
Practical Refinement-Type Checking

Rowan Davies

CMU-CS-05-110

May, 2005

School of Computer Science
Computer Science Department

Carnegie Mellon University
Pittsburgh, PA

Thesis Committee

Frank Pfenning, Chair
Robert Harper

Peter Lee
John Reynolds

Alex Aiken, Stanford University

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

This research was sponsored in part by the National Science Foundation under grant no. CCR-0204248, and in
part by a Hackett Studentship from the University of Western Australia. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.



Keywords: Programming languages, type systems, intersection types, bidirectional checking,
value restricted polymorphism, regular-tree types.



Abstract

Software development is a complex and error prone task. Programming languages with strong
static type systems assist programmers by capturing and checking the fundamental structure
of programs in a very intuitive way. Given this success, it is natural to ask: can we capture
and check more of the structure of programs?

In this dissertation I describe an approach called refinement-type checking that allows many
common program properties to be captured and checked. This approach builds on the strength
of the type system of a language by adding the ability to specify refinements of each type.
Following previous work, I focus on refinements that include subtyping and a form of intersection
types.

Central to my approach is the use of a bidirectional checking algorithm. This does not
attempt to infer refinements for some expressions, such as functions, but only checks them
against refinements. This avoids some difficulties encountered in previous work, and requires
that the programmer annotate their program with some of the intended refinements. The
required annotations appear to be very reasonable. Further, they document properties in a way
that is natural, precise, easy to read, and reliable.

I demonstrate the practicality of my approach by showing that it can be used to design a
refinement-type checker for a widely-used language with a strong type system: Standard ML.
This requires two main technical developments. Firstly, I present a new variant of intersection
types that obtain soundness in the presence of call-by-value effects by incorporating a value
restriction. Secondly, I present a practical approach to incorporating recursive refinements of
ML datatypes, including a pragmatic method for checking the sequential pattern matching
construct of ML.

I conclude by reporting the results of experiments with my implementation of refinement-
type checking for SML. These indicate that refinement-type checking is a practical method for
capturing and checking properties of real code.
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Chapter 1

Introduction

1.1 Thesis

A new technique called refinement-type checking provides a practical mechanism for expressing
and verifying many properties of programs written in fully featured languages.

1.2 Motivation

Static type systems are a central feature of many programming languages. They provide a
natural and intuitive mechanism for expressing and checking the fundamental structure of pro-
grams. They thus allow many errors in programs to be automatically detected at an early stage,
and they significantly aid the process of understanding unfamiliar code. This is particularly
true for large, modular programs, since types can be used to describe module interfaces.

While strong static type systems are very effective at capturing the basic structure of a
program, generally programs involve many important properties that are not captured by types.
For example, a particular function may always return a non-zero number, or may require that
its argument be non-zero, but programming languages generally do not provide a specific type
for non-zero numbers.

Such invariants are often critical to the understanding and correctness of a program, but
usually they are only informally documented via comments. While such comments are certainly
useful, it takes considerable discipline to ensure that properties are described accurately and
precisely, particularly when the code may be modified frequently. Further, the lack of any
convenient mechanism for checking whether the code actually satisfies the stated properties
means that such comments cannot be relied upon.

We might consider attempting to construct formal proofs that such properties are satisfied.
However, constructing such proofs is generally difficult or infeasible. Further, as a program
evolves, the proof needs to be evolved, which is likely to be awkward. Additionally, when the
intended properties do not hold due to an error in the code, it is unlikely that this method will
guide the programmer to the source of the error as quickly as the error messages produced by
a type checker.

This work demonstrates that a new approach to capturing and checking some of these
properties can be used to build practical tools. This approach builds on the strength of the
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static type system of a language by adding the ability to specify refinements of each type. These
refinement types include constructs which follow the structure of the type that they refine, and
additionally include features that are particularly appropriate for specifying program properties.

1.3 Background: refinement types

Refinement types were introduced by Freeman and Pfenning [FP91]. They do not require al-
tering the type system of a language: instead we add a new kind of checking which follows
the structure of the type system, but additionally includes features that are appropriate for
expressing and checking properties of programs. This means that we are conservatively extend-
ing the language: all programs in the original language are accepted as valid programs in our
extension.

We also refer to refinement types as sorts in accordance with the use of this term in order-
sorted algebras [DG94]. This allows us to use convenient terminology that mirrors that for
types: we can use terms such as subsorting and sort checking and thus make a clear link with
the corresponding notions for types.

We illustrate the features of sorts with a running example. We first illustrate the constructs
that follow the structure of types, focusing on the situation for functions. Suppose we have a
sort pos for positive integers which refines a type num for numbers. Then, we can form a sort
for functions mapping positive integers to positive integers: pos→ pos. This uses the construct
→ which mirrors the corresponding construct for types. If we have an additional refinement
nat for natural numbers, then we can form the following refinements of the type num→ num.

pos→ pos pos→ nat nat→ pos nat→ nat

Sorts include similar constructs mirroring each type construct. We now consider the other
features of sorts, which are included specifically because they are appropriate for capturing
program properties.

Sorts express properties of programs, and generally there are natural inclusion relationships
between these properties. For example, every positive number is a natural number, so we should
allow a positive number whenever a natural number is required. Thus, we have a natural partial
order on the refinements of each type, and we write pos ≤ nat to indicate this order. This is
essentially a form of subtyping, although we refer to it as subsorting since the order is on
the refinements of a particular type rather than on the types themselves. This partial order
is extended to refinements of function types following the standard contravariant-covariant
subtyping rule. Thus, the following inclusion holds.

nat→ pos ≤ pos→ nat

In practice it is sometimes necessary to assign more than one property to a particular part of
a program. For example, if we have a function double with type num → num that doubles a
number, we may need two properties of this function: that it maps positive numbers to positive
numbers, and that it maps natural numbers to natural numbers. To allow multiple properties
to be specified in such situations, sorts include an intersection operator & which allows two
refinements of the same type to be combined. Thus, we can specify the desired property of

2



double with the following sort.

(pos→ pos) & (nat→ nat)

The operator&is based on work on intersection types, such as that of Coppo, Dezani-Ciancaglini
and Venneri [CDV81] and Reynolds [Rey96].

One might notice that refinements are essentially another level of types, and wonder whether
it is really necessary to have both ordinary types and refinements as two separate levels for the
same language. In fact, it is possible to design a language which instead includes intersections
and subtyping in the ordinary type system. We consider such a language in Chapter 4, and a
real language with these features has been described by Reynolds [Rey96]. However, we have
both philosophical and practical reasons for considering types and refinements as two separate
levels.

The philosophical reason is that we consider type correctness to be necessary in order for the
semantics of a program to be defined, while refinements only express properties of programs
that have already been determined to be valid. This is essentially the distinction between
typed languages in the style of Church [Chu40] and type assignment systems in the style of
Curry [Cur34]. Reynolds [Rey02] has considered a similar distinction between intrinsic and
extrinsic semantics. In our case we consider that we have both, with one system refining the
other, and we would argue that this is a natural design since the two levels serve different
purposes.

The practical reason for considering types and refinements as two separate levels is that it
allows us to extend an existing widely-used typed language without modifying it in any way.
This allows us to easily experiment with refinements in real code. It also allows others to
use refinements without committing to writing code in an experimental language. Thus, this
approach allows significant experience to be gained in programming with advanced features
such as intersection types and subtyping without introducing a new language.

Sorts are of little use to a programmer without a practical tool for checking the sorts
associated with a program. Previous work on sorts focused on algorithms for sort inference, but
this seems to be problematic. One reason for this that code generally satisfies many accidental
properties which must be reflected in the inferred sort. Such accidental properties often prevent
errors from being reported appropriately, such as when a function is applied to an inappropriate
argument that nevertheless matches part of the inferred sort for the function. Further, as we
move to more complicated types there is a combinatorial explosion in the number of refinements
and the potential size of principal sorts. Experiments with refinements have thus been limited
to relatively small and simple code fragments in previous work.

1.4 Our approach

1.4.1 Bidirectional checking

Central to the work described in this dissertation is a new approach called refinement-type
checking, which we also call sort checking. This approach uses a bidirectional algorithm that
does not attempt to infer sorts for some forms of expressions, such as functions, but instead only
checks them against sorts. We still infer sorts for other forms of expressions, such as variables
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and applications. The technique is called bidirectional because it works top-down through a
program when checking against sorts, and bottom-up when inferring sorts.

Bidirectional algorithms have been considered previously by Reynolds [Rey96] and
Pierce [Pie97] for languages with general intersection types, and by Pierce and Turner [PT98]
for a language with impredicative polymorphism and subtyping.

Generally bidirectional algorithms require that the programmer annotate some parts of their
program with the intended sorts. In our case, these annotations are mostly only required for
function definitions, and only those for which the programmer has in mind a property beyond
what is checked by the ordinary type system. Experience so far suggests that this requirement
is very reasonable in practice. Further, these annotations usually appear at locations where it
is natural to describe the properties using a comment anyway. They thus document properties
in a way that is natural, easy to read, and precise. Additionally, these annotations can be relied
upon to a greater extent than informal comments, since they are mechanically verified by sort
checking.

To demonstrate the practicality and utility of sort checking for real programs, we have
designed and implemented a sort checker for Standard ML, which is a widely used program-
ming language with a strong static type system and advanced support for modular program-
ming [MTHM97]. We now briefly outline the two main technical developments required to
extend our approach to this fully featured language. These form the technical core of this
dissertation, along with our bidirectional approach to sort checking.

1.4.2 Intersection types with call-by-value effects

The first main technical development is a new form of intersection types that achieves soundness
in the presence of call-by-value effects. The standard form of intersection types is unsound in
the presence of such effects, as illustrated by the following SML code, which includes sort
annotations in stylized comments (as used by our implementation).

(*[ cell <: (pos ref) & (nat ref) ]*)
val cell = ref one
val () = (cell := zero)

(*[ result <: pos ]*)
val result = !cell

Here we create a reference cell that initially contains one. (We assume that one and zero
have the expected refinements pos and nat.) Since one has sort pos we can assign ref one
the sort pos ref, and since one has sort nat we can assign ref one the sort nat ref. The
standard rule for intersection introduction then allows us to assign ref one the intersection of
these two sorts (pos ref) & (nat ref).

This leads to unsoundness, because the first part of the intersection allows us to update
cell with zero, while the second part of the intersection allows us to conclude that reading
the contents of cell will only return values with sort pos. Hence, standard intersection types
allow us to assign result the sort pos when it will actually be bound to the value zero, which
is clearly incorrect.

Our solution to this problem is to restrict the introduction of intersections to values. Our
restricted form of intersection introduction states that if we can assign a value V the sort R
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and also the sort S then we can assign the intersection of those sorts R&S. (The general form
of the rule allows any expression, not just values.)

This follows the value restriction on parametric polymorphism in the revised definition of
SML [MTHM97], which was first proposed by Wright and Felleisen [WF94]. In our case we
find that we additionally need to remove one of the standard subtyping rules for intersection
types. The resulting system has some pleasing properties, and seems even better suited to
bidirectional checking than standard intersection types.

1.4.3 Datasorts and pattern matching

The second main technical development is a practical approach to refinements of ML datatypes,
including the sort checking of sequential pattern matching. Following previous work on sorts,
we focus on refinements which are introduced using a mechanism for refining datatypes using
recursive definitions. These refinements are particularly appropriate for ML because datatypes
play an important role in the language: e.g. conditional control-flow is generally achieved by
pattern matching with datatypes.

We illustrate the expressiveness of these refinements with an example. Suppose we have a
program that includes the following ML datatype for strings of bits.

datatype bits = bnil | b0 of bits | b1 of bits

Further, suppose that in part of the program this datatype is used to represent natural numbers
with the least significant digits at the beginning of the string. To ensure that there is a unique
representation of each number, the program uses the following representation invariant: a
natural number should have no zeros in the most significant positions (i.e. at the end). We can
capture this invariant with the following datasort declarations, which define refinements of the
datatype bits.

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

The syntax for datasort declarations mirrors that that of the datatype declarations which are
being refined, except that some value constructors may be omitted and some may appear more
than once with different sorts for the constructor argument. The datasort nat represents valid
natural numbers, while pos represents valid positive natural numbers. In this declaration, the
datasort pos is necessary in order to define nat, since b0 bnil is not a valid representation of
a natural number. The inclusion pos ≤ nat clearly holds for these two datasorts, just like the
refinements of the type num that we considered in Section 1.3.

In general, we would like to determine which inclusions hold for a particular set of datasort
declarations. We differ from previous work on refinements in that we formulate an algorithm for
determining which inclusions hold that is complete with respect to an inductive semantics in the
case when the recursive definitions correspond to a regular-tree grammar. This makes it easier
for a programmer to determine which inclusions should hold. We also show how to extend
our approach to refinements of datatypes which include functions and references, including
datatypes with recursion in contravariant positions, unlike previous work on refinements. We
can no longer formulate an inductive semantics in this case, but our experience suggests that
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this extension validates those inclusions that are intuitively expected, and that forbidding such
refinements would be limiting in practice.

For convenience, each datatype has a default refinement which has the same name as the
datatype, and a datasort declaration that mirrors the datatype declaration. Thus, we can think
of the above datatype declaration as also including the following declaration.

(*[ datasort bits = bnil | b0 of bits | b1 of bits ]*)

These datasorts make it easy to provide sorts that do no more checking than done by the type
system. Further, our sort checker uses these default refinements when annotations are missing
in positions required by our bidirectional algorithm, to ensure that we have a conservative
extension of SML.

In the presence of datasort declarations, sort checking the pattern matching construct of
ML presents a number of challenges. For example, consider the following code for a function
which standardizes an arbitrary bit string by removing zeros at the end to satisfy the sort nat.

(*[ stdize <: bits -> nat ]*)
fun stdize bnil = bnil

| stdize (b0 x) = (case stdize x
of bnil => bnil
| y => b0 y

)
| stdize (b1 x) = b1 (stdize x)

The inner pattern match is the most interesting here. To check the branch “y => b0 y” it is
critical that we take account of the sequential nature of ML pattern matching to determine
that y can not be bnil. We achieve this by using a generalized form of sorts for patterns that
accurately capture the values matched by previous patterns.

The example above is relatively simple; in the presence of nested patterns and products the
situation is considerably more complicated, and generally requires “reasoning by case analysis”
to check the body of each branch. When we perform such an analysis, we avoid the “splitting”
into unions of basic components that was used in previous work on refinements. This is because
it leads to a potential explosion in the case analysis that needs to be performed. We instead
focus on inversion principles that are determined relatively directly from datasort declarations.

1.4.4 Extending to a sort checker for Standard ML

We tackled a number of other smaller challenges while extending sort checking to the full SML
language. The following are some of the more notable related to the design of sort checking (as
opposed to its implementation). When a required annotation is missing during sort checking of
expressions, we use a default refinement that results in similar checking to that performed during
type checking. We allow parameterized datasort declarations with variance annotations for each
parameter. When we have a type sharing specification for types which have refinements, we
also share all refinements according to their names. We allow the specification of refinements of
opaque types in signatures, including specifications of the inclusions that should hold between
them.
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We also briefly mention some of the more notable challenges tackled while implementing our
sort checker for SML. The implementation of the datasort inclusion algorithm uses a sophis-
ticated form of memoization and other techniques in order to obtain acceptable performance.
The implementation of the bidirectional checking algorithm uses a library of combinators for
computations with backtracking and error messages which is designed to be efficient and allow
a natural style of programming. The implementation of checking for pattern matching uses
some important optimizations, such as avoiding redundancy during case analysis.

Our experiments with our implementation indicate that refinement-type checking is a prac-
tical and useful method for capturing and checking properties of real SML code. We found that
the annotations required were very reasonable in most cases, and that the time taken to check
was at most a few seconds. In general, the error messages produced were even more informative
than those produced by an SML compiler: this is because bidirectional checking localizes the
effect of errors better than type inference based on unification (as generally used for SML).

1.5 Introductory examples

We now show some additional examples. These use the type for bit strings and the sorts for the
associated representation invariant for natural numbers that were introduced in the previous
section.

datatype bits = bnil | b0 of bits | b1 of bits

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

We start with a very simple example: the constant four. As expected it has the sort pos. This
sort could be inferred, so the annotation is not required, but serves as handy, mechanically
checked documentation.

(*[ four <: pos ]*)
val four = b0 (b0 (b1 bnil))

In contrast, the following bit string consisting of three zeros is not even a natural number. The
best sort it can be assigned is bits, i.e. the default refinement of the type bits. Again, this sort
could be inferred.

(*[ zzz <: bits ]*)
val zzz = b0 (b0 (b0 bnil))

The next example is a function that increments the binary representation of a number.

(*[ inc <: nat -> pos ]*)
fun inc bnil = b1 bnil

| inc (b0 x) = b1 x
| inc (b1 x) = b0 (inc x)
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We remark that ascribing inc <: nat -> nat instead of nat -> pos would be insufficient:
in order to determine that the last clause returns a valid natural number, we need to know
that the result of the recursive call inc x is positive. This is reminiscent of the technique
of strengthening an induction hypothesis which is commonly used in inductive proofs. Our
experience indicates that it is not too hard for a programmer to determine when such stronger
sorts are required for recursive calls, and in fact they must be aware of the corresponding
properties in order to write the code correctly. In fact, using a sort checker actually helps a
programmer to understand the properties their code, and thus allows correct code to be written
more easily, particularly when the properties are complicated.

We further remark that subsorting allows us to derive additional sorts for inc, including
nat -> nat, via inclusions such as the following.

nat -> pos ≤ nat -> nat
nat -> pos ≤ pos -> pos

We also remark that the sort we have ascribed will result in each call to inc having its argument
checked against the sort nat, with an error message being produced if this fails. If some parts
of the program were designed to manipulate natural numbers that temporarily violate the
invariant (and perhaps later restore it using stdize), it might be appropriate to instead ascribe
the following sort.

(*[ inc <: (nat -> pos) & (bits -> bits) ]*)

It seems reasonable to ascribe this sort, since the result returned is appropriate even when the
invariant is violated.

Our next example is a function which adds together two binary natural numbers.

(*[ plus <: (nat -> nat -> nat)
& (nat -> pos -> pos) & (pos -> nat -> pos) ]*)

fun plus bnil n = n
| plus m bnil = m
| plus (b0 m) (b0 n) = b0 (plus m n)
| plus (b0 m) (b1 n) = b1 (plus m n)
| plus (b1 m) (b0 n) = b1 (plus m n)
| plus (b1 m) (b1 n) = b0 (inc (plus m n))

Again, for this definition to sort-check we need to know that inc <: nat -> pos. We also
need a stronger sort than plus <: nat -> nat -> nat for the recursive calls. For these, the
following sort would have sufficed, but subsequent calls to plus would have less information
about its behavior.

(*[ plus <: (nat -> nat -> nat) & (pos -> pos -> pos) ]*)

Next, we show an example of an error that is caught by sort checking.

(*[ double <: (nat -> nat) & (pos -> pos) ]*)
fun double n = b0 n
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Our sort checker prints the following error message for this code.

fun double n = b0 n
^^^^

Sort mismatch: bits
expecting: nat

This tells us that the expression b0 n has only the sort bits, but should have sort nat. To
figure out why it does not have sort nat, we can look at the datasort declaration for nat:
it specifies that b0 must only be applied to arguments with sort pos. Indeed, double bnil
evaluates to b0 bnil which is not a valid representation of zero. We are thus led towards an
appropriate fix for this problem: we add an additional case for bnil, as follows.

(*[ double <: (nat -> nat) & (pos -> pos) ]*)
fun double bnil = bnil

| double n = b0 n

We conclude this section with an example which shows some of the expressive power of sort
checking with recursive datasort declarations. This example uses datasort declarations to cap-
ture the parity of a bit string, and verifies that a function that appends a one bit to the end of
a bit string appropriately alters the parity.

(*[ datasort evPar = bnil | b0 of evPar | b1 of odPar
and odPar = b0 of odPar | b1 of evPar ]*)

(*[ append1 <: (evPar -> odPar) & (odPar -> evPar) ]*)
fun append1 bnil = b1 bnil

| append1 (b0 bs) = b0 (append1 bs)
| append1 (b1 bs) = b1 (append1 bs)

The full power of sorts is not demonstrated by this small example. It it best demonstrated in
the context of real code with all its complexities. See the experiments in Chapter 9 for examples
of real code with sort annotations.

1.6 Related work

1.6.1 Previous work on refinement types for ML

Refinement types were introduced by Freeman and Pfenning [FP91]. We have already described
the fundamentals of their work in Section 1.3, and considered the most relevant details in
Section 1.4. In what follows we examine other relevant details, and comment on the relationship
to our work.

Freeman and Pfenning originally extended a small subset of ML with recursively defined
refinements of datatypes. They demonstrated the expressiveness of these refinements, and
developed an algorithm for performing sort inference. This algorithm first constructs a lattice
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of the defined refinements for each datatype, including intersections between them. Then the
sort of an expression is inferred using a form of abstract interpretation (see the work of Cousot
and Cousot [CC77]), which roughly “executes” the program, replacing the values of the language
by the lattice elements. During sort inference, subsorting problems that arise are solved by a
method that makes use of the constructed lattices for refinements for datatypes. Parametric
polymorphism is included in their language, with the restriction that the only refinement of a
type variable is a unique sort variable. They included a union operator on sorts as well as an
intersection operator, although in later work unions were omitted.

In our work, we similarly construct lattices of refinements of datatypes, we use the same
restriction on parametric polymorphism, and we include intersections but not unions.

Sort inference

Work on sorts in ML was continued by Freeman in his PhD thesis work [Fre94]. This work
concentrated mostly on algorithms for inferring the sort of an expression, following the ideas
in [FP91]. Efficiency turned out to be a major issue, since inferring the principal sort of a
function essentially requires enumerating all refinements of the argument type. Additionally,
inferring the sorts of recursive functions via abstract interpretation requires a fixed point calcu-
lation by iteration. Using sophisticated representations for sorts and memoization allowed an
implementation to perform sort inference for many examples, though the largest such example
was only about 50 lines of SML code. Further, the time taken for sort inference increased
dramatically when more refinements were declared, and when higher-order functions were used.
Our approach uses bidirectional checking to avoid these problem.

Language features

The work of Freeman focused on only a subset of ML, which did not include many features
that are used frequently in real programs: these include pattern matching, exceptions, mutable
references and modules. The lack of features involving effects means that some important
aspects of Freeman’s work do not scale to ML, and in our work we found it necessary to
introduce a new form of intersection types that are sound in presence of effects. Also, the lack
of pattern matching made realistic experiments particularly difficult: these had to be expanded
to a single-level case construct by hand. Our work includes a formal treatment of a pragmatic
approach to pattern matching. Further, we have extended sorts to the full SML language,
allowing experimentation with real code.

Refinements of datatypes

Freeman also presented an algorithm for calculating lattices of refinements of constructed types,
but this algorithm was not completely satisfactory, since it rejects some inclusions which should
intuitively hold. We illustrate this with the following declarations. We recall the declarations
of nat and pos.
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(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat
and zero = bnil
and nat2 = bnil | b0 of pos

| b1 of zero | b1 of pos ]*)

If we think of these as inductive definitions, then nat and nat2 are equivalent. However, the
algorithm of Freeman will only determine that nat2 is included in nat, and rejects the inclusion
in the other direction. In fact, there does not seem to be any obvious way to specify the results
calculated by this algorithm, so the programmer must be familiar with the algorithm itself in
order to predict which inclusions will be determined to hold.

The work of Freeman also includes an approach to refinements of parameterized datatypes.
His approach includes covariant and contravariant parameters, with inference of variances via
a fixed point calculation. Our approach to parameterized datatypes is mostly based on that of
Freeman, although we require the programmer to declare the intended variance of parameters.
This is generally a very modest requirement, and makes the variances obvious when reading the
code. It also ensures that the variance is what the programmer expects, and allows a weaker
variance to be declared than what would be inferred.

1.6.2 Refinement types for LF

Other work on refinement types includes that by Pfenning [Pfe93] on an extension of LF. This
work is very similar in spirit to work on sorts for ML, but the technical and practical issues
are very different. In this extension, the base sorts are “open ended”, in the sense that they
could be extended with further constructors by subsequent declarations. As a result subsorting
is not be determined by analyzing the declarations as is done with datasort declarations in
ML. Instead, the programmer directly declares the inclusions which hold. Also, in LF there
is no sort inference problem to be solved, but only a sort checking problem, thus avoiding
some of the efficiency problems with ML sort inference mentioned above. Furthermore, LF has
no recursion or polymorphism, but does have dependent types, so sort checking requires very
different techniques from those for ML.

In Chapter 2 and Chapter 3 we use a presentation of sorts for the simply-typed λ-calculus
that is partially based on this work by Pfenning on sorts for LF. In particular, the base sorts
are open ended, with their inclusions specified separately from their constructors. We do this
in order to present sort checking in a very general context, so that the basic method can be
extended to languages such as LF that are quite different from ML. In later chapters, we have
elimination forms that require all constructors for a base sort to be included, so open-ended
sorts are not appropriate.

1.6.3 Other forms of refinements of types

Other work has considered refinements of types that have quite a different character to ours.
Some of these involve features other than intersections and unions, and some involve refinements
of types quite different to datatypes. We broadly refer to these as type refinements, and reserve
the term “refinement type” for type refinements involving only intersections, unions (in some
cases) and constructor types (such as datatypes).
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Hayashi [Hay94] uses a form of refinements to express specifications of programs, in a similar
way to work on extracting programs from constructive logic proofs. Here, the ordinary type
system is simply that of second-order λ-calculus, while the refinements include dependent sorts,
as well as intersections and unions. Thus, in contrast to other work, extracting a program from
a proof simply involves ignoring the level of refinements. As a result the underlying program is
readily apparent during proof construction.

A similar line of work is that of Denney [Den98], who considers a very general form of
refinements that include a full classical logic of properties. Denney also defines a semantics for
refinements that involves a different equality for objects for each refinement of a type. This
means that equality ignores irrelevant features of objects, such as the behavior of a function
when applied to arguments that are ruled out by a particular refinement.

Xi and Pfenning [XP99, Xi98] consider a form of dependent refinements for ML which adds
indices to types. Following our work, they use a bidirectional checking algorithm, but generate
constraints involving the indices that must be solved. The main index domain that they focus
on is integers with linear inequalities. Also following our work, they use a value restriction to
achieve soundness in the presence of effects. They include examples that demonstrate that their
refinements are very expressive, and allow many common program properties to be captured.

One of the examples presented by Xi [Xi98] involves an implementation of red-black trees,
which was also the subject of one of our experiments. In Section 9.1 we report our results, and
briefly compare with those obtained by Xi. We check only the coloring invariant of red-black
trees, while Xi checks both the balancing invariant and the coloring invariant. One of our
conclusions is that our refinements can be encoded using dependent refinements, at least in
this case, but that the encoding is somewhat unnatural. This is important because unnatural
encodings make writing and reading annotations difficult, and also result in the errors generated
by a type checker being much harder to interpret.

Dunfield and Pfenning [Dun02, DP03, DP04] consider a variety of extensions to the refine-
ments and algorithms presented in this dissertation. Firstly, they consider the combination
with indexed dependent refinements. This allows the natural expression of properties using the
features of both systems. In the case of the red-black tree example, it would allow the coloring
invariant to be naturally expressed using datasorts and intersections, and it would allow the
balancing invariant to be naturally expressed via indices. Dunfield and Pfenning additionally
show how to extend our value restriction on intersections to unions via a restriction on the elim-
ination rule to evaluation contexts, which is roughly the dual of our restriction. They also and
extend our bidirectional approach to a tridirectional one: the third direction follows to order
of evaluation, and is required for the evaluation contexts. Further, they consider the slightly
more general situation where there is no refinement restriction, i.e. there is only a single level a
of types that includes intersections, unions and dependent types (although later, in Chapter 4,
we will also consider a language without the refinement restriction). Finally, they general-
ize annotations to contextual annotations which elegantly handle to situation where different
annotations are required depending on the sorts assigned to the variables in the context.

Mandelbaum, Walker and Harper[MWH03] show how to formulate refinements that capture
imperative properties of code. Their approach includes a linear logic that allows local reasoning
about properties that depend upon the current state. They also follow our work in that they use
a bidirectional checking algorithm, which in their case may require proving linear logic theorems.
Their work does not need a value restriction, since they build on a language which syntactically
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distinguishes potentially effectful expressions from effect-free terms, following the reformulation
of the computational meta-language of Moggi [Mog91] by Pfenning and Davies[PD01].

1.6.4 Program analysis via types

Other work on capturing detailed properties of programs using types includes many uses of
types to specify program analyses. In this case, the types are generally used only as an internal
mechanism for formulating an algorithm: they are not exposed to the programmer in the way
we would expect for a type system.

For example, Nielson and Nielson [NN92] and Gomard and Jones [GJ91] have presented
systems for binding-time analysis using types that are annotated with binding times.1

Another example is the work of Palsberg and O’Keefe [PO95], who present a type sys-
tem which is equivalent to flow analysis. This line of work was continued by Palsberg and
Pavlopoulou[PP01] who show that polyvariant flow can be captured using a particular type
system that includes intersection and union types.

In similar work, Naik and Palsberg [Nai04][NP04] have demonstrated that a form of model
checking for imperative safety properties is equivalent to a particular type system with inter-
section and union types.

Other examples in this vein are reported in [NS95]. A general framework for formulating
program analyses as annotated type systems has been proposed by Solberg [Sol95].

1.6.5 Other forms of more detailed types

Foster, Fähndrich and Aiken [FFA99] have proposed qualified types as a method for checking
more detailed properties of programs. Their motivations are very similar to ours, and one
view might consider them to be a form of refinements. Many of the details of their system
are different from ours however: e.g. they have a form of constrained polymorphic types, but
no intersections. Also, the practical focus of their work is on C and C-like languages. Foster,
Terauchi and Aiken [FTA02] have considered a form of qualified types that are flow sensitive,
and hence are quite different from our refinements.

Barthe and Frade[BF99] have considered languages with constructor subtyping, which is
subtyping between datatypes based on the absence of certain constructors. This is very similar
to our datasort declarations. One difference in their setting is that they don’t have an explicit
refinement restriction: the subtyping is between types rather than between refinements of them.
However, the types allowed for constructors are restricted in a way that is seems related to our
refinement restriction. Also, they do not include intersection types: instead they allow only a
restricted form of overloading.

Other relevant work on more detailed types includes the use of phantom types to increase the
amount of checking done by the type system in languages with polymorphism and parameterized
type constructors. This can be done without modifying the language itself: instead extra
“phantom” type parameters are added to types. It is unclear who first used this technique: it
appears to have been used by a number of people for some time without being reported in the
literature.

1A consideration of the proper relationship between these type systems and refinement types ultimately led
to very fruitful work in collaboration with Pfenning [Dav96, DP01, PD01], but which is not directly related to
refinements since binding times may affect the semantics of programs.
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Fluet and Pucella [FP02] have shown that phantom types can be used to encode any finite
subtyping hierarchy within a Hindley-Milner[Hin69, Mil78] type system. The technique gen-
erally does not require the expressions of a program to be modified very much, although in
some cases explicit coercions are required. However, the encoding does seem to be somewhat
awkward when writing types, and particularly awkward when type errors are reported. They
also show how subtypes of ML datatypes can be encoded. This allows some of the properties
that we check using sorts to be checked instead using the ordinary type system of ML. However,
using this technique seems much more awkward than using our sorts. It also does not extend
to intersections, which are critical for most of our complicated examples involving recursion.

This technique also does not result in the desired exhaustiveness checks being performed for
pattern matches. This can be remedied by extending the underlying language with the guarded
recursive datatype constructors of Xi, Chen and Chen [XCC03], or the first-class phantom types
of Cheney and Hinze [CH03], which are similar. However, this loses one of the main advantages
of phantom types: that they can be used in existing languages without changing them.

1.6.6 Soft typing

Soft typing aims to bring some of the benefits of statically-typed languages to dynamically
typed ones, and was first considered by Reynolds [Rey69], although the term “soft typing”
is due to Cartwright and Fagan [CF91]. This is done using analyses or type systems which
do not require any type declarations by the programmer, and then automatically inserting
dynamic type checks based on the results to guarantee that the resulting program cannot raise
a runtime error. Programmers can use the dynamic type checks to help locate possible errors,
and some work has been done by Flanagan et al. [FFK+96] to design a sophisticated interface
to help in this process. However, even with such an interface the process is tedious enough that
programmers are likely to make errors occasionally, particularly when a program is modified
many times, and these errors would have unfortunate consequences.

