
Towards Inference and Learning in Dynamic
Bayesian Networks using Generalized

Evidence
Christopher James Langmead∗

August 2008
CMU-CS-08-151

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗Department of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA 15213.
E-mail: cjl@cs.cmu.edu

This research is supported by a Young Pioneer Award from the Pittsburgh Lifesciences Greenhouse and a career
award from the U.S. Department of Energy.

Keywords: Graphical Models, Dynamic Bayesian Networks, Inference, Learning, Decision
Procedures, propositional SAT, Model Checking, Temporal Logic

Abstract

This report introduces a novel approach to performing inference and learning in Dynamic Bayesian
Networks (DBN). The traditional approach to inference and learning in DBNs involves condition-
ing on one or more finite-length observation sequences. In this report, we consider conditioning on
what we will call generalized evidence, which consists of a possibly infinite set of behaviors com-
pactly encoded in the form of a formula, φ, in temporal logic. We then introduce exact algorithms
for solving inference problems (i.e., computing P (X|φ)) and learning problems (i.e., computing
P (Θ|φ)) using techniques from the field of Model Checking. The advantage of our approach is
that it enables scientists to pose and solve inference and learning problems that cannot be ex-
pressed using traditional approaches. The contributions of this report include: (1) the introduction
of the inference and learning problems over generalized evidence, (2) exact algorithms for solving
these problems for a restricted class of DBNs, and (3) a series of case studies demonstrating the
scalability of our approach. We conclude by discussing directions for future research.

1 Introduction
Dynamic Bayesian Networks (DBNs) are a family of probabilistic graphical models for repre-
senting stochastic processes. The inference and learning problems in DBNs involve computing
posterior distributions over unobserved (aka hidden) variables or parameters, respectively, given
evidence. In this context, evidence consists of a finite number of observation sequences. Each se-
quence reveals the sequential behavior of a subset of the variables in the model. This report seeks
to generalize the notion of evidence by describing the abstract behavior of the variables using a
formula in temporal logic. We then present exact algorithms for solving the inference and learning
problems over generalized evidence in a restricted class of DBNs. This report is intended to lay
the groundwork for a more comprehensive set of algorithms that will enable inference and learning
over generalized evidence in arbitrary graphical models.

A DBN models a stochastic process P (Xt) ∀t ∈ T , where X is a set of random variables
indexed by t. A typical inference problem in a DBN involves conditioning on an observation
sequence, o0:t = (o(o), ..., o(t)), where O ⊆ X and o(i) is the assignment of O at time index i. For
example, the task of decoding involves finding an assignment for the unobserved (aka hidden or
latent) variables h∗

0:t : H = X\O that maximizes P (h0:t|o0:t). Notice that an observation sequence
describes exactly one trajectory for the observed variables. In this report, we are interested in
conditioning on sets of trajectories. We call this generalized evidence.

The following examples illustrate some of the possible uses for generalized evidence.

1. Suppose we have two observation sequences, oa
0:t1

and ob
0:t2

. Consider the combined obser-
vation φ := oa

0:t1
∨ ob

0:t2
where t1 may or may not equal t2. Here, φ encodes the notion

that we are interested in scenarios where either oa
0:t1

or ob
0:t2

happens. We can now consider
computing the conditional distribution P (H0:t|φ).

2. Alternatively, suppose φ := ¬o0:t. Here φ is a negative observation sequence encoding,
in essence, a forbidden trajectory through the model. Equivalently, φ can be interpreted
as every trajectory through the model except o0:t. We can now imagine decoding over the
distribution P (H0:t|φ). Of course, we can also construct more complicated examples, such
as φ := ¬(oa

0:t1
∨ ob

0:t2
).

3. We can also describe negative observations over the hidden variables as well. For example,
suppose we are interested in assignments where hi(3) 6= 0; that is, the value of variable hi

at time t = 3 is not zero. If we now define φ := oa
0:t ∨ ob

0:t ∧ hi(3) 6= 0, we consider a new
decoding problem where we compute h∗

0:t that maximizes P (h0:t|φ).

4. More generally, we may be interested in conditioning on generic properties over the hidden
and observed variables. For example, we may only be interested in assignments such that
the value of some hidden variable hi is always less than some value, say c1, until the value
of some other variable hj is greater than some other value, say c2. If we now define φ :=
oa

0:t ∨ ob
0:t ∧ hi(3) 6= 0 ∧ hi < c1 U hj > c2, we obtain a yet another decoding problem.

Here, the expression “hi < c1 U hj > c2” refers to all assignments such that hi < c1 “until”
hj > c2.

1

These examples represent just some of the kinds of problems that might be considered if we
generalize the notion of evidence. The motivation for this work arises from the fields of Systems
and Synthetic Biology where DBNs can be used to model biological processes, and one sometimes
needs to answer questions like: “what is the probability that event A happens before event B?”. This
is not easy to answer using traditional inference algorithms.

This report has three objectives. The first objective is to introduce the notion of a generalized
evidence and how to efficiently encode it using formulas in temporal logic. The second objective
is to show that DBNs can be used to symbolically encode Kripke structures, which are a formalism
for representing concurrent processes. Kripke structures are central to the field of Model Checking.
This observation is significant because it implies that a) Model Checking algorithms can be used
to solve inference and learning problems in DBNs, and b) inference and learning algorithms for
DBNs might be used to solve Model Checking problems. This report focuses on (a) and thus our
third objective is to use introduce exact algorithms from the field of Model Checking for solving
the inference and learning problem over generalized evidence in a restricted class of DBNs.

This report is organized as follows: We define DBNs and the (traditional) inference and learn-
ing problems in Section 2. Next, we introduce the notion of generalized evidence in Section 3.
We then briefly summarize some of the fundamental concepts from the field of Model Checking
in Section 4. Our algorithm for solving the inference and learning problems over generalized evi-
dence is presented in Section 5 followed by a series of case-studies in Section 6. We conclude by
discussing our results and areas for future work in Section 7.

2 Dynamic Bayesian Networks
Given a probability space (Ω,F , P), a stochastic process, M is a collection {Xt : t ∈ T} where
each X(t) is a set of random variables indexed by a set T , which we will refer to as time. Here,
Ω is the sample space, F is a σ-algebra on subsets of Ω, and P is a function mapping F to
probabilities. A Dynamic Bayesian Network (DBN) is a pair (B,Bτ) encoding M . Here, B is a
Bayesian Network, and Bτ is a two-slice Bayesian Network, which are defined in the following
two sections. Informally, B encodes a prior probability distribution over X, while Bτ encodes the
dynamics of the process.

2.1 Bayesian Networks
The term “Bayesian Network” refers to a specific subclass of probabilistic graphical models, which
are a family of graph-theoretic approaches to representing and computing over joint probability
distributions. A Bayesian Network is a model of P (X) consisting of a directed acyclic graph,
G = (V,E), and a set of conditional probability distributions, Ψ. Figure 1 shows two small
Bayesian Networks.

The sets V and Ψ are each isomorphic to a set of random variables, X. Node vi is a parent of
node vj if there is a directed edge from vi to vj . Each edge reveals a dependency between variables.
That is P (Xi, Xj) 6= P (Xi)P (Xj) if ei,j ∈ E. Let N(vi) ⊆ V be the neighbors of node vi in the

2

X1

X2

ψ1 := P(X1)
ψ2 := P(X2 | X1)

X2X1

X3

X4 X5

X6

ψ1 := P(X1)
ψ2 := P(X2)
ψ3 := P(X3 | X1,X2)

ψ6 := P(X6 | X4,X5)

ψ4 := P(X4 |X3)

ψ5 := P(X5 |X3)

A B

Figure 1: Probabilistic Graphical Models: (A) A 2-node Bayes Network encoding P (X1, X2). (B) A
6-node Bayes Net which encodes P (X1, X2, X3, X4, X5, X6).

graph. Let XN(i) ⊆ X denote the set of variables corresponding to the neighbors of node vi. If
vi has parents in the graph then ψi ≡ P (Xi|XN(i)) — the conditional probability distribution over
Xi, given its parents. Otherwise, ψi ≡ P (Xi) — the prior probability distribution over Xi.

