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Abstract

Robotic soccer is an adversarial multi-agent research domain, in which issues
of perception, multi-agent coordination and team strategy are explored. We
define particularly a game involving heterogeneous teams of humans and
robots. Here teammates must coordinate not as master and slave, but as
equal participants. One of our contributions is to research this peer-to-peer
question within the domain of Segway soccer, where teams of humans riding
Segway HTs and robotic Segway RMPs coordinate together in competition
against other human-robot teams. Beyond the task of physically enabling
these robots to play soccer, a key issue in the development of such a het-
erogeneous team is determining the balance between the human and robot
player.
The first ever Segway soccer competition occurred at the 2005 RoboCup
US Open, where demonstrations were held between Carnegie Mellon Uni-
versity (CMU) and the Neurosciences Institute (NSI). Through the execu-
tion of these soccer demonstrations, many of the challenges associated with
maintaining equality within a peer-to-peer game were revealed. This paper
chronicles our experience within the Segway soccer demonstrations at the
2005 US Open, and imparts our interpretation and analysis regarding what
is needed to better attain this goal of teammate equality within the peer-
to-peer research domain. We begin with an explanation of the motivations
behind the Segway soccer and peer-to-peer research, providing details of the
game rules and flow. We then describe our approach to the building of a het-
erogeneous Segway soccer team, in which we developed a robot-dominated
soccer strategy. Robot decision making was autonomous, and the human
player reacted to the robot’s chosen actions. Our analysis of the experience
at the US Open is presented, giving regard to both research challenges as
well as difficulties in the physical execution of a Segway soccer game. We
evaluate the strengths and weaknesses of our robot-driven approach within
the context of game performance, as well as in contrast to the human-driven
approach of our opponent team from NSI. While each team displayed either
a strong bias towards the human or the robot, the intent of these peer-to-
peer games is in fact to explore teamwork where the teammates are equal.
Based upon our observations from the actual demonstrations, and interpre-
tation of the research goals of the league, we offer a revised set of game
rules. We conclude with thoughts on the direction of future research within
the Segway soccer domain.



1 Introduction

There has been considerable research into both human-robot interaction [12],
and multi-agent teams [9]. Additionally, since the inception of RoboCup
robot soccer (http://www.robocup.org) [2], there has been significant re-
search into robot teams operating in adversarial environments. To our
knowledge, however, there has been no work yet that combines these at-
tributes; namely, to examine human-robot interaction within an adversar-
ial, multi-robot setting where humans and robots are team members with
similar capabilities and no clear role hierarchy. We have been developing
Segway soccer, a domain to answer such questions where human and robot
are teammates, both running on the Segway platform and thus uniform in
physical capabilities [4, 14, 3]. In such a human-robot team, how should we
define the relationship between the human and the robot within a teammate
framework? We can imagine two extremes in terms of the robot autonomy.
One is a fully autonomous robot, without any interaction with the human
player. The other is a tele-operated robot without any autonomy at all. Of
course, neither extreme condition is desirable.

Our intent in these peer-to-peer games is a truly equal relationship be-
tween teammates, where soccer plays are jointly devised and executed. A
distinct effort must be made, therefore, to match human and robot capabil-
ities, so that neither dominates the actions of the team or their teammate.
From this equalization baseline then, true peer-to-peer coordination may
be investigated. The creation of this baseline most likely involves limiting
the human player, as they are currently more capable at on-field decision
making than their robotic teammate. Specifically within the realm of team-
mates advising one another, human teammates run the risk of giving advice
so specific that the robot is essentially tele-operated by verbal commands.

The first ever Segway soccer competition recently occurred at the 2005
RoboCup US Open, hosted by the Georgia Institute of Technology in At-
lanta. The two participating teams were Carnegie Mellon University (CMU)
and the Neurosciences Institute (NSI). During the game, CMU’s initial strat-
egy was so focused in thrust on robot autonomy that it placed too little im-
portance on the human player. The result was a lack of team performance,
as the robot was in reality not a strong enough player to carry that much
team dependence. In contrast, NSI was able to coordinate well and accom-
plish tasks as a team, but at the expense of minimal robot decision making
during the game.

Motivated by the observations from US Open games, we propose a peer-
to-peer human robot team as our goal. Peer-to-peer means each player
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in the team are equally autonomous to accomplish tasks. A peer-to-peer
human-robot team has no central commander, but rather each player both
advising and receiving advice from their teammates, and game strategies
being jointly decided upon and executed.

The format of the paper is as follows. In section 2, we describe the
specifics of Segway Soccer; its goals, challenges, game flow and rules. Section
3 describes our development of a soccer playing Segway RMP. Following this,
we describe our experience at the 2005 US Open and analyze the difference
between our approach and NSI approach. We then focus on our thoughts
on future human-robot games and propose a revised set of Segway soccer
game rules, leading to our conclusions.

