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Abstract

Flow monitoring is increasingly used for a wide range of network security and anomaly detection
applications. These applications require that flow monitoring infrastructures provide high flow
coverage and be able to support fine-grained network-wide objectives. Coordinated Sampling
(cSamp) is a recent proposal for improving the flow monitoring capabilities of ISPs to address
these demands. In this paper, we address a key deployment impediment for cSamp-like solutions
– the requirement that each router must determine the Origin-Destination (OD) pair of each packet
it observes. We cast cSamp in a new framework called cSamp-T that enables us to apply powerful
results from the theory of maximizing submodular set functions to build effective flow monitoring
solutions in which each router works withonly local information. We show that cSamp-T provides
near-ideal performance in maximizing the total flow coverage in the network. Further, with a
small amount of additional targeted provisioning or upgrading a small number of ingress routers to
add OD-pair identifiers, cSamp-T obtains near-optimal maximization of the minimum fractional
coverage across all OD-pairs. We demonstrate these resultson a range of real topologies. From
a practical perspective, these results are promising sincethey expand the applicability of cSamp-
like solutions to ISPs where OD-pair identification is challenging and also provides an incremental
deployment path for ISPs. Additionally, we believe that many of the techniques we develop here
are more broadly applicable to other aspects of network management and measurement.





1 Introduction

Applications of flow monitoring in ISPs have far exceeded thescope of traditional traffic engi-
neering and accounting applications [8]. Today, flow monitoring supports several critical network
management tasks such as anomaly detection [23], identifying unwanted application traffic [6],
understanding traffic structure at various granularities [41, 39], botnet analysis [28], and even
forensic analysis [38]. These applications impose significantly greater demands on flow moni-
toring infrastructures: greater flow coverage (number of unique flows logged) and the ability to
achieve network-wide flow measurement goals.

To meet these growing demands, recent work (e.g., [5, 4, 30])articulates the case for network-
wide rather than router-centric approaches for flow monitoring. We take one such proposal, namely
Coordinated Sampling (cSamp) [30], as our starting point inthis paper. We choose cSamp because
compared to current solutions, it provides higher flow coverage, achieves fine-grained network-
wide flow coverage goals, efficiently leverages available monitoring capacity on routers and min-
imizes redundant measurements, and naturally load balances responsibilities to avoid monitoring
hotspots.

In order to simplify the underlying algorithmic formulations, cSamp assumes that each router
on receiving a packet can immediately ascertain the Origin-Destination (OD) pair for the packet,
specified by the ingress and egress routers. However, due to prefix-aggregation and multi-exit
peers, interior routers in the network cannot identify the OD-pair given just the source and desti-
nation IP addresses. Thus, cSamp imposes two requirements:(i) modifications to packet headers
to carry OD-pair identifiers, and (ii) upgrades to border routers to compute the OD-pair identi-
fiers [11] for each packet. Both modifications present significant deployment barriers for many
ISPs. Thus, while cSamp is an elegant architecture that has the potential to improve flow monitor-
ing, in its current form it is an impractical solution with noimmediate deployment path for ISPs
today.

To address this impediment, in this work, we reformulate theproblem of implementing a
cSamp-like architecture into the scenario where OD-pair identifiers are not available. The goal
of such an architecture, to which we refer as cSamp-T1, is to realize the benefits of cSamp and at
the same time be immediately deployable. An immediate consequence of this reformulation is that
the known algorithms [30] for efficiently maximizing eitherthe total flow coverage or minimum
fractional coverage across all OD-pairs, no longer apply. In fact, we show that these problems
are NP-hard. Consequently, a central challenge is to develop algorithms for efficiently computing
sampling strategies so as to optimize these measures, either exactly or approximately.

In this paper, we present substantial progress toward meeting this challenge. For the measure
of total flow coverage (total number of unique flows logged), we notice that the objective function
is submodular. This is important because even though it is hard to find an exact optimal solution,
we can implement efficient greedy algorithms with good approximation guarantees that leverage
this submodularity property. We borrow and extend results from a rich theory of optimizing sub-
modular functions subject to budget constraints (e.g., [12, 25, 19, 21]) to this specific application.
We show that on realistic topologies, this approach yields near optimal total flow coverage.

1cSamp-T denotes cSamp minus Tags for OD-pairs
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The minimum fractional coverage objective (i.e., the minimum across all OD-pairs of the frac-
tion of flows logged per OD-pair) is not submodular, however,and so does not inherit these ap-
proximation guarantees with a greedy approach [21]. Moreover, on realistic topologies the greedy
approach performs poorly. So, in this case we turn to examining the additional resources needed
in order to obtain good performance. We consider two practical scenarios for ISPs to alleviate this
concern: (a) augmenting targeted routers with more memory resources and (b) incremental deploy-
ment of cSamp by upgrading a small subset of border routers with the functionality to compute
OD-pair identifiers and add them into packet headers. Our results in this direction are promising:
we show that a few such router upgrades can significantly boost the minimum fractional coverage
obtained in realistic topologies.

cSamp-T thus makes cSamp-like solutions more immediately deployable by relaxing the de-
pendence on the OD-pair identifiers. Further, it provides anincremental deployment path for ISPs
to transition their flow monitoring infrastructures to cSamp, while in the interim partial deployment
phase it provides performance comparable to cSamp. We also believe that many of the specific al-
gorithmic techniques and heuristic extensions we develop here (e.g., applying results from the
theory of submodular set maximization, intelligent resource provisioning, hybrid cSamp/cSamp-T
deployment) can be more broadly applied to other aspects of network management and measure-
ment.

2 Background and Motivation

Why cSamp: Applications of flow monitoring continue to grow and alreadyinclude several
anomaly detection and security applications (e.g., [23, 6,41, 39, 38, 28]). Motivated by this trend,
Sekar et al. [30] identify five main goals for flow monitoring solutions: (i) provide high flow
coverage (i.e., log as many flows as possible) to support the security applications that need a fine-
grained understanding of “who-talked-to-whom”, (ii) minimize redundant reports (i.e., use router
resources efficiently and reduce the overhead in processingduplicate measurements), (iii) satisfy
network-wide flow monitoring objectives (e.g., specify some subsets of traffic as more important
than others or ensure fairness across different subsets), (iv) work within (possibly heterogeneous)
router resource constraints, and (v) be general enough to support a wide spectrum of flow monitor-
ing applications.

Synthesizing arguments from several previous papers [16, 22, 5, 34, 4, 31, 7], Sekar et al [30]
argue that these goals necessitate three design choices: using flow sampling instead of packet sam-
pling to avoid the well-known biases of packet sampling against small flows [16], coordinating the
routers to leverage available monitoring resources efficiently and to avoid redundant sampling, and
a network-wide framework for assigning flow monitoring responsibilities to routers to optimally
achieve ISP objectives.

Description of cSamp: For completeness, we provide a brief overview of the cSamp approach.
We refer the reader to [30] for further details. The inputs tocSamp are the flow-level traffic
matrix (number of flows per OD-pair), router-level path(s) for each OD-pair, the resource con-
straints of routers, and a ISP objective function (specifiedin terms of the fractional flow coverages
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per OD-pair). The output is a set ofsampling manifestsspecifying the monitoring responsibility
of each router in the network. The sampling manifest in cSampis a set of tuples of the form
〈OD , [start , end ]〉, where[start , end ] ⊆ [0, 1] denotes a hash range.

Each router’s sampling algorithm is as follows. For each packet, the router first identifies the
OD-pair from the packet header. Next, it computes a hash on the flow 5-tuple (srcIP, dstIP, srcport,
dstport, protocol) and checks if the hash value lies in the hash range assigned to it for the OD-pair
(the function HASH returns a value in the range[0, 1]). Each router maintains aFlowtable of the
flows it is currently logging. If the packet has been selected, the router either creates a new entry
(if none exists) or updates counters for the corresponding entry in theFlowtable.