The Bayesian Network encodes the joint distribution P (X) in a factored form. Specifically,
P (X) =

∏n
i=1 ψi =

∏n
i=1 P (Xi|XN(i)). If the graph is sparse, the Bayesian Network is a compact

encoding of the joint distribution. For example, suppose X is a set of 10 Boolean random variables.
An explicit encoding of P (X) as a table would require 210 = 1024 elements. On the other hand,
if the joint can be represented using a graph where each node has no more than 3 parents, then
the corresponding distribution can be encoded as a Bayesian Network requiring no more than
10 ∗ 23 = 80 elements.

2.2 2-Slice Bayesian Networks
It is also possible to model the dynamics of state transitions using Bayesian Networks. A 2-slice
Bayesian Network is a Bayesian Network with 2n nodes, encoding the conditional probability dis-
tribution P (X(t)|X(t−δt)). Here, t, δt ∈ R if the 2-slice Bayesian Network describes continuous-
time dynamics and t, δt ∈ Z, if the 2-slice Bayesian Network describes discrete-time dynamics.
Figure 2-A depicts a 2-slice Bayesian Network. The probability functions (i.e., Ψ) are not shown
but they follow the same rules as in the last section; that is, each ψi defines a probability distribu-
tion over aXi as a function of the state of the parents of vi in the graph. The parents of the nodes on
the right-hand side are the nodes on the left-hand side, encoding the temporal dependencies. The
nodes on the left-hand side do not have parents which means, as before, that the corresponding ψi

defines a prior probability distribution over Xi.
Naturally, a 2-slice Bayesian network can be “unrolled” to become a k-slice Bayesian Network

in order to model longer sequences. Moreover, by unrolling the 2-slice Bayesian Network, we can
create more complicated models where the temporal dependencies can span multiple time slices.
Figure 2-B, for example, depicts a 4-slice Bayesian Network where the state of variable X1 at time
t is dependent on the state of variables X1 and X2 at time t− δt and on the state of variable X1 at

3

X2(t-δt)

X3(t-δt)

X1(t-δt)

X2(t)

X3(t)

X1(t) X1(t-3δt) X1(t-2δt) X1(t-δt) X1(t)

X2(t-3δt) X2(t-2δt) X2(t-δt) X2(t)

X3(t-3δt) X3(t-2δt) X3(t-δt) X3(t)

A B

Figure 2: (A) This graphical model encodes the distributionP (X(t)|X(t−δt)), given appropriate definition
of the potential functions: ψ1 ≡ P (X1(t)|X1(t − δt), X2(t − δt)), ψ2 ≡ P (X2(t)|X2(t − δt)), and
ψ3 ≡ P (X3(t)|X2(t− δt), X3(t− δt)). (B) This graphical model encodes the distribution P (X(t)|X(t−
δt),X(t− 3δt)).

time t− 3δt. The resulting model encodes the distribution P (X(t)|X(t− δt),X(t− 3δt)).

2.3 Putting it all together: the Dynamic Bayesian Network
In the previous section, we defined models suitable for defining a prior probability distribution
over a set of random variables and one for defining the stochastic dynamics over a set of random
variables. We can combine these to create a Dynamic Bayesian Network (DBN), which encodes
both a prior and the stochastic dynamics. Figure 3 depicts a DBN. On the left-hand side B is a
Bayesian Network encoding P (X) — the prior over X, while Bτ is a 2-slice Bayesian Network
encoding P (X(t)|X(t − δt)) — the stochastic dynamics. The dashed edges between B and Bτ

define a set of parents for the nodes on the left-hand side of Bτ which, in turn, defines the joint
prior on X. In contrast, the priors associated with the left-hand nodes in, say, Figure 2 define the
marginal priors over each Xi.

2.4 Inference and Learning in DBNs
There are two canonical tasks in graphical models, inference and learning, both of which are NP-
hard. Specifically, inference and learning are exponential in the tree-width of graph. The reader is
directed to [14] for more information on traditional inference and learning algorithms for DBNs.
One of the goals of this report is to introduce a new approach for posing inference and learning
problems. We thus summarize the key aspects of traditional approaches here.

4

X2(0)

X3(0)

X1(0)

X2(1)

X3(1)

X1(1)

X2(2)

X3(2)

X1(2)

B Bτ

Figure 3: A Dynamic Bayesian Network (DBN). A DBN is really a combination of two graphical models,
B, and Bτ . The first model, B, encodes a prior distribution over X. The second model, Bτ , encodes the
dynamics of the model.

2.4.1 Evidence

An observation sequence o0:T = (o(0),o(1), ...,o(T)) where O ⊆ X is an arbitrary subset of
X representing the observed variables. Let H = X\O be the complement of O (aka the hid-
den or latent variables). The inference problem in a DBN involves computing P (H0:T |o0:T) and
computing either the maximum-likelihood or maximum a posteriori assignment to the hidden vari-
ables. The learning problem in DBNs involves computing P (Θ|O) where Θ is a set of parameters,
and O = {o1

0:T , ..., om
0:T} is a set of m observation sequences. P (Θ|O), the maximum-likelihood

or maximum a posteriori assignment of the parameters is computed. It is worth noting that the
learning problem is really just an inference problem where the parameters are treated like random
variables.

3 Generalized Evidence
First, let us consider some of the fundamental limitations of “traditional” evidence. An observa-
tion sequence, o1:T , describes a specific trajectory for a set of observed variables. We can then
pose inference problems such as: what is the probability distribution over the hidden variables
given o1:T , (i.e., P (H|o1:T)? We cannot, however, pose inference problems such as: what is the
probability distribution over the hidden variables given that the observed variables do not behave
behave like o1:T (i.e., P (H|¬o1:T)? Nor can we expressly prohibit certain behaviors in the hidden
variables. For example, suppose we want to know about the probability distribution over hidden
variables given o1:T and where hi < c, where c is an arbitrary constant. These represent just some
of the limitations of traditional observation sequences. Our goal is to eliminate these limitations
in the context of inference and learning. The fundamental problem is that a set of observation
sequences defines a constant-sized set of behaviors, and cannot encode the notion of forbidden

5

behavior. We address this problem by introducing the notion of generalized evidence, wherein we
specify allowed and forbidden behaviors using formulas in temporal logics.

3.1 Temporal Logic
Temporal logic is a formalism for describing behaviors in finite-state systems. It has been used
since 1977 to reason about the properties of concurrent programs [15]. There are a number of
different temporal logics from which to chose, and different logics have different expressive pow-
ers. In this report, we consider Linear temporal logic (LTL), although many of these ideas can be
extended to Computation Tree Logic (CTL), and other temporal logics. In particular, extensions to
temporal logics specifically designed for probabilistic systems (e.g., PCTL) will be discussed in a
future report. A complete discussion of LTL and temporal logics is beyond the scope of this paper.
The interested reader is directed to [8] for more information.

Let AP = {a1, ..., aq} be a finite set of atomic propositions, which are simply Boolean random
variables that we introduce to answer specific questions about the state variables in the DBN.
For example, if the sample space random variable Xi is {x1

i , ..., x
k
i }, we might create an atomic

proposition that evaluates to true iff Xi is some particular value (e.g., a ⇔ Xi = xj
i). More

generally, we can create atomic propositions that evaluate to true if a given variable is in a particular
subset or range (e.g., a ⇔ Xi ∈ {x1

i , x
7
i }, or a ⇔ Xi ≤ xj

i). Atomic propositions will be used
later on to construct formulas describing both allowed and forbidden behaviors.

The syntax of an LTL formula, φ, is given by the following grammar:

φ ::= a | true | (¬φ) | (φ1∨φ2) | (φ1∧φ2) | (φ1 → φ2) | (φ1 ⇔ φ2) | ©φ |Gφ | Fφ | φ1Uφ2 | φ1Rφ2

(1)
Here, a ∈ AP , is an atomic proposition; “true” is a Boolean constant; ¬, ∨,∧,→, and ⇔ are the
normal logical operators; © is the “next” temporal operator indicating that φ must be true in the
next state in the path1; G is the “global” temporal operator indicating that φ must be true on the
entire path; F is the “future” temporal operator indicating that φ must eventually be true; U is
the “until” temporal operator indicating that φ1 holds until φ2 holds; R is the “release” temporal
operator indicating that φ2 is true until the first position in which φ1 is true, or forever if such a
position does not exist. The temporal operator definitions, naturally, assume that each φ is a well-
formed LTL formula. Additionally, given these, additional operators can be derived. For example,
“false” can be derived from “¬true”, and exclusive disjunction (φ1 < φ2) is φ1 ⇔ ¬φ2

Notice that an LTL formula can describe either finite or infinite sequences. An LTL formula is
satisfied by a sequence, π0:T if and only if it is satisfied for position π0 on that path. The semantics
of LTL formulas are defined recursively:

π |= a iff a ∈ L(π[0])

π |= true, ∀π
π |= ¬φ iff π 6|= φ

1We note that the “next” operator is often written as Xφ in the literature. We use the alternative notation © to
avoid confusion with the random variable X.