Generally these systems include some form of subtyping, and can express inclusions that
have some similarities to inclusion between our datasorts. For example, the system of Wright
and Cartwright[WC94] includes union types, recursive types and types for applications of con-
structors. Additionally, the type systems used for soft typing often capture quite accurate
invariants of programs, so one might wonder whether they could be used for the kind of invari-
ants that our sorts are designed to capture.

It seems that some of these invariants can be captured by soft-typing systems, but that many
of those in which we are most interested can not. In particular, many invariants for recursive
functions that can be captured using recursive datasorts are are not accurately reflected in the
types inferred by soft typing systems. A simple example is the append1 function for bit strings
presented in Section 1.5, and repeated here.

(*[ datasort evPar = bnil | b0 of evPar | b1 of odPar
and odPar = b0 of odPar | b1 of evPar ]*)

(*[ append1 <: (evPar -> odPar) & (odPar -> evPar) ]*)
fun append1 bnil = b1 bnil

| append1 (b0 bs) = b0 (append_one bs)
| append1 (b1 bs) = b1 (append_one bs)
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Soft-typing systems generally do not infer a type that captures the invariant expressed by the
sort annotation for append1. We focus on the soft-typing system of Aiken, Wimmers and
Lakshman [AWL94], which appears to be one of the most accurate. This system combines
the conditional types of Reynolds [Rey69] with the constrained types of Mitchell [Mit84], and
additionally includes restricted forms of unions and intersections. If we apply this system to
code corresponding to that for append_one, we obtain the following constrained type.

∀α.α→ β
where α ≤ bnil ∪ b0(α) ∪ b1(α)

β = (b1(bnil) ? (α ∩ bnil))
∪ (b0(β) ? (α ∩ b0(1)))
∪ (b1(β) ? (α ∩ b1(1)))

This type is polymorphic in the argument type α and result type β, but the instances chosen
must satisfy the two constraints. Roughly, the first constraint means that α must be a subtype
of bits that contains the bit string x if it contains either b0 x or b1 x. The second constraint
means that if the instance for α has a non-nil intersection with the type containing only bnil,
then the result type β contains b1(bnil), and if α contains any value beginning with b0 (1 is an
all-inclusive type) then β contains b0(x) for each x in β, and if α contains any value beginning
with b1 then β contains b1(x) for each x in β.

This type contains a lot of information, but it does not capture the desired invariants. In
particular, evPar and odPar do not correspond to valid instantiations of α, since they violate
the first constraint. In fact, the only supertype of either of these types that would be a valid
instantiation of α is the one which corresponds to the whole of the type bits.

A closer analysis of this result indicates that the problem is the lack of polymorphic recursion
in the system of Aiken, Wimmers and Lakshman. This suggests that polymorphic recursion
would be a very useful addition to this system, though it seems very unlikely that type inference
would be decidable for such a system. It is also unclear whether a workable system could be
designed without full inference of types.

1.6.7 Intersection types

The inclusion of an intersection operator allows sorts to express very precise program properties
by combining many pieces of information into a single sort. Such intersection operators have
been extensively studied in the context of type assignment systems for λ-calculi, and were orig-
inally introduced by Coppo, Dezani-Ciancaglini and Venneri [CDV81]. An important property
of most of these systems that a λ-term can be assigned a type exactly when it has a normal
form. In particular, this is true for the simplest such system, which includes only intersection
types, function types, and a single base type. Thus, intersection types add considerable expres-
sive power in this context. Since the existence of a normal form is undecidable, type assignment
is also undecidable in this context.

The use of intersection types in programming languages was first proposed by Reynolds
who used them in the language Forsythe [Rey81, Rey96]. In Forsythe intersections serve several
purposes, including: to express overloading of arithmetic functions, to express polymorphism
(in the absence of parametric polymorphism), and to allow a flexible approach to records with
subtyping. However, they are generally not used to represent detailed program properties, as
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we do in our work with sorts. This is mostly due to Forsythe lacking types that correspond to
ML datatypes.

Reynolds [Rey96] has presented a type checking algorithm for Forsythe which allows the
types of some variables to be omitted. This algorithm uses a generalization of a bidirectional
approach, although it has some significant differences from our bidirectional algorithm for sort
checking. The main reason for this is that the Forsythe algorithm is based on an approach that
achieves improved efficiency by making assumptions about the forms of inclusions that may
hold between base types. In particular, the algorithm is incomplete when there are base types
such that a1 & a2 ≤ b holds but neither a1 ≤ b nor a2 ≤ b hold. The subtyping algorithm
for Forsythe outlined by Reynolds makes a similar assumption, and thus also is incomplete in
the presence of such base types. These incompletenesses do not seem to have been observed
previously. In Forsythe they are not an issue, since the set of base types is fixed, and the
algorithm is complete for these. We discuss this further in Section 2.9.

Another difference between our sort checking algorithm and the type checking algorithm of
Reynolds is that we distinguish only inferable and checkable expressions, while Reynolds allows
fewer type annotations in some cases by also distinguishing expressions for “functions which
can be checked against types with the first n arguments unknown” for each n. We prefer our
distinction because it is simpler to describe, and our experience indicates that it is sufficient
in practice. Further, it is fundamentally related to the syntactic definition of normal forms for
the λ-calculus. If future experience with programming with sorts reveals cases where excessive
annotations are required with our approach, then we may consider an extension along the lines
of Reynolds.

One important technique that we use is directly based on the work of Reynolds: our sort
annotations include a list of alternative sorts. This is necessary in the presence of intersections,
since each expression may need to be checked against many different sorts. In the work of
Reynolds, annotations are placed on bound variables, and multiple alternatives are frequently
used on function arguments to produce sorts involving intersections, e.g., λx :A,B . x would
be assigned (A → A) &(B → B). While we borrow the technique directly from Reynolds, we
differ in that our annotations are on expressions instead of bound variables. This means that
intersections sorts can be directly assigned to functions, and multiple alternatives are generally
only required when an annotated expression is checked under multiple contexts, and different
sorts must be assigned depending on the context. Experience so far indicates that this situation
is very rare.

While allowing multiple alternative annotations for an expression is sufficient to allow dif-
ferent sorts to be assigned under different contexts, this solution is still a little unsatisfactory.
Each time the expression is checked under a context, there is generally only one alternative that
is intended by the programmer for that context, but this information is not expressed by the an-
notation, and all of the alternatives must be tried. This is not only inefficient, it also makes the
code harder to read because the dependence on the context is not made explicit. This is solved
by a natural and elegant generalization of this technique by Dunfield and Pfenning [DP04] to
contextual annotations, which allow each alternative to be preceded by a context that specifies
the situations where the alternative applies. In their case, this generalization is essential due to
the presence of indexed dependent types. In our case contextual annotations may be desirable,
but since multiple alternatives are so rare, it seems reasonable to omit them until a practical
need for them arises.
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An important result proved by Reynolds [Rey96] is that Forsythe type checking is PSPACE-
hard, even when the types of all variables are declared. The proof involves translating quan-
tified boolean expressions into Forsythe programs which type check exactly when the boolean
expression is true. Exactly the same technique can be used to show that ML sort checking
is PSPACE-hard. In practical terms this means that it is possible for sort checking not to
terminate within a reasonable amount of time. However, experience so far indicates that sort
checking is likely to be efficient enough for those programs encountered in practice.

Other relevant work on intersection types includes that of Pierce [Pie91, Pie97], who con-
siders the combination of intersection types and bounded polymorphism. Pierce includes a
formal account of algorithms for subtyping and type checking with intersection types. These
algorithms are based on a similar approach to those of Reynolds.

1.6.8 Regular tree types

Part of the original inspiration for adding sorts to ML was the use of regular tree types in logic
programming. These types represent subsets of the Herbrand universe of a logic programming
language. Thus, it is very natural for regular tree types to have a subtype ordering corresponding
to inclusion of the sets they represent. Regular tree types are defined by regular term grammars,
which allow this ordering to be computed relatively efficiently, while also being expressive
enough to specify appropriate sets in most cases. This also allows intersections, unions and
complements of regular tree types to be computed.

Much of the work on regular tree types, such as [Mis84], has restricted the grammars further
so that they are tuple distributive, which means that if f(A1, A2) and f(B1, B2) are in the set
generated by the grammar, then so must f(A1, B2) and f(A2, B1). This allows regular tree
grammars to be treated similarly to ordinary regular grammars, for which good algorithms are
well known, but it also reduces their expressiveness considerably. In our case, this restriction is
inappropriate because it seems unnatural and would severely limit the expressiveness of datasort
declarations in practice. In particular, in our experiments many of the situations where sorts
were most useful involved non-distributive tuples.

General regular tree grammars are closely related to tree automata, which have been the
subject of much recent research. Common et. al. [CDG+] present a survey of the field. In our
case we are most interested in the problem of checking inclusion between grammars. This prob-
lem can be shown to be EXPTIME-hard by an easy reduction from the problem of inequivalence
of finite tree automata, which was shown to be EXPTIME-complete by Seidl [Sei90].

Despite this, algorithms for this problem have been proposed by a number of researchers.
Implementations based on these algorithms appear to achieve acceptable performance, at least
for those instances that arise in systems which use types based on grammars. The first such
algorithm was proposed by Aiken and Murphy [AM91], although they found that they found
it necessary to make some approximations to achieve acceptable performance (in their context
such approximations are acceptable).

Hosoya, Vouillon and Pierce [HVP00] have presented a similar algorithm to Aiken and Mur-
phy, and using some sophisticated implementation techniques they appear to obtain acceptable
performance without approximations. A quite different algorithm has been proposed by Ben-
zaken, Castagna, and Frisch [BCF03], and a similarly sophisticated implementation appears to
obtain acceptable performance.
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The algorithm we present in Chapter 5 is similar to that of Hosoya, Vouillon and Pierce.
Our implementation similarly required sophisticated techniques, and has some similarities with
the other implementations mentioned above. See Section 8.4 for a detailed comparison.

The general form of our datasort declarations included in our extension of SML allows
sorts to be defined by regular tree grammars, but additionally allows sort parameters (and
occurrences of function and reference sorts). Skalka [Ska97] formally proved the soundness and
completeness an algorithm for determining emptiness of such parameterized datasort defini-
tions. This algorithm contains many of the essential ideas required to construct an inclusion
algorithm for parameterized datasort declarations: all that would be required is an algorithm
for calculating differences between sorts. Our inclusion algorithm is, in a sense, incomplete for
such parameterized definitions. In Section 7.4.3 we discuss this issue further, and include a
detailed comparison with the work of Skalka.

Aiken and Wimmers [AW93] have considered the problem of solving type inclusion con-
straints, which are essentially set constraints with partial function types added. They use a
denotational semantics of types based on ideal models [MPS86] to define a natural notion of
inclusion that allows recursively defined types. Unfortunately their algorithm requires restric-
tions on occurrences of intersections and unions, and these restrictions do not seem appropriate
for sort definitions.

The algorithm of Benzaken, Castagna, and Frisch[BCF03] mentioned above does include
both intersection types and partial function types. However, it does not directly apply to our
situation, because we have different inclusions due to the presence of effects and our value
restriction on intersections.

1.7 Organization of this dissertation

The remainder of this dissertation is organized as follows.
Chapter 2 focuses on sorts and sort checking for a λ-calculus using the standard intersection

type rules.
Chapter 3 focuses on sorts and sort checking for a λ-calculus using a value restriction on

intersections, and a modified subsorting for intersections so that the language is suitable for
extension with effects.

Chapter 4 demonstrates that our value restriction and modified subsorting result in a system
that is sound in presence of effects by adding mutable references and an example datatype.

Chapter 5 presents our approach to datasort declarations, including our algorithm for com-
paring them for inclusion.

Chapter 6 considers sort checking in the presence of datasort declarations, including pattern
matching.

Chapter 7 describes the design of an extension of our approach to the full set of features in
Standard ML.

Chapter 8 describes our implementation of a sort checker for SML, based on the design and
algorithms in previous chapters.

Chapter 9 describes some experiments with sort checking of real SML code using our im-
plementation.
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Chapter 2

Sort checking with standard
intersection types

This chapter focuses on bidirectional sort checking with the standard intersection type rules
(i.e., without a value restriction and with distributivity). Intersection types with these rules
have been extensively studied in the context of λ-calculi (see e.g. [CDV81]) and in the context
of programming languages (e.g. [Rey91][Rey96]). Refinement types with these rules have been
studied previously in two contexts: an extension of the programming language ML [FP91,
Fre94], and an extension of the logical framework LF [Pfe93].

The sorts in this chapter are not suitable for languages with call-by-value effects (see Sec-
tion 1.4.2 and the introduction to Chapter 3). Since the practical focus of this work is sort
checking for SML, which includes such effects, the sorts in this chapter do not play a central
role in the remainder of this dissertation. Thus, this chapter should be considered secondary to
Chapter 3, which presents sorts which are suitable for extension with call-by-value effects, and
includes the algorithm that forms the core of our implementation of sort checking for SML.

We have chosen to include this chapter in this dissertation mostly because it provides an
intermediate point when comparing our main sort checking algorithm with previous work. The
algorithm in this chapter follows a similar approach to that in Chapter 3, and is quite different
to previous bidirectional algorithms for intersection types, such as those of Reynolds [Rey96]
and Pierce [Pie97]. This is because these previous algorithms require restrictions on what kinds
of inclusions are allowed between base types, and these restrictions are not appropriate for sorts.
Thus, the algorithm in this chapter may also be of interest to those seeking a general checking
algorithm for standard intersection types which makes as few assumptions as possible.

We also take the opportunity in this chapter to demonstrate a slightly more abstract presen-
tation than in Chapter 3, in particular in the way that refinements of base types are declared
in signatures. This results in the algorithms in this chapter being slightly further from the
actual implementation. It is our intention that the more abstract presentation be considered as
a possible “front-end” to the presentation of Chapter 3 (via a correspondence between abstract
signatures and finite lattices, which will be demonstrated formally in Section 2.6). Similarly,
the more efficient approach in Chapter 3 can be considered to be an implementation technique
for the sorts in this chapter. Since the value restriction and distributivity do not affect the
structure of refinements of base types, this is an orthogonal concern.

Because the development in this chapter is quite similar to that in Chapter 3, and the sorts
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in this chapter are not as central, the presentation in this chapter is deliberately terse. The
development in Chapter 3 is explained in more detail and we include forward pointers where
appropriate.

The remainder of this chapter is structured as follows. Section 2.1 presents the syntax of
a simply-typed λ-calculus, parameterized by a signature containing declarations of base types,
base sorts, and constants, and also declaring inclusions between refinements of base types.
Section 2.2 presents validity judgments for signatures, types, refinements, contexts and terms.
Terms are judged to be valid via the standard typing rules, but we do not include sort assignment
rules: we do not consider that the purpose of sort assignment is to determine the validity of
terms. Section 2.3 presents the standard notion of reduction. Section 2.4 presents declarative
subsorting rules, based on the standard rules for intersection types. Section 2.5 considers
equivalence of sorts, and shows that the equivalence classes of refinements of a type form a
finite lattice. Section 2.6 shows that our declarations of inclusions in signatures are equivalent
to allowing arbitrary finite lattices of refinements of base types (as is done in Chapter 3).
Section 2.7 briefly considers algorithmic base subsorting. Section 2.8 presents declarative sort
assignment rules. Section 2.9 presents our algorithm for subsorting and an outline of the proof
of its correctness. Section 2.10 presents our bidirectional sort checking algorithm, and an outline
of the proof of its correctness. Section 2.11 demonstrates that terms can always be annotated
appropriately as required by our sort checking algorithm.

2.1 Syntax

We now present the syntax of our simply-typed λ-calculus with sorts, which we call λ→&.
We follow Pfenning’s presentation of the simply-typed λ-calculus (see Section 6 of [Pfe01b]
or Chapter 3 of [Pfe05]). We add sorts, placing types and sorts in separate syntactic classes,
following Freeman [Fre94], but differing from Pfenning’s presentation of refinement types for
LF [Pfe93]. We also include zero-ary intersections, or “top” sorts, using the syntax >A, thus
making the type that is being refined inherent in the syntax of the sort. To avoid clutter,
we often omit the type A and simply write > when the type can be reconstructed from the
context or is of little interest. These top sorts are somewhat different from those considered
by Freeman [Fre94], which are not represented using a special syntactic form, but are instead
constructed in a way that ensures they are maximum elements.

We include signatures with declarations of both sort constants and subsorting relationships,
following Pfenning [Pfe93], but differing from Freeman [Fre94]. We allow subsorting declarations
of the form R

a
≤ S where R and S are refinements of a type constant a. This extends the

declarations in [Pfe93] which have the form r ≤ s. The extension is necessary so that all finite
lattices of base sorts can be declared (see Section 2.6).

We use a, b for type constants, r, s for sort constants, c for term constants and x for term
variables.
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Types A,B ::= a | A1 →A2

Type Contexts Γ ::= . | Γ, x:A
Terms M,N ::= c | x | λx:A.M | M1 M2

Sorts R,S ::= r | R1 →R2 | R1 &R2 | >A

Sort Contexts ∆ ::= . | ∆, x∈R

Declarations D ::= a:type | r @ a | R
a
≤ S | c:A | c∈R

Signatures Σ ::= . | Σ, D

We write {N/x}M for the result of substituting N for x in M , renaming bound variables as
necessary to avoid the capture of free variables in N . We use the notation D :: J to indicate
that D is a derivation of judgment J .

We require variables to appear at most once in a type or sort context. Similarly, we require
signatures to include at most one declaration a:type for each a, at most one declaration r @ a
for each r, and at most one declaration c:A and one declaration c∈R for each c.

The intention of our signatures is that our simply-typed λ-calculus is parameterized with
respect to a signature that declares:

• a set of base types a:type

• a set of base sorts refining each base type r @ a which satisfy inclusions R
a
≤ S (e.g.

r1 &r2
a
≤ r3)

• a set of constants each inhabiting a type and refinement of that type c:A, c∈R

There appear to be a number of reasonable alternatives to our formulation of signatures.

• We could have separate signatures for type and sort level declarations.

• We could remove declarations of the form c:A and instead make c:A a consequence of
c∈R when R @ A.

• We could allow c∈R1 and c∈R2 to appear in the same signature (which would be equivalent
to c∈R1 &R2) as is done in Pfenning’s refinements for LF [Pfe93].

These alternatives appear to result in only cosmetic differences.

2.2 Validity judgments

The validity judgments for λ→& extend those of Pfenning [Pfe01b, Pfe05]. In particular, the
validity judgment for signatures is extended to the new forms of declarations r @ a, c∈R

and R
a
≤ S. We have a new judgment that judges the validity of a sort as a refinement of

a particular valid type. This judgment requires the type to be valid: if it is not we do not
consider the judgment to be well formed. We use similar well-formedness restrictions for many
judgments in this dissertation: without them many inference rules would require additional
premises that are not directly related to the rule, and there would be a distracting amount
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of clutter in derivations. We only consider well-formed instances of judgments: if an instance
is not well formed it has no meaning, and it makes no sense to consider whether it holds or
whether there is a derivation of it.

` Σ Sig Σ is a valid signature

`Σ A : type A is a valid type

`Σ R @ A R is a valid refinement of type A. (“R refines A”)

Valid signatures

sigemp
` . Sig

` Σ Sig
sigtyp

` Σ, a:type Sig

` Σ Sig `Σ A : type
sigobj

` Σ, c:A Sig

` Σ Sig `Σ a : type
sigsrt

` Σ, (r @ a) Sig

` Σ Sig c:A in Σ `Σ R @ A
sigobjsrt

` Σ, c∈R Sig

` Σ Sig `Σ R @ a `Σ S @ a
sigsub

` Σ, (R
a
≤ S) Sig

Valid types

a:type in Σ
typcon

`Σ a : type

`Σ A : type `Σ B : type
typarrow

`Σ A→B : type

Valid refinements

r @ a in Σ
srtcon

`Σ r @ a

`Σ R @ A `Σ S @ B
srtarrow

`Σ R→ S @ A→B

`Σ R1 @ A `Σ R2 @ A
srtinter

`Σ R1 &R2 @ A
srttop

`Σ >A @ A

A direct consequence of these definitions is that every sort refines at most one type.
We say that a sort R is well-formed if it refines some type A. In what follows, we are

only interested in well-formed sorts, and so when we use the term “sort” we implicitly mean
“well-formed sort”. We say that two sorts are compatible if they refine the same type.

As an example of a valid signature, the following represents the types for the example in
the introduction involving bit strings: we have a type abits with positive and natural numbers
as refinements rnat, rpos as well as a refinement rbits that includes all bit strings. We include
the inclusions rpos ≤ rnat ≤ rbits.

22



abits : type,
rnat @ abits,
rpos @ abits,
rbits @ abits,
cbnil : abits,
cb0 : abits → abits,
cb1 : abits → abits,

rpos
abits
≤ rnat,

rnat
abits
≤ rbits,

cbnil ∈ rnat,
cb0 ∈ (rbits → rbits) & (rpos → rpos),
cb1 ∈ (rbits → rbits) & (rnat → rpos)

The validity judgments for type contexts and terms are completely standard. We add a
judgment for validity of sort contexts refining a valid type context. Each of these judgments
is with respect to a valid signature Σ. The validity judgment for terms requires a valid type
context and a valid type in order to be well formed. The validity judgment for sort contexts
requires a valid type context.

`Σ Γ Ctx Γ is a valid context

Γ `Σ M : A M is a valid term of type A in valid type context Γ

`Σ ∆ @ Γ ∆ is a valid refinement of valid type context Γ.

Valid type contexts

ctxemp
`Σ . Ctx

`Σ Γ Ctx `Σ A : type
ctxobj

`Σ Γ, x:A Ctx

Valid terms

c:A in Σ
objcon

Γ `Σ c : A

x:A in Γ
objvar

Γ `Σ x : A

Γ, x:A `Σ M : B
objlam

Γ `Σ λx:A.M : A→B

Γ `Σ M : A→B Γ `Σ N : A
objapp

Γ `Σ M N : B

Valid sort contexts

sctxemp
`Σ . @ .

`Σ ∆ @ Γ `Σ R @ A
sctxobj

`Σ (∆, x∈R) @ (Γ, x:A)

We do not include a judgment for validity of terms with respect to sorts here because we consider
that this is not the purpose of sorts. Instead we later present a sort assignment judgment that
assigns sorts to terms that are already judged to be valid using the typing judgment. This
reflects our view of the different purposes of types and sorts: types are required for validity,
following the style of Church [Chu40], while sorts assign properties to terms that are already
known to be valid, roughly in the style in Curry [Cur34].

23



2.3 Reduction

We have the standard β-reduction rule for terms.

β
(λx:A.M) N 7→ {N/x}M

We also have the compositional rules:

M 7→ N
reduce lam

λx:A.M 7→ λx:A.N

M 7→ M ′
reduce app1

M N 7→ M ′N

N 7→ N ′
reduce app2

M N 7→ M N ′

So far λ→& is just the simply-typed λ-calculus in the style of Church. We omit the proofs of
standard results such as subject reduction with respect to types. Our main interest is in the
refinements of the standard types.

2.4 Declarative subsorting

The subsorting judgment has the following form, where R and S must be compatible sorts in
order for the judgment to be well formed.

`Σ R ≤ S R is a subsort of S

The subsorting rules are standard (see e.g. [Rey91]). The signature Σ is fixed throughout these
rules, and we omit the `Σ for brevity here and as appropriate in the remainder of this chapter.
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R
a
≤ S in Σ

sub base
R ≤ S

R′ ≤ R S ≤ S′

sub arrow
R→ S ≤ R′→ S′

sub reflex
R ≤ R

R1 ≤ R2 R2 ≤ R3
sub trans

R1 ≤ R3

sub &left1
R&S ≤ R

sub &left2
R&S ≤ S

R ≤ S R ≤ S′
sub &right

R ≤ S &S′
sub Tright

R ≤ >A

sub &dist
(R→ S)&(R→ S′) ≤ R→ (S &S′)

sub Tdist
>A→B ≤ R→>B

The requirement that R and S be compatible in order for R ≤ S to be well formed allows us
to omit certain premises that would otherwise need to be explicitly included in the rules. For
example, in the rule sub Tdist, we must have R→>B @ A→B, and hence R @ A.

2.5 Sort equivalence and finiteness

If R ≤ S and S ≤ R then we say R and S are equivalent sorts. We use the notation R ∼= S for
this relation, which is an equivalence relation: it is reflexive by rule sub reflex (in each direction)
and transitive by rule sub trans (in each direction).

Our main motivation for introducing this definition is that there are only a finite number
of refinements of each type modulo sort equivalence, which can be proved by induction on the
structure of the type refined by R and S. We omit a formal proof here. Section 3.6 includes a
formal proof of a finiteness of refinements theorem (Theorem 3.6.3) in the absence of the rule
sub dist. Since the removal of this rule can only result in more distinct refinements, this proof
can easily be adapted to the situation in this chapter. Also, Freeman [Fre94] has presented a
finiteness theorem for a system of sorts with distributivity.

We now show that &is associative and commutative. We start with the following definitions,
and some basic lemmas.

Definition 2.5.1 (Conjunct, Basic conjunct)
We say that R is a conjunct of S if one of the following holds.

• S = R

• S = S1 &S2 and (inductively) R is a conjunct of either S1 or S2.

When R is additionally not an intersection or >A, we say that R is a basic conjunct of S.
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Lemma 2.5.2 (Conjunct inclusion)
If S is a conjunct of R then R ≤ S.

Proof: By induction on R.

Case: R = S. Then S ≤ S by rule sub reflex.

Case: R = R1&R2 with S a conjunct of R1.
Then R1 ≤ S by the induction hypothesis,
and R1&R2 ≤ R1 by rule sub &left1,
so R1&R2 ≤ S by rule sub trans.

Case: R = R1&R2 with S a conjunct of R2. Symmetric to the previous case.

Lemma 2.5.3 (Basic conjuncts inclusion)
If each basic conjunct of R is also a conjunct of S then S ≤ R.

Proof: By induction on R.

Case: R = >A. Then S ≤ >A by rule sub Tright.

Case: R = r or R = R1 →R2.
Then R is a basic conjunct of R (by definition),
so R is a conjunct of S (by assumption),
thus S ≤ R (by the previous lemma).

Case: R = R1&R2.
Then S ≤ R1 and S ≤ R2 by the induction hypothesis,
so S ≤ R1&R2 by rule sub &right.

Lemma 2.5.4 (Associativity, commutativity and idempotence of &)
R&S ∼= S &R and R1 &(R2 &R3) ∼= (R1 &R2)&R3 and R&R ∼= R

Proof: For each, the basic conjuncts of the left and right hand sides are the same, hence
subsorting in each direction follows from the previous lemma.

This lemma allows us to unambiguously treat composite intersections as intersections of finite
sets of sorts. Thus, the following definition is unambiguous up to sort equivalence even though
a particular finite set of sorts can be written in many different orders.

Definition 2.5.5
If {R1, . . . , Rn} is a finite set of sorts each refining type A then &{R1, . . . Rn} is defined to be
R1 & . . .&Rn, or >A if n = 0.
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The finiteness of refinements modulo equivalence allows us to show that they form a lattice.
Finiteness is required here in order to intersect upper bounds.

Theorem 2.5.6 For each type A, the equivalence classes of refinements of A form a finite
lattice.

Proof: Refinements R1, R2 @ A have a greatest lower bound R1 &R2: it is a lower bound by
rules sub &left1 and sub &left2, and it is greater than all other lower bounds by sub &right.
The least upper bound R1∨R2 of R1 and R2 is the intersection of all upper bounds. More
precisely, it is the intersection of a finite set containing a canonical representative rep(S) of
each equivalence class of upper bounds, as follows.

R1∨R2 = &{rep(S) : R1 ≤ S and R2 ≤ S}.

2.6 Relating base refinements and finite lattices

We now focus on the structure of the refinements of a base type. By the previous section, for
any signature Σ with `Σ a:type the equivalence classes of refinements of a will form some finite
lattice. We will now additionally show that every finite lattice L can be represented by some
signature Σ(L).

Suppose L has elements l1, . . . , ln, with partial order �, greatest lower bound operation ∧
and least upper bound operation ∨. Then the signature Σ(L) contains a single type a, and a
refinement ri @ a for each lattice element li of L. To accurately encode the structure of the
lattice, we include subsorting declarations that equate each intersection with the refinement for
the greatest lower bound in the lattice. More precisely we include the following declarations in
Σ(L).

a:type
ri @ a for each li ∈ L (choosing distinct ri)

>
a
≤ rt where lt is the top element of L

ri &rj
a
≤ rk

rk
a
≤ ri &rj

 for each li, lj ∈ L with li ∧ lj = lk.

We now show that every refinement R @ a corresponds to some lattice element li (the converse
is true by construction).

Lemma 2.6.1 (Lattice correspondence)
If `Σ(L) R @ a then there exists li ∈ L such that `Σ(L) R ∼= ri.

Proof: By induction on the structure of R.

Case: R = ri.
Then li ∈ L and ri

∼= ri.
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Case: R = R1 &R2.
li ∈ L with ri

∼= R1 and lj ∈ L with rj
∼= R2 Ind. hyp.

ri &rj ≤ Ri Rule sub &left

ri &rj ≤ Rj Rule sub &left

ri &rj ≤ Ri &Rj Rule sub &right

Ri &Rj ≤ ri &rj Similarly

ri &rj
a
≤ rk and rk

a
≤ ri &rj in Σ(L) where li ∧ lj = lk Def. Σ(L)

R1 &R2 ≤ rk and rk ≤ R1 &R2 Rule sub trans, via sub base

rk
∼= R1 &R2 Def. ∼=

Case: R = >
>

a
≤ rt in Σ(L) where lt is the top element of L Def. Σ(L)

> ≤ rt Rule sub base

rt ≤ > Rule sub Tright

> ∼= rt Def. ∼=

Next, we show that the partial order � is accurately captured by the refinements of a in Σ(L).

Theorem 2.6.2 (Lattice structure preservation)
For all i, j we have `Σ(L) ri ≤ rj if and only if li � lj.

Proof:

• From right to left:
li � lj implies li ∧ lj = li.
Thus Σ(L) contains ri ≤ ri &rj .
Then `Σ(L) ri ≤ rj by sub trans and sub &left2.

• From left to right:
By induction on the derivation of `Σ(L) ri ≤ rj , generalizing the induction hypothesis to:

For all i1 . . . im and j1 . . . jn

if ri1 & . . .&rim ≤ rj1 & . . .&rjn

then li1 ∧ . . . ∧ lim � lj1 ∧ . . . ∧ ljn .

All cases are completely straightforward.

Since the partial order � determines the structure of the lattice (including least upper bounds
and greatest lower bounds), this theorem implies that the equivalence classes of refinements of
a in Σ(L) follow the structure of the lattice L.

Thus, every finite lattice can be represented by a signature, and every signature represents
a finite lattice. The work of Freeman [Fre94] similarly allows each base type to have any
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finite lattice of refinements. However, Freeman directly assumes that the refinements form a
lattice, while we isolate our assumptions in a signature, using an extension of the approach of
Pfenning [Pfe93].

We do this because it seems more elegant than the explicit global assumptions required
in Freeman’s presentation. In particular, the declarations provide a convenient way to specify
lattices when instantiating our framework, and there is no requirement that the properties of
a lattice be verified in each instance. Further, in our case the annotations used by our sort
checker for Standard ML require some method for specifying lattices of refinements of opaque
types in signatures. The method we use is based directly on the declarations considered in
this chapter (see Section 7.7.2). Additionally, for efficiency our sort checker transforms such
declarations into a finite lattice, thus making use of the above equivalence between declarations
and finite lattices (see Section 8.8).

Our signatures extend those of Pfenning by allowing declarations of the form R
a
≤ S instead

of only the form r
a
≤ s. This extension is necessary to allow all finite lattices to be declared.

E.g., the following signature has no counterpart in the system presented by Pfenning [Pfe93].

a:type, c:a, r1@a, r2@a, r3@a, (r2 &r3
a
≤ r1).

2.7 Algorithmic base subsorting

For efficiency, our implementation of sort checking represents base refinements as elements of
finite lattices, with each element corresponding to an equivalence class. This will be reflected
in the presentation in Chapter 3. In this chapter we have a more abstract presentation, which
requires a different technique for determining inclusion between base refinements. This section
presents one such algorithm.

This algorithm works by determining all upper bounds s for a particular base refinement
R, which is done as follows.

• Each r in R is an upper bound for R.

• When S1
a
≤ S2 is in Σ, if each s1 in S1 is an upper bound for R then each s2 in S2 is an

upper bound for R.

The following judgment presents this algorithm more formally. It requires R @ a and s @ a in
order to be well formed.

`Σ R
a
� s R is determined to be a base subsort of s.

s in R

R
a
� s

r1& . . .&rn
a
≤ S in Σ R

a
� r1 . . . R

a
� rn s in S

R
a
� s

Unlike the other algorithms in this dissertation, the sense in which these rules describe an
algorithm is different from the standard interpretation as a backward chaining logic program.
If we take this interpretation, the above algorithm may non-terminate (e.g., when Σ contains
s

a
≤ s).
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Instead, the intended algorithmic interpretation of these rules is as a tabling, forward chain-
ing logic program: given a particular R, the rules are applied to iteratively increase the set of
s for which R

a
� s is known. When no rule will add a new s to the set, the algorithm has

competed. The termination of the algorithm is straightforward with this interpretation: each
step of the algorithm must add R

a
� s for some new s, and there are only finitely many s. As

observed by Ganzinger and McAllester [GM02], this style of logic programming allows many ef-
ficient algorithms to be elegantly expressed as inference rules which can not easily be expressed
with a backward chaining interpretation.

This interpretation only affects the way we reason about the termination of the algorithm.
It does not affect the way we prove soundness and completeness for the algorithm: we still
use the standard techniques of induction over the structure of derivations. Soundness can be
proved relatively easily, as follows.

Theorem 2.7.1 (Soundness of
a
�)

If R
a
� s then R ≤ s.

Proof: By induction on the structure of R
a
� s.

Case:
s in R

R
a
� s

R ≤ s By Lemma 2.5.2 (Conjunct inclusion)

Case:
r1& . . .&rn

a
≤ S in Σ R

a
� r1 . . . R

a
≤ rn s in S

R
a
� s

R ≤ ri for each ri Ind. hyp.
R ≤ r1 & . . .&rn Rule sub &right, repeatedly
r1& . . .&rn ≤ S Rule sub base

R ≤ S Rule sub trans

S ≤ s Lemma 2.5.2 (Conjunct inclusion)
R ≤ s Rule sub trans

The proof of completeness of
a
� requires the following lemma.

Lemma 2.7.2 (Transitivity of
a
�)

If R1
a
� s2 for each s2 in R2

and R2
a
� s3

then R1
a
� s3.

Proof: By induction on the structure of the derivation of R2
a
� s3.

Case:
s3 in R2

R2
a
� s3
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R1
a
� s2 for each s2 in R2 Assumption

R1
a
� s3 Instantiating

Case:
r1& . . .&rn

a
≤ S in Σ R2

a
� r1 . . . R2

a
≤ rn s3 in S

R2
a
� s3

R1
a
� s2 for each s2 in R2 Assumption

R1
a
� ri for each ri Ind. hyp. (for each)

R1
a
� s3 Rule for R

a
≤ S in Σ

Theorem 2.7.3 (Completeness of
a
�)

If R ≤ S and s in S then R
a
� s.

Proof: By induction on the structure of the derivation of R ≤ S.

Case:
R

a
≤ S in Σ

sub base
R ≤ S

R
a
� r for each r in R Rule for r in R

s in S Assumption

R
a
� s Rule for R

a
≤ S

Case: sub reflex
R ≤ R

s in R Assumption

R
a
� s Rule for s in R

Case:
R ≤ R2 R2 ≤ S

sub trans
R ≤ S

R
a
� s2 for each s2 in R2 Ind. hyp.

R2
a
� s Ind. hyp.

R
a
� s Lemma 2.7.2 (Transitivity of

a
�)

Case: sub &left1
S &R2 ≤ S

s in S Assumption
s in S &R2 Def. “in”

S &R2
a
� s Rule for r in R

Case: sub &left2
R1 &S ≤ S

Symmetric to the previous case.

Case:
R ≤ S1 R ≤ S2

sub &right
R ≤ S1 &S2

31



s in S1 &S2 Assumption
s in S1 or s in S2 Def. “in”

R
a
� s Ind. hyp. in each case

Case:
sub Tright

R ≤ >A

s in >A cannot occur.

The following theorem captures the sense in which the judgment R
a
� s can be used to determine

whether the subsorting R ≤ S holds for any R and S, i.e. not only when S is a base sort.

Theorem 2.7.4 (Correctness of
a
�)

R
a
� s for each s in S if and only if R ≤ S.

Proof:

Left to right

R ≤ s for each s in S Lemma 2.7.1 (Soundness of
a
�)

R ≤ S Rule sub &right, repeatedly

Right to left

R ≤ s for each s in S Lemma 2.5.2 (Conjunct inclusion)

R
a
� s for each s in S Lemma 2.7.3 (Completeness of

a
�)

2.8 Declarative sort assignment

The sort assignment judgment has the following form, where we require Γ ` M : A, ∆ @ Γ and
R @ A in order for the judgment to be well formed.

∆ ` M ∈ R Term M has sort R in context ∆.

The sort assignment rules are very similar to those for a system with general intersection types
(such as in [Rey91]).
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x∈R in ∆
sa var

∆ ` x ∈ R

c∈R in Σ
sa const

∆ ` c ∈ R

∆, x∈R ` M ∈ S
sa lam

∆ ` λx:A.M ∈ R→ S

∆ ` M ∈ R→ S ∆ ` N ∈ R
sa app

∆ ` M N ∈ S

∆ ` M ∈ R ∆ ` M ∈ S
sa inter

∆ ` M ∈ R&S
sa top

∆ ` M ∈ >A

∆ ` M ∈ R R ≤ S
sa subs

∆ ` M ∈ S

Here each abstraction includes the type A of the variable, so the well formedness conditions
restrict the choice of the sort of the variable to refinements of A. This could be made explicit in
the rule, but we have chosen not to because we feel it is a natural consequence of our approach
to using well formedness conditions to relate sorts and types.

Our calculus satisfies the usual substitution lemmas with respect to sorts, subject reduction
and sort preservation theorems with respect to β-reduction. We omit proofs, since the proofs
for general intersection types (see e.g. [CDV81]) can easily be adapted.

We also have the following simple theorem, which can be proved more easily in our situation
than with general intersection types: we can take advantage of the finiteness of the equivalence
classes of refinements of each type.

Theorem 2.8.1 (Principal sorts)
If ∆ ` M : A then there exists R @ A such that ∆ ` M ∈ R and every S such that ∆ ` M ∈ S
satisfies R ≤ S.

Proof: Choose R to be the intersection of a finite set of sorts containing one representative Ri

of each equivalence class that satisfies ∆ ` M ∈ Ri.

2.9 Algorithmic subsorting

The declarative sorting and subsorting rules are quite intuitive, but they do not specify a strat-
egy for checking a term. We first treat the issue of constructing an algorithm for determining
subsorting. We address the more difficult issue of algorithmic sort checking in Section 2.10.
Our subsorting algorithm is similar to that used by Freeman [Fre94].

A quite different algorithm has been designed by Reynolds [Rey91] for the programming
language Forsythe, and similar algorithms have been considered by Pierce [Pie91, Pie97]. Inter-
estingly, Reynolds’ algorithm cannot be easily extended to our base subsorting relations. For
example, suppose we have the following signature (from Section 2.6).

Σ = a:type, c:a, r1@a, r2@a, r3@a, (r2 &r3
a
≤ r1)
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Then we can form the following subsorting derivation.

(r1 → r2)&(r1 → r3) ≤ r1 → (r2 &r3)

r2 &r3
a
≤ r1 in Σ

r2 &r3 ≤ r1

(r1 → r2)&(r1 → r3) ≤ r1 → r1.

However, an algorithm based on Reynolds’ approach would incorrectly determine that this
subsorting inclusion is false. Roughly, this is because the algorithm depends upon the occurrence
of an intersection within the sort on the right to determine potential uses of the distributivity
rule. But when we have a declaration like r2&r3

a
≤ r1 there are some subsorting instances which

require the distributivity rule but have no such occurrence.
The subsorting algorithm we present here is based on a variant of that presented by Freeman.

More precisely, it is based on the “more efficient” variant mentioned on page 119 of [Fre94].
Freeman focuses on a “less efficient” algorithm because it is easier to prove correct, and fits
better with the representations of sorts used in his sort inference algorithm. However, the
less efficient algorithm seems less likely to scale to complex and higher-order types because it
requires explicit enumeration of the refinements of a type.

We describe our subsorting algorithm using a judgment R � S with algorithmic rules.
This judgment depends on an ancillary judgment R � S1

⇒→ S2 which takes R and S1 as input
and synthesizes a minimum S2 such that R ≤ S1 → S2. This judgment in turn requires the
complement R �/ S of algorithmic subsorting: formally this means that R � S fails, i.e.,
that the standard backward-chaining search for a proof of R � S terminates without finding a
proof. The rules are designed so that the algorithm always terminates, which can be shown by
induction on the term and the sort R, lexicographically. The complement judgment R �/ S is
only included as a premise to reduce the non-determinism in the algorithm.

Here and in later algorithmic judgments we use the notation “⇒” to emphasize outputs
from a judgment. Later we will also use the notation “⇐” to emphasize inputs.

The judgments have the following forms, where the first two require R and S to be com-
patible in order to be well formed, and the third requires that R be compatible with S1 → S2.

R � S R is determined to be a subsort of S.

R �/ S The complement of R � S, i.e., R � S fails.

R � S1
⇒→ S2 S2 is synthesized as the minimum sort

such that R ≤ S1 → S2, given R and S1

R
a
� s

subalg base
R � s

R � S1 R � S2
subalg inter

R � S1 &S2

R � S1
⇒→ R2 R2 � S2

subalg arrow
R � S1→S2

subalg top
R � >A
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S1 � R1
apsrt arrow

R1→R2 � S1
⇒→ R2

S1 �/ R1
apsrt arrow top

R1→R2 � S1
⇒→ >B

R � S1
⇒→ S2 R′ � S1

⇒→ S′2
apsrt inter

R&R′ � S1
⇒→ (S2 &S′2)

apsrt top
>A→B � S1

⇒→ >B

To show that the algorithmic subsorting judgment is equivalent to the declarative subsorting
judgment, we first need some lemmas.

Lemma 2.9.1 (Algorithmic subsorting for conjuncts)

1. If S is a conjunct of R then R � S.

2. If S = S1 → S2 is a conjunct of R then R � S1
⇒→ R2 for some R2 with S2 a conjunct of

R2.

Proof: By induction on the structure of S, R lexicographically.
For part 1:

Case: S = s. By Lemma 2.7.3 (Completeness of
a
�).

Case: S = S1 &S2. Straightforward, applying the ind. hyp. to S1 and S2.
Case: S = >. By rule subalg top.
Case: S = S1 → S2.

R � S1
⇒→ R2 with S2 a conjunct of R2 Part 2 of ind. hyp.

R2 � S2 Part 1 of ind. hyp.
R � S1 → S2 Rule subalg arrow

For part 2:

Case: R = R1 →R2.
Then R1 = S1 and R2 = S2 and so R1 is a conjunct of S1.
Applying the ind. hyp. yields S1 � R1, so R1 →R2 � S1

⇒→ R2.
Case: R = R1 &R2. By applying the ind. hyp. to either R1 or R2.
Case: R = >. Impossible: S is a conjunct of R.

Corollary 2.9.2 (Algorithmic subsorting reflexivity)
For every well-formed sort S we have S � S.

Lemma 2.9.3 (Properties of �
⇒→) For every R @ A1 → A2 and S1 @ A1 there is a unique

S2 such that R � S1
⇒→ S2. Further, the size of S2 is smaller than or equal to the size of R.

Proof: By induction on R.
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Case: R = R1 &R2. Straightforward, applying the ind. hyp. to R1 and R2.
Case: R = >A→B. By rule apsrt top.
Case: R = R1 →R2.

Then exactly one of apsrt arrow and apsrt arrow top applies,
each is straightforward.

Lemma 2.9.4 (Algorithmic subsorting for intersections)

If R � S then R&R′ � S and R′&R � S.

Proof: By induction on S.

Case: S = s.
From the corresponding property of ≤, via Lemmas 2.7.1 and 2.7.3
(Soundness and Completeness of

a
�).

Case: S = S1 &S2. Straightforward, applying the ind. hyp. to S1 and S2.
Case: S = >. By rule subalg top.
Case: S = S1 → S2.

R � S1
⇒→ R2 and R2 � S2 Inversion.

R′ � S1
⇒→ R′2 for some R′2 Properties of �

⇒→ (2.9.3)
R&R′ � S1

⇒→ (R2 &R′2) Rule apsrt inter

R2 &R′2 � S2 Ind. hyp.
R&R′ � S1 → S2 Rule subalg arrow

The main lemma required for the correctness of our algorithm is one that validates transitivity.
Its proof requires generalizing the induction hypothesis to include two additional results which
are forms of transitivity involving the judgment R � S1→S2. We use induction over the sum of
the sizes of the sorts: a simple induction on the structure of the two derivations is insufficient,
because we sometimes need to apply part of the induction hypothesis to a derivation constructed
via an earlier application of the induction hypothesis. Further, the two derivations are swapped
for some appeals to the induction hypothesis, due to the contravariance of →. (It appears that
this proof would also work by induction first on the type A refined by R followed by R, R1 and
R2.)

Lemma 2.9.5 (Algorithmic subsorting transitivity)

1. If R1 � R and R � R2 then R1 � R2.

2. If R1 � R and R � R2
⇒→ S then R1 � R2

⇒→ S1 for some S1 � S.

3. If R1 � R ⇒→ S and R2 � R then R1 � R2
⇒→ S2 for some S2 � S.
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Proof:
By induction on the sum of the sizes of R1, R2 and R, making use of the above lemmas.

For the first part, we treat each possible derivation for R � R2.

Case: R1 � R and
R

a
� s2

R � s2

.

Using Lemma 2.7.2 (Transitivity of
a
�),

via a small subinduction to show R1
a
� s for each s in R.

Case: R1 � R and
R � R21 R � R22

R � R21 &R22

Via the ind. hyp. on R21 and R22.

Case: R1 � R and R � >
By rule subalg top.

Case: R1 � R and
R � R21

⇒→ R′22 R′22 � R22

R � R21→R22

.

R1 � R21
⇒→ R′′22 for some R′′22 � R′22 Part 2 of ind. hyp.

R′′22 smaller than R1 and R′22 smaller than R Lemma 2.9.3
R′′22 � R22 Part 1 of ind. hyp.
R1 � R21 →R22 Rule subalg arrow

For the second part, we have the following cases.

Case:
R1 � R′1 R1 � R′2

R1 � R′1 &R′2
and

R′1 � R2
⇒→ S′1 R′2 � R2

⇒→ S′2

R′1 &R′2 � R2
⇒→ (S′1 &S′2)

R1 � R2
⇒→ S′′1 for some S′′1 � S′1 Ind. hyp.

R1 � R2
⇒→ S′′2 for some S′′2 � S′2 Ind. hyp.

S′′1 = S′′2 Lemma 2.9.3
S′′1 � S′1 &S′2 Rule subalg inter

Case: R1 � > and > � R2
⇒→ >

R1 � R2
⇒→ S′ for some S′ Lemma 2.9.3

S′ � > Rule subalg top

Case:
R1 � R′1

⇒→ R′′2 R′′2 � R′2

R1 � R′1→R′2
and

R2 � R′1

R′1→R′2 � R2
⇒→ R′2

R1 � R2
⇒→ R′′′2 for some R′′′2 � R′′2 Ind. hyp (part 3)

R′′′2 � R′2 Ind. hyp. (part 1)
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Case:
R1 � R′1

⇒→ R′′2 R′′2 � R′2

R1 � R′1→R′2
and

R2 �/ R′1

R′1→R′2 � R2
⇒→ >

R1 � R2
⇒→ R′′′2 for some R′′′2 Lemma 2.9.3

R′′′2 � > Rule subalg top

For the third part, we consider each possible derivation for R1 � R ⇒→ S.

Case:
R11 � R ⇒→ S1 R12 � R ⇒→ S2

R11 &R12 � R ⇒→ (S1 &S2)
and R2 � R

R11 � R2
⇒→ S′1 with S′1 � S1 Ind. hyp.

R12 � R2
⇒→ S′2 with S′2 � S2 Ind. hyp.

R11 &R12 � R2
⇒→ S′1 &S′2 Rule apsrt inter

S′1 &S′2 � S1 Lemma 2.9.4
S′1 &S′2 � S2 Lemma 2.9.4
S′1 &S′2 � S1 &S2 Rule subalg inter

Case: > � R ⇒→ > and R2 � R

> � R2
⇒→ > Rule apsrt top

> � > Rule subalg top

Case:
R � R11

R11→R12 � R ⇒→ R12

and R2 � R

R2 � R11 Ind. hyp. (part 1)
R11→R12 � R ⇒→ R12 Rule apsrt arrow

R12 � R12 Reflexivity of � (2.9.2)

Case:
R �/ R11

R11→R12 � R ⇒→ >
and R2 � R

R11→R12 � R2
⇒→ S2 for some S2 Lemma 2.9.3

S2 � > Rule subalg top

We are now in a position to prove correctness of our subsorting algorithm.

Theorem 2.9.6 (Algorithmic subsorting correctness)
R � S if and only if R ≤ S.

Proof:
Left to right: by a straightforward induction on the derivation of R � S, strengthening the
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induction hypothesis to also include: if R � S1
⇒→ S2 then R ≤ S1 → S2.

There is one case for each algorithmic rule, and each essentially shows that the rule corresponds
to a derived rule in the declarative system.

Right to left: by induction on the derivation of R ≤ S, making use of the above lemmas.

• The case for sub reflex uses Reflexivity of � (2.9.2).

• The case for sub trans uses Transitivity of � (2.9.5).

• The case for sub base uses Correctness of
a
� (2.7.4).

• The cases for sub &left1 and sub &left2 use Lemma 2.9.1.

• The case for sub &right uses rule subalg inter.

• The case for sub Tright uses rule subalg top.

• The case for sub arrow uses rule apsrt arrow followed by subalg arrow.

• The case for sub &dist uses rule apsrt arrow twice, followed by apsrt inter, followed by
subalg arrow (via Reflexivity of �).

• The case for sub Tdist uses rule apsrt top followed by subalg arrow (via Reflexivity of �).

2.10 Bidirectional sort checking

2.10.1 Syntax for annotations

Our bidirectional algorithm allows the programmer to specify sorts using annotations, resulting
in an efficient approach to sort checking. We thus extend the language of terms with a construct
for terms annotated with a list of sorts that may be assigned to the term: M∈R1, . . . , Rn. This
is similar to the type annotations with alternatives in Forsythe [Rey96], except that in Forsythe
the annotations are placed on variable bindings rather than on terms.

Terms M,N ::= . . . | (M∈L)
Sort Constraints L ::= . | L,R

We extend the judgments for validity of terms and declarative sort assignment to this construct,
as follows.

R1 @ A . . . Rn @ A Γ `Σ M : A
objann

Γ `Σ (M∈R1, . . . , Rn) : A

R in L ∆ ` M ∈ R
sa ann

∆ ` (M∈L) ∈ R

The rule for validity of terms objann checks that the annotations on a term refine the type
of the term. The rule for sort assignment sa ann restricts the sorts which may be assigned
to the annotated term. This is necessary in order to obtain a correspondence with the sorts
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used during sort checking. Including this rule in the declarative system allows a programmer
to reason about the sorts associated with their annotated program without having to reason in
terms of the sort checking algorithm. This point will be discussed in greater detail in the next
chapter (in Section 3.11.3).

Annotations are only used during sort-checking, so there is no reason to extend notions such
as reduction to annotations. Instead we define the function ‖.‖ that erases annotations from a
term, reflecting our intention that sort annotations should be removed after sort checking.

‖M∈L‖ = ‖M‖
‖x‖ = x
‖c‖ = c

‖λx:A.M‖ = λx:A.‖M‖
‖M N‖ = ‖M‖ ‖N‖

We now demonstrate that the function ‖.‖ preserves types and sorts, justifying the notion that
annotations can be removed after sort checking.

Theorem 2.10.1 (Typing Erasure)
If Γ `Σ M : A then Γ `Σ ‖M‖ : A.

Proof: By a straightforward induction on the structure of the derivation. We show the case for
the rule objann. The remaining cases simply rebuild the derivation by mirroring the structure
of the given derivation.

Case:
R1 @ A . . . Rn @ A

E
Γ `Σ N : A

objann
Γ `Σ (N∈L) : A

Then ‖M‖ = ‖N∈L‖ = ‖N‖ and we apply the induction hypothesis to E to obtain
Γ `Σ ‖N‖ : A, as required.

Theorem 2.10.2 (Sorting Erasure)
If ∆ ` M ∈ R then ∆ ` ‖M‖ ∈ R.

Proof: By a straightforward induction on the structure of the derivation. We show the cases
for rules sa ann and sa inter. The remaining cases simply rebuild the derivation by mirroring
the structure of the given derivation.

Case:
R in L

D
∆ ` N ∈ R

sa ann
∆ ` (N∈L) ∈ R

Then ‖M‖ = ‖N∈L‖ = ‖N‖ and we apply the induction hypothesis to D to obtain
∆ ` ‖N‖ ∈ R, as required.
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Case:

D1

∆ ` M ∈ R1

D2

∆ ` M ∈ R2

sa inter
∆ ` M ∈ R1 &R2

Then, we apply the induction hypothesis to D1 and D2 to obtain ∆ ` ‖M‖ ∈ R1 and
∆ ` ‖M‖ ∈ R2. We then apply rule sa inter to rebuild the derivation.

2.10.2 Algorithm

The bidirectional checking algorithm uses two subclasses of terms, inferable terms and checkable
terms. We also distinguish the sorts Rn that do not have an intersection at the top level, in
order to make our rules deterministic.

Inferable Terms I ::= c | x | I C | (C∈L)

Checkable Terms C ::= I | λx:A.C

Non-intersection Sort Rn ::= r | R→ S

We note that the checkable terms without annotations are exactly the normal forms. Thus,
annotations are only required at the top level, and where there is a redex in a term.

The bidirectional sort checking algorithm is presented as two judgments with algorithmic
rules: one that checks a checkable term against a sort, and one that infers a principal sort for
an inferable term. We also require the complement of the checking judgment, and an ancillary
judgment that projects the sort of a function onto an argument to synthesize the principal sort
for an application. In each of these judgments the context is always an input: the sorts of
all variables in scope are always known during an execution of the algorithm. The algorithm
always terminates: each premise has a smaller term than the conclusion, or the same term and
a smaller sort R, or the premise involves an earlier judgment than the conclusion (according
the order below).

We write the well-formedness conditions at the end of the description of each judgment
(prefixed by “where”).

∆ ` I
⇒
∈ R R is synthesized as a principal sort for I under ∆,

where ∆ @ Γ, R @ A, Γ ` C : A.

∆ ` C
⇐
∈ R Term C checks against sort R under ∆,

where ∆ @ Γ, R @ A, Γ ` C : A.

∆ ` C
⇐
/∈ R The complement of ∆ ` C

⇐
∈ R, i.e., ∆ ` C

⇐
∈ R fails.

where ∆ @ Γ, R @ A, Γ ` C : A.

∆ ` R � C ⇒→ S S is synthesized as a principal sort for an
application of a function with sort R to C,
where ∆ @ Γ, R @ A→B, S @ B, Γ ` C : A.

We have one checking rule for each kind of checkable term, plus one each for & and >. The rule
for λx:A.C adds an appropriate assumption for the variable based on the sort being checked
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against, ensuring that the sorts of all variables in the context are known during the algorithm.
The rule for an inferable term non-deterministically synthesizes a sort and then compares it with
the goal. It is restricted to non-intersection sorts Rn to avoid unnecessary non-determinism.
The checking rules for & and > mirror those in the declarative system.

We have one synthesis rule for each kind of inferable term. The rules for variables and
constants are straightforward. The rule for applications synthesizes a sort for the function, and
then uses the auxiliary judgment to “apply” this sort over the argument. The rule si ann for
annotations synthesizes a sort for (C∈{R1, . . . , Rm, S1, . . . , Sn}). Here {R1, . . . , Rm, S1, . . . , Sn}
indicates that we are treating the annotation like a set: in particular the sorts S1, . . . Sn need
not be those at the end of the annotation. The rule checks C against each sort in the annotation,
and we partition the sorts into R1, . . . , Rm for which the check fails, and S1, . . . , Sn for which
it succeeds. We then synthesize the principal sort by intersecting the latter sorts.

The rules for the auxiliary judgment try each conjunct R1 →R2 of the function sort, inter-
secting those R2 for which C checks against the corresponding R1 (and using > otherwise).

∆ ` C
⇐
∈ R ∆ ` C

⇐
∈ S

sc inter
∆ ` C

⇐
∈ R&S

sc top
∆ ` C

⇐
∈ >A

∆, x∈R ` C
⇐
∈ S

sc lam
∆ ` λx:A.C

⇐
∈ R→ S

∆ ` I
⇒
∈ S S � Rn

sc atom
∆ ` I

⇐
∈ Rn

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

x∈R in ∆
si var

∆ ` x
⇒
∈ R

c∈R in Σ
si const

∆ ` c
⇒
∈ R

∆ ` I
⇒
∈ R ∆ ` R � C ⇒→ S

si app
∆ ` I C

⇒
∈ S

∆ ` C
⇐
/∈ R1 . . . ∆ ` C

⇐
/∈ Rm

∆ ` C
⇐
∈ S1 . . . ∆ ` C

⇐
∈ Sn

si ann
∆ ` (C∈{R1, . . . , Rm, S1, . . . , Sn})

⇒
∈ &{S1, . . . , Sn}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆ ` C
⇐
∈ R1

aptm arrow
∆ ` R1 →R2 � C ⇒→ R2

∆ ` C
⇐
/∈ R1

aptm arrow top
∆ ` R1 →R2 � C ⇒→ >

∆ ` R1 � C ⇒→ S1 ∆ ` R2 � C ⇒→ S2
aptm inter

∆ ` (R1 &R2) � C ⇒→ (S1 &S2)
aptm top

∆ ` > � C ⇒→ >

2.10.3 Soundness and completeness

The following theorem shows that our algorithm is sound, by relating sort checking for an
annotated term with the sorts assigned by the declarative system for the same annotated term.
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Theorem 2.10.3 (Algorithmic sort-checking soundness)

1. If ∆ ` C
⇐
∈ R then ∆ ` C ∈ R.

2. If ∆ ` I
⇒
∈ R then ∆ ` I ∈ R.

3. If ∆ ` R � C ⇒→ S2 then there exists S1 such that ∆ ` C ∈ S1 and R ≤ S1 → S2.

Proof:
By induction on the given derivation.

The cases for rules sc inter, sc top, sc lam, si var and si const simply apply the induction
hypothesis to the premises, then rebuild the derivation using the corresponding sort assignment
rule. The cases for the rules sc atom, si ann and si app are similar, but slightly more complicated,
so we show them below, along with the cases for the third part.

Case:
∆ ` I

⇒
∈ S S � Rn

sc atom
∆ ` I

⇐
∈ Rn

∆ ` I ∈S Ind. hyp.
S ≤ Rn Correctness of � (2.9.6)
∆ ` I ∈Rn Rule sa subs

Case:

∆ ` C
⇐
/∈ R1 . . . ∆ ` C

⇐
/∈ Rm

∆ ` C
⇐
∈ S1 . . . ∆ ` C

⇐
∈ Sn

si ann
∆ ` (C∈{R1, . . . , Rm, S1, . . . , Sn})

⇒
∈ &{S1, . . . , Sn}

For each i = 1, . . . , n:
∆ ` C ∈Si Ind. hyp.
∆ ` (C∈{R1, . . . , Rm, S1, . . . , Sn})∈Si Rule sa ann

∆ ` (C∈{R1, . . . , Rm, S1, . . . , Sn})∈ &{S1, . . . , Sn} Rule sa inter

Case:
∆ ` I

⇒
∈ R ∆ ` R � C ⇒→ S

si app
∆ ` I C

⇒
∈ S

∆ ` I ∈R Ind. hyp.
∆ ` C ∈S1 with R � S1 → S Ind. hyp.
∆ ` I ∈S1 → S Rule sa subs

∆ ` I C ∈S Rule sa app

Case:
∆ ` C

⇐
∈ R1

aptm arrow
∆ ` R1 →R2 � C ⇒→ R2

∆ ` C ∈R1 Ind. hyp.
R1 →R2 ≤ R1 →R2 Rule sub reflex

As required, choosing S1 = R1.
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Case:
∆ ` C

⇐
/∈ R1

aptm arrow top
∆ ` R1 →R2 � C ⇒→ >

∆ ` C ∈> Rule sa top

R1 →R2 ≤ > Rule sub Tright

R1 →R2 ≤ >→> Rules sub Tdist, sub trans

Case:
∆ ` R1 � C ⇒→ S1 ∆ ` R2 � C ⇒→ S2

aptm inter
∆ ` (R1 &R2) � C ⇒→ (S1 &S2)

∆ ` C ∈S′1 with R1 ≤ S′1 → S1 Ind. hyp.
∆ ` C ∈S′2 with R2 ≤ S′2 → S2 Ind. hyp.
∆ ` C ∈S′1 &S′2 Rule sa inter

R1 ≤ (S′1 &S′2)→ S1 Rules sub left1, sub arrow, sub reflex

R2 ≤ (S′1 &S′2)→ S2 Rules sub left2, sub arrow, sub reflex

R1 &R2 ≤ (S′1 &S′2 → S1)&(S′1 &S′2 → S2) Rules sub left1/2, sub trans, sub &right

R1 &R2 ≤ (S′1 &S′2)→ (S1 &S2) sub &dist

Case:
aptm top

∆ ` > � C ⇒→ >
∆ ` C ∈> Rule sa top

> ≤ >→> Rules sub Tdist, sub trans

The proof of completeness of the sort checking algorithm is somewhat more involved, since a
declarative derivation may be structured in a way that can not be directly mirrored in an algo-
rithmic derivation. We use the following inversion lemmas to assist in the required restructuring
of derivations. Each essentially allows “inverting” one of the inference rules in the declarative
system, i.e., it demonstrates that the premises of the rule must hold if the conclusion does.
Similar properties are often immediate in simpler languages without subtyping and intersection
types, but here they require explicit proofs due to the presence of rules that apply regardless
of the form of the term, namely the rules sa inter, sa top and sa subs.

Lemma 2.10.4 (Inversion for applications)
If ∆ ` M N ∈ R then ∆ ` M ∈ S→R and ∆ ` N ∈S for some S.

Proof: By induction on the structure of the derivation of ∆ ` M N ∈ R.

Case:
∆ ` M ∈ S→R ∆ ` N ∈ S

sa app
∆ ` M N ∈ R

: Immediate.

Case:
∆ ` M N ∈ R1 ∆ ` M N ∈ R2

sa inter
∆ ` M N ∈ R1&R2

∆ ` M ∈ S1→R1 and ∆ ` N ∈S1 for some S1 Ind. hyp.
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∆ ` M ∈ S2→R2 and ∆ ` N ∈S2 for some S2 Ind. hyp.
∆ ` N ∈ S1&S2 Rule sa inter

∆ ` M ∈ (S1&S2)→R1 Rule sa subs via sub arrow, sub &left1 and sub reflex

∆ ` M ∈ (S1&S2)→R2 Similarly
∆ ` M ∈ (S1&S2)→(R1&R2) Rule sub &dist

Case:
sa top

∆ ` M N ∈ >
∆ ` N ∈ > Rule sa top

∆ ` M ∈ > Rule sa top

∆ ` M ∈ >→> Rule sa subs via sub Tdist

Case:
∆ ` M N ∈ R′ R′ ≤ R

sa subs
∆ ` M N ∈ R

∆ ` M ∈ S→R′ and ∆ ` N ∈S for some S Ind. hyp.
S →R′ ≤ S→R Rule sub arrow via sub reflex

∆ ` M ∈ S→R Rule sa subs

Lemma 2.10.5 (Inversion for → with ≤)
If R1→R2 ≤ S1→S2 then either > ≤ S2 or (S1 ≤ R1 and R2 ≤ S2).

Proof:
By inversion on the algorithmic subsorting derivation, using the Correctness of � (2.9.6).

Lemma 2.10.6 (Inversion for λ)
If ∆ ` λx.M ∈ R and R ≤ S1→S2 then ∆, x∈S1 ` M ∈ S2.

Proof: By induction on the structure of the derivation of ∆ ` λx.M ∈ R.

Case:
∆, x∈R1 ` M ∈ R2

sa lam
∆ ` λx.M ∈ R1 →R2

R1→R2 ≤ S1→S2 Assumption
> ≤ S2 or (S1 ≤ R1 and R2 ≤ S2) Inv. for → with ≤ (2.10.5)

If > ≤ S2: the result follows by sa top and sa subs

Otherwise S1 ≤ R1 and R2 ≤ S2 and then:
∆, x∈S1 ` x ∈ S1 Rule sa var

∆, x∈S1 ` x ∈ R1 Rule sa subs

∆, x∈S1 ` M ∈ R2 Substitution lemma
∆, x∈S1 ` M ∈ S2 Rule sa subs
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Case:
∆ ` λx.M ∈ R1 ∆ ` λx.M ∈ R2

sa inter
∆ ` λx.M ∈ R1&R2

R1 � S1
⇒→ S21 and R2 � S1

⇒→ S22 with S21&S22 ≤ S2 Inv. on algorithmic subsorting
∆, x∈S1 ` M ∈ S21 Ind. hyp.
∆, x∈S1 ` M ∈ S22 Ind. hyp.
∆, x∈S1 ` M ∈ S21&S22 Rule sa inter

∆, x∈S1 ` M ∈ S2 Rule sa subs

Case:
sa top

∆ ` λx.M ∈ >
> ≤ S1 → S2 Assumption
> ≤ S2 Inv. on algorithmic subsorting
∆, x∈S1 ` M ∈ > Rule sa top

∆, x∈S1 ` M ∈ S2 Rule sa subs

Case:
∆ ` λx.M ∈ R′ R′ ≤ R

sa subs
∆ ` λx.M ∈ R

R′ ≤ S1→S2 Rule sub trans

∆, x∈S1 ` M ∈ S2 Ind. hyp.

Lemma 2.10.7 (Inversion for annotations)
If ∆ ` (M∈L) ∈ R

then &{S1, . . . , Sn} ≤ R for some S1, . . . , Sn with each Si in L and also ∆ ` M ∈ Si.

Proof: By induction on the structure of the derivation of ∆ ` (M∈L) ∈ R.

Case:
R in L ∆ ` M ∈R

sa annot
∆ ` (M∈L) ∈ R

&{R} = R Def.
R ≤ R Rule sub reflex

Case:
∆ ` (M∈L) ∈ R1 ∆ ` (M∈L) ∈ R2

sa inter
∆ ` (M∈L) ∈ R1&R2

&{S1, . . . , Sm} ≤ R1 with each Si in L and also ∆ ` M ∈ Si Ind. hyp.
&{S′1, . . . , S′n} ≤ R2 with each S′i in L and also ∆ ` M ∈ S′i Ind. hyp.
&{S1, . . . , Sm, S′1, . . . , S

′
n} ≤ R1&R2 Rules sub &left1/2, sub &right

Case:
sa top

∆ ` (M∈L) ∈ >
&{} = > Def.
> ≤ > Rule sub top (or sub reflex)
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Case:
∆ ` (M∈L) ∈ R′ R′ ≤ R

sa subs
∆ ` (M∈L) ∈ R

&{S1, . . . , Sm} ≤ R′ with each Si in L and also ∆ ` M ∈ Si Ind. hyp.
&{S1, . . . , Sm} ≤ R Rule sub trans

Lemma 2.10.8 (Inversion for variables)
If ∆ ` x∈R then x∈S in ∆ for some S ≤ R.

Proof: By a straightforward induction the structure of the derivation of ∆ ` x∈R.

Lemma 2.10.9 (Inversion for constants)
If ∆ `Σ c∈R and c∈S in Σ then S ≤ R.

Proof: By a straightforward induction the structure of the derivation of ∆ ` c∈R.

The following theorem demonstrates that our algorithm is complete for appropriately annotated
terms.

Theorem 2.10.10 (Algorithmic sort-checking completeness)

1. If ∆ ` I ∈ S then there exists R such that ∆ ` I
⇒
∈ R and R ≤ S.

2. If ∆ ` C ∈ R and R ≤ S then ∆ ` C
⇐
∈ S.

3. If ∆ ` C ∈ S1 and R ≤ S1 → S2

then there exists R2 such that ∆ ` R � C ⇒→ R2 and R2 ≤ S2.

Proof:
By induction on the structure of terms, ordering so that part 3 may make use of part 2 and
part 2 may make use of part 1 for the same term. The cases for each term construct in part 1
and part 2 make use of the above inversion lemmas.

We have the following cases for part 1.

Case: ∆ ` x∈S: using Inv. lemma for var. (2.10.8) and then si var.

Case: ∆ ` c∈S: using Inv. lemma for constant (2.10.9) and then si const.

Case: ∆ ` I C ∈ S

∆ ` I ∈ S2→S and ∆ ` C ∈S2 for some S2 Inv. lemma for app. (2.10.4)

∆ ` I
⇒
∈ R1 for some R1 ≤ S2→S Ind. hyp. (1)

∆ ` R1 � C ⇒→ R for some R ≤ S Ind. hyp. (3)
∆ ` I C

⇒
∈ R Rule si app

Case: ∆ ` (C∈L) ∈ S

&{S1, . . . , Sn} ≤ S with each Si in L and ∆ ` C ∈ Si Inv. lemma for annot. (2.10.7)
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∆ ` C
⇐
∈ Si for each Si Ind. hyp. (2)

L = {S1, . . . Sn} ∪ L1 ∪ L2 with ∆ ` C
⇐
∈ Ri for each Ri in L1

⇐
∈ must succeed or fail

and ∆ ` C
⇐
/∈ Ri for each Ri in L2 (by termination)

∆ ` (C∈L)
⇒
∈ &({S1, . . . Sn} ∪ L1) Rule si ann

&({S1, . . . Sn} ∪ L1) ≤&{S1, . . . Sn} Rule sub &left1

&({S1, . . . Sn} ∪ L1) ≤ S Rule sub trans

Part 2 requires a sub-induction on the structure of the sort R to account for intersections. We
treat the cases for intersection and top first, then consider the remaining cases based on the
term C.

Case: ∆ ` C ∈ S1&S2

∆ ` C ∈ S1 Rule sa subs via sub &left1

∆ ` C
⇐
∈ S1 Ind. hyp. (2)

∆ ` C
⇐
∈ S2 Similarly

∆ ` C
⇐
∈ S1&S2 Rule sc inter

Case: ∆ ` C ∈ >

∆ ` C
⇐
∈ > Rule sc top

Case: ∆ ` λx.C ∈ S1→S2

S1→S2 ≤ S1→S2 Rule sub reflex

∆, x∈S1 ` C ∈ S2 Inv. for λ (2.10.6)

∆, x∈S1 ` C
⇐
∈ S2 Ind. hyp. (2)

∆ ` λx.C
⇐
∈ S1→S2 Rule sc lam

Case: ∆ ` I ∈ Sn

∆ ` I
⇒
∈ R for some R ≤ Sn Ind. hyp. (1)

∆ ` I
⇐
∈ Sn Rule sc atom

Part 3 also requires a sub-induction on the structure of the sort R to account for intersec-
tions. We have the following cases.

Case: R1&R2 ≤ S1→S2 and ∆ ` C ∈S1

R1 � S1
⇒→ S21 and R2 � S1

⇒→ S22 with S21&S22 ≤ S2 Inv. on algorithmic subsorting
R1 ≤ S1→S21 Correctness of � (2.9.6)
∆ ` R1 � C ⇒→ R21 for some R21 ≤ S21 Ind. hyp. (3)
∆ ` R2 � C ⇒→ R22 for some R22 ≤ S22 Similarly
∆ ` R1&R2 � C ⇒→ R21&R22 Rule aptm inter

R21&R22 ≤ S21&S22 Rules sub &left1/2, sub right

S21&S22 ≤ S2 Rule sub trans
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Case: > ≤ S1 → S2 and ∆ ` C ∈S1

> ≤ S2 Inv. on algorithmic subsorting
∆ ` > � C ⇒→ > Rule aptm top

Case: R1→R2 ≤ S1→S2 and ∆ ` C ∈S1

> ≤ S2 or (S1 ≤ R1 and R2 ≤ S2) Inv. for → with ≤ (2.10.5)

If > ≤ S2: the result follows by aptm arrow or aptm arrow top, then sub top.

Otherwise S1 ≤ R1 and R2 ≤ S2 and then:
∆ ` C ∈R1 Rule sa subs

∆ ` C
⇐
∈R1 Ind. hyp. (1)

∆ ` R1→R2 � C ⇒→ R2 Rule aptm arrow

Together the above soundness and completeness results imply that the sort checking algorithm
and the declarative sort assignment judgment (extended with the rule for annotations) exactly
agree on the sorts that may be assigned to a term, provided that the term meets the grammar
for an inferable or checkable term.

2.11 Annotatability

We now demonstrate that terms can always be annotated to obtain a desired sort, provided that
the unannotated term has that sort. Roughly, we want to prove a theorem like the following.

If ∆ ` M ∈ R then we can construct a checkable term C such that ‖C‖ = M and
∆ ` C ∈ R (and similarly for inferable terms).

However, a difficulty arises when we attempt to prove such a theorem using a standard structural
induction on sorting derivations. The main difficulty arises when we have a sorting derivation
of the following form.

D1

∆ ` M ∈ R1

D2

∆ ` M ∈ R2

sa inter
∆ ` M ∈ R1 &R2

Applying the induction hypothesis to D1 and D2 yields two terms C1 and C2 such that ‖C1‖ =
M , ‖C2‖ = M , ∆ ` C1 ∈ R1 and ∆ ` C2 ∈ R2. But we cannot apply the rule sc inter since C1

and C2 may be different terms.
One possible solution to this difficulty is to generalize the induction hypothesis so that it

directly produces a single term from multiple sorting derivations, i.e. roughly like the following,
which would require induction on the sum of the sizes of the assumed derivations.

If ∆1 ` M ∈ R1 and ∆2 ` M ∈ R2 and . . . and ∆n ` M ∈ Rn then we can construct
C such that ‖C‖ = M and
∆1 ` C ∈ R1 and ∆2 ` C ∈ R2 and . . . and ∆n ` C ∈ Rn
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It appears that this approach would succeed, but the use of lists would be somewhat notationally
awkward.

Here we will present another solution to the above problem by showing how to construct
a term C which combines the annotations from C1 and C2, such that ∆ ` C ∈ R1 and
∆ ` C ∈ R2.

In doing so, we wish to avoid some complications that arise in the case where C1 and C2 have
annotations on different subterms. We thus restrict our attention to checkable and inferable
terms with annotations on exactly those subterms where they cannot be avoided. We call such
terms “minimal checkable terms” and “minimal inferable terms” to capture the intuition that
they only have annotations where required by the definitions of inferable and checkable terms.
An alternative would be to require annotations on every subterm, but it seems preferable to
work with a minimum of annotations.
Definition 2.11.1

Minimal Inferable Terms Im ::= c | x | Im Cm | ((λx:A.Cm) ∈ L)

Minimal Checkable Terms Cm ::= c | x | Im Cm | λx:A.Cm

The following function Cm
1

c
1Cm

2 combines the annotations from two minimal checkable terms Cm
1

and Cm
2 which satisfy ‖Cm

1 ‖ = ‖Cm
2 ‖. It uses an similar function Im

1
i
1Im

2 to combine two minimal
inferable terms satisfying ‖Im

1 ‖ = ‖Im
2 ‖. These functions are defined inductively following the

definitions of minimal inferable terms and minimal checkable terms. The constraints ‖Cm
1 ‖ =

‖Cm
2 ‖ and ‖Im

1 ‖ = ‖Im
2 ‖ guarantee that the two terms are identical other than the choice of

sort annotations.

c
i
1 c = c

x
i
1 x = x

(Im
1 Cm

1 )
i
1 (Im

2 Cm
2 ) = (Im

1
i
1 Im

2 ) (Cm
1

c
1 Cm

2 )

((λx:A.Cm
1 ) ∈ L1)

i
1 ((λx:A.Cm

2 ) ∈ L2) = ((λx:A.Cm
1

c
1 Cm

2 ) ∈ L1, L2)

c
c
1 c = c

x
c
1 x = x

(Im
1 Cm

1 )
c
1 (Im

2 Cm
2 ) = (Im

1
i
1 Im

2 ) (Cm
1

c
1 Cm

2 )

(λx:A.Cm
1 )

c
1 (λx:A.Cm

2 ) = (λx:A.Cm
1

c
1 Cm

2 )

These definitions mostly just follow the shared structure of the terms. The only interesting
case is when we have inferable terms which are abstractions, in which case both terms must
have annotations, and we concatenate the two annotations (the notation L1, L2 means the
concatenation of the two lists).

The following lemma demonstrates that
c
1 and

i
1 have the intended properties.

Lemma 2.11.2 (Annotation Combination)

1. If ‖Im
1 ‖ = ‖Im

2 ‖ and either ∆ ` Im
1 ∈ R or ∆ ` Im

2 ∈ R then

∆ ` (Im
1

i
1 Im

2 ) ∈ R.
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2. If ‖Cm
1 ‖ = ‖Cm

2 ‖ and either ∆ ` Cm
1 ∈ R or ∆ ` Cm

2 ∈ R then

∆ ` (Cm
1

c
1 Cm

2 ) ∈ R.

Proof: (sketch)
By structural induction on the sorting derivations. All cases are straightforward.

Theorem 2.11.3 (Annotatability)
If ∆ ` M ∈ R then we can construct a minimal inferable term Im and a minimal checkable
term Cm such that ‖Im‖ = ‖Cm‖ = M and ∆ ` Im ∈ R and ∆ ` Cm ∈ R.

Proof: By induction on the sorting derivation. We show two cases. The remaining cases simply
rebuild the term, using the induction hypothesis on subderivations.

Case:

D1

∆ ` M ∈ R1

D2

∆ ` M ∈ R2

sa inter
∆ ` M ∈ R1 &R2

If M = c or M = x then M already has the required forms, so we set Im = M and
Cm = M .
Otherwise M = N1 N2 or M = λx:A.M1. We show the latter case only: the former is
similar.

∆ ` Cm
1 ∈ R1 and

‖Cm
1 ‖ = M for some Cm

1 By ind. hyp. on D1

∆ ` Cm
2 ∈ R2 and

‖Cm
2 ‖ = M for some Cm

2 By ind. hyp. on D2

∆ ` Cm ∈ R1 and
∆ ` Cm ∈ R2 and
‖Cm‖ = M for Cm = Cm

1
c
1 Cm

2 By above lemma

∆ ` Cm ∈ R1 &R2 By rule sa inter

∆ ` (Cm∈R1 &R2) ∈ R1 &R2 By rule sa annot

‖(Cm∈R1 &R2)‖ = ‖Cm‖ = M By defn of ‖.‖
Then Cm is as required, and we set Im = (Cm ∈ R1 &R2).

Case:

D2

∆, x∈R1 ` M2 ∈ R2

sa lam
∆ ` λx:A.M2 ∈ R1 →R2

∆, x∈R1 ` Cm
2 ∈ R2 and

‖Cm
2 ‖ = M2 for some Cm

2 By ind. hyp. on D2

∆ ` λx:A.Cm
2 ∈ R1 →R2 By rule sa lam

∆ ` ((λx:A.Cm
2 ) ∈ R1 →R2) ∈ R1 →R2 By rule sa annot
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Then
‖(λx:A.Cm

2 ) ∈ R1 →R2)‖ = ‖λx:A.Cm
2 ‖ = λx:A.‖Cm

2 ‖ = λx:A.M2

and we choose Cm = λx:A.Cm
2 and Im = ((λx:A.Cm

2 ) ∈ R1 →R2).
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Chapter 3

Sort checking with a value
restriction

Our first major challenge in extending sorts to Standard ML is that standard formulations of
intersection type systems are unsound in the presence of call-by-value computational effects.
We recall the following example from Section 1.4.2 which demonstrates the unsoundness that
results when we näıvely extend sorts to the reference types of ML.

(*[ cell <: (nat ref) & (pos ref) ]*)
val cell = ref one
val () = (cell := zero)

(*[ result <: pos ]*)
val result = !cell

Here we create a reference cell containing one. Now, we can assign two sorts to ref one, as
follows: one has sort pos so ref one has sort pos ref, and one has sort nat so ref one has sort
nat ref. The standard rule for the introduction of intersection (sa inter in Chapter 2) then
allows us to assign the intersection of these sorts: cell <: (pos ref) & (nat ref). But this
is unsound, because the second part of this sort allows us to update cell with zero, while the
first part requires that reading from the cell only returns values satisfying pos.

The introduction rule for top (sa top in Chapter 2) is also unsound in the presence of effects,
since it allows us to assign the sort > to any expression whatsoever, including one that performs
an inappropriate update on a reference cell, such as the following.

(*[ cell <: pos ref ]*)
val cell = ref one

(*[ un <: top[unit] ]*)
val un = (cell := zero)

(*[ result <: pos ]*)
val result = !cell

This chapter presents a solution to these problems, using a new variant of intersection types that
are sound in the presence of effects. This is achieved via a value restriction on the introduction
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of intersection polymorphism. Our restriction is similar to the value restriction on parametric
polymorphism proposed by Wright [Wri95] and included in the revised definition of Standard
ML [MTHM97] to prevent unsound uses of parametric polymorphism.

It is not immediately clear that we can add such a restriction on intersections and still have
a sensible system: some basic properties might fail to hold, such as preservation of sorts during
reduction. The situation is more complicated than the case of parametric polymorphism in
ML because we have a rich set of inclusions between sorts. Additionally, the following example
shows that introducing a value restriction on intersections is not enough by itself to guarantee
soundness in the presence of effects.

(*[ f <: (unit -> pos ref) & (unit -> nat ref) ]*)
fun f () = ref one

(*[ cell <: (pos ref) & (nat ref) ]*)
val cell = f ()

This example is unsound for similar reasons to the first example. Here the sort for cell is
obtained by using subsumption on the sort for f with an instance of the standard distributivity
subtyping rule for intersection types. This is the rule sub &dist from Chapter 2, which is as
follows.

(R→ S1)& (R→ S2) ≤ R→ (S1 &S2)

We can analyze this situation by considering an effectful function R → S as equivalent to a
pure function (⇒) that returns an “effectful computation” R ⇒ ©S, as in the computational
meta-language proposed by Moggi [Mog89, Mog91]. Then, the following subsorting is sound,
because it is a substitution instance of the standard distributivity rule for pure functions.

(R ⇒ ©S1)& (R ⇒ ©S2) ≤ R ⇒ (©S1 &©S2)

However, the unsound distributivity rule for effectful functions corresponds to the following.

(R ⇒ ©S1) & (R ⇒ ©S2) ≤ R ⇒ ©(S1 &S2)

This is unsound because in general (©S1)&(©S2) is not a subsort of ©(S1&S2). For example, if
we make effectful computations explicit using © then we should be able to assign the following
sort to ref one.

ref one ∈ ©(pos ref) & ©(nat ref)

However, we should not be able to assign the following sort.

ref one ∈ ©((pos ref) & (nat ref))

Roughly this is because the computation creates a reference cell when it executes, and we can
designate that the reference cell contains values with sort pos, or we can designate that the cell
contains values with sort nat, but it inconsistent to designate both. This explanation applies
both to the unsoundness of the distributivity rule and to the unsoundness of intersections
without a value restriction.
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For similar reasons, the standard rule for distributivity of > is also unsound. This is the
rule sub Tdist in Chapter 2). The other standard subtyping rules for intersection and function
types (see Section 2.4) are sound with call-by-value effects. Roughly, this is because none
of them involve both functions and intersections, and so none of them require inclusions like
(©S1)& (©S2) ≤ ©(S1 &S2) to be sound when effectful functions are added.

We thus discard the two distributivity rules, and retain the other rules. This leaves a
subsorting system with a pleasing orthogonality between the rules: each rule only involves a
single sort construct.

The main purpose of this chapter is to consider sorts with a value restriction and no dis-
tributivity in a simple and general context, and to present a bidirectional checking algorithm
for them. We thus focus on a λ-calculus with these features, and with arbitrary finite lattices
of refinements for each base type. We call this language λ→&

v .
Unlike Chapter 2 we directly assume that the refinements of base types form finite lattices:

this allows the presentation of the algorithm to more accurately reflect the intended implemen-
tation. The more abstract declarations of base refinements considered in Chapter 2 were proven
equivalent to finite lattices in Section 2.6, and this result does not depend on the distributivity
rules. Thus, this equivalence also relates the base lattices in this chapter to the more abstract
declarations. This roughly corresponds with what we do in our implementation: externally
there may be many refinements of a base type that are equivalent, but internally refinements
of base types are represented using a canonical representative for each equivalence class.

Outline of this chapter

The development in this chapter is broadly similar to that in Chapter 2. We generally give
more technical details of proofs in this chapter, since the formulation in this chapter is more
central to this work than those in Chapter 2. Also, proofs of results for standard intersection
types have often appeared elsewhere.

We begin by presenting the syntax for λ→&
v , and standard judgments for typing, reduction,

and refinement (Sections 3.1, 3.2, 3.3). One critical definition here is that of values. We include
abstractions and variables as values, as might be expected. We also include applications of
constants to values: these correspond to applications of constructors in ML.

We then state our assumptions for base lattices (Section 3.4), and present a judgment
which defines subsorting for λ→&

v (Section 3.5). We then prove finiteness of refinements up
to equivalence (Section 3.6), a result for which we omitted a proof in Chapter 2, in part
because it follows from the result in this chapter, and in part because it has been considered
by Freeman [Fre94] for the standard form of intersection types.

We then present our algorithm for determining subsorting, and prove it correct (Section 3.7).
The lack of distributivity results in a simpler algorithm than in Chapter 2, and the proof is also
simpler, and more structural. Next we present the sort assignment rules for λ→&

v , and prove
some basic results such as subject reduction with respect to sorts (Section 3.8).

We continue by considering some issues related to the sorts for applications of constants
(Section 3.9), and presenting proofs of the existence of principal sorts, and the theoretical
decidability of sort inference (Section 3.10). In the previous chapter corresponding proofs were
omitted, or few details were provided, because similar results have been considered previously
by Freeman [Fre94] for the standard form of intersection types.
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Next we present our algorithm for bidirectional sort checking for λ→&
v (Section 3.11). This

is the central algorithm in this dissertation, and forms the core of our implementation of a
practical sort checker for Standard ML. We present a detailed proof the correctness of this
algorithm with respect to the sort assignment rules. The lack of distributivity results in the
algorithm and its proof being simpler than in the previous chapter, although it also results in
the need for the algorithm to backtrack.

We conclude with a proof that shows that terms can be annotated appropriately to satisfy
the bidirectional checking algorithm (Section 3.12). This proof is a small variation of that in
the previous chapter.

In this chapter we do not include any effects. In Chapter 4 we formally demonstrate the
soundness of the extension of λ→&

v to a call-by-value language with a standard feature involving
effects, namely mutable references. It is our intention that λ→&

v could also serve as the basis
for other languages with intersection types but without the distributivity subtyping rule. For
example, sorts for LF have been considered by Pfenning [Pfe01a] that avoid distributivity so
that the subsorting relation is more orthogonal and robustly extends to a variety of function
spaces, including function spaces involving modalities such as those in linear logic.

3.1 Syntax

We now present the syntax for λ→&
v . We separate types and sorts into separate syntactic classes,

following Freeman [Fre94]. We use a signature Σ to capture typing and sorting assumptions
for constants. However, we make a global assumption that there are some base types and base
sorts that refine them. This is necessary to accommodate the approach to base lattices used
in this chapter: we will be globally assuming that each base type has a lattice of refinements
(although we delay formally introducing this assumption until Section 3.4).

Types A,B ::= a | A1 →A2

Type Contexts Γ ::= . | Γ, x:A
Terms M,N ::= c | x | λx:A.M | M1 M2

Sorts R,S ::= ra | R1 →R2 | R1 &R2 | >A

Sort Contexts ∆ ::= . | ∆, x∈R

Signatures Σ ::= . | Σ, c:A | Σ, c∈R

As in the previous chapter, we use a, b for base types and c for constants. We write {N/x}M
for the result of substituting N for the variable x in M , renaming bound variables as necessary
to avoid the capture of free variables in N . We use the notation D :: J to indicate that D is a
derivation of judgment J .

In this chapter we write base sorts as ra, sb so that the type being refined is inherent in
the syntax. This replaces the declarations of the form r @ a used in signatures in the previous
chapter. This notation can result in excessive clutter, so we often elide the base types a, b when
they are clear from context, or when they are of little interest.
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3.2 Validity judgments

We now present the validity judgments for λ→&
v . These are simpler than in the previous chapter,

since base types and base sorts are not declared in signatures.

Valid refinements

First, we have the validity judgment for refinements. Unlike the previous chapter, this does
not depend on the signature.

R @ A Sort R is a well-formed sort refining type A.

rf base
ra @ a

R @ A S @ B
rf arrow

R→ S @ A→B

R @ A S @ A
rf conj

R&S @ A
rf top

>A @ A

A direct consequence of this definition is that every sort refines at most one type. We extend
the refinement notation pointwise to ∆ @ Γ for sort context ∆ and type context Γ which bind
the same variables.

As in the previous chapter, we say that a sort R is well-formed if it refines some type A.
In what follows, we will only be interested in well-formed sorts, and so when we use the term
“sort” we implicitly mean “well-formed sort”. We say that two sorts are compatible if they
refine the same type. We say that a sort S is a conjunct of sort R if S = R, or (inductively) if
R = R1 &R2 and S is a conjunct of either R1 or R2.

Valid signatures

Next, we have the validity judgment for signatures. This only needs to check that constants
are assigned appropriate sorts. In addition to checking that the sort R for a constant refines
the right type, we also check that it is distributive which is defined as follows.

Definition 3.2.1
We say that the sort R @ A1 → . . .→An is distributive if the following hold.

1. Whenever R ≤ R1 → . . .→Rn and R ≤ S1 → . . .→ Sn

we have R ≤ (R1 &S1)→ . . .→ (Rn &Sn).

2. R ≤ >A1 → . . .→>An.

The distributivity check is required because applications of constructors are included as values,
hence constructors should to be treated as pure functions, and so a form of distributivity
should hold for them. Without such distributivity certain technical complications would arise
in some of the proofs which follow. Essentially the check forces a form of distributivity for
constructors to hold by requiring that their sorts be rich enough to compensate for the lack of
the distributivity rule. The exact reasons for choosing this approach are somewhat technical,
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and we delay full details until Section 3.9. For now we note that every sort can be “completed”
into a distributive one, so the distributivity requirement is not a major restriction. Further, the
constructor sorts which arise in our implementation naturally satisfy this condition. In other
situations, this condition can be mechanically checked using the algorithmic form of subsorting
which follows later in this chapter (it suffices to check each pair of conjuncts of R for the first
part, rather than all pairs of supersorts).

Since the definition of distributivity depends on subsorting, this check results in the validity
judgment depending on the subsorting judgment, but we have chosen to present the validity
judgment first anyway, for consistency with the previous chapter.

` Σ Sig Σ is a valid signature

sigemp
` . Sig

` Σ Sig
sigobj

` Σ, c:A Sig

` Σ Sig `Σ c :A `Σ R @ A `Σ R distributive
sigobjsrt

` Σ, c∈R Sig

As an example of a valid signature, the following represents the types for the bit strings examples
in the introduction: we have a type abits with positive and natural numbers as refinements rnat,
rpos as well as a refinement rbits that includes all bit strings. In this chapter we globally assume
that we have some base types that each have a finite lattice of refinements, hence the signature
does not declare abits, rnat, rpos and rbits, nor does it declare inclusions such as rpos ≤ rnat ≤ rbits.

cbnil : abits,
cb0 : abits → abits,
cb1 : abits → abits,
cbnil ∈ rnat,
cb0 ∈ (rbits → rbits)& (rpos → rpos)
cb1 ∈ (rbits → rbits)& (rnat → rpos)

Valid terms
The typing judgment for λ→&

v has the following (standard) definition:

Γ `Σ M : A Term M has type A in context Γ with signature Σ.

c:A in Σ
tp const

Γ `Σ c : A

x:A in Γ
tp var

Γ `Σ x : A

Γ, x:A `Σ M : B
tp lam

Γ `Σ λx:A.M : A→B

Γ `Σ M : A→B Γ `Σ N : A
tp app

Γ `Σ M N : B
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3.3 Values and reduction

Reduction for λ→&
v is defined using the standard β-value rule (following Plotkin [Plo75]). We

choose here to focus on reduction rather than an operational semantics because the development
in this chapter is intended to be suitable for a wide range of languages, including those that
naturally include reduction within the body of λ-abstractions (such as LF).

First, we need to distinguish those terms which are values.

Atoms V a ::= c | V a V
Values V ::= V a | x | λx:A.M

Atoms are repeated applications of constants to values. They correspond to applications of
constructors in ML. While ML only allows a single application, we allow many applications so
that a constructed value can be formed from many arguments. In ML products would be used
for the same purpose, but λ→&

v does not have products. For example, the following signature
includes type and sort constants that allow the construction of lists of elements which have
type aelem and sort relem @ aelem.

cnil : alist,
ccons : aelem → alist → alist,
cnil ∈ rlist,
ccons ∈ relem → rlist → rlist

There are a number of other sensible definitions of values. The essential feature in the de-
velopment that follows is that there is a distinguished class of terms to which we restrict the
intersection introduction rule. We will point out interesting variations during this development,
in particular in Section 3.8. In the context of effectful functions, values are those terms for which
the absence of effects is syntactically immediate.

We have the following standard β-value reduction rule. It allows an argument to be substi-
tuted into the body of a function, provided that the argument is a value.

βv
(λx:A.M) V 7→ {V/x}M

We also have the following compositional rules.

M 7→ N
reduce lam

λx:A.M 7→ λx:A.N

M 7→ M ′
reduce app1

M N 7→ M ′N

N 7→ N ′
reduce app2

M N 7→ M N ′

So far λ→&
v is a standard call-by-value λ-calculus, and we omit the proofs of standard results

such as subject reduction with respect to types. Our main interest is in the refinements of the
standard types.

3.4 Base sort lattices

To account smoothly for intersections of base sorts, we assume that there is a finite lattice of base
sorts refining each base type. This is quite different from the finite lattices of equivalence classes
in Chapter 2, which included sorts containing syntactic intersections of the form r1 & . . .&rn.
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In this chapter we have not yet considered subsorting and equivalence, and each element of
one of these lattices is simply a base sort ra, and we assume that we have the appropriate
lattice operations, including a greatest lower bound operator that defines the intersection of
two compatible base sorts as being some base sort refining the same type.

Formally, for each base type a we assume that the following are defined.

• A finite set of base sorts ra
1 , . . . , ra

n that are the refinements of a.

• A binary operator
a
& which defines the greatest lower bound operation of the lattice, and

maps each pair of base sorts ra
1 , ra

2 to a base sort ra
3 .

•
a
> which is a distinguished base sort ra that is the top element of the lattice.

• A partial order
a
≤ defined on pairs of base sorts that refine the same base type a.

The least upper bounds in the lattice are not explicitly considered here: they can be defined
as the (finite) intersection of all upper bounds. We further assume that

a
&,

a
> and

a
≤ satisfy

the following conditions (which are based on Freeman [Fre94]). Each of these is implicitly
universally quantified over all base sorts refining the appropriate type.

Assumption 1 (base reflexivity) r
a
≤ r.

Assumption 2 (base transitivity) If r1
a
≤ r2 and r2

a
≤ r3 then r1

a
≤ r3.

Assumption 3 (
a
& is lower bound) r

a
&s

a
≤ r and r

a
&s

a
≤ s.

Assumption 4 (
a
& is maximal) If s

a
≤ r1 and s

a
≤ r2 then s

a
≤ r1

a
&r2.

Assumption 5 (
a
> is maximal) r

a
≤

a
>.

One method of defining such base sort lattices is via the declarations used in Chapter 2. Then,
by the equivalence to finite lattices proved in that chapter, we can discharge the above as-
sumptions. In this case, each equivalence class will be represented by a single element in the
lattice.

Another method by which base lattices can be defined is using the datasort declarations
allowed by our sort checker: they allow the declaration of a finite lattice of refinements of a
datatype. In this case, the analysis of datasort declarations ensures that the refinements form
a lattice.

This approach to base lattices allows refinements of base types to always be represented by
base sorts. When we have a refinement like r1 &r2 we represent it by the base sort obtained
by applying the intersection operation for the appropriate lattice: r1

a
&r2. This leads to simpler

algorithms (see Section 3.7) and is the approach used in our sort checker for Standard ML (see
Section 8.3).
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3.5 Declarative subsorting

The subsorting judgment has the following form, where R and S must be compatible sorts in
order for the judgment to be well formed.

R ≤ S Sort R is a subsort of S.

It is defined by the following rules which are standard for intersection types (and the same as
in the previous chapter) except for the omission of distributivity and the addition of three rules
for base sorts: sub def, sub inter def, sub top def. The rule sub def simply embeds the ordering
on base sorts into the subsorting judgment. The rules sub inter def, sub top def ensure that
intersections and top sorts in each lattice are accurately reflected by the subsorting judgment.

r
a
≤ s

sub def
r ≤ s

sub inter def
ra &sa ≤ ra a

&sa
sub top def

>a ≤
a
>

S1 ≤ R1 R2 ≤ S2
sub arrow

R1 →R2 ≤ S1 → S2

sub reflex
R ≤ R

R1 ≤ R2 R2 ≤ R3
sub trans

R1 ≤ R3

sub inter left 1
R&S ≤ R

sub inter left 2
R&S ≤ S

R ≤ S1 R ≤ S2
sub inter right

R ≤ S1 &S2

sub top
R ≤ >A

As in the previous chapter, if R ≤ S and S ≤ R then we say R and S are equivalent sorts, and
write R ∼= S. ∼= satisfies the usual properties for an equivalence: it is reflexive (from sub reflex),
transitive (from sub trans) and symmetric (it has a symmetric definition).

Lemma 3.5.1 (∼= is a Congruence)
If R1

∼= S1 and R2
∼= S2 then R1 →R2

∼= S1 → S2 and R1 &R2
∼= S1 &S2.

Proof: Subsorting in each direction can be derived using sub arrow for the first part, and the
rules sub inter left 1, sub inter left 2 and sub inter right for the second part.

Lemma 3.5.2 (Associativity, Commutativity and Idempotence of &)
R&S ∼= S &R and R1 &(R2 &R3) ∼= (R1 &R2)&R3 and R&R ≡ R.

Proof: Subsorting in each direction of each part can be derived using only the rules
sub inter left 1, sub inter left 2 and sub inter right via sub reflex.
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Lemma 3.5.3 (Equality of defined and syntactic intersections)

1. ra a
&sa ∼= ra &sa

2.
a
> ∼= >a

Proof:

1. Rule sub inter def gives one direction, and the other direction is obtained by applying rule
sub inter right to the two parts of Assumption 3.

2. By sub top def and sub top.

3.6 Finiteness of refinements

We will now show that for each type there are only a finite number of refinements up to
equivalence. Our proof is quite different from that given by Freeman [FP91], which depends
upon the existence of a suitable notion of “splitting” refinements, and is intended to yield a
practical algorithm for enumerating the refinements of a type. Instead, we give a simple proof
that requires minimal assumptions, and thus should easily extend to other specific instances of
refinement types.

First we will need the following definition, which is unambiguous because of Lemma 3.5.2,
just like the corresponding definition in the previous chapter. However, in this chapter we work
more formally, so we explicitly treat equivalence classes as sets.

Definition 3.6.1
If {R1, . . . , Rn} is a finite set of sorts each refining type A then &{R1, . . . Rn} is defined to be
the equivalence class containing R1 & . . .&Rn, or >A if n = 0.

The following lemma captures our intention that the only refinements of base types are base
sorts, up to equivalence.

Lemma 3.6.2 (Finiteness of Base Refinements)
For every sort R such that R @ a for some base type a, there is a base sort s such that R ∼= s.

Proof: By induction on the structure of R. We have two cases:

Case: R = s.
Rule sub reflex gives s ≤ s, thus s ∼= s.

Case: R = R1 &R2.
By the induction hypothesis, we have R1

∼= sa
1 and R2

∼= sa
2, i.e., there must be derivations:
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D1 :: R1 ≤ sa
1 and D′1 :: sa

1 ≤ R1 and D2 :: R2 ≤ sa
2 and D′2 :: sa

2 ≤ R2.
We then construct the derivations:

R1 &R2 ≤ R1

D1

R1 ≤ sa
1

R1 &R2 ≤ sa
1

R1 &R2 ≤ R2

D2

R2 ≤ sa
2

R1 &R2 ≤ sa
2

R1 &R2 ≤ sa
1 &sa

2 sa
1 &sa

2 ≤ sa
1

a
&sa

2

R1 &R2 ≤ sa
1

a
&sa

2

and
E1

sa
1

a
&sa

2

a
≤ sa

1

sa
1

a
&sa

2 ≤ sa
1

D′1
sa
1 ≤ R1

sa
1

a
&sa

2 ≤ R1

E2

sa
1

a
&sa

2

a
≤ sa

2

sa
1

a
&sa

2 ≤ sa
2

D′2
sa
2 ≤ R2

sa
1

a
&sa

2 ≤ R2

sa
1

a
&sa

2 ≤ R1 &R2

where E1 and E2 are the appropriate derivations given by Assumption 3.

A simple consequence of this lemma is that each base type has only a finite number of distinct
refinements modulo sort equivalence. The following theorem extends this property to all types.

Theorem 3.6.3 (Finiteness of Refinements)
For each type A, there is a finite set QA which contains a representative of each of the equiva-
lence classes of refinements of A.

Proof: By induction on the structure of A.

Case: A = a.
Then each refinement of a is equivalent to one of the base sorts ra (by Lemma 3.6.2),
and there are only a finite number of these. Thus, we let Qa be the finite set containing
all ra.

Case: A = A1 →A2.
By the induction hypothesis, we have finite sets QA1 , QA2 . We define:

Ψ = {R1 →R2|R1 ∈ QA1 , R2 ∈ QA2}
Q′A1→A2

= {&Ψ′|Ψ′ ⊂ Ψ}

We then let QA1→A2 contain one representative for each element of Q′A1→A2
(each of which

is an equivalence class).

Ψ is finite, with size bounded by the product of the sizes of QA1 and QA2 . Thus, QA1→A2

is finite with size bounded by 2(size of Ψ).
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It remains to show that every refinement R with R @ A1→A2 is in one of the equivalence
classes in Q′A1→A2

. We show this by a nested induction on R. We have three subcases:

Subcase: R = R1 →R2.
By inversion, R1 @ A1 and R2 @ A2.

Thus, R1 and R2 are equivalent to some R′1 ∈ QA1 and R′2 ∈ QA2 (using the first
induction hypothesis).

Then R1 →R2
∼= R′1 →R′2 (by Lemma 3.5.1),

and R′1 →R′2 is in equivalence class &{R′1 →R′2} ∈ Q′A1→A2
(by the above definition

of Q′A1→A2
).

Subcase: R = R1 &R2.
By inversion, R1 @ A1 →A2 and R2 @ A1 →A2 .

Thus by the second induction hypothesis, R1 and R2 are in equivalence classes &Ψ1

and &Ψ2 for some Ψ1 ⊂ Ψ and Ψ2 ⊂ Ψ.

So, R1&R2 is in equivalence class &(Ψ1∪Ψ2) (using Lemma 3.5.1 and Lemma 3.5.2),
and &(Ψ1 ∪Ψ2) ∈ Q′A1→A2

(by the definition of Q′A1→A2
).

Subcase: R = >A1→A2 .
Using the above definition of Q′A1→A2

and the definition of &Ψ′ when Ψ′ is the empty
set.

While the sets of equivalence classes of refinements constructed in this proof are finite, they
can be huge, even for quite small types. This is particularly true as we move towards higher-
order types: each increment in the order of the type adds to a stack of exponentials. Since
real programs do use higher-order types, any algorithm which requires enumerating equivalence
classes of refinements is unlikely to be practical.

3.7 Algorithmic subsorting

The rules in Section 3.5 do not immediately yield an algorithm for deciding subsorting. We thus
present an algorithmic subsorting judgment, and show that it is equivalent to the declarative
subsorting rules. Due to the absence of distributivity, our subsorting algorithm is quite different
from that in the previous chapter, and from previous algorithms for intersection types [Rey88,
Fre94].

For efficiency, our algorithm first simplifies the sorts that we wish to compare so that they
do not contain any intersections of base sorts. This reflects what is done in our implementation,
which represents sorts in simplified form, and simplifies any sorts appearing syntactically in a
program. A simplified sort must match the following grammar.

Simplified Sorts Rs ::= ra | Rf

Simplified Function Sorts Rf ::= Rs
1 →Rs

2 | Rf
1 &Rf

2 | >A→B
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The following function simplifies a well-formed sort R.

|r| = r
|R→ S| = |R| → |S|
|R&S| = |R|

a
&|S| (if R, S @ a)

|R&S| = |R|& |S| (if R, S @ A→B)
|>a| =

a
>

|>A→B| = >A→B

We now show that this function correctly produces a simplified sort that is equivalent to the
input it is given.

Lemma 3.7.1 (Correctness of simplification)
|R| ∼= R and |R| is a simplified sort.

Proof: By induction on R.

Case: R = r.
Then |r| = r which is a simplified sort satisfying r ∼= r (by reflexivity of ∼=).

Case: R = R1→R2.
By the induction hypothesis on R1 and R2, |R1| ∼= R1 and |R2| ∼= R2 and |R1| and |R2|
are simplified sorts. The result follows by Lemma 3.5.1 and the definition of simplified
sorts.

Case: R = R1 &R2, with R1, R2 @ a.
By the induction hypothesis |R1| ∼= R1 and |R2| ∼= R2. For the first part we use
Lemma 3.5.1, and then Lemma 3.5.3. For the second part, |R1|, |R2| must have the
forms ra

1 , ra
2 and then ra

1

a
&ra

2 is defined, and has the form sa.

Case: R = R1 &R2, with R1, R2 @ A→B.
By the induction hypothesis on R1 and R2. We use Lemma 3.5.1 for the first part. For
the second part, the induction hypothesis implies that |R1| and |R2| are simplified sorts,
and that they refine the same type A → B as R1 and R2, so we can use inversion to
determine that |R1|, |R2| must be simplified function sorts.

Case: R = >a. Then |>a| =
a
>, and >a ∼=

a
> by sub top def and sub top.

Case: R = >A→B. Then |>A→B| = >A→B. The result follows by sub reflex and the definition
of simplified sorts.

We present the core of our algorithm as the following judgment which relates two compatible
simplified sorts.

Rs � Ss Rs determined to be a subsort of Ss.
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This judgment is defined by the following rules. Here we omit the superscript s to avoid clutter,
since every sort in the algorithm is a simplified sort. Later we will sometimes also omit the
superscript f when it is clear that a simplified sort refines a function type.

r
a
≤ s

subalg base
r � s

S1 � R1 R2 � S2
subalg arrow

R1 →R2 � S1 → S2

Rf
1 � S1 → S2

subalg &L1
Rf

1 &Rf
2 � S1 → S2

Rf
2 � S1 → S2

subalg &L2
Rf

1 &Rf
2 � S1 → S2

Rf � Sf
1 Rf � Sf

2
subalg &R

Rf � Sf
1 &Sf

2

subalg topR
Rf � >A→B

For base sorts, our algorithm always refers to the partial order of the relevant lattice. For
refinements of function sorts, it first breaks down the sort on the right, then the one on the
left, and finally uses the standard covariant-contravariant rule. This is somewhat simpler than
the corresponding algorithm in Chapter 2 which required an additional judgment in order to
account for uses for distributivity.

We now prove some simple lemmas needed to show that algorithmic and declarative sub-
typing coincide. These are similar to the lemmas required in the previous chapter, although
here they are restricted to simplified sorts, and the “algorithmic subsorting for intersections”
lemma is only required for simplified function sorts. We show the proofs in detail here. The
key proof of transitivity is notably simpler than that in the previous chapter: it can be proved
by a structural induction, while in the previous chapter it required induction on the sum of the
sizes of the sorts.

Lemma 3.7.2 (Algorithmic subsorting for intersections)

If Rf
1 � Sf then Rf

1 &Rf
2 � Sf and Rf

2 &Rf
1 � Sf .

Proof: By induction on Sf .

Case: Sf = Ss
1 → Ss

2.

By subalg &L1 (first part) and subalg &L2 (second part).

Case: Sf = Sf
1 &Sf

2.

Let D :: Rf
1 � Sf

1 &Sf
2 be the given derivation.

By inversion, D =

D1

Rf � Sf
1

D2

R � Sf
2

subalg &R
Rf � Sf

1 &Sf
2

Applying the induction hypothesis to D1 and D2 and then using rule subalg &R yields the
required result.
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Case: Sf = >A→B.
Both parts are immediate, using rule subalg topR.

Lemma 3.7.3 (Reflexivity of Algorithmic Subsorting)
Rs � Rs.

Proof: By induction on Rs.

Case: Rs = ra.
By Assumption 1 and rule subalg base.

Case: Rs = Rs
1 →Rs

2.
The induction hypothesis yields Rs

1 � Rs
1 and Rs

2 � Rs
2. Applying rule subalg arrow yields

the required result.

Case: Rs = Rf
1 &Rf

2.
Using the induction hypothesis on Rf

1 and Rf
2, then Lemma 3.7.2 on each part, then rule

subalg &R.

Case: Rs = >A→B.
By rule subalg topR.

Lemma 3.7.4 (Transitivity of Algorithmic Subsorting)
If Rs

1 � Rs
2 and Rs

2 � Rs
3 then Rs

1 � Rs
3.

Proof:
By induction on Rs

2 and the derivations D2 :: Rs
2 � Rs

3 and D1 :: Rs
1 � Rs

2, ordered lexicograph-
ically. Rs

2 is included because some uses of the induction hypothesis swap D1 and D2, but in
these cases Rs

2 is decreased (and is not affected by the swap). We have the following cases for
D2.

Case: D2 =
r2

a
≤ r3

subalg base.
r2 � r3

Then D1 must have the form
r1

a
≤ r2

subalg base
r1 � r2

and then we use transitivity of
a
≤ (Assumption 2).

Case: D2 =

D21

R2 � S1

D22

R2 � S2
subalg &R.

R2 � S1 &S2

Applying the induction hypothesis to the pairs D1,D21 and D1,D22 yields the derivations
D31 :: R1 � S1 and D32 :: R1 � S2, to which we apply the rule subalg &R.
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Case: D2 =

D′2
R21 � S1 → S2

subalg &L1
R21 &R22 � S1 → S2

Then D1 has the form

D11

R1 � R21

D12

R1 � R22
subalg &R.

R1 � R21 &R22

Applying the induction hypothesis to D11 and D′2 yields the required result.

Case: D2 =

D′2
R22 � S1 → S2

subalg &L2.
R21 &R22 � S1 → S2

Symmetric to the previous case.

Case: D2 = subalg topR.
R2 � >A→B

Immediate, using rule subalg topR.

Case: D2 =

D21

R31 � R21

D22

R22 � R32
subalg arrow.

R21 →R22 � R31 →R32

We have the following subcases for D1:

Subcase: D1 =

D′1
R11 � R21 →R22

subalg &L1.
R11 &R12 � R21 →R22

Applying the induction hypothesis to D′1 and D2 yields a derivation of R11 � R31→
R32, to which we apply rule subalg &L1.

Subcase: D1 =

D′1
R12 � R21 →R22

subalg &L2.
R11 &R12 � R21 →R22

Symmetric to the previous subcase.

Subcase: D1 =

D11

R21 � R11

D12

R12 � R22
subalg arrow.

R11 →R12 � R21 →R22

By the induction hypothesis on R21,D21,D11 and R22,D12,D22 we have R31 � R11

and R12 � R32. Applying rule subalg arrow yields the required result.
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We now make use of the above lemmas to prove that the core of our subsorting algorithm is
correct, i.e. that it coincides with the declarative formulation of subsorting on simplified sorts.

Theorem 3.7.5 (Correctness of �) |R| � |S| if and only if R ≤ S.

Proof:
“Only if” part:

We show the “only if” part by showing that if there is a derivation D :: Rs � Ss then there is
a derivation E :: Rs ≤ Ss, by induction on D.

The result follows by instantiating with Rs = |R| and Ss = |S| to obtain |R| ≤ |S|, and then
using the Correctness of simplification (Lemma 3.7.1) via the transitivity rule to obtain R ≤ S.

We have the following cases for D.

Case: D =
r

a
≤ s

subalg base.
r � s

Then E =
r

a
≤ s

sub def.
r ≤ s

Case: D =

D1

S1 � R1

D2

R2 � S2
subalg arrow.

R1 →R2 � S1 → S2

Then E =

E1

S1 ≤ R1

E2

R2 ≤ S2

sub arrow
R1 →R2 ≤ S1 → S2

where E1 and E2 are obtained by applying the induction hypothesis to D1 and D2.

Case: D =

D1

R1 � S1 → S2
subalg &L1.

R1 &R2 � S1 → S2

We apply the induction hypothesis to D1 to yield E1 and then construct the following
derivation.

sub inter left 1
R1 &R2 � R1

E1

R1 ≤ S1 → S2

sub trans.
R1 &R2 � S1 → S2

Case: D =

D1

R2 � S1 → S2
subalg &L2.

R1 &R2 � S1 → S2

Dual to the previous case.

Case: D =

D1

R � S1

D2

R � S2
subalg &R.

R � S1 &S2

We apply the induction hypothesis to D1 and D2 and then use rule sub inter right.
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Case: D = subalg topR.
R � >A→B

By rule sub top.

“If” part:

We now show the “if” part of the theorem by showing that if there is a derivation E :: R ≤ S
then there is a derivation D :: |R| � |S| , by induction on E .

We have the following cases for E .

Case: E =
r

a
≤ s

sub def.
r ≤ s

Then D =
r

a
≤ s

subalg base.
r � s

Case: E =
sub inter def.

r &s ≤ r
a
&s

Then |r &s| = r
a
&s and |r

a
&s| = r

a
&s,

and r
a
&s � r

a
&s by Lemma 3.7.3 (Reflexivity of �).

Case: E = sub reflex.
R ≤ R By Lemma 3.7.3 (Reflexivity of �).

Case: E =

E1

R1 ≤ R2

E2

R2 ≤ R3

sub trans.
R1 ≤ R3

By applying the induction hypothesis to E1 and E2 and then using Lemma 3.7.4
(Transitivity of �).

Case: E = sub inter left 1
R1 &R2 ≤ R1

with R1, R2 @ a.

Then |R1 &R2| = |R1|
a
&|R2|

and |R1|
a
&|R2|

a
≤ |R1| by Assumption 3 (

a
& is lower bound).

Thus, |R1|
a
&|R2| � |R1| by rule subalg base.

Case: E = sub inter left 1
R1 &R2 ≤ R1

with R1, R2 @ A→B.

Then |R1 &R2| = |R1|& |R2|
and |R1| � |R1| by Lemma 3.7.3 (Reflexivity of �)
thus |R1|& |R2| � |R1| by Lemma 3.7.2 (Monotonicity of �).

Case: E = sub inter left 2.
R1 &R2 ≤ R2

Symmetric to the previous two cases.
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Case: E =

E1

R ≤ S1

E2

R ≤ S2
sub inter right

R ≤ S1 &S2

with R1, R2 @ a.

Then |S1 &S2| = |S1|
a
&|S2|

and |R|
a
≤ |S1| and |R|

a
≤ |S2| by the induction hypothesis.

Thus |R|
a
≤ |S1|

a
&|S2| by Assumption 4 (

a
& is maximal).

Case: E =

E1

R ≤ S1

E2

R ≤ S2
sub inter right

R ≤ S1 &S2

with R @ A→B.

Then |S1 &S2| = |S1|&|S2| and we apply the induction hypothesis to E1 and E2 and then
apply rule subalg &R.

Case: E = sub top
R ≤ >a with R @ a.

Then |>a| =
a
>, and |R |

a
≤

a
> by Assumption 5 (

a
> is maximal).

Thus |R | �
a
> by rule subalg base.

Case: E = sub top
R ≤ >A with R @ A→B.

By rule subalg topR.

Case: E =

E1

S1 ≤ R1

E2

R2 ≤ S2

sub arrow.
R1 →R2 ≤ S1 → S2

Then D =

D1

S1 � R1

D2

R2 � S2
subalg arrow

R1 →R2 � S1 → S2

where D1 and D2 are obtained by applying the induction hypothesis to E1 and E2.

As well as demonstrating the correctness of our algorithm for determining subsorting, we will
also make use of this theorem in later proofs to convert between the declarative and algorithmic
forms of subsorting. In particular, we will often convert to the algorithmic form to reduce the
number of cases that we need to consider.

3.8 Declarative sort assignment

We now present the sort assignment judgment for terms. As in the previous chapter, this judg-
ment requires a term M which satisfies Γ `Σ M :A, ∆ @ Γ and R @ A in order to be well formed.

71



∆ `Σ M ∈ R Term M has sort R under ∆ and Σ.

The sort assignment rules are standard, and the same as those in the previous chapter, except
that the introduction rules for intersection and top are restricted to values. The signature Σ is
fixed throughout these rules, and we often omit it to avoid clutter (here and in the remainder
of this chapter).

x∈R in ∆
sa var

∆ ` x ∈ R

c∈R in Σ
sa const

∆ `Σ c ∈ R

∆, x∈R ` M ∈ S
sa lam

∆ ` λx:A.M ∈ R→ S

∆ ` M ∈ R→ S ∆ ` N ∈ R
sa app

∆ ` M N ∈ S

∆ ` V ∈ R ∆ ` V ∈ S
sa inter

∆ ` V ∈ R&S
sa top

∆ ` V ∈ >A

∆ ` M ∈ R R ≤ S
sa subs

∆ ` M ∈ S

In order to demonstrate that these rules are sensible we demonstrate that they satisfy some
standard properties. The most important is subject reduction, i.e. that reduction preserves
sorts. But first we need to show some structural properties: weakening, exchange, contraction
and substitution. These are standard properties for hypothetical judgments (see e.g. [Pfe05]):
in this case the hypotheses are the assumed sorts for variables in the sort context.

Lemma 3.8.1 (Weakening, Exchange, Contraction)

1. If ∆ ` M ∈ R then ∆, x∈S ` M ∈ R.

2. If ∆, x∈S1, y∈S2,∆′ ` M ∈ R then ∆, y∈S2, x∈S1,∆′ ` M ∈ R .

3. If ∆, x∈S, y∈S, ∆′ ` M ∈ R then ∆, w∈S, ∆′ ` {w/x}{w/y}M ∈ R .

Proof: In each case by induction over the structure of the given sorting derivation. The cases
for the rule sa var are straightforward; the cases for other rules simply follow the structure of
the given derivation.

The following lemma demonstrates that values are preserved by substitution of values for vari-
ables.
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Lemma 3.8.2 (Value Preservation)

1. {V1/x}V a is an atom.

2. {V1/x}V is a value.

Proof: By a straightforward structural induction on V a and V .

We are now in a position to prove the substitution lemma. We implicitly rely on exchange,
both in the statement of the lemma and in its proof.

Lemma 3.8.3 (Substitution Lemma)
If ∆ ` V ∈ R and ∆, x∈R ` N ∈ S then ∆ ` {V/x}N ∈ S.

Proof:
Let D1 :: ∆ ` V ∈ R and D2 :: ∆, x∈R ` N ∈ S be the given derivations. The proof is by
a simple induction on D2, constructing the derivation D3 :: ∆ ` {V/x}N ∈ S. We show three
interesting cases.

Case: D2 =
x∈R in (∆, x∈R)

sa var.
∆, x∈R ` x ∈ R

Then R = S and N = x thus {V/x}N = V .
So we can simply choose D3 = D1 :: ∆ ` V ∈ R.

Case: D2 =
y∈S in (∆, x∈R)

sa var
∆, x∈R ` y ∈ S with y 6= x.

Then N = y and {V/x}y = y and y∈S is in ∆ so we can simply use the variable rule:

D3 =
y∈S in ∆

sa var.
∆ ` y ∈ S

Case: D2 =

D21

∆, x∈R ` V ′ ∈ S1

D22

∆, x∈R ` V ′ ∈ S2

sa inter.
∆, x∈R ` V ′ ∈ R&S

Applying the induction hypothesis to D21 and D22 yields the derivations D31 :: ∆ `
{V/x}V ′ ∈ S1 and D32 :: ∆ ` {V/x}V ′ ∈ S2.
Since {V/x}V ′ is a value (by the value preservation lemma above) we can apply rule
sa inter to these derivations to obtain D3 :: ∆ ` {V/x}V ′ ∈ S1 &S2, as required.

The remaining cases simply reconstruct the derivation D3 following the structure of D2, similar
to the case for sa inter above.
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This proof is somewhat independent of the exact definition of values: the main requirement is
that the substitution {V/x}V ′ always yields a value. Thus, a similar result holds for alternative
definitions of values that satisfy this criteria. E.g. we could define values to include all terms,
so that the “value” restriction in rule sa inter becomes vacuous. Then the above lemma would
be the substitution lemma for a system without distributivity but with no value restriction.
Such alternative definitions are not the main focus of this dissertation, but we will occasionally
consider them where they are particularly interesting or where we feel that they demonstrate
the robustness of our results.

A simple corollary of the Substitution Lemma is obtained by considering the case where V
is a variable, as follows.

Corollary 3.8.4 (Variable Subsumption)
If ∆, x∈R ` M ∈ S and R′ ≤ R then ∆, x∈R′ ` M ∈ S.

Proof:
∆, x∈R ` M ∈ S By assumption
∆, y∈R′, x∈R ` M ∈ S By weakening (Lemma 3.8.1 part 1)

(where y is not in ∆, x∈R)
∆, y∈R′ ` y ∈ R′ By rule sa var
R′ ≤ R By assumption
∆, y∈R′ ` y ∈ R By rule sa subs
∆, y∈R′ ` {y/x}M ∈ S By the Substitution Lemma (3.8.3)
∆, x∈R′ ` M ∈ S Replacing y by x

(x is not in ∆, y∈R′ nor in {y/x}M)

(It appears that this result also holds with alternative definitions of values that exclude variables,
although then it must be proved separately since the substitution lemma only applies to values.)

The following property is critical to our proof of subject reduction. It generalizes similar
properties in languages without subtyping or intersections.

Lemma 3.8.5 (Inversion for λ-Abstractions)
If ∆ ` λx:A1.M ∈ R and R ≤ S1 → S2 then ∆, x∈S1 ` M ∈ S2.

Proof: By induction on the derivation of the first assumption, D :: ∆ ` λx:A1.M ∈ R. There
are three possible cases for D.

Case: D =

D1

∆, x∈R1 ` M ∈ R2

sa lam.
∆ ` λx:A.M ∈ R1 →R2

Then R = R1 →R2 and so R1 →R2 ≤ S1 → S2 (by assumption).
But then there must be a derivation E :: |R1| → |R2| � |S1| → |S2| (by Correctness of
Algorithmic Subsorting, Theorem 3.7.5).

By inversion E =

E1

|S1| � |R1|
E2

|R2| � |S2|
subalg arrow.

|R1| → |R2| � |S1| → |S2|
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Thus S1 ≤ R1 and R2 ≤ S2 (also by Correctness of Algorithmic Subsorting).
So ∆, x∈R1 ` M ∈ S2 (by rule sa subs)
and finally ∆, x∈S1 ` M ∈ S2 (by Variable Subsumption, Corollary 3.8.4).

Case: D =

D1

∆ ` M ∈ R′
E

R′ ≤ R
sa subs.

∆ ` M ∈ R

Then R′ ≤ S1 → S2 (By rule sub trans), so we can apply the induction hypothesis to D1

to obtain ∆, x∈S1 ` M ∈ S2, as required.

Case: D =

D1

∆ ` V ∈ R1

D2

∆ ` V ∈ R2

sa inter.
∆ ` V ∈ R1 &R2

Then R = R1 &R2 and so R1 &R2 ≤ S1 → S2 (by assumption).
Applying inversion to the corresponding algorithmic subsorting derivation (via the Cor-
rectness of Algorithmic Subsorting in the same way as the case for rule sa lam) we find
that we must have one of the following subcases:

Subcase: R1 ≤ S1 → S2 (corresponding to rule subalg &L1).
Then we apply the induction hypothesis to D1, yielding ∆, x∈S1 ` M ∈ S2, as
required.

Subcase: R2 ≤ S1 → S2 (corresponding to rule subalg &L2).
Symmetric to the previous subcase.

The last case of this proof depends upon the strong inversion properties obtained from the
algorithmic form of subsorting, in particular that R1 &R2 ≤ S1 → S2 only if R1 ≤ S1 → S2 or
R2 ≤ S1 → S2. This property fails if we allow the distributivity rule, resulting in the need for
a more complicated approach in Chapter 2.

We are now in a position to prove the main theorem of this subsection.

Theorem 3.8.6 (Sort Subject Reduction)
If ∆ ` M ∈ R and M 7→ N then ∆ ` N ∈ R.

Proof: By induction on the structure of the derivation D :: ∆ ` M ∈ R. We have the following
cases for D and the derivation E :: M 7→ N . We first treat the three sorting rules which do not
correspond to term constructs, and then consider the remaining cases by inversion on E .

Case: D =

D1

∆ ` V ∈ R1

D2

∆ ` V ∈ R2

sa inter.
∆ ` V ∈ R1 &R2

Then M = V and by inversion M must have the form V a V or λx:A.M ′. We show the
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second subcase: the first is similar.
The derivation of M 7→ N must be by rule reduce lam, so N 7→ N ′ and N = λx:A.N ′.

By the induction hypothesis on we have ∆ ` λx:A.N ′ ∈ R1 and ∆ ` λx:A.N ′ ∈ R2.
We then apply rule sa inter.

Case: D =
sa top.

∆ ` V ∈ >A

Then M = V and so by inversion M must have the form V a V or λx:A.M ′. We show
latter subcase: the former is similar.
As in the previous case, N = λx:A.N ′ which is a value. Thus ∆ ` N ∈ >A (by rule
sa top).

Case: D =

D1

∆ ` M ∈ R1 R1 ≤ R
sa subs.

∆ ` M ∈ R

Then ∆ ` N ∈ R1 (by the induction hypothesis on D1),
thus ∆ ` N ∈ R (by rule sa subs).

Case: E =

E2

M 7→ N
reduce lam

λx:A.M 7→ λx:A.N

and

D =

D2

∆, x∈R1 ` M ∈ R2

sa lam.
∆ ` λx:A.M ∈ R1 →R2

By the induction hypothesis on D2, E2 and then using rule sa lam.

Case: E is an instance of reduce app1 or reduce app2. Similar to the previous case.

Case: E = βv
(λx:A.M1) V 7→ {V/x}M1

and

D =

D1

∆ ` λx:A.M1 ∈ R2 →R
D2

∆ ` V ∈ R2
sa app.

∆ ` (λx:A.M1) V ∈ R

Then we apply the Inversion Lemma for λ (Lemma 3.8.5) to D1 to obtain

∆, x∈R2 ` M1 ∈ R

and then we apply the Substitution Lemma (Lemma 3.8.3), using D2, to show

∆ ` {V/x}M1 ∈ R

as required.
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This theorem demonstrates that our calculus and sorting rules are at least basically sensible
and internally consistent. In Chapter 4 we use similar proof techniques to show a corresponding
sort preservation result for a functional language with reference cells.

The above proof is somewhat robust to changes in the definition of values, although it does
require that if V 7→ N then N is a value, which seems likely to be true for most sensible
definitions of values. In fact, generally values are defined in such a way that they do not reduce
(usually by disallowing reduction within λ-abstractions), in which case this requirement would
be vacuously satisfied.

3.9 Sorts for constants

In λ→&
v we consider that functions may have effects, and so we omit the distributivity rules.

However, constants also have function types, but applications of constants can never result
in effects. We have thus included repeated applications of constants as a form of value, and
thus intersection introduction is allowed for such applications. This leads to a some awkward
technical complications, because we can have an expression V a V ∈ R1 &R2, but with no sort
S such that V ∈ S and V a ∈ S → (R1 &R2).

To avoid these complications, the validity of signatures requires that the sorts of constants
be distributive. This condition itself is somewhat awkward, but it seems the most natural way
to avoid the complications. In our implementation this property holds naturally for the sorts
generated for constructors by the analysis of datasort declarations: when generating lattice
elements for intersections of datasorts, we must consider sorts for constructors which map into
that intersection. It also seems likely that the distributivity property would hold in other
situations.

In general, any sort can be “completed” into a distributive one: roughly whenever we
have (R1→R2) & (S1→S2) we add a conjunct for (R1 &S1)→ (R2 &S2). An alternative to
our presentation would be to allow any sort to be declared for a constant in a signature, and
to perform this completion in the sort assignment rule for constants. This would avoid the
awkward condition in the validity of signatures. We have chosen not to do this because the
completion can result in exponentially larger sorts, and it is not an accurate reflection of what
we do in our implementation.

Another alternative might be to include a restricted form of the distributivity subsorting rule
that is used only for constants: essentially our definition of “distributive” sorts is designed to
ensure that it does not matter whether we have distributivity. We could even use a separate type
constructor for “pure functions”, including constants (as is done by Harper and Stone [HS00]
in their type theoretic interpretation of SML), and include distributivity for such functions.
We have chosen not to follow this alternative because it leads to some complications in the
sort checking algorithm, which do not seem justified given that the sorts for constructors are
naturally distributive in the case we are most interested in.

The following lemma verifies that our approach achieves the desired effect. It is critical in
the proof of the inversion lemma for applications (Lemma 3.10.2), which itself is critical to the
completeness of our sort checking algorithm. We state the lemma in a generalized form suitable
for an inductive proof.
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Lemma 3.9.1 (Distributivity for atoms)

If ∆ ` V a ∈ R and R ≤ R1 → . . .→Rn

and ∆ ` V a ∈ S and S ≤ S1 → . . .→ Sn

then ∆ ` V a ∈ (R1 &S1)→ . . .→ (Rn &Sn).

Proof: By induction on the two sorting derivations, lexicographically. The cases where one
derivation or the other uses subsumption or intersection introduction follow directly from the
induction hypothesis. The case where both use sa app requires applying the induction hypoth-
esis with a smaller V a, using intersection introduction to combine two sorts for the argument
value. The case where both use sa const follows directly from the distributivity requirement.

Lemma 3.9.2 (> distributivity for atoms)
If Γ ` V a : A1→ . . . →An and ∆ @ Γ
then ∆ ` V a ∈ >A1→ . . . →>An.

Proof: By induction on the structure of V a. The case for c follows directly from the distribu-
tivity requirement. The case for V a V uses the induction hypothesis, followed by the rule sa app
(with V assigned the sort >A using sa top).

3.10 Principal sorts and decidability of inference

Two important properties of ML are the existence of principal type schemes and a practical
algorithm for finding them. We now consider the corresponding properties for the sorts of λ→&

v .
We find that principal sorts exist, and that there is an algorithm for finding them, but both
results seem to be mostly of theoretical interest. This is because they require enumeration
of all refinements of a type, which is not practical in general. The work by Freeman [Fre94]
and experience with the implementation described later in this dissertation suggests that the
super-exponential bound on the number of equivalence classes in the proof of Theorem 3.6.3
(Finiteness of Refinements) is an accurate reflection the huge number of unique refinements
at higher-order types. Regardless, these theorems and proofs are still interesting, if only to
demonstrate where the enumeration is required.

The principal sorts theorem applies only to values: other terms do not necessarily have
principal sorts. This is consistent with Standard ML, which has principal type schemes for
values, but not for all expressions. E.g. the Standard ML expression ref nil can be assigned
the type (int list) ref and also the type (bool list) ref but it can not be assigned the
generalized type scheme (’a list) ref (see [MTHM97]).

Theorem 3.10.1 (Principal Sorts)
If Γ ` V : A and ∆ @ Γ then there is some R1 such that R1 @ A and ∆ ` V ∈ R1 and for all
R2 such that R2 @ A and ∆ ` V ∈ R2 we have R1 ≤ R2.

Proof: We make use of the finite set QA from Theorem 3.6.3 which contains representatives
of all equivalence classes of refinements of A.

We construct the finite set

Q = {S1 ∈ QA | ∆ ` V ∈ S1}
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and then we choose
R1 = &Q.

This satisfies the first requirement of the theorem: ∆ ` V ∈ R1 (by rule sa top and repeated
use of rule sa inter following the structure of R1).

It also satisfies the second requirement of the theorem: if ∆ ` V ∈ R2 then R2 is equivalent
to some S2 ∈ Q and so R1 ≤ R2 (by transitivity and repeated use of rules sub inter left1 and
sub inter left2).

This proof is not constructive: it does not directly yield an algorithm for inferring principal
sorts, because it does not specify a method for checking ∆ ` V ∈ S1 for each S1. We now show
that this problem is decidable. Our proof makes use of the finite set of equivalence classes
QA constructed for each type A in Theorem 3.6.3 (Finiteness of Refinements). These sets can
be impractically large, and so the algorithm in our proof is far from practical. Further, the
previous proof also uses QA which suggests that the principal sorts themselves might be too
large to be practical.

We will need the following inversion lemmas.

Lemma 3.10.2 (Inversion for Applications)
∆ ` M1 M2 ∈ R if and only if there is a sort S such that ∆ ` M1 ∈ S →R and ∆ ` M2 ∈ S.

Proof:

“If” part: By rule sa app.

“Only if” part: By induction on the structure of the assumed derivation D :: ∆ ` M1 M2 ∈
R. We have the following cases.

Case: D =

D1

∆ ` M1 ∈ R2 →R
D2

∆ ` M2 ∈ R2
sa app.

∆ ` M1 M2 ∈ R

Then we let S = R2, and use D1 and D2.

Case: D =

D′
∆ ` M1 M2 ∈ R′ R′ ≤ R

sa subs.
∆ ` M1 M2 ∈ R

Then there exists S′ ≤ R′ such that ∆ ` M1 ∈ S′ → R and ∆ ` M2 ∈ S′ (by the
induction hypothesis on D′). But S′ ≤ R (by rule sub trans) and so we have the
required result by choosing S = S′.

Case: D =

D1

∆ ` M1 M2 ∈ R1

D2

∆ ` M1 M2 ∈ R2

sa inter.
∆ ` M1 M2 ∈ R1 &R2

Then M1 M2 is a value, so M1 M2 = V a V . Applying the ind. hyp. to D1 and D2

yields
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S1 with ∆ ` V a ∈ S1 →R1, ∆ ` V ∈ S1, and
S2 with ∆ ` V a ∈ S2 →R2, ∆ ` V ∈ S2.
Then Distributivity for Atoms (Lemma 3.9.1) yields
∆ ` V a ∈ (S1 &S2)→ (R1 &R2) and sa inter yields
∆ ` V ∈ (S1 &S2). Applying sa app yields the required result.

Case: D =
sa top.

∆ ` M1 M2 ∈ >A

Then M1 M2 = V a V . The result follows by Lemma 3.9.1 (>-distributivity for
Atoms).

Lemma 3.10.3 (Inversion for Variables)
∆ ` x ∈ R if and only if there is some S such that x∈S is in ∆ and S ≤ R.

Proof:

“If” part: We simply construct the derivation

x∈S in ∆
sa var

∆ ` x ∈ S S ≤ R
sa subs.

∆ ` x ∈ R

“Only if” part: By induction on the structure of the assumed derivation D :: ∆ ` x ∈ R. We
have the following cases.

Case: D =
x∈R in ∆

sa var.
∆ ` x ∈ R

Then we choose S = R and R ≤ R (by rule sub reflex).

Case: D =

D1

∆ ` x ∈ R1 R1 ≤ R
sa subs.

∆ ` x ∈ R

Then there is S such that S ≤ R1 and x∈S in ∆ (by the induction hypothesis on
D1), and so S ≤ R (by rule sub trans).

Case: D =

D1

∆ ` x ∈ R1

D2

∆ ` x ∈ R2

sa inter.
∆ ` x ∈ R1 &R2

Then R = R1 &R2.
Now S ≤ R1 and S ≤ R2 (induction hypothesis on D1 and D2).
Thus S ≤ R1 &R2 (by rule sub inter right).
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Case: D =
sa top.

∆ ` x ∈ >A

Then R = >A and there must be some x∈S in ∆ (by the refinement restriction).
Finally, S ≤ >A (by rule sub top).

Lemma 3.10.4 (Inversion for Constants)
If c∈S is in Σ then ∆ `Σ c ∈ R if and only if S ≤ R.

Proof: Almost identical to the previous proof.

The final inversion lemma is a simple corollary of the Inversion Lemma for λ-Abstractions
(Lemma 3.8.5).

Corollary 3.10.5 (Reflexive Inversion for λ-Abstractions)
∆ ` λx:A.M2 ∈ R1 →R2 if and only if ∆, x∈R1 ` M2 ∈ R2.

Proof:

“If” part:
By rule sa lam.

“Only if” part:
By the Inversion Lemma for λ-Abstractions (Lemma 3.8.5) applied to R1→R2 ≤ R1→R2

(which is obtained by rule sub reflex).

Theorem 3.10.6 (Decidability of Sorting)
Given Γ ` M : A and ∆ @ Γ and R @ A there is a procedure for determining whether there is
a derivation of ∆ ` M ∈ R.

Proof: By induction on the structure of the derivation D :: Γ ` M : A (or equivalently, by
induction on the structure of M) and the structure of R lexicographically. We have the following
cases.

Case: D =
x:A in Γ

tp var.
Γ ` x : A

Then M = x and since ∆ @ Γ there must also be some S @ A such that x∈S is in ∆.

To determine whether there is a derivation of ∆ ` M ∈ R we simply use the subsorting
algorithm in Section 3.7 to check whether S ≤ R holds.

By the above Inversion Lemma for Variables (Lemma 3.10.3), and because x appears only
once in ∆, this correctly determines whether ∆ ` x ∈ R.
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Case: D =
c:a in Σ

tp const.
Γ ` c : a

Similar to the previous case.

Case: D =

D1

Γ ` M1 : B →A
D2

Γ ` M2 : B
tp app.

Γ ` M1 M2 : A

Then M = M1 M2.
Let QB be the finite set in the proof of the Finiteness of Refinements Theorem (Theo-
rem 3.6.3).

To determine whether ∆ ` M1 M2 ∈ R we try each S ∈ QB and check whether ∆ ` M1 ∈
S→R and ∆ ` M2 ∈ S (which we can determine, by the induction hypothesis on D1 and
D2).

This correctly determines whether ∆ ` M1 M2 ∈ R holds because this is so if and only if
there is a sort S such that ∆ ` M1 ∈ S →R and ∆ ` M2 ∈ S (by the Inversion Lemma
for Applications above, 3.10.2), and it suffices to consider only S ∈ QB (by rule sa sub
and the Finiteness of Refinements Theorem).

Case: D =

D2

Γ, x:A `Σ M ′ : B
tp lam.

Γ ` λx:A.M ′ : A→B

Then M = λx:A.M ′. We have three subcases.

Subcase: R = R1 →R2.
We simply determine whether ∆, x∈R1 ` M ′ ∈ R2, using the procedure obtained by
applying the induction hypothesis to D2, R2.
By the Reflexive Inversion Corollary for λ-Abstractions (Corollary 3.10.5) this cor-
rectly determines ∆ ` λx:A.M ′ ∈ R1 →R2, as required.

Subcase: R = R1 &R2.
Then

∆ ` λx:A.M ′ ∈ R1 &R2

iff
∆ ` λx:A.M ′ ∈ R1 and ∆ ` λx:A.M ′ ∈ R2

(by rule sa inter in one direction; by rules sub inter left 2, sub inter left 2 and sa subs
in the other).
We thus simply determine whether both ∆ ` λx:A.M ′ ∈ R1 and ∆ ` λx:A.M ′ ∈ R2

hold by using the procedures obtained by applying the induction hypothesis to D, R1

and D, R2 respectively.
Subcase: R = >A.

Then we determine that ∆ ` λx:A.M ′ ∈ >A holds, by rule sa top.
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3.11 Bidirectional sort checking

The proofs in the previous section do not lead to practical algorithms for inferring principal
sorts for terms nor for deciding whether a term has a particular sort. This is because they rely
on enumerating the set of unique refinements of a type, which can be huge. Previous work on
refinements for ML by Freeman [Fre94] has attempted to construct a practical algorithm for
inferring principal sorts by using program analysis techniques from abstract interpretation to
avoid this enumeration as much as possible. This work also efficiently generated the unique
refinements by representing each base sort as a union of “unsplittable” components.

This appears to work quite well when inferring sorts for first-order functions, with a small
number of base sorts. Alas, for many real ML programs it seems that sort inference is infeasible,
in part because the principal types themselves can be huge. These sorts generally reflect many
“accidental” properties of programs beyond what the programmer intends. These accidental
properties not only complicate sort inference, they also have undesirable consequences when
there is an error in a program. For example, an application of a function to an inappropriate
argument may be accepted because the argument matches an “accidental” part of the inferred
sort for the function.

Our solution to these problems is to move away from sort inference and program analysis
techniques, and instead move towards sort checking and techniques based on type systems.
Type systems for programming languages are generally designed with the assumption that
the programmer will have particular types in mind as they write their program. We assume
similarly for sorts, since they are essentially a refined level of types designed specifically to
express properties. Further, to write correct code a programmer needs to have in mind the
intended properties of their code. In this section we show that if a programmer declares a small
number of the intended properties using sort annotations then we can check the properties by
bidirectional sort checking without enumerating refinements.

Our algorithm has some elements that are similar to the proof of Decidability of Sorting
(Theorem 3.10.6). In particular, it checks λ-abstractions against a goal sort in essentially the
same way. However for function applications it avoids the enumeration by a syntactic restriction
that ensures that the function is only checked against a sort, and its sort need never be inferred.
This syntactic restriction seems quite reasonable in practice: for ML programs it generally only
requires that the intended sorts be declared at fun definitions.

Our syntactic restriction is similar to that in the programming language Forsythe [Rey88,
Rey96], which also includes intersections, and uses a bidirectional type checking algorithm. Our
restriction is somewhat simpler though: we only distinguish two classes of terms, while Forsythe
allows more terms but requires an countably infinite set of syntactic classes. Our algorithm for
sort checking is very different from that for Forsythe, in part due to our value restriction, but
also because the Forsythe algorithm does not extend to arbitrary base lattices (see Section 2.9).

3.11.1 Syntax

As in the previous chapter, the bidirectional checking algorithm requires a new term constructor
for sort annotations with a list of alternative goal sorts, and uses the following two syntactic
subclasses of terms.
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Inferable Terms I ::= c | x | I C | (C∈L)

Checkable Terms C ::= I | λx:A.C

Sort Constraints L ::= . | L,R

3.11.2 Sort checking algorithm

The sorting judgments for inferable and checkable terms are defined for terms M = I or C
such that Γ ` M : A and ∆ @ Γ and R @ A.

∆ ` I
⇒
∈ R Term I has R as an inferable sort.

∆ ` C
⇐
∈ R Term C checks against sort R.

It is our intention that the rules for these judgments be interpreted algorithmically as follows.

1. Given ∆, Σ and I, we can synthesize each R such that there is a derivation of ∆ ` I
⇒
∈ R.

2. Given ∆, Σ, C, and R we can check whether there is a derivation of ∆ ` C
⇐
∈ R.

x∈R in ∆
si var

∆ ` x
⇒
∈ R

c∈R in Σ
si const

∆ ` c
⇒
∈ R

∆ ` I
⇒
∈ R1 →R2 ∆ ` C

⇐
∈ R1

si app
∆ ` I C

⇒
∈ R2

∆ ` I
⇒
∈ R1 &R2

si inter1
∆ ` I

⇒
∈ R1

∆ ` I
⇒
∈ R1 &R2

si inter2
∆ ` I

⇒
∈ R2

R in L ∆ ` C
⇐
∈ R

si annot
∆ ` (C∈L)

⇒
∈ R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆, x∈R ` C
⇐
∈ S

sc lam
∆ ` λx.C

⇐
∈ R→ S

∆ ` I
⇒
∈ R |R| � |S|

sc subs
∆ ` I

⇐
∈ S

∆ ` λx:A.C
⇐
∈ R ∆ ` λx:A.C

⇐
∈ S

sc inter
∆ ` λx:A.C

⇐
∈ R&S

sc top
∆ ` λx:A1.C

⇐
∈ >A1→A2

These rules are slightly more non-deterministic than necessary: in the implementation the rules
si inter1 and si inter2 are never used as the last step in the first premise of the rule sc subs.
This is a minor optimization, and clearly does not affect the correctness of the algorithm. Also,
the implementation actually only works with simplified sorts, so the simplification in the rule
sc subs is not needed. We have presented the algorithm without the restriction to unsimplified
sorts because it does not seem to add any additional complexity (unlike algorithmic subsorting
in Section 3.7).
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3.11.3 Soundness and completeness

We cannot directly check the soundness and completeness of this algorithm with respect to
the declarative sorting rules: there is no declarative rule for an annotated term (C∈L). Two
possible solutions to this are:

1. Relate the declarative and algorithmic systems via an erasure function which removes
all annotations from a checkable term, and an annotation function which produces a
checkable term from a declarative sorting derivation.

2. Extend the declarative system with a rule for annotations, and show that the algorithmic
and extended declarative systems are equivalent for checkable terms.

We choose the second solution (as in the previous chapter) because the first would leave
us without a declarative system for annotated terms. This would be somewhat unsatisfactory:
when considering whether an annotated term is correct the programmer would either need to
follow the sort checking algorithm exactly, or make sure that the term is annotated exactly as
specified by the annotation function. The declarative system allows more flexible forms of rea-
soning about sort correctness, and since the programmer needs to reason about the correctness
of annotated terms, at least in an informal way, it is useful to extend the declarative system to
include annotations.

This allows the programmer some flexibility in exactly where they add annotations: they
need only ensure that their annotated program is declaratively sort correct, and that it has
enough annotations to satisfy the grammar for a checkable term. We will still be interested in
an annotation function though: in this context it guarantees that there is always some way of
adding annotations to a declaratively well-sorted term.

We thus extend the language of declarative terms, typing rules and the declarative sorting
rules as follows.

Terms M ::= . . . | (M∈L)

R1 @ A . . . Rn @ A Γ `Σ M : A
tp annot

Γ `Σ (M∈R1, . . . , Rn) : A

R in L ∆ ` M ∈ R
sa annot

∆ ` (M∈L) ∈ R

Annotations are only used during sort-checking, so there is no reason to extend the whole
development in this chapter to terms with annotations. Instead we define the function ‖.‖
that removes annotations from a term, reflecting our intention that sort annotations should be
removed before considering terms in other contexts.

‖M∈L‖ = ‖M‖
‖x‖ = x
‖c‖ = c

‖λx:A.M‖ = λx:A.‖M‖
‖M N‖ = ‖M‖ ‖N‖

We now demonstrate that the function ‖.‖ preserves types and sorts, justifying the notion that
annotations can be removed once sort checking has been done. We will need the following
lemma.
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Lemma 3.11.1 (Value Erasure)
If M is a value then ‖M‖ is a value.

Proof: By a straightforward induction on the structure of M . Only the case for V a V requires
the induction.

Lemma 3.11.2 (Typing Erasure)
If Γ ` M : A then Γ ` ‖M‖ : A.

Proof: By a straightforward induction on the structure of the derivation. We show the case for
the rule tp annot. The remaining cases simply rebuild the derivation by mirroring the structure
of the given derivation.

Case:
R1 @ A . . . Rn @ A

E
Γ ` N : A

tp annot.
Γ ` (N∈R1, . . . , Rn) : A

Then ‖M‖ = ‖N∈L‖ = ‖N‖ and we apply the induction hypothesis to E to obtain
Γ ` ‖N‖ : A, as required.

Lemma 3.11.3 (Sorting Erasure)
If ∆ ` M ∈ R then ∆ ` ‖M‖ ∈ R.

Proof: By a straightforward induction on the structure of the derivation. We show the cases
for rules sa annot and sa inter. The remaining cases simply rebuild the derivation by mirroring
the structure of the given derivation.

Case:
R in L

D
∆ ` N ∈ R

sa annot.
∆ ` (N∈L) ∈ R

Then ‖M‖ = ‖N∈L‖ = ‖N‖ and we apply the induction hypothesis to D to obtain
∆ ` ‖N‖ ∈ R, as required.

Case:

D1

∆ ` V ∈ R1

D2

∆ ` V ∈ R2

sa inter.
∆ ` V ∈ R1 &R2

Then ‖M‖ = ‖V ‖. We apply the induction hypothesis to D1 and D2 to obtain ∆ ` ‖V ‖ ∈
R1 and ∆ ` ‖V ‖ ∈ R1. We then apply rule sa inter to rebuild the derivation, using the
above lemma to satisfy the requirement that ‖V ‖ is a value.
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We now show that for inferable and checkable terms our algorithm is correct with respect to
this extended declarative system. In Section 3.12 we will extend this result to correctness with
respect to the original declarative system by relating annotated and unannotated terms in the
declarative system via an annotation function.

The proof of the soundness result is relatively straightforward: each of the algorithmic
sort checking rules corresponds to a derivable rule for the declarative sorting judgment. Thus
algorithmic sort derivations correspond to a fragment of the declarative sort derivations.

Theorem 3.11.4 (Soundness of Sort Checking)

1. If ∆ ` I
⇒
∈ R then ∆ ` I ∈ R.

2. If ∆ ` C
⇐
∈ S then ∆ ` C ∈ S.

Proof:
By simultaneous structural induction on the derivations D :: ∆ ` I

⇒
∈ R and E :: ∆ ` C

⇐
∈ S.

We have the following cases for part 1.

Case: D is an instance of si var or si const. Immediate using rule sa var or sa const.

Case: D =

D1

∆ ` I
⇒
∈ R2 →R

E2

∆ ` C
⇐
∈ R2

si app.
∆ ` I C

⇒
∈ R

∆ ` I ∈ R2 →R By ind. hyp. on D1

∆ ` C ∈ R2 By ind. hyp. on E2

∆ ` I C ∈ R By rule sa app

Case: D =

D1

∆ ` I
⇒
∈ R1 &R2

si inter1.
∆ ` I

⇒
∈ R1

∆ ` I ∈ R1 &R2 By ind. hyp. on D1

R1 &R2 ≤ R1 By rule sub inter left 1
∆ ` I ∈ R1 By rule sa subs

Case: D is an instance of si inter2. Symmetric to the previous case.

Case: D =
R in L

E1

∆ ` C
⇐
∈ R

si annot.
∆ ` (C ∈ L)

⇒
∈ R

∆ ` C ∈ R By ind. hyp. on E1

∆ ` (C ∈ L) ∈ R By rule sa annot

For part 2 we have the following cases.
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Case: E =

D1

∆ ` I
⇒
∈ S |S| � |R|

sc subs.
∆ ` I

⇐
∈ R

∆ ` I ∈ S By ind. hyp. on D1

S ≤ R By Theorem 3.7.5 (Correctness of �)
∆ ` I ∈ R By rule sa subs

Case: E =

E1

∆ ` λx:A.C
⇐
∈ R1

E2

∆ ` λx:A.C
⇐
∈ R2

sc inter.
∆ ` λx:A.M

⇐
∈ R1 &R2

By the induction hypothesis on E1 and E2 followed by rule sa inter.

Case: E =
sc top.

∆ ` λx:A.M
⇐
∈ >A

By rule sa top

Case: E =

E1

∆, x∈R1 ` M
⇐
∈ R2

sc lam.
∆ ` λx:A.M

⇐
∈ R1 →R2

By the induction hypothesis on E1 followed by rule sa lam.

The proof of completeness of sort checking is a little more difficult: the declarative sorting rules
allow derivations to be structured in ways that cannot be directly mirrored in the algorithmic
system. However, the strong inversion properties demonstrated in Section 3.10 allow a reason-
ably direct proof by induction on the structure of terms. The following lemma extends these
properties to annotated terms.

Lemma 3.11.5 (Inversion for Annotations)
∆ ` (M∈L) ∈ S if and only if R ≤ S and ∆ ` M ∈ R for some R in L.

Proof:
The “if” part is a simple consequence of rules sa annot and sa subs. The “only if” part is
proved by structural induction on the derivation D :: ∆ ` (M∈L) ∈ S. Annotated terms are
not considered to be values, so we have only the following two cases.

Case: D =

E1

S in L
D2

∆ ` M ∈ S
sa annot.

∆ ` (M∈L) ∈ S

We have the required result with R = S, since S ≤ S (by sub reflex) and E1, D2 satisfy
the remaining two requirements.
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Case: D =

D1

∆ ` (M∈L) ∈ S′
E2

S′ ≤ S
sa sub.

∆ ` (M∈L) ∈ S

∆ ` (M∈L) ∈ R′ and
R′ ≤ S′ for some R′ in L By ind. hyp. on D1

R′ ≤ S By rule sub trans using E2

As required, with R = R′.

We will also require the following lemma in the case for an application in the completeness
proof.

Lemma 3.11.6 (Completeness of
⇒
∈ for →)

If ∆ ` I
⇒
∈ R and |R| � |S1| → |S2| then

for some R1, R2, we have ∆ ` I
⇒
∈ R1 →R2 and S1 ≤ R1 and R2 ≤ S2.

Proof: By induction on the structure of D :: |R| � |S1| → |S2|. The case for subalg arrow
is immediate, via the correctness of algorithmic subsorting. The cases for subalg &L1 and
subalg &L2 simply refer to the induction hypothesis.

We use the following slightly generalized form for the completeness theorem to support the
induction in the proof.

Theorem 3.11.7 (Completeness of Sort Checking)

1. If ∆ ` I ∈ R then there is some R′ such that ∆ ` I
⇒
∈ R′ and R′ ≤ R.

2. If ∆ ` C ∈ R and R ≤ R′ then ∆ ` C
⇐
∈ R′.

Proof:
By structural induction on I and C. We order Part 1 of the theorem before Part 2, i.e. in
the proof of Part 2 when C is an inferable term we allow an appeal to Part 1 of the induction
hypothesis for the same term, but not vice-versa.

We have the following cases for I in Part 1 of the theorem.

Case: I = I1 C2.
∆ ` I1 C2 ∈ R Assumption
∆ ` I1 ∈ R2 →R and
∆ ` C2 ∈ R2 for some R2 By Inv. Lem. (3.10.2)

∆ ` I1
⇒
∈ R′1 for some R′1 ≤ R2 →R By ind. hyp. (1)

∆ ` I1
⇒
∈ S2 → S and

R2 ≤ S2 and S ≤ R for some S2, S By Compl.-
⇒
∈ -→ ( 3.11.6)

∆ ` C2
⇐
∈ S2 By ind. hyp. (2)

∆ ` I1 C2
⇒
∈ S By rule si app

As required, with R′ = S.
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Case: I = x.
∆ ` x ∈ R Assumption
x∈S in ∆ for some S ≤ R By Inv. Lemma (3.10.3)
∆ ` x

⇒
∈ S By rule si var

As required, with R′ = S.

Case: I = c.
Similar to the previous case.

Case: I = (C∈L).

∆ ` (C∈L) ∈ R Assumption
∆ ` C ∈ S and
S ≤ R for some S in L By Inv. Lemma (3.11.5)
∆ ` C

⇐
∈ S By ind. hyp. (2)

∆ ` (C∈L)
⇒
∈ S By rule si annot

As required, with R′ = S.

Case: I = λx:A1.C. Cannot occur, because Part 1 requires an inferable term.

We have the following two cases for C in Part 2 of the theorem.

Case: C is an inferable term.
∆ ` C

⇒
∈ S′ for some S′ ≤ R By ind. hyp. (1)

S′ ≤ R′ By rule sub trans

∆ ` C
⇐
∈ R′ By rule sc subs

Case: C = λx:A1.C2.
Then
∆ ` λx:A1.C2 ∈ R Assumption
R ≤ R′ Assumption

We now need to prove that ∆ ` λx:A1.C2
⇐
∈ R′. We do this by proving the more general

result that for any S′ such that R ≤ S′ we have ∆ ` λx:A1.C2
⇐
∈ S′ (taking the instance

S′ = R′ gives the required result). We use a nested induction on S′.

We have three sub-cases for S′ in this nested induction.

Subcase: S′ = S′1 → S′2.

R ≤ S′1 → S′2 Assumption

∆, x∈S′1 ` C2 ∈ S′2 By Inv. Lemma for λ (3.8.5)

∆, x∈S′1 ` C2
⇐
∈ S′2 By ind. hyp. (2)

∆ ` λx:A1.C2
⇐
∈ S′1 → S′2 By rule sc lam
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Subcase: S′ = S′1 &S′2.

R ≤ S′1 &S′2 Assumption

R ≤ S′1 and R ≤ S′2 By rules sub trans, sub left 1,2

∆ ` λx:A1.C2
⇐
∈ S′1 By nested ind. hyp.

∆ ` λx:A1.C2
⇐
∈ S′2 By nested ind. hyp.

∆ ` λx:A1.C2
⇐
∈ S′1 &S′2 By rule sc inter

Subcase: S′ = >A1→A2 .
Immediate using rule sc top.

The use of the inversion lemma for λ-abstractions (Lemma 3.8.5) here is carefully designed
to avoid the need to generalize the induction hypothesis further to sort contexts containing
subsorts, i.e. ∆ ≤ ∆′. Such a generalization seems possible, but results in a more involved
proof. Also, our use of inversion lemmas does not allow us to perform a proof by induction on
the structure of derivations, unlike the use of ordinary inversion: the derivations obtained by
the lemmas may not be sub-derivations. Thus, the induction is on the structure of terms, and
to support this the inversion lemmas are designed to produce appropriate information about
subterms.

3.12 Annotatability

We now demonstrate that every well-sorted unannotated term can be annotated to produce
a checkable term. We follow the technique used in Section 2.11 closely, although we present a
few more details here.

We have the same definitions of minimal inferable terms and minimal checkable terms as in
Section 2.11, which are as follows.

Definition 3.12.1

Minimal Inferable Terms
m

I ::= c | x |
m

I
m

C | ((λx:A.
m

C)∈L)

Minimal Checkable Terms
m

C ::= c | x |
m

I
m

C | λx:A.
m

C

An annotated term ((λx:A.
m

C)∈L) is not a value, so when a function is assigned an intersection
sort like (R1→R2) &(S1→S2) the intersection must appear as one of the alternatives in the
annotation L: it is not sufficient for each conjunct of the intersection to be present. This is
unlike the situation in Chapter 2, but we did not make any use of this fact when constructing
annotated terms in Section 2.11, and in fact we construct annotations in essentially the same
way here.

We have the same functions for combining annotations as in the previous chapter, which
are as follows.
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C1) ∈ L1)
i
1 ((λx:A.

m
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m

C1
c
1

m

C2) ∈ L1, L2)

c
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x
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1 x = x
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C1)
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1 (
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I2
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m

I1
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1

m

I2) (
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c
1

m

C2)

(λx:A.
m

C1)
c
1 (λx:A.

m

C2) = (λx:A.
m

C1
c
1

m

C2)

The following lemma demonstrates that these functions have the intended properties, and is
exactly like that in the previous chapter, except that the sort assignment system is different in
this chapter.

Lemma 3.12.2 (Annotation Combination)

1. If ‖
m

I1‖ = ‖
m

I2‖ and either ∆ `
m

I1 ∈ R or ∆ `
m

I2 ∈ R

then ∆ ` (
m

I1
i
1

m

I2) ∈ R.

2. If ‖
m

C1‖ = ‖
m

C2‖ and either ∆ `
m

C1 ∈ R or ∆ `
m

C2 ∈ R

then ∆ ` (
m

C1
c
1

m

C2) ∈ R.

Proof: By structural induction on the sorting derivations D1 :: ∆ `
m

I1 ∈ R, D2 :: ∆ `
m

I2 ∈ R,
E1 :: ∆ `

m

C1 ∈ R, and E2 :: ∆ `
m

C2 ∈ R.
We focus on the cases for D1 and E1 since the other two are symmetric. We show two cases:

the remaining cases are similar and straightforward.

Case: D1 =
R in L1

D11

∆ `
m

C11 ∈ R
sa annot.

∆ ` (
m

C11∈L1) ∈ R

(
m

C11∈L1)
i
1 (

m

C22∈L2) = ((
m

C11
c
1

m

C22)∈L1, L2) By def.
i
1,

c
1

∆ ` (
m

C11
c
1

m

C22) ∈ R By ind. hyp. on D11

R in L1, L2 By def. L1, L2

∆ ` ((
m

C11
c
1

m

C22)∈L1, L2) ∈ R By rule sa annot
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Case: E1 =

E11

∆ `
m

C1 ∈ R1

E12

∆ `
m

C1 ∈ R2

sa inter
∆ `

m

C1 ∈ R1 &R2

with
m

C1 a value.
m

C1 = V a or x or λx:A.
m

C11 By def.
m

C, values
m

C1
c
1

m

C2 is a value By def.
c
1, values

∆ ` (
m

C1
c
1

m

C2) ∈ R1 By ind. hyp. on E1

∆ ` (
m

C1
c
1

m

C2) ∈ R2 By ind. hyp. on E2

∆ ` (
m

C1
c
1

m

C2) ∈ R1 &R2 By rule sa inter

Theorem 3.12.3 (Annotatability)

If ∆ ` M ∈ R then we can construct a minimal inferable term
m

I and a minimal checkable term
m

C such that ‖
m

I‖ = M and ∆ `
m

I ∈ R and ‖
m

C‖ = M and ∆ `
m

C ∈ R.

Proof: By induction on the sorting derivation. We show two cases. The remaining cases simply
rebuild the term, using the induction hypothesis on sub-derivations.

Case:

D1

∆ ` V ∈ R1

D2

∆ ` V ∈ R2

sa inter.
∆ ` V ∈ R1 &R2

If V = c or V = x then V already has the required forms, so we set
m

I = V and
m

C = V .

If V = V a V then we apply the induction hypothesis to V a and V and then rebuild the
required terms from the results.

Otherwise V = λx:A.M1, and then:

∆ `
m

C1 ∈ R1 and

‖
m

C1‖ = V for some
m

C1 By ind. hyp. on D1

∆ `
m

C2 ∈ R2 and

‖
m

C2‖ = V for some
m

C2 By ind. hyp. on D2

∆ `
m

C ∈ R1 and

∆ `
m

C ∈ R2 and

‖
m

C‖ = V for
m

C =
m

C1
c
1

m

C2 By above lemma
m

C = λx:A.
m

C3 By def. ‖.‖
m

C is a value By def. value

∆ `
m

C ∈ R1 &R2 By rule sa inter

∆ ` (
m

C∈R1 &R2) ∈ R1 &R2 By rule sa annot

‖(
m

C∈R1 &R2)‖ = ‖
m

C‖ = M By def. ‖.‖
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Then
m

C is as required, and we set
m

I = (
m

C ∈ R1 &R2).

Case:

D2

∆, x∈R1 ` M2 ∈ R2

sa lam.
∆ ` λx:A.M2 ∈ R1 →R2

∆, x∈R1 `
m

C2 ∈ R2 and

‖
m

C2‖ = M2 for some
m

C2 By ind. hyp. on D2

∆ ` λx:A.
m

C2 ∈ R1 →R2 By rule sa lam

∆ ` ((λx:A.
m

C2) ∈ R1 →R2) ∈ R1 →R2 By rule sa annot

Then ‖(λx:A.
m

C2) ∈ R1 →R2)‖ = ‖λx:A.
m

C2‖ = λx:A.‖
m

C2‖ = λx:A.M2

and we choose
m

C = λx:A.
m

C2 and
m

I = ((λx:A.
m

C2) ∈ R1 →R2).

We conclude by observing that if we can assign a sort to a term, then we can construct ap-
propriate annotations of the term which allow that sort to be verified by the sort checking
algorithm. This result combines two main results of this chapter, and is expressed formally as
follows.

Corollary 3.12.4 If ∆ ` M ∈ R then we can construct a checkable term C and an inferable
term I such that ∆ ` C

⇐
∈ R and there is some R′ ≤ R such that ∆ ` I

⇒
∈ R′.

Proof: By composing the previous theorem with the Completeness of Sort Checking Theorem
(3.11.7).
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Chapter 4

Soundness with effects

In this chapter we demonstrate that the restrictions presented in Chapter 3 lead to a system that
is sound in the presence of effects. We do this by considering a small call-by-value language
ML&ref with a typical feature involving effects, namely mutable reference cells. Following
Chapter 3, we place a value restriction on the introduction of intersections, and omit the
problematic distributivity subtyping rules. We then show that this leads to a sound system by
proving a progress and type preservation theorem for ML&ref . An analysis of the proof gives
some insight as to why each of our restrictions is required.

This theorem ensures that the unsoundness demonstrated in the examples at the start of
Chapter 3 cannot occur in ML&ref . We repeat these examples here. The first uses intersection
introduction for a non-value.

(*[ cell <: (nat ref) & (pos ref) ]*)
val cell = ref one
val () = (cell := zero)

(*[ result <: pos ]*)
val result = !cell

The second example uses the distributivity rule for intersections.

(*[ f <: (unit -> (pos ref)) & (unit -> (nat ref)) ]*)
fun f () = ref one

(*[ cell <: (pos ref) & (nat ref) ]*)
val cell = f ()

Proving a progress result would not be convincing unless our language includes sufficient features
to express unsound examples like these that may arise in a fully featured language. For example,
proving the result for a λ-calculus with references and no other constructs would be somewhat
unsatisfying. On the other hand, proving this result for the whole of a fully featured language
is likely to be tedious, and the essential ideas of the proof are likely to get lost in the details.
Here we have chosen to prove the result for a language which includes an example datatype for
bit strings, with subtypes for natural numbers and positive numbers. These correspond to the
example datasort declarations in Section 1.4.3, which we repeat here.
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datatype bits = bnil | b0 of bits | b1 of bits

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

Using such an example type may be a little unsatisfying, but it is clear that our proof does not
depend on any special properties of it, and so should easily extend to other datatypes. This
choice also allows us to consider a specific instance of a language with subtypes of a datatype
before considering a general framework for a language parameterized by datatype and datasort
declarations in Chapter 5 and Chapter 6. We could have delayed a proof of soundness in the
presence of effects until after introducing this general framework, but such a presentation would
have left a very large gap between the introduction of the value restriction and the validation
of the claim that it results in soundness. It also would have a resulted in the essential ideas of
the proof being somewhat harder to follow, due to the generality of the framework.

Unlike previous chapters, we do not include a refinement restriction in this chapter. This
means that we include general intersection types in the type system of ML&ref instead of
restricting them to a level of sorts refining the types. We do this because the refinement
restriction is orthogonal to soundness in the presence of effects. Thus, our soundness result
is more general than required for refinement types, and would also apply to e.g. operator
overloading via intersection types. Treating general intersection types also allows a shorter and
simpler presentation, since we do not need separate type and sort levels.

One view of the situation in this chapter is that we have a trivial level of types that assigns
the single type T to every term, and a level of sorts that includes all the types of this chapter,
with every sort refining T . However, this view does not accurately reflect one important aspect:
we consider that the type system of this chapter is necessary to judge the validity of terms prior
to considering their semantics, since the semantics of terms only satisfies progress for terms that
can be assigned sorts. Thus, by the philosophical distinction between types and sorts outlined
in Section 1.3, the types in this chapter are properly types, and not sorts.

Interestingly, our progress theorem holds even for terms which are assigned the type >: this
is consequence of restricting the introduction rule for > to values. In contrast, progress would
clearly fail for such terms in a language with the standard rules for >, even without effects: the
standard introduction rule allows every term to be assigned >.

The presentation in this chapter closely follows a paper co-authored with Frank Pfen-
ning [DP00].

4.1 Syntax

The syntax of ML&ref is relatively standard for a call-by-value language in the ML family. We
include fixed-points with eager unrolling, and distinguish two kinds of variables: those bound
in λ, let and case expressions which stand for values (denoted by x), and those bound in fix
expressions which stand for arbitrary terms (denoted by u). We use identifiers l to address cells
in the store during evaluation. We include the term construct let x = M in N here even though
it is equivalent to (λx.N) M : the latter would not fit well with our approach to bidirectional
sort checking (although we do not include sort checking in this chapter).
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We also include our example datatype bits for strings of bits, along with two subtypes nat
for natural numbers (bit-strings without leading zeroes) and pos for positive natural numbers.
We represent natural numbers as bit-strings in standard form, with the least significant bit
rightmost and no leading zeroes. We view 0 and 1 as constructors written in postfix form, and
ε stands for the empty string. For example, 6 would be represented as ε110. We include an
ML-style case expression to deconstruct strings of bits.

Types A,B ::= A→B | A ref | 1 | A&B | >
| bits | nat | pos

Terms M,N ::= x | λx.M | M N
| let x = M in N
| u | fix u.M
| l | ref M | ! M | M := N | ()
| ε | M 0 | M 1
| case M of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3

As in previous chapters, we write {N/x}M for the result of substituting N for x in M . In this
chapter it is important that we use this notation rather than the more standard [N/x]M , in
order to avoid confusion with the standard notation for evaluation contexts E[M ] which we will
use in the reduction semantics.

We distinguish the following terms as values. We do not include expression variables u
because during evaluation these may be replaced by non-values. Unlike Section 3.3 we do not
need a definition of atomic values: applications of the constructors 1 and 0 are built directly
into the language.

Values V ::= x | λx.M | l | () | ε | V 0 | V 1

For the typing judgment, we need to assign types to variables and cells in contexts Γ and Ψ,
respectively. Moreover, during execution of a program we need to maintain a store C.

Variable Contexts Γ ::= . | Γ, x:A | Γ, u:A
Cell Contexts Ψ ::= . | Ψ, l:A

Store C ::= . | C, (l = V )
Program States P ::= C . M

We assume that variables x, u and cells l can be declared at most once in a context or store. We
omit leading .’s from contexts, and write Γ,Γ′ for the result of appending two variable disjoint
contexts (and similarly for cell contexts and stores).

The following is an example of a program using the syntax of ML&ref . It corresponds to
the first counterexample from Chapter 3 (which was repeated at the start of this chapter),
except that it contains no type annotations.

let xcell = ref(ε 1)
in let y = (xcell := ε)
in let xresult = ! xcell

in xresult

The type assignment system presented later in this chapter allows us to assign this program
the type nat but correctly prevents us from assigning the type pos.
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4.2 Subtyping

The subtyping judgment for this language has the form.

A ≤ B Type A is a subtype of B.

Following Chapter 3, we have the standard rules for intersection types with the exception of
the distributivity subtyping rules. We also have inclusions between the base types bits, nat
and pos, which we build directly into the the subtyping judgment. The ref type constructor is
non-variant.

A ≤ A

A1 ≤ A2 A2 ≤ A3

A1 ≤ A3

A1 &A2 ≤ A1 A1 &A2 ≤ A2

A ≤ B1 A ≤ B2

A ≤ B1 &B2 A ≤ >

pos ≤ nat nat ≤ bits

B1 ≤ A1 A2 ≤ B2

A1 →A2 ≤ B1 →B2

A ≤ B B ≤ A

A ref ≤ B ref

We obtain an algorithmic version of subtyping roughly by following the subsorting algorithm in
Chapter 3. We differ by not restricting the algorithm to simplified sorts, which is unnecessary
for the current lattice of base types.

We use the notation An for an non-intersection type, namely one that does not have an
intersection as the top constructor, although it may contain embedded intersections (similar to
the notation Rn used in Section 2.10).

A � B Type A is determined to be a subtype of type B.

pos � pos pos � nat pos � bits

nat � nat nat � bits bits � bits

B1 � A1 A2 � B2

A1 →A2 � B1 →B2

A � B B � A

A ref � B ref 1 � 1

A1 � Bn

A1 &A2 � Bn

A2 � Bn

A1 &A2 � Bn

A � B1 A � B1

A � B1 &B2 A � >

We now prove three properties and show that algorithmic and declarative subtyping coincide.
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The properties and proofs are essentially the same as in Chapter 3, and in particular the lack
of the refinement restriction does not result in any new complications.

Lemma 4.2.1 (Properties of Algorithmic Subtyping)
The algorithmic subtyping judgment satisfies:

1. If A � B then A&A′ � B and A′&A � B.

2. A � A.

3. If A1 � A2 and A2 � A3 then A1 � A3.

Proof: By simple inductions on the given types and derivations.

Theorem 4.2.2 A � B if and only if A ≤ B.

Proof: In each direction, by induction on the given derivation, using the properties in the
preceding lemma.

4.3 Typing of terms

The typing judgment for terms has the form:

Ψ; Γ ` M : A Term M has type A in cell context Ψ
and variable context Γ.

The typing rules are given in Figure 4.1.
These rules are standard for functions, let definitions, fixed points, references, and intersec-

tion types, with the exception that the introduction rules for & and > are restricted to values.
There are three typing rules for case, depending on whether the subject is assigned type bits,
nat, or pos. Note that the branch for ε does not need to be checked when the case subject has
type pos.

The structural properties of weakening, exchange and contraction from Chapter 3 extend as
expected to both cell contexts Ψ and to the two kinds of variables x and u in variable contexts
Γ.

Lemma 4.3.1 (Weakening, Exchange, Contraction)

1. (a) If Ψ;Γ ` M : R
then Ψ; (Γ, x:S) ` M : R and Ψ; (Γ, u:S) ` M : R.

(b) If Ψ; (Γ, x:S1, y:S2,Γ′) ` M : R
then Ψ; (Γ, y:S2, x:S1,Γ′) ` M : R.

(c) If Ψ; (Γ, u1:S1, u2:S2,Γ′) ` M : R
then Ψ; (Γ, u2:S2, u1:S1,Γ′) ` M : R.

(d) Ψ; (Γ, x:S1, u:S2,Γ′) ` M : R if and only if
Ψ; (Γ, u:S2, x:S1,Γ′) ` M : R.
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x:A in Γ
Ψ; Γ ` x : A

Ψ;Γ ` M : A Ψ; (Γ, x:A) ` N : B

Ψ;Γ ` let x = M in N : B

Ψ; (Γ, x:A) ` M : B

Ψ;Γ ` λx.M : A→B

Ψ;Γ ` M : A→B Ψ;Γ ` N : A

Ψ;Γ ` M N : B

u:A in Γ
Ψ; Γ ` u:A

Ψ; (Γ, u:A) ` M : A

Ψ;Γ ` fix u.M : A

l:A in Ψ
Ψ;Γ ` l : A ref

Ψ;Γ ` M : A

Ψ;Γ ` ref M : A ref

Ψ;Γ ` M : A ref

Ψ;Γ ` !M : A

Ψ;Γ ` M : A ref Ψ;Γ ` N : A

Ψ;Γ ` M :=N : 1 Ψ;Γ ` () : 1

Ψ;Γ ` V : A Ψ;Γ ` V : B

Ψ;Γ ` V : A&B Ψ;Γ ` V : >

Ψ;Γ ` M : A A ≤ B

Ψ;Γ ` M : B

Ψ;Γ ` ε : nat

Ψ;Γ ` M : pos

Ψ;Γ ` M 0 : pos

Ψ;Γ ` M : bits

Ψ;Γ ` M 0 : bits

Ψ;Γ ` M : nat

Ψ;Γ ` M 1 : pos

Ψ;Γ ` M : bits

Ψ;Γ ` M 1 : bits

Ψ;Γ ` M : bits Ψ;Γ ` M1 : A Ψ; (Γ, x:bits) ` M2 : A Ψ; (Γ, y:bits) ` M3 : A

Ψ;Γ ` case M of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3 : A

Ψ;Γ ` M : nat Ψ;Γ ` M1 : A Ψ; (Γ, x:pos) ` M2 : A Ψ; (Γ, y:nat) ` M3 : A

Ψ;Γ ` case M of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3 : A

Ψ;Γ ` M : pos Ψ; (Γ, x:pos) ` M2 : A Ψ; (Γ, y:nat) ` M3 : A

Ψ;Γ ` case M of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3 : A

Figure 4.1: Typing Rules
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(e) If Ψ; (Γ, x:S, y:S, Γ) ` M : R
then Ψ; (Γ, w:S, Γ′) ` {w/x}{w/y}M : R.

(f) If Ψ; (Γ, u1:S, u2:S, Γ) ` M : R
then Ψ; (Γ, u3:S, Γ′) ` {u3/u1}{u3/u2}M : R.

2. (a) If Ψ;Γ ` M : R
then (Ψ, x:S); Γ ` M : R.

(b) If (Ψ, x:S1, y:S2,Ψ′); Γ ` M : R
then (Ψ, y:S2, x:S1,Ψ′); Γ ` M : R .

(c) If (Ψ, x:S, y:S, Ψ′); Γ ` M : R
then (Ψ, w:S, Ψ′); Γ ` {w/x}{w/y}M : R .

Proof: By straightforward inductions over the structure of the derivations (as in Chapter 3).

The value preservation lemma extends as expected. We introduce a second part to the lemma
for expression variables u.

Lemma 4.3.2 (Value Preservation)

1. {V ′/x}V is a value.

2. {M/u}V is a value.

Proof: By straightforward inductions on V .

The substitution lemma extends as expected to value variables x.

Lemma 4.3.3 (Value Substitution Lemma)
If Ψ;Γ ` V : A and Ψ; (Γ, x:A) ` N : B
then Ψ;Γ ` {V/x}N : B.

Proof: By a straightforward induction on the typing derivation for N (as in Chapter 3).

We have an additional substitution lemma for expression variables u.

Lemma 4.3.4 (Expression Substitution Lemma)
If Ψ;Γ ` M : A and Ψ; (Γ, u:A) ` N : B
then Ψ;Γ ` {M/u}N : B.

Proof: By induction on the typing derivation D2 for N . We show one interesting case. The
remaining cases are straightforward and follow the previous substitution lemma.

Case: D2 =

D21

Ψ; (Γ, u:R) ` V : S1

D22

Ψ; (Γ, u:R) ` V : S2

Ψ; (Γ, u:R) ` V : S1 &S2

Applying the induction hypothesis to D21 and D22 yields derivations:
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D31 :: Ψ `Σ {M/u}V : S1 and D32 :: Ψ `Σ {M/u}V : S2.
Since {M/u}V is a value (by the second part of the value preservation lemma
above) we can apply the intersection introduction rule to these derivations to obtain
D3 :: Ψ `Σ {M/u}V : S1 &S2, as required.

4.4 Typing of stores and states

Stores are typed using the following judgment.

Ψ ` C : Ψ′ Store C satisfies cell context Ψ′

when checked against cell context Ψ.

The rules for this judgment simply require each value to have the appropriate type under the
empty variable context.

Ψ ` . : .
Ψ ` C ′ : Ψ′ Ψ; . ` V : A

Ψ ` (C ′, l = V ) : (Ψ′, l:A)

The following judgment defines typing of program states.

` (C . M) : (Ψ . A) Program state (C . M) types with
cell context Ψ and type A.

It is defined directly from the previous typing judgments. We require the store C to satisfy the
cell context Ψ under the same cell context. This allows consistent occurrences of cells l in the
values in a cell context.

Ψ ` C : Ψ Ψ; . ` M : A

` (C . M) : (Ψ . A)

4.5 Reduction semantics

We now present a reduction style semantics for our language, roughly following Wright and
Felleisen [WF94]. We start by defining evaluation contexts, namely expressions with a hole [ ]
within which a reduction may occur:

E ::= [ ] | E M | V E
| let x = E in M
| ref E | !E | E :=M | V :=E
| E 0 | E 1
| case E of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3

We write E[M ] to indicate the term obtained by replacing the hole [ ] in E by M .

102



C . E[(λx.M) V ] 7→ C . E[{V/x}M ]
C . E[let x = V in M ] 7→ C . E[{V/x}M ]

C . E[fix u.M ] 7→ C . E[{fix u.M/u}M ]

C . E[(ref V )] 7→ (C, l = V ) . E[l]
(l not in C,E)

(C1, l = V,C2) . E[! l] 7→ (C1, l = V,C2) . E[V ]
(C1, l = V1, C2) . E[l :=V2] 7→ (C1, l = V2, C2) . E[()]

C . E[case ε of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3] 7→ C . E[M1]
C . E[case V 0 of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3] 7→ C . E[{V/x}M2]
C . E[case V 1 of ε ⇒ M1 | x 0 ⇒ M2 | y 1 ⇒ M3] 7→ C . E[{V/y}M3]

Figure 4.2: Reduction Rules

We write C . M 7→ C ′ . M ′ for a one-step computation, defined by the reduction rules in
Figure 4.2. Each rule reduces a redex N that appears in an evaluation position in the term M ,
i.e. M = E[N ] for some E. We maintain the invariant that M does not contain free variables
x or u and that all cells l in M are defined in C.

Critical in the proof of progress are the following inversion properties, similar to Lemma 3.8.5
(Inversion for λ-Abstractions) which was needed in the proof of subject reduction in Section 3.8.
Also similar to that section, the proofs make use of the equivalence between declarative and
algorithmic subtyping to reduce the number of cases that need to be considered.

These properties are generalizations of simpler properties in languages without subtyping,
intersections, or effects.

Lemma 4.5.1 (Value Inversion)

1. If Ψ;. ` V : A and A � B1 →B2

then V = λx.M and Ψ; (x:B1) ` M : B2.

2. If Ψ;. ` V : A and A � B ref

then V = l and there is some B′ such that l:B′ is in Ψ, and B′ � B, and B � B′.

3. If Ψ;. ` V : A and A � bits then we have one of the following cases:

(a) V = ε

(b) V = (V0 0) and Ψ;. ` V0 : bits

(c) V = (V1 1) and Ψ;. ` V1 : bits

4. If Ψ;. ` V : A and A � nat then we have one of the following cases:

(a) V = ε

(b) V = (V0 0) and Ψ;. ` V0 : pos
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(c) V = (V1 1) and Ψ;. ` V1 : nat

5. If Ψ;. ` V : A and A � pos then we have one of the following cases:

(a) V = (V0 0) and Ψ;. ` V0 : pos

(b) V = (V1 1) and Ψ;. ` V1 : nat

Proof:
Each property is stated at a level of generality that allows it to be proved directly by in-
ducting on the given typing derivation. For each we have inductive cases when the typing
rule is subsumption or intersection introduction. The cases for top introduction cannot occur,
by inversion on the assumed algorithmic subtyping derivation. The remaining cases are the
introduction rules for the corresponding type constructors, and are straightforward.

We are now ready to prove our main theorem, namely that our type system with mutable
references and value-restricted intersections satisfies progress and type preservation, i.e., that
programs can’t go wrong as in the example in the introduction.

Theorem 4.5.2 (Progress and Type Preservation)
If ` (C . M) : (Ψ . A) then either

1. M is a value.

2. (C . M) 7→ (C ′ . M ′) for some C ′, M ′ and Ψ′ satisfying

` (C ′ . M ′) : (Ψ,Ψ′ . A).

Proof: By induction on the typing derivation for M .

• The case for subsumption is immediate, using the induction hypothesis.

• The cases for intersection introduction and top introduction are trivial: the value restric-
tion forces M to be a value.

• For the remaining cases the typing rule matches the top term constructor of M .

• The cases for the typing rules corresponding to λx.M , l, () and ε are trivial, since they
are values.

• The case for the typing rule corresponding to fix is easy, using the Expression Substitution
Lemma (Lemma 4.3.4) to construct the required typing derivation.

• In the other cases, we apply the induction hypothesis to the subderivations for appropriate
immediate subterms Ni of M which are in evaluation positions i.e. M = E[Ni] (in each
case, there is at least one).

– If for some Ni the induction hypothesis yields (C . Ni) 7→ (C ′ . N ′
i) with (C ′ . N ′

i) :
(Ψ,Ψ′ . B) then we can construct the required reduction and typing derivation for
M .
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– Otherwise, each immediate subterm Ni with M = E[Ni] is a value. For these cases
we apply the appropriate clause of the preceding inversion lemma, using reflexivity
of algorithmic subtyping. In each case we find that M can be reduced to some M ′

and that we can construct the required typing for M ′, using the substitution lemma
in some cases.

All of our restrictions are needed in this proof:

• The case of E[! l] requires subtyping for A ref to be co-variant.

• The case of E[l :=V ] requires subtyping for A ref to be contra-variant. With the previous
point it means it must be non-variant.

• The value restriction for top is needed because otherwise the case for that rule would
involve an arbitrary term M with no derivation to apply the induction hypothesis to.

• The value restriction for intersections is needed because otherwise the induction hypoth-
esis is applied to the premises of the intersection introduction rule

Ψ; . ` M : A1 Ψ; . ` M : A2

Ψ; . ` M : A1 &A2

which yields that for some C1, M1 and Ψ1

(C . M) 7→ (C1 . M1) and ` (C1 . M1) : (Ψ,Ψ1 . A1)

and also that for some C2, M2 and Ψ2

(C . M) 7→ (C2 . M2) and ` (C2 . M2) : (Ψ,Ψ2 . A2)

Even if we show that evaluation is deterministic (which shows M1 = M2 = M ′ and
C1 = C2 = C ′), we have no way to reconcile Ψ1 and Ψ2 to a Ψ′ such that

` (C ′ . M ′) : (Ψ,Ψ′ . A1 &A2)

because a new cell allocated in C1 and C2 may be assigned a different type in Ψ1 and
Ψ2. It is precisely this observation which gives rise to the first counterexample in the
introduction to Chapter 3 (and repeated at the start of this chapter).

• The absence of the distributivity rules is critical in the inversion property for values V : A
for A � B1 → B2 which relies on the property that if A1 &A2 � B1 → B2 then either
A1 � B1 →B2 or A2 � B1 →B2.

The analysis above indicates that if we fix the cells in the store and disallow new allocations by
removing the ref M construct, the language would be sound even without a value restriction
on intersection introduction as long as the ref type constructor is non-variant. Of course, real
languages such as Standard ML do allow allocations, so in this case the value restriction is
required.
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Overall, this proof is not much more difficult than the case without intersection types, but
this is partially because we have set up our definitions very carefully.

We omit the presentation of a bidirectional type-checking algorithm for ML&ref , since our
main purpose in this chapter was to demonstrate that our restrictions result in a form of
intersection types that are suitable for extension with call-by-value effects. See [DP00] for a
bidirectional type-checking algorithm for a similar language.
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Chapter 5

Datasort declarations

The development in Chapter 3 was parameterized by a set of finite lattices of refinements
for each type. In this chapter we focus on a particular mechanism for defining such lattices
of refinements. This mechanism is based on the rectype declarations of Freeman and Pfen-
ning [FP91, Fre94] which allows refinements of ML datatypes to be defined using a set of
mutually recursive grammars.

We differ slightly from Freeman and Pfenning in that we do not allow nested applications
of constructors in our definitions. We do this to avoid the anonymous refinements that result
in their system, which result in error messages being less informative in some instances. As a
result our refinement declarations more closely mirror the syntax of ML datatype declarations.
Thus, we refer to these declarations as datasort declarations.

Examples of datasort declarations for refinements of a datatype for bit strings appeared in
Section 1.4.3. These were also the basis for the example types in Chapter 4. We repeat these
declarations here.

datatype bits = bnil | b0 of bits | b1 of bits

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

A datasort declaration is required to mirror the datatype declaration that it refines, except that
some value constructors may be omitted, and where there is a type in the datatype declaration
the datasort declaration may have any refinement of that type. Value constructors may also
be repeated with different sorts for the constructor argument, as illustrated by the following
example, repeated from Section 1.6.1.

(*[ datasort zero = bnil
and nat2 = bnil | b0 of pos

| b1 of zero | b1 of pos ]*)

This mechanism is certainly not the only interesting way to define refinements. For example,
we might also consider refinements corresponding to subsets of integers, or refinements which
capture the presence or absence of effects when an expression is executed. We have chosen
to focus on recursive refinements of datatypes because datatypes play a key role in most ML
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programs: conditional control flow is generally achieved via pattern matching with datatypes.
Further, experience so far demonstrates that these refinements allow many common properties
to be specified in real programs.

The main technical contribution presented in this chapter is an algorithm for checking inclu-
sion between datasort declarations that is complete with respect to a simple inductive semantics
for declarations with no occurrences of function types. This provides a simple and natural de-
scription of which inclusions a programmer should expect to hold, which was lacking in previous
work on refinement types [Fre94]. We show how to extend this algorithm to declarations that
include functions, including recursion in negative positions. This seems necessary in practice,
but alas we cannot extend our inductive semantics to these declarations. We argue that our
extension is still sensible, and our experience indicates that the inclusions determined by this
algorithm are very natural.

Without occurrences of function types, datasort declarations are essentially a form of reg-
ular tree grammars for defining subtypes of datatypes. Similar types based on regular tree
grammars have been considered by a number of researchers in logic programming, starting
with Mishra [Mis84], and in functional programming by Aiken and Murphy [AM91], Hosoya,
Vouillon and Pierce [HVP00], and Benzaken, Castagna, and Frisch [BCF03]. See Section 1.6.8
for more details. The latter three include algorithms for similar inclusion problems to ours. Our
algorithm is particularly similar to the algorithm proposed by Hosoya, Vouillon and Pierce, al-
though ours includes intersections. Both our algorithm and that of that of Hosoya, Vouillon
and Pierce broadly follow the algorithm by Aiken and Murphy.

5.1 Syntax

As in Chapter 2 and Chapter 3, our language is parameterized by a set of base types and base
sorts. However, in this chapter we require that the base types and base sorts be defined by
datatype and datasort declarations in the signature. A datatype declaration has a body with
a sequence of alternatives, each with a unique constructor applied to type. Constructors must
belong to a unique datatype. For now, we restrict the types allowed in datatype definitions to
regular types, those which do not contain function types, although we relax this restriction at the
end of the chapter. A datasort definition defines a refinement of a particular datatype. The body
of a datasort definition must be compatible with the definition of the datatype it refines. Each
alternative in the datasort body must consist of one of the datatype’s constructors applied to a
refinement of the corresponding type, and constructors may be repeated in a datasort bodies.

We include here a language of terms inhabiting regular types. This language does not
include functions, and hence also does not include variables bound by functions. As a result,
these terms lack any interesting notion of reduction: without variables bound by functions,
elimination forms can only be applied following the corresponding introduction forms, and
there is no real point in constructing such terms. We have thus omitted elimination forms for
terms in this chapter, so that all terms are values. The main purpose of this language of terms
is to allow the definition of a semantics of sorts as sets of values, hence non-values would not
be of much interest anyway.
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Regular Types A,B ::= a | 1 | A×B
Regular Sorts R,S ::= r | 1 | R× S | R&S | >A

Datatype Bodies D ::= . | D t cA
Datasort Bodies Ψ ::= . | Ψ t cR

Signatures Σ ::= Σ, (a=D) | Σ, (r a=Ψ)

Terms (Values) M,N ::= cM | () | (M,N)

We will also use V for terms when we want to emphasize that they are values, even though all
terms are values in the current language. In what follows we generally omit the leading “.”
from non-empty datatype and datasort bodies. We also generally omit the datatype a from
datasort declarations r

a=Ψ when Ψ is non-empty, since then a is determined by the constructors
that appear in Ψ. Interestingly, the sort 1 is equivalent to >1 in our semantics, so it could be
omitted. We have chosen to retain it for consistency with the constructs for types.

5.2 Comparison with previous signatures

We now briefly compare the signatures in this chapter with those in previous chapters. The
following signature corresponds to the datatype and datasort declarations for bit strings at the
start of this chapter.

Σlist = ( abits = cbnil 1 t cb0 abits t cb1 abits,
rnat = cbnil 1 t cb0 apos t cb1 anat,
rpos = cb0 apos t cb1 anat )

This can be thought of as roughly similar to the following signature in the style of Chapter 2.
(A corresponding signature in style of Chapter 3 can be obtained roughly by omitting the
declarations of abits, rnat and rpos.)

Σoldlist = ( abits : type,
rnat @ abits,
rpos @ abits,

cbnil : abits,
cb0 : abits → abits,
cb1 : abits → abits,

cbnil ∈ rnat,
cb0 ∈ (rpos → rnat) & (rpos → rpos),
cb1 ∈ (rnat → rnat) & (rnat → rpos) )

However, the signatures in this chapter have an explicit “closed world assumption” which
was absent in prior chapters. For example, the signature Σlist above explicitly rules out the
possibility of the signature later being extended by adding a new constructor to the type abits

and the refinements rnat and rpos: doing so might invalidate some inferences made prior to the
extension. This is reflected by the use of “=” in the signature. In contrast the signatures in
prior chapters were intended to be more open ended, and can be extended with new constructors
without invalidating prior inferences (and thus could serve as a suitable foundation for sorts for
languages quite different from ML, such as LF).
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A consequence of this is that from the signature Σlist we can conclude that the inclusion
rpos ≤ rnat holds, but we cannot reach the same conclusion from signature Σoldlist. This is why
subsorting declarations were included in the signatures in prior chapters, but are not included
in the signatures of this chapter: instead we will determine the inclusions by comparing the
datasort bodies.