The key idea is that all routers are bootstrapped with the same hash function but are assigned
disjoint hash ranges per OD-pair. This coordinates the sampling actions of routers in the network.
Coordination makes it easy to achieve network-wide flow coverage goals in terms of the per OD-
pair coverages and also ensures that the sets of flows sampledby different routers do not overlap.

cSamp formulation: Each OD-PairOD i (i = 1, . . . ,M ) is characterized by its router-level path
Pi andTi, the number of distinct IP-level flows in a measurement interval (e.g., five minutes).2

Each routerRj (j = 1, . . . ,N ) is primarily constrained by the availablememoryfor maintaining
per-flow counters in SRAM [10];Lj denotes the number of flowsRj can record and report in a
given measurement interval.

dij denotes the fraction of flows ofOD i that routerRj logs. (IfRj does not lie on pathPi, then
the variabledij will not appear in the formulation.) Fori = 1, . . . ,M , let Ci denote the fraction of
flows onOD i that is logged.

The specific goal in [30] is a two-step objective. First, the largest possible minimum fractional
coverage per OD-pairmini{Ci} subject to the resource constraints is found. Next, this value is
used as the parameterα to the linear program shown below in (4) and the total flow coverage∑

i(Ti × Ci) is maximized.

Maximize
∑

i(Ti × Ci), subject to

∀j,
∑

i:Rj∈Pi
(dij × Ti) ≤ Lj (1)

∀i, Ci =
∑

j:Rj∈Pi
dij (2)

∀i, ∀j, dij ≥ 0 (3)

∀i, α ≤ Ci ≤ 1 (4)

The solutiond∗ = {d∗
ij} to this two-step procedure yields the optimal sampling strategy. Next,

this solution is mapped via a simple algorithm into thesampling manifestsspecifying the flow
monitoring responsibility for each router.

Assumptions in cSamp:There are three main assumptions: (i) a centralized module for assigning
router responsibilities that has access to routing and traffic matrices, (ii) routers implement hash-
based flow sampling, and (iii) routers obtain OD-pair information from packet headers.

2For simplicity, we assume that each OD-pair has a single routing-level path. It is easy to extend the framework to
accommodate multi-path routing [30].
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The first two assumptions are feasible within current technological and operational realities.
First, centralization is viable if the router configurations are generated in a reasonable amount of
time (say at most 1-2 minutes). Further, recent trends show that ISPs increasingly favor centraliza-
tion of the network management functions [2, 14] and that routing and traffic matrices are typically
already available [11, 40]. The second assumption that routers support hash-based flow sampling
is also feasible within capabilities available today. The requirements on such hash functions are
quite simple [32, 7] (e.g., no strong cryptographic guarantees) and thus they are amenable to fast
hardware implementations [29]. Further, routers already implement hardware hash functions for
other tasks. Flow sampling requires flow table lookups for each packet; the flow table, therefore,
needs to be implemented in fast SRAM. Prior work has shown that maintaining such counters is
feasible [10, 18]. For simplicity, cSamp assumes that the flow counters are maintained in SRAM
and the amount of SRAM is the resource constraint that determines the number of flows a router
can log.

The assumption that routers can obtain OD-pair identifiers simplifies cSamp’s design and
makes the optimization problem theoretically tractable. Specifically, (2) implicitly assumes that
the hash-ranges assigned to different routers for the same OD-pair are non-overlapping. Thus, the
coverage of each OD-pair is simply the sum of the fractional coverages of the routers on the path.
If OD-pair identifiers were not available, this would no longer hold. As we argue next, for many
ISPs this assumption is not practical.
Challenges in OD-pair identification: Obtaining OD-pair information is quite challenging for
many ISPs today. First, it requires routers to be aware of OD-pair identifiers. This may require
ISPs to migrate to MPLS-style routing. Second, routers cannot determine the OD-pair based on
the IP header and local routing information alone. For example, in the case of traffic destined to a
multi-exit peer (i.e., a neighboring AS with which an ISP peers at multiple peering points), prefix
information alone is not sufficient to determine the exact egress. To complicate matters further,
interior routers only see aggregated prefix information; ingress routers are in a better position to
identify the egress when a packet first enters the network. Thus, cSamp assumes that ingress
routers explicitly add OD-pair identifiers to packet headers. This leads to another limitation – it
imposes additional computational effort on border routers(e.g., replicating some of the routing
logic to resolve the egress router) and requires modifications to packet headers.

3 cSamp-T: Problem Statement

Motivating question: The above challenges in OD-pair identification bring us to the motivat-
ing question for our work: Can we implement a cSamp-like approach without requiring OD-pair
identifiers? Intuitively, we want to specify each router’s sampling manifest at amuch coarser
granularity relying only onlocal informationrather than the global OD-pair identifiers, while still
achieving the coverage guarantees of cSamp. We call this newapproach cSamp-T.

cSamp-T eliminates the need for ISPs to (a) upgrade border routers with additional intelli-
gence for OD-pair identification, (b) modify packet headersto accommodate these identifiers, and
(c) overhaul their routing infrastructures. Thus, cSamp-Tmakes the benefits of cSamp-like solu-
tions available to network operators without incurring theoverhead for OD-pair identification that
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Figure 1: Example topology showing the intuition behind thecSamp-T approach

cSamp imposes.
High-level approach: The key insight behind the cSamp-T approach is to only uselocal informa-
tion at each router to specify the router’s sampling responsibilities. The coverage of each OD-pair
is obtained by “stitching” together the coverages providedby each router on the path.

Consider the example shown in Figure 1 with 2 ingresses, 2 egresses, and 4 OD-pairs P1–
P4. The top-half shows a cSamp configuration; OD-pair identifiers are available and each router’s
responsibilities are in terms of hash-ranges per OD-pair and for each OD-pair the ranges on the
routers on its path are non-overlapping.

The bottom-half of Figure 1 shows a scenario where routers cannot obtain OD-pairs. The
sampling manifests are specified based on just local information; each router is assigned ahash-
range per router 3-tupleconsisting of the previous hop, current router, and the nexthop. Note
that for each packet, a router can ascertain the previous hopand next hop just based on local
information (e.g., the interface the packet arrives on and the next hop router determined by the
routing table). The coverage for each OD-pair will then be the unionof the ranges assigned to its
constituent path-segments (the 3-tuples on each path in this example).

This example demonstrates two key differences between cSamp and cSamp-T. First, the sam-
pling responsibilities are specified using locally available information rather than global OD-pair
identifiers. Second, the coverage for each OD-pair is no longer simply the sum of the coverage of
each router on the path; it is the union of the ranges assignedto the routers on the path.

Now, how do we assign sampling responsibilities in cSamp-T to maximize specific flow cov-
erage objectives while operating within each router’s resource constraints? The following sections
present a formal framework to address this.

Problem Formulation for cSamp-T: We borrow two assumptions from cSamp: (a) sampling
responsibilities are generated at a centralized module with access to routing and traffic matrices
and (b) routers implement hash-based flow sampling using SRAM counters and the amount of
SRAM is the primary resource constraint on the number of flowsa router can log. As discussed
earlier, both are reasonable assumptions. Next, we discussthe design of the centralized logic for

5



R3 R4
R1

R2

SamplingSpecs

<R1,R3,R4>

SamplingAtoms
<R1,R3,R4> , [0,0.25]

<R2,R3,R4> <R2,R3,R4> , [0,0.25]
<R1,R3,R4> , [0.75,1]

<R4,R3,R1><R1,R3,R2>
<R4,R3,R2> <R2,R3,R1>

{ }

Figure 2: Example to illustrate the definitions showing the SamplingSpecs and assigned Samplin-
gAtoms at router R3.

assigning sampling responsibilities in the absence of OD-pair identifiers.
We first define the notion of aSamplingSpecto capture the granularity at which each router’s

sampling decisions are made. For the current discussion, the SamplingSpecs are three-tuples of
router identifiers〈Rj1,Rj2,Rj3〉 that appear contiguously on some path in the network, and so in
particularRj1 andRj3 are neighbors ofRj2 . Let ak denote a generic SamplingSpec in our system.

