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Abstract

Computing an equilibrium of an extensive form game of imperfect information isa fundamental problem in
computational game theory, but current techniques do not scale to large games. To address this, we introduce
theordered game isomorphismand the relatedordered game isomorphic abstraction transformation. For an
n-player sequential game of imperfect information with observable actions and an ordered signal space, we
prove that any Nash equilibrium in an abstracted smaller game, obtained by one or more applications of the
transformation, can be easily converted into a Nash equilibrium in the originalgame. We present an efficient
algorithm,GameShrink, which automatically and exhaustively abstracts the game. UsingGameShrink, we
find an equilibrium to a poker game that is over four orders of magnitude larger than the largest poker game
solved previously. To address even larger games, we introduce approximation methods that do not preserve
equilibrium, but nevertheless yield (ex post) provably close-to-optimal strategies.
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1 Introduction

In environments with multiple self-interested agents, an agent’s outcome is generally affected by actions of
the other agents. Consequently, the optimal action of one agent can depend on the actions of others. Game
theory provides a normative framework for analyzing such strategic situations. In particular, it provides the
notion of anequilibrium, a strategy profile in which no agent has incentive to deviate to a differentstrategy.

The question of how complex it is to construct a Nash equilibrium [29] in a 2-player game has been
dubbed by Papadimitriou “a most fundamental computational problem whose complexity is wide open” and
“together with factoring, [...] the most important concrete open question on theboundary of P today” [30].
The most prevalent algorithm for finding an equilibrium in a 2-player game is the Lemke-Howsonalgo-
rithm [23], but it was recently shown that it takes exponentially many steps inthe worst case [34]. (For a
survey of equilibrium computation in 2-player games, see [40].) For more than two players, there have been
many proposed algorithms, but these algorithms currently only scale to very small games [14, 27]. Recently,
some progress has been made in developing efficient algorithms for computing Nash equilibria in certain
restricted cases (e.g., [31, 2, 24, 5]), as well as for computing market equilibria (e.g., [9, 10, 15, 35]).

For sequential games with imperfect information, one could try to find an equilibrium using the normal
(matrix) form, where every contingency plan of the agent is a pure strategy for the agent. Unfortunately
(even if equivalent strategies are replaced by a single strategy [21]) this representation is generally expo-
nential in the size of the game tree [39]. Thesequence formis an alternative that results in a more compact
representation [33, 17, 39]. For 2-player games, there is a polynomial-sized (in the size of the game tree)
linear programming formulation (linear complementarity in the non-zero-sum case) based on the sequence
form such that strategies for players 1 and 2 correspond to primal and dual variables. Thus, the equilibria of
reasonable-sized 2-player games can be computed using this method [39, 18, 19].1 However, this approach
still yields enormous (unsolvable) optimization problems for many real-world games, such as poker.

In this paper, we take a different approach to tackling the difficult problem of equilibrium computation.
Instead of developing an equilibrium-finding methodper se, we instead develop a methodology for automat-
ically abstracting games in such a way that any equilibrium in the smaller (abstracted) game corresponds
directly to an equilibrium in the original game. Thus, by computing an equilibrium inthe smaller game
(using any available equilibrium-finding algorithm), we are able to construct an equilibrium in the original
game. The motivation is that an equilibrium for the smaller game can be computed drastically faster than
for the orignal game.

To this end, we introducegames with ordered signals(Section 2), a broad class of games that has
enough structure which we can exploit for abstraction purposes. Instead of operating directly on the game
tree (something we found to be technically challenging), we instead introducethe use ofinformation filters
(Section 2.1), which coarsen the information each player receives. They are used in our analysis and ab-
straction algorithm. By operating only in the space of filters, we are able to keep the strategic structure of
the game intact, while abstracting out details of the game in a way that is lossless from the perspective of
equilibrium finding. We introduce theordered game isomorphismto describe strategically symmetric situ-
ations and theordered game isomorphic abstraction transformationto take advantange of such symmetries
(Section 3). As our main equilibrium result we have the following:

Theorem 2 Let Γ be a game with ordered signals, and letF be an information filter forΓ.
Let F ′ be an information filter constructed fromF by one application of the ordered game
isomorphic abstraction transformation, and letσ′ be a Nash equilibrium strategy profile of

1Recently this approach was extended to handle computingsequential equilibria[20] as well [28].
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the induced gameΓF ′ (i.e., the gameΓ using the filterF ′). If σ is constructed by using the
corresponding strategies ofσ′, thenσ is a Nash equilibrium ofΓF .

The proof of the theorem uses an equivalent characterization of Nashequilibria:σ is a Nash equilibrium
if and only if there exist beliefsµ (players’ beliefs about unknown information) at all points of the game
reachable byσ such thatσ is sequentially rational (i.e., a best response) givenµ, whereµ is updated using
Bayes’ rule. We can then use the fact thatσ′ is a Nash equilibrium to show thatσ is a Nash equilibrium
considering only local properties of the game.

In addition to the main equilibrium result, we also give a polynomial algorithm,GameShrink, for exhaus-
tively abstracting the game (Section 4), several algorithmic and data structure related speed improvements
(Section 4.1), and we demonstrate how a simple modification to our algorithm yieldsan approximation
algorithm (Section 5).

1.1 Application to Rhode Island Hold’em poker

Poker is an enormously popular card game played around the world. The 2005 World Series of Poker
is expected to have over $100 million dollars in total prize money, including $60 million for the main
event. Increasingly, poker players compete in online casinos, and television stations regularly broadcast
poker tournaments. Due to the uncertainty stemming from opponents’ cards, opponents’ future actions,
and chance moves, poker has been identified as an important research area in CS [4]. Poker has been a
popular subject in the game theory literature since the field’s founding, butmanual equilibrium analysis has
been limited to extremely small games. Even with the use of computers, the largest poker games that have
been solved have only about 140,000 nodes in the game tree [19]. Large-scale approximations have been
developed [3], but those methods do not provide any guarantees about the performance of the computed
strategies. Furthermore, the approximations were designed manually by a human expert. Our approach
yields an automated abstraction mechanism along with theoretical guarantees on the strategies’ performance.

Rhode Island Hold’em was invented as a testbed for computational game playing [36]. It was designed
so that it was similar in style to Texas Hold’em, yet not so large that devising reasonably intelligent strate-
gies would be impossible. (The rules of Rhode Island Hold’em are given inAppendix C. That appendix
also shows how Rhode Island Hold’em can be modeled as a game with ordered signals.) We applied the
techniques developed in this paper to exactly solve Rhode Island Hold’em, which has a game tree exceeding
3.1 billion nodes.

