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Abstract

Computing an equilibrium of an extensive form game of imperfect informatiarfisdamental problem in
computational game theory, but current techniques do not scale to kmggsg To address this, we introduce
theordered game isomorphisamd the relatedrdered game isomorphic abstraction transformatiéor an
n-player sequential game of imperfect information with observable actiahamordered signal space, we
prove that any Nash equilibrium in an abstracted smaller game, obtaineclmy amore applications of the
transformation, can be easily converted into a Nash equilibrium in the origgmaé. We present an efficient
algorithm,GameShrinkwhich automatically and exhaustively abstracts the game. WsargeShrinkwe
find an equilibrium to a poker game that is over four orders of magnituderiéingn the largest poker game
solved previously. To address even larger games, we introducexappit@mn methods that do not preserve
equilibrium, but nevertheless yieldX pos}t provably close-to-optimal strategies.
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1 Introduction

In environments with multiple self-interested agents, an agent’s outcome isatigéfected by actions of
the other agents. Consequently, the optimal action of one agent carddapéme actions of others. Game
theory provides a normative framework for analyzing such strategidisinga In particular, it provides the
notion of anequilibrium, a strategy profile in which no agent has incentive to deviate to a diffeteiegy.

The question of how complex it is to construct a Nash equilibrium [29] in #26p game has been
dubbed by Papadimitriou “a most fundamental computational problem wlosglexity is wide open” and
“together with factoring, [...] the most important concrete open question ondthedary of P today” [30].
The most prevalent algorithm for finding an equilibrium in a 2-player gamedd émke-Howsomlgo-
rithm [23], but it was recently shown that it takes exponentially many stefiseinvorst case [34]. (For a
survey of equilibrium computation in 2-player games, see [40].) For moretitaplayers, there have been
many proposed algorithms, but these algorithms currently only scale tomatygames [14, 27]. Recently,
some progress has been made in developing efficient algorithms for complash equilibria in certain
restricted case®(qg, [31, 2, 24, 5]), as well as for computing market equilibeag [9, 10, 15, 35]).

For sequential games with imperfect information, one could try to find an equitibusing the normal
(matrix) form, where every contingency plan of the agent is a pure syrddeghe agent. Unfortunately
(even if equivalent strategies are replaced by a single strategy [24])gbresentation is generally expo-
nential in the size of the game tree [39]. Téexjuence forns an alternative that results in a more compact
representation [33, 17, 39]. For 2-player games, there is a polynoinéal-&n the size of the game tree)
linear programming formulation (linear complementarity in the non-zero-sug) ased on the sequence
form such that strategies for players 1 and 2 correspond to primalusaidiariables. Thus, the equilibria of
reasonable-sized 2-player games can be computed using this metho8,[39]1 However, this approach
still yields enormous (unsolvable) optimization problems for many real-womrdegasuch as poker.

In this paper, we take a different approach to tackling the difficult pral@éequilibrium computation.
Instead of developing an equilibrium-finding methmet se we instead develop a methodology for automat-
ically abstracting games in such a way that any equilibrium in the smaller (atestyayame corresponds
directly to an equilibrium in the original game. Thus, by computing an equilibriutténsmaller game
(using any available equilibrium-finding algorithm), we are able to construegailibrium in the original
game. The motivation is that an equilibrium for the smaller game can be compuaistitdlly faster than
for the orignal game.

To this end, we introducgames with ordered signalSection 2), a broad class of games that has
enough structure which we can exploit for abstraction purposes.athstieoperating directly on the game
tree (something we found to be technically challenging), we instead intrdbdaaese oinformation filters
(Section 2.1), which coarsen the information each player receivesy areeused in our analysis and ab-
straction algorithm. By operating only in the space of filters, we are able {o tkeestrategic structure of
the game intact, while abstracting out details of the game in a way that is losslasthie perspective of
equilibrium finding. We introduce therdered game isomorphista describe strategically symmetric situ-
ations and therdered game isomorphic abstraction transformationiake advantange of such symmetries
(Section 3). As our main equilibrium result we have the following:

Theorem 2 LetT" be a game with ordered signals, and [Etbe an information filter forl".
Let F’ be an information filter constructed frof by one application of the ordered game
isomorphic abstraction transformation, and let be a Nash equilibrium strategy profile of

'Recently this approach was extended to handle compstiggential equilibrig20] as well [28].



the induced gamé&'x (i.e., the gamd using the filterF”). If o is constructed by using the
corresponding strategies of, thenc is a Nash equilibrium of 5.

The proof of the theorem uses an equivalent characterization of&pslibria: o is a Nash equilibrium
if and only if there exist beliefg, (players’ beliefs about unknown information) at all points of the game
reachable by such that is sequentially rationali.g., a best response) given wherey is updated using
Bayes’ rule. We can then use the fact thais a Nash equilibrium to show thatis a Nash equilibrium
considering only local properties of the game.

In addition to the main equilibrium result, we also give a polynomial algori@ameShrinkfor exhaus-
tively abstracting the game (Section 4), several algorithmic and data stuetated speed improvements
(Section 4.1), and we demonstrate how a simple modification to our algorithm yelagproximation
algorithm (Section 5).

1.1 Application to Rhode Island Hold’em poker

Poker is an enormously popular card game played around the world. O0% \®orld Series of Poker
is expected to have over $100 million dollars in total prize money, including $60 mifbo the main
event. Increasingly, poker players compete in online casinos, and tetegigtions regularly broadcast
poker tournaments. Due to the uncertainty stemming from opponents’ capisnents’ future actions,
and chance moves, poker has been identified as an important resesadh &S [4]. Poker has been a
popular subject in the game theory literature since the field’s foundingnbnual equilibrium analysis has
been limited to extremely small games. Even with the use of computers, the laogesigames that have
been solved have only about 140,000 nodes in the game tree [19].-$@ambpgeapproximations have been
developed [3], but those methods do not provide any guarantees thigoperformance of the computed
strategies. Furthermore, the approximations were designed manually byanhaxpert. Our approach
yields an automated abstraction mechanism along with theoretical guaramteestrategies’ performance.