The notationak ∈ Pi captures the idea of a SamplingSpec being on the pathPi for OD i.3 For
example, if the pathPi uses routers· · · ,Rj1,Rj2,Rj3, · · · in that order, then the SamplingSpec
a = 〈Rj1,Rj2,Rj3〉 ∈ Pi. This is a natural extension similar to the notion of a routerRj being
on pathPi. We usetk =

∑
i:ak∈Pi

Ti to denote the total traffic that traversesak. Our framework
maps SamplingSpecs to routers in a many-to-one fashion; we denote the set of SamplingSpecs
assigned toRj by Rj .specs. In this way,Rj is assigned sampling responsibilities corresponding to
all ak ∈ Rj.specs. In this paper, ifak = 〈Rj1,Rj2,Rj3〉, thenak ∈ Rj2 .specs.

From the above discussion, it is clear that ifRj.specs ∋ ak, thenRj is in a position to log
(some or all) of the traffic on pathsPi ∋ ak. But which fraction should it log? To this end, if the
entire traffic corresponding toak is mapped to points in the unit interval[0, 1] (say, by hashing)
then the router will be responsible for some subset of[0, 1]. In particular, we discretize[0, 1] into
1
δ

equal-sized intervals of lengthδ hl = [(l − 1)δ, lδ], and assign toak some of theseδ-intervals.
We formalize this by creating a set ofSamplingAtoms. A SamplingAtom is a pair〈ak, h〉,

whereak is a SamplingSpec andh ⊆ [0, 1] is a “hash-range”—a subset of the unit interval of
lengthδ. For any SamplingAtom,gkl = 〈ak, hl〉, if ak ∈ Rj.specs, then routerRj will log the
flows that traverseak such that the hash of the flow falls inhl. We useh(gkl) as a shortcut for the
hash-range associated withgkl.

EXAMPLE : Figure 2 illustrates the above definitions with an example.R3 has three SamplingSpecs
in the forward direction (and three similar SamplingSpecs in the reverse direction):〈R1 ,R3 ,R4〉,
〈R1 ,R3 ,R2〉 and〈R2 ,R3 ,R4 〉. R3 is assigned three SamplingAtoms, two for〈R1 ,R3 ,R4〉,
one for〈R2 ,R3 ,R4 〉, and none for〈R1 ,R3 ,R2〉. Sayδ = 0.25. Consider paths of the form
{..,R1 ,R3 ,R4 , ..} (there may be many such paths).R3 will log all flows along these paths
whose hashes fall either in the range[0, 0.25] or [0.75, 1], and flows along paths of the form
{..,R2 ,R3 ,R4 , ..} such that the hash of the flow falls in the range[0, 0.25].

3Since this notion of “on-path”-ness is quite general, our approach works even in the case of multi-path routing.
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Notation Explanation
M Number of OD-pairs
N Number of routers

OD i OD-pairi
Ci Fraction of flows on OD-pairi covered
Rj Routerj
Lj Available resources onRj

Load j Total monitoring load onRj

ak SamplingSpeck
Rj .specs set of SamplingSpecs onRj

tk Total traffic traversing SamplingSpecak

gkl SamplingAtoml onak

ĝkl an assigned or selected SamplingAtom
h(gkl) hash-range⊆ [0, 1] in SamplingAtomgkl

Table 1: Notation in the problem statement

Measures of Goodness:Given a set of assigned SamplingAtoms,{ĝkl}, the fractional coverage
for OD i is as follows. The coverage due to one particular SamplingSpecak ∈ Pi is ∪l h(ĝkl) ⊆
[0, 1], and hence the total coverage is

coverageCi =
∣∣⋃

ak∈Pi

⋃
l h(ĝkl)

∣∣ (5)

Here, given an intervalS ⊆ [0, 1], we use|S| to denote the fraction of the unit interval covered
by this subset. Note that the coverage for a path is theunionof the assigned hash-ranges across
all the constituent SamplingSpecs – if thesamehash-range is assigned to several SamplingSpecs
along a path, then the same set of flows gets sampled and we do not get any extra coverage.

Themonitoring loadon a router is given by summing, over all SamplingSpecsak ∈ Rj .specs,
the portion of the traffic throughak thatRj logs:

Load j =
∑

ak∈Rj .specs
tk × |

⋃
l h(ĝkl)| (6)

Given theCis for the various OD-pairs, the specific functions we consider are thetotal traffic
coverageftot =

∑
i TiCi, and theminimum fractional coveragefmin = mini Ci. Formally, the

goal of our algorithms is to obtain the set of assigned SamplingAtoms{ĝkl} such that we maximize
eitherftot or fmin , while operating within the router resource constraints (i.e.,Load j ≤ Lj for all
j). We choose these specific objective functions because of their use in cSamp [30]; our framework
can accommodate a wider range of objective functions specified as convex combinations of theCi

values.
The maximization problem: We can rewrite the above maximization problems as follows. Con-
sider a “ground set”V which contains as its elements all possible SamplingAtoms:i.e., V =
{〈ak, hl〉 for all possible SamplingSpecsak and all 1

δ
hash-rangeshl}. Suppose a subsetS ⊆ V of

these SamplingAtoms are chosen and assigned to their corresponding routers. These give us the
fractional coverages defined by (5) and router loads given by(6). Now,ftot or fmin can be viewed
as functions from subsets ofV to the reals. The problem is to select theoptimalS∗ ⊆ V, satisfying
Load j ≤ Lj , that maximizesftot or fmin .
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Exact Solutions are Hard: Finding the optimalS∗ to maximizeftot or fmin subject to the load
constraints on routers is NP-hard. Appendix A demonstratesthe hardness via a reduction from the
3-SAT problem. Moreover, it is infeasible for practical system sizes. For example, we cast the
problem into an integer linear programming (ILP) formulation by assigning 0-1 indicator variables
for eachgkl to denote whether it is “assigned” or not. Even on the Internet2 topology with just 11
routers, the commercial solverCPLEX did not converge to a solution after a day. It is because of
this intractability of solving the problem exactly that we resort to greedy approximations. However,
as we will see, our algorithms will yield results that compare favorably to the original cSamp
performance.

4 Submodularity and Algorithms

Overview and Intuition: In the previous section, we saw that obtaining exact solutions for maxi-
mizing the total coverage or the minimum fractional coverage in the cSamp-T framework is hard.
Fortunately, as we will see in the next sections, there are efficient practical algorithms to obtain
the sampling strategies in cSamp-T. The key insight is that the coverage functions have a natural
“submodularity” property (defined next) which allows us to apply powerful results from the the-
ory of maximizing submodular set functions to our context. This is particularly promising, since
submodularity implies that the greedy algorithm yields a constant-factor approximation [12].

More specifically, the coverage functions are “submodular”and the memory constraints at each
router are “knapsack” constraints; our problem is then equivalent to the problem of maximizing
submodular functions subject to knapsack constraints. We give theoretical bounds (Appendix B)
and also show that the greedy algorithms work very well in practice. We also give results for
maximizingfmin using algorithms for max-min submodular maximization [21].

4.1 Submodularity

Definition: A functionF : 2V → ℜ mapping subsets of a ground setV to the reals issubmodular
if for all setsS ⊆ S′ ⊆ V, all elementss ∈ V,

F (S ∪ {s}) − F (S) ≥ F (S′ ∪ {s}) − F (S′)

i.e., the marginal benefit obtained from addings to a larger set is smaller[12]. This captures the
intuitive property of diminishing returns. The functionF is monotone (nondecreasing)if ∀S ⊆
S ′, F (S) ≤ F (S′).