Applying the sequence form representation to Rhode Island Hold’em directly without abstractions yields
a linear program with 91,224,226 rows, and the same number of columns. Thisis much too large for current
linear programming algorithms to handle. We usedGameShrinkto reduce this, and it yielded a linear pro-
gram with 1,237,238 rows and columns—with 50,428,638 non-zero coefficients. We then applied iterated
elimination of dominated strategies, which further reduced this to 1,190,443 rows and 1,181,084 columns.
(Applying iterated elimination of dominated strategies withoutGameShrinkyielded 89,471,986 rows and
89,121,538 columns, which still would have been prohibitively large to solve.)GameShrinkrequired less
than one second to perform the shrinking (i.e., to compute all of the ordered game isomorphic abstraction
transformations). Using a 1.65GHz IBM eServer p5 570 with 64 gigabytes of RAM (we only needed 25
gigabytes), we solved it in 7 days and 17 hours using the barrier method ofCPLEX version 9.1.2. We re-
cently demonstrated our optimal Rhode Island Hold’em poker player at the AAAI-05 conference [11], and
it is available for play on-line athttp://www.cs.cmu.edu/˜gilpin/gsi.html .

While others have worked on computer programs for playing Rhode IslandHold’em [36], no optimal
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strategy has been found before. This is the largest poker game solved todate by over four orders of magni-
tude.

2 Games with ordered signals

We find it convenient to work with a slightly restricted class of games, as compared to the full generality
of the extensive form.2 This class, which we callgames with ordered signals, is highly structured, but still
general enough to capture a wide range of strategic situations. Instances of this game family consist of a finite
number of rounds in which players play a game on a directed tree. The only uncertainty players face stems
from private signals the other players have received and in the unknown future signals. In each round, there
are public signals (announced to all players) and private signals (confidentially communicated to individual
players). Each player receives the same number of private signals at each round. The strongest assumption is
that there is a partial ordering over sets of signals, and the payoffs areincreasing (not necessarily strictly) in
these signals. For example, in poker, this partial ordering correspondsexactly to the ranking of card hands.

Definition 1 A game with ordered signalsis a tupleΓ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉 where:
1. I = {1, . . . , n} is a finite set of players.

2. G = 〈G1, . . . , Gr〉, Gj =
(

V j , Ej
)

, is a finite collection of finite directed trees with verticesV j and
edgesEj . LetZj denote the leaf nodes ofGj and letN j(v) denote the outgoing neighbors ofv ∈ V j .
Gj is thestage gamefor roundj.

3. L = 〈L1, . . . , Lr〉, Lj : V j \Zj → I indicates which player acts (chooses an outgoing edge) at each
internal node in roundj.

4. Θ is a finite set ofsignals.

5. κ = 〈κ1, . . . , κr〉 and γ = 〈γ1, . . . , γr〉 are vectors of nonnegative integers, whereκj and γj de-
note the number of public and private signals (per player), respectively,revealed in roundj. Each
signal θ ∈ Θ may only be revealed once, and in each round every player receives the same num-
ber of private signals, so we require

∑r
j=1 κj + nγj ≤ |Θ|. The public information revealed

in round j is αj ∈ Θκj
and the public information revealed in all rounds up through roundj is

α̃j =
(

α1, . . . , αj
)

. The private information revealed to playeri ∈ I in roundj is βj
i ∈ Θγj

and the

private information revaled to playeri ∈ I in all rounds up through roundj is β̃j
i =

(

β1
i , . . . , βj

i

)

.

We also writeβ̃j =
(

β̃j
1, . . . , β̃

j
n

)

to represent all private information up through roundj, and
(

β̃′j
i , β̃

j
−i

)

=
(

β̃j
1, . . . , β̃

j
i−1, β̃

′j
i , β̃

j
i+1, . . . , β̃

j
n

)

is β̃j with β̃j
i replaced withβ̃′j

i . The total infor-

mation revealed up through roundj,
(

α̃j , β̃j
)

, is said to belegal if no signals are repeated.

6. p is a probability distribution overΘ, with p(θ) > 0 for all θ ∈ Θ. Signals are drawn fromΘ
according top without replacement, so ifX is the set of signals already revealed, then

p(x | X) =

{

p(x)
P

y /∈X p(y) if x /∈ X

0 if x ∈ X.

7. º is a partial ordering of subsets ofΘ and is defined for at least those pairs required byu.

2For readers unfamiliar with extensive form games, we provide a complete definition in Appendix A.
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8. ω :
r
⋃

j=1
Zj → {over, continue} is a mapping of terminal nodes within a stage game to one of two

values:over, in which case the game ends, orcontinue, in which case the game continues to the next
round. Clearly, we requireω(z) = over for all z ∈ Zr. Note thatω is independent of the signals. Let
ωj

over =
{

z ∈ Zj |ω(z) = over
}

andωj
cont =

{

z ∈ Zj |ω(z) = continue
}

.

9. u = (u1, . . . , ur), uj :
j−1³
k=1

ωk
cont × ωj

over ×
j³

k=1
Θκk

×
n³

i=1

j³
k=1

Θγk
→ R

n is a utility function such

that for everyj, 1 ≤ j ≤ r, for everyi ∈ I, and for everỹz ∈
j−1³
k=1

ωk
cont × ωj

over, at least one of the

following two conditions holds:

(a) Utility is signal independent:uj
i (z̃, ϑ) = uj

i (z̃, ϑ′) for all legal ϑ, ϑ′ ∈
j³

k=1
Θκk

×
n³

i=1

j³
k=1

Θγk
.

(b) º is defined for all legal signals
(

α̃j , β̃j
i

)

and
(

α̃j , β̃′j
i

)

through roundj and a player’s utility

is increasing in her private signals, everything else equal:
(

α̃j , β̃j
i

)

º
(

α̃j , β̃′j
i

)

−→ ui

(

z̃, α̃j ,
(

β̃j
i , β̃

j
−i

))

≥ ui

(

z̃, α̃j ,
(

β̃′j
i , β̃

j
−i

))

.

We will use the termgame with ordered signalsand the termordered gameinterchangeably.

2.1 Information filters

In this subsection, we define aninformation filter for ordered games. Instead of completely revealing a
signal (either public or private) to a player, the signal first passes through this filter, which outputs acoars-
enedsignal to the player. By varying the filter applied to a game, we are able to obtaina wide variety of
games while keeping the underlying action space of the game intact. We will use this when designing our
abstraction techniques. Formally, an information filter is as follows.

Definition 2 LetΓ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉 be an ordered game. LetSj ⊆
j³

k=1
Θκk

×
j³

k=1
Θγk

be the

set of legal signals (i.e., no repeated signals) for one player through roundj. An information filterfor Γ is
a collectionF = 〈F 1, . . . , F r〉 where eachF j is a functionF j : Sj → 2Sj

such that each of the following
conditions hold:

1. (Truthfulness)
(

α̃j , β̃j
i

)

∈ F j
(

α̃j , β̃j
i

)

for all legal
(

α̃j , β̃j
i

)

.

2. (Independence) The range ofF j is a partition ofSj .

3. (Information preservation) If two values of a signal are distinguishable in roundk, then they are distin-
guishable in roundj > k. Letmj =

∑j
l=1 κl+γl. We require that for all legal(θ1, . . . , θmk , . . . , θmj ) ⊆

Θ and(θ′1, . . . , θ
′
mk , . . . , θ′

mj ) ⊆ Θ:

(θ′1, . . . , θ
′
mk) /∈ F k(θ1, . . . , θmk) −→ (θ′1, . . . , θ

′
mk , . . . , θ′mj ) /∈ F j(θ1, . . . , θmk , . . . , θmj ).