Rhode Island Hold’em was invented as a testbed for computational ganiego]ag]. It was designed
so that it was similar in style to Texas Hold’em, yet not so large that devisampreably intelligent strate-
gies would be impossible. (The rules of Rhode Island Hold’em are givétppendix C. That appendix
also shows how Rhode Island Hold’em can be modeled as a game withdsignals.) We applied the
techniques developed in this paper to exactly solve Rhode Island Hold'leieh) Wwas a game tree exceeding
3.1 billion nodes.

Applying the sequence form representation to Rhode Island Hold’ermtlyikgithout abstractions yields
a linear program with 91,224,226 rows, and the same number of columnds Tinich too large for current
linear programming algorithms to handle. We u§&aimeShrinko reduce this, and it yielded a linear pro-
gram with 1,237,238 rows and columns—with 50,428,638 non-zero coeffici§Ve then applied iterated
elimination of dominated strategies, which further reduced this to 1,190,443aod/ 1,181,084 columns.
(Applying iterated elimination of dominated strategies with@ameShrinkyielded 89,471,986 rows and
89,121,538 columns, which still would have been prohibitively large to sol@ameShrinkequired less
than one second to perform the shrinking.( to compute all of the ordered game isomorphic abstraction
transformations). Using a 1.65GHz IBM eServer p5 570 with 64 gigabyit&AM (we only needed 25
gigabytes), we solved it in 7 days and 17 hours using the barrier methGRIJEX version 9.1.2. We re-
cently demonstrated our optimal Rhode Island Hold’em poker player atA#d-85 conference [11], and
it is available for play on-line atttp://www.cs.cmu.edu/"gilpin/gsi.html|

While others have worked on computer programs for playing Rhode Imrtdiem [36], no optimal



strategy has been found before. This is the largest poker game solgatétby over four orders of magni-
tude.

2 Games with ordered signals

We find it convenient to work with a slightly restricted class of games, as cadpa the full generality
of the extensive form. This class, which we catiames with ordered signals highly structured, but still
general enough to capture a wide range of strategic situations. Instafrtbes game family consist of a finite
number of rounds in which players play a game on a directed tree. The ncdytainty players face stems
from private signals the other players have received and in the umkhdure signals. In each round, there
are public signals (announced to all players) and private signals deonithlly communicated to individual
players). Each player receives the same number of private signalstataind. The strongest assumption is
that there is a partial ordering over sets of signals, and the payoffisa@easing (not necessarily strictly) in
these signals. For example, in poker, this partial ordering corresgxadsly to the ranking of card hands.

Definition 1 A game with ordered signals a tuplel’ = (I, G, L, O, k,~,p, =,w, u) where:

1. I ={1,...,n}is afinite set of players.

2. G=(G',...,G"),G" = (VI,E7), is afinite collection of finite directed trees with vertidés and
edgest’. LetZ7 denote the leaf nodes 6f and let/N7 (v) denote the outgoing neighborswot V7.
G7 is thestage gaméor round ;.

3. L=(L',...,L"), L7 : VJ\ ZJ — I indicates which player acts (chooses an outgoing edge) at each
internal node in round.

4. O is afinite set obignals

5 k= (k',...,k") andy = (y',...,4") are vectors of nonnegative integers, whafeand v’ de-
note the number of public and private signals (per player), respectix@hgaled in roundj. Each
signal® € © may only be revealed once, and in each round every player receigesathe num-
ber of private signals, so we requil’E;:1 k) + nyJ < |©|. The public information revealed
inroundj is o/ € O and the public information revealed in all rounds up through roynis

& = (o,...,a7). The private information revealed to playee I inroundj is 3/ € ©" and the

private information revaled to playere I in all rounds up through roung is 3/ = ( L ,ﬂf).
We also write3/ = (N{, e ,B%) to represent all private information up through round and
(5/{ N ) - (N{,...,B{_l,ﬁfﬁ', ~g’+1,...,Bﬁ;) is 3 with 3/ replaced with3”’. The total infor-
mation revealed up through round (dj, Bﬂ> is said to bdegalif no signals are repeated.

6. p is a probability distribution ovel®, with p(d) > 0 for all § € ©. Signals are drawn fron®
according top without replacement, so X is the set of signals already revealed, then

p(z) ;
p(x ‘ X) = Zyex p(y) if =z ¢ X
0 if e X.

7. »is a partial ordering of subsets @& and is defined for at least those pairs requiredby

2For readers unfamiliar with extensive form games, we provide a caengéinition in Appendix A.



T ' - - - - -
8. w: |J Z7 — {over,continue} is a mapping of terminal nodes within a stage game to one of two
j=1

values:over, in which case the game ends,amtinue in which case the game continues to the next
round. Clearly, we requires(z) = over forall z € Z". Note thatv is independent of the signals. Let

Whver = {7 € Z7|w(z) = over} andw’ , = {z € Z7|w(z) = continue}.
1 oIl k ; J k noJ k . - .
9. u=(ul,...;u"),w! : X wk , X whe x X OF x X X 07 — R"is a utility function such
k=1 k=1 i=1k=1
j—1

that for everyj, 1 < j < r, for everyi € I, and for everyz € X wfom X wgm, at least one of the
k=1

following two conditions holds:

) ) J n j
(a) Utility is signal independentu] (Z, ) = ] (2,9") for all legal 9,9 € X 0" x X X 07",
k=1 i=1 k=1

(b) > is defined for all legal signalé&j, Bf) and (dj, B;]> through round; and a player’s utility
is increasing in her private signals, everything else equal:

(@05 = (@030 — s (5.0 (3.52)) 2 (2.0 (7.52)).
We will use the terngame with ordered signaisd the ternordered gamaterchangeably.

2.1 Information filters

In this subsection, we define amformation filter for ordered games. Instead of completely revealing a
signal (either public or private) to a player, the signal first passesigiirthis filter, which outputs eoars-
enedsignal to the player. By varying the filter applied to a game, we are able to abtaide variety of
games while keeping the underlying action space of the game intact. We willigsehti&n designing our
abstraction techniques. Formally, an information filter is as follows.