2 Segway Soccer

Segway soccer is a game that requires mixed teams of humans and robots
to cooperate to achieve the maximum reward in an adversarial task. To
investigate peer-to-peer interactions, and thus ensure interesting coopera-
tion, both humans and robots are equipped with similar capabilities. We
achieve this difficult task by requiring that both humans and robots use the
same drive platform, specifically the Segway platform developed by Segway
LLC [11]. Our goal is to create a task that requires advanced robot in-
telligence, combined with robust human-robot interaction skills. We hope
to extend the powerful aspects of RoboCup-competition, an adversarial do-
main requiring fast decisions, and a well understood task - to incorporate
human-robot interaction. The need for this new domain lies in the lack of
study for human-robot interaction where decisions must be made quickly.
As robots become more integrated into society, they will inevitably have to
interact with humans and/or legacy robots in complex tasks. For some of
these tasks, decisions may need to be made quickly and roles of both humans
and robots may not be clearly defined a priori. In the following paragraphs,
we outline the game of Segway Soccer, particularly focusing on the modifi-
cations to standard soccer rules necessary to accommodate the presence of
both humans and robots on the field.

2.1 Goals and Challenges

The rules of Segway Soccer are a combination of soccer and Ultimate Frisbee
1. The objective of the game is to score the most goals by kicked soccer

1Rules for Ultimate Frisbee can be found at http://www.upa.org
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ball. Adjustments to soccer rules were necessary, however, to take into
account the mixture of humans and robots on the field. Most importantly,
consideration was given to the size and weight of the robot, as the Segway
RMP carries considerable power as a robotic platform. For safety, so that
robots and humans will not contest each other for ball possession, a player
in possession of the ball has a 1.0m radius in which to reposition and pass
to a teammate. Furthermore, a mixed team cannot officially score unless
both a robot and a human interact with the ball on the way to the goal.
A passing sequence is therefore required prior to a goal shot, thus ensuring
the collective involvement of both the robot and human teammate in a goal
score.

2.2 Communications

There is no restriction on audible (speakers and microphones) communica-
tions between teammates (humans or robots). Wireless communication is
allowed only between team members, and not to any off-field computers.
In the spirit of RoboCup, the robots must be autonomous and make their
own decisions, and thus communicate with human players only for reasons
of team coordination. Some level of commands may be given to the RMP
(such as waypoints, or general directions on the field as to where to play or
go), but direct teleoperation of the robot is not allowed.

2.3 Game Flow

A game consists of three parts, a first half, a break, and a second half [5].
Kickoffs occur at the start of the game or after a goal, at which time the ball
is placed at the goal spot on the defensive side of the team with possession.
Afterwards, players gain possession based on proximity to the ball when it
is “free” or whenever the other team scores a goal. Once a player obtains
possession opponents are not allowed to contest the ball, and the ball must
be passed - it may not be ’dribbled’ - for the team to maintain possession.
A time limit requires the ball be passed else possession be overturned.

Humans are only allowed to kick the ball with the Segway HT platform
and not with any part of their bodies. To prevent double teaming, only one
defender is allowed to be within 2.0m of the player currently in possession of
the ball. Until the robots become more proficient, humans are not allowed
to mark the opponent robot.

Upon the scoring of a goal, the game is immediately halted and then
restarted from the kickoff position with a turnover in possession. Goals are
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Figure 1: The Referee box communicates wirelessly with the robotic soccer
players. It is controlled by an off-field human, via the Referee box GUI.

only awarded when both the robot and human participate in a given play by
either shooting the goal or passing to their teammate. In the original rules,
no restrictions are placed on which teammate is allowed to score a goal.

2.4 The Referee Box

The referee box is a program tasked to link the referee whistle and robot
understandable messages (Fig. 1). While the intent is to standardize and
have all teams run the same program, as in other RoboCup leagues, for the
2005 US Open the referee boxes were developed by each team individually.
Our implementation specifically requires human interaction with a GUI,
where the button corresponding to the referee whistle is selected. In this
way, the robot is updated with the current game state.

In the current setup, the game state is transmitted to the robotic players
as follows. Before a game begins, the off-field human controlling the referee
box clicks one of the “Connect” buttons (depends on the team color) to
connect with the robot players on the field. Whenever a whistle is heard,
we first “Stop” the robot, then click one of the game control buttons, “Kick
Off”, “Throw In”, “Turn Over” or “Free Kick”, followed by “Start” to inform
the robot that it is time to run again.

3 Our Development of a Soccer Playing Segway
RMP

Development of a robotic soccer player requires a control architecture for
the execution of soccer actions. This control architecture is dependent upon
the robot’s current actions, as well as its perceived state of the world. Our
robot has been augmented with additional sensors for the acquisition of this
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world belief state, and processes its output to form an internal world model.
Observation of the world and interpretation of its state is the motivating
force behind the development of soccer play on our robots.

