and a job size distribution with SCV C2
s (the H∗(C2

s ) distribution)
for which the approximation proposed in Proposition 2.8 is exact.
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Proposition 2.9 The mean number of jobs in an BPP/H∗(C2
s )/PS-MPL system with mean ar-

rival rate λ, i.i.d. batch sizes distributed according to a Geometric distribution with mean C2
a+1
2

,
state-dependent service rate µ(n) when there are n jobs at the PS server, and MPL=K is given by:

E
[
NC2

s ,C2
a
(K)

]
= E

[
N ′S

Exp(K)
]
+

C2
s + 1

2
E
[
N ′Q

Exp(K)
]

where E
[
N ′Q

Exp(K)
]

and E
[
N ′S

Exp(K)
]

are as defined in Proposition 2.8.

3 Self-Adaptive MPL control policies

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 2.960 2.471 2.258 2.149 2.092 2.058 2.040 2.029 2.023 2.020 2.018 2.016 ± 0.007
λ = 0.75 4.849 3.889 3.442 3.177 3.000 2.896 2.843 2.797 2.775 2.764 2.755 2.764 ± 0.020
λ = 0.85 8.493 6.797 6.025 5.542 5.226 4.984 4.903 4.850 4.929 5.019 5.217 5.589 ± 0.294
λ = 0.95 15.961 13.197 12.521 12.162 12.170 12.633 13.497 15.039 18.059 23.132 32.881 60.799 ± 2.483
λ = 1.05 33.929 29.517 31.082 34.989 40.705 52.554 72.724 126.900 ± 4.273
λ = 1.15 92.842 87.189 114.997 183.613 ± 5.606

Table 1: Numerical results for mean number of jobs in system for different values of MPL and arrival
rates. The arrival process was Poisson, and the job size distribution was Weibull with mean 1, SCV 19. The
optimal value for each setting of the mean arrival rate has been boldened.

In the previous section, we considered the question of choosing the optimal static MPL
under the assumption that the arrival process is Poisson, and that the mean arrival rate,
λ, was known accurately. We begin this section by showing that the methodology of
choosing a static MPL based on assuming a mean intensity for the Poisson arrival process
is very fragile. In Table 1 we consider a Weibull job size distribution with mean 1 and
C2 = 19, and show the mean number of jobs in the system for various settings of MPL
and the mean arrival rate λ. We assume the service rate curve shown in Figure 1 with
K∗ = 5. The optimal MPL in Table 1 varies from 15, when λ = 0.65, to 5, when λ = 1.15.
In fact, choosing the optimal static MPL assuming a λ ≤ 0.85 results in an unstable system
when true λ = 1.15.

There can be two ways around this problem: The first approach is to robustly choose a
single static MPL that works well for all λ. This necessarily implies operating the system
at peak efficiency K∗, which we have already seen can be far from the optimal. The
second approach is to learn the parameters of the arrival process and then choose the
optimal static MPL for that particular arrival process. However, this approach will fail to
adapt to variations in traffic on small time scales.

In this section, we are motivated by the question:

Are there light-weight, traffic-oblivious MPL control policies which perform as well as
the traffic-aware optimal static MPL policies?

12



By a traffic-oblivious control policy, we mean a policy that does not depend on knowing
the arrival rate or the higher order characteristics of the arrival process.

In this section, we develop two dynamic MPL control policies - LIGHT-APPROX and
POISSON-APPROX. Section 3.1 highlights the key ideas in our approach. Section 3.2
and Section 3.3, respectively, present the numerical algorithms involved in the construc-
tion of our traffic-oblivious dynamic MPL control policies LIGHT-APPROX and POISSON-
APPROX. In Section 3.4 we evaluate our dynamic MPL control policies via simulations
and demonstrate that our proposed MPL control policies exhibit robustness to both the
traffic intensity and the burstiness of the arrival process.

3.1 Key Steps in Our Approach

Recall that, given a job size distribution, our goal is to obtain MPL control policies which
are (i) light-weight: adjust the MPL based only on the instantaneous queue length, Q(t),
and the instantaneous MPL, K(t), and (ii) traffic-oblivious: robust to variations in the
arrival process.

To achieve our first goal, we consider a special class of job size distributions, the degener-
ate hyperexponential distribution (H∗), which is a mixture of an Exponential distribution,
and a point mass at 0. Since the jobs of size 0 do not spend any time at the server, and
due to the memoryless property of the Exponential distribution, (Q(t), K(t)) is a Markov
process. This ensures that we can obtain a light-weight dynamic MPL control policy, since
any optimal MPL control policy for the H∗ job size distribution will only take decisions
based on (Q(t), K(t)).

The next step in our approach is solving a stochastic dynamic programming problem
to construct families of candidate dynamic MPL control policies. The LIGHT-APPROX
and POISSON-APPROX policies differ in the family of candidate policies. Under LIGHT-
APPROX, the family of candidate policies is a set, {πp}, where a particular policy πp is
constructed by solving an optimal MPL control problem for an H∗ job size distribution
with parameter p (Eqn. (7)). Thus, while there is some unique H∗(C2) job size distribu-
tion that matches the first two moments of the true job size distribution (Definition 2.6),
the family is constructed by looking at a range of H∗ distributions. To solve the optimal
control problem, we assume that we start in some initial state (Q0, K0), and find the pol-
icy that minimizes the sum of response time of jobs in the system given that there are no
further arrivals. In the case of POISSON-APPROX, the family of candidate policies is the
set, {πλp}, where a particular policy πλp is obtained by solving an optimal control prob-
lem for a Poisson arrival process with intensity λp and the H∗(C2) job size distribution to
minimize the time-average mean number of jobs in the system.

The final step in our approach is choosing one member from the family of candidate dy-
namic policies, so that the chosen policy is robust to the arrival process. To achieve this
goal, we evaluate the candidate policies in the family for a Poisson arrival process with
rate λ ∈ [λ, λ] and H∗(C2) job size distribution. Let E[N∗(λ)] denote the mean number of
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jobs in the system for Poisson arrival process with intensity λ, and H∗(C2) job size distri-
bution, under the OPT-STATIC policy. The quantity E[N∗(λ)] is given by Proposition 2.7.
Let E[Nπ(λ)] denote the mean number of jobs in the system for the H∗(C2) job size distri-
bution and Poisson arrival process with intensity λ under a dynamic MPL control policy
π. We define the worst-case relative error for a policy π as:

ε(π) = max
λ∈[λ,λ]

E[Nπ(λ)]− E[N∗(λ)]

E[N∗(λ)]
(5)

Given a family of candidate policies {πa} with parameter a taking values in some set A,
we choose the policy that minimizes the worst case relative error:

a∗ = arg min
a∈A

ε(πa) (6)

Thus, in our case, πp∗ denotes the LIGHT-APPROX policy, and πλ∗p denotes the POISSON-
APPROX policy.

3.2 The LIGHT-APPROX policy

As a first step towards deriving the LIGHT-APPROX policy, we begin in Section 3.2.1 by
formulating and solving a light-traffic optimal MPL control problem. We find that the
solution to this problem exhibits both a fluid component, to guarantee stability, and a sto-
chastic component, to handle variability in job sizes. In Section 3.2.2, we use the solution
of the light-traffic optimal control problem to construct a family, {πp}, of simple, light-
weight MPL control policies, and in Section 3.2.3 we sketch the use of Matrix-Geometric
methods to evaluate this family of candidate policies to enable selection of the appropri-
ate policy, LIGHT-APPROX.

3.2.1 A light-traffic optimal control problem

In this section we solve an optimal light-traffic MPL control problem parameterized by p,
by considering the following degenerate hyperexponential job size distribution :

H∗(p) ∼

{
0 with probability p

Exp (1) with probability 1− p
(7)

We assume that we start our PS-MPL system in some state (Q0, K0) at time t = 0, where a
departure has taken place at time t = 0−. The state variable Q0 denotes the queue length
at t = 0− and K0 is one more than the number of jobs at the PS server left behind by the
last departure. We assume that multiple zero-sized jobs admitted at the same time leave
together. Thus K0 does not necessarily denote the MPL at time t = 0−. However, by our
assumption of an H∗(p) job size distribution, each of the (K0 − 1) jobs at the server has
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remaining service requirement independent and identically distributed as Exp(1). Note
that while the zero-sized jobs do not spend any time at the server, they still experience
delays while waiting in the FCFS buffer. We assume that there are no more arrivals (hence
the light-traffic). We can now take one of the following actions at time t = 0:

1. Decrease MPL: We do not admit another job from the queue into the PS server,
decreasing the MPL to K0 − 1.

2. Keep MPL same: We admit only one job from the queue into the PS server to replace
the departing job, maintaining the MPL at K0.