) J J
Definition 2 Letl’ = (I, G, L, O, k,v,p, =,w, u) be an ordered game. L&Y C X 0" x X 0" be the

k=1 k=1
set of legal signalsife., no repeated signals) for one player through royndAninformation filterfor I" is

a collectionF = (F' ..., F") where eachF’ is a functionF7 : S7 — 2 such that each of the following
conditions hold:

1. (Truthfulness(o}j,ﬁg) € FJ (dj,Bg) for all legal (dj,Bg).
2. (Independence) The rangef is a partition of S7.
3. (Information preservation) If two values of a signal are distinguiséabroundk, then they are distin-

guishableinround > k. Letm’ = Y"7_, k'+~'. We require that for all legalé:, . .., 0,x, - . ., 0,5) C
©and(d,...,0 .,...,0 ;) Co:
(01, 0 ) & FE(0r, .. 00k) — (01,0 0 ) & FI(01,. .. 0k, .., 0ps).

A game with ordered signalg and an information filte” for I" defines a new gamEp. We refer
to such games dfiltered ordered gamesWe are left with the original game if we use the identity filter

Fi (&j, Bj) = { (dj, ﬁf) } We have the following simple (but important) result:

4



Proposition 1 A filtered ordered game is an extensive form game satisfying perfect recall.

A simple proof proceeds by constructing an extensive form game direotly the ordered game, and
showing that it satisfies perfect recall. In determining the payoffs in a gathdiltered signals, we take the
average over all real signals in the filtered class, weighted by the glityoabeach real signal occurring.

2.2 Strategies and Nash equilibrium
We are now ready to define behavior strategies in the context of filtededext games.
Definition 3 A behavior strategjor playeri in roundj of T' = (I, G, L, ©, k, v, p, =, w, u) with informa-

tion filter F' is a probability distribution over possible actions, defined for each playeach roundj, and
eachv € V7 \ Z7 whereL’ (v) = i:

7j—1
ol + X why x Range (F7) — A ({w € V7 | (v,w) € E7}).
k=1

(A(X) is the set of probability distributions over a finite s€t) A behavior strategy for playerin round

jisol = (aivl, . ,aivm) for eachvy, € V7 \ Z7 whereL’(v;) = i. A behavior strategy for playeirin
Liso; = (0},...,07). Astrategy profilds o = (o1,...,0,). A strategy profile withr; replaced by} is

(0—![70_—7:) - (Ula .. 70_i—1a0—7/j70—i+17 o 707L)-

By an abuse of notation, we will say playereceives an expected payoff of(c) when all players
are playing the strategy profite. Strategyo; is said to be playei's best responsto o_; if for all other
strategiess; for player: we haveu;(c;,0_;) > u;(o},0-;). o is aNash equilibriumif, for every player
i, o; is a best response for_;. A Nash equilibrium always exists in finite extensive form games [29], and
one exists in behavior strategies for games with perfect recall [22].gUbese observations, we have the
following corollary to Proposition 1:

Corollary 1 For any filtered ordered game, a Nash equilibrium exists in behavior gjeste

3 Equilibrium-preserving abstractions

In this section, we present our main technique for reducing the size ofsgaffesbegin by defining filtered
signal treewhich represents all of the chance moves in the game. The bold edgdise first two levels of
the tree) in the game trees in Figure 1 correspond to the filtered signal tre@shiigame.
Definition 4 Associated with every ordered gaiine= (I, G, L, ©, k, v, p, =, w, u) and information filterr’
is afiltered signal treea directed tree in which each vertex corresponds to some revealete(f)itgignals
and edges correspond to revealing specific (filtered) signals. Thesniadhe filtered signal tree represent
the set of all possible revealed filtered signals (public and private) aegmoimt in time. The filtered public
signals revealed in roung correspond to the vertices in thé levels beginning at Iev@i;ll (n’“ + m’“)
and the private signals revealed in rouriccorrespond to the vertices in they’ levels beginning at level
7 &* 4+ 377" ny*. We denote children of a nodeas N (z). In addition, we associate weights with
the edges corresponding to the probability of the particular edge beingechgiven that its parent was
reached.



In many games, there are certain situations in the game that can be thoughb&ihg strategically
equivalent to other situations in the game. By melding these situations togethgoésible to arrive at a
strategically equivalent smaller game. The next two definitions formalize thismaa the introduction of
theordered game isomorphielation and th@rdered game isomorphic abstraction transformation

Definition 5 Two subtrees beginning at internal nodesnd y of a filtered signal tree arerdered game
isomorphicif x andy have the same parent and there is a bijectipn N(x) — N(y), such that for
w € N(z)andv € N(y),v = f(w) implies the weights on the edges w) and(y, v) are the same and the
subtrees beginning at andv are ordered game isomorphic. Two leaves (corresponding to filtegehis

r—1 .
9 and ¥’ up through roundr) are ordered game isomorphic if for afl € X w! ., x W’ .., u" (2,9) =
j=1

u” (2,9).

Definition 6 LetT" = (I,G,L,0,k,v,p, =,w,u) be an ordered game and It be an information fil-

ter for I'. Letd and v’ be two information structures where the subtrees in the induced filteredlsigna
tree corresponding to the nodé&sand Y’ are ordered game isomorphic, anitland )’ are at either level
SUZE (KF 4+ k) or S0, k% + S2971 nak for some roundj. Theordered game isomorphic abstraction
transformatioris given by creating a new information filtét’:

i(ai, 7)) if (af, !
o (df,f}?) B (a ,ﬂz) if aﬂ ¢9U
‘ JUY it (ad,57) evud.
Figure 1 shows the ordered game isomorphic abstraction transformatibedatgce to a tiny poker
game. Theorem 2, our main equilibrium result, shows how the ordered gamerishic abstraction trans-
formation can be used to compute equilibria faster.

Theorem 2 LetT" = (I,G,L,0,k,v,p, =,w,u) be an ordered game an#l be an information filter for
I'. Let F’ be an information filter constructed froi by one application of the isomorphic information
structure abstraction transformation. Let be a Nash equilibrium of the induced gamig.. If we take

ol, (2, Fi (d%@j)) =7, (:2, F'i (dﬂ,@])) o is a Nash equilibrium of 5.