Submodular set maximization: The goal is to pick a subsetS ⊂ V maximizingF (S); what
makes this problem hard is that we also have a “budget” constraint of the formc(S) ≤ B; i.e.,
given “costs”c(s) for all s ∈ V, the total costc(S) :=

∑
s∈S c(s) of elements picked in setS

cannot exceed the “budget”B. This submodular maximization problem is NP-hard [12], butgood
approximation guarantees are known. In particular, the algorithm specified in Figure 3 either greed-
ily picks elements that give the greatest marginal benefit and do not violate the budget constraints,
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SUBMODULARGREEDY(F,V, cbflag , B)

// F : 2V → ℜ submodular,B is total budget
// if cbflag is true use benefit/cost instead of benefit

1 S ← ∅
2 while (∃s ∈ V \ S : c(S ∪ {s}) ≤ B) do
3 for s ∈ V \ S do
4 norm ← ((cbflag = true) ? c(s) : 1)

5 δs ←
F (S∪{s})−F (S)

norm

6 s∗ ← argmaxs∈V\Sδs

7 S ← S ∪ {s∗}
8 return〈S, F (S)〉

Figure 3: Basic greedy algorithm

or greedily picks the elements that give the maximum marginal benefitper unit element-cost(de-
pending on whethercbflag is true or false), as long as the budget is not violated. It is well-known
that the better of these two algorithms is a constant factor approximation algorithm [37].

4.2 Application to cSamp-T

It is easy to check the coveragesCi viewed as a functions fromV = SamplingAtoms → ℜ are
monotone submodular functions, and hence so is their weighted sumftot =

∑
TiCi.

Budget constraints in cSamp-T:The budget constraints in cSamp-T come from the bounds on
router load. To model router load, we need a knapsack constraint Load j ≤ Lj for each routerRj .
A naive approach is to consider the cSamp-T problem as a submodular set maximization problem
with multiple knapsack constraints. This naive approach yields aO(N ) approximation, whereN
is the number of routers. This is clearly undesirable, especially for large networks. Specifically,
since eachSamplingAtom contributes to the load on exactly one router, this results in a collec-
tion of non-overlappingknapsack constraints. We call the resulting problemsubmodular function
maximization subject to partition-knapsack constraints. (Each “partition” corresponds to a differ-
ent router, and the “knapsack” comes from the load constraint for that router). In Appendix B
we show that a modified greedy algorithm—an extension of one from Figure 3—gives a constant-
factor approximation.

Maximizing ftot : To match the theoretical guarantees [37] (see Appendix B), we run two separate
invocations of the greedy algorithm—with and without the benefit-cost flag set to true, and return
the solution with better performance. In practice, both have similar performance (Section 6.1).

Maximizing fmin : To maximizefmin , we need to go from one submodular functionF to many
submodular functionsF1, F2, . . . , FM —in our case, these are the fractional coveragesC1, . . . ,CM .
The problem is now to pickS ⊆ V to (approximately) maximizeFmin(S) = mini Fi(S), the
minimumvalue across these different functions. This new functionFmin is no longer submodular;
indeed, obtaining any non-trivial approximation guarantee for this max-min optimization problem
is NP-hard [21]. However, we can give an algorithm to maximize Fmin when we are allowed
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GREEDYMAX M IN (F1, . . . , FM , ǫ,V, B, γ)

// Maximizemini{Fi}
// ∀i, Fi : 2V → [0, 1] is submodular

1 τlower ← 0; τupper ← 1
2 while (τupper − τlower > ǫ) do
3 τcurrent ←

τupper+τlower

2

// Define the modified objective function
4 ∀i, F̂i ≡ min(Fi, τcurrent); F̂ ≡

∑
i F̂i

// Run greedy without budget constraints
5 Bused ← SUBMODULARGREEDY(F̂ ,V, true,∞)

// Compare resource usage
6 if MAX USAGE(Bused , B) > γ then

// τcurrent is infeasible, reduce upper bound
7 τupper ← τcurrent

8 else
// τcurrent is feasible, increase lower bound

9 τlower ← τcurrent

10 Returnτlower

Figure 4: Maximizing the minimum of a set of submodular functions with resource augmentation

to exceed the budget constraint by some factor [21]. Formally, if S∗ is an optimal set satisfying
budget constraints, the algorithm in Figure 4 finds a setS with Fmin(S) ≥ Fmin(S∗)− ǫ but which
exceeds the budget constraints by a factor ofγ, whereγ = O

(
log(1

ǫ

∑
v∈V Fi(v))

)
.

The key idea is this: the modified objective functionF̂τ =
∑M

i min(Fi, τ) is submodular. For
anyτ , F̂τ has the property that its maximum value isM × τ and at this maximum value∀i, Fi ≥ τ .
Running the greedy algorithm assuming no resource constraints always gives a set such that the
actual resource usage at routerRj is at mostγ × Load j. Notice that this holds for allτ , and in
particular, for the optimal valueτ ∗ = Fmin(S∗). Since the optimalτ ∗ is not known, the algorithm
in Figure 4 uses binary search overτ .

Router algorithm: Given a solution to the problem of maximizingftot or fmin , Figure 5 shows
each router’s sampling algorithm. Note that the router no longer requires the OD-pair information
for a packet; it only requires the coarser SamplingSpec information which can be immediately
discerned using only the packet headers and other local information (e.g., what interface the packet
arrives/leaves on). We allow for theRanges for each SamplingSpec to be a set of non-contiguous
hash ranges; thus, the router samples the packet if the hash value falls inanyof the ranges.

4.3 Practical Issues

Reducing computation time: The computation time of the algorithm of Figure 3 can be reduced
by using the insight that for each elements ∈ V, the marginal benefit obtained by pickings
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CSAMP-T ROUTER(pkt ,Manifest)

// Manifest = {ĝkl = 〈a, h〉}
1 a ← GETSAMPLINGSPEC(pkt)

// Ranges is a set of hash-range blocks
2 Ranges ← GETRANGES(a)

// HASH returns a value in[0, 1]
3 hpkt ← HASH(FLOWHEADER(pkt))

// Log if the hash value falls in one of the ranges
4 if hpkt ∈ Ranges then
5 Create an entry inFlowtable if none exists
6 Update byte and packet counters for the entry

Figure 5: Implementing cSamp-T on routerRj

decreases monotonically across iterations of the greedy algorithm [25, 13]. Thus, we can use a
lazy evaluationalgorithm [25, 13]. The main intuition behind lazy evaluation is that not allδs

values need to be recomputed in Figure 3 (Step 5); only a smaller subset of that are likely to affect
the choice ofs∗ in Step 6 need to be computed. We omit further details of this algorithm for brevity
and refer the reader to the references [25, 13]. We can replace all instances of the procedure call
SUBMODULARGREEDY with the lazy evaluation version. Section 6.2 shows that this reduces the
computation time by more than an order of magnitude.

Generalizing SamplingSpecs:We assumed that the SamplingSpecs are defined at the granularity
of router three-tuples. Note, however, that the greedy algorithms and the per-router sampling
algorithm are quite generic; they do not depend on SamplingSpecs being router three-tuples. We
can generalize the algorithms and results to different notions of a SamplingSpec. For example,
the SamplingSpecs can be router identifiers (in which case the router applies the same sampling
decisions to every path passing through it), or router two-tuples (previous hop and current router),
or incorporate IP-prefix information as well.