6

π |= φ1 ∨ φ2 iff π |= φ1 or π |= φ2

π |= φ1 ∧ φ2 iff π |= φ1 and π |= φ2

π |= φ1 → φ2 iff π |= ¬φ1 or π |= φ2

π |= φ1 ⇔ φ2 iff (π |= φ1 and π |= φ2) or (π |= ¬φ1 and π |= ¬φ2)

π |= ©φ iff π[1] |= φ

π |= Gφ iff ∀i ≥ 0π[i] |= φ

π |= Fφ iff ∃i ≥ 0, π[i] |= φ

π |= φ1Uφ2 iff ∃i ≥ 0, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1

π |= φ1Rφ2 iff π |= ¬(¬φ1U¬φ2)

Here, the notation “π |= α” means that π satisfies or models α. We note that there are a variety
of useful variations on these operators, such as the bounded until (e.g., φ1U

≤kφ2) which is true iff
∃ i : 0 ≤ i ≤ k, π[i] |= φ2 ∧ ∀j < i, π[j] |= φ1.

Example 1: Our first example demonstrates that it is possible to encode a traditional observation
sequence using an LTL formula. Suppose that X = {X1, X2}, is a pair of Boolean random vari-
ables, that o = {X1}, and that o0:T = (0, 1, ..., 0). We can define a set of atomic propositions
a0, ..., aT such that ai is true iffX1(i) = o(i). The LTL formula φ := a0∧a1∧ ...∧aT is equivalent
to o. Informally, the formula says that at time t = 0 X1 = 0, at time t = 1 X1 = 1, and so forth.
This example could be easily extended to model an observation sequence that included more than
one variable.

Example 2: Our second example illustrates a behavior that cannot be encoded using observation
sequences. Let h = {X2} be our hidden variable, and let a1 and a2 be a pair of atomic propositions
that are true if X2(2) = 1 and X2(10) = 0, respectively. The LTL formula φ := ¬a1 ∧ ¬a2

defines the set of all behaviors of the hidden variables such that a1 and a2 are false. This formula
conceptually describes a negative observation sequence or a forbidden behavior.

Example 3: Our third example demonstrates a single formula that would require at least a quadratic
number of observations sequences to encode. Consider an atomic proposition a that is true when-
ever X1 is 1, regardless of the time index. Consider the LTL formula φ := ¬aU≤ka. This formula
describes the set of observation sequences such that proposition a becomes true at or before time
k. If k = 2, the formula is equivalent to the following set of observation sequences over X1 :
{(1), (0, 1), (0, 0, 1)}. Notice here that the formula also encodes observation sequences of differ-
ent lengths. Traditional algorithms for inference and learning generally assume that the observation
sequences are all the same length.

Example 4: Our final example demonstrates that a single formula can encode sequences of in-
finite length. Consider the LTL formula φ := Ga. This formula describes the set of sequences
(including sequences of infinite length) where proposition a is always true. Traditional algorithms
for inference and learning assume that the observations sequences are finite length.

These examples demonstrate some of the possibilities of using LTL formulae for defining gen-
eralized evidence. The key observation is that a formula can encode a superset of the behaviors

7

that can be encoded using a finite set of observation sequences. Of course, it is not immediately
obvious that it is actually possible to compute, say, P (Θ|φ), for arbitrary φ. Fortunately, the field
of Model Checking, which is reviewed in the next section, has a variety of algorithms for solving
these problems.

4 Model Checking
The term model checking [8] refers to a family of techniques from the formal methods community
for verifying properties of complex systems, such as digital circuits. The field of model checking
was born from a need to formally verify the correctness of hardware designs. Since its inception
in 1981, it has expanded to encompass a wide range of techniques for formally verifying a variety
of kinds of finite-state and hybrid (i.e., mixtures of finite and continuous variables) transition sys-
tems, including those with non-deterministic (i.e., asynchronous) and stochastic dynamics. Model
checking algorithms are simultaneously theoretically very interesting and very useful in practice.
Significantly, they have become the preferred method for formal verification in industrial settings
over traditional verification methods like theorem proving, which often need guidance from an
expert human user.

There are three main elements of model checking. The first element is a formal specification
of the system. In Section 4.1 we will introduce Kripke structures, which are a formal specification
of concurrent systems. The second element is a formula in temporal logic, which was discussed in
Section 3.1. The third element, naturally, is an algorithm for solving the model checking problem,
which will be discussed in Section 4.3.

We will show in Section 4.4 that Kripke structures can encode DBNs. We will then show in
Section 4.5 that DBNs can be used to symbolically encode Kripke structures. These observations
are significant because it means that existing inference and learning algorithms for DBNs can be
used to solve certain Model Checking problems; we are presently investigating these applications
and will present them in a future publication. This report focuses on the other possibility; that is,
using existing model checking algorithms for solving inference and learning problems in DBNs.

4.1 Kripke Structures
A Kripke structure, M is a tuple, M = (S, S0, R,L). Here, S is a finite set of states, S0 ⊆ S is a
set of starting states, R ⊆ S × S is a total transition relation between states, and L : S 7→ 2AP is a
labeling function that labels each state with the set of atomic propositions that are true in that state.
Variations on the basic Kripke structure exist. For example, Kripke structures for Markov chains
can be constructed where we replace the transition relation, R, with a stochastic transition matrix,
T where element T (i, j) contains either a transition rates (for continuous-time Markov models) or
a transition probability (for discrete-time Markov models).

Given a Kripke structure and a formula in temporal logic, φ, the model checking problem is
to determine whether M |= φ. A complete discussion of model checking theory and practice is
beyond the scope of this report. The interested reader is directed to [8] for a detailed treatment of
the subject. We note, however, that model checking algorithms are exact. Additionally, when a

8

model does not satisfy the formula, model checking algorithms return a counterexample, which is
a trace execution of M. We will use these counterexamples to perform inference and learning.

Model checking algorithms are exact, which means that care must be taken if the state space of
the model is very large. One of the most important contributions of the field of model checking is a
set of powerful, general-purpose techniques for symbolically encoding and computing over Kripke
structures. These symbolic methods, which are discussed further in Section 4.2, often allow model
checking algorithms to verify properties many orders of magnitude larger than those that can be
verified using an explicit search. We note that model checking algorithms are not a panacea; there
are systems where even implicit methods do not work. In practice, however, model checking is
often extremely successful, as evidenced by its industrial applications.

4.2 Symbolic Encodings of Kripke Structures
The phrase symbolic model checking refers to any technique whereby sets of states and the tran-
sitions between state are represented implicitly using Boolean functions. As a trivial example,
consider a toy system with two binary variables, v1 and v2. If the set of allowable states for this
system is {(11), (01), (10)}, we can efficiently encode this set of states using the following char-
acteristic function: v1∨ v2. Such Boolean formulas can be efficiently represented and manipulated
in two ways: using Binary Decision Diagrams (BDDs), Multi-terminal Binary Decision Diagrams
(MTBDDs), or using propositional satisfiability (SAT) formulae, which are discussed in the follow-
ing sections. In practice, symbolic model checking algorithms based on SAT encodings generally
scale to larger systems than those based on BDD encodings. This is primarily due to the efficiency
and power of modern-day propositional SAT solvers2. Of course, SAT is the prototypical NP-hard
problem, which implies that one cannot guarantee that SAT-based model checking algorithms will
always succeed.

In practice, the construction of symbolic encodings of Kripke structures into BDDs, MTBDDs,
or instances of SAT (see next section) is done automatically from a high-level language describing
the finite-state system and its behavior. That is, it is generally not necessary to first construct
the explicit state space. This is important, because the systems we will consider are too large to
represent explicitly. In this report, we use the specification language used in the symbolic model
checking tool NUSMV [5].