A game with ordered signalsΓ and an information filterF for Γ defines a new gameΓF . We refer
to such games asfiltered ordered games. We are left with the original game if we use the identity filter

F j
(

α̃j , β̃j
i

)

=
{(

α̃j , β̃j
i

)}

. We have the following simple (but important) result:
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Proposition 1 A filtered ordered game is an extensive form game satisfying perfect recall.

A simple proof proceeds by constructing an extensive form game directly from the ordered game, and
showing that it satisfies perfect recall. In determining the payoffs in a gamewith filtered signals, we take the
average over all real signals in the filtered class, weighted by the probability of each real signal occurring.

2.2 Strategies and Nash equilibrium

We are now ready to define behavior strategies in the context of filtered ordered games.

Definition 3 A behavior strategyfor player i in roundj of Γ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉 with informa-
tion filter F is a probability distribution over possible actions, defined for each playeri, each roundj, and
eachv ∈ V j \ Zj whereLj(v) = i:

σj
i,v :

j−1́

k=1

ωk
cont × Range

(

F j
)

−→ ∆
({

w ∈ V j | (v, w) ∈ Ej
})

.

(∆(X) is the set of probability distributions over a finite setX.) A behavior strategy for playeri in round

j is σj
i =

(

σj
i,v1

, . . . , σj
i,vm

)

for eachvk ∈ V j \ Zj whereLj(vk) = i. A behavior strategy for playeri in

Γ is σi =
(

σ1
i , . . . , σ

r
i

)

. A strategy profileis σ = (σ1, . . . , σn). A strategy profile withσi replaced byσ′
i is

(σ′
i, σ−i) = (σ1, . . . , σi−1, σ

′
i, σi+1, . . . , σn).

By an abuse of notation, we will say playeri receives an expected payoff ofui(σ) when all players
are playing the strategy profileσ. Strategyσi is said to be playeri’s best responseto σ−i if for all other
strategiesσ′

i for playeri we haveui(σi, σ−i) ≥ ui(σ
′
i, σ−i). σ is a Nash equilibriumif, for every player

i, σi is a best response forσ−i. A Nash equilibrium always exists in finite extensive form games [29], and
one exists in behavior strategies for games with perfect recall [22]. Using these observations, we have the
following corollary to Proposition 1:

Corollary 1 For any filtered ordered game, a Nash equilibrium exists in behavior strateges.

3 Equilibrium-preserving abstractions

In this section, we present our main technique for reducing the size of games. We begin by defining afiltered
signal treewhich represents all of the chance moves in the game. The bold edges (i.e. the first two levels of
the tree) in the game trees in Figure 1 correspond to the filtered signal trees ineach game.

Definition 4 Associated with every ordered gameΓ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉 and information filterF
is a filtered signal tree, a directed tree in which each vertex corresponds to some revealed (filtered) signals
and edges correspond to revealing specific (filtered) signals. The nodes in the filtered signal tree represent
the set of all possible revealed filtered signals (public and private) at some point in time. The filtered public
signals revealed in roundj correspond to the vertices in theκj levels beginning at level

∑j−1
k=1

(

κk + nγk
)

and the private signals revealed in roundj correspond to the vertices in thenγj levels beginning at level
∑j

k=1 κk +
∑j−1

k=1 nγk. We denote children of a nodex asN(x). In addition, we associate weights with
the edges corresponding to the probability of the particular edge being chosen given that its parent was
reached.
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In many games, there are certain situations in the game that can be thought of as being strategically
equivalent to other situations in the game. By melding these situations together, it ispossible to arrive at a
strategically equivalent smaller game. The next two definitions formalize this notion via the introduction of
theordered game isomorphicrelation and theordered game isomorphic abstraction transformation.

Definition 5 Two subtrees beginning at internal nodesx and y of a filtered signal tree areordered game
isomorphicif x and y have the same parent and there is a bijectionf : N(x) → N(y), such that for
w ∈ N(x) andv ∈ N(y), v = f(w) implies the weights on the edges(x, w) and(y, v) are the same and the
subtrees beginning atw andv are ordered game isomorphic. Two leaves (corresponding to filtered signals

ϑ andϑ′ up through roundr) are ordered game isomorphic if for all̃z ∈
r−1³
j=1

ωj
cont × ωr

over, ur (z̃, ϑ) =

ur (z̃, ϑ′).

Definition 6 Let Γ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉 be an ordered game and letF be an information fil-
ter for Γ. Let ϑ and ϑ′ be two information structures where the subtrees in the induced filtered signal
tree corresponding to the nodesϑ and ϑ′ are ordered game isomorphic, andϑ and ϑ′ are at either level
∑j−1

k=1

(

κk + nγk
)

or
∑j

k=1 κk +
∑j−1

k=1 nγk for some roundj. Theordered game isomorphic abstraction
transformationis given by creating a new information filterF ′:

F ′j
(

α̃j , β̃j
i

)

=







F j
(

α̃j , β̃j
i

)

if
(

α̃j , β̃j
i

)

/∈ ϑ ∪ ϑ′

ϑ ∪ ϑ′ if
(

α̃j , β̃j
i

)

∈ ϑ ∪ ϑ′.

Figure 1 shows the ordered game isomorphic abstraction transformation applied twice to a tiny poker
game. Theorem 2, our main equilibrium result, shows how the ordered game isomorphic abstraction trans-
formation can be used to compute equilibria faster.

Theorem 2 Let Γ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉 be an ordered game andF be an information filter for
Γ. Let F ′ be an information filter constructed fromF by one application of the isomorphic information
structure abstraction transformation. Letσ′ be a Nash equilibrium of the induced gameΓF ′ . If we take

σj
i,v

(

z̃, F j
(

α̃j , β̃j
i

))

= σ′j
i,v

(

z̃, F ′j
(

α̃j , β̃j
i

))

, σ is a Nash equilibrium ofΓF .

The main idea of the proof involves the use of an equivalent characterization of Nash equilibria using belief
systems and the notion of sequential rationality. An outline of the proof, intended to give a flavor of the
technique used, appears below. Three claims cover the necessary details to finish the proof; we prove these
claims in Appendix B. The heart of the proof is as follows:
PROOF OF THEOREM 2. For an extensive form game, abelief systemµ assigns a probability to every
decision nodex such that

∑

x∈h µ(x) = 1 for every information seth. A strategy profileσ is sequentially
rational ath given belief systemµ if ui(σi, σ−i |h, µ) ≥ ui(τi, σ−i |h, µ) for all other strategiesτi, wherei
is the player who controlsh. A basic result [26, Proposition 9.C.1] characterizing Nash equilibria dictates
thatσ is a Nash equilibrium if and only if there is a belief systemµ such that for every information seth
with Pr(h |σ) > 0, the following two conditions hold: (C1)σ is sequentially rational ath givenµ; and (C2)
µ(x) = Pr(x |σ)

Pr(h |σ) for all x ∈ h. Sinceσ′ is a Nash equilibrium ofΓ′, there exists such a belief systemµ′.