Practical issues in discretization: Section 3 defined discretization intervalsδ such thatgkl =
〈ak, [(l − 1)δ, lδ]〉, for valuesl ∈ {1, . . . , 1

δ
}. There are two practical issues to note here. First, we

can make the widthδ arbitrarily small; there is a tradeoff between (potentially) better coverage vs.
the time to compute the solution. In our evaluations, we fixδ = 0.02 since we find that it works
well in practice. Secondly, instead of considering1

δ
disjoint intervals, we can also consider the

1
δ

2
hash-ranges of the form[mδ, (m + n)δ] to make assignments as contiguous as possible. This

increases the computation time quadratically without providing any additional coverage benefits.
In practice, we avoid this and instead run a simple merge procedure (Section 6.3) to compress the
sampling manifests.
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5 Heuristic Extensions

While the theoretical guarantees forftot are encouraging, achieving good performance forfmin is
less promising. The theoretical results suggests that the resource augmentationγ required to obtain
any non-trivial guarantee is quite high.

In this section, we consider three practical extensions to improve the performance forfmin .
The first extension uses a targeted provisioning heuristic to use fewer resources in aggregate. The
second extension evaluates an incremental deployment scenario where a small subset of ingress
routers can be upgraded to add OD-pair identifiers. We present these in the specific context of the
fmin objective. However, these two techniques we develop for targeted provisioning and partial
marking can be more generally applied to other network-wideobjectives where the greedy algo-
rithm performs poorly. We also consider an alternative submodular objective function for getting
better performance forfmin

5.1 Intelligent Provisioning

The theoretical bounds from the previous section assume that each router in the network is uni-
formly givenγ times more resources. In practice, this may be quite excessive since it might be
very expensive to addγ times more SRAM capacity to each router. An interesting question is
whether it is possible get better performance if we can add more memory on routers intelligently –
instead of upgrading all routers, we seek to augment a smaller subset of routers and still get similar
performance. The rationale behind the approach is that it may suffice to upgrade a small number
of heavily loaded routers.

Problem provisioning:

Maximizemini Ci, subject to

∀j,
∑

k:ak∈Rj .specs
uk × tk ≤ Lj (7)
∑

j Lj ≤ Budget (8)

∀j,LB j ≤ Lj ≤ UB j (9)

∀i,Ci =
∑

k:ak∈Pi
uk (10)

∀k, uk ≥ 0 (11)

∀i,Ci ≤ 1 (12)

To address this question, we consider the above provisioning problem. The network operator
specifies a total budget of memory resources to be distributed across different routers (e.g., defined
by a total monetary budget and the cost of SRAM). Each routerRj has a lower bound (LB j) for
the default memory configuration and a technology upper bound (UB j) on the maximum amount
of memory that can be provisioned. (There are natural technological limits on the amount of fast
SRAM that can be added to linecards [36].) The inputs to the problem are the total memory budget
Budget , LB j , andUB j. The output is the specific allocation of resources to routers to optimize
fmin .
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However, it is difficult to model the coverageCi of each OD-pair provided by the greedy
algorithm under a given set of resources. Thus, we make a simplifying assumption that the hash
ranges (represented by the variablesu) allocated across the different SamplingSpecs on a given
path are mutually non-overlapping. This allows us to modelCi as simply the sum of the ranges
uk in (10). Under this assumption, the resource provisioning problem can be solved as a linear
programprovisioning. While this is not optimal compared to faithfully modeling the Ci as the
union of the ranges, this is a reasonable assumption since our goal is to obtain general guidelines
for resource provisioning. As we will see in Section 6.4, this heuristic works well in practice.

There are two steps to the intelligent provisioning heuristic. The first step solves the LP
provisioning. Next, given the resource allocation output byprovisioning, we run the greedy
algorithm in Figure 4 withγ = 1 to ensure that we are strictly within the resource constraints.
Adding a variance term to the objective: In practice, we find that it is useful to add a variance
term to the objective function. We modify the above objective functionmini Ci to be{mini Ci} −
g({L2

j}), whereg is a function of the second-moments of theL values. The negative term denotes
that our intent is tominimizethe variance across theL values (with appropriate normalization
to ensure that the variance term and the coverage term do not have wildly different magnitudes).
Among the different configurations that maximizemini Ci, the goal is to pick the configuration that
distributes the resources most uniformly across the routers. This offsets two potential undesirable
effects. First, the LP solver may not necessarily use all theavailable resources to achieve the
optimal minimum fractional coverage. Second, the LP solution may result in a skewed resource
allocation which may be undesirable for the greedy algorithm and less robust to changes in traffic
or routing inputs. The variance term forces the optimization solver (now a quadratic program
instead of a LP) to use up the available resources efficientlyand also reduces the skew. While this
works well for most common cases, it may not prevent skewed allocations whenβ >> γ.

5.2 Partial OD-pair identification

Next, we consider a scenario in which a network operator can choose to upgrade some border
routers. For example, this can be achieved using a software update to the router or by adding a
simple two-port middlebox (using a software switch runningon commodity hardware [27] or using
FPGA [17]) that processes each packet, modifies the header, and forwards them to the router. These
few upgraded nodes (routers or router plus middlebox) then have the capabilities to identify the
OD-pairs and add the identifiers to packet headers. We assumethat all routers run both cSamp and
cSamp-T sampling algorithms – i.e., a router logs a flow if thehash of the flow falls in a hash-range
correspondingeitherto the OD-pair or the SamplingSpec for the packet.

Let Pe denote the set of “enabled” OD-pairs whose packets carry OD-pair identifiers and let
P denote the set of all OD-pairs. We compute the maximum minimum fractional coverage using
a binary search overτ . The key difference between the new algorithm and Figure 4 isthat each
iteration of the binary search has two logical steps. In the first step, we solve a cSamp-style
linear program over the enabled OD-pairs. In the second step, we define the capped functions
Ĉi(τ) = mini(Ci, τ) for the non-enabled OD-pairs and use the greedy algorithm tomaximize
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F̂ =
∑

i Ĉi.

Problem enabledODs(α,Pe):

Minimize
∑

j

Lj , subject to

∀j,
∑

i∈Pe :Rj∈Pi
(dij × Ti) ≤ Lj (13)

∀i ∈ Pe ,Ci =
∑

j:Rj∈Pi
dij (14)

∀i ∈ Pe , ∀j, dij ≥ 0 (15)

∀i ∈ Pe , α ≤ Ci ≤ 1 (16)

In each iteration, for the current valueτcurrent , the first step involves solving the LPenabledODs.
The input to the LP is the set of enabled OD-pairsPe and the target fractional coverageα = τcurrent .
The objective of the LP is to minimize the total amount of resources used across the different
routers to ensure that eachOD i ∈ Pe gets coverage at leastα = τcurrent . Solving the LP returns
the resources allotted to each router or returns an infeasible status if there is no feasible solution.

If the LP is infeasible, then we directly proceed to the next iteration of the binary search. If
the LP is feasible, then we obtain the new budget per router bysubtracting the resources used
in the LP stage from the original budget per router. Next, we run the greedy algorithm with the
reduced budget and modified objective specified over the non-enabled OD-pairs. By construction,
the maximum valuêF can take is(M − |Pe |) × τcurrent whereM is the total number of OD-pairs
and|Pe | is the number of enabled OD-pairs. This maximum value is achieved if and only if each
of the non-enabled OD-pairs (i.e., in the setP \Pe) achieves a fractional coverage equal toτcurrent .
If the greedy algorithm achieves this objective value, thenτcurrent is feasible and we try a higher
value in the next iteration; else we try a lower value in the next iteration.

5.3 Using theα-fair objective function

Theα-fairness notion has been traditionally used in the congestion control literature (e.g., [26]) to
generalize the max-min notion of fair allocation. Given itemsxi, and a total resourceC we want
to allocate the total resource to the items in a “fair” manner. Theα-fairness function is defined as∑

i U(xi), whereU(x) = x1−α

1−α
. The parameterα can take values in[0,∞), and the valuesα = 0,

α = 1,4 andα → ∞ correspond to achieving maximum throughput, proportionalfairness, and
max-min fairness respectively.