3. Increase MPL by k: We admit k+1 jobs from the queue into the PS server, increasing
the MPL to K0 + k.

Our aim is to take the optimal action in each state so as to achieve the following goal:

Minimize the expected sum of response times of jobs present in the system at time t = 0, given
that there are no further arrivals.

If our goal was to minimize the time until the system empties, the optimal control would
be to operate at MPL of K∗. However our performance metric is the mean response time.
Note that we do not allow preempting an executing job to decrease the MPL. This is
important because in a transaction processing system, for instance, killing an executing
task involves unrolling the execution trace for the task and is significantly expensive. In
our framework, we can only alter the MPL when a job departs, and hence we assume that
there are no costs associated with changing the MPL.

The solution of the above optimal-control problem can be obtained in a straightforward
fashion via stochastic dynamic programming. To do so, we associate a cost function
c(Q,K) with each state (Q, K), which represents the optimal expected sum of response
times, given that we start in state (Q,K) at time t = 0, and an action function π(Q, K),
representing the optimal action in state (Q,K). The function π(Q,K) takes values in the
range {−1, 0, 1, 2, . . .} with −1 representing the action ‘decrease MPL’, 0 representing the
action ‘keep MPL same’ and k > 0 representing the action ‘increase MPL by k’.

The cost of the states with zero queue length is simply:

c(0, K) =
K−1∑
i=1

i

µ(i)
(8)

To see why the above is true, note that since the queue is empty and we do now allow
preemption of executing jobs, the cost of state (0, K) is the expected sum of response times
of the K−1 jobs executing at the server. The mean time until the departure of the first job
is given by 1

µ(K−1)
since the server is processing at rate µ(K − 1). The time until the first

departure gets added to the response time of all the jobs in the system, and contributes
K−1

µ(K−1)
to c(0, K), and so on for subsequent departures.
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We represent by c−1(Q,K) the cost of state (Q,K) given that we take action ‘decrease
MPL’ in state (Q,K). Similarly, ck(Q,K) (k ∈ {0, . . . , Q − 1}) denotes the cost of state
(Q,K) given that we take action ‘increase MPL by k’ in state (Q, K). Given c−1(Q,K) and
ck(Q,K), the optimal action π(Q, K) and the cost function c(Q, K) are:

π(Q,K) = arg min
δ

cδ(Q,K) δ ∈ {−1, . . . , Q− 1} (9)

c(Q,K) = cπ(Q,K)(Q,K) (10)

The function c−1(Q,K) is given by:

c−1(Q,K) =
Q + K − 1

µ(K − 1)
+ c(Q, K − 1) (11)

and ck(Q,K) is given by:

ck(Q,K) =

[
Q + K − 1

µ(K + k)
+ c(Q− k − 1, K + k)

]
· (1− p)k+1

+
k+1∑
i=1

c(Q− k − 1, K + k + 1− i) ·
(

k + 1
i

)
(1− p)k+1−ipi (12)

In deriving the last equation, we have made use of the assumption that if multiple zero-
sized jobs are admitted simultaneously, then they all leave together. This maintains the
invariant that the K in state descriptor (Q,K) is one larger than the number of jobs at the
server belonging to the Exponential class, and we do not have to keep track or estimate
the number of zero-sized jobs.

While in the problem formulation above, we have not imposed an upper bound on k, in
practice we restrict k ≤ ∆max to prevent sudden jumps in MPL. For all the simulation
results in this paper, we set ∆max = 1.

3.2.2 A family of traffic-oblivious MPL control policies

In Section 3.2.1 we formulated an optimal control problem parameterized by p, the frac-
tion of zero-sized jobs in the H∗(p) job size distribution. By varying the parameter p,
we obtain a family of MPL control policies. Let πp denote the action function for the
control problem with parameter p. Figure 4 shows the structure of πp for p = 0.3 and
p = 0.5 and the service rate curve shown in Figure 1. For example, if the current state is
(Q = 21, K = 10), under the p = 0.3 policy, the control is to decrease the MPL to 9 by not
admitting a new job, while under p = 0.5 policy, the optimal control is to increase the MPL
to 11 by admitting two jobs. The structure of the optimal solution has some interesting
features:

1. For a given p, there is some minimum queue length Q(p) such that the optimal
action for Q > Q(p) is to operate at the peak efficiency point. In Figure 4(a), Q(p) =
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Figure 4: The structure of the LIGHT-APPROX control policy for two values of the parameter p and ∆max =
1. A ‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At every other point, the optimal
control is to decrease MPL.

20 and the optimal control for Q > Q(p) is to attain the peak efficiency MPL of
K∗ = 5. We call this the fluid component of the control policy. This fluid component
provides robustness to the dynamic MPL policy against high arrival rates. Further,
as p increases, the threshold Q(p) increases.

2. As the queue length decreases, the stochastic component of the control takes over,
gradually increasing the MPL to a point with lower service rate than the most effi-
cient point. This stochastic component gives our MPL control policy the ability to
combat the job-size-variability when the traffic intensity is low.

The structure of the optimal control is quite intuitive. Whenever a decision to increase the
MPL has to be taken, there are two scenarios: (i) with probability p the admitted job is of
size zero in which case the decrease in server speed does not hurt any one, and (ii) with
probability 1 − p, the admitted job belongs to the Exponential class and in this case adds
to the waiting time of everyone in the queue. If we define the ‘threshold queue length’ to
be the point when we should increase the MPL and move to a less efficient service rate,
then we see that this threshold queue length is an increasing function of p.

Given any action function π, we can translate it into a dynamic MPL control policy via
the procedure in Figure 5.

The LIGHT-APPROX control policy for a distribution with SCV C2 is now chosen to be πp∗

such that:

p∗ = arg min
p

ε(πp) (13)

where ε(·) is given by (5). Experimentally, it suffices to carry out the optimization over a
small set of parameters p (at a coarse granularity).
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Algorithm MPL control(π)
Case: New arrival

• Let Q be the queue length and K be the MPL immediately after the arrival.

• Let π(Q,K + 1) = k

– if k ≥ 0: admit k + 1 jobs from the head of the FCFS buffer into the server
and increase MPL to K + k + 1

– if k < 0: do nothing

Case: Departure

• Let Q be the queue length and K be the MPL immediately before the departure.

• Let π(Q,K) = k

– if k ≥ 0: admit k + 1 jobs from the head of the FCFS buffer into the server
and set MPL to K + k

– if k < 0: reduce MPL to K − 1 by not admitting any job from the FCFS
buffer

Figure 5: The dynamic MPL control policy obtained from the action function π.

3.2.3 Evaluation of dynamic MPL control policies via Matrix-geometric analysis

In this section, we outline a method to numerically evaluate the mean number of jobs,
E[Nπ(λ)], for a dynamic MPL control policy π under the assumption of the H∗(C2) job
size distribution (Definition 2.6) and a Poisson arrival process of intensity λ. Note that in
Proposition 2.7 with static MPL, we were able to simplify the analysis of the H∗(C2) job
size distribution by ignoring the zero-sized jobs and focusing on the exponential class.
This was because the admission control policy was independent of the queue-length.
However, with a dynamic policy that looks at the queue-length, we need to keep track
of how many zero-sized jobs are in the system. For succinctness, let q = 2

C2+1
.