Usingµ′, we will construct a belief systemµ for Γ and show that conditions C1 and C2 hold, thus supporting
σ as a Nash equilibrium.
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Figure 1: GameShrinkapplied to a tiny two-person four-card (two Jacks and two Kings) poker game. Next to each
game tree is the range of the information filterF . Dotted lines denote information sets, which are labeled bythe
controlling player. Open circles are chance nodes with the indicated transition probabilities. The root node is the
chance node for player 1’s card, and the next level is for player 2’s card. The payment from player 2 to player 1 is
given below each leaf. In this example, the algorithm reduces the game tree from 53 nodes to 19 nodes.

Fix some playeri ∈ I. Each ofi’s information sets in some roundj corresponds to filtered signals

F j
(

α̃∗j , β̃∗j
i

)

, history in the firstj − 1 rounds(z1, . . . , zj−1) ∈
j−1³
k=1

ωk
cont, and history so far in roundj,

v ∈ V j \ Zj . Let z̃ = (z1, . . . , zj−1, v) represent all of the player actions leading to this information set.

Thus, we can uniquely specify this information set using the information
(

F j
(

α̃∗j , β̃∗j
i

)

, z̃
)

.

Each node in an information set corresponds to the possible private signals the other players have re-
ceived. Denote bỹβ some legal member of

(

F j
(

α̃j , β̃j
1

)

, . . . , F j
(

α̃j , β̃j
i−1

)

, F j
(

α̃j , β̃j
i+1

)

, . . . , F j
(

α̃j , β̃j
n

))

.

In other words, there exists
(

α̃j , β̃j
1, . . . , β̃

j
n

)

such that
(

α̃j , β̃j
i

)

∈ F j
(

α̃∗j , β̃∗j
i

)

,
(

α̃j , β̃j
k

)

∈ F j
(

α̃j , β̃j
k

)

for k 6= i, and no signals are repeated. Using such a set of signals
(

α̃j , β̃j
1, . . . , β̃

j
n

)

, let β̂′ denote
(

F ′j
(

α̃j , β̃j
1

)

, . . . , F ′j
(

α̃j , β̃j
i−1

)

, F ′j
(

α̃j , β̃j
i+1

)

, . . . , F ′j
(

α̃j , β̃j
n

))

. (We will also abuse notation and

write F ′j
−i

(

β̂
)

= β̂′.) We can now computeµ directly fromµ′:

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

=







µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

if F j
(

α̃j , β̃j
i

)

6= F ′j
(

α̃j , β̃j
i

)

or β̂ = β̂′

p∗µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

if F j
(

α̃j , β̃j
i

)

= F ′j
(

α̃j , β̃j
i

)

and β̂ 6= β̂′
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wherep∗ =
Pr(β̂ | F j(α̃j ,β̃

j
i ))

Pr(β̂′ | F ′j(α̃j ,β̃
j
i ))

. The following claims show thatµ as calculated above supportsσ as a Nash

equilibrium.

Claim 1 µ is a valid belief system forΓF .

Claim 2 For all information setsh with Pr(h | σ) > 0, µ(x) = Pr(x | σ)
Pr(h | σ) for all x ∈ h.

Claim 3 For all information setsh with Pr(h | σ) > 0, σ is sequentially rational ath givenµ.

The proofs of Claims 1-3 are in Appendix B. By Claims 1 and 2, we know that condition C2 holds. By
Claim 3, we know that condition C1 holds. Thus,σ is a Nash equilibrium. ¤

3.1 Non-trivial assumptions

Our model does not capture general sequential games of imperfect information because it is restricted in
two ways: 1) all actions by the player (but not necessarily by nature) are observable,a nd 2) there is a
common ordering of signals. In this subsection we show that removing either of these conditions can make
our technique invalid.

First, we demonstrate a failure when removing the first assumption. Considerthe game in Figure 2.3

Nodesa andb are in the same information set, have the same parent (chance) node, haveisomorphic subtrees
with the same payoffs, and nodesc andd also have similar structural properties. By merging the subtrees
beginning ata andb, we get the game on the right in Figure 2. In this game, player 1’s only Nash equilibrium
strategy is to play left. But in the original game, player 1 knows that nodec will never be reached, and so
should play right in that information set.

1/4
1/4 1/4

1/4

2 2 2

1

1

1 2 1 2 3 0 3 0

-10 10

1/2 1/4 1/4

2 2 2

1

1 2 3 0 3 0

a b

2 2 2 10-10
c

d

Figure 2: Example illustrating difficulty in developing a theory of equilibrium-preserving abstractions for general
extensive form games with nonobservable actions.

Removing the second assumption (that the utility functions are based on a commond ordering of signals)
can also cause failure. Consider a simple three-card game with a deck containing two Jacks (J1 andJ2)
and a King (K), where player 1’s utility function is based on the orderingK º J1 ∼ J2 but player 2’s

3We thank Albert Xin Jiang for providing this example.
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utility function is based on the orderingJ2 º K º J1. It is easy to check that in the abstracted game
(where Player 1 treatsJ1 andJ2 as being “equivalent”) the Nash equilibrium does not correspond to a Nash
equilibrium in the original game.4

4 An efficient algorithm for computing ordered game isomorphic abstrac-
tion transformations

We need the following subroutine for computing the ordered game ismorphic relation.

Algorithm 1 OrderedGameIsomorphic?(Γ, F, ϑ, ϑ′)

1. If ϑ andϑ′ are both leaves of the filtered (according toF ) signal tree:

(a) If ur(ϑ | z̃) = ur(ϑ′ | z̃) for all z̃ ∈
r−1³
j=1

ωj
cont × ωr

over, then return true.

(b) Otherwise, return false.

2. Create a bipartite graphGϑ,ϑ′ = (V1, V2, E) with V1 = N(ϑ) andV2 = N(ϑ′).

3. For eachv1 ∈ V1 andv2 ∈ V2:

(a) Create edge(v1, v2) if OrderedGameIsomorphic?(Γ, v1, v2).

4. Return true ifGϑ,ϑ′ has a perfect matching; otherwise, return false.

By evaluating this dynamic program from bottom to top, Algorithm 1 determines, intime polynomial in
the size of the game tree, whether or not any pair of equal depth nodesx andy are ordered game isomorphic.
Given this routine for determining ordered game isomorphisms in an ordered game, we are ready to present
the main algorithm,GameShrink. Given as input a gameΓ, it applies the shrinking ideas presented above as
aggressively as possible. Once it finishes, there are no contractible nodes, and it outputs the corresponding
information filterF . The correctness ofGameShrinkfollows by a repeated application of Theorem 2.