In our problem setting, eachxi corresponds to the submodular functionFi = Ci. It is easy to
verify that the function

∑
i U(Ci) is submodular; thus we can use the SUBMODULARGREEDY with

α set to some large value. To avoid numerical instabilities, we useα = 100 and also add a small
additive constant to eachCi at the beginning since the functionU(x) is undefined whenx = 0.
Note that unlike the above heuristics, using theα-fair function is tightly coupled to maximizing
the minimum fractional coverage.

4At α = 1, the function is defined asU(x) = log(x).
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Topology (AS#) PoPs OD-pairs Flows Packets
×106 ×106

NTT (2914) 70 4900 51 204
Level3 (3356) 63 3969 46 196
Sprint (1239) 52 2704 37 148
Telstra (1221) 44 1936 32 128
Tiscali (3257) 41 1681 32 218
GÉANT 22 484 16 64
Internet2 11 121 8 32

Table 2: Parameters for the experiments

6 Evaluation

Evaluation Setup: We compare the performance of cSamp and cSamp-T at a PoP-level granu-
larity, i.e., treating each PoP as a “router” in the network model. Our evaluation setup (Table 2)
consists of several PoP-level network topologies from educational backbones and tier-1 ISP back-
bones inferred by Rocketfuel [33]. We use shortest-path routing to construct paths between every
OD-pair. The traffic matrix is modeled using a gravity model based on city populations [31]. We
assume that each PoP is provisioned to log up toL = 400, 000 flow records.5 For cSamp-T, we
discretize the hash-range in increments ofδ = 0.02.

6.1 Coverage and Overlap

Performance gap between cSamp and cSamp-T:The approximation guarantees compare the
performance of the greedy algorithms with the optimal solution for the cSamp-T problem. A
related question is the gap between the optimal solutions for cSamp-T and cSamp. It is hard to
reason about the optimal cSamp-T solution. Instead, we compare the theoretical upper bound for
the cSamp-T problem by considering a relaxed LP-version of the problem (similar toprovisioning

in Section 5). Figures 6(a) and 6(b) show that this performance gap for the total flow coverage
and the minimum coverage respectively using a router 3-tuple granularity for cSamp-T. The figure
shows that the upper bound on cSamp-T performance can be up to30% lower than cSamp.
Total flow coverage: We are interested in two aspects: (a) the granularity of SamplingSpecs and
(b) is there a significant difference in performance betweenthe benefit or benefit-cost tradeoff ver-
sions of the greedy algorithm. Figure 7 shows that using the tuple granularity provides a significant
improvement (25-30%) over the coarser router-level formulation. The figure also shows the per-
formance of maximal flow sampling [30]. In maximal flow sampling, the flow sampling rate for a
router ismin(1, l

t
), wherel is the number of flow records it is provisioned to hold andt is the total

number of flows it observes; each node maximally utilizes theavailable resources. cSamp-T with
the tuple formulation is closest to cSamp. Comparing this with Figure 6(a), we also see that the

5Assuming 12 bytes per flow record [30], this translates into400, 000× 12 = 4.8 MB of SRAM per PoP, which is
well within the 8 MB technology limit per linecard suggestedby Varghese [36].
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Figure 6: Performance gap between cSamp and theoretical upper-bound for cSamp-T
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Figure 7: Total flow coverage

greedy algorithm is very close to the theoretical upper bound for cSamp-T.
The theoretical guarantee for total flow coverage depends onrunning the two greedy algo-

rithms: with and without the cost-benefit flag. We want to understand if there is a clear difference
in performance between the two configurations. Figure 8 shows that both configurations have very
similar performance and that the algorithm with the cost-benefit flagcbflag = false is slightly
better.
Minimum fractional coverage: We saw in Section 4 that it is impossible to maximizefmin using a
greedy algorithm without resource augmentation. Thus, we evaluate the performance as a function
of the resource augmentation factorγ where each router’s budget isγ×400, 000. As in the previous
scenario, we consider both router and tuple granularities.In Figure 9, we normalize the minimum
fractional coverage by the optimal value achieved by cSamp at the baseline provisioning (i.e.,
cSamp atγ = 1). For example, if the greedy algorithm returned a value of0.2 at γ = 3 and the
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Figure 8: Benefit vs. benefit-cost versions

solution for cSamp has value0.4 atγ = 1, the normalized y-axis value corresponding toγ = 3 is
0.2
0.4

= 0.5.
First, withγ ≥ 4, cSamp-T has performance comparable (≥ 50%) to cSamp for all topologies.

Second, the difference between the router and tuple formulations becomes even more pronounced
with the minimum fractional coverage result – there is a significant advantage to be gained in using
more fine-grained SamplingSpecs. With router-level SamplingSpecs, even atγ = 5, four out of the
seven topologies only reach 40% of cSamp’s performance. Forthe sameγ = 5, with tuple-level
SamplingSpecs, five out seven topologies achieve at least 90% of cSamp’s performance.

Figure 10 shows the corresponding result when we use theα-fairness objective function with
the tuple formulation. We see that this function gives slightly better performance compared to the
capped-minfrac technique used above.

The γ at which cSamp has good performance is much better than the theoretical bound in
Section 4. In Section 6.4, we show that targeted provisioning reduces this even further.
Duplicated flow reports: A secondary objective of cSamp is to minimize the total amount of du-
plicated flow reports. This reduces the data management overhead in processing and eliminating
duplicated flow measurements. Figure 11 shows the ratio of duplicated flow reports to the number
of unique flow reports comparing cSamp-T (at the tuple granularity) and maximal flow sampling.
Compared to maximal flow sampling, cSamp-T has 2-3× fewer duplicated flow reports. Com-
pared to cSamp (zero duplicated reports) this is not ideal; however, this performance penalty is
unavoidable since cSamp-T operates at a much coarser granularity.

6.2 Algorithm running time

In order for cSamp-T to be reasonably responsive to network dynamics, we want the time to com-
pute sampling manifests to be within few tens of seconds. (A typical measurement epoch spans
a few minutes; we expect that manifests are recomputed across epochs, not within epochs.) Ta-
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(a) Tuple

1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Resource augmentation factor

N
or

m
al

iz
ed

 m
in

im
um

 c
ov

er
ag

e

 

 

Internet2
    Geant
  Tiscali
  Telstra
   Sprint
   Level3
      NTT

(b) Router

Figure 9: Normalized minimum fractional coverage achievedby cSamp-T as a function of the
resource augmentation factor

Topology Total coverage (sec) Min. Fractional (sec)
Naive Lazy Naive Lazy

NTT 207.12 4.15 39632 154.1
Level3 205.36 3.30 48269 84.3
Sprint 75.30 2.21 14211 71.6
Telstra 50.53 1.65 6997 45.0
Tiscali 35.18 1.16 8518 33.7
GÉANT 3.06 0.28 542 7.6
Internet2 0.22 0.05 38.4 1.9

Table 3: Time to compute sampling strategy comparing the vanilla greedy algorithm with the lazy
evaluation optimization

ble 3 shows the computation times using the “vanilla” greedyand lazy evaluation algorithms. Lazy
evaluation provides more than an order of magnitude reduction in the total computation time. The
reduction is even more significant for the minimum fractional coverage since it involves multiple
invocations of the greedy subroutine during the binary search. With this reduction, cSamp-T scales
to larger topologies.