Assuming that under the dynamic policy π, there is some queue-length Q∗ such that the
optimal control for any queue length Q ≥ Q∗ is to operate at the highest efficiency point
K∗, we can express the system as a Markov chain with a repeating structure. The states of
the Markov chain are pairs (Q, K) with Q denoting the queue length, and K denoting the
number of jobs of the exponential class at the server. However, due to the zero-sized jobs,
we can have arbitrarily big drops in Q. For example, if we are in state (Q = 10, K = 5)
and a departure takes place, and if all the jobs in the queue have size 0, which happens
with non-zero probability, we jump to state (Q = 0, K = 4). To take care of this problem,
we introduce decision states represented as (Q, K, ?). We transition to the decision state
(Q,K, ?) immediately after a departure takes place from the state (Q,K+1), or if an arrival
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Figure 6: The embedded Markov chain for evaluation of dynamic MPL control policies. We use an to
denote λ

λ+q·µ(n) and dn = 1 − an. For decision states with multiple alternatives (e.g., (1,K+ − 1, ?) and
(2,K∗−1, ?)), the dash-dotted arcs correspond to the decision to not admit any jobs, dashed arcs correspond
to the decision to admit one job, and dotted arcs correspond to the decision to admit two jobs.

takes place while in state (Q − 1, K) and Q < Q∗. The state (Q, K, ?) implements the
admission control policy π, as well as handling zero-sized jobs, because now the jumps
are bounded. For example, if the control in state (Q,K, ?) is to admit 1 job, then with
probability (1 − q) the job is of size 0, and we transition to (Q − 1, K, ?); otherwise, with
probability q we transition to (Q− 1, K + 1). However, the rate of transitioning from the
decision states is infinite. Thus we will find it suitable instead to work in the framework
of Semi-Markov processes. We will consider the embedded discrete time Markov chain
where the transitions correspond to arrivals, departure and decisions taken in decision
states in the original continuous time system. The embedded Markov chain is shown in
Figure 6. We then solve for the stationary distribution of this embedded Markov chain via
Matrix-Geometric method. We would like to point out that due to the special structure of
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Figure 7: The structure of the POISSON-APPROX control policy for two values of the parameter λp and
∆max = 1. A ‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At every other point, the
optimal control is to decrease MPL.

the Markov chain in Figure 6 (the backward transition matrix is of rank 1), the rate matrix
involved in the Matrix-geometric solution has an explicit solution in our case [19]. Finally,
we obtain the stationary distribution of the number of jobs in the system by multiplying
the probability of being in a state in the embedded chain with the mean residence time in
that state, and normalizing.

3.3 The POISSON-APPROX policy

The POISSON-APPROX policy is defined by constructing a family {πλp}, where the candi-
date policy πλp is obtained as follows: We consider a Poisson arrival process of intensity λp

and the H∗(C2) job size distribution, and solve the optimal dynamic MPL control problem
to minimize the mean number of jobs. The policy πλp is computed via the method of pol-
icy iteration, explained in Appendix A. Figure 7 shows the structure of πλp for λp = 0.95
and λp = 1.05. The POISSON-APPROX MPL control policy is now chosen to be πλ∗p where:

λ∗p = arg min
λp

ε(πλp) (14)

where ε(·) is defined in (5). As in the case of LIGHT-APPROX, it suffices to carry out the
above optimization at a coarse granularity.

3.4 Performance Evaluation

In this section we show via simulations that our dynamic MPL control policies proposed
in Sections 3.2 and 3.3 guarantee robustness against both misestimation of traffic intensity,
and against higher order characteristics of the arrival process, such as the burstiness.
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3.4.1 Robustness against traffic intensity estimation

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 2.146 2.068 2.037 2.026 2.020 2.018 2.017 ± 0.004
λ = 0.75 3.268 3.034 2.898 2.842 2.803 2.806 2.804 ± 0.015
λ = 0.85 5.939 5.502 5.222 5.138 5.188 5.330 5.497 ± 0.049
λ = 0.95 12.473 12.315 12.312 12.838 13.830 15.480 17.035 ± 0.201
λ = 1.05 29.807 30.731 32.445 35.981 40.748 46.836 53.344 ± 0.381
λ = 1.15 89.075 93.378 99.875 108.300 120.120 132.354 143.678 ± 1.724

Table 2: Simulation results for mean number of jobs, E[N ], for different parameters p of the LIGHT-APPROX
policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size distribution is Weibull with
mean 1, SCV 19.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 2.019 2.017 2.021 2.032 2.134 2.474 ± 0.005
λ = 0.75 2.792 2.768 2.778 2.843 3.192 3.890 ± 0.015
λ = 0.85 5.821 5.241 4.890 4.981 5.656 6.776 ± 0.068
λ = 0.95 20.992 16.737 13.269 11.874 12.100 13.210 ± 0.183
λ = 1.05 66.047 53.765 40.952 33.487 29.675 29.464 ± 0.536
λ = 1.15 166.720 149.052 124.863 104.401 91.015 86.473 ± 1.967

Table 3: Simulation results for mean number of jobs, E[N ], for different parameters λp of the POISSON-
APPROX policy and arrival rates λ. The arrival process is Poisson(λ), and the job size distribution is Weibull
with mean 1, SCV 19.

We will now evaluate the LIGHT-APPROX and POISSON-APPROX policies for a Poisson
arrival process with unknown mean arrival rate, λ, and compare them against the OPT-
STATIC policy that is given the exact mean arrival rate. To do this, we show the mean
number of jobs, E[N ], under different arrival rates, obtained via simulations. Recall that
Table 1 shows these results for the Weibull job size distribution and various values of
static MPLs. In Table 2 we show the results for the mean number of jobs for the same
Weibull job size distribution under the LIGHT-APPROX policy, as a function of λ and the
parameter p of the family {πp} of candidate policies. The optimization procedure (13)
sets p∗ = 0.25 from among the values shown in the table (column highlighted). Observe
that the LIGHT-APPROX policy gives near optimal performance for each arrival rate as
compared to Table 1 for λ up to 1.05 with approximately 13% larger mean number of jobs
in the system than the optimal traffic-aware static policy when λ = 0.85. On the other
hand, a single robustly chosen static MPL necessarily has to operate at the peak efficiency
point and, as Table 1 shows, exhibits 41% larger mean response time than the optimal
traffic-aware static policy when λ = 0.75.

Table 3 shows simulation results for the mean number of jobs with the POISSON-APPROX
MPL control policy for various values of the parameter λp for the family {πλp} of can-
didate policies. The optimization procedure (14) sets λ∗p = 0.95 from among the values
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shown in the table (column highlighted). The POISSON-APPROX policy also achieves
near-optimal performance for each arrival rate as compared to Table 1 with approximately
19.5% larger mean number of jobs in the system than the optimal traffic-aware static pol-
icy when λ = 1.15. Note that for these results, we have not completely optimized the
λp parameter, and the performance of the POISSON-APPROX policy is likely to improve
further.

While we have seen that both dynamic policies are far superior than any static policy
when the mean arrival rate is not known, looking both at Tables 2 and 3, one can observe
that neither dynamic policy significantly outperforms the OPT-STATIC policy if the mean
arrival rate is known.

3.4.2 Robustness against burstiness in arrival process with unknown arrival rate

We now evaluate the robustness of our MPL control policies against burstiness of the
arrival process when the mean arrival rate is not known. To do so, we choose a batch
Poisson arrival process (BPP). The batch sizes were i.i.d. geometric with mean 5. Table 4
shows the results for the mean number of jobs in the system with Weibull job size distri-
bution for various settings of static MPL and mean arrival rate λ of the arrival process.
From Table 4, we see that when the arrival rate is not known, a robustly chosen static
policy has to operate at K∗ = 5, which results in 50% higher mean number of jobs than
the optimal traffic-aware static policy when the mean arrival rate is λ = 0.65. Therefore
a bursty arrival process can exacerbate the inadequacy of static MPL policies when the
mean arrival rate is not known.

Table 5 shows the results for mean number of jobs in the system for the same setting as
Table 4 for the LIGHT-APPROX MPL control policy as a function of the parameter p of the
family {πp} of candidate policies for various values of the mean arrival rate λ. The col-
umn for the parameter chosen by the LIGHT-APPROX policy has been highlighted. From
Table 5, we find that LIGHT-APPROX policy is also robust to burstiness, while yielding at
worst 25% higher mean response time than the optimal traffic-aware static MPL policy.
Therefore, the LIGHT-APPROX policy is simultaneously robust to both the mean arrival
rate and burstiness of the arrival process. The LIGHT-APPROX policy with parameter
p = 0.3 outperforms the policy with p = 0.25 for the chosen setting, but as noted earlier,
this is due to the fact that we have not optimized the parameter completely.