4.2.1 Binary Decision Diagram Encodings

One technique for symbolically encoding Kripke structures, which ultimately facilitated indus-
trial applications of model checking, is the reduced ordered Binary Decision Diagrams (BDDs),
introduced by Bryant [4] (Fig. 4). BDDs are directed acyclic graphs that symbolically and com-
pactly represent binary functions, f : {0, 1}n 7→ {0, 1}. While the idea of using decision trees to
represent Boolean formulae arose directly from Shannon’s expansion for Boolean functions, two
key extensions made by Bryant were i) the use of a fixed variable ordering, and ii) the sharing of

2It is worth noting that modern SAT solvers are capable of solving instances of SAT with hundreds of thousands of
variables (or more), and millions of clauses [6].

9

x1 x2 x3 f
0 0 0 1
0 0 1 0
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 1
1 1 1 1

X1

X2 X2

X3 X3 X3 X3

1 0 0 1 0 0 1 1

X1

X2 X2

X3 X3

0 1

(A) (B) (C)

Figure 4: (A) A truth table for the Boolean function f(x1, x2, x3) = (¬x1∧¬x2∧¬x3)∨(x1∧x2)∨(x2∧x3)
(B) A Binary Decision Tree of the truth table in (A). A dashed edge emanating from variable/node xi

indicates that xi is false. A solid edge indicates that xi is true. (C) A Binary Decision Diagram of the truth
table in (A). Notice that it is a more compact representation that the Binary Decision Tree.

sub-graphs. The first extension made the data structure canonical, while the second one allowed
for compression in its storage. A third extension, also introduced in [4], is the development of an
algorithm for applying Boolean operators to pairs of BDDs, as well as an algorithm for composing
the BDD representations of pairs of functions. Briefly, if f and g are Boolean functions, the algo-
rithms implementing operators APPLY(f ,g,op) and COMPOSE(f ,g) compute directly on the BDD
representations of the functions in time proportional to O(|f ||g|), where |f | is the size of the BDD
encoding f . Model checking algorithms, which call APPLY and COMPOSE as subroutines, are then
used to determine whether or not the system satisfies a given temporal logic formula.

Note that BDDs can be generalized to Multi-terminal BDDs [7] (MTBDD), which encode dis-
crete, real-valued functions of the form f : {0, 1}n 7→ {c1, ..., ck} : ci ∈ R. Significantly, MTB-
DDs can be used to encode real-valued vectors and matrices, and algorithms exist for performing
matrix addition and multiplication over MTBDDs [7]. These algorithms play an important role in
several model checking algorithms for stochastic systems [2]. MTBDDs can, in theory, be used to
implement potential functions for Bayesian Networks.

4.2.2 Relationship Between BDDs and Bayesian Networks

There are some similarities between BDDs and Bayesian networks. Both data structures encode
functions mapping a set of states to real numbers. They are both factored representations of func-
tions and if the functions can be factored into a combination of much smaller functions, the space-
savings can be dramatic. Indeed one might argue that the primary advantage of BDDs and graphical
models is their compact nature. Unfortunately, there are some Boolean functions that cannot be
efficiently encoded using BDDs, just as there are probability distributions that cannot be efficiently
encoded as a Bayesian network (e.g., consider a Bayesian network where one node vi has n − 1
parents).

Evaluating functions in BDDs and graphical models is quite different, however. In a BDD
function evaluation is performed by following a path from the root of the BDD to a leaf. In a
Bayesian network, function evaluation is performed by computing sums and products over nodes.

10

Notice, however, MTBDDs can, in theory, be used to implement conditional probability functions
for finite-state models.

4.2.3 SAT Encodings

The second way to symbolically encode Kripke structures is to reduce them to an instance of
SAT. This is done in an iterative fashion by performing a kind of depth-first search looking for
counterexamples. This procedure, which is known as bounded model checking, starts with k = 1
and iteratively increases k until the property is verified, or a counterexample is found. We note that
even if the temporal logic formula concerns sequences of infinite length, it is possible to decide
whether a given formula is true or false using bounded model checking. Informally, this is done
by keeping track of states that loop back to some previously analyzed state.

The encoding of a Kripke structure as an instance of propositional satisfiability proceeds as
follows: Given a model M, a temporal logic formula, φ, and a bound k, it is possible to construct
a propositional formula 〈M, φ〉k that will be satisfiable if and only if the property M |=k φ. That
is, if M satisfies φ for the first k steps (see [3] for a more detailed discussion).

The propositional formula, 〈M〉k, for an unrolled transition for a model M is defined as fol-
lows:

〈M〉k := I(S0) ∧
k−1∧
i=0

T (si, si+1)

where I(S0) is the characteristic function of the set of initial states, and T (si, si+1) is the charac-
teristic function of the transition relation.

It is also possible to form a propositional formula 〈φ〉k that is true if and only if the formula
φ is valid along a path of length k. The conjunction of 〈M〉k and 〈φ〉k gives us the propositional
formula we seek that will be true if and only if M |=k φ. We will present a detailed example of a
SAT-based encoding in Section 4.5.

4.3 Model Checking Algorithms
A model checking algorithm takes a Kripke structure, M = (S,R,L), and a temporal logic for-
mula, φ, and finds the set of states S∗ ∈ S that satisfy φ: {s ∈ S | M, s |= φ}. The model
checking problem is thus solved by determining whether S∗ ∩ S0 = {}, or not. The complexity of
model checking algorithms varies with the temporal logic and the operators used. For the types of
formulas used in this report (see Sec. 6), an explicit state model checking algorithm requires time
O(|φ|(|S|+ |R|)), where |φ| is the number of sub-formulas in φ [8]. Of course, for very large state
spaces, even linear time is unacceptable. Symbolic model checking algorithms (see Section 4.2)
operate on symbolic encodings (BDDs or SAT) of the Kripke structure and the formula. BDD-
based symbolic model checking algorithms rely on the fact that the temporal operators of LTL can
be characterized in terms of fixpoints. Let P(S) be the powerset of S. A set S ′ ⊆ S is a fixpoint
of a function τ : P(S) 7→ P(S) if τ(S ′) = S ′. BDD-based symbolic model checking algorithms
define an appropriate function, based on the formula, and then iteratively find the fixpoint of the

11

P (X1)
X1

0 1
1 0

P (X2|X1)
X2

X1 0 1
0 0 1
1 0 1

P (X1)
X1

0 1
0.5 0.5

P (X2|X1)
X2

X1 0 1
0 0 1
1 1 0

P (X1)
X1

0 1
0.5 0.5

P (X2|X1)
X2

X1 0 1
0 0.5 0.5
1 0.5 0.5

ψ1 ψ2 ψ1 ψ2 ψ1 ψ2

A B C

Table 1: Tabular representations of the potential functions for the Bayesian Network shown in Figure 1-
A. The different functions encode different states for a hypothetical Kripke structure (i.e., S0). (A) S0 =
{(X1 = 0, X2 = 1). (B) S0 = {((X1 = 0, X2 = 1), (X1 = 1, X2 = 0)}. (C) S0 = {(X1 = 0, X2 =
0), (X1 = 0, X2 = 1), (X1 = 1, X2 = 0), (X1 = 1, X2 = 1)}.

function. This is done using set operations that operate directly on BDDs. The fixpoint of the
function corresponds exactly to {s ∈ S |M, s |= φ}. The interested reader is encouraged to read
[8], ch. 6 for more details. SAT-based bounded model checking algorithms rely on SAT solvers to
find a satisfying assignment for the propositional formula, if one exists.

4.4 From Kripke Structures to DBNs
It is easy to see that DBNs represent yet a third option for symbolically encoding Kripke structures.
The state-space, S, corresponds to the sample space Ω. The set of starting states, S0, can be
specified using a Bayesian Network (Sec. 2.1). Traditionally, model checking does not consider
probability distributions over states, so it is sufficient to simply define a uniform prior over all
the states in S0, when constructing the Bayesian Network. The transition relation can be defined
using a 2-slice Bayesian Network (Sec. 2.2). Once again, if the Kripke structure does not define
a probability distribution over state transitions, the 2-slice Bayesian Network can be defined such
that there is a uniform probability over all allowable state transitions.