Algorithm 2 GameShrink(Γ)

1. InitializeF to be the identity filter forΓ.

2. For j from 1 tor:

For each pair of verticesϑ, ϑ′ with the same parent at either level
∑j−1

k=1

(

κk + nγk
)

or
∑j

k=1 κk+
∑j−1

k=1 nγk in the filtered (according toF ) signal tree:
If OrderedGameIsomorphic?(ϑ, ϑ′), thenF j (ϑ) ← F j (ϑ′) ← F j(ϑ) ∪ F j (ϑ′).

3. OutputF .

4.1 Efficiency enhancements

We designed several speed enhancement techniques forGameShrink, and all of them are incorporated into
our implementation. One technique is the use of the union-find data structure [8, Chapter 21] for storing the
information filterF . This data structure uses time almost linear in the number of operations [38]. Initially
each node in the signalling tree is its own set (this corresponds to the identity information filter); when two
nodes are contracted they are joined into a new set. Upon termination, the filtered signals for the abstracted

4We thank an anonymous referee for providing this example.
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game correspond exactly to the disjoint sets in the data structure. This is an efficient method of recording
contractions within the game tree, and the memory requirements are only linear in the size of the signal tree.

Determining whether two nodes are ordered game isomorphic requires us to determine if a bipartite
graph has a perfect matching. We can eliminate some of these computations by using easy-to-check neces-
sary conditions for the ordered game isomorphic relation to hold. One such condition is to check that the
nodes have the same number of chances as being ranked (according toº) higher than, lower than, and the
same as the opponents. We can precompute these frequencies for everygame tree node. This substantially
speeds upGameShrink, and we can leverage this database across multiple runs of the algorithm (for exam-
ple, when trying different abstraction levels; see next section). The indices for this database depend on the
private and public signals, but not theorder in which they were revealed, and thus two nodes may have the
same corresponding database entry. This makes the database significantlymore compact. (For example in
Texas Hold’em, the database is reduced by a factor

(

50
3

)(

47
1

)(

46
1

)

/
(

50
5

)

= 20.) We store the histograms in
a 2-dimensional database. The first dimension is indexed by the private signals, the second by the public
signals. The problem of computing the index in (either) one of the dimensions isexactly the problem of
computing a bijection between all subsets of sizer from a set of sizen and integers in

[

1, . . . ,
(

n
r

)]

. We
efficiently compute this using the subsets’colexicographical ordering[6].

5 Approximation methods

Some games are too large to compute an exact equilibrium, even after using the presented abstraction tech-
nique. In this section we discuss general techniques for computing approximately optimal strategy profiles.
For a two-player game, we can always evaluate the worst-case performance of a strategy, thus providing
some objective evaluation of the strength of the strategy. To illustrate this, suppose we know player 2’s
planned strategy for some game. We can then fix the probabilities of player 2’s actions in the game tree as if
they were chance moves. Then player 1 is faced with a single-agent decision problem, which can be solved
bottom-up, maximizing expected payoff at every node. Thus, we can objectively determine the expected
worst-case performance of player 2’s strategy. This will be most useful when we want to evaluate how well
a given strategy performs when we know that it is not an equilibrium strategy. (A variation of this technique
may also be applied inn-person games where only one player’s strategies are held fixed.) This technique
providesex postguarantees about the worst-case performance of a strategy, and canbe used independently
of the method that is used to compute the strategies in the first place.

5.1 State-space approximations

By slightly modifying theGameShrinkalgorithm we can obtain an algorithm that yields even smaller game
trees, at the expense of losing the equilibrium guarantees of Theorem 2.Instead of requiring the payoffs at
terminal nodes to match exactly, we can instead compute a penalty that increases as the difference in utility
between two nodes increases.

There are many ways in which the penalty function could be defined and implemented. One possibility
is to create edge weights in the bipartite graphs used in Algorithm 1, and then instead of requiring perfect
matchings in the unweighted graph we would instead require perfect matchingswith low cost (i.e., only con-
sider two nodes to be ordered game isomorphic if the corresponding bipartitegraph has a perfect matching
with cost below some threshold). Thus, with this threshold as a parameter, wehave a knob to turn that in
one extreme (threshold = 0) yields an optimal abstraction and in the other extreme (threshold =∞) yields
a highly abstracted game (this would in effect restrict players to ignoring allsignals, but still observing
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actions). This knob also begets ananytimealgorithm. One can solve increasingly less abstracted versions
of the game, and evaluate the quality of the solution at every iteration using theex postmethod discussed
above.

5.2 Algorithmic approximations

In the case of two-player zero-sum games, the equilibrium computation can be modeled as a linear program
(LP), which can in turn be solved using the simplex method. This approach has inherent features which we
can leverage into desirable properties in the context of solving games.

In the LP, primal solutions correspond to strategies of player 2, and dualsolutions correspond to strate-
gies of player 1. The simplex method proceeds by simultaneously finding betterand better primal and dual
solutions (i.e., better and better strategies for each player). Thus, the simplex method itselfis ananytime
algorithm (for a given abstraction). At any point in time, it can output the best strategies found so far.

Also, for any feasible solution to the LP, we can get bounds on the quality ofthe strategies by examining
the primal and dual solutions. (When using the primal simplex method, dual solutions may be read off
of the LP tableau.) Every feasible solution of the dual yields an upper bound on the optimal value of the
primal, and vice versa [7, p. 57]. Thus, without requiring further computation, we get lower bounds on
the expected utility of each agent’s strategy against that agent’s worst-case opponent. This is a method for
finding ε-equilibria (i.e., strategy profiles in which no agent can increase her expected utility more thanε by
deviating), and can also be used as a termination criterion for an anytime algorithm.

6 Related research on abstraction

Abstraction techniques have been used in artificial intelligence research before. In contrast to our work, most
(but not all) research involving abstraction has been for single-agentproblems (e.g. [16, 25]). Furthermore,
the use of abstraction typically leads to sub-optimal solutions, unlike the techniques presented in this paper,
which yield optimal solutions. (A notable exception is the use of abstraction to compute optimal strategies
in the (perfect information) game of Sprouts [1].)

One of the first pieces of research utilizing abstraction in multi-agent settingswas the development
of partition search, which is the algorithm behind GIB, the world’s first expert-level computerbridge
player [12, 13]. In contrast to other game tree search algorithms which store a particular game position
at each node of the search tree, partition search storesgroupsof positions that it determines are equivalent.
(Typically, the equivalence of two game positions is determined by ignoring irrelevant pieces of each game
position and then checking whether the abstracted positions are consistentwith each other.) Partition search
can lead to substantial speed improvements over alpha-beta pruning and minimax search. However, it is not
game-theoretically based (it does not consider information sets in the game tree), and thus does not allow
one to solve for the equilibrium of a game of imperfect information, such as poker.5

There has been some research into the use of abstraction for games with imperfect information. Most
notably, the paper by Billingset al [3] describes a manually constructed abstraction for the game of Texas
Hold’em, and includes promising results against expert players. However, this approach has significant

5Bridge is also a game of imperfect information, and partition search doesnot find the equilibrium for that game either, although
experimentally it plays quite well against human players. Instead, partitionsearch is used in conjunction with statistical sampling to
simulate the uncertainty in bridge. Other research that also uses perfectinformation search techniques in conjunction with statistical
sampling and expert-defined abstraction has been developed for bridge [37]. Such (non-game-theoretic) techniques are unlikely to
be helpful in poker games because of the greater importance on information hiding and bluffing.
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drawbacks. First, it is highly specialized for Texas Hold’em. Second, a large amount of expert knowledge
and effort was used in constructing the abstraction. Third, the abstraction does not preserve equilibrium:
even if applied to a smaller game, it might not yield a game-theoretic equilibrium. Promising ideas for
abstraction in the context of general extensive form games have been described in an extended abstract [32],
but to our knowledge have not been fully developed.