Table 6 shows the results for mean number of jobs in the system under the same set-
ting for the POISSON-APPROX MPL control policy as a function of the parameter λp of the
family {πλp} of candidate policies. The column for the parameter chosen by the POISSON-
APPROX policy has been highlighted. From Table 6, we find that the POISSON-APPROX
policy yields at worst 13% higher mean response time than the optimal traffic aware
static MPL policy. Thus while both our policies are robust to bursty arrival processes,
the POISSON-APPROX policy seems to marginally outperform the LIGHT-APPROX policy.
These observations also hold true for the simulation experiments presented in Appen-
dix ??.
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While we have demonstrated that our dynamic policies are much more robust than any
static policy in handling burstiness when the mean arrival rate is not known, comparing
Tables 1 and 4, we see that, surprisingly, if the mean arrival rate of the arrival process
is known, the OPT-STATIC policy which optimizes for a Poisson arrival process with the
given mean arrival rate remains near-optimal for a bursty arrival process.

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 5.802 4.853 4.350 3.995 3.755 3.586 3.464 3.374 3.316 3.269 3.250 3.232 ± 0.015
λ = 0.75 9.287 7.799 7.093 6.531 6.176 5.871 5.691 5.564 5.490 5.471 5.472 5.583 ± 0.083
λ = 0.85 15.438 13.205 12.295 11.677 11.383 11.200 11.225 11.437 11.868 12.758 13.908 15.854 ± 0.905
λ = 0.95 27.245 24.048 23.860 24.363 25.173 26.846 29.453 34.285 41.082 54.117 78.139 141.179 ± 3.495
λ = 1.05 53.044 49.187 53.368 60.676 71.380 90.525 130.344 210.054 ± 4.932
λ = 1.15 136.640 131.356 176.238 274.395 ± 7.308

Table 4: Simulation results for mean number of jobs, E[N ], for different values of MPL and mean arrival
rates λ. The arrival process is a batch Poisson process where the arriving batch sizes are geometrically
distributed with mean 5, and the job size distribution is Weibull with mean 1 and SCV 19. The optimal
value for each setting of the mean arrival rate is boldened.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 4.396 4.039 3.752 3.537 3.414 3.349 3.327 ± 0.017
λ = 0.75 7.301 6.806 6.395 6.100 5.919 5.901 6.005 ± 0.040
λ = 0.85 12.667 12.262 11.880 11.776 12.024 12.670 13.457 ± 0.104
λ = 0.95 23.836 23.714 24.053 24.974 26.619 29.422 32.592 ± 0.312
λ = 1.05 49.542 50.419 52.110 55.588 60.669 67.073 74.570 ± 0.569
λ = 1.15 133.778 137.341 141.705 149.050 158.226 171.736 182.818 ± 2.458

Table 5: Simulation results for mean number of jobs, E[N ], for different parameters p of the LIGHT-APPROX
policy and mean arrival rates λ. The arrival process is a batch Poisson process where the arriving batch sizes
are geometrically distributed with mean 5, and the job size distribution is Weibull with mean 1 and SCV 19.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 3.271 3.264 3.309 3.480 4.073 4.851 ± 0.017
λ = 0.75 5.929 5.641 5.636 5.849 6.800 7.828 ± 0.035
λ = 0.85 14.033 12.427 11.426 11.177 12.170 13.170 ± 0.125
λ = 0.95 36.054 30.402 26.075 23.898 23.299 23.932 ± 0.244
λ = 1.05 84.019 71.672 60.758 54.104 49.372 48.831 ± 0.510
λ = 1.15 199.389 180.815 162.219 148.864 135.175 131.729 ± 2.239

Table 6: Simulation results for mean number of jobs, E[N ], for different parameters λp of the LIGHT-
APPROX policy and arrival rates λ. The arrival process is a batch Poisson process where the arriving batch
sizes are geometrically distributed with mean 5, and the job size distribution is Weibull with mean 1 and
SCV 19.
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4 Conclusion

In this paper we consider the problem of admission control in a resource-sharing sys-
tem with load-dependent service rates, when the job size distribution is highly variable.
We demonstrate, that counter to common wisdom, imposing a static multi-programming
limit (MPL) at the peak efficiency point is not always optimal for minimizing the mean
response time, and propose a simple rule to choose the optimal static MPL under the
assumption that traffic is Poisson with a known arrival rate.

Next, we show that a static MPL policy can not be robust to varying traffic patterns, such
as the variability in the mean arrival rate. We propose two simple MPL control policies,
LIGHT-APPROX and POISSON-APPROX, that adjust the MPL based on knowledge of only
the instantaneous queue length, not the arrival process. We show that our dynamic MPL
control policies exhibit robustness to both an unknown mean arrival rate and to burstiness
in the arrival process. Specifically, our dynamic control policies result in mean response
times within 25% of the mean response time of the optimal traffic-aware static MPL policy.

Our analysis illuminates several key ideas that are important in finding the optimal MPL.
While a high arrival rate requires setting the MPL at the point of peak efficiency, when the
arrival rate is moderate, we find that the optimal MPL is typically much higher than the
peak efficiency point. The reason is that allowing a higher degree of parallelism (higher
MPL) can alleviate the effect of high job size variability. In situations where the mean
arrival rate is not known, dynamic MPL policies are needed to moderate between the
effect of the arrival rate and the job size variability: when the instantaneous arrival rate is
high, the effect of mean arrival rate dominates the effect of C2, whereas when the arrival
rate is low, the effect of C2 is more dominant.

The techniques presented herein for obtaining simple and robust optimal control policies
are applicable to more general stochastic settings. While the majority of literature on
robust dynamic control focuses on solving the corresponding optimal control problem
in the fluid regime, our techniques allow one to obtain optimal control policies which
exhibit components of both stochastic and fluid control.
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A Policy Iteration to Construct Candidate POISSON-APPROX

Policies

The goal of this section is to explain the policy iteration algorithm to find the optimal
MPL control policy πλp , for a Poisson arrival process with intensity λp and the H∗(C2) job
size distribution matching the true job size distribution (Definition 2.6).

Let us first recall how policy iteration works [4]. We begin with some MPL control policy
π0 (in our case, a good initial policy is the threshold MPL policy which operates at the
peak efficiency point K∗). Let γ0 be the average cost (in our case the mean number of jobs
in the system) of this policy. We then define the differential cost function h0(·) associated
with each state, where h0(si) denotes the differential cost to reach some state s0 starting
in state si under π0. That is, h0(si) denotes the difference between the mean total cost to
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reach state s0, and the product of γ0 and the mean total time to reach state s0, given that
we start in state si. The vector of differential costs, h0(·), and the average cost, γ0, are
obtained by solving the following linear system of equations:

h0(s0) = 0

h0(si) = c(si)τ(si)− γ0τ(si) +
∑

j

pij(π
0(si))h(sj)

where τ(si) is the mean residence time in state si, c(si) is the cost per unit of time in state
si, and pij(π

0(si)) represents the probability that we transition from state si to sj when
control π0(si) is applied in state si. This is called the policy evaluation step. We then
perform the policy improvement step to obtain the policy π1. To do this, for each state si,
we choose π1(si) as the control which satisfies:

c(si)τ(si)− γ0τ(si) +
∑

j

pij(π
1(si))h(sj) = min

a∈Ai

[
c(si)τ(si)− γ0τ(si) +

∑
j

pij(a)h(sj)

]

where Ai is the set of possible actions in state i. We then keep performing policy eval-
uation and improvement until two consecutive policies are the same, or have the same
average cost.

The policy iteration step can be easily performed once the policy evaluation step is per-
formed. The policy evaluation step is clearly tractable when the state space is finite. We
now show it is also tractable when the state space is infinite but repeating, obeying the
conditions for Matrix-Geometric analysis. In the remaining section, we focus on the pro-
cedure for performing the policy evaluation step for such infinite state space systems, and
specializing it to the problem of solving the optimal dynamic MPL control problem.

Consider a fixed policy π, and let P π denote the probability transition matrix:

P π =


L0 F0 0 0 0 · · ·
B0 L F 0 0 · · ·
0 B L F 0 · · ·

...
...