In this section we begin by describing the implementation of the con-
trol architecture for soccer play on our robots, which was accomplished via
hierarchical state machines which we call skills. Within the context an ex-
ample skill, we explain the structure of, and actions taken by, these state
machines. Our offensive and defensive strategies, as they were first imple-
mented for the 2005 RoboCup US Open, are described. For the realization
of such actions, our robots were augmented with additional manipulators
and sensors, about which details are provided. Lastly explained is the use of
sensor input to update our belief of the world state, specifically with respect
to vision processing and vision object tracking.

3.1 Soccer Play: Control by Skills

At the highest level, a soccer playing robot must choose to act, given the
state of the world and the team goal for that state. Our robot is entirely
autonomous in this process, and thus makes all on-field decisions indepen-
dently of its human teammate. For the actual decision process, a control
structure was implemented in which finite state machines organize into a
hierarchy. We call these state machines skills. Skills process information
from the believed world state and then generate action commands, either
by execution of the action within the state or by calling another skill as a
sub-skill. It is from this calling of sub-skills that a hierarchy is formed.

The state of the world (for example, the ball location being unknown) is
perceived by the robot from external and internal sensors. Both interpreted
perception of the world and the action being taken by the robot within
that world (for example, the ball location being unknown and the robot
performing a search for it) define a state within a skill. State transitions
are controlled by a change in either of these defining factors (for example,
the ball location is now known and the robot terminates its search), or by a
timeout on the state.

In this section we will outline, within the context of an example skill,
the cycling through of one of these state machines. Included in the skill
outline will be descriptions of the particulars of any executed action, as well
as that action’s use of our added manipulators and sensors. We begin with
an example skill, before going in to strategy details.
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Figure 2: (A) The first state of the skill CatchKickTo calls the sub-skill
Catch. Catch calls a search sub-skill, performs the action of aiming at the
ball and finally calls the sub-skill Grab, which performs the actions of going
near the ball and putting down the catcher. (B) The second state of the
skill CatchKickTo calls the sub-skill KickTo. KickTo calls a search sub-skill
and performs the actions of aiming at the kick target and kicking.

3.1.1 An Example Skill: Its States and Actions

An example high level skill is CatchKickTo (Fig. 2). The overall goal of
CatchKickTo is to receive a pass from the teammate, and then kick the ball
to a specified target (teammate or goal). The skill consists of two states,
each of which calls a sub-skill.

The sub-skill called by the first state of CatchKickTo is Catch. The
Catch skill begins with a search state, looking for either a ball or teammate.
Most basic to our skill building are the vision searches: every skill is depen-
dent upon the detection of a vision object, and thus also a vision search.
Vision is the primary source of world information on our robots. For the
acquisition of visual data, two cameras were added to the robot (Fig. 3, the
stock Segway RMP has no visual sensing capabilities).

The sub-skill Catch then aims at the ball in preparation to receive the
pass, and tries to capture the ball once it is close enough, by using the sub-
skill Grab. Both running up to the ball, and turning to aim towards the
pass, require the ability to command robot motion. Actions were developed
to control the motion of the Segway RMP, to which we are able to command
velocity and turn angle. Our developed actions include the ability to send
the robot to a given location by the specification of x, y coordinates in global
or relative space, with or without obstacle avoidance [7], as well as to have
the robot turn in place. Once the ball is within range of the robot, its
detection and capture is handled by our added infrared (IR) sensors and
catcher. The two IR sensors are located near the base of the robot and are
intended for ball detection, while the catcher is intended to trap the ball
near the robot. Upon IR sensor firing, the catcher is commanded down and
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Figure 3: Our Segway RMP soccer robot equipped with a kicker, a catcher,
infrared sensors, a wide-angle camera, and a camera mounted on a custom
pan-tilt unit.

the ball is now within the robot’s possession.
The second sub-skill called by CatchKickTo, is KickTo. After finding

its kick target of either the teammate or the goal, KickTo calls the sub-
skill AimKick. In AimKick, the robot first rotates to align itself with the
identified kick target. Once aligned, the catcher is lifted and the actual
kick performed. The kick is executed either via playback of a prerecorded
bucking motion, or by the extension of our added pneumatic kicking plate.

3.2 Our Approach to Team Coordination: Robot Driven

The combination of skills, both simple and complex, into a large state ma-
chine constitutes our soccer game play. Soccer is a team sport, and therefore
the building of our game strategy required not only execution of this large
state machine, but also coordination with our teammate, the human player.
Our approach was both robot and research driven; that is, given our inter-
est in the autonomy of the robot, our team strategy was a robot controlled
one. There was no communication occurring from the human to the robot,
and communication from robot to human was minimal. The robot would
at times speak to cue the human as to its current state in the skill; for
example when aiming at the ball during Catch, it would say “pass to me”.
Thus all robot-to-human coordination, and the majority of human-to-robot
coordination, was based upon observation alone. For example, the robot
would choose to pass the ball to its teammate only after visually identify-
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ing them. As a direct result of this, all robot decision making during the
demonstrations was autonomous.