The main idea of the proof involves the use of an equivalent charadterizs# Nash equilibria using belief
systems and the notion of sequential rationality. An outline of the proof, ietetal give a flavor of the
technique used, appears below. Three claims cover the necessdlg/tddtaish the proof; we prove these
claims in Appendix B. The heart of the proof is as follows:

PROOF OF THEOREM 2. For an extensive form game,belief systemu assigns a probability to every
decision noder such thaty ", i(x) = 1 for every information sehb. A strategy profiler is sequentially
rational at h given belief system if w;(o;,0_; | h, ) > w;i(m,0-; | h, p) for all other strategies;, wherei

is the player who controls. A basic result [26, Proposition 9.C.1] characterizing Nash equilibriateista
thato is a Nash equilibrium if and only if there is a belief systensuch that for every information sét
with Pr(h | o) > 0, the following two conditions hold: (C1 is sequentially rational &t giveny; and (C2)
() = gigﬂgg for all z € h. Sinces’ is a Nash equilibrium of”, there exists such a belief systerh
Usingy/, we will construct a belief systemfor I" and show that conditions C1 and C2 hold, thus supporting
o as a Nash equilibrium.
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Figure 1: GameShrinkapplied to a tiny two-person four-card (two Jacks and twogs)rpoker game. Next to each
game tree is the range of the information fili&r Dotted lines denote information sets, which are labeledhiey
controlling player. Open circles are chance nodes with tigécated transition probabilities. The root node is the
chance node for player 1's card, and the next level is forgl&s card. The payment from player 2 to player 1 is
given below each leaf. In this example, the algorithm redube game tree from 53 nodes to 19 nodes.

Fix some playeri € I. Each ofi's information sets in some roundcorresponds to filtered signals
) e j—1
FJ (d*],ﬁfj), history in the firstj — 1 rounds(z1, . ..,2j-1) € k><1 wk ., and history so far in roung,

veVI\ZI. LetZ = (z,...,2j-1,v) represent all of the player actions leading to this information set.

Thus, we can uniquely specify this information set using the informdtigh  a*/, BZ*J 2

Each node in an information set corresponds to the possible privatdsstgeaother players have re-
ceived. Denote by some legal member of

<Fj (df',ﬁ{) L F (aﬂ',é{_l) Fi (dj, ~g‘+1) FY (aﬂ',ﬁg)).
In other words, there exis(s&j,ﬁ{, . ,B%) suchthat(d%fi{) € FJ <d*j,Bjj), (dﬁBi) € FJ (dﬁﬁi)
for £ # 4, and no signals are repeated. Using such a set of sig(nﬁls@{,...,ﬁ%), let 5 denote
<F’j (dj,B{) U <dj,ﬁ~f_1) Fi (dj,@{rl) R <dj,6%>>. (We will also abuse notation and
write F'7, (ﬁ) — (#'.) We can now compute directly from .':
w (6 FI(ad,57),2) if FI(a,3)) #F9(ad,5) or B=f

(17 (a9, 57),2)= N S T R S
pru (31 (a9, 37),2) it 9 (a0, 7) = P9 (6, 3) and 3 3



Pe(3 | (&0 7))

wherep* = . L
P Pr(p | Fi(al,57))

. The following claims show that as calculated above suppostas a Nash
equilibrium.
Claim 1 g is a valid belief system fdr .

Pr(z | o)
Br(h o) forall x € h.

Claim 2 For all information setsh with Pr(h | o) > 0, p(z) =

Claim 3 For all information sets with Pr(h | o) > 0, o is sequentially rational ak giveny.

The proofs of Claims 1-3 are in Appendix B. By Claims 1 and 2, we know thadlition C2 holds. By
Claim 3, we know that condition C1 holds. Thusis a Nash equilibrium. O

3.1 Non-trivial assumptions

Our model does not capture general sequential games of imperfeahatfon because it is restricted in
two ways: 1) all actions by the player (but not necessarily by natuepbservable,a nd 2) there is a
common ordering of signals. In this subsection we show that removing eittisese conditions can make
our technique invalid.

First, we demonstrate a failure when removing the first assumption. CornB&lgame in Figure 3.
Nodesa andb are in the same information set, have the same parent (chance) nodisgmawgphic subtrees
with the same payoffs, and nodesindd also have similar structural properties. By merging the subtrees
beginning at: andb, we get the game on the right in Figure 2. In this game, player 1's only Nashi@ium
strategy is to play left. But in the original game, player 1 knows that rod#l never be reached, and so
should play right in that information set.

1 21 2 3 0 3 O 1 2 3 0 3 O

Figure 2: Example illustrating difficulty in developing a theory of w@liprium-preserving abstractions for general
extensive form games with nonobservable actions.

Removing the second assumption (that the utility functions are based on a cdrordering of signals)
can also cause failure. Consider a simple three-card game with a decksuntao Jacks {1 and J2)
and a King ), where player 1's utility function is based on the orderiig- J1 ~ J2 but player 2's

3We thank Albert Xin Jiang for providing this example.



utility function is based on the ordering® = K > J1. Itis easy to check that in the abstracted game
(where Player 1 treat$l and.J2 as being “equivalent”) the Nash equilibrium does not correspond tash Na
equilibrium in the original gamé.

4 An efficient algorithm for computing ordered game isomorphic abstrac-
tion transformations

We need the following subroutine for computing the ordered game ismorphiiore

Algorithm 1 OrderedGamelsomorphic@’, F, 9, 19")
1. If ¥ and¥’ are both leaves of the filtered (according /) signal tree:

over?

@ fu (] z)=u"(¢|2)forall z 7j>_<1 wgmt x w! .., then return true.
(b) Otherwise, return false. o~
2. Create a bipartite grapliry o = (V1, V2, E) with V; = N(9) andV, = N ().
3. For eachw; € V] anduvy € Vs
(a) Create edgév;,vs) if OrderedGamelsomorphic@’, vy, va).
4. Return true ilGy o has a perfect matching; otherwise, return false.

By evaluating this dynamic program from bottom to top, Algorithm 1 determindgsnimpolynomial in
the size of the game tree, whether or not any pair of equal depth naek; are ordered game isomorphic.
Given this routine for determining ordered game isomorphisms in an ordanad,gve are ready to present
the main algorithmGameShrinkGiven as input a ganie, it applies the shrinking ideas presented above as
aggressively as possible. Once it finishes, there are no contractits,nend it outputs the corresponding
information filter /. The correctness déameShrinkollows by a repeated application of Theorem 2.

Algorithm 2 GameShrinKI")
1. Initialize F' to be the identity filter fof".

2. Forj from 1 tor:
For each pair of vertices), ¢ with the same parent at either leveli_; (+* +na¥) or 337, kF+
E{c;ll n~¥ in the filtered (according td) signal tree: ‘ ‘ .
If OrderedGamelsomorphic?(9,v¢), thenF? () «— F7 (¥) «— FI(9) U FI (¢¥).
3. OutputF..

4.1 Efficiency enhancements

We designed several speed enhancement techniqgu&afoeShrinkand all of them are incorporated into
our implementation. One technique is the use of the union-find data struct@hdpter 21] for storing the
information filter F. This data structure uses time almost linear in the number of operations f@&jIly
each node in the signalling tree is its own set (this corresponds to the identitynation filter); when two
nodes are contracted they are joined into a new set. Upon termination, trefgignals for the abstracted

“We thank an anonymous referee for providing this example.



game correspond exactly to the disjoint sets in the data structure. This iBcenéinethod of recording
contractions within the game tree, and the memory requirements are only lineassiag¢lof the signal tree.

Determining whether two nodes are ordered game isomorphic requires esetoahe if a bipartite
graph has a perfect matching. We can eliminate some of these computatiosiadpgasy-to-check neces-
sary conditions for the ordered game isomorphic relation to hold. One sunddition is to check that the
nodes have the same number of chances as being ranked (accorgingither than, lower than, and the
same as the opponents. We can precompute these frequencies fogaweryree node. This substantially
speeds uiameShrinkand we can leverage this database across multiple runs of the algorithexdfo-
ple, when trying different abstraction levels; see next section). Thedador this database depend on the
private and public signals, but not tbeder in which they were revealed, and thus two nodes may have the
same corresponding database entry. This makes the database significamatlyompact. (For example in
Texas Hold’em, the database is reduced by a fa@rn(") (*°) /(%) = 20.) We store the histograms in
a 2-dimensional database. The first dimension is indexed by the privatdssithe second by the public
signals. The problem of computing the index in (either) one of the dimensiasadly the problem of
computing a bijection between all subsets of siZeom a set of sizex and integers i1, ..., (7)]. We
efficiently compute this using the subsetslexicographical orderinge6].

5 Approximation methods

Some games are too large to compute an exact equilibrium, even after usinggbetpd abstraction tech-
nique. In this section we discuss general techniques for computingxaptely optimal strategy profiles.
For a two-player game, we can always evaluate the worst-case penftgrofa strategy, thus providing
some objective evaluation of the strength of the strategy. To illustrate thippsepve know player 2’s
planned strategy for some game. We can then fix the probabilities of playact®ns in the game tree as if
they were chance moves. Then player 1 is faced with a single-agenibdgmieblem, which can be solved
bottom-up, maximizing expected payoff at every node. Thus, we cantoiglycdetermine the expected
worst-case performance of player 2's strategy. This will be most Lséfen we want to evaluate how well
a given strategy performs when we know that it is not an equilibrium styat@gvariation of this technique
may also be applied in-person games where only one player’s strategies are held fixed.) Thisdae
providesex postguarantees about the worst-case performance of a strategy, abd naad independently
of the method that is used to compute the strategies in the first place.

5.1 State-space approximations

By slightly modifying theGameShrinlalgorithm we can obtain an algorithm that yields even smaller game
trees, at the expense of losing the equilibrium guarantees of Theorbrst@ad of requiring the payoffs at
terminal nodes to match exactly, we can instead compute a penalty that iscasdabe difference in utility
between two nodes increases.

There are many ways in which the penalty function could be defined and impietheOne possibility
is to create edge weights in the bipartite graphs used in Algorithm 1, and theadraf requiring perfect
matchings in the unweighted graph we would instead require perfect matetithdew cost {.e., only con-
sider two nodes to be ordered game isomorphic if the corresponding bigaegike has a perfect matching
with cost below some threshold). Thus, with this threshold as a parametbigweea knob to turn that in
one extreme (threshold = 0) yields an optimal abstraction and in the othemexftiereshold =) yields
a highly abstracted game (this would in effect restrict players to ignoringigtlals, but still observing
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actions). This knob also begets anytimealgorithm. One can solve increasingly less abstracted versions
of the game, and evaluate the quality of the solution at every iteration usirex thestmethod discussed
above.

5.2 Algorithmic approximations

In the case of two-player zero-sum games, the equilibrium computatiorecanotieled as a linear program
(LP), which can in turn be solved using the simplex method. This approacimherent features which we
can leverage into desirable properties in the context of solving games.

In the LP, primal solutions correspond to strategies of player 2, andsduglons correspond to strate-
gies of player 1. The simplex method proceeds by simultaneously finding bettdyetter primal and dual
solutions {.e., better and better strategies for each player). Thus, the simplex methodsitaefinytime
algorithm (for a given abstraction). At any point in time, it can output thet brategies found so far.

Also, for any feasible solution to the LP, we can get bounds on the qualiheddtrategies by examining
the primal and dual solutions. (When using the primal simplex method, duals@unay be read off
of the LP tableau.) Every feasible solution of the dual yields an upperdboarthe optimal value of the
primal, and vice versa [7, p. 57]. Thus, without requiring further cotation, we get lower bounds on
the expected utility of each agent’s strategy against that agent’'s waestepgonent. This is a method for
finding e-equilibria (.e., strategy profiles in which no agent can increase her expected utility maore by
deviating), and can also be used as a termination criterion for an anytimétaigor

6 Related research on abstraction

Abstraction techniques have been used in artificial intelligence resegii@tebln contrast to our work, most
(but not all) research involving abstraction has been for single-ggebtems €.g.[16, 25]). Furthermore,
the use of abstraction typically leads to sub-optimal solutions, unlike the tespresented in this paper,
which yield optimal solutions. (A notable exception is the use of abstractionnipgte optimal strategies
in the (perfect information) game of Sprouts [1].)