Let h0 be the vector of differential costs for the 0th (non-repeating) level, hi (i ≥ 1) be the
differential cost vector for the ith (repeating) level of the state space, and γ be the average
cost under policy π. Denote by R the rate matrix (for the embedded chain) which is the
least non-negative solution to:

R = F + RL + R2B

Let G be the solution to the following equation:

G = B + LG + FG2
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We now note that G and R have the following probabilistic interpretations [17]: by condi-
tioning on the first transition, it is easy to see that G(j, k) denotes the conditional proba-
bility that the chain eventually reaches level i− 1 and the state it enters is (i− 1, k), given
the chain starts in state (i, j). Similarly, conditioning on the last transition before visiting
(i + 1, k), one can see that the entry R(j, k) represents the mean number of visits to state
(i + 1, k) until it first enters level i again, given that the chain starts in state (i, j). Let J be
given by:

J = L + FG

Then J(j, k) represents the conditional probability that the chain enters level i again be-
fore entering level i− 1, and that the state it enters is (i, k), given the chain starts in state
(i, j). We can now write the differential cost of some state (i, j) for i ≥ 2 as

h(i, j) = c(i, j)τ(i, j)− γτ(i, j) +
∑

k

B(j, k)h(i− 1, k) +
∑

k

J(j, k)h(i, k)

+
∞∑

m=1

∑
k

Rm(j, k) [c(i + m, k)τ(i + m, k)− γτ(i + m, k)]

or,

hi = diag(τ i)ci − γ.τ i + Bhi−1 + Jhi +
∞∑

m=1

Rm(diag(τ i+m)ci+m − γτ i+m) . . . i ≥ 2 (15)

where ci is the column vector of cost per unit of time for states in level i, and τ i is the
column vector of mean residence time for states in level i. Thus,

hi = (I − J)−1

(
diag(τ i)ci − γτ i + Bhi−1 +

∞∑
m=1

Rm(diag(τ i+m)ci+m − γτ i+m)

)

Thus, we can express h2 in terms of h1 and solve for h0 and h1. We can then obtain
subsequent cost vectors as needed while performing the policy improvement step.

We now address the problem of evaluating a dynamic MPL control policy, π. Let K+

denote the maximum MPL used by policy π and let Q∗ denote the queue length beyond
which policy π uses the MPL K∗ (see Figure 6). For computational reasons we restrict
Q∗ to be at most 50. As stated earlier, in our case, the matrix B is of rank 1. Specifically,
we can write B = ν · α, where ν = e1 (the column vector with first entry 1, and rest 0),
and α = [(1 − q) q 0 . . . 0]. Therefore, in our case the matrices G and R have an explicit
solution [19]:

G = e ·α
R = F (I − L− Feα)−1

where e is the column vector of all 1s.
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Denote by si the state vector for level i, i ≥ 1 :

si =


(Q∗ + i− 1, K∗ − 1, ?)

(Q∗ + i− 1, K∗)
...

(Q∗ + i− 1, K+)


with the cost and mean residence time vectors given by ci = (Q∗ + i− 1) · e + K and

τ i =


0
1

λ+q·µ(K∗)
...
1

λ+q·µ(K+)

 = τ , K =


K∗ − 1

K∗

...
K+


We can thus simplify (15) to:

hi = diag(τ )ci − γτ + Bhi−1 + Jhi +
∞∑

m=1

Rm(diag(τ )ci+m − γτ )

= Bhi−1 + Jhi +
[
(I −R)−1 ((Q∗ + i− 2− γ).τ + diag(τ ) ·K) +

(
(I −R)−1

)2
τ
]

or,

hi = (I − J)−1
{

Bhi−1 +
[
(I −R)−1 ((Q∗ + i− 2− γ).τ + diag(τ )K) +

(
(I −R)−1

)2
τ
]}
(16)

Thus, the solution of our system is given by the following system of linear equations for
h0,h1, γ:

h0 = diag(τ 0)c0 − γτ 0 + L0h0 + F0h1 (17)
h1 = diag(τ )c1 − γτ + B0h0 + Lh1 + Fh2

= diag(τ )c1 − γ(I + F (I − J)−1(I −R)−1)τ + B0h0

+ (L + F (I − J)−1B)h1 + F (I − J)−1
{[

(I −R)−1 (Q∗.τ

+diag(τ )K) +
(
(I −R)−1

)2
τ
]}

(18)

and the additional constraint h(0, 0) = 0.

In the method of policy iteration, the policy evaluation and policy improvement steps are
repeated until two policies with the same cost are obtained. In the experiments presented
in this paper, we stopped when the relative improvement between consecutive policies
was below 0.01%, which took at most 7 iterations in each case (less than 30 seconds on a
3.2 GHz Pentium 4 CPU with 1 GB of memory).
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B Simulation Results
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Figure 8: Service rate curves chosen for evaluation of MPL control policies.

In this section we present simulation results for the two service rate curves shown in
Figure 8. Service rate curve 1 is the same as the one used for evaluation in the main body
of the paper, and represents a system where the efficiency initially increases with the MPL
and then falls. Service rate curve 2 represents a system where the efficiency of the system
falls monotonically as the MPL increases. Note that for service rate curve 1, K ′ = 4 and
K∗ = 5, while for service rate curve 2, K ′ = K∗ = 1. For both the curves we present the
following set of results:

A. Optimal static MPL under Poisson arrival process: We find the optimal static MPL for
the two service rate curves under Poisson arrival processes with intensities λ = 0.7, 0.8
and 0.9 for various job size distributions, and compare the performance under optimal
static MPL to the performance of the OPT-STATIC policy. For our simulations, we
consider the following job size distributions (all with mean 1, and SCV C2 = 19):

(a) Weibull distribution with scale parameter 1
6

and shape parameter 1
3
.

(b) Bounded Pareto distribution with shape parameter α = 1.1 and support [0.182, 178.759].

(c) A two-phase hyperexponential (H2) distribution whose parameters are chosen
so that, r, the fraction of the total load constituted by the phase with the smaller
mean, is 0.25.

B. Performance of OPT-STATIC, LIGHT-APPROX and POISSON-APPROX under Poisson
arrival process with unknown intensity: We show simulation results for the mean
number of jobs in system for the two service rate curves under Poisson arrival processes
with various values of mean arrival rate. We present results for the following job size
distributions (with mean 1, and SCV C2 = 19):

(a) Weibull distribution with scale parameter 1
6

and shape parameter 1
3
.
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(b) A two-phase hyperexponential (H2) distribution whose parameters are chosen
so that, r, the fraction of the total load constituted by the phase with the smaller
mean, is 0.25.

and the following MPL control policies

(a) Static policies with different values of the MPL.

(b) LIGHT-APPROX policy: We show the mean number in system for candidate poli-
cies in the LIGHT-APPROX family of policies for various values of the parameter
p.

(c) POISSON-APPROX policy: We show the mean number in system for candidate
policies in the POISSON-APPROX family of policies for various values of the pa-
rameter λp.

We then compare the performance of the optimally chosen traffic-oblivious single sta-
tic policy (which must necessarily operate at MPL=K∗), the LIGHT-APPROX policy
and the POISSON-APPROX policy against the performance of the optimal traffic-aware
static policies. We have highlighted the columns which represent the LIGHT-APPROX
and POISSON-APPROX policies for the given service rate curve and the SCV of the job
size distribution.

C. Performance of OPT-STATIC, LIGHT-APPROX and POISSON-APPROX under a bursty
arrival process with unknown mean arrival rate: We show simulation results for the
mean number of jobs in system for the two service rate curves under a Batch Pois-
son arrival process (BPP) with various values of mean arrival rate, and i.i.d. batch
sizes distributed according to a Geometric distribution with mean 5. The BPP ar-
rival process described above can alternately be viewed as an arrival process where
the inter-arrival times are i.i.d. according to an H∗ distribution with SCV C2

a = 9. We
present results for the following job size distributions (with mean 1, and SCV C2

s = 19):

(a) Weibull distribution with scale parameter 1
6

and shape parameter 1
3
.

(b) A two-phase hyperexponential (H2) distribution whose parameters are chosen
so that, r, the fraction of the total load constituted by the phase with the smaller
mean, is 0.25.

and the following MPL control policies

(a) Static policies with different values of the MPL.

(b) LIGHT-APPROX policy: We show the mean number in system for candidate poli-
cies in the LIGHT-APPROX family of policies for various values of the parameter
p.

(c) POISSON-APPROX policy: We show the mean number in system for candidate
policies in the POISSON-APPROX family of policies for various values of the pa-
rameter λp.
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We then compare the performance of the optimally chosen traffic-oblivious single sta-
tic policy (which must necessarily operate at MPL=K∗), the LIGHT-APPROX policy
and the POISSON-APPROX policy against the performance of the optimal traffic-aware
static policies. We have highlighted the columns which represent the LIGHT-APPROX
and POISSON-APPROX policies for the given service rate curve and the SCV of the job
size distribution.