7 Conclusions

We introduced the ordered game isomorphic abstraction transformation and gave an efficient algorithm,
GameShrink, for automatically abstracting the game. We proved that in games with ordered signals, any
Nash equilibrium in the smaller abstracted game maps directly to a Nash equilibrium inthe original game.
UsingGameShrinkwe found the equilibrium to a poker game that is over four orders of magnitude larger
than the largest poker game solved previously. We also introduced approximation methods for comput-
ing approximately optimal equilibria in general games, and described algorithmictechniques for devising
bounds on suboptimality of the strategies. We described how all of these techniques can be converted into
anytime algorithms.
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A Extensive form games

Our model of an extensive form game is defined as usual.

Definition 7 An n-person game in extensive formis a tupleΓ = (I, V, E, P, H, A, u, p) satisfying the
following conditions:

1. I = {0, 1, . . . , n} is a finite set of players. By convention, player 0 is thechanceplayer.

2. The pair(V, E) is a finite directed tree with nodesV and edgesE. Z denotes the leaves of the tree,
called terminal nodes. V \ Z are decision nodes. N(x) denotesx’s children andN∗(x) denotesx’s
descendants.

3. P : V \Z → I determines which player moves at each decision node.P induces a partition ofV \Z
and we definePi = {x ∈ V \ Z |P (x) = i}.

4. H = {H0, . . . , Hn} where eachHi is a partition ofPi. For each of playeri’s information setsh ∈ Hi

and forx, y ∈ h, we have|N(x)| = |N(y)|. We denote the information set of a nodex ash(x) and
the player who controlsh is i(h).

5. A = {A0, . . . , An}, Ai : Hi → 2E where for eachh ∈ Hi, Ai(h) is a partition of the set of edges
{(x, y) ∈ E |x ∈ h} leaving the information seth such that the cardinalities of the sets inAi(h) are
the same and the edges are disjoint. Eacha ∈ Ai(h) is called anactionat h.

6. u : Z → IR
N is thepayoff function. Forx ∈ Z, ui(x) is the payoff to playeri in the event that the

game ends at nodex.

7. p : H0 ×{a ∈ A0(h) |h ∈ H0} → [0, 1] where
∑

a∈A0(h) p(h, a) = 1 for all h ∈ H0 is the transition
probability for chance nodes.

In this paper we restrict our attention to games withperfect recall(formally defined in [22]), which means
that players never forget information.

Definition 8 An n-person game in extensive form satisfiesperfect recallif the following two constraints
hold:

1. Every path in(V, E) intersectsh at most once.

2. If v andw are nodes in the same information set and there is a nodeu that preceedsv andP (u) =
P (v), then there must be some nodex that is in the same information set asu and preceedsv and the
paths taken fromu to v is the same as fromx to w.

A straightforward representation for strategies in extensive form gamesis thebehavior strategyrep-
resentation. This is without loss of generality since Kuhn’s theorem [22] states that for any mixed strat-
egy there is a payoff-equivalent behavioral strategy in games with perfect recall. For each information set
h ∈ Hi, a behavior strategy isσi(h) ∈ ∆(Ai(h)) where∆(Ai(h)) is the set of all probability distribu-
tions over actions available at information seth. A group of strategiesσ = (σ1, . . . , σn) consisting of
strategies for each player is astrategy profile. We sometimes writeσ−i = (σ1, . . . , σi−1, σi+1, . . . , σn) and
(σ′

i, σ−i) = (σ1, . . . , σi−1, σ
′
i, σi+1, . . . , σn).
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B Proofs

Claim 1 µ is a valid belief system forΓF .

PROOF OFCLAIM 1. Let h be playeri’s information set after some history
(

F j
(

α̃j , β̃j
i

)

, z̃
)

. Clearly

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

≥ 0 for all β̂ ∈ h. We need to show
∑

β̂∈h
µ

(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

= 1.

CASE 1. F j
(

α̃j , β̃j
i

)

6= F ′j
(

α̃j , β̃j
i

)

. From the construction ofF ′, F j
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i

)
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Figure 3: Illustration of Case 1 of Claim 1.

morphic to someF j
(

α̃′j , β̃′j
i

)

6= F j
(

α̃j , β̃j
i

)

. Let h′ be playeri’s information set correspond-

ing to the history
(

F j
(

α̃′j , β̃′j
i

)

, z̃
)

. By the definition of the ordered game isomorphism, there

exists a perfect matching between the nodes in the information seth andh′, where each matched
pair of vertices corresponds to a pair of ordered game isomorphic information structures. Since

F ′j
(

α̃j , β̃j
i

)

= F ′j
(

α̃′j , β̃′j
i

)

, each edge in the matching corresponds to a node in the information

set given by the history
(

F ′j
(

α̃j , β̃j
i

)

, z̃
)

in ΓF ′ ; denote this information set byh′′. (See Figure 3.)

Thus, there is a bijection betweenh andh′′ defined by the perfect matching. Using this matching:
∑

β̂∈h

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂∈h

µ′
(

F ′j
−i

(

β̂
)

| F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂′∈h′′

µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

= 1.

CASE 2. F j
(

α̃j , β̃j
i

)

= F ′j
(

α̃j , β̃j
i

)

. We need to treat members ofh differently depending on if they

map to the same set of signals inΓF ′ or not. Leth1 =
{

β̂ ∈ h | β̂ = F ′j
−i

(

β̂
)}

and leth2 =
{

β̂ ∈ h | β̂ ⊂ F ′j
−i

(

β̂
)}

. Clearly (h1, h2) is a partition ofh. Let h′ be playeri’s information set

corresponding to the history
(

F ′j
(

α̃j , β̃j
i

)

, z̃
)

in ΓF ′ . We can create a partition ofh′ by letting

h3 =
{

F ′j
−i

(

β̂
)

| β̂ ∈ h1

}

andh4 =
{

F ′j
−i

(

β̂
)

| β̂ ∈ h2

}

. Cleary(h3, h4) partitionsh′. (See

Figure 4.) The rest of the proof for this case proceeds in three steps.
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Figure 4: Illustration of Case 2 of Claim 1.

