
Learning To Prevent Failure State
for a Dynamically Balancing Robot

Jeremy Searock, Brett Browning, and Manuela Veloso

April 21, 2005

CMU-CS-05-126

School of Computer Science
Carnegie Mellon University

Pittsburgh, Pennsylvania 15213

This work was supported by United States Department of the Interior under Grant No.
NBCH-1040007. The content of the information in this publication does not

necessarily reflect the position or policy of the Defense Advanced Research Projects
Agency (DARPA), US Department of Interior, US Government, and no official

endorsement should be inferred.

.

Keywords: failure prevention, state identification

II

Abstract
To achieve robust autonomy, robots must avoid getting stuck in states from which

they cannot recover without external aid. While this is the role of the robot’s control
algorithms, these are often imperfect. We examine how to detect failures by observing
the robot’s internal sensors over time. For such cases, triggering a response when de-
tecting the onset of a failure can increase the operational range of the robot. Concretely,
we explore the use of supervised learning techniques to create a classifier that can de-
tect a potential failure and trigger a response for a dynamically balancing robot. We
present a fully implemented system, where the results clearly demonstrate an improved
safety margin for the robot.

III

1 Introduction

Many potential robotics applications require a robot to operate autonomously in com-
plex environments where human intervention is either not possible or expensive. Most
robot control algorithms, however, are imperfect and can drive the robot into states
from which it cannot recover by itself. Typically, such situations arise from imperfect
external sensing, perception, or modeling algorithms. For some robots, these situations
can be detected through observation of the robot’s internal, or kinesthetic sensors. In-
formation derived from wheel encoders, pitch sensors, motor current sensors, and so
on, can indicate that the robot is about to fail.

In this paper, we explore how internal sensors can be exploited to prevent failures.
We seek to develop a safety mechanism that allows a robot to perform its normal be-
havior, except when a failure is imminent as indicated by its internal sensors. In such
situations, the safety mechanism can trigger a conservative control policy with the pri-
mary goal of removing the robot from danger. We believe that such a mechanism can
greatly improve the operational range of a robot, and thereby reduce the rate for human
intervention.

In this paper, we contribute an approach that makes use of a trained classifier to
detect potential failure states from the robot’s internal sensors. Upon detecting danger-
ous situations, the classifier triggers a conservative safety response behavior. We have
fully implemented this approach on a dynamically balancing robot, the Segway RMP.
Due to its dynamic balancing, it is relatively easy for the robot to fall over should it
collide with obstacles. Our results show that the safety response mechanism, which re-
quires relatively small amounts of training data and developer time, enable the robot to
safely detect collisions with obstacles and to extricate itself from all but the worst high-
speed collisions. Thus, the approach greatly increases the robustness, and therefore the
operational range of the robot.

The paper is structured as follows. In the following section, we introduce the con-
cepts that underlie our approach using the theory of Markov Decision Processes. Then,
we present an implementation on the Segway RMP, followed by the performance re-
sults of this implementation under various conditions. Finally, we present the relevant
related work and then conclude the paper.

2 An Approach to Failure Prevention

For an autonomous robot to operate effectively, it must avoid unrecoverable failures.
That is, it must avoid situations from which it cannot recover without external aid.
For a dynamically balancing robot for example, this means it must avoid collisions
that lead to falling over (e.g. figure 3). While this is possible with the right control
policy, finding this policy is often hard and imperfections in perception compound the
problem. In this paper, we propose an alternative method, whereby the robot executes
its nominal policy which is augmented by a fixed, simple failure prevention policy that
is executed only when a failure is considered likely. We assume the underlying model
of the robot is a Markov Decision Process(MDP) [Puterman, 1994].

1

2.1 Definitions
We phrase the problem within an MDP framework. Let, S be the state space of the
robot, which the robot transitions through over time as s1, . . . , st. Let A be the set
of possible actions the robot can choose to execute and P be the stochastic transition
function P : S × A × S → [0, 1], that describes how the robot transitions from state
to state given its action choices. Finally, we assume the robot has a control policy
πnorm : S → A for selecting actions given the state. We call this the normal control
policy.

For the Segway RMP, the state space can be observed by the internal sensors of the
robot (e.g. pitch, pitch rate, wheel speeds, and so on), the actions are the forward and
turn velocity commands. The control policy is the algorithm for commanding the robot
to achieve the robot’s goals, be it to kick a ball or some other task.

Figure 1: A schematic of the three types of states and the transition relationship be-
tween them. Dashed lines indicate lower probabilities.

A failure, in the context of this paper, is when the robot encounters a situation
from which it cannot extricate itself without external aid. In this paper, we concentrate
on preventing one Segway RMP failure, falling over. Other failures could be motor
failures or other mechanical faults. Using this as a starting point, we now categorize
states into three separate types, as:

• Failure F : No control policy the robot can execute will enable it to recover from
a failure without external aid.

• Caution C: The robot has a high probability of reaching failure state by following
πnorm.

• Normal N : The robot can follow its normal control policy πnorm with relative
safety.

Thus, we partition the state space into F,C,N , where F are the failure states, C are
the caution states, and N are normal states which consists of the remainder of the
state space (i.e. N = S − (F ∪ C)). We will refer to (C ∪ F) as abnormal states.
For the Segway RMP using only internal sensors, F corresponds to when the robot is

2

irretrievably falling over, C to the states when it has collided with an object and cannot
continue its prior behavior, and N to the normal driving conditions. By definition once
in F the robot cannot return to C or N . States in C are able to transition to N but have
a high probability of transitioning to F given the control policy(see figure 1).

More formally, we can define failure states as the set of states that do not commu-
nicate with any states outside of the failure set, thus:

F = {s ∈ S|P (st′ /∈ F |st ∈ F) = 0, ∀t′ > t} (1)

We define the caution states C as those states that are near F , in terms of the probability
of a failure in the near-term future when acting under the control policy πnorm(s).
Additionally, we require that C is defined such that there is no direct transition from
N to F . In our approach, we do not explicitly identify C, but learn a classifier from
labeled data that identifies between N and (C ∪ F). If an abnormal state is identified
quickly enough, the robot will be in a caution state.

Our goal therefore is to detect when the robot is in a caution state by quick de-
tection of abnormal sensor data. When it is, the robot should activate its safety reflex
(πsafety(s)) to recover from the potential failure.

2.2 Overview of Failure Prevention Method
As sold by Segway LLC, the RMP’s control systems and dynamics are hidden. As
a result, an accurate model does not exist. Furthermore, Segway created two differ-
ent versions of the RMP. This would require two different models to be used in state
identification. Due to these facts, we decided to use a non model-based method. We
propose that learning methods such as C4.5 can be used to obtain classifiers capable of
quickly distinguishing between normal (N) and abnormal (C ∪ F) states. With such a
classifier, caution states can be identified, allowing time for a robot to prevent a failure.

Our approach contains several steps that lead to robust failure prevention. These
are:

1. Identify Failure States: First, the types of failure F1 . . . Fn must be identified.
Through the course of experimentation with a robot, certain unrecoverable failure states
will occur. When they do, the type of failure and situation which lead to the failure can
be categorized.

2. Label Synchronized Internal Sensor Data: Secondly, with these dangerous
situations known, we are able to record the internal sensor data of the robot as it transi-
tions from a normal state, through a caution state, to a failure state. This data originates
from a state observation vector z sent from the robot reporting each sensors current
reading. A log can be collected recording the state vector over time :z1 . . . zt. Two
different methods can be used to identify within the log when a transition begins from
a normal state to a caution state. While recording the log, we can watch the robot and
mark when the robot enters a dangerous situation. Alternatively, we can observe the
state transitions by plotting each time-series log of the state vector and marking the
time steps in which a transition took place between a normal to abnormal state.

3. Develop a Classifier: With labeled data, methods including learning techniques
can be used to obtain classifiers that are capable of autonomously detecting abnormal

3

states, i.e. caution states and failure states. Since no actions will result in a transition
from a failure state to a normal state, the classifiers must be able to detect abnormal
data quickly so that a caution state is identified. Caution state detection allows time for
actions to prevent failure.

4. Take Preventative Actions: Once a caution state is detected, the robot needs
to change its control policy to prevent failure. These policies will vary across different
platforms and environments. The success of the policy also depends on the speed of
the detection.

3 Preventing Failures for a Segway RMP

The Segway RMP is a large dynamically balancing robot. Its weight of just over 100kg
means that preventing failures, in this case preventing it from falling over, considerably
extends the operational capabilities of the robot and reduces the need for human inter-
vention. Therefore, it is an ideal test case for failure prevention techniques. In this
section, we describe an implementation of our approach on a Segway RMP. We begin
our discussion by describing the RMP platform.

3.1 The Segway Robot Mobility Platform (RMP)

The Segway RMP, with its zero turning radius, speeds of up to 12.8km.h−1, and
indoor-outdoor capabilities, is a versatile platform for building a robot base [Nguyen et al., 2004].
A computer can communicate with the Segway RMP’s on-board controllers via a CAN
Bus interface. This communication takes two forms: commands can be sent to the
Segway RMP, and up-to-date state information can be read back from the Segway. The
on-board controllers maintain the balance of the platform while attempting to achieve
the forward and rotational velocity commands vcmd, ωcmd, which may be modified
on our robot at 30Hz. The Segway state information may be read at the same rate.
The internal sensors, as relevant to this paper, consist of: Pitch angle and rate (θp, θ̇p),
wheel velocities (vL, vR), motor currents (IL, IR), forward displacement (So), and the
sent velocity command (vcmd, ωcmd). Thus, in the framework discussed in approach
section, the sensor state is given by z(θp, θ̇p, vL, vR, IL, IR, So, vcmd)T .

Dynamic balancing control means that the dynamics of the RMP are unique. To
accelerate in a direction, the robot must tilt its center of gravity relative to the wheel
axles towards that direction. It must then ’catch up’ to itself to prevent falling over. The
more extreme the acceleration the greater the tilt angle. As a result, when accelerating
from standstill requires that the wheels first roll backwards to create the tilt, before
rolling forwards to catch up (see figure 2).

While the Segway RMP’s controllers are capable, they assume that the robot is
free to move. If the robot hits an obstacle (e.g. because it fails to detect it), a crash
usually results. When driving into an obstacle, the robot’s velocity drops causing the
controllers to command increased torque to correct the increased error between the
commanded velocity and the actual velocity. This becomes a positive feedback loop
with more torque causing more error and greater tilt angles. If the obstacle does not

4

(a) (b)

Figure 2: (a) The RMP’s velocity and pitch angle for starting and stopping (b) The
RMP’s pose definitions.

give way, the robot will eventually reach its angle limits of about ±30◦ and fall over.
The force and weight of the robot, make the resulting crash, spectacular.

3.2 Identifying Failure States

We focus on the failures caused by running into obstacles. In our work with the Segway
RMP, we have noticed that obstacles can be categorized into two classes based on their
size. Large obstacles, such as walls, humans, tables, and other robots, cause the robot
to pitch forward eventually reaching its angle limits as described above. We will call
these type of failures, FL.

Small obstacles, on the other hand, tend to interfere with just one wheel or side of
the robot. Typically, the robot will wedge itself up on top of the obstacle whereupon
it spins out of control as the rotational velocity error builds up. As our main use of
the Segway RMP is for robot soccer [Browning et al., 2004], this can cause serious
difficulties. We will call these type of failures, FS . Figure 3 shows two sequences of
both FS and FL failures.

3.3 Labeling the RMP’s Sensor Data

We have the ability to record a stream of the Segway RMP’s sensor data, z1, . . . , zT ,
into a log file using our control software. This allows a user to record the sensor
data stream while teleoperating the RMP into a particular failure state. The record-
ing/teleoperating procedure can be repeated as desired to obtain data for describing the
failure states. Figure 4 shows an example data stream for an FL failure.

With these plots, a human operator can label where the data stream transitions from
normal behavior, through a caution state to a failure.

5

FL Large Obstacle Failure

(a) (b)
FS Small Obstacle Failure

(a) (b)

Figure 3: Images gathered from live video showing (a) Caution state (b) Failure state

The key in labeling when the transition began is the ability to observe sensor data
from before, during, and after the caution state. The entire sequence is observable and
picking out the transition is made simple. For example, when the RMP runs into a
wall or other large obstacle, its overall displacement stops increasing. This one sensor
stream alone is sufficient in identifying when the transition began. When capturing the
logs, we knew that we would be moving forward before driving into the obstacle. This
prior knowledge and the limited time length of the log allows hand-labeling to become
simpler.

A method used to reduce error in hand labeling was identifying two time steps
corresponding to the transition. The first time step, tN , signifies that all data before
this time was definitively normal data. The second time step, tF , signifies that all data
after this time should be labeled as abnormal. It is difficult to know the exact time at
which a caution state begins, but it is much easier to identify a small window where
the transition began. This gives the labeler flexibility to choose a range which helps to
ensure that the labeled data is correct.

3.4 Learning a Classifier
With hand labeled sensor data, it is possible to develop a decision tree by hand to
identify caution states. However, hand-coding a decision tree for vectors of many di-
mensions is both a time consuming and error prone process. Indeed, we found that
developing a hand coded decision tree produces a low-quality classifier at best. Primar-
ily, the difficulty is in determining the right combination of sensor streams to correctly
detect oncoming failures but not normal behavior.

6

Figure 4: Plots of 8 RMP Internal Sensor Streams

There is a huge body of literature on classifiers with a plethora of different tech-
niques available that can be learned from labeled data. We chose to use decision trees
trained using the C4.5 algorithm [Quinlan, 1993], an extension of ID3. C4.5 is able
to learn compact pruned decision trees accounting for unavailable values, continuous
attribute inputs, and avoids over fitting. We chose decision trees due to their fast run-
time execution. This enables the use of the classifier at the lowest control levels of the
robot running at 30Hz with minimal overhead costs. Secondly, C4.5 is able to learn
useful trees from relatively small amounts of training data, compared to some other
classifiers. Given the effort required to capture logs of robot failures, this is a very
desirable feature.

From our knowledge of the domain and dynamics of the RMP, we modified the
sensor state used for the classifier to be: z = (θp, θ̇p, vavg, IL, IR, vcmd)T . Here,
the pitch angle and rate (θp, θ̇p), motor currents (IL, IR), and sent velocity command
(vcmd), are as before. Instead of the individual wheel velocities we use the average
forward speed (i.e. vavg = 1/2(vL + vR)) as this reflects the information that is useful
for detecting collisions. To avoid false-positives due to noise, a simple first order filter
is applied to the data stream to smooth it out. Concretely, this filter is given as:

ẑt = α ∗ zt−1 + (1− α) ẑt−1 (2)

Where α = 0.25 was the nominal value used. During operation, the filter output ẑt is
fed into the classifier and the result determines if the robot is in a dangerous situation.

To create the training data for the classifier, the data stream was filtered into defi-
nitely normal, and definitely failure data sets. That is, the definitely normal data set was

7

labeled as normal DN = z1 . . . ztN
while the definitely failed data set DF = ztF

. . . zT

was labeled as abnormal. The remaining data, where labeling accuracy is uncertain,
was not used for training. This data was then provided to the C4.5 learning algorithm
to produce a pruned decision tree. The resulting pruned decision tree is converted into
C++ code and incorporated into the robot’s control loop.

Twenty logs of the RMP running into a large obstacle and falling over were used
along with approximately three minutes of normal driving data to obtain the large ob-
stacle classifier. Fourteen logs of the RMP running into a soccer ball and falling over
along with approximately 3 minutes of normal driving data were used to obtain the
small obstacle classifier. Furthermore, the amount of time spent collecting this data and
labeling was only approximately two hours. The resulting classifier was well worth the
minimal time commitment.

3.5 Taking Preventative Actions
When an impending failure is detected a safety response mechanism must be triggered.
As this paper considers failures when the Segway RMP runs into an obstacle, the safety
response mechanism reverses the direction of travel for a short time, before waiting for
further commands. This response mechanism is simplistic, and certainly not foolproof,
but is sufficient for the experiments described below. To be precise, the response be-
havior sends a command speed of 2m.s−1 with the sign set to the opposite of the last
command sent to the robot before the failure. The robot reverses for a duration of 0.5s
and then halts for 5s before switching back to normal operation. This speed command
causes the robot to pitch backwards aggressively, pulling itself off the obstacle, but
without traveling very far.

The failure detection mechanism was implemented at the low-level of the control
architecture between the interface with the Segway RMP itself. In this way it can
effectively block off commands when the robot is in danger and needs to execute the
recovery. In the next section, we examine the performance of this approach on the
Segway RMP.

4 Experimental Results
The following are the results of the implementation of our method on the Segway RMP
for both large and small obstacle failures.

4.1 Classification Performance
We started with classifying the failure in which the RMP runs into a wall or other large
obstacle, i.e. FL. We hypothesized that this would be the easier of the two failures to
classify. We thought with successful results on this failure, the smaller obstacle failure
would be possible to prevent with the same procedure.

We determined that most of the error resulted from sensor data that did not fit
within the decision tree. Data that does not fit in the tree by default is classified as
normal. As a result, some of the data that was more extreme than the training data was

8

classified as normal. This error is fixed by training on more data which contains most
of the situations that will be experienced. Using this information, we obtained more
logs and trained a final working classifier. The results of this classifier using 10-fold
cross validation are shown in Figure 5 under Final FL Results.

Normal Abnormal
Correct Correct

FL Results 92.6% 97.7%
FS Results 91.5% 97.9%

Figure 5: Percentage correct classification for normal and abnormal cases for large and
small obstacles.

With successful detection of FL, we used the same approach to classify FS . Fig-
ure 5 shows the results of the FS classifier using 10-fold cross validation.

4.2 Failure Prevention Results

In implementation, we used the trained classifiers described in the previous section to
continuously identify whether the robot was in a normal state or not.

If abnormal data was recognized a caution state was identified and the Segway
RMP triggers the safety response behavior described earlier. Additionally, it became
necessary in practice to filter the output of the classifier to require a small number of se-
quential abnormal classifications before triggering the safety behavior. Five sequential
abnormal classifications were required to trigger the response. This final filtering was
required to prevent undue misfires of the safety mechanism from single false-positive
classifications. For example when the robot accelerates quickly from rest, the classifier
can sometimes report one or two frames of abnormal behavior but not a long stream of
abnormal behavior. The final number was obtained through experimentation to elim-
inate false positives in extensive testing. With this filtering mechanism no misfires of
the safety behavior were observed as reported below.

For a dynamically balancing robot, speed of detection is critical to being able to
avoid the impending failure. As explained earlier, it is very difficult to identify exactly
when the RMP transitions from a normal state to an abnormal state. In hand label-
ing, two transitions were identified, the first signifies that all data before was normal
while the second signifies that all data afterwards is abnormal. We conducted tests to
characterize the speed of the detection by determining the time in which the classifier
identifies an abnormal state relative to the second hand-labeled step (i.e. to tF).

We performed 10-fold cross validations on both failure types. Figure 6 shows a
histogram of the detection speeds for each type of failure, FL and FS respectively.
The results show the distribution over time of the autonomous caution state detection
relative to the second label. A negative detection time corresponds to the classifier
detecting the impending failure faster than compared to the human-labeled transition.
As seen, both classifiers on average perform better than human labeling.

Tests were also conducted to evaluate the overall effectiveness of failure prevention

9

(a) (b)

Figure 6: (a)Large Obstacle Detection Time Results, FL (b) Small Obstacle Detection
Time Results, FS

for the Segway RMP driving in a flat, but cluttered environment, as shown in figures 3
and 7. We teleoperated the robot, with the failure prevention system running, into a
soccer ball obstacle 30 times and a large obstacle an additional 30 times. This test
also included considerable driving in free space to observe in any false-positives mis-
fires would occur. For the total 60 collisions, the safety response behavior triggered
correctly and prevented the robot from falling in each case. The robot would hit the
obstacle, the failure mechanism would activate and drive the robot backwards out of the
situation. Additionally, no false-positive misfires were observed during driving in free
space. As a result, the robot could be driven around at random without fear of falling
over. Figure 7 shows an image sequence of the working RMP failure prevention. The
RMP drives into an obstacle, recognizes the obstacle, and safely backs away.

5 Related Work
Failure detection is a rich field (e.g. [Gertler, 1998]). For mobile robots, most ap-
proaches focus on model-based methods where a model of the robot is used to predict
how it transitions in the world (i.e. P (s′, a, s) in the MDP – see the approach section).
Using this model, predictions can be made about behavior of the robot which can be
compared against sensor readings to determine a residual. The residual can then be
classified to determine if the robot is failing.

Generally, four methods for residual generation have been explored in the litera-
ture. These include: parameter estimation, Kalman filters, diagnostic observer, and
parity relation [Gertler, 1998, Yan, 2003]. Parameter estimation techniques vary but
include the use of neural networks [Yan, 2003] as classifiers and function approxima-
tion methods [Polycarpou and Vemuri, 1995], additionally particle filter based methods
have become recently popular [Dearden et al., 2004, Dearden and Clancy, 2002].

Model-based approaches differ from our method, where no model is required, al-
though one is assumed to exist. The requirement for a detailed model can be limiting
when no such models are available. For many commercial robots, such as the Segway
RMP and Sony AIBO, no detailed model exists. Additionally, as the models are a func-
tion of the environment, changes in the environment that are poorly accounted for in

10

FL Large Obstacle Failure

(a) (b)
FS Small Obstacle Failure

(a) (b)

Figure 7: Images gathered from live video showing (a) Caution state (b) Successful
failure prevention

the model degrades its accuracy and usefulness.
There are a number of related model-free techniques in the literature. In par-

ticular, [Vail and Veloso, 2004] makes use of C4.5 to learn state classifications for
the Sony AIBO robot using accelerometer data. This work uses a classifier to de-
termine the walking surface of the robot and whether or not the AIBO has fallen
over [Vail and Veloso, 2004]. Thus, this work is an extension of this idea to include
failure prevention rather than recovery. State classification by other means is also pos-
sible, as in [Lenser and Veloso, 2004], and this constitutes a future direction for our
research.

6 Conclusions
This paper has contributed a novel approach to detect failures from internal sensor in-
formation for an autonomous robot. Our approach utilizes a decision-rule classifier,
trained from a small set of hand labeled data. The classifier detects states that are po-
tentially dangerous and triggers a failure prevention mechanism. We fully implemented
this approach on a dynamically balancing Segway RMP robot to prevent it from falling
when it collides with external obstacles. The procedure takes minimal time to imple-
ment and the results clearly demonstrate the usefulness of the approach in improving
the robustness of the robot.

11

References
[Browning et al., 2004] Browning, B., Rybski, P., Searock, J., and Veloso, M. (2004). Develop-

ment of a soccer-playing dynamically balancing mobile robot. In Proceedings of ICRA, New
Orleans, LA.

[Dearden and Clancy, 2002] Dearden, R. and Clancy, D. (2002). Particle filters for real-time
fault detection in planetary rovers. In Proceedings of the International Workshop on Princi-
ples of Diagnosis, Semmering, Austria.

[Dearden et al., 2004] Dearden, R., Huttner, F., Simmons, R., Verma, V., Thurn, S., and Willeke,
T. (2004). Real-time fault detection and situational awareness for rovers: Report on the mars
technology program task. In Proceedings of IEEE Aerospace Conference.

[Gertler, 1998] Gertler, J. (1998). Fault Detection and Diagnosis in Engineering Systems. Mar-
cel Dekker, Inc., NY.

[Lenser and Veloso, 2004] Lenser, S. and Veloso, M. (2004). State identification from robot
sensors using non-parametric statistics. In Proceedings of the International Conference on
Intelligent Robots and Systems, Sendai, Japan.

[Nguyen et al., 2004] Nguyen, H., Morrell, J., Mullens, K., Burmeister, A., Miles, S., Farring-
ton, N., Thomas, K., and Gage, D. (2004). Segway robotic mobility platform. In SPIE Proc.
5609: Mobile Robots XVII, Philadelphia, PA.

[Polycarpou and Vemuri, 1995] Polycarpou, M. and Vemuri, A. (1995). Learning methodology
for failure detection and accommodation. Control Systems Magazine, IEEE, 15(3):16–24.

[Puterman, 1994] Puterman, M. (1994). Markov Decision Processes: Discrete Stochastic Dy-
namic Programming. Wiley Interscience.

[Quinlan, 1993] Quinlan, J. (1993). Programs for Machine Learning. Morgan Kaufmann, San
Mateo, CA.

[Vail and Veloso, 2004] Vail, D. and Veloso, M. (2004). Learning from accelerometer data on a
legged robot. In Proceedings of the 5th IFAC/EURON Symposium on Intelligent Autonomous
Vehicles, Lisbon, Portugal.

[Yan, 2003] Yan, W. (2003). Fault detection and multi-classifier fusion for unmanned aerial
vehicles (uavs). In GE Global Research Technical Report.

12