Some of the simulation results presented in this section have already appeared in the
main body of the paper, but we repeat them for completeness.

B.1 Simulation Results for Service Rate Curve 1

B.1.1 Optimal static MPL under Poisson arrival process
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Figure 9: The mean number of jobs in the system vs. MPL for service rate curve 1 (Figure 8(a)) for various
job size distributions, all with mean 1 and SCV C2 =19. The arrival process considered is Poisson with
the indicated mean arrival rate, λ. For reference, we have also shown our 2-moment approximation for the
mean number of jobs in the system. The optimal MPL is for each curve is shown with a circle.

Figure 9 presents the simulation results for the mean number in system as a function of
the static MPL for the service rate curve shown in Figure 8(a). As can be seen, the optimal
static MPL in all cases shown is larger than the most efficient point K∗ = 5. Further, our 2-
moment approximation is remarkably accurate at predicting the static MPL that achieves
optimal or near-optimal performance.
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B.1.2 Structure of dynamic MPL control policies
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Figure 10: The structure of the LIGHT-APPROX control policy for service rate curve 1 for two values of the
parameter p and ∆max = 1. A ‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At every
other point, the optimal control is to decrease MPL.
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Figure 11: The structure of the POISSON-APPROX control policy for service rate curve 1 for two values of
the parameter λp and ∆max = 1. A ‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At
every other point, the optimal control is to decrease MPL.

Figures 10 and 11 show the structures of candidate policies in the LIGHT-APPROX and
POISSON-APPROX families of dynamic MPL control policies, respectively. Note that the
policies in the LIGHT-APPROX family are much more aggressive in handling with vari-
ability due to the assumption of light traffic. The policies in the POISSON-APPROX family
are much more restrained in increasing the MPL and thereby reducing the system effi-
ciency.
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B.1.3 Performance of dynamic MPL control policies under Poisson arrival process

Weibull job size distribution

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 2.960 2.471 2.258 2.149 2.092 2.058 2.040 2.029 2.023 2.020 2.018 2.016 ± 0.007
λ = 0.75 4.849 3.889 3.442 3.177 3.000 2.896 2.843 2.797 2.775 2.764 2.755 2.764 ± 0.020
λ = 0.85 8.493 6.797 6.025 5.542 5.226 4.984 4.903 4.850 4.929 5.019 5.217 5.589 ± 0.294
λ = 0.95 15.961 13.197 12.521 12.162 12.170 12.633 13.497 15.039 18.059 23.132 32.881 60.799 ± 2.483
λ = 1.05 33.929 29.517 31.082 34.989 40.705 52.554 72.724 126.900 ± 4.273
λ = 1.15 92.842 87.189 114.997 183.613 ± 5.606

Table 7: (STATIC) Mean number of jobs, E[N ], for service rate curve 1 for different values of static MPL
and arrival rates, λ. The arrival process is Poisson(λ), and the job size distribution is Weibull.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 2.146 2.068 2.037 2.026 2.020 2.018 2.017 ± 0.004
λ = 0.75 3.268 3.034 2.898 2.842 2.803 2.806 2.804 ± 0.015
λ = 0.85 5.939 5.502 5.222 5.138 5.188 5.330 5.497 ± 0.049
λ = 0.95 12.473 12.315 12.312 12.838 13.830 15.480 17.035 ± 0.201
λ = 1.05 29.807 30.731 32.445 35.981 40.748 46.836 53.344 ± 0.381
λ = 1.15 89.075 93.378 99.875 108.300 120.120 132.354 143.678 ± 1.724

Table 8: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parameters
p of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is Weibull.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 2.019 2.017 2.021 2.032 2.134 2.474 ± 0.005
λ = 0.75 2.792 2.768 2.778 2.843 3.192 3.890 ± 0.015
λ = 0.85 5.821 5.241 4.890 4.981 5.656 6.776 ± 0.068
λ = 0.95 20.992 16.737 13.269 11.874 12.100 13.210 ± 0.183
λ = 1.05 66.047 53.765 40.952 33.487 29.675 29.464 ± 0.536
λ = 1.15 166.720 149.052 124.863 104.401 91.015 86.473 ± 1.967

Table 9: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parameters
λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is Weibull.

Tables 7-9 present the simulation results for service rate curve 1 (Figure 8(a)) under a
Weibull job size distribution, and Poisson arrival process with different values of the
mean arrival rate. The optimal static MPL for each arrival rate, and the dynamic pol-
icy selected by the optimization procedure have been highlighted.
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H2 job size distribution

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 3.195 2.600 2.330 2.188 2.112 2.071 2.046 2.032 2.029 2.024 2.018 2.016 ± 0.007
λ = 0.75 5.275 4.193 3.647 3.301 3.102 2.967 2.895 2.839 2.801 2.788 2.777 2.768 ± 0.020
λ = 0.85 9.190 7.375 6.479 5.896 5.498 5.278 5.092 5.051 5.084 5.181 5.383 5.574 ± 0.291
λ = 0.95 16.988 14.222 13.288 12.940 12.863 13.194 13.932 15.555 18.151 23.331 32.719 57.759 ± 1.469
λ = 1.05 34.931 30.936 32.952 36.264 42.052 52.246 73.936 119.977 ± 3.751
λ = 1.15 94.001 88.890 116.968 186.486 ± 3.315

Table 10: (STATIC) Mean number of jobs, E[N ], for service rate curve 1 for different values of static MPL
and arrival rates, λ. The arrival process is Poisson(λ), and the job size distribution is H2.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 2.173 2.077 2.039 2.025 2.017 2.016 2.018 ± 0.004
λ = 0.75 3.361 3.061 2.909 2.831 2.793 2.798 2.794 ± 0.016
λ = 0.85 6.153 5.588 5.255 5.108 5.232 5.389 5.591 ± 0.050
λ = 0.95 13.101 12.544 12.677 13.255 14.423 16.451 18.289 ± 0.168
λ = 1.05 30.875 32.075 34.199 38.472 43.913 51.480 58.913 ± 0.398
λ = 1.15 91.461 96.836 103.871 115.824 128.557 144.600 159.210 ± 1.461

Table 11: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parameters
p of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is H2.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 2.015 2.019 2.024 2.041 2.173 2.602 ± 0.006
λ = 0.75 2.789 2.793 2.797 2.898 3.327 4.179 ± 0.016
λ = 0.85 5.683 5.160 4.970 5.124 6.015 7.341 ± 0.058
λ = 0.95 19.807 15.992 13.230 12.155 12.855 14.198 ± 0.242
λ = 1.05 65.207 52.327 40.780 33.872 30.763 30.893 ± 0.567
λ = 1.15 171.976 150.848 124.934 106.586 91.968 88.662 ± 1.631

Table 12: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parameters
λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is H2.

Tables 10-12 present the simulation results for service rate curve 1 (Figure 8(a)) under an
H2 job size distribution, and Poisson arrival process with different values of the mean
arrival rate. The optimal static MPL for each arrival rate, and the dynamic policy selected
by the optimization procedure have been highlighted.
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B.1.4 Performance of dynamic MPL control policies under BPP arrival process

Weibull job size distribution

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 5.802 4.853 4.350 3.995 3.755 3.586 3.464 3.374 3.316 3.269 3.250 3.232 ± 0.015
λ = 0.75 9.287 7.799 7.093 6.531 6.176 5.871 5.691 5.564 5.490 5.471 5.472 5.583 ± 0.083
λ = 0.85 15.438 13.205 12.295 11.677 11.383 11.200 11.225 11.437 11.868 12.758 13.908 15.854 ± 0.905
λ = 0.95 27.245 24.048 23.860 24.363 25.173 26.846 29.453 34.285 41.082 54.117 78.139 141.179 ± 3.495
λ = 1.05 53.044 49.187 53.368 60.676 71.380 90.525 130.344 210.054 ± 4.932
λ = 1.15 136.640 131.356 176.238 274.395 ± 7.308

Table 13: (STATIC) Mean number of jobs, E[N ], for service rate curve 1 for different values of static MPL
and arrival rates, λ. The arrival process is BPP, and the job size distribution is Weibull.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 4.396 4.039 3.752 3.537 3.414 3.349 3.327 ± 0.017
λ = 0.75 7.301 6.806 6.395 6.100 5.919 5.901 6.005 ± 0.040
λ = 0.85 12.667 12.262 11.880 11.776 12.024 12.670 13.457 ± 0.104
λ = 0.95 23.836 23.714 24.053 24.974 26.619 29.422 32.592 ± 0.312
λ = 1.05 49.542 50.419 52.110 55.588 60.669 67.073 74.570 ± 0.569
λ = 1.15 133.778 137.341 141.705 149.050 158.226 171.736 182.818 ± 2.458

Table 14: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parameters p
of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size distribution is
Weibull.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 3.271 3.264 3.309 3.480 4.073 4.851 ± 0.017
λ = 0.75 5.929 5.641 5.636 5.849 6.800 7.828 ± 0.035
λ = 0.85 14.033 12.427 11.426 11.177 12.170 13.170 ± 0.125
λ = 0.95 36.054 30.402 26.075 23.898 23.299 23.932 ± 0.244
λ = 1.05 84.019 71.672 60.758 54.104 49.372 48.831 ± 0.510
λ = 1.15 199.389 180.815 162.219 148.864 135.175 131.729 ± 2.239

Table 15: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parame-
ters λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size
distribution is Weibull.