STEP 1. In this step we show the following relationship betweenh1 andh3:
∑

β̂∈h1

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂∈h1

µ′
(

F ′j
−i

(

β̂
)

| F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂′∈h3

µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

(1)

STEP 2. In this step we want to show a similar relationship betweenh2 andh4. In doing so, we use

the following fact:β̂ ⊂ β̂′ → F ′j
−i

(

β̂
)

= β̂′. With this in mind, we can write:

∑

β̂∈h2

µ
(

β̂|F j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂∈h2

Pr
(

β̂|F j
(

α̃j , β̃j
i

))

Pr
(

F ′j
−i

(

β̂
)

|F ′j
(

α̃j , β̃j
i

))µ′
(

F ′j
−i

(

β̂
)

|F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

Pr
(

β̂|F j
(

α̃j , β̃j
i

))

Pr
(

F ′j
−i

(

β̂
)

|F ′j
(

α̃j , β̃j
i

))µ′
(

F ′j
−i

(

β̂
)

|F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

Pr
(

β̂|F j
(

α̃j , β̃j
i

))

Pr
(

β̂′|F j
(

α̃j , β̃j
i

))µ′
(

β̂′|F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂′∈h4

µ′
(

β̂′|F ′j
(

α̃j , β̃j
i

)

, z̃
)

∑

β̂∈h2

β̂⊂β̂′

Pr
(

β̂|F j
(

α̃j , β̃j
i

))

Pr
(

β̂′|F j
(

α̃j , β̃j
i

))

=
∑

β̂′∈h4

µ′
(

β̂′|F ′j
(

α̃j , β̃j
i

)

, z̃
)

(2)

STEP 3. Using (1) and (2):
∑

β̂∈h

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂∈h1

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

+
∑

β̂∈h2

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)
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=
∑

β̂′∈h3

µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

+
∑

β̂′∈h4

µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

β̂′∈h′

µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

= 1

In both cases we have shown
∑

β̂∈h

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

= 1. ¤

Claim 2 For all information setsh with Pr(h | σ) > 0, µ(x) = Pr(x | σ)
Pr(h | σ) for all x ∈ h.

PROOF OFCLAIM 2. Leth be playeri’s information set after some history
(

F j
(

α̃j , β̃j
i

)

, z̃
)

, and fix some

β̂ ∈ h. Let β̂′ = F ′j
−i

(

β̂
)

. We need to show thatµ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

=
Pr(β̂ | σ)
Pr(h | σ) . Let h′ be playeri’s

information set after history
(

F ′j
(

α̃j , β̃j
i

)

, z̃
)

.

CASE 1. F j(α̃j , β̃j
i ) 6= F ′j(α̃j , β̃j

i ).

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

= µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
Pr

(

β̂′ | σ′
)

Pr (h′ | σ′)

=

Pr(β̂,F j(α̃j ,β̃
j
i ))

Pr(β̂′,F ′j(α̃j ,β̃
j
i ))

Pr
(

β̂′ | σ′
)

Pr(β̂,F j(α̃j ,β̃
j
i ))

Pr(β̂′,F ′j(α̃j ,β̃
j
i ))

Pr (h′ | σ′)

=
Pr

(

β̂ | σ
)

Pr (h | σ)

CASE 2. F j(α̃j , β̃j
i ) = F ′j(α̃j , β̃j

i ) andβ̂ 6= β̂′.

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

=
Pr

(

β̃ | F j
(

α̃j , β̃j
i

))

Pr
(

β̃′ | F ′j
(

α̃j , β̃j
i

))µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
Pr

(

β̃ | F j
(

α̃j , β̃j
i

))

Pr
(

β̃′ | F ′j
(

α̃j , β̃j
i

))

Pr
(

β̂′ | σ′
)

Pr (h′ | σ′)

=
Pr

(

β̃ | F j
(

α̃j , β̃j
i

))

Pr
(

β̃′ | F ′j
(

α̃j , β̃j
i

))

Pr(β̃′ | F ′j(α̃j ,β̃
j
i ))

Pr(β̃ | F j(α̃j ,β̃
j
i ))

Pr
(

β̂ | σ
)

Pr (h | σ)

=
Pr

(

β̂ | σ
)

Pr (h | σ)
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CASE 3. F j(α̃j , β̃j
i ) = F ′j(α̃j , β̃j

i ) andβ̂ = β̂′.

µ
(

β̂ | F j
(

α̃j , β̃j
i

)

, z̃
)

= µ′
(

β̂′ | F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
Pr

(

β̂′ | σ′
)

Pr (h′ | σ′)

=
Pr

(

β̂ | σ
)

Pr (h | σ)

Thus we haveµ(x) = Pr(x | σ)
Pr(h | σ) for all information setsh with Pr(h | σ) > 0. ¤

Claim 3 For all information setsh with Pr(h | σ) > 0, σ is sequentially rational ath givenµ.
PROOF OFCLAIM 3. Supposeσ is not sequentially rational givenµ. Then, there exists a strategyτi such

that, for some
(

F j
(

α̃j , β̃j
i

)

, z̃
)

,

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, µ
)

> uj
i

(

σi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, µ
)

. (3)

We will construct a strategyτ ′
i for playeri in ΓF ′ such that

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, µ′
)

> uj
i

(

σ′
i, σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, µ′
)

,

thus contradicting the fact thatσ′ is a Nash equilibrium.

STEP 1. We first constructτ ′
i from τi. For a givenF ′j

(

α̃j , β̃j
i

)

, let

Υ =
{

F j
(

α̃j , β̃j
i

)

| F j
(

α̃j , β̃j
i

)

⊆ F ′j
(

α̃j , β̃j
i

)}

(4)

and let
τ ′j
i,v

(

F ′j
(

α̃j , β̃j
i

)

, z̃
)

=
∑

ϑ∈Υ

Pr
(

ϑ | F ′j
(

α̃j , β̃j
i

))

τ j
i,v (ϑ, z̃) .

In other words, the strategyτ ′
i is the same asτi except in situations where only the filtered signal

history is different, in which caseτ ′
i is a weighted average over the strategies at the corresponding

information sets inΓF .

STEP 2. We need to show thatuj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, µ′
)

= uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, µ
)

for

all histories
(

F j
(

α̃j , β̃j
i

)

, z̃
)

. Fix
(

F j
(

α̃j , β̃j
i

)

, z̃
)

, and assume, w.l.o.g., the equality holds for all

information sets coming after this one inΓ.

CASE 1. F j(α̃j , β̃j
i ) 6= F ′j(α̃j , β̃j

i ). Let zj denote the current vertex ofGj and letΥ as in (4).