6.3 Size of sampling manifests

Compared to cSamp, cSamp-T increases the size of the sampling manifests. This is because,
unlike cSamp, the hash-ranges assigned for each SamplingSpec are no longer contiguous blocks.
As discussed earlier in Section 4.3, to reduce the size of themanifests, we implement a simple
compression heuristic to merge hash-ranges after the greedy algorithm computes the manifests.
This looks for maximally contiguous hash ranges in the original sampling manifest and merges
them into a single hash range.

We evaluate the overhead of disseminating manifests in Table 4. First, the merge algorithm
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Figure 10: Normalized minimum fractional coverage using the α-fair function with the tuple for-
mulation

Topology Total (KB) Max. per PoP (KB)
Naive Merged Naive Merged

NTT 178.5 16.3 5.6 1.0
Level3 341.9 25.2 34.1 3.3
Sprint 140.9 13.0 10.3 0.6
Telstra 112.3 7.2 3.3 0.5
Tiscali 110.9 12.6 9.8 0.6
GÉANT 45.5 6.5 5.6 0.6
Internet2 14.5 5.0 4.5 0.7

Table 4: Size of the sampling manifests (in kilobytes of textconfiguration files) with cSamp-T

reduces the manifest sizes roughly 10×. Second, we notice that the total bandwidth overhead of
disseminating the manifests is not large – 25KB in the worst case after the merge routine. Finally,
on a per-router basis, the worst case size of the manifest is around 3KB which is quite low.

6.4 Intelligent Resource Provisioning

As a specific scenario, we setLB j = L = 400, 000 for all j. We model the total budget as
Budget = γ ×N ×L (N is the number of PoPs) and the technology limit asβ ×L. We varyγ and
β and for each pair of values. Figures 12(a) and 12(b) show the result for two of the topologies,
Level3 (AS3356) and Telstra (AS1221) respectively. We chose these topologies because the greedy
algorithm performed poorly with respect to cSamp in Figure 9. An interesting result is that the
curve levels off as a function ofγ; i.e., there is not much to be gained with increasing the total
budget. However, there is significant improvement by increasingβ, the technology upper bound.
In fact, even with a moderate increaseγ = 1.2, we see that the performance gets within 80% of
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Figure 11: Ratio of duplicated flow reports to the number of unique flow reports

the cSamp performance.
Sinceβ is more crucial to the overall performance thanγ, for the remaining topologies we fix

γ = 1.5 and analyze the normalized minimum fractional coverage as afunction ofβ in Figures 13
and 14. Withβ = 5, all the topologies achieve at least 60% of the ideal cSamp performance.
Similar to the previous results, theα-fair shows slightly better performance. Contrasting thisresult
with Figures 9 and 10, the main difference is that we do not require all PoPs to be augmented with
five times as many resources – the total resource budget is less than1.5×.

6.5 Partial OD-pair identification

We try three strategies for selecting the enabled OD-pairsPe : upgrading the top-k PoPs that (a)
observe the maximum amount of traffic, (b) lie on most number of routing paths, or (c) originate
the most traffic. Here, upgrading implies that we enable OD-pair identifiers on all OD-pairs having
one of these top-k PoPs as origins. For eachk, we run the two-step procedure from Section 5.2 for
all values in1, . . . , k and pick the configuration with the highestfmin .

Figures 15(a) and 15(b) show the normalized minimum fractional coverage for the Level3 and
Telstra topologies as a function ofk (number of top-k PoPs). First, we observe that enabling even
on a small number (around 8%) significantly improves the performance. Second, enabling identi-
fiers on routers that observe the most traffic performs much better than the other two strategies.

6.6 Hybrid Coverage objective

cSamp maximizes the total flow coverage subject to achievingthe highest possible minimum frac-
tional coverage across OD pairs. So far, in cSamp-T we considered these two objectives separately.
A natural question is if there is an effective algorithm for maximizing the hybrid objective, i.e.,
maximize total coverage subject to achieving the maximum minimum fractional coverage. It is
relatively simple to extend the algorithm in Figure 4 to achieve this – first run the greedy algorithm
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(a) Level3
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Figure 12: Understanding the impact of total resource augmentation (γ) and technology upper
bound (β) in the resource allocation formulation.

AS Greedy-Minfrac Greedy-Total
NoHybrid Hybrid

NTT 0.13 0.58 0.58
Level3 0.10 0.60 0.60
Sprint 0.22 0.61 0.64
Telstra 0.13 0.59 0.62
Tiscali 0.23 0.60 0.63
GÉANT 0.35 0.63 0.68
Internet2 0.60 0.71 0.78

Table 5: Comparing the performance of the hybrid maximization to the greedy algorithm for max-
imizing the total flow coverage alone

to optimize the capped minimum fractional objective (F̂ ) and then modify the objective function
to optimize the total coverage ifτcurrent is feasible.

To evaluate this hybrid approach, we consider the resource configuration obtained using the
targeted provisioning approach withα = 1.5 andβ = 5. Table 5 compares the total coverage
obtained with three strategies: maximizing the minimum fractional coverage, maximizing the total
flow coverage, and the above two-step heuristic. Not surprisingly, we find that maximizing the
minimum fractional coverage alone does not work well for thetotal coverage. This is because
the greedy algorithm terminates when it has achieved the targeted coverage for all OD pairs even
if it has additional resources that can be used to boost the total coverage. The table also shows
that total coverage obtained by the hybrid approach is very close to that of the greedy algorithm
for maximizing the total coverage alone. While it is hard to provide theoretical guarantees for the
hybrid objective, Table 5 shows that the our approach works very well in practice.
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Figure 13: Intelligent resource allocation withγ = 1.5 and varyingβ

7 Discussion

More fine-grained local information: Our current choice of SamplingSpecs is topology-driven;
we model the granularity of sampling manifests in terms of path-segments (e.g., router or router
3-tuple). One direction of future work is to expand the scopeto include prefix and routing table
information. For example, it might be possible to approximately estimate the OD-pair information
given the source and destination address of a packet and the available routing table information or
alternatively providing additional information (e.g., distributing IP-prefix to ingress-egress maps
to routers [1]). This creates the possibility of a cSamp-T formulation with more fine-grained infor-
mation to bring the performance closer to cSamp.
Sensitivity of router upgrades: Section 5 suggests two heuristics for upgrading routers either with
additional memory or the ability to insert OD-pair identifiers in packet headers. The provisioning
and partial marking formulations, as presented, assume static routing and a static traffic matrix.
Real-world routing and traffic matrices typically have somedominant structural patterns that are
invariant to localized dynamics. Thus, we can apply these formulations and perform upgrades after
extracting these dominant patterns. Evaluating the sensitivity of the performance improvements to
traffic or routing dynamics and designing upgrade strategies robust to dynamics are topics of future
work.

8 Related Work

Theory of submodularity: Submodular set-functions have long been studied as discrete analogs
of convex functions: in particular, maximizing a submodular function subject to side constraints
has a rich history; see, e.g., [3, 37, 35] and the references therein.
Sampling solutions:Most of the related work focuses on the single-router case and on providing
incremental solutions to work around the limitations of uniform packet sampling. This includes
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Figure 14: Intelligent resource allocation withγ = 1.5 with theα-fair function
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Figure 15: Performance of cSamp-T with partial OD-pair identification. Alternatively, this can be
viewed as incremental deployment of cSamp via cSamp-T.

work on adaptive sampling [9, 18], heavy-hitter detection [10], inverting sampled measurements [8,
16], and data streaming algorithms [22, 24]. The closest related work is cSamp [30], which we
discussed in Section 2.
Greedy algorithms for monitor placement: Prior work has applied greedy algorithms for mon-
itor placement to cover all routing paths using as few monitors as possible [5, 34]. The authors
show that such a formulation is NP-hard and propose greedy approximation algorithms. There
are also extensions to these problems to incorporate packetsampling [34, 4]. However, these do
not satisfy flow coverage objectives, and in fact by relying on packet sampling, they can result
in a large amount of redundant flow measurements. cSamp-T provides more fine-grained flow
coverage objectives and reduces duplicated flow reports.
Sensor network monitoring: There has been recent work applying the theory of maximizing
submodular set cover functions in the context of maximizinginformation obtained from multiple
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sensors [15, 20]. The objective of selecting observations against a set of adversarial objectives [21]
is similar to the notion of maximizing the minimum fractional coverage objective. Krause and
Guestrin [19] provide a good survey of known results and applications of these ideas.
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A NP-hardness

First, we show that the decision version of theftot cSamp-T problem withδ = 1 is NP-hard via a
reduction from 3-SAT. Then, we extend the result and show theδ < 1 case is at least as hard as the
δ = 1 case.
Hardness for δ = 1: Let the variables in the 3-SAT problem be denoted byx1, . . . , xN and the
clauses denoted byC1, . . . , CM . Given an instance of a 3-SAT problem, we construct a cSamp-T
problem as follows.