Example 5: Suppose thatX1 andX2 in Figure 1-A are Boolean random variables, and that we want
to specify the initial condition, S0 = {(X1 = 0, X2 = 1)}. There are a number of equivalent ways
of constructing graphical models encoding S0. For example, we can use the Bayesian Network in
Figure 1-A and define the functions shown in Table 1-A. We can also encode more complicated
starting conditions. For example, suppose that we want to specify the initial condition, S0 =
{(X1 = 0, X2 = 1), (X1 = 1, X2 = 0)}. Once again, we can use the Bayes Net in Figure 1 and
define the functions shown in Table 1-B. Naturally, if we want the starting conditions to include the
entire sample space (i.e., S0 = {(X1 = 0, X2 = 0), (X1 = 0, X2 = 1), (X1 = 1, X2 = 0), (X1 =
1, X2 = 1)}), we can also construct a suitable set of potential functions (Table 1-C).

Finally, the labeling function L over a set of atomic propositions can be encoded by creating a
set of Boolean random variables, one for each atomic proposition at each time index t = 0, 1,
Conditional probability functions would be appropriately defined. For example, if atomic propo-

12

X2(0)

X3(0)

X1(0)

X2(1)

X3(1)

X1(1)

X2(2)

X3(2)

X1(2)

A1(0)

An(0)

A1(0)

An(0)

A1(0)

An(0)

B Bτ

Figure 5: One possible encoding for a Kripke structure as a DBN. The nodes labeled B correspond
to a prior distribution over the states, S0. The nodes labeledBτ correspond to the transition relation.
The remaining nodes implement the labeling function, L.

sition ai is true if state variable Xi is less than some constant c, then the conditional probability
function corresponding to the random variable implementing ai would assign a uniform probability
to any value of Xi that satisfies the proposition. Figure 5 shows the structure of one possible DBN
encoding a Kripke structure. We note that the exact set of atomic propositions varies according to
the formula being considered. Therefore, Figure 5 represents just one possible way to translate a
Kripke structure into a DBN.

4.5 From DBNs to Kripke Structures
It is also possible to convert certain, restricted classes of DBNs into Kripke structures. The most
restricted class of DBNs include Boolean Networks.

Example 6: Boolean Networks A Boolean Network is a pair, B = (G,Ψ), where G = (V,E) is
a directed graph, and Ψ = {ψ1, ψ2, ..., ψ|V |} is a set of Boolean transfer functions that collectively
define the discrete dynamics of the network. Each vertex, vi ∈ V , represents a Boolean random
variable. The state of variable vi at discrete time t is denoted by vi(t). The state of all vertices
at time t is denoted by v(t). The directed edges in the graph specify causal relationships between
variables. Let Pa(vi) ⊆ V be the parents of vi in the directed graph and let ki = |Pa(vi) ∪ {vi}|.
A node can be its own parent if we add a self-edge. Each Boolean transfer function ψi : {0, 1}ki 7→
{0, 1} defines the discrete dynamics of vi from time t to t + 1, based on the state of its parents at
time t. Thus, the set Ψ defines the discrete dynamics of the entire Boolean Networks. An example
Boolean Networks is shown in Figure 6-A.

A Boolean network has deterministic dynamics, and thus it is easy to see how it can be mapped
to a Kripke structure. The sample space of the Boolean network, Ω, is isomorphic to the set of
states of a Kripke structure. Since a Boolean network doesn’t define a set of starting states, we
simply define S0 = S. The Boolean transfer functions define a transition relation. A Boolean

13

V1

V2 V3

ψ1 ≡ V1(t+1) = V1(t) Æ V2(t)
ψ2 ≡ V2(t+1) = ¬V3(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t)

time t time t + 1
V1 V2 V3 V1 V2 V3

0 0 0 0 1 0
0 0 1 0 0 0
0 1 0 0 1 0
0 1 1 0 0 0
1 0 0 0 1 0
1 0 1 0 0 0
1 1 0 1 1 1
1 1 1 1 0 1

(A) (B)

Figure 6: (A) A Boolean Network. A Boolean Network consists of a graph and a set of Boolean functions.
The vertices of the graph correspond to Boolean variables and the edges describe functional dependencies.
The Boolean functions describe the evolution of the model from time t to t + 1. The functions can contain
any combination of Boolean connectives. (B) A transition relation encoding the same dynamics as the
Boolean Network. Notice that the Boolean Network is a compact encoding of the transition relation.

network does not define a set of atomic propositions. However, as shown in [10, 11], it is possible
to perform model checking on a Boolean network. In particular, given a formula in temporal logic,
we can define an appropriate set of atomic propositions, and the corresponding labeling function,
L.

In general, if X is a set of discrete random variables, then we can define an equivalent extended
Kripke structure (S, P (S), T,L), where P (S) defines a probability distribution over S and T is a
stochastic transition matrix. We note that model checking algorithms also exist for hybrid systems
— mixtures of discrete and continuous valued variables. Thus, in principle, one can perform model
checking on any DBN. In this report, however, we restrict the discussion to DBNs over finite-state
models.

Example 7: We can encode the Boolean network in Fig. 6 as an instance of SAT (see Sec. 4.2.3).
The characteristic function for an initial state, say (¬v1 ∧ ¬v2 ∧ ¬v3), can be expressed using the
formula (¬v0

1 ∧ ¬v0
2 ∧ ¬v0

3), where vt
i is the state of variable vi at time index t. The characteristic

function describing the first step is: T (S0, S1) = ((v1
1 ↔ (v0

1 ∧ v0
2)) ∧ (v1

2 ↔ ¬v0
3) ∧ (v1

3 ↔
(v0

1∧v0
2))), where↔ represents the logical XNOR. Similarly, the characteristic function describing

the second step is: T (S1, S2) = ((v2
1 ↔ (v1

1 ∧ v1
2)) ∧ (v2

2 ↔ ¬v1
3) ∧ (v2

3 ↔ (v1
1 ∧ v1

2))).
Taking the conjunction of these characteristics we obtain:

〈M〉2 := (¬v0
1 ∧ ¬v0

2 ∧ ¬v0
3) ∧ ((v1

1 ↔ (v0
1 ∧ v0

2)) ∧ (v1
2 ↔ ¬v0

3) ∧ (v1
3 ↔ (v0

1 ∧ v0
2)))

∧((v2
1 ↔ (v1

1 ∧ v1
2)) ∧ (v2

2 ↔ ¬v1
3) ∧ (v2

3 ↔ (v1
1 ∧ v1

2))).

Clearly, this can be extended for as many steps as desired. We can then call a propositional SAT
solver to find a satisfying assignment to this formula. Moreover, we could construct an instance of

14

SAT that is true iff a given LTL formula, φ, is true. For example, let φ = v2
1 ∧ v2

2 ∧ v2
3 , which is

true if X1 = 1,X2 = 1, and X3 = 1 at time t = 2. Taking the conjunction of the characteristic
functions describing the dynamics and φ we obtain:

〈M, φ〉2 := (¬v0
1 ∧ ¬v0

2 ∧ ¬v0
3) ∧ ((v1

1 ↔ (v0
1 ∧ v0

2)) ∧ (v1
2 ↔ ¬v0

3) ∧ (v1
3 ↔ (v0

1 ∧ v0
2)))

∧((v2
1 ↔ (v1

1 ∧ v1
2)) ∧ (v2

2 ↔ ¬v1
3) ∧ (v2

3 ↔ (v1
1 ∧ v1

2))) ∧ v2
1 ∧ v2

2 ∧ v2
3.

This formula cannot be satisfied, which is correct, since the property does not hold for the Boolean
Network in Fig. 6. The fact that this formula cannot be satisfied indicates that the probability
P (X|¬v0

1 ∧ ¬v0
2 ∧ ¬v0

3 ∧ φ) is zero, for all possible assignments of X.

5 Inference and Learning in DBNs over Generalized Evidence
In Section 2.4 we defined the traditional inference and learning problems in DBNs. We then in-
troduced the notion of generalized evidence in Section 3. The previous section introduced model
checking, and demonstrated that a restricted class of DBNs can be encoded as Kripke structures.
This, in turn, implies that: a) this class of DBNs can be symbolically encoded using BDDs, MTB-
DDs, or as instances of SAT; and b) one can perform model checking on DBNs. Taken together, all
of this implies that we can solve inference and learning problems in DBNs using symbolic model
checking algorithms. We first demonstrated this in [10, 11].

5.1 Algorithm
The algorithm for solving the inference and learning problem over generalized evidence involves
three steps:

1. The DBN must be translated into a high-level language for specifying Kripke structures. Fig-
ure 8 gives an example for the Boolean network in Figure 7. More generally, the high-level
encoding will define state variables, the dynamics of the model, including the parameters
(i.e., probabilities).

2. A temporal logic formula must be written that encodes the generalized evidence.

3. A suitable symbolic model checking algorithm to find a satisfying assignment for h or Θ.

Example 8: Inference We extend the model in Fig. 6-A to add a pair of control nodes, G =
{V,C,E}. Each control node, ci, is connected to one or more nodes in V by a directed edge
going from ci to vj (Fig. 7). Control nodes have no parents and represent externally manipulatable
variables.

Consider a set of initial states, I, for the nodes in V specified in terms of a characteristic
Boolean function. For example, the expression I = (v1 ∧¬v2 ∧ v3) defines the set {(1, 0, 1)}, and
I = (v1 ∧ v3) defines the set {(1, 0, 1), (1, 1, 1)}. We define a set of goal states, F, in a similar

15

V1

V2 V3

ψ1 ≡V1(t+1) = V1(t) Æ V2(t) Ç ¬C2(t)
ψ2 ≡V2(t+1) = ¬V3(t) Æ C1(t)
ψ3 ≡V3(t+1) = V1(t) Æ V2(t) Æ C2(t)

C1

C2

V1 V2 V3

Start (t=0) 0 0 0
Goal(t=3) 1 0 0

t V1 V2 V3 C1 C2

0 0 0 0 1 0

1 1 1 0 0 1

2 1 0 1 0 0

3 1 0 0

(A) (B)

Figure 7: (A) A Boolean Network with two control nodes (C1 and C2). (B-top) An initial state and time-
sensitive goal. (B-bottom) A control policy (last two columns) that achieves the goal at the specified time.

fashion. A control policy, Γ = 〈c(0), c(1), ..., c(t)〉, is a set of Boolean vectors that defines a
sequence of signals to be applied to the control nodes. The Boolean network control problem is to
find a control policy that drives the Boolean network such that v(0) = I and v(t) = F. This is a
generalized inference problem that we will solve using model checking algorithms. Specifically,
our goal is to algorithmically generate control policy, Γ, for a given Boolean network, B, initial set
of state, I, a set of goal states, F, and end time, t, — or to guarantee that no such policy exists.

The first step in solving this problem is to compile the Boolean network into a form suitable
for model checking. Figure 8, shows pseudo-code for encoding the Boolean Network in figure 7.
This pseudo-code is based on the language used in the model-checking tool NUSMV. The code
contains a block of variable definitions. In the example, we declare Boolean variables for v1, v2, v3,
c1,and c2. The set of initial states, I , is encoded using “init” statements. The update rules, Ψ, are
encoded using “next” statements. A single variable COUNTER is declared that marks the passage
of time. A “next” statement for COUNTER updates the counter.

The second step in solving this problem is construct a suitable temporal logic formula. Our
goal is to create a formula that is true if it is possible to end up in the goal state(s), F, at time t.
Let φF be a formula describing the goal state. Let φt :=COUNTER= t be a Boolean formula that
evaluates to true if the variable COUNTER is t. The formula φ := ¬φF U(φF ∧ φt) can be used to
find a control policy. This formula is true in a path that first enters state F at time t. Alternatively,
if we wish to relax the restriction that the Boolean network cannot enter state F before time t, we
would use the formula φ := trueU≤tφF . This formula is true in a path that first enters state F at or
before time t. Temporal logics are very expressive and can encode a number of complex behaviors.
For example, it is possible to specify particular milestones through which the model should pass
en route to the final goal. That is, one can construct formula that say that the Boolean Network
should enter state X1 before X2, must enter X2 by time t1, and must reach the goal state at exactly
time t2. This expressive power is one of the key advantages of a generalized approach to inference
and learning.

16

The final step in solving this problem is to call an appropriate symbolic model checking algo-
rithm to find a control policy. If a control policy exists (i.e., if φ is true), we want a witness to the
formula because it will reveal the states of the control nodes which are, of course, a valid control
policy. Model checking algorithm, however, usually don’t report witnesses, but counterexamples.
Thus, we can ask for a counterexample to ¬φ to obtain the control policy.

Example 9: Learning Suppose that we know the topology of a Boolean network, but we don’t
know the Boolean transfer functions (i.e., each ψi). If we have a set of observation sequences o0:T

it is possible to learn the Boolean transfer functions. For example, [] showed that it is possible to
learn a Boolean network givenO(log n) randomly sampled input-output pairs. This result assumes
that the input-output pairs are uniformly distributed over the sample space of the model.

In some domains, it may be reasonable to assume that it is possible to obtain a uniformly
sampled set of input-output pairs, but in other domains it is not possible. In Biology, for example,
it is generally very difficult, or impossible to set up an experiment in an arbitrary starting state.
Additionally, a Boolean network is a discrete-time model, which means that it necessary to select
a ∆T corresponding to the Boolean transfer functions. In a Biological experiment it is generally
necessary to take measurements from multiple cells. Synchronizing cells can be very difficult and
it is therefore difficult to obtaining a set of input-output pairs that have been sampled at exactly
∆T intervals. Moreover, because Biological measurements are subject to noise, obtaining a self-
consistent set of input-output pairs may simply be impossible.

In Biology it is far more likely that the available data correspond to steady-state behaviors that
are observed when the system is started from some starting state. We can encode these behaviors
as formulas in temporal logic. For example, if φa is a formula that is true when the system is in
the starting state, and φb is a formula that is true when the system is in the steady state, then the
formula φ := φa → Gφb is true if the state φa ends in the steady-state behavior φb. This is an
example of a generalized learning problem which we can solve using model checking.

Like the previous example, we can encode the Boolean network in a high-level language. The
primary difference is that we need to add random variables that collectively define the Boolean
transfer functions. There are 2k rows in the truth table for a random variable with k parents in
the graph. We will therefore create 2k random variables for each ψi. We note that in a Biological
network, k is likely to be small. An assignment to these random variables defines a Boolean
transfer function. The generalized learning problem involves finding an assignment that makes a
given formula φ true. We note that in general, there may be more than one assignment that satisfies
a given formula. If available, prior knowledge about the nature of the transfer function can, of
course, be encoded into the network by restricting the space of possible transfer functions.

There may be more than one than one known steady-state for the model, corresponding to dif-
ferent starting states. Each of these (starting state, steady-state) pairs can be encoded as a separate
formula in temporal logic. We can then construct a master formula, φ, by taking the union of these
formulas. We can therefore solve the generalized learning problem by calling a model checking
algorithm to find a counterexample to ¬φ.

In the previous two examples, the DBNs were Boolean Networks, which have deterministic
dynamics. If the DBN is a model of a finite-state stochastic process, we can easily identify as-
signments with non-zero probabilities through counterexample generation. If we extend our set

17

MODULE BN
VAR

V1: boolean; // variable node 1
V2: boolean; // variable node 2
V3: boolean; // variable node 3
C1: boolean; // control node 1
C2: boolean; // control node 2
COUNTER: 0 .. T+1;// counter

ASSIGN
init(V1) := 1;
init(V3) := 1;
next(V1) := (V1 & V2) | !C2 ;
next(V2) := ! V3 & C1 ;
next(V3) := V1 & V2 & C2 ;
next(COUNTER) := COUNTER+1 ;

Figure 8: Pseudocode based on the language used in the symbolic model checking program NUSMV. This
code implements the Boolean Network in Figure 7. The code consists of a module with variable declaration
statements, “init” statements that initialize the variables, and “next” statements that implement each φi and
increment a counter.

of atomic proposition to keep track of the joint probability of a given assignment, we can also
perform a binary search over these probabilities to find maximum-likelihood assignments. We will
demonstrate this in Section 6. We note, however, that our approach is limited in its scope and that
more research is needed to develop techniques for solving the general problem.

6 Case Studies
In this report we are only considering finite-state models. Moreover, we assume that each potential
function is a finite function. That is, each function has the form: ψi : XN(i) × Xi → {c1, ..., cz} :
ci ∈ R. For example, consider the case where each variable is a Boolean random variable, and
each potential function is a Boolean function. In this case, each potential function has the ψi :
{0, 1}|N(vi)| → {0, 1} and can be thought of as a truth table. If we treat each function as a random
variable, then the state space of the variable corresponding to ψi is doubly exponential in the
number of neighbors of variable vi. That is, if variable vi has k = |N(vi)| neighbors, then the truth
table for ψi has 2k elements, which implies that there are 22k possible truth tables for ψi. Naturally,
we are not limited to Boolean functions or Boolean random variables.

This section presents the results of a number of case studies on different kinds of Dynamic
Bayesian Networks.

6.1 Inference in Boolean Networks with Synchronous Dynamics
We have previously reported the results of experiments on inference in Boolean networks with
synchronous dynamics [9, 10, 11]. In that study, we performed a systematic study on more than

18

13,400 separate Boolean networks with synchronous dynamics. Among the models we considered
was a Boolean network of D. Melanogaster embryogenesis [1]. The size of the networks ranged
from 12 variables to 15,360 Boolean variables, and a variety of topologies were considered. The
mean and median runtimes were 2 and 0.6 seconds, respectively. The longest runtime (693 sec-
onds) was on a model with 84 variables, an average in-degree of 4, and a formula that specified
a behavior consisting of 32 steps. The runtime on the largest model (15,360 variables), was 6.2
minutes. That model was a variation on the D. Melanogaster model.

In addition to these earlier studies, we have applied our method to a model of guard cell ab-
scisic acid signaling [12]. The reader is directed to [12] for more information on the biological
significance of this model. Here, we will focus on several variations on this model in this, and
the following sections. The model has 43 Boolean random variables and describes the regulatory
process controlling stomatal pores in plants (Fig. 9). These pores open and close to regulate the
amount of water and carbon dioxide in the plant.

This model has two steady state behaviors. The first is where the stomatal pore (denoted by
variable “closure” in Fig. 9) is closed which is characterized by variables ‘ABA’, ‘CLOSURE’,
‘OST’, ‘SPHK’, ‘PH’, ‘PLD’, ‘ROP2’, ‘AGB’ ‘RCN’, ‘NIA12’, ‘InsPK’,‘IP6’, ‘S1P’, ‘PA’, ‘ATR-
BOH’, ‘GPA’, ‘ROS’, ‘AnionEM’, ‘DEPOLAR’, ‘KOUT’, and ‘Actin’, being in the on state and
the variables ‘CAIM’, ‘RAC’, ‘MALATE’, ‘ABI’, and ‘HATPase’ are in the off state ; the re-
maining variables do not have a fixed value in the steady state. The second state is where the
stomatal pore is open, which is characterized by variables ‘AGB’, ‘RAC’, are in the on state and
the variables ‘ABA’, ‘CIS’, ‘OST’, ‘SPHK’, ‘PH’, ‘RCN’, ‘NIA12’, ‘PLC’, ‘InsPK’, ‘IP6’, ‘AD-
PRc’, ‘GC’, ‘S1P’, ‘IP3’, ‘cADPR’, ‘cGMP’, ‘ATRBOH’, ‘ROS’, ‘ABI’, and ‘NO’ are in the off
state; the remaining variables do not have a fixed value in the steady state. Thus, we can define
two formulas describing the steady states:

• φclosed := ABA = 1 ∧ ... ∧ Actin = 1 ∧ CAIM = 0 ∧ ... ∧HATPase = 0

• φopen := PEPC = 1 ∧ ∧RAC = 1 ∧ ABA = 0 ∧ ... ∧NO = 0

The inference problem we will consider is showing that there exists a state where it is possible
to reach φclosed and remain there, and that there exists a state where it is possible to reach φopen

and remain there. Consider the following two LTL formulae: φ1 =: ¬φclosed →!FGφclosed and
φ2 =: ¬φopen →!FGφopen. The first formula says that if you are in a state where φclosed is false, you
can never reach a state where φclosed is globally true. The second formula says that if you are in a
state where φopen is false, you can never reach a state where φopen is globally true. Counterexamples
for these formulas will reveal an assignment such that φclosed (resp. φopen) is false in the starting
state but becomes globally true, which is exactly what we want.

The ABA signaling model was encoded in the NUSMV modeling language. The model con-
sists of 43 Boolean variables updated in a synchronous fashion. The sample space therefore has
243 ≈ 1013 states. We then used SAT-based bounded model checking to find counterexamples for
φ1 and φ2. These experiments took 0.03 and 0.19 seconds, respectively.

19

Figure 9: A Boolean Network model of Guard Cell ABA Signaling, as presented in [12]. Colors of the
nodes represent the biological function of the component: enzymes are red, signal transduction proteins
are green, membrane proteins are blue, and small molecules are orange. Small black nodes are putative
intermediates. See [12] for more details. An arrow from node i to node j with a pointed tip indicates that
node i promotes node j. An arrow from node i to node j with a flat tip indicates that node i inhibits node j.

6.2 Inference in Boolean Networks with Asynchronous Dynamics
We modified the model in the previous section so that it has asynchronous dynamics. There are
several ways to implement asynchronous behaviors. The simplest way is to re-code the model to
consist of n asynchronous processes, each modeling the behavior of one variable. We considered
a different approach to modeling asynchronous behavior; we augmented the model in the previous
section with a new variable, ‘VSEL’, which acts as a variable selector. ‘VSEL’ takes on values from
1 to 43. When ‘VSEL’ is 2, for example, only variable two is allowed to update. We chose this
approach to demonstrate the scalability of the model. The resulting model had 43 Boolean variables
and 1 integer-valued variable. The sample space therefore has 43× 243 ≈ 1014.6 states. SAT-based
bounded model checking was used to find counterexamples for φ1 and φ2. These experiments both
took 0.04 seconds to complete.

20

6.3 Learning in Boolean Networks with Synchronous Dynamics
We have previously reported the results of experiments on learning in Boolean networks with
synchronous dynamics [9, 11]. In those studies, we inferred a set of Boolean transfer functions
in the previously mentioned model of D. Melanogaster embryogenesis. The sample space for this
learning problem consisted of 6.9× 1010 possible Boolean network models. Our algorithm found
a solution in 5.3 seconds using bounded symbolic model checking.

We have also used our method to learn the Boolean transfer functions for the synchronous
version of the ABA signaling model. The learning problem for this network is to find a set of
potential functions (Ψ) that will allow the Boolean network to satisfy φ1 and φ2. One way to do
this is to declare random variables that collectively implement the Boolean transfer functions. For
example, if variable v1 has two parents, then the Boolean transfer functions corresponds to a truth
table with 4 rows, one for each of the possible states of the variable’s parents. There are therefore
4 truth assignments, which can be modeled using 4 Boolean variables. In the case of the ABA
signalling model, the Boolean transfer functions can be implemented using 242 Boolean random
variables.

The formula needed to ensure that the model learns to satisfy φ1 and φ2 at the same time is:
φ := (!φ1∧!φ2)− >!FG(φ1 ∧ φ2). Notice that if φ1 and φ2 are mutually incompatible, then there
is no assignment that can satisfy φ. However, we can solve the learning problem by creating a
model that, essentially, runs two copies of the ABA signalling model in parallel. This is done by
duplicating the 43 state variables. The two sets of variables run independently, in the sense that
they are allowed to start in different states. The dynamics of the model, however, are controlled by
the same set of Boolean transfer functions. The learning problem is to find a set of Boolean transfer
functions such that one copy of the ABA signalling model satisfies φ1 and the other satisfies φ2.
The resulting model had 2×43+242 = 328 Boolean variables, corresponding to a sample space of
2328 ≈ 1098.7 states. Nevertheless, our algorithm found a solution in 0.927 seconds using bounded
symbolic model checking.

6.4 Learning in Boolean Networks with Asynchronous Dynamics
We modified the model in the previous section so that it has asynchronous dynamics. The resulting
model had a sample space of 43× 2328 ≈ 10100.4 states. SAT-based bounded model checking was
used to find an assignment to the Boolean transfer function in 0.924 seconds.

6.5 Inference in Stochastic Models
We extended the ABA signaling model to create a simple stochastic model. A Boolean network’s
dynamics are deterministic; that is, the probability of each transition is exactly 1.0. However, we
can establish a prior over starting states. The probability of any trace, therefore, is simply the prior
probability.