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, µ′
)
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=
∑

β̂′∈h′

µ′
(

β̂′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)

=
∑

β̂∈h

µ′
(

F ′j
−i

(

β̂
))

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, F ′j
−i

(

β̂
))

=
∑

β̂∈h

µ
(

β̂
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, F ′j
−i

(

β̂
))

=
∑

β̂∈h

µ
(

β̂
)

∑

v∈Nj(zj)

τ ′j
i,v

(

z̃, F ′j
(

α̃j , β̃j
i

))

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, (z̃, v), F ′j
−i

(

β̂
))

=
∑

β̂∈h

µ
(

β̂
)

∑

v∈Nj(zj)

∑

ϑ∈Υ

Pr
(

ϑ | F ′j
(

α̃j , β̃j
i

))

τ j
i,v (z̃, ϑ) ·

[

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, (z̃, v), F ′j
−i

(

β̂
))]

=
∑

β̂∈h

µ
(

β̂
)

∑

v∈Nj(zj)

∑

ϑ∈Υ

Pr
(

ϑ | F ′j
(

α̃j , β̃j
i

))

τ j
i,v (z̃, ϑ) ·

[

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, (z̃, v), β̂
)]

=
∑

β̂∈h

µ
(

β̂
)

∑

v∈Nj(zj)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, (z̃, v), β̂
)

·

[

∑

ϑ∈Υ

Pr
(

ϑ | F ′j
(

α̃j , β̃j
i

))

τ j
i,v (z̃, ϑ)

]

=
∑

β̂∈h

µ
(

β̂
)

∑

v∈Nj(zj)

τ j
i,v

(

z̃, F j
(

α̃j , β̃j
i

))

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, (z̃, v), β̂
)

=
∑

β̂∈h

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

= uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, µ
)

CASE 2. F j(α̃j , β̃j
i ) = F ′j(α̃j , β̃j

i ). Let h1, h2, h3, andh4 as in the proof of Case 2 of Claim 1.

We can show
∑

β̂′∈h3

µ′
(

β̂′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)

=
∑

β̂∈h1

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

(5)
using a procedure similar to that in Case 1. We can show the following relationship betweenh2

andh4:
∑

β̂′∈h4

µ′
(

β̂′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)
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=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

Pr
(

β̂ | F j
(

α̃j , β̃j
i

))

Pr
(

β̂′ | F ′j
(

α̃j , β̃j
i

))µ′
(

β̂′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)

=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

µ
(

β̂
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)

=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

µ
(

β̂
)

∑

v∈Nj(zj)

τ ′j
i,v

(

z̃, F ′j
(

α̃j , β̃j
i

))

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, (z̃, v), β̂′
)

=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

µ
(

β̂
)

∑

v∈Nj(zj)

τ j
i,v

(

z̃, F j
(

α̃j , β̃j
i

))

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, (z̃, v), β̂
)

=
∑

β̂′∈h4

∑

β̂∈h2

β̂⊂β̂′

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

=
∑

β̂∈h2

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

(6)

Using (5) and (6):

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, µ′
)

=
∑

β̃′∈h′

µ′
(

β̃′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̃′
)

=
∑

β̂′∈h3

µ′
(

β̂′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)

+
∑

β̂′∈h4

µ′
(

β̂′
)

uj
i

(

τ ′
i , σ

′
−i | F ′j

(

α̃j , β̃j
i

)

, z̃, β̂′
)

=
∑

β̂∈h1

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

+
∑

β̂∈h2

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

=
∑

β̂∈h

µ
(

β̂
)

uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, β̂
)

= uj
i

(

τi, σ−i | F j
(

α̃j , β̃j
i

)

, z̃, µ
)

In both cases we have shown:

uj
i

(

τ ′
i , σ
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STEP 3. We can show that
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using a procedure similar to the previous step.

STEP 4. Combining (3), (7), and (8), we have:
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Thus,σ′ is not a Nash equilibrium. Therefore, by contradiction,σ is sequentially rational at all information
setsh with Pr (h | σ) > 0. ¤

C Rhode Island Hold’em rules and modeling as an ordered game

Rhode Island Hold’em is a poker game which in this case is played by 2 players. The game was invented
as a testbed for computer game-playing research [36], and it was designed so that it was similar in style to
Texas Hold’em, yet not so large that devising reasonably intelligent strategies would be impossible. The
game play proceeds as follows.

1. Each player pays ananteof 5 chips which is added to thepot. Both players initially receive a single
card, face down; these are known as thehole cards.

2. After receiving the hole cards, the players participate in one betting round. Each player maycheck
(not placing any money in the pot and passing) orbet (placing 10 chips into the pot) if no bets have
been placed. If a bet has been placed, then the player mayfold (thus forfeiting the game along with
any money they have put into the pot),call (adding chips to the pot equal to the last player’s bet), or
raise(calling the current bet and making an additional bet). In Rhode Island Hold’em, the players are
limited to three bets each per betting round. (A raise equals two bets.) In the first betting round, the
bets are equal to 10 chips.

3. After the first betting round, a community card is dealt face up. This is called theflop card. Another
betting round take places at this point, with bets equal to 20 chips.

4. Following the second betting round, another community card is dealt face up. This is called theturn
card. A final betting round takes place at this point, with bets again equal to 20 chips.

5. If neither player folds, then theshowdowntakes place. Both players turn over their cards. The player
who has the best 3-card poker hand takes the pot. In the event of a draw, the pot is split evenly.

Hands in 3-card poker games are ranked slightly differently than 5-cardpoker hands. The main differ-
ences are that the order of flushes and straights are reversed, and athree of a kind is better than straights or
flushes. Table 1 describes the rankings. Within ranks, ties are broken by by ordering hands according to the
rank of cards that make up the hand. If players are still tied after applyingthis criterion,kickersare used to
determine the winner. A kicker is a card that is not used to make up the hand. For example, if player 1 has a
pair of eights and a five, and player 2 has a pair of eights and a six, player2 wins.

An ordered game is given by the tupleΓ = 〈I, G, L,Θ, κ, γ, p,º, ω, u〉. Here we define each of these
components for Rhode Island Hold’em. There are two players soI = {1, 2}. There are three rounds, and
the stage game is the same in each round so we haveG = 〈GRI , GRI , GRI〉 whereGRI is given in Figure 5,
which also specifies the player labelL. Θ is the standard deck of 52 cards. The community cards are dealt
in the second and third rounds, soκ = 〈0, 1, 1〉. Each player receives a since face down card in the first
round only, soγ = 〈1, 0, 0〉. p is the uniform distribution overΘ. º is defined for three card hands and is
defined using the ranking given in Table 1. The game-ending nodesω are denoted in Figure 5 byω. u is
defined as in the above description; it is easy to verify that it satisfies the necessary conditions.

22



Rank Hand Prob. Description Example
1 Straight flush 0.00217 3 cards w/ consecutive rank and same suitK♠, Q♠, J♠
2 Three of a kind 0.00235 3 cards of the same rank Q♠, Q♥, Q♣
3 Straight 0.03258 3 cards w/ consecutive rank 3♣, 4♠, 5♥
4 Flush 0.04959 3 cards of the same suit 2♦, 5♦, 8♦
5 Pair 0.16941 2 cards of the same rank 2♦, 2♠, 3♥
6 High card 0.74389 None of the above J♣, 9♥, 2♠

Table 1: Rankings of three-card poker hands.
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Figure 5: Stage gameGRI , player labelL, and game-ending nodesω for Rhode Island Hold’em.
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