Tables 13-15 present the simulation results for service rate curve 1 (Figure 8(a)) under a
Weibull job size distribution, and BPP arrival process with different values of the mean
arrival rate. The optimal static MPL for each arrival rate, and the dynamic policy selected
by the optimization procedure have been highlighted.
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H2 job size distribution

MPL 4 5 6 7 8 9 10 11 12 13 14 15 95% c.i.

λ = 0.65 5.989 4.996 4.453 4.086 3.828 3.669 3.568 3.487 3.436 3.412 3.407 3.409 ± 0.016
λ = 0.75 9.664 8.086 7.273 6.715 6.274 5.977 5.772 5.669 5.604 5.557 5.593 5.682 ± 0.076
λ = 0.85 16.087 13.661 12.696 12.093 11.674 11.487 11.435 11.772 12.031 12.762 14.000 15.895 ± 0.646
λ = 0.95 28.119 24.871 24.609 24.949 25.742 27.262 29.892 34.098 40.988 53.708 76.966 136.236 ± 3.949
λ = 1.05 54.873 49.941 54.677 61.269 73.180 91.644 128.180 209.128 ± 5.998
λ = 1.15 138.222 133.540 175.402 274.431 ± 6.347

Table 16: (STATIC) Mean number of jobs, E[N ], for service rate curve 1 for different values of static MPL
and arrival rates, λ. The arrival process is BPP, and the job size distribution is H2.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 4.688 4.364 4.066 3.830 3.701 3.641 3.596 ± 0.015
λ = 0.75 7.766 7.316 6.866 6.501 6.270 6.247 6.290 ± 0.044
λ = 0.85 13.496 13.093 12.626 12.404 12.545 13.090 13.980 ± 0.114
λ = 0.95 24.869 24.910 25.060 25.807 27.406 30.366 33.758 ± 0.249
λ = 1.05 50.618 51.847 53.335 57.031 62.532 70.086 78.861 ± 0.597
λ = 1.15 136.533 136.869 141.707 150.237 161.472 175.408 190.452 ± 2.717

Table 17: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parameters p
of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size distribution is
H2.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 3.495 3.469 3.502 3.645 4.248 4.982 ± 0.013
λ = 0.75 6.100 5.832 5.777 6.044 7.065 8.091 ± 0.050
λ = 0.85 14.191 12.503 11.538 11.429 12.641 13.721 ± 0.117
λ = 0.95 37.400 30.893 26.201 24.163 24.237 24.861 ± 0.328
λ = 1.05 88.378 74.089 62.009 55.065 50.757 50.216 ± 0.647
λ = 1.15 208.744 187.199 165.025 149.227 136.527 133.118 ± 2.114

Table 18: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 1 for different parame-
ters λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size
distribution is H2.

Tables 16-18 present the simulation results for service rate curve 1 (Figure 8(a)) under an
H2 job size distribution, and BPP arrival process with different values of the mean arrival
rate. The optimal static MPL for each arrival rate, and the dynamic policy selected by the
optimization procedure have been highlighted.
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B.2 Simulation Results for Service Rate Curve 2

B.2.1 Optimal static MPL under Poisson arrival process
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Figure 12: The mean number of jobs in the system vs. MPL for service rate curve 2 (Figure 8(b)) for
various job size distributions, all with mean 1 and SCV C2 =19. The arrival process considered is Poisson
with the indicated mean arrival rate, λ. For reference, we have also shown our 2-moment approximation
for the mean number of jobs in the system. The optimal MPL is for each curve is shown with a circle.

Figure 12 presents the simulation results for the mean number in system as a function of
the static MPL for the service rate curve shown in Figure 8(b). As can be seen, the optimal
static MPL in all cases shown is larger than the most efficient point K∗ = 5. Further, our 2-
moment approximation is remarkably accurate at predicting the static MPL that achieves
optimal or near-optimal performance. For example, when λ = 0.8, the optimal static MPL
for the bounded Pareto distribution is 6 with a resulting mean number of jobs around 4.1,
while K∗ = 1 results in nearly 3 times the optimal mean number of jobs at approximately
12.1. Our approximation recommends the optimal MPL of 6.
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B.2.2 Structure of dynamic MPL control policies
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Figure 13: The structure of the LIGHT-APPROX control policy for service rate curve 2 for two values of the
parameter p and ∆max = 1. A ‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At every
other point, the optimal control is to decrease MPL.
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Figure 14: The structure of the POISSON-APPROX control policy for service rate curve 2 for two values of
the parameter λp and ∆max = 1. A ‘+’ indicates ‘increase MPL’, and a ‘o’ indicates ‘keep MPL same’. At
every other point, the optimal control is to decrease MPL.

Figures 13 and 14 show the structures of candidate policies in the LIGHT-APPROX and
POISSON-APPROX families of dynamic MPL control policies, respectively, for service rate
curve 2 (Figure 8(b)). To obtain candidate policies in the POISSON-APPROX family, we
enforced an MPL= K∗ for Q ≥ Qmax = 50.
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B.2.3 Performance of dynamic MPL control policies under Poisson arrival process

Weibull job size distribution

MPL 1 2 3 4 5 6 7 8 9 10 95 % c.i.

λ = 0.65 6.199 3.482 2.314 1.805 1.563 1.454 1.412 1.403 1.454 1.590 ± 0.051
λ = 0.75 9.691 6.184 4.375 3.484 3.046 2.857 2.892 3.170 4.130 8.121 ± 13.809
λ = 0.85 15.330 11.048 8.642 7.407 6.919 7.170 8.379 12.694 33.110 ± 0.684
λ = 0.95 25.095 20.659 18.059 17.330 18.748 23.686 ± 0.296
λ = 1.05 45.553 42.379 42.206 47.966 67.431 133.763 ± 4.024
λ = 1.15 111.763 119.949 153.967 281.284 ± 4.818

Table 19: (STATIC) Mean number of jobs, E[N ], for service rate curve 2 for different values of static MPL
and arrival rates, λ. The arrival process is Poisson(λ), and the job size distribution is Weibull.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 2.378 2.124 1.865 1.726 1.637 1.558 1.517 ± 0.021
λ = 0.75 4.975 4.480 4.023 3.768 3.546 3.389 3.363 ± 0.035
λ = 0.85 10.181 9.580 9.009 8.694 8.456 8.366 8.454 ± 0.074
λ = 0.95 20.496 19.963 19.521 19.528 19.712 20.113 21.142 ± 0.173
λ = 1.05 43.167 42.874 43.104 43.974 45.569 46.729 49.639 ± 0.434
λ = 1.15 111.455 113.389 114.755 115.777 121.243 123.808 129.620 ± 1.559

Table 20: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parameters
p of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is Weibull.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 1.448 1.448 1.514 1.654 1.999 2.833 ± 0.019
λ = 0.75 3.189 2.986 3.106 3.416 4.053 5.457 ± 0.036
λ = 0.85 9.024 7.783 7.427 7.657 8.573 10.564 ± 0.092
λ = 0.95 25.317 20.379 18.554 17.798 18.493 20.577 ± 0.182
λ = 1.05 61.214 50.854 45.221 42.540 41.160 42.003 ± 0.484
λ = 1.15 148.310 134.864 123.319 116.204 111.229 109.659 ± 1.798

Table 21: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parameters
λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is Weibull.