One of the first pieces of research utilizing abstraction in multi-agent settiagsthe development
of partition search which is the algorithm behind GIB, the world’s first expert-level compliiedge
player [12, 13]. In contrast to other game tree search algorithms which atparticular game position
at each node of the search tree, partition search stpoepsof positions that it determines are equivalent.
(Typically, the equivalence of two game positions is determined by ignoriatgwant pieces of each game
position and then checking whether the abstracted positions are congigte@ach other.) Partition search
can lead to substantial speed improvements over alpha-beta pruning and xrseeneh. However, it is not
game-theoretically based (it does not consider information sets in the gaaeaime thus does not allow
one to solve for the equilibrium of a game of imperfect information, such ksrpo

There has been some research into the use of abstraction for games witfeahipgormation. Most
notably, the paper by Billingst al [3] describes a manually constructed abstraction for the game of Texas
Hold’em, and includes promising results against expert players. Haowtaie approach has significant

5Bridge is also a game of imperfect information, and partition searchrmdind the equilibrium for that game either, although
experimentally it plays quite well against human players. Instead, parsigiarch is used in conjunction with statistical sampling to
simulate the uncertainty in bridge. Other research that also uses peféentation search techniques in conjunction with statistical
sampling and expert-defined abstraction has been developed foe 8idlg Such (non-game-theoretic) techniques are unlikely to
be helpful in poker games because of the greater importance on atformhiding and bluffing.
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drawbacks. First, it is highly specialized for Texas Hold’em. Secondga lamount of expert knowledge
and effort was used in constructing the abstraction. Third, the abstraties not preserve equilibrium:
even if applied to a smaller game, it might not yield a game-theoretic equilibriummigirg ideas for
abstraction in the context of general extensive form games have bserntzed in an extended abstract [32],
but to our knowledge have not been fully developed.

7 Conclusions

We introduced the ordered game isomorphic abstraction transformationaaedag efficient algorithm,
GamesShrinkfor automatically abstracting the game. We proved that in games with ordgreadss any
Nash equilibrium in the smaller abstracted game maps directly to a Nash equilibritien dmiginal game.
Using GameShrinkve found the equilibrium to a poker game that is over four orders of magnlarder
than the largest poker game solved previously. We also introducedxamgatcon methods for comput-
ing approximately optimal equilibria in general games, and described algoriteofiniques for devising
bounds on suboptimality of the strategies. We described how all of thes@daek can be converted into
anytime algorithms.
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A Extensive form games
Our model of an extensive form game is defined as usual.

Definition 7 An n-person game in extensive foriw a tuplel’ = (I,V, E, P, H, A, u,p) satisfying the
following conditions:

1. 1 ={0,1,...,n} is afinite set of players. By convention, player 0 isthanceplayer.

2. The pair(V, E) is afinite directed tree with nodd$ and edges.. Z denotes the leaves of the tree,
calledterminal nodesV \ Z are decision nodesN (z) denotese’s children andN*(x) denotest’s
descendants.

3. P:V\ Z — I determines which player moves at each decision ndaduces a partition of \ Z
and we defind;, = {x € V' \ Z | P(z) = i}.

4. H = {Hy,..., H,} where eaclH; is a partition of P;. For each of playei’s information set$ € H;
and forz,y € h, we havg N(x)| = |N(y)|. We denote the information set of a nadash(x) and
the player who controlé isi(h).

5. A=1{Ag,..., A}, A; : H; — 2F where for eacth ¢ H;, A;(h) is a partition of the set of edges
{(z,y) € E |z € h} leaving the information sét such that the cardinalities of the setsin(h) are
the same and the edges are disjoint. Each A;(h) is called anactionat h.

6. u: Z — RY is thepayoff function. Forz € Z, u;(z) is the payoff to playei in the event that the
game ends at node

7. p:Hox{a € Ag(h)|h € Ho} — [0,1] where}_ . o ) P(h,a) = 1forall h € Hy is the transition
probability for chance nodes.

In this paper we restrict our attention to games vgighfect recall(formally defined in [22]), which means
that players never forget information.

Definition 8 An n-person game in extensive form satisfesfect recallif the following two constraints
hold:
1. Every path inV, E) intersectsh at most once.

2. Ifv andw are nodes in the same information set and there is a notteat preceed® and P(u) =
P(v), then there must be some nodthat is in the same information set asind preceeds and the
paths taken fromy to v is the same as from to w.

A straightforward representation for strategies in extensive form gasnibe behavior strategyep-
resentation. This is without loss of generality since Kuhn's theorem [22¢s that for any mixed strat-
egy there is a payoff-equivalent behavioral strategy in games witleqgiecall. For each information set
h € H;, a behavior strategy is;(h) € A(A;(h)) whereA(A;(h)) is the set of all probability distribu-

tions over actions available at information $et A group of strategies = (o4,...,0,) consisting of
strategies for each player istrategy profile We sometimes write_; = (01, ...,0;-1,0i+1,-..,05) and
(ol,0_3) = (01,...,0i-1,00,0i11,...,0n).

15



B Proofs

Claim 1 p is a valid belief system fdr 5.
PROOF OFCLAIM 1. Leth be playeri’s information set after some histor@Fﬂ' (d%ﬁi) ,2). Clearly

M (ﬁ | FI (dj,B{) ,2) > 0 for all 3 € h. We need to sholy_ 5, 1 (ﬁ | Fi (&j,B{) ,2) =1.
CASE1l. FJ (dj,Bf) £ Fi (&%Bﬁ). From the construction of”, F” (dj,Bg) is ordered game iso-

{91}, {92}, {K1}, {K2}} {91,923, {K1}, {K2}} J1,J

--]- JERNDN L GHDURN | DEDUDE) , (REDEDS, SpN

(&3 BH \BC/H \BF \BC/\BF\BC BH |BC/ \BF \B C/\B F/\B

Figure 3: lllustration of Case 1 of Claim 1.

morphic to someF’ (&’j,@j> £ FJ (dﬂfiﬁ). Let 1/ be playeri’s information set correspond-

ing to the history(Fj (d’j,ﬁl{j) ,2). By the definition of the ordered game isomorphism, there
exists a perfect matching between the nodes in the informatioh aetd »’, where each matched
pair of vertices corresponds to a pair of ordered game isomorphic infiamstructures. Since

F'i (6cj, 55) = F" <6/j, B{J> each edge in the matching corresponds to a node in the information

set given by the histor(F’j (dj, ﬁf) ,2) in T'z; denote this information set by’. (See Figure 3.)
Thus, there is a bijection betweérandh” defined by the perfect matching. Using this matching:

(31 (@.2).9) = S () 17 (w.7) )

Beh Beh

= S (FIF (e ). 2)
B/Eh”
= 1.

CASE2. FJ (dj,Bf) = F'i <dj,Bf>. We need to treat members bfdifferently depending on if they
map to the same set of signalslin~ or not. Leth; = {B ch|B=F" (ﬁ)} and lethy, =
{5 €h| ﬂ C F’_ji (5) } Clearly (hy, h2) is a partition ofh. Let b’ be player:'s information set
corresponding to the histor(/F’j (d%ﬁf) ,2) in I'z. We can create a partition @&f by letting
hy = {F’_fZ (ﬁ) 13 e hl} andhy = {FfZ (ﬁ) |3 e hg}. Cleary (hs, hy) partitions?’. (See

Figure 4.) The rest of the proof for this case proceeds in three steps.
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91,92}, {K1}, {K2}} J1,J

Figure 4: lllustration of Case 2 of Claim 1.

STEP1. In this step we show the following relationship betwégrandhs:

Z M(B\Fj (dj,@q) Z) _ Z o (Fiji (ﬁ) | F' (aa‘ﬁf),z)
Beh Behy
= S W (81 F (@) 2 (1)
B'chs

STEP 2. In this step we want to show a similar relationship betweeandh,. In doing so, we use
the following fact:3 ¢ ' — F”, ([3) = (. With this in mind, we can write:

3 M(BIFj (&j,@q) ,5) -y Pr (B‘Fj (dj’@j)) ))u’ (F’_”; (5) |Fi (@j,B{) ,2)

e i Pr (P2 (8) 1P (a0, 3

_ Pr(BIF (&0 5)) (Vi (553
= ZZPr< (),F,J< Bg))“(ﬂ(ﬁ)' ( ﬁ))

B/ €hy Behy

L ey

B'ehy 5€h2

Pr(B1F7 (a7,3]))

S NACEICEIIDDY

i e Pr <B/|FJ (d@@i))
= X w (B (a.5) .5) 2)
B'ehy

STeEP 3. Using (1) and (2):

Son(BIF(&8)2) = u(BIF (@ A).5) + 2on(31F (a0 5) 2)

Beh Behy BEhs
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_ Z 'u/ (B/ | Jadi <5éj75zj> 75) 4 Z M/ <B”F’j (&j,Bg),2>

Bl€h3 B’€h4
= (i (@.E).2)
é/eh/
=1
In both cases we have shown 1 (6 | FJ (&J’,Bg) ,§> =1. 0

Beh
Claim 2 For all information setsh with Pr(h | o) > 0, u(z) = % forall x € h.

PrROOF OFCLAIM 2. Leth be playeri’s information set after some hlsto< J (aﬂ, ﬁ{) ,2), and fix some
B €h. Letp = F". (ﬂ) We need to show that (B | FJ (oﬂ ﬂ]) ”) = %. Let h/ be playeri’s
information set after h|stor(F’J (oﬂ ﬂf) ~)

Casel. Fi(a?,3)) # Fi(ad, 37).

w(B1F(a0,60).2) = w (81 P9 (a0,5),2)
Pr(ﬁ’\a’)

Pr (i | o)

Pr(8,F7 (a7 ﬂ)) /
@ (1)
Pe(5F (7)

@) )
_ (Blo)
~ Pr(h]o)

CASE2. Fi(al, 3l) = FUi(al, 3) andj # 3.

=
E
~—
o
Q.
Q
S,
~—
~—

/N
<
i)

.
N~——~
N~—

t\

~ N\

) ®
gl

.
—~

N

.

tb

AR
N~——~7
v

) - T
:

Pr (5 | i (@j 55)) Pr (1 | o)
(@5




CASE3. Fi(al, 3)) = FUi(al, 3) andf = 3.

u(@!Fj (y@a);) — (Bf\F/J (&j,ﬁg),z)

Pr (B’ | U’)
- Pr(n' | o’)
Pr (B | 0’)
~ Pr(h]o)
Thus we haveu(z) = gigi I Z% for all information sets with Pr(h | o) > 0. O

Claim 3 For all information setsh with Pr(h | o) > 0, o is sequentially rational ak given .
PrRooOF OFCLAIM 3. Suppose is hot sequentially rational givem. Then, there exists a strategysuch

that, for some(Fj (dj, Bf) : 2) :

Uf (Tiag—i | F] (djaélj) 727M) > Ug (Jiaa—i | FJ (d]wél]) 727/"L>' (3)

We will construct a strategy, for playeri in I'z» such that

’U,g <Ti/7o—,—i ‘ F/j (djvélj) 727:U'I> > uz (Ug70—/—i ‘ F/j (&]73'5) 727,“/) )
thus contradicting the fact that is a Nash equilibrium.

STEP 1. We first construct! from 7;. For a givenF"’ (dj, Bf) let

G GO AR GO B CRE) @

and let y o - '
3 (a7 3 ) — 5 (A 37 J ) .
i (F (a »51) ,z) ;GT Pr (19 | F <04 ,ﬁz>) 7, (0, 2)

In other words, the strategy is the same as; except in situations where only the filtered signal
history is different, in which case/ is a weighted average over the strategies at the corresponding
information sets il .

STEP2. We need to show that! (T{,U’_i | F'i (dﬂﬁﬁ) ,2,//) = o) (n,o_i | F (dj,ﬁg) ,E,u> for

)
all histories(Fj (dj,Bg) ,2). Fix ( F7 (dﬂ',@?) ,2), and assume, w.l.0.g., the equality holds for all
information sets coming after this onelin

Casel. Fi(a’,37) # F'i(a7, 7). Let 27 denote the current vertex 6 and letT as in (4).
ol (vl,00, | P9 (9,57 .24
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- 5 () (o 79 (3) )

- Zéhuf (F9(8)) ud (oot | 9 (0, 37) 2. 7% (8))

S () (s 4 () 5. )

SO AT <~o - <af ). 0.5, (9)
“Eh() T (@)

(1 1) f<>>]
:Zu(@v ZPr(wF’J(aﬂ 5])) J (3.9)-
)

i) 9ET

Ni(z
{uf T, 0_i | F7 <a3 ﬂ]> )

CSu(0) S (o P (00) )
Beh vENI(29)
zm@wqu)<w4
geY
=Su(B) S A (5 (a8l (rooi | B (a,5) L (5,0), B)
Beh vENI (27)
(3o (.0 )
Beh

= 'LL'Z (Ti7a—i | Fj (d]7[§5> 727N)

CASE2. FI(&’,3)) = F'i(a7, 7). Lethy, hy, h3, andhy as in the proof of Case 2 of Claim 1.
We can show

> (3’> ul (Tz‘lvgl—i | F"7 (54]}53) ,5,5’) =y u(ﬁ) ul (Tz‘,a—i | F7 (djﬁf) 725)

B/ehﬁ BEhl

5)
using a procedure similar to that in Case 1. We can show the following relaipbstweerh,
andhy:

5w (B)l (ot | 9 (a0,7) .2.9)
B'ehy
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Pr(BF/ (a0, 3])) . o,
- Z Z Pr <(5'F’J<(oﬂ B))))u (5)Ui (Tijaﬂ"Fﬂ (aj’ﬂg)’z’ﬁ)

B'chy Z€h2
= X X u(8)ul (oot | 7 (a.5) 2 5)
e
=S > u(B) X A (@)l (ol | P (5 (50 8)
B'chy gi;[? vENJI (29)
- S T) T Ao o)) (s 2 (7))
B'ehy gif;z veEN(27)
= Z Z (ﬁ)u] Ti,0_i | FJ (&j,ﬁf),é,ﬁ)
e
=3 w(B)ul (rooi | F (a9, 7). 2,5) (6)
Behy
Using (5) and (6):
! (Ti’,al,i | B <C~¥j7@j> 757M/> = (5/) u] (7’/70/4 | F7 (dj,Bg> 7gjg~'>
Bren
_ ( )uJ (T’,O‘l_i | Bl (&%B{) ,2,5’)
B'ehs
F 30w (B)l (shols 1 7Y (@0.5]) 2. )
ﬁeh

- 5 03 (o P (@) 2
)

Beh
S u(8)dd (rooi | FI (a5 ,55)

Behs

- S o () 5

ﬁEh
= U'z (T’iva—i ‘ F] (d]')gi) 727/'L)

In both cases we have shown:

U‘Z (Ti/’O-Li | F/] <&])B‘Zj> 727/’6/) = Ui (Tiua—i ’ F] (dj753> 727/1') . (7)
STEP 3. We can show that
ul <0i,0_i | (aﬂ',@f) ,z,u) =l (aé,ol_i | F' (aﬂ‘,gg) ,z,ﬂ’) . 8)
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using a procedure similar to the previous step.

STeP4. Combining (3), (7), and (8), we have:

ul (T{,U’_i | F <6¢j,/35> ,2,//) = u‘Z (Ti,O'_Z‘ | ya (&j,ﬁg) ,2,,u> >
ol (0 | P (0, 3]) 2, 0) =l (oh oty | F7 (a0, 5]) 200 ).

Thus,o’ is not a Nash equilibrium. Therefore, by contradictions sequentially rational at all information
setsh with Pr (h | o) > 0. O

C Rhode Island Hold’em rules and modeling as an ordered game

Rhode Island Hold’em is a poker game which in this case is played by 2 playee game was invented
as a testbed for computer game-playing research [36], and it was ddsigrihat it was similar in style to
Texas Hold’em, yet not so large that devising reasonably intelligent gteatevould be impossible. The
game play proceeds as follows.

1. Each player pays amteof 5 chips which is added to th@ot Both players initially receive a single

card, face down; these are known astilode cards
2. After receiving the hole cards, the players participate in one bettingdrodach player magheck
(not placing any money in the pot and passingpet(placing 10 chips into the pot) if no bets have
been placed. If a bet has been placed, then the playeffoith{thus forfeiting the game along with
any money they have put into the patgall (adding chips to the pot equal to the last player’s bet), or
raise (calling the current bet and making an additional bet). In Rhode Islaidi¢in, the players are
limited to three bets each per betting round. (A raise equals two bets.) In thieefiting round, the
bets are equal to 10 chips.

3. After the first betting round, a community card is dealt face up. This iscctileflop card. Another
betting round take places at this point, with bets equal to 20 chips.

4. Following the second betting round, another community card is dealt facehis is called théurn
card. A final betting round takes place at this point, with bets again equalc¢hips.

5. If neither player folds, then trehowdowrtakes place. Both players turn over their cards. The player
who has the best 3-card poker hand takes the pot. In the event afiatidegpot is split evenly.

Hands in 3-card poker games are ranked slightly differently than 5gpziter hands. The main differ-
ences are that the order of flushes and straights are reverseditard af a kind is better than straights or
flushes. Table 1 describes the rankings. Within ranks, ties are brgkeyndrdering hands according to the
rank of cards that make up the hand. If players are still tied after appllgiagriterion kickersare used to
determine the winner. A kicker is a card that is not used to make up the handx&mple, if player 1 has a
pair of eights and a five, and player 2 has a pair of eights and a six, Hayies.

An ordered game is given by the tudle= (I, G, L, ©, k,~,p, =,w,u). Here we define each of these
components for Rhode Island Hold’em. There are two playetsso{1, 2}. There are three rounds, and
the stage game is the same in each round so we®ave G ry, Grr, Grr) WhereGry is given in Figure 5,
which also specifies the player lalfel © is the standard deck of 52 cards. The community cards are dealt
in the second and third rounds, so= (0, 1,1). Each player receives a since face down card in the first
round only, soy = (1,0, 0). p is the uniform distribution ove®. > is defined for three card hands and is
defined using the ranking given in Table 1. The game-ending nodes denoted in Figure 5 hy. u is
defined as in the above description; it is easy to verify that it satisfies tessary conditions.
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Rank | Hand Prob. Description Example

1 Straight flush | 0.00217| 3 cards w/ consecutive rank and same $uiid, Qb, Jb
2 Three of a kind| 0.00235| 3 cards of the same rank Qa, QV, Q%
3 Straight 0.03258| 3 cards w/ consecutive rank 3%, 44, 50
4 Flush 0.04959| 3 cards of the same suit 23, 5¢, 8¢
5 Pair 0.16941| 2 cards of the same rank 23, 24, 30
6 High card 0.74389| None of the above J&, 90, 24

Table 1: Rankings of three-card poker hands.

Figure 5: Stage gamé& i, player labell, and game-ending nodesfor Rhode Island Hold’em.
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