3.2.1 Offense

While in preparation for the 2005 RoboCup US Open, the initial human
participation in our offensive strategy was dependent upon teammate vision
almost exclusively. That is, the robot did not presume their teammate to
be in any given position, nor to be taking any sort of action, besides waiting
to receive the robot’s pass.

At a kickoff for our side, the robot first decided whether to run up and
grab the ball, or to wait and receive a pass. This decision was dependent
upon the teammate being seen, and if they were seen, whether the teammate
or robot were closer to the ball. The human teammate was not searched for
explicitly, but the ball was, and the teammate was often found during this
ball search. The human teammate responded to the actions of the robot;
that is, they waited to see if the robot was running up to or aiming at the
ball, and then react accordingly. The kickoff pseudo-code runs as follows:

01 if ball seen
02 if teammate seen
03 if teammate closer
04 Wait to receive pass.
05 else
06 Grab ball.
07 end if
05 else
06 Grab ball.
07 end if
05 else
06 Search for ball.
07 end if

After kickoff, our robot’s offensive strategy presumed only to receive a
pass, and therefore never ran up and grabbed the ball, as an open ball,
able to be grabbed, would imply our side having lost the ball, and therefore
also imply a possession turn over. Once having received the pass and being
in possession of the ball, the robot then decided whether to pass to its
teammate or shoot on the goal. Again, this behavior was dependent upon
teammate detection, and additionally on goal detection and goal distance
from the robot. If neither were seen, the robot would continue searching
up to the possession timeout, at which point it would just kick the ball
away from itself. This last case, however, never happened during the actual
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US Open demonstrations, as the field was small enough for the goals to
be detected from any point on the field. After passing to the teammate,
the robot would then position itself a set distance down field, towards the
opponent’s goal. The game play pseudo-code is here presented:

01 if have ball
02 if teammate seen
03 if goal seen
04 if goal distance ”¡” thresh
05 Shoot on the goal.
06 else
07 Pass to teammate.
08 end if
09 else
10 Pass to teammate.
11 end if
09 else
10 Random kick after timeout.
11 end if
12 else
13 Position downfield.
14 end if

This dependence upon teammate detection as a gateway into the execu-
tion of the majority of our offensive soccer play proved to be a crutch during
our actual US Open demonstrations. Our offensive strategy, therefore, was
modified to presume more about our teammate’s actions and thus rely less
heavily on their actual detection (for further details, please refer to section
5.2.2).

3.2.2 Defense

Our initial defensive strategy relied more heavily on the human player. The
robot positioned itself inside of our goal with the intent of catching at-
tempted shots on the goal. Any defensive actions besides goal keeping -
such as attempting to intercept or block opponent passes - were performed
by the human player.

Constraints on field size at the US Open seriously restricted the motion
of our robots, and thus made consistent positioning inside the goal infeasible.
Our defensive strategy was therefore likewise modified, to take the robot out
of the goal and mark the ball in attempts to gain possession of it (for further
details, please refer to section 5.2.3).
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3.3 Perception

Perception is where the robot autonomy comes from. In this section, we
briefly introduce the two key components, vision and tracking in our large
system. Based on vision, we construct our world model to further implement
robot autonomy. Since the objects we have interest in are not always visible,
we need tracking to estimate their position and velocity consistently.

3.3.1 Vision

In our work with the Segway RMP platform [11], we have been exploring
techniques to enable a vision-centric robot to be able to play soccer in out-
door environments where illuminate is variable [3, 6]. Furthermore, as the
task is adversarial and highly dynamic, the combination of robot speed and
ball speed means that it is essential that the vision algorithms be both ro-
bust, and extremely efficient. Indeed, only a fraction of the CPU resources
can be devoted to vision processing as the remainder of the CPU resources
must be used for cognition in order to get low-latency robot behaviors.

We have developed a new technique for fast color-object recognition that
is suitable for use in robot platforms like the Segway. Its key feature is that
it is able to adapt its segmentation process to different lighting conditions.
The segmentation technique is motivated by the observation that for most
of the domains of interest here changes in illumination lead to small changes
in color value and that these changes are relatively uniform across all colors.
In other words, with modern cameras with automatic shutters and gain
control, red pixels may vary in color but will stay in the same region of color
space. Therefore, we propose that if pixel classification thresholds are able to
adapt by small amounts, it should become possible to robustly classify pixel
colors across moderate changes in illumination. Our goal is to achieve such a
robust, adaptive system but without significantly increasing computational
requirements. For more details of this approach, see our paper [6].

The key idea is to use a soft labeling of pixel class, followed by a hard
decision using an adaptive threshold. The combination of soft-labeling and
adaptive thresholding provides the plasticity for lighting variation. Follow-
ing this, connected pixels can be conglomerated using a connected compo-
nent analysis. Objects are detected and recognized by searching for nearby
regions that match priori models, with soft-comparisons to account for vari-
ations in shape, size, and missing features. This new technique requires only
moderate additional computational resources beyond existing fast color vi-
sion algorithms.
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3.3.2 Tracking

Tracking in essence consists of using sensory information combined with a
motion model to estimate the position of a moving object. Tracking effi-
ciency completely depends on the accuracy of the motion model and of the
sensory information [15]. When tracking is performed by a robot executing
specific tasks acting over the object being tracked, such as a Segway RMP
soccer robot grabbing and kicking a ball, the motion model of the object
becomes complex, and dependent on the robot’s actions [8]. A single motion
model is not exact enough to describe the complexity of the motion due to
the interactions between the robot and the ball. We therefore use a tactic-
based multiple model approach to model the ball motion. Explicitly, we use
the following three single models.

• Free-Ball. The ball is not moving at all or moving straight with a
constant speed decay d which depends on the environment surface.

• Grabbed-Ball. The ball is grabbed by the robot’s catcher.

• Kicked-Ball. The ball is kicked therefore its velocity is equal to a
predefined initial speed plus the noise.

Next, a model index m determines the present single model being used
(m = 1, 2, 3 for the above three single models respectively). We need to
decide how to transit between each models, which is done by a tactic based
approach. We assume that the model index, mk, conditioned on the previous
tactic executed tk−1, and other useful information vk (such as ball state xk−1,
infrared measurement sk, or the combination of two or more variables),
is governed by an underlying Markov process, such that the conditioning
parameter can branch at the next time-step with probability

p(mk = i|mk−1 = j, tk−1, vk) = hi,j (1)

where i, j = 1, · · · , Nm.
Finally, we use particle filtering to track the motion model m and the

ball state b [13]. A particle filter maintains the belief state at time k as a
set of particles p

(1)
k , p

(2)
k , · · · , p(Ns)

k , where each p
(i)
k is a full instantiation of

the tracked variables Pk = {p(i)
k , w

(i)
k }, w

(i)
k is the weight of particle p

(i)
k and

Ns is the number of particles. In our case, p
(i)
k = 〈b(i)

k ,m
(i)
k 〉.

We use the Sample Importance Resampling (SIR) algorithm to update
the state estimates [1]. The sampling algorithm is as follows:

[{b(i)
k ,m

(i)
k , w

(i)
k }Ns

i=1] = SIR[{b(i)
k−1,m

(i)
k−1, w

(i)
k−1}

Ns
i=1, zk, sk, tk−1]
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Figure 4: In both figures, the red and pink cross represent the two goals,
and each blue dot represents the one of the particle estimation of the ball
position. In the left figure, the ball is visible to the robot. In the right
figure, the ball is out of sight and the particles are scattered

01 for i = 1 : Ns

02 draw m
(i)
k ∼ p(mk|m(i)

k−1, b
(i)
k−1, sk, tk−1).

03 draw b
(i)
k ∼ p(bk|m(i)

k , b
(i)
k−1).

04 set w
(i)
k = p(zk|b(i)

k )
05 end for
06 Calculate total weight: w =

∑
[{wi

k}
Ns
i=1]

07 for i = 1 : Ns

08 Normalize: wi
k = wi

k/w
09 end for
10 Resample .

The inputs of the algorithm are samples drawn from the previous poste-
rior
〈b(i)

k−1,m
(i)
k−1, w

(i)
k−1〉, the present vision and infrared sensory measurement

zk, sk, and the tactic tk−1. The outputs are the updated weighted samples
〈b(i)

k ,m
(i)
k , w

(i)
k 〉. In the sampling algorithm, first, a new ball motion model

index, m
(i)
k , is sampled at line 02. Then given the model index, and previous

ball state, a new ball state is sampled at line 03. The importance weight
of each sample is given by the likelihood of the vision measurement given
the predicted new ball state at line 04. Finally, each weight is normalized
and the samples are resampled. Then we can estimate the ball state based
on the mean of all the b

(i)
k . See (Fig. 4) for an example of particle filter

representation of the ball position. For more details of the tracking, see our
paper [10].

12



4 Opponent Approach to Team Coordination: Hu-
man Driven

Our opponent Segway team was developed by the Neurosciences Institute in
San Diego, CA (http://vesicle.nsi.edu/nomad/segway/). The sensing capa-
bilities on the NSI robot included a pan-tilt CCD camera, a forward facing
SICK laser, and both forward and backward facing IR sensors. Additional
manipulators were a solenoid powered catcher and kicker to grab and kick
the ball, as well as a ball capture mechanism. This mechanism to our knowl-
edge consisted of a skirt of tubing intended to trap a possibly out of sight
ball, which the robot would then sense and turn towards until the ball rested
within the catcher. Their human Segway was likewise outfitted with a simi-
lar catcher and kicker, and additionally a headset through which the human
player could communicate with its robot teammate. Robot movement was
guided by neural simulation, where sensor input generated motor signals
to command velocity and turn angle at the Segway wheels. In contrast to
our robot-dominated approach to peer-to-peer team coordination, NSI de-
veloped a human-dominated game strategy. Their human player performed
the majority of the decision making on the field, and then informed their
robot, by voice, of the chosen action. To our knowledge, the actions spoken
by the human player to the robot included whether and when to shoot on
the goal or pass to the teammate, as well as guidance on location choice for
field positioning.

5 The 2005 US Open Experience

Five Segway soccer demonstrations were played between Carnegie Mellon
University and the Neurosciences Institute at the 2005 US Open.

5.1 Logistics Difficulties

The actual execution of multiple Segway soccer demonstrations made evi-
dent several issues with the game implementation, both as a result of the
stated game rules as well as the setup of the physical space. In this section
we describe our observations regarding what these issues were, as well as
our interpretation of their cause.
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5.1.1 Robot Movement

In an ideal peer-to-peer game, equal amounts of teammate mobility would
be shown. Such equality is necessary not only in the interest of normalizing
capabilities, but also because a bias in mobility will undoubtedly lead to a
bias in field performance and participation. The US Open demonstrations,
however, overall displayed a marked lack of robot positioning. We believe
the cause of this reduced mobility to be twofold.

The first culprit which constrained robot movement was field dimension.
Due to size constraints at the US Open venue, the field occupied approx-
imately a quarter of the area as was originally stated in the rules, being
halved in each dimension. The second culprit confounding robot movement
was the safety distance (of 1.0m) required between players, which by and
large was respected by the robots. That the human players were able to ma-
neuver more easily was due largely to their disregard for, and the difficulty of
referee enforcement of, this distance rule. In the early demonstrations, CMU
navigation was particularly conservative, and therefore the robot practically
immobile. Additionally, this rule was interpreted differently by each team;
the 1.0m as a radius was defined by CMU as extending from a point particle
centered on the robot, and by NSI as extending from the outer perimeter of
the robot.

The reduction in field size, compounded with the distance restriction
between players, so congested the field that robots frequently were unable
to position themselves (Fig. 5). This lack of positioning had the immediate
effect of a reduction also in passing between teammates, where often the
more mobile human player would execute only the minimum requirement
of one pass to its robot teammate before shooting on the goal. The small
size of the field additionally encouraged such behavior by placing the goal
within reasonable shooting distance from most points on the field.

5.1.2 Robot Participation in Passing

Equality in how each teammate participates in a pass is likewise required
of a true peer-to-peer game. The human and Segway teammates are not
completely normalized across their wheeled platforms, but rather are still
divided by the very basic reality that the bodies above the platforms are
physically different. Such a distinction logically might result in a difference
in action execution on the playing field. At the US Open, we observed this
within the context of teammate passing.

While ball deflection is common within human soccer games, it is also
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Figure 5: The field at US Open 05 was too tight to pass and position easily.

unlikely that a human player would attempt to deflect the ball off of an
unsuspecting teammate. Such consideration is no longer necessary, however,
when that teammate is no longer human. These deflections, as observed in
use by NSI, were at times again caught by the human player. It is possible
that the robot knew of these passes and intentionally missed them to allow
for more time, or attempted to catch the ball but failed, but it is also possible
that the robot was not aware such passes occurred at all. In the spirit of
peer-to-peer games, the robot should be an active and aware participant in
any coordinated actions, and, properly constructed, the game rules should
enforce this spirit. However, to determine robot awareness explicitly, and
not just intuitively, is a difficult and situation dependent task.

Another question presented by the experience was what classifies an ac-
ceptable pass. Within human soccer games ball possession is not guaranteed
for a set radius around a player, and so the ball may be more aggressively
contested than in Segway soccer. Within Ultimate Frisbee, a pass is con-
sidered successful only if the receiving player actually catches the frisbee,
and is enforced by requiring it never touch the ground. In Segway soccer,
it is possible a pass might be considered valid though it actually remains
untouched by the player, since the receiving player gains possession should
the ball come within the 1.0m safety distance. Judging the validity of such
a pass is unable to be helped by the rules of Ultimate Frisbee, since ofen the
ball has never left the ground in the first place. As such, what fairly defines
a received pass requires further investigation.

5.1.3 Robot Goal Scoring

Peer-to-peer teammates would be expected to attempt shots on the goal
equally across platform; that is, delegation to a specific soccer role might
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influence a player’s shooting frequency, but whether they are human or
robot should not. By the completion of the third demonstration, however,
a goal had yet to be scored by a robot. Beyond positioning difficulties
allotting robots fewer opportunities to score in the first place, any attempted
robot shots on the goal were blocked by the human opponent. Considering
the game to be too human-dominated, the teams agreed to a rule addition
to restrict the human players: a human was no longer allowed to score
a goal. While the instantiation of this restriction resulted in many fewer
attempted and successful goals, that all were scored by robots increased
their participation in the game dramatically.

5.2 The CMU Experience

In the following section we describe the experience of our team particularly
at the US Open, both with respect to the afore mentioned logistical difficul-
ties and our opponent team, as well as our resultant adaptation in offensive
and defensive strategies.

5.2.1 Initial Analysis

The most obvious failing the robot displayed when executing our initial
strategies (as described in section 3.2) was appearing to be in a constant
state of search.

While the goals were large and nearly always detected, the ball and
teammate were often occluded and therefore not. By making no offensive
assumptions about its teammate’s behavior, the robot was dependent upon
teammate detection as a gateway into transitioning to execute the remainder
of a play. The folly in this was that often the remainder of a play might
have still been successful even without teammate detection. For example, if
instead of continuing to search for the teammate the robot had just quickly
kicked the ball forward, the human teammate, able to easily detect the robot
and therefore likely already positioned appropriately, would have often been
able to receive the pass anyhow. The robot’s defensive goal blocking required
ball detection, but the reality of a full ball search often had the robot looking
away from a partially occluded ball when a shot was attempted. Even when
the ball was detected, the robot’s interception capabilities were generally
slower than an attempted shot on the goal.

Additional problems with the use of the robot as goalkeeper was the
observed difficulty in robot positioning, due to the reduced field size. In the
frequent case of the robot being unable to position properly, an eventual
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Figure 6: The left figure shows our Segway robot holding the ball and turn-
ing to search for its teammate. The right figure shows our Segway robot
positioning to receive a pass, and being marked by the NSI robot.

timeout would cause the robot to begin defending the goal even if it was
not within the goal. That is, the robot would search for the ball and in the
event of ball detection would attempt interception, but only allowing itself
to cover minimal distance in this interception presuming itself to be in the
goal and therefore the ball to be its concern only if very near.

5.2.2 Evolved Offense

As our offensive strategy developed, coordination with the teammate, and
therefore presumptions about their actions, became stronger. At a kickoff
for our side, the robot assumed their teammate to begin with the ball, and
therefore was positioned advantageously to attempt a shot on the opponents’
goal. However, should the robot always shoot on the goal at a kickoff, this
behavior would be easily predicted, and therefore blocked, by the human
opponent player. An element of randomness, therefore, was added. With
a predefined but configurable probability, the robot chose to either kick on
the goal or at a set angle from the goal. The human player would position
themselves to receive this off-goal kick, and the robot presumed the human
to be in that position. That is, the off-goal kick was not dependent upon
the robot visually detecting its human teammate. This randomness in goal
on- or off-shooting was used throughout the offensive play. An additional
element of randomness was introduced to the actual goal shot by having
the robot aim towards the left, center or right sides within the goal, with
equal probability. Shooting on the goal required proper perception of the
goal, and so, if necessary, the goal was searched for throughout the offensive
play. Should the goal not be detected, or its distance to the robot be con-
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sidered out of range, the ball was kicked to the teammate. Should neither
be detected, the ball was kicked forward after a timeout.

5.2.3 Evolved Defense

Changes to our defensive strategy brought the robot out of the goal. The
robot’s defensive target was now to intercept the ball. While respecting
the distance minimums required between players, the robot at all times
attempted to grab the ball; that is, the ball was marked, and should the
ball no longer be within the distance minimum of another player, it would
be grabbed. This strategy proved far more effective than the robot as goal
keep. Not only did the robot often effectively position itself between the
opponent players, thus obstructing an intended pass, but on occasion an
opponent pass was not just blocked but actually intercepted.

6 Future Human-Robot Games

Each team was unaware, until the first game, of the development angle cho-
sen by the other team; that our strategies were opposite in player dominance
was not intentional, but their contrast did exemplify many of the difficul-
ties with the development of human-robot balance within the game. CMU’s
initial strategy, so focused in thrust on robot autonomy, placed too little im-
portance on the human player. The result was a lack of team performance,
as our robot was in reality not a strong enough player to carry that much
team dependence. In contrast, NSI was able to coordinate well and accom-
plish tasks as a team, but at the expense of minimal robot decision making
during the game. As the intent of this research domain is true human-robot
coordination, where the players are equally autonomous yet also able to ac-
complish tasks, it seems a balance somewhere between the two approaches
must be found. Such a balance will by necessity restrict the human players
initially, but as the robots become more capable, so also will interspecies
equality between teammates become less artificial.

With the aim of more balanced human-robot team coordination, we
propose the following rule changes [5].

6.1 Proposed Change of Rules

6.1.1 Field Size

The reduced field size at US Open 05 restricted robot movement, and thus
restricted both positioning and passing.
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Alternative solutions:

• A bigger indoor space.

• To take the game to an outside field.

We propose a bigger indoor field for 2006, and to go outside later.

6.1.2 Communication

In the spirit of RoboCup, coordination between teammates on the field
should be equal, with neither teammate dominating the other. Similarly
then should communication between teammates be equal, with neither hu-
man nor robot consistently verbally commanding the other.

Alternative solutions:

• Limit what the human is able to tell the robot, either by predefining a
list of commands, or by placing a limit on the size and rate of messages.

• Require equal amounts of communication between robot and human;
that is, the number of human-to-robot commands must be matched
by the number of robot-to-human commands.

• Limit the human to reporting only his own information, for example “I
am open” instead of “Pass to this location (me), at this time (now)”.

While requiring equal amounts of communication seems the right solution,
we are uncertain as to how such a rule might be reasonably enforced.

6.1.3 Human Shooting

The issue of human domination in goal scoring was observed, and to a certain
extent addressed, during the US Open. Human scoring was at that time
banned, but other possible solutions exist with varying degrees of human
restriction.

Alternative solutions:

• Only robots are allowed to shoot on the goal.

• Only robots are allowed to defend the goal.

• For a human goal to count, a robot must have touched the ball within
the last 2 seconds (thereby retaining option for a human deflection
into the goal).

Since simple enforcement of a 2 second rule seems difficult, for 2006 we
propose that only robots are allowed to shoot on or defend the goal.
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6.1.4 Human Marking

Restrictions on the amount of defense directed towards a robot are required
if any sort of reasonable offense is expected from the current robot players.
Already in existence was the rule of no double teaming (where no two players
may block the same robot) and no human being allowed to mark a robot.
However, a more interesting display of robot capabilities might be possible
should further restrictions be implemented.

Alternative solutions:

• No interspecies marking. That is, humans mark humans, robots mark
robots.

• Require the maintenance of a predefined distance between the marker
and marked players.

• Enforce a timeout on marking a robot.

We support the instantiation of no interspecies marking.

6.1.5 Avoidance Distance

Humans were by far the worst offenders of the minimum distance rule, while
the robots tended to both calculate and respect the avoidance distance. By
the same challenge-in-calculation reasoning, as the referee is human, the
maintenance of such a distance is difficult to enforce. However, the definition
of this distance, though unclear in the current rules, can be concretely stated.

Solution, with two aspects:

• The distance is defined as a radius extending from a point particle
centered on the robot, since the robots as augmented for soccer vary
in size from team to team.

• For safety, this distance should be increased from 1.0m, but also needs
to be flexibly enforced.

6.1.6 Timeouts

The number and length of timeouts were not predefined, and were abused
throughout the games.

Solution:

• A maximum of 3 timeouts, with a maximum total time 10 minutes.
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6.1.7 Passing

No rule currently exists which restricts the use of a robot teammate as a
springboard. Consequently, robots can “catch” the ball as humans cannot;
that is, with their backs turned and the ball merely deflecting off of them.
While we would like to retain the ability for deflection goals, we also want
the robot to be aware of and actively involved in the action.

Solution:

• Contact with the ball must happen at the kicker for a catch to be
considered valid. For example, a pass bounced off the back of the
robot is no longer considered good, but a pass bounced off the kicker
of either player is considered good.

6.1.8 Possession Clock

The current possession clock is too long and unclear.
Solution, with two aspects::

• The possession clock is reduced from 30 to 10 seconds.

• The clock begins to countdown when the ball touches the kicker.

6.1.9 Goal Space

We want to improve player interaction with the goals. A particular diffi-
culty at the 2005 US Open was that the 1.0m safety distance prevented any
(robot or human) player from defending their goal should an opponent be
attempting a shot within 1.0m of it.

Alternative solutions:

• Instantiate a goal box, inside of which either no human player is al-
lowed or human players have a timeout.

• Instantiate a try line instead of goal; that is, a teammate beyond the
field line must catch the goal shot. (This requires at the least a larger
field space, and at best an outside field.)

We find either solution acceptable for 2006.

6.1.10 Self Referee

As a suggestion, to borrow another rule from Ultimate Frisbee, we might do
away with the field referee and have all players call their own fouls.
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7 Conclusions

Soccer is an adversarial multi-agent coordination task, currently a research
domain within multiple robot platforms. The intent of Segway soccer specif-
ically is to research the concept of peer-to-peer games; that is, games in
which humans and robots coordinate in soccer play as equal teammates.
We have proposed these peer-to-peer human-robot teams as the goal of fu-
ture human-robot games. Our approach to the development of a Segway
Soccer team was robot-dominated, while the approach of our opponent NSI
team was human-dominated. We have evaluated the strengths and weak-
nesses of each approach, as observed at the 2005 RoboCup US Open. That
either approach was dominated by a single species, however, counters the
intents of equality in peer-to-peer games. We have therefore proposed a set
of rule changes to better promote this peer-to-peer teammate equality. Most
significant within these rule changes include the need for a larger field to
encourage and allow for robot movement, the requirement of equal amounts
of communication between teammates to prevent the domination of one over
the other, restrictions on human goal scoring and interspecies marking, the
redefinition of what is considered a valid pass and suggestions for redefining
the goal space to improve player-goal interactions. We believe that such
changes in the rules will encourage both robot autonomy and human in-
volvement, thereby encouraging also the peer-to-peer ideal of balanced and
interesting interactions between them within a soccer game.
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