Tables 19-21 present the simulation results for service rate curve 2 (Figure 8(b)) under
a Weibull job size distribution, and Poisson arrival process with different values of the
mean arrival rate. The optimal static MPL for each arrival rate, and the dynamic policy
selected by the optimization procedure have been highlighted.
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H2 job size distribution

MPL 1 2 3 4 5 6 7 8 9 10 95 % c.i.

λ = 0.65 6.210 3.696 2.499 1.928 1.652 1.511 1.453 1.449 1.480 1.639 ± 0.077
λ = 0.75 9.687 6.440 4.679 3.753 3.223 3.033 3.050 3.313 4.259 7.990 ± 16.228
λ = 0.85 15.277 11.344 9.085 7.826 7.341 7.605 8.862 12.966 31.778 ± 0.817
λ = 0.95 25.190 20.881 18.514 17.897 19.325 24.210 ± 0.220
λ = 1.05 45.663 42.245 43.147 49.229 66.896 133.610 ± 2.672
λ = 1.15 110.919 119.596 154.279 276.161 ± 6.315

Table 22: (STATIC) Mean number of jobs, E[N ], for service rate curve 2 for different values of static MPL
and arrival rates, λ. The arrival process is Poisson(λ), and the job size distribution is H2.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 2.217 2.003 1.787 1.682 1.599 1.551 1.522 ± 0.011
λ = 0.75 4.617 4.191 3.806 3.608 3.427 3.321 3.309 ± 0.025
λ = 0.85 9.595 9.049 8.501 8.245 8.154 8.114 8.393 ± 0.087
λ = 0.95 19.849 19.238 19.050 19.050 19.478 19.803 21.117 ± 0.139
λ = 1.05 42.518 42.292 42.947 44.052 45.601 47.163 50.699 ± 0.427
λ = 1.15 111.041 113.122 115.120 117.854 122.667 126.708 131.782 ± 1.319

Table 23: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parameters
p of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is H2.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 1.471 1.485 1.561 1.722 2.061 2.863 ± 0.011
λ = 0.75 3.252 3.105 3.205 3.488 4.122 5.453 ± 0.024
λ = 0.85 8.881 7.681 7.487 7.778 8.602 10.412 ± 0.070
λ = 0.95 23.928 20.050 18.253 17.814 18.448 20.255 ± 0.117
λ = 1.05 58.388 49.254 44.606 42.179 40.545 41.896 ± 0.323
λ = 1.15 145.811 131.737 122.134 116.272 111.769 108.721 ± 1.503

Table 24: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parameters
λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is Poisson(λ), and the job size
distribution is H2.

Tables 22-24 present the simulation results for service rate curve 2 (Figure 8(b)) under an
H2 job size distribution, and Poisson arrival process with different values of the mean
arrival rate. The optimal static MPL for each arrival rate, and the dynamic policy selected
by the optimization procedure have been highlighted.
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B.2.4 Performance of dynamic MPL control policies under BPP arrival process

Weibull job size distribution

MPL 1 2 3 4 5 6 7 8 9 10 95 % c.i.

λ = 0.65 10.589 7.520 5.873 4.943 4.408 4.179 4.122 4.313 4.867 6.365 ± 0.212
λ = 0.75 15.804 12.082 9.831 8.608 8.001 7.896 8.452 10.014 14.224 31.090 ± 24.088
λ = 0.85 23.828 19.611 17.109 15.907 15.812 17.170 21.141 32.103 77.923 ± 1.535
λ = 0.95 38.137 33.701 31.810 32.128 35.769 46.175 ± 0.576
λ = 1.05 67.061 64.805 67.636 79.368 108.700 211.213 ± 4.974
λ = 1.15 161.021 175.466 226.446 412.586 ± 10.007

Table 25: (STATIC) Mean number of jobs, E[N ], for service rate curve 2 for different values of static MPL
and arrival rates, λ. The arrival process is BPP, and the job size distribution is Weibull.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 7.280 6.583 5.973 5.535 5.151 4.896 4.749 ± 0.036
λ = 0.75 12.268 11.448 10.655 10.112 9.660 9.369 9.266 ± 0.068
λ = 0.85 20.560 19.564 18.957 18.452 18.088 17.768 18.099 ± 0.125
λ = 0.95 35.190 34.566 33.943 34.006 33.915 34.336 35.408 ± 0.245
λ = 1.05 65.909 65.123 65.008 66.128 67.316 68.197 71.303 ± 0.588
λ = 1.15 158.469 159.253 159.856 162.008 165.675 170.578 173.408 ± 2.802

Table 26: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parameters p
of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size distribution is
Weibull.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 4.585 4.491 4.667 5.033 5.755 7.208 ± 0.035
λ = 0.75 9.369 8.784 8.844 9.243 10.138 11.962 ± 0.050
λ = 0.85 19.529 17.663 17.015 17.173 18.010 19.960 ± 0.112
λ = 0.95 39.519 35.390 33.492 32.510 32.862 34.483 ± 0.331
λ = 1.05 79.087 71.887 68.196 65.685 64.198 64.619 ± 0.574
λ = 1.15 186.087 176.231 168.068 164.259 159.812 158.610 ± 2.495

Table 27: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parame-
ters λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size
distribution is Weibull.

Tables 25-27 present the simulation results for service rate curve 2 (Figure 8(b)) under a
Weibull job size distribution, and BPP arrival process with different values of the mean
arrival rate. The optimal static MPL for each arrival rate, and the dynamic policy selected
by the optimization procedure have been highlighted.
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H2 job size distribution

MPL 1 2 3 4 5 6 7 8 9 10 95 % c.i.

λ = 0.65 10.567 7.654 5.956 4.998 4.417 4.183 4.147 4.361 4.887 6.388 ± 0.214
λ = 0.75 15.758 12.197 9.995 8.746 8.095 8.015 8.510 10.044 14.249 30.457 ± 38.162
λ = 0.85 23.873 19.843 17.297 16.126 16.092 17.423 21.462 32.516 76.864 ± 0.894
λ = 0.95 38.045 33.975 32.061 32.625 36.070 46.314 ± 0.393
λ = 1.05 67.083 64.867 68.017 79.864 109.745 210.172 ± 4.523
λ = 1.15 158.300 173.378 224.976 414.843 ± 18.582

Table 28: (STATIC) Mean number of jobs, E[N ], for service rate curve 2 for different values of static MPL
and arrival rates, λ. The arrival process is BPP, and the job size distribution is H2.

p 0.2 0.25 0.3 0.35 0.4 0.45 0.5 95% conf. int.
λ = 0.65 7.167 6.486 5.901 5.515 5.173 4.941 4.852 ± 0.024
λ = 0.75 12.038 11.193 10.453 9.960 9.608 9.259 9.232 ± 0.051
λ = 0.85 20.245 19.311 18.664 18.186 17.837 17.640 18.046 ± 0.087
λ = 0.95 34.987 34.137 33.638 33.489 33.654 34.185 35.370 ± 0.219
λ = 1.05 65.106 65.153 64.985 65.749 66.959 68.964 71.532 ± 0.525
λ = 1.15 159.360 159.071 161.055 163.731 165.572 168.916 173.830 ± 2.171

Table 29: (LIGHT-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parameters p
of the LIGHT-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size distribution is
H2.

λp 0.65 0.75 0.85 0.95 1.05 1.15 95% conf. int.
λ = 0.65 4.547 4.431 4.589 4.952 5.653 7.111 ± 0.027
λ = 0.75 9.146 8.578 8.609 9.070 9.967 11.839 ± 0.052
λ = 0.85 19.001 17.125 16.599 16.760 17.745 19.782 ± 0.102
λ = 0.95 38.752 34.545 32.779 32.153 32.401 34.228 ± 0.202
λ = 1.05 79.217 71.289 67.236 64.791 63.970 64.715 ± 0.514
λ = 1.15 187.146 176.047 169.281 164.695 159.673 159.169 ± 2.136

Table 30: (POISSON-APPROX) Mean number of jobs, E[N ], for service rate curve 2 for different parame-
ters λp of the POISSON-APPROX policy and arrival rates, λ. The arrival process is BPP, and the job size
distribution is H2.

Tables 28-30 present the simulation results for service rate curve 2 (Figure 8(b)) under an
H2 job size distribution, and BPP arrival process with different values of the mean arrival
rate. The optimal static MPL for each arrival rate, and the dynamic policy selected by the
optimization procedure have been highlighted.
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