The set of “routers” in cSamp-T isX ∪ T ∪ F ∪ D, whereX = {X1, . . . , XN}, T =
{T1, . . . , TN}, F = {F1, . . . , FN}, andD = {D1, . . . , DN}. Edges in the graph are{〈Tj, Xj〉} ∪
{〈Fj, Xj〉} ∪ {〈Xj, Dj〉} ∪ {〈Dj, Tj′}|j

′ > j} ∪ {〈Dj, Fj′}|j
′ > j}.
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Figure 16: Example showing the path corresponding to the clauseCi = (xj ∨ xk ∨ xl)

Each SamplingSpecak can be one of the following:〈Tj, Xj, Dj〉, 〈Fj, Xj, Dj〉, 〈Xj, Dj , Tj′〉,
and〈Xj, Dj , Fj′〉. There is exactly one SamplingAtomgk1 for eachak and is equal to〈ak, [0, 1]〉.
The budget constraints forD, F , andT nodes is zero. The only non-zero budgets are on theX
nodes andBudget(Xj) is equal tomax(#clauses withxj , #clauses withxj).

For each clause, we construct a OD-pair/pathPi as follows. Without loss of generality, let us
assume that the clauses appear in sorted order of the variable indices. If the literalxj appears in the
clause, there is a sequence of vertices of the formTj, Xj , Dj in the path. If the literalxj appears in
the clause, there is a sequence of vertices of the formFj , Xj, Dj in the path.Pi has edges fromDj

to the adjacent (in sorted order of indices) variable’sTj′ or Fj′ depending on whetherxj′ appears
in positive or negative form in the clause. Each path has unittraffic, i.e.∀i,Ti = 1.
Example: If Ci = (xj ∨ xk ∨ xl), we create a pathPi = (Tj , Xj, Dj, Fk, Dk, Tl, Xl) as shown in
Fig. 16.
Claim: The decision problem of checking ifftot = M on the above cSamp-T problem is equivalent
to solving the 3-SAT instance.

By construction, the only non-trivial SamplingAtoms are ofthe form 〈〈Tj, Xj, Dj〉, [0, 1]〉
or 〈〈Fj, Xj, Dj〉, [0, 1]〉. Note that they specify all-or-nothing responsibilities.Due to the way
the budgets are defined, for eachXj exactly one of〈Tj, Xj , Dj, [0, 1]〉 or 〈Fj , Xj, Dj, [0, 1]〉 is
“active”—in effect this corresponds to setting the variable xj to be true or false. Hence,Pi has
unit coverage in the solution of the cSamp-T instance if and only if there is at least one satisfied
literal in clauseCi. Thus, checking if there is a satisfying assignment or not for the 3-SAT formula
is equivalent to checking if the coverageftot = M or ftot < M . (In fact, it is also equivalent
to checking iffmin = 1 or fmin = 0.) This proves the hardness for both cSamp-T problems of
maximizingftot andfmin with δ = 1.
Hardness with finer discretization: Given integerd ≥ 1, the hardness for theδ = 1/d < 1
case follows from a reduction from theδ = 1 problem. Indeed, given an instance of the cSamp-T
decision problem of deciding ifftot = M with δ = 1, we construct the following instance with
δ = 1/d: we created − 1 “dummy” verticesV1, . . . , Vd−1, and prepend these vertices to all paths
Pi. We set the budgets on the dummy vertices to be(1/d) × M . For every non-dummy vertex
in the δ = 1 problem, we scale the budgets by a factor1/d. By construction,ftot = M on the
δ = 1/d problem if and only ifftot = M on theδ = 1 problem; an analogous result holds forfmin .
Thus, theδ = 1/d problems are at least as hard as theδ = 1 problems.
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B Algorithmic Guarantees

Suppose we are given a monotone submodular functionF : U → ℜ with a partitionU =
U1 ⊎ U2 ⊎ . . . ⊎ Uk. The goal is to pick a setS ⊆ U such that|S ∩ Ui| ≤ 1 and the value
F (S) is maximized. (In other words, we have a partition matroid onU and want to maxi-
mize F subject toS being independent in this matroid.) If we greedily pick elements ei ∈
Ui such thatei is an element thatα-approximately maximizes (α ≤ 1) the marginal benefit
F ({e1, e2, . . . , ei−1, ei}) − F ({e1, e2, . . . , ei−1}), then the benefitF ({e1, . . . , ek}) is at least α

2+α

of the optimal benefit possible [3].
A different setting is whenF : U → ℜ is monotone submodular, we have a “budget”B, and

eache ∈ U has “size”ce: the goal is to pickS ⊆ U with c(S) :=
∑

e∈S ce ≤ B. Consider
two greedy algorithms: (a) the “cost/benefit” algorithm greedily keeps picking an elemente which
maximizesincrease inF

ce
and does not violate the budget, and (b) the “benefit” algorithm greedily keeps

picking elemente which maximizes the increase inF and does not violate the budget. One can
show that the better of these two algorithms gets benefit at least0.35 times the best possible [37].
In fact, an algorithm based on partial enumeration [35] getsan optimal(1 − e−1)-approximation.

We can combine these ideas to solve the problem of “submodular maximization subject to
partition-knapsack constraints”. Formally, we are given amonotone submodular functionF :
V → ℜ, where there is a partitionV = V1 ⊎ V2 ⊎ . . . ⊎ Vk. Each elemente ∈ V has a sizece,
and each partVi has a budgetBi: we want to pick a setS ⊆ V such that ifSi = S ∩ Vi, then the
knapsack constraint

∑
e∈Si

ce ≤ Bi is satisfied. For this problem, we can combine the two ideas
above: imagine each valid knapsack of the elements inVi to be a distinct element of the abstract set
Ui, andU = ⊎Ui. Then considering the partsVi one-by-one, and running the better of the benefit
or cost-benefit algorithms on each part, results in the following result:

Theorem B.1. The simple greedy algorithm described above is a0.35
2+0.35

≥ 0.148-approximation
for the problem of submodular maximization subject to partition-knapsack constraints. Using a
knapsack algorithm based on partial enumeration, we can geta e−1

3e−1
≈ 0.406-approximation.

As always, note that the results areworst-case guarantees: often these greedy algorithms for
submodular maximization perform much better in practice.

The idea can be extended to the max-min problem. The algorithm for the max-min prob-
lem (subject to a cardinality constraint) from Krause et al.[21] uses an(1 − e−1) ≈ 0.632-
approximation algorithm for submodular maximization onlyin a black-box fashion. Hence we can
replace that algorithm by the above algorithm for submodular maximization subject to partition-
knapsack constraints to get a bicriteria algorithm for the max-min problem that achieves optimal
benefit, but exceeds each budget by a factorO

(
log(

∑
e∈V Fi(v))

)
—the fact that we are using an

approximation guarantee of0.148 instead of0.632 only changes the constants in the big-oh.
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