
Approximation Algorithms for Item Pricing

Maria-Florina Balcan∗ Avrim Blum∗

July 2005
CMU-CS-05-176

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

∗School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

We present approximation algorithms for a number of problems of pricing items for sale so
as to maximize seller’s revenue in an unlimited supply setting. Our main result is an O(k)-
approximation for pricing items to single-minded bidders who each want at most k items. For
the case k = 2 (where we get a 4-approximation) this can be viewed as the following graph
vertex pricing problem: given a graph G with valuations ve on the edges, find prices pi for the
vertices to maximize

∑
{e=(i,j):ve≥pi+pj} pi + pj . We also improve the approximation of [6] from

O(log m + log n) toO(log n) for the “highway problem” in which all desired subsets are intervals
on a line.

Research supported in part by NSF grants CCR-0105488, CCR-0122581, and IIS-0121678.

Keywords: Approximation Algorithms, Auction Design, Profit Maximization, Item Pricing

1 Introduction
Consider the problem of a company trying to price its products to make the most profit. If cus-
tomers had valuations over individual items only, then the problem of setting prices would be
relatively easy: for each product i, the optimal price is such that the profit margin pi per item sold,
times the number of customers willing to buy at that price, is maximized. So, each item can be con-
sidered separately, and assuming the company knows its market well, the computational problem
of setting prices is fairly trivial.

However, suppose that customers have valuations over pairs of items (e.g., a computer and a
monitor, or a tank of gas and a soda), and will only purchase if the combined price of the items
in their pair is below their value. In this case, we can model the problem as a graph (actually a
multigraph with self-loops if some customers have valuations only over individual items), where
each edge e has some valuation ve, and our goal is to set prices pi on the vertices of the graph to
maximize total profit: that is,1

Profit(p) =
∑

{e=(i,j):ve≥pi+pj}
pi + pj.

where p is the vector of individual prices.
We call this the graph vertex pricing problem. More generally, if customers have valuations

over larger subsets, we can model our computational problem as one of pricing vertices in a hyper-
graph. Guruswami et al. [6] show an O(log n + log m)-approximation for the general hypergraph
pricing problem, and also show that even the graph vertex pricing problem is APX-hard — and
this is true even when all valuations are identical (if self-loops are allowed) or all valuations are
either 1 or 2 (if self-loops are not allowed). In related work, Hartline and Koltun [4] give a (1+ ε)-
approximation that runs in time exponential in the number of vertices, but that is near-linear time
when the total number of vertices in the hypergraph is constant.

In this paper, we give a 4-approximation for the graph vertex pricing problem, and more gen-
erally an O(k)-approximation for the case of hypergraphs in which each edge has size at most k
(i.e., all customers’ valuations are over subsets of size at most k).

We also consider the highway problem studied in [6]. This problem is the special case of
the hypergraph pricing problem where vertices are numbered 1, . . . , n and each customer wants
an interval [i, j].2 For this problem, we give an O(log n)-approximation, improving slightly over
the O(log m + log n) approximation of [6], and also give an O(1)-approximation for the case
that all users want the same number of items up to a constant factor. Finally, we give a (1 +
ε)-approximation using Dynamic Programming for the case that the desired subsets of different
customers form a hierarchy (this is defined more precisely in Section 6).

1Our model assumes that items have a fixed marginal cost to us, and given that assumption we can without loss
of generality view that marginal cost as zero (equating “profit” and “revenue”) by simply subtracting the costs of the
endpoints from each valuation ve. That is, ve now represents the total markup of the two endpoints that the customer
is willing to pay, and the pi are the markups.

2Previous work [4, 6] uses “m” to denote the number of items and “n” to denote the number of customers, viewing
the items as edges in some network. Since we are viewing items as vertices and customers as (hyper)edges, we have
reversed this notation.

1

Incentive-compatibility. Our model assumes the seller “understands the market”: that is, we
know how many customers will buy different sets of items and at what prices. Thus, we are simply
left with a computational problem. If we do not understand the market and are in the setting of an
unlimited-supply combinatorial auction, we would want an algorithm that is incentive-compatible,
meaning that it is in bidders’ self-interest to reveal their true valuations. If there are sufficiently
many bidders, however, then for problems of this type one can convert an approximation to the
computational problem into a nearly-as-good approximation to the incentive-compatible auction
problem [1]. In particular, the idea is one can randomly partition bidders into two sets S1 and S2,
run the approximation algorithm separately on each set, and then use the prices found for S1 on S2

and vice-versa. Results of [1] give bounds on the number of bidders needed for this to work well,
and related results of [3, 2, 5] give bounds of this form for the case of a single digital good.

2 Notation and Definitions
We assume we have m customers (also called “consumers” or “bidders”) and n items (also called
“products”). We are in an unlimited supply setting, which means that the seller is able to sell
any number of units of each item, and they each have zero marginal cost to the seller (or if they
have some fixed marginal cost, we have subtracted that from all valuations). We consider single-
minded bidders, which means that each customer is interested in only a single bundle of items
and therefore valuations can be summarized by a set of pairs (e, ve) meaning that a customer is
interested in bundle (hyperedge) e and values it at ve. Given the hyperedges e and valuations ve,
we wish to compute a pricing of the items that maximizes seller’s profit. We assume that if the
total price of the items in e is at most ve, the consumer will purchase all of the items in e, otherwise
the consumer will purchase nothing.3 That is, we want the price vector p that maximizes

Profit(p) =
∑

{e:ve≥
P

i∈e pi}

∑
i∈e

pi.

Let p∗ be the price vector with the maximum profit and let OPT = Profit(p∗).
Let us denote by E the set of bidders, and V the set of items, and let h be maxe ve. Let

G = (V, E) be the induced hypergraph, whose vertices represent the set of items, and whose
hyperedges represent the bidders. Notice that G might contain self-loops (since a consumer might
be interested in only a single item) and multi-edges (more consumers might want the same subset
of items). In the special case that all bidders want at most two items, so G is a graph, we call this
the graph vertex pricing problem. As mentioned in Section 1, this pricing problem was shown to
be APX-hard in [6], where a simple O (log m + log n) polynomial time approximation algorithm
was also proposed.

3Or, if customers want multiple bundles, an equivalent assumption is that they will make their purchase decisions
independently over their bundles: that is, they can be split into multiple “virtual” single-minded bidders.

2

3 A 4-Approximation for Graph Vertex Pricing
We begin by considering the Graph Vertex Pricing problem, and show a factor 4 approximation.

Theorem 1 There is a 4-approximation for the Graph Vertex Pricing problem.

Proof: First notice that if G is bipartite (with self-loops allowed as well), then there is a simple
2-approximation. Specifically, consider the optimal price-vector p∗ and let OPTL be the amount
of money it makes from nodes on the left, and OPTR be the amount it makes from nodes on the
right (so OPT = OPTL +OPTR). We can make at least OPTL by setting all prices on the right to
0, and then separately fixing prices for each node on the left so as to make the most money possible
on that node. In other words, because no edges have two distinct endpoints on the left, the profit
made from some node i on the left does not affect the optimal price for some other node j on the
left. Similarly we can make at least OPTR by setting prices on the left to 0 and optimizing prices
of nodes on the right. So, taking the best of both, we make max (OPTL, OPTR) ≥ OPT/2.

Now we consider the general (non-bipartite) case. Define we to be the amount of profit that
OPT makes from edge e. We will think of we as the weight of edge e, though it is unknown to our
algorithm. Let E2 be the subset of edges that go between two distinct vertices, and let E1 be the
set of self-loops. Let OPT1 be the profit made by p∗ on edges in E1 and let OPT2 be the profit
made by p∗ on edges in E2, so

∑
e∈Ei

we = OPTi for i = 1, 2 and OPT1 + OPT2 = OPT.
Now, randomly partition the vertices into two sets L and R. Since each edge e ∈ E2 has a 1/2
chance of having its endpoints on different sides, in expectation OPT2/2 weight is on edges with
one endpoint in L and one endpoint in R. Thus, if we ignore edges in E2 whose endpoints are
on the same side and run the algorithm for the bipartite case, we make in expectation at least
1
2
[OPT1 + OPT2/2] ≥ OPT/4.

If desired, this algorithm can be derandomized by partitioning vertices using a pairwise-independent
distribution.

4 Hypergraph Vertex Pricing
We now show how to extend the previous algorithm to get an O(k)-approximation when each
consumer wants at most k items. We begin with a simpler straightforward extension of the previous
argument that yields a weaker guarantee.

Theorem 2 If each consumer is interested in at most k items, then there is a kk+1

k!
-approximation

algorithm for the Hypergraph Vertex Pricing problem.

Proof: The proof is analogous to the proof of Theorem 1. First notice that if G is k-partite
with a given k-partition {V1, . . . , Vk} of V (by this we mean that no customer wants more than one
item from any given Vi), then there is a simple k-approximation. Specifically, consider the optimal
price-vector p∗ and let OPTi be the amount of money it makes from nodes in Vi (and therefore
OPT = OPT1 + · · ·+OPTk). As in the proof of Theorem 1 we can make at least OPTi by setting

3

all prices on the nodes in the other partitions to 0, and then separately fixing prices for each node
in partition i so as to make the most money possible on that node.

For the general case, we randomly color the nodes with using k colors to create V1, . . . , Vk. We
throw away from E all edges that contain two distinct vertices with the same color, thus getting
the set E ′; we then run the algorithm for the k-partite case on E ′. For i = 1, · · · , k let Ei be the
subset of hyperedges containing i distinct vertices. Now notice that each edge e ∈ Ei has a k!

(k−i)!ki

chance of being in E ′. If we again weight each edge e by the profit made by OPT on e, this implies
that in expectation at least a k!

kk fraction of the weight of OPT is on edges in E ′. We then lose an
additional factor of k solving the resulting k-partite problem, completing the proof.

We now show how to improve the above bound to O(k).

Theorem 3 If each consumer is interested in at most k items, then we can get anO(k)-approximation.

Proof: We can use the following procedure.

Step 1 Randomly partition V into VL and Vrest by placing each node into VL with probability 1/k.

Step 2 Let E ′ be the set of edges with exactly one endpoint in VL. Ignore all edges in E − E ′.

Step 3 Set prices in Vrest to 0 and set prices in VL optimally with respect to edges in E ′.

To analyze this algorithm, let OPTi,e denote the profit made by p∗ selling item i to bidder e. (So
OPTi,e ∈ {0,p∗i } and OPT =

∑
i∈V,e∈E OPTi,e.) Notice that the total profit made in Step 3 is at

least
∑

i∈VL,e∈E′ OPTi,e because setting prices in Vrest to 0 can only increase the number of sales
made by p∗ to bidders in E ′. Thus, we simply need to analyze E[

∑
i∈VL,e∈E′ OPTi,e].

Define indicator random variable Xi,e = 1 if i ∈ VL and e ∈ E ′, and Xi,e = 0 otherwise. We
have:

E[Xi,e] = Pr[i ∈ VL and e ∈ E ′] ≥ 1

k

(
1− 1

k

)k−1

.

Therefore,

E

[∑

i∈VL,e∈E′
OPTi,e

]
= E

[∑
i∈V,e∈E

Xi,eOPTi,e

]

≥ 1

k

(
1− 1

k

)k−1

OPT

= O(OPT/k).

4

5 The Highway Problem
A particular interesting case considered in [6] is the highway problem. In this problem we think
of the items as segments of a highway, and each desired subset e is required to be an interval [i, j]
of the highway. A special case of this problem solvable in polynomial time ([6]) is the case when
all path requests share one common end-point r. For this case, [6] give a O(m2) exact dynamic
programming algorithmA. [6] also give pseudo-polynomial dynamic programming algorithms for
two particular cases. Specifically, they give an O(hh+2mh+3)-time exact dynamic programming
algorithm for the case when all valuations are integral, and an O(hk+1m) time exact dynamic
programming algorithm for the case that furthermore all requests have path lengths bounded by
some constant k.

We now give an O(log n) approximation algorithm for the highway problem. We begin by
partitioning the customers into log2 n groups. Specifically, let S1 be the set of all customers who
want item n/2. Let S2 be the set of all customers not in S1 who want either item n/4 or item
3n/4. More generally, let Si be the set of customers not in S1 ∪ · · · ∪ Si−1 who want some item
in {n/2i, 2n/2i, . . . , (2i − 1)n/2i}. Now, for each set Si we can use algorithm A from [6] to get
a 2-approximation to the optimal profit over Si. Specifically, for each j ∈ {1, . . . , 2i − 1} let Sij

be the subset of customers in Si who want item jn/2i. Notice that by design, customers in set
Sij do not have any desired item in common with customers in Sij′ for j′ 6= j, which means we
can consider each of them separately. Now, for each Sij we get a 2-approximation to OPT(Sij)
by running A twice, first zeroing out all prices for items to the left of item jn/2i and then again
zeroing out all prices for items to the right of jn/2i and taking the best of the two cases. Since there
are only log2 n groups Si, we get a 2 log2 n approximation overall. Note that we can replace our use
of algorithm A with a special-purpose (1 + ε)-approximation Dynamic-Programming algorithm,
yielding a (1 + ε) log2 n approximation overall.

Also note that using algorithmAwe can get a constant-factor approximation in the special case
when everyone wants exactly k elements, for any arbitrary (not necessarily constant) k. To see this,
split the items into groups G1, G2, . . . , Gn/k of size k, and let OPTeven and OPTodd be the amount
of money that OPT makes from the even-numbered groups and from the odd-numbered groups
respectively. We can make at least OPTeven/2 as follows. We first set all the prices on items in
the odd groups to zero. Now notice that each customer wants items in at most one even-numbered
group: let us associate that customer with that group. We can now partition the customers in each
even group into two types: those that want the leftmost item in the group and those that want the
rightmost item in the group; we then run the dynamic program separately over each type, and take
the best outcome. In a similar way, we can make at least OPTodd/2 by setting prices items in the
even groups to 0. So we try both and take the best, thus obtaining a factor of 4 algorithm. Similarly
we can get a factor of 2c approximation algorithm if everyone wants between k/c and k elements,
for any arbitrary k.

5

6 When bidders form a hierarchy
We now give a (1 + ε)-approximation for the case that the desired subsets of different (single-
minded) customers form a hierarchy. Specifically, we consider the case of a hypergraph where for
any two edges e, e′, we have either e ⊆ e′ or e ⊇ e′ or e ∩ e′ = ∅. This means that the edges
themselves can be viewed as forming a tree structure ordered by containment. Let Te be the set of
all bidders whose desired subset is contained in e.

We will use the fact, shown in [4], that we can cover the space of price vectors with a small
set of price vectors Z such that there exists p ∈ Z such that Profitp ≥ Profitp∗/(1 + ε). For
completeness, we include the proof of this fact below.

Lemma 1 There exists p̃ with p̃j ∈
{
0 ∪ [

δh
nm

, h
]}

for all j and Profitp̃ ≥ (1− δ)OPT.

Proof: We can assume without loss of generality that p∗j ≤ h, since setting a price above the
highest valuation cannot increase the profit. Consider p̃j = 0 if p∗j ≤ δh

nm
and p̃j = p∗j otherwise.

Since OPT ≥ h and Profitp̃ ≥ Profitp∗ − δh, we clearly get that Profitp̃ ≥ (1− δ)OPT.

Let zi = δh
nm

(1 + δ)i, and let Z be the set of zi values in the interval
[

δh
nm

, h
)
, augmented by

value 0. Then clearly |Z| = blog1+δ
nm
δ
c. Denote by Z = Zn. Then we can prove that:

Lemma 2 For any p̃ ∈ [
δh
nm

, h
]n, there exists p ∈ Z such that Profitp ≥ Profitp̃/(1 + δ).

Proof: Let p ∈ Z be the price vector obtained by taking the coordinates of p̃ and rounding
them down to the nearest value in Z. Since the price of any bundle under p is at least the price of
the bundle under p̃ divided by 1 + δ, we clearly have Profitp ≥ Profitp̃/(1 + δ).

Combining Lemma 1 and Lemma 2, we clearly get (by setting δ = Θ(ε)) that there exists
p ∈ Z such that Profitp ≥ Profitp∗/(1 + ε).

The idea of our algorithm is now the following. For ε > 0 let Zε be the grid with the property
that there exists p ∈ Zε such that Profitp ≥ Profitp∗/(1 + ε). Let Zε = Zn

ε and let V alε =
{p1 + ... + pn|pi ∈ Zε, 1 ≤ i ≤ n}. We will use an exact dynamic programming algorithm to
optimize over Zε, which then implies a (1 + ε)-approximation algorithm for the hierarchy case.

For s ∈ V alε and e ∈ E denote by ne
s the number of bidders with desired set e whose valuations

are at least s. Note that these values can be computed in polynomial time.
For e ∈ E and s ∈ V alε denote by A[s, e] the maximum possible profit we get from bidders in

Te when the total sum of the prices on items in e is exactly s. Assume for simplicity that we have a
binary hierarchy (if the hierarchy is not binary, then we can transform it into a binary hierarchy by
adding fake edges e, increasing the size of the hypergraph by at most a constant factor). We now
give a dynamic programming algorithm we can use to compute the maximum profit we can extract
over Zε.

Step 1 For each “leaf” e in the hierarchy (an edge e that does not contain any other edges e′)
initialize A[s, e] = s · ne

s.

Step 2 Consider any edge e with children e1 and e2 whose A-values have been computed. Com-
pute A[s, e] = max

s1+s2=s
[A(s1, e1) + A(s2, e2)] + sne

s.

6

Step 3 Return max
s∈V al

A[s, r], where r is the root V .

After computing the A-values, we can easily then determine the optimal pricing scheme by back-
tracking. The overall procedure above runs in time polynomial in n, m, and 1/ε.

7 Conclusions and Open Questions
We present approximation algorithms for a number of problems of pricing items to consumers so
as to maximize seller’s revenue in an unlimited supply setting. We achieve anO(k)-approximation
for the case of single-minded bidders where each consumer wants at most k items. We do not know
if it is possible to achieve a constant-factor approximation in general for single-minded bidders, or
even (as posed in [6]) for the special case of the highway problem. One natural approach might
be to show that for any set of bidders there must be some large subset that approximately forms a
hierarchy and to somehow reduce to the case of Section 6.

Acknowledgements
We would like to thank Jason Hartline for posing the graph vertex-pricing problem to us and for
helpful discussions.

References
[1] M.-F. Balcan, A. Blum, J. Hartline, and Y. Mansour. Mechanism design via machine learning.

Manuscript, 2005.

[2] A. Goldberg, J. Hartline, A. Karlin, M. Saks, and A. Wright. Competitive auctions and digital
goods. Games and Economic Behavior, 2002. Submitted for publication. An earlier version
available as InterTrust Technical Report STAR-TR-99.09.01.

[3] A. Goldberg, J. Hartline, and A. Wright. Competitive Auctions and Digital Goods. In Proc.
12th Symp. on Discrete Algorithms, pages 735–744. ACM/SIAM, 2001.

[4] J. Hartline and V. Koltun. Near-optimal pricing in near-linear time. Manuscript, 2005.

[5] Jason Hartline and Robert McGrew. From optimal limited to unlimited supply auctions. In
EC, 2005. To appear.

[6] V. Guruswami and J. Hartline and A. Karlin and D. Kempe and C. Kenyon and F. McSherry.
On Profit-Maximizing Envy-Free Pricing. In Proc. 16th Symp. on Discrete Alg. ACM/SIAM,
2005.

7