We extended the model by adding one random variable called ‘PRIOR’. That variable is ini-
tialized based on the number of 1s in the starting state. The number of 1’s was mapped to a
probability value. There are, therefore, 44 unique prior probabilities (0...43). That is, the sample

21

space of ‘PRIOR’ has size 44. Once initialized, ‘PRIOR’ does not change. It is therefore a proxy
for computing the probability of the assignment. It would be straight-forward to extend this to
consider more complicated priors or to keep track of the transition probabilities in truly stochastic
models — provided that the transition probabilities can be encoded using tables.

We then extended the LTL formulas to include the prior. The new formulas are: φ1 =:
¬φclosed →!FG(φclosed ∧ PRIOR > p) and φ2 =: ¬φopen →!FG(φopen ∧ PRIOR > p), where
p is a probability threshold. These formulas are true if, as before, it is possible to reach φclosed and
φopen while ensuring that the prior probability on the initial state is greater than a given constant,
p. It is possible to find a maximum-probability assignment by performing a binary search over p
to find the largest p for which a satisfying exists.

The new model had 44 × 243 ≈ 1014.6 possible states. SAT-based bounded model checking to
find counterexamples for φ1 and φ2 in 0.95 and 0.684 seconds, respectively, once the maximum p
had been identified. In searching for the maximum p to satisfy φ1, the longest computation required
66.28 seconds. The longest computation required to find the maximum p to satisfy φ2 also required
less than 1 second. This behavior demonstrate that the runtime can vary, based on the details of the
computation being performed. This is not unexpected since it is well-known that the efficiency of
SAT-solvers is sensitive to the problem instance [13].

6.6 Inference in Asynchronous Stochastic Models
We modified the model in the previous section so that it has asynchronous dynamics. The resulting
model had 43 × 44 × 243 ≈ 1016.2 states. SAT-based bounded model checking was used to find
counterexamples for φ1 and φ2. These experiments took 195.986 and 1.914 seconds, respectively,
once the maximum p had been identified. When searching for the maximum p values for φ1 and
φ2, the longest runtimes were 24 minutes, and 2.513 seconds, respectively.

6.7 Learning in Stochastic Models
We defined a set of priors for the Boolean transfer functions in the ABA signalling model. The
variable ‘PRIOR’ had 44 possible values. meaning that the state space had states. The resulting
model had a sample space of 44× 2328 ≈ 10100.4 states. SAT-based bounded model checking was
used to find an assignment to the Boolean transfer function in 1.022 seconds.

6.8 Learning in Asynchronous Stochastic Models
Finally, we modified the model in the previous section so that it has asynchronous dynamics. The
resulting model had a sample space of size 43 × 44 × 2328 ≈ 10102 states. SAT-based bounded
model checking was used to find an assignment to the Boolean transfer function in 1.028 seconds.

22

7 Conclusion and Future Work
In this report we have introduced the inference and learning problems in Dynamic Bayesian Net-
works over generalized evidence. Temporal logics are a powerful means for compactly encoding
dynamic behaviors that are either impossible or inefficient to encode using a finite set of observa-
tion sequences. The case studies considered in this proposal were limited to properties expressed
in LTL. The use of alternative logics, especially those incorporating probabilistic operators, is an
interesting area for future research.

We have also discussed the relationship between Dynamic Bayesian networks and Kripke struc-
tures. Dynamic Bayesian Networks can be seen as a new symbolic encoding for Kripke structures.
Like BDD and SAT based symbolic encodings, DBNs efficiently encode complex functions. The
DBNs considered in this report are discrete-time models. We note, however, that there are DBNs
describing continuous-time models. Such models may prove useful in the development of new
model-checking techniques for continuous-time systems.

Finally, we have demonstrated that existing model checking algorithms can solve the inference
and learning problem over generalized evidence, exactly, in theory and in practice, for a restricted
class of DBNs. Our results are limited, however, to DBNs for finite-state systems with dynamics
that can be encoded using finite-functions. DBNs themselves, however, are not limited to such
models. DBNs can encoded hybrid systems, for example. An important area of future research will
be to determine whether existing algorithms for model checking hybrid systems can be used for
solving the inference and learning problem over generalized evidence in hybrid systems. Here, it is
likely that Satisfiability Modulo Theory (SMT) solvers, and Iterative Abstraction Refinement can
be used to address at least some of these problems in DBNs with linear dynamics. The development
of algorithms for non-linear systems remains an important goal for future work.

This report has focused on the use of model checking algorithms for solving problems in DBNs.
Naturally, it may be the case that algorithms for DBNs might be used to develop new algorithms for
model checking probabilistic systems. The machine learning community has developed a variety
of algorithms for solving the (traditional) inference and learning problems in graphical models.
Significantly, some of these algorithms are capable of providing rigorous upper and lower bounds.
Investigating the use of these algorithms in the context of model checking is also an interesting
area for future research.

Acknowledgments
This research was supported by a U.S. Department of Energy Career Award (DE-FG02-05ER25696),
and a Pittsburgh Life-Sciences Greenhouse Young Pioneer Award to C.J.L.

References
[1] R. Albert and H. G. Othmer. The topology of the regulatory interactions predics the expres-

sion pattern of the segment polarity genes in drosophila melanogaster. Journal of Theoretical

23

Biology, 223:1, 2003.

[2] C. Baier, E. Clarke, V. Hartonas-Garmhausen, M. Kwiatkowska, and M. Ryan. Symbolic
model checking for probabilistic processes. In P. Degano, R. Gorrieri, and A. Marchetti-
Spaccamela, editors, Proc. 24th International Colloquium on Automata, Languages and Pro-
gramming (ICALP’97), volume 1256 of LNCS, pages 430–440. Springer, 1997.

[3] A. Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhu. Symbolic model checking using
SAT procedures instead of BDDs. In DAC ’99: Proceedings of the 36th ACM/IEEE confer-
ence on Design automation, pages 317–320, New York, NY, USA, 1999. ACM Press.

[4] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans. Com-
put., 35(8):677–691, 1986.

[5] Alessandro Cimatti, Edmund M. Clarke, Enrico Giunchiglia, Fausto Giunchiglia, Marco Pi-
store, Marco Roveri, Roberto Sebastiani, and Armando Tacchella. Nusmv 2: An opensource
tool for symbolic model checking. In CAV ’02: Proceedings of the 14th International Confer-
ence on Computer Aided Verification, pages 359–364, London, UK, 2002. Springer-Verlag.

[6] E. M. Clarke, A. Fehnker, Z. Han, B. Krogh, J. Ouaknine, O. Stursberg, and M. Theobald.
Abstraction and counterexample-guided refinement in model checking of hybrid systems.
International Journal of Foundations of Computer Science, 14(4):583–604, 2003.

[7] E.M. Clarke, M. Fujita, P. C. McGeer, J.C.-Y. Yang, and X. Zhao. Multi-terminal binary de-
cision diagrams: An efficient datastructure for matrix representation. IWLS ’93 International
Workshop on Logic Synthesis, 1993.

[8] E.M. Clarke, O. Grumberg, and D. A. Peled. Model Checking. MIT Press, Cambridge, MA,
1999.

[9] C.J. Langmead and S.K. Jha. Symbolic approaches for finding control strategies in boolean
networks. Technical Report CMU-CS-07-155R, Carnegie Mellon University, 2007.

[10] C.J. Langmead and S.K. Jha. Symbolic approaches to finding control strategies in boolean
networks. Proc. 6th Asia-Pacific Bioinf. Conf. (APBC), pages 307–319, 2008.

[11] C.J. Langmead and S.K. Jha. Symbolic approaches to finding control strategies in boolean
networks. J. Bioinf. and Comp. Biol., page under review, 2008.

[12] S. Li, S.M. Assmann, and R. Albert. Predicting Essential Components of Signal Transduc-
tion Networks: A Dynamic Model of Guard Cell Abscisic Acid Signaling. PLoS Biology,
4(10):1732–1748, 2006.

[13] R. Monasson, R. Zecchina, S. Kirkpatrick, B. Selman, and L. Troyansky. Determining com-
putational complexity from characteristic ’phase transitions’. Nature, 400(8):133–137, 1999.

24

[14] Kevin Patrick Murphy. Dynamic bayesian networks: representation, inference and learning.
PhD thesis, 2002.

[15] A. Pnueli. The temporal logic of programs. In Proceedings of the 18th IEEE. Foundations of
Computer Science (FOCS), pages 46–57, 1977.

25