5.3 Validity judgments

The following six judgments are required to determine the validity of signatures. To allow
mutual recursion in datatype and datasort declarations, each declaration in a signature must
be judged valid with respect to the whole signature. Thus, the top-level validity judgment for
signatures checks that a signature is valid with respect to itself via a judgment that checks
each declaration in a signature. We also have a validity judgment for datatype bodies, and one
for datasort bodies refining a datatype body. Additionally, we have judgments like those in
prior chapters for validity of types and valid refinements of types.

` Σ Sig Σ is a valid signature

`Σ Σ′ Sig Σ′ contains valid declarations under Σ

`Σ D Dat D is a valid datatype body under Σ

`Σ Ψ @ D Ψ is a valid datasort body refining D under Σ

`Σ A : type A is a valid type

`Σ R @ A R is a valid refinement of type A.

Valid signatures

`Σ Σ Sig
sigsig

` Σ Sig

Valid signature declarations

sigemp
`Σ . Sig

`Σ Σ′ Sig `Σ D Dat
sigtyp

`Σ (Σ′, a = D) Sig

`Σ Σ′ Sig a = D in Σ `Σ Ψ @ D
sigsrt

`Σ (Σ′, r a=Ψ) Sig

110



Valid datatype bodies

datemp
`Σ . Dat

`Σ D Dat c not in D `Σ A : type
datcon

`Σ (D t cA) Dat

Valid datasort bodies

dsrtemp
`Σ . @ D

`Σ Ψ @ D cA in D `Σ R @ A
dsrtcon

`Σ (Ψ t cR) @ D

Valid types

(a = D) in Σ
typcon

`Σ a : type
typunit

`Σ 1 : type

`Σ A : type `Σ B : type
typprod

`Σ A×B : type

Valid refinements

(r a=Ψ) in Σ
srtcon

`Σ r @ a
srtunit

`Σ 1 @ 1

`Σ R @ A `Σ S @ B
srtcross

`Σ R× S @ A×B

`Σ R @ A `Σ S @ A
srtinter

`Σ R&S @ A
srttop

`Σ >A @ A

Finally, we have a validity judgment for terms, which does not require a context, since we
have no functions or variables, and is particularly simple: we only have introduction rules for
each construct. The rule for constructors uses the signature to check the argument type of the
constructor, and the base type to which the constructor belongs.

Valid terms (values)

`Σ M : A M is a valid term of type A (where A is a valid type)

(a = D) in Σ cB in D `Σ M : B
objcon

`Σ cM : a

objunit
`Σ () : 1

`Σ M : A `Σ N : B
objprod

`Σ (M,N) : A×B
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5.4 Semantics of datasorts

We define the semantics of sorts and datasort bodies as subsets of the set of values with the
appropriate type. Their definitions are inductive on the structure of terms: whether M is
included in a sort only depends on inclusions in sorts of immediate subterms of M . The
semantics of sorts also involves a subinduction on the structure of sorts for intersections, and
on the structure of datasort bodies for t. The semantics specifies which terms are contained
in the semantics of each sort, as follows.

Semantics of sorts

M ∈ [[r]] if M ∈ [[Ψ]] when r = Ψ is in Σ

() ∈ [[1]] (i.e. [[1]] = {()})
(M,N) ∈ [[R× S]] if M ∈ [[R]] and N ∈ [[S]]

M ∈ [[R&S]] if M ∈ [[R]] and M ∈ [[S]]

M ∈ [[>A]] if `Σ M : A

Semantics of datasort bodies

M /∈ [[.]] (i.e. [[.]] = {})
M ∈ [[Ψ t cR]] if M in [[Ψ]] or (M = cN and N ∈ [[R]])

We can reformulate this semantics to directly specify a set for each sort, rather than specifying
which elements are included in the semantics of each sort. However, doing so hides the inductive
nature of the definition: [[r]] is defined in terms of [[Ψ]] which might in turn be defined in terms
of [[r]], thus the definition appears to be circular. Thus, the definition above is preferable, since
it makes it clear that the semantics is inductive on the structure of values. Regardless, the
reformulated semantics follows, mostly for comparison.

Reformulated semantics of sorts

[[r]] = [[Ψ]] (when r = Ψ is in Σ)

[[1]] = {()}
[[R× S]] = {(M,N) | M ∈ [[R]], N ∈ [[S]]}
[[R&S]] = [[R]] ∩ [[S]]

[[>A]] = {M | `Σ M : A}

Reformulated semantics of datasort bodies

[[.]] = {}
[[Ψ t cR]] = [[Ψ]] ∪ {cM | M ∈ [[R]]}

We use the semantics of sorts to define subsorting via subset, in the obvious way.

Definition 5.4.1 The subsorting R ≤ S holds exactly when [[R]] ⊆ [[S]].
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5.5 Inclusion algorithm

We now present an algorithmic judgment which determines inclusion between two sorts. The
algorithm requires a judgment that is generalized to determine inclusion of a sort R in a union
of sorts U . This is because when we have datasort declarations like r = cR and s = c S1 t c S2,
if we want to check the inclusion r ≤ s we need to check whether R is contained in the union of
S1 and S2. We thus introduce a syntax for “sort unions”, which are a list of sorts, representing
their union (see below), similar to datasort bodies only without constructors. The semantics of
a union of sorts is defined in the obvious way: as the unions of sets obtained via the semantics
of the sorts. Our algorithm is designed to produce the same result regardless of the order or
replication of sorts in a union or datasort body, so we often treat them like sets. In particular
we use the following notations to form sort unions and datasort bodies from finite sets.

t{R1, . . . , Rn} = R1 t . . . t Rn

t{c1 R1, . . . , cn Rn} = c1R1 t . . . t cn Rn

Our algorithm determines recursive inclusions by accumulating “assumptions” for subsorting
goals which are currently “in progress”. This technique has been used in a number of similar
subtyping and equivalence algorithms for recursive types. Brandt and Henglein [BH98] have
considered this technique in detail, and point out that it is essentially a way of inductively
formulating a relation that is more naturally characterized coinductively.

In our case, we only accumulate such assumptions for refinements of base types, since this
is sufficient to guarantee termination of the algorithm. This also leads to some advantages in
the implementation: fewer and simpler checks against a smaller set of assumptions. To ensure
termination, we require a finite bound on the number of potential assumptions. We do this
by treating intersections of base sorts r1 & . . . &rn like sets {r1, . . . , rn}. Since there are only
a finite number of base sorts, there are only a finite number of such sets. Similarly, we treat
unions of intersections of base sorts as sets of sets of base sorts, and there are only a finite
number of these. Formally, we assume that we have a function that maps each intersection
of base sorts ρ to a canonical representative bρc which has the same set of base sorts as ρ,
similarly a function which maps each base union u to a canonical representative buc. In the
implementation these unique representatives are sorted lists with respect to a total order based
on the internal numerical identifiers for the base sorts.

Sort unions U ::= . | U t R
Base refinements ρ ::= r | ρ1 &ρ2 | >a

Base unions u ::= . | u t ρ
Subsorting assumptions Θ ::= . | Θ, (ρ ≤ u)

We now present our algorithm as a judgment with algorithmic rules, making use of three
auxiliary judgments. These judgments will be explained in detail after the presentation of their
rules, along with two required functions body and ubody.

In the rules that follow there will always be a single fixed signature Σ, which we often omit
to avoid clutter.
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Θ `Σ R � U Sort R is included in sort union U
under the assumptions Θ.

Θ `Σ Ψ1 � Ψ2 Datasort body Ψ1 is included in datasort body Ψ2

under the assumptions Θ.

Θ `Σ (R1\U1)⊗ (R2\U2) � U The product of R1 minus U1 and R2 minus U2 is
contained in U , under the assumptions Θ.

R
⇒' R1 ⊗R2 Sort R is equivalent to the product of R1 and R2.

bρc≤buc in Θ

Θ ` ρ � u

bρc≤buc not in Θ Θ, bρc≤buc ` bodybρc � ubodybuc

Θ ` ρ � u

R @ 1

Θ ` R � U t S

R
⇒' R1 ⊗R2 Θ ` (R1\.)⊗ (R2\.) � U

Θ ` R � U

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ ` . � Ψ

Θ ` Ψ1 � Ψ2 Θ ` R � t{S | cS in Ψ2}

Θ ` Ψ1t cR � Ψ2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Θ ` (R1\U1t S1) ⊗ (R2\U2) � U

S
⇒' S1 ⊗ S2 Θ ` (R1\U1) ⊗ (R2\U2t S2) � U

Θ ` (R1\U1) ⊗ (R2\U2) � U t S

Θ ` R1 � U1

Θ ` R1\U1 ⊗R2\U2 � .
Θ ` R2 � U2

Θ ` R1\U1 ⊗R2\U2 � .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R1×R2
⇒' R1 ⊗ R2

R
⇒' R1 ⊗R2 S

⇒' S1 ⊗ S2

R&S
⇒' (R1&S1)⊗ (R2&S2) >A×B ⇒' >A ⊗>B

The main algorithmic subsorting judgment has two rules for the case when the sorts refine a
base type. The first applies when the goal is equivalent to one of the assumptions, in which case
we succeed. Otherwise, we use an auxiliary judgment to compare the bodies of the base sorts
involved. This uses functions bodyΣ(ρ) and ubodyΣ(u) which use the bodies for base sorts in Σ
to construct datasort bodies for intersections ρ of base sorts and unions u of those intersections.
The definitions these functions appear below, followed by a brief explanation.
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body(r) = Ψ when r = Ψ in Σ

body(ρ1&ρ2) = t {c(R1&R2) | cR1 in body(ρ1), cR2 in body(ρ2)}
body(>a) = t {c>A | cA in D} when a = D in Σ

ubody(.) = . (empty datasort body)
ubody(u t ρ) = ubody(u) t body(ρ)

The body of an intersection an intersection ρ1&ρ2 is formed by intersecting the bodies of each
part, which is achieved by intersecting all combinations of cR1 and cR2 from the respective
bodies which have the same constructor c. There may be many combinations for a single c,
since a datasort body may repeat a constructor: in this case the definition essentially distributes
intersections into unions.

The auxiliary judgment for comparing datasort bodies checks that each component cR in
the body on the left has R contained in the union of sorts S for the same constructor in the
body on the right.

Returning to the main judgment for the algorithm, when the sorts refine the unit type 1 we
succeed provided there is at least one sort in the union on the right hand side: there is only
one refinement of the type 1, up to equivalence. We fail if we have a the goal like 1 � ., and in
fact this is the only point where failures originate in the algorithm: in every other case some
rule applies.

When the sorts refine a product type A × B we use an auxiliary judgment which checks
the inclusion of a product in a union of products. The idea here is that every refinement of a
product type is equivalent to a product sort R1 ×R2: intersections are distributed inwards by
the judgment R

⇒' R1⊗R2. Then, we can check whether R1×R2 is included in Ut (S1×S2) by
subtracting S1×S2 from R1 ×R2 and checking whether this difference is contained in U . This
difference (R1 ×R2)\(S1 × S2) is equivalent to the union of (R1\S1) × R2 and R1 × (R2\S2).
This leads to the the first rule for the auxiliary judgment, which essentially checks that each
part of this union is contained in U . The remaining two rules for the auxiliary judgment apply
when the union U is empty, in which case one of the two components of the product on the left
must be empty.

This approach to subtyping for products with unions is somewhat similar that taken by
Hosoya, Vouillon and Pierce [HVP00] (and considered earlier by Aiken and Murphy [AM91]).
One difference is that the form of our auxiliary judgment avoids the need for a rule with an
explicit universal quantification over partitions of the union. It thus allows more “structural”
proofs over the form of derivations.

5.6 Correctness of the inclusion algorithm

We now prove correctness of the inclusion algorithm with respect to the semantics of datasorts.
We first prove that the algorithm always terminates, then we show soundness, and finally
completeness.
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Theorem 5.6.1 (Termination of �)
There is no infinite sequence J1, J2, . . . with each Jn a conclusion of an instance of one of the
algorithmic inclusion rules, and Jn+1 one of the corresponding premises.

Proof: Each Jn+1 is less than Jn with respect to the well order defined as follows.
First we define the (non-empty) set of types associated with Jn, as follows.

• The set of types associated with Θ ` R � U is {A} where R @ A.

• The set of types associated with Θ ` (R1\U1)⊗ (R2\U2) � U is {A1, A2} where R1 @ A1

and R2 @ A2.

• The set of types associated with Θ ` Ψ1 � Ψ2 is {A1, . . . , An} where Ψ1 = c1R1 t . . . t
cn Rn and R1 @ A1, . . . , Rn @ An.

Then, the well order is defined lexicographically on: the assumption set of Jn, followed by the
types associated with Jn, followed by an order based on which judgment Jn is an instance
of, followed by an ordering between instances of the same judgment based on the syntactic
inclusion of unions in Jn. More precisely, the well-ordering is as follows.

• Jn+1 < Jn if Jn+1 has a proper superset of the assumptions of Jn. (Note: for each
signature Σ there are only a finite number of potential subsorting assumptions, hence the
number of assumptions is bounded.)

• Jn+1 < Jn if Jn+1 has the same assumptions as Jn and each type associated with Jn+1 is
syntactically less than (i.e., a proper subterm of) some type associated with Jn.

• Jn+1 < Jn if Jn+1 has the same assumptions as Jn and each type associated with Jn+1 is
syntactically equal to some type associated with Jn and one of the following applies:

1. (a) Jn+1 = Θ ` R � U and Jn = Θ ` (R1\U1)⊗ (R2\U2) � U3

(b) Jn+1 = Θ ` R � U and Jn = Θ ` Ψ1 � Ψ2

2. (a) Jn+1 = Θ ` (R1\U11)⊗ (R2\U12) � U13 and
Jn = Θ ` (R1\U21)⊗ (R2\U22) � U23 and
U13 is syntactically less than U23.

(b) Jn+1 = Θ ` Ψ11 � Ψ2 and Jn = Θ ` Ψ21 � Ψ2 and Ψ11 is syntactically less
than Ψ21.

This is a well order because it is defined lexicographically from four well orders.

• The first order is a well order because the number of assumptions is bounded (given a
particular signature).

• The second is a well ordering because every Jn has at least one type associated with it,
hence an infinite decreasing sequence of sets of types associated with Jn would imply an
infinite decreasing sequence of types (i.e. with each contained in the previous one).

• The third order is a well order because no decreasing sequence has length longer than
one.

116



• The fourth order is a well order because it is directly based on a syntactic ordering.

It is straightforward to check that the premises of each rule are less than the conclusion according
this well order.

The soundness and completeness proofs require the following lemmas.

Lemma 5.6.2 [[body(ρ)]] = [[ρ]] and [[ubody(u)]] = [[u]].

Proof: By induction on the structure of ρ and u.

Lemma 5.6.3 If every r in ρ1 is in ρ2 then [[ρ2]] ⊆ [[ρ1]].

Proof: By induction on the structure of ρ1.

Corollary 5.6.4 [[bρc]] = [[ρ]].

Lemma 5.6.5 If for every ρ1 in u1 there is ρ2 in u2 such that [[ρ1]] ⊆ [[ρ2]] then [[u1]] ⊆ [[u2]].

Proof: By induction on the structure of u1.

Corollary 5.6.6 [[buc]] = [[u]].

Lemma 5.6.7 If R @ 1 then [[R]] = {()}.

Proof: By induction on R.

Lemma 5.6.8
If R @ A1×A2 then R

⇒' R1 ⊗R2

for some unique R1 @ A1 and unique R2 @ A2 with [[R]] = [[R1 ×R2]].

Proof: By induction on R.

Lemma 5.6.9 (Datasort substitution)

1. If Θ ` ρ � u and Θ, ρ≤u ` R � U then Θ ` R � U .

2. If Θ ` ρ � u and Θ, ρ≤u ` Ψ1 � Ψ2 then Θ ` Ψ1 � Ψ2.

3. If Θ ` ρ � u and Θ, ρ≤u ` (R1\U1)⊗ (R2\U2) � U

then Θ ` (R1\U1)⊗ (R2\U2) � U .

Proof: By induction on the structure of the second derivation. All cases simply rebuild the
derivation, except that for when the assumption ρ ≤ u is used, which follows.

Case:
ρ≤u in Θ, ρ≤u

Θ, ρ≤u ` ρ � u

Then Θ ` ρ � u, by the first assumption.
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For the soundness proof we need generalize the induction hypothesis to include an appropriate
form for sort unions: recall that the semantics for sort unions is defined in the obvious way
using set union.

Theorem 5.6.10 (Soundness of �)

1. If . `Σ R � U and V ∈ [[R]] then V ∈ [[U ]].

2. If . `Σ Ψ1 � Ψ2 and cV ∈ [[Ψ1]] then cV ∈ [[Ψ2]].

3. If . `Σ (R1\U1)⊗ (R2\U2) � U

and V1 ∈ ([[R1]]\[[U1]]) and V2 ∈ ([[R2]]\[[U2]])

and V = (V1,V2) then V ∈ [[U ]].

Proof: By induction on the structure of V and the inclusion derivation, lexicographically. We
have the following cases for the derivation.

Case:
bρc≤buc in .
. ` ρ � u

Cannot occur, since . is empty.
(Assumptions are recursively “unfolded” via substitution, which succeeds because the
induction is principally on the structure of values.)

Case:
bρc≤buc not in . bρc≤buc ` bodybρc � ubodybuc

. ` ρ � u

bρc≤buc ` bodybρc � ubodybuc Assumed
bbρcc≤bbucc ` bodybbρcc � ubodybbucc bbρcc = bρc

and bbucc = buc
. ` bρc � buc Rule
. ` bodybρc � ubodybuc. Subst. Lemma (5.6.9)
V ∈ [[ρ]] Assumed
V = cV ′ with cV ′ ∈ [[ρ]] Def. [[ρ]]
cV ′ ∈ [[bodybρc]] Lemma 5.6.2, Corollary 5.6.4
cV ′ ∈ [[ubodybuc]] Ind. Hyp. (V ′ is smaller)
cV ′ ∈ [[u]] Lemma 5.6.2, Corollary 5.6.6
V ∈ [[u]] Since V = cV ′, above
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Case:
R @ 1

. ` R � U t S

[[R]] = {()} Lemma 5.6.7
V = () Since V ∈ [[R]] (assumed).
S @ 1 Well-formedness of . ` R � U t S

[[S]] = {()} Lemma 5.6.7
V ∈ [[S]] Since V = ()

V ∈ [[U t S]] Def. [[.]]

Case:
R

⇒' R1 ⊗R2 . ` (R1\.)⊗ (R2\.) � U

. ` R � U

V ∈ [[R]] Assumed
V ∈ [[R1 ×R2]] Lemma 5.6.8
V = (V1,V2) with V1 ∈ [[R1]] and V2 ∈ [[R2]] Def. [[.]]
V ∈ [[U ]] Ind. Hyp.

(same V , subderivation)

Case: . ` . � Ψ

Cannot occur, since [[.]] is empty.

Case:
. ` Ψ1 � Ψ2 . ` R � t{S | cS in Ψ2}

. ` Ψ1t cR � Ψ2

V ∈ [[Ψ1t cR]] Assumed
V ∈ [[Ψ1]] or V ∈ {cW | W ∈ [[R]]} Def. [[.]]
Suppose V ∈ [[Ψ1]]:

V ∈ [[Ψ2]] Ind. Hyp. (same V , subderivation)

Otherwise:
V = cW for some W ∈ [[R]]
W ∈ [[t{S | cS in Ψ2}]] Ind. Hyp. (same V , subderivation)
W ∈ [[S]] with cS in Ψ2 Def. [[.]]
cW ∈ [[Ψ2]] Def. [[.]]
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Case:

. ` (R1\U1t S1) ⊗ (R2\U2) � U

S
⇒' S1 ⊗ S2 . ` (R1\U1) ⊗ (R2\U2t S2) � U

. ` (R1\U1) ⊗ (R2\U2) � U t S

If (V1,V2) ∈ [[S]] then:
(V1,V2) ∈ [[U t S]] Def. [[.]]

Otherwise:
(V1,V2) /∈ [[S1 × S2]] Lemma 5.6.8
V1 /∈ S1 or V2 /∈ S2 Def. [[S1 × S2]]

Suppose V1 /∈ S1 (the case for is V2 /∈ S2 is dual)
V1 ∈ [[R1]]\[[U1]] and V2 ∈ [[R2]]\[[U2]] Assumed
V1 ∈ [[R1]]\[[U1 t S1]] Def. [[.]]
(V1,V2) ∈ [[U ]] Ind. Hyp.

(same V , subderivation)

Case:
. ` R1 � U1

. ` R1\U1 ⊗R2\U2 � .
V1 ∈ [[R1]]\[[U1]] and V2 ∈ [[R2]]\[[U2]] Assumed
V1 ∈ [[R1]] Def. [[R1]]\[[U1]]
V1 ∈ [[U1]] Ind. Hyp. (V1 smaller)
Contradicts V1 ∈ [[R1]]\[[U1]].
Hence, case cannot occur.

Case:
. ` R2 � U2

. ` R1\U1 ⊗R2\U2 � .
Dual to the previous case.

To show the completeness of our algorithm, we first show that failures only occur when an
inclusion should be rejected.

Theorem 5.6.11 (Soundness of Failure of �)

1. If Θ `Σ R � U fails then there exists V ∈ [[R]] such that V /∈ [[U ]].

2. If Θ `Σ Ψ1 � Ψ2 fails
then there exists cV ∈ [[Ψ1]] such that cV /∈ [[Ψ2]].

3. If Θ `Σ (R1\U1)⊗ (R2\U2) � U fails
then there exists V1 ∈ [[R1]] and V2 ∈ [[R2]]
such that V1 /∈ [[U1]] and V2 /∈ [[U2]] and (V1,V2) /∈ [[U ]].
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Proof: By induction on the termination well-ordering of the algorithm (from Theorem 5.6.1),
i.e., following the order of the steps performed by the algorithm.

Case: Θ ` ρ � u fails.

Then bρc ≤ buc not in Θ
and Θ, bρc≤buc ` bodybρc � ubodybuc fails.
By ind. hyp., there is cV ∈ [[bodybρc]] such that cV /∈ [[ubodybuc]].
Then, cV ∈ [[ρ]] and cV /∈ [[u]] (Lemma 5.6.2, Corollary 5.6.4 and Corollary 5.6.6).

Case: Θ ` R � . fails with R @ 1.

Then () ∈ [[R]] and () /∈ [[.]].
Case: Θ ` R � U fails because Θ ` (R1\.)⊗ (R2\.) � U fails with R

⇒' R1 ⊗R2.

Then, the ind. hyp. yields V1 ∈ [[R1]] and V2 ∈ [[R2]] with (V1,V2) /∈ [[U ]].
And then, (V1,V2) ∈ [[R]] (by Lemma 5.6.8).

Case: Θ ` Ψ1 t cR � Ψ2 fails because Θ ` Ψ1 � Ψ2 fails.

Then, the ind. hyp. yields V ∈ [[Ψ1]] with V /∈ [[Ψ2]].
And then, V ∈ [[Ψ1 t cR]].

Case: Θ ` Ψ1 t cR � Ψ2 fails because Θ ` R � t{S | cS in Ψ2} fails.

Then, the ind. hyp. yields V ∈ [[R]] with V /∈ [[t{S | cS in Ψ2}]].
And then, cV ∈ [[cR]] with cV /∈ [[t{cS | cS in Ψ2}]].
So, cV ∈ [[Ψ1 t cR]] with cV /∈ [[Ψ2]].

Case: Θ ` (R1\U1) ⊗ (R2\U2) � U t S fails because
Θ ` (R1\U1t S1)⊗ (R2\U2) � U fails with S

⇒' S1 ⊗ S2.

Then, the ind. hyp. yields V1 ∈ [[R1]] and V2 ∈ [[R2]] with V1 /∈ [[U1 t S1]] and V2 /∈ [[U2]]
and (V1,V2) /∈ [[U ]].
And then, V1 /∈ [[U1]].
Also, V1 /∈ [[S1]] thus (V1,V2) /∈ [[S1 × S2]].
So, (V1,V2) /∈ [[S]] (Lemma 5.6.8).
Thus, (V1,V2) /∈ [[U t S]].

Case: Θ ` (R1\U1) ⊗ (R2\U2) � U t S fails because
Θ ` (R1\U1)⊗ (R2\U2t S2) � U fails with S

⇒' S1 ⊗ S2.

Dual to the previous case.

Case: Θ ` (R1\U1) ⊗ (R2\U2) � . fails
because Θ ` R1 � U1 fails and Θ ` R2 � U2 fails.

Then, the ind. hyp. yields V1 ∈ [[R1]] and V2 ∈ [[R2]] with V1 /∈ [[U1]] and V2 /∈ [[U2]].
Further, (V1,V2) /∈ [[.]].
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Now, to prove our completeness result, we combine the previous result with the termination
theorem.

Theorem 5.6.12 (Completeness of �)

1. If [[R]] ⊆ [[U ]] then . ` R � U .

2. If [[Ψ1]] ⊆ [[Ψ2]] then . ` Ψ1 � Ψ2.

3. If ([[R1]]\[[U1]])× ([[R2]]\[[U2]]) ⊆ [[U ]] then . ` (R1\U1)⊗ (R2\U2) � U .

Proof: By contradiction. We show only the case for R � U , since the two other two cases are
essentially the same.

Suppose not . ` R � U .
Then . ` R � U fails, by the Termination Theorem (5.6.1).
So, there is V ∈ [[R]] with V /∈ [[U ]], (Soundness of Failure, Theorem 5.6.11).
But, then [[R]] ⊆/ [[U ]].

Finally, we combine soundness and completeness to obtain an equivalence between R ≤ U and
R � U .

Theorem 5.6.13 (Correctness of �)

1. [[R]] ⊆ [[U ]] if and only if . ` R � U .

2. [[Ψ1]] ⊆ [[Ψ2]] if and only if . ` Ψ1 � Ψ2.

3. ([[R1]]\[[U1]])× ([[R2]]\[[U2]]) ⊆ [[U ]] if and only if
. ` (R1\U1)⊗ (R2\U2) � U .

Proof: From left to right: by the Completeness of � (above, 5.6.12).
From right to left: by the first part of the Soundness of � Theorem (5.6.10).

5.7 Extending inclusion to functions

The difficulty of extending to functions

We have omitted functions from datatypes and datasorts up to now because there is no obvious
way to extend the inductive semantics of datasorts to functions. Two näıve attempts follow.

[[R→ S]] = {V :A→B | ∀V1 ∈ [[R]].V V1 7→∗ V2 implies V2 ∈ [[S]]}
[[R→ S]] = {λx.M | x∈R ` M ∈ S}

The first attempt fails because the quantification ∀V1 ∈ [[R]] results in the semantics no longer
being inductive on terms: V1 is not a subterm of V . The semantics cannot be inductive on the
structure of types due to the recursive nature of datasorts. The second attempt fails because
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it depends on the sorting judgment, which in turn depends on the subsorting judgment, which
ultimately depends on the semantics of datasorts.

The following example illustrates more concretely the strange situations that can arise if we
include functions in systems of recursive types without carefully considering the consequences.
Suppose we have a language with pure total functions. Then, we should expect that the
function space R→ S is empty exactly when R is non-empty and S is empty, since then there
are elements in R, but no elements in S to map them to. Applying this to following declarations
yields r → remp is empty iff r is non-empty.

a = c (a→ a)
remp = .

r = c (r → remp)

But, r = c (r→remp) so r is empty iff r is non-empty! Thus, there seems to be no sensible way to
define whether r ≤ remp holds: it is equivalent to its own negation. One view of this situation is
that the contravariance associated with functions leads to the possibility that there are no sets
which satisfy the declared equations in a particular signature. (Without such contravariance,
monotonicity ensures sets can always be constructed which satisfy a signature, via a fixed point
construction.)

Contravariance, negative information, and partial functions

However, real programs do make use of datatypes containing function types, and it seems
a major restriction not to allow refinements of such datatypes. Reference types also occur
frequently in datatypes, and result in similar complications: we can consider a type like A ref to
be equivalent to (1→A)×(A→1). In the previous work on refinement types by Freeman [Fre94]
function sorts are allowed in datasort declarations only when the argument sorts do not involve
any of the datasorts currently being defined. This avoids the possibility of datasort declarations
making use of recursion in contravariant positions, while still allowing refinements to be declared
for some datatypes involving functions and references. However, in practice this limitation seems
likely to be restrictive, and it is not so clear that the restriction is necessary. An analysis of
the algorithm used by Freeman indicates that it is at least basically well behaved when this
restriction is removed: it would still always terminate, and there do not seem to be inclusions
that would be accepted that would have undesirable consequences such as sort preservation
failing.

If we analyze the above example, another view is that the problem arises because our criteria
for emptiness of the function space R → S makes use of negative information: that R is not
empty. If we have a system for determining inclusions that ensures that positive information
like R ≤ U never depends on negative information like R′ ≤/ U ′, then we can be sure that no
such contradiction arises (emptiness of R corresponds to the case where U = .). Of course,
this would leave us with no criteria for determining that a function sort is empty. In the
case of pure functions, this seems somewhat unsatisfactory since there are clearly some pure
function spaces that are not inhabited. However, if we commit ourselves to only considering
partial function spaces, then this is not an issue: every function space is inhabited, namely by
a function that never returns a result. Thus, the issue highlighted by the example above does
not arise for partial function spaces. Since our main interest is in the design of sorts for ML,
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we are mostly only interested in partial (and effectful) function spaces anyway. Thus, we avoid
the issue highlighted above by focusing on partial functions.

Previous work on recursive types with partial functions

This decision by itself does not immediately solve all the issues related to datasort declarations
which are recursive in contravariant positions. However, the combination of recursive types and
partial function types is well understood, in particular in the field of denotational semantics.

For example, MacQueen, Plotkin and Sethi [MPS86] interpret types that include partial
functions as ideals which are certain sets of elements in an appropriate domain, and show that
recursive types can be interpreted as fixed points in this domain. Aiken and Wimmers [AW93]
build on this ideal model of types, and explicitly consider the subtyping relationship generated
by it for types which are specified via equations which roughly correspond to our datasort
declarations. They include a subtyping algorithm but require some restrictions on occurrences
of intersections and unions that are not appropriate in our case.

Other notable work on recursive types with partial functions includes that of Amadio and
Cardelli [AC93], who use a model based on partial equivalence relations. They also present
a subtyping algorithm that uses assumptions for goals in progress to prevent non-termination
(our inclusion algorithm is partly based on theirs), although their types do not include any form
of union, which would be required in order to represent types corresponding to our datasorts.

The work of Frisch, Castagna and Benzaken [FCB02] similarly semantically constructs an
appropriate notion of subtyping in the presence of recursive types, partial non-deterministic
functions, intersections, unions and constructors. They use finite functions as an approximation
to the actual function space of their language, and demonstrate that the resulting subtyping
relationship is appropriate. Alas, we cannot directly use their results, since their subtyping
relation includes distributivity and hence is inappropriate when functions may involve effects.

There is a great deal of other work that is relevant to the combination of recursive types
and partial functions, and those mentioned above are just a few that seem most relevant to
the current work. While it appears that none of these works include a refinement restriction,
adding this restriction should only simplifies the situation (although without the restriction
the issues related to pure functions do not seem so relevant since non-termination naturally
arises via an embedding of the untyped λ-calculus). Thus, it seems that it should be possible
to define a sensible subsorting relation in the presence of recursive datasort declarations that
include partial functions.

Our design

However, we have chosen not to base our subtyping relationship directly on a denotational
semantics like those mentioned above. This is for three main reasons. First, to obtain an
appropriate subsorting relationship such a semantics would need to include a suitably rich form
of effects, such as dynamically allocated reference cells, and is thus likely to be quite involved.
Secondly, in what follows we prefer to give an operational semantics for our language, and
having two semantics would be awkward unless they are shown to be equivalent, which is also
likely to be involved. Thirdly, such a semantics would almost certainly validate the following
distributivity rule, since it is sound in the presence of effects.
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(R1 → S)&(R2 → S) ≤ (R1∨R2)→ S

While this rule is sound, it destroys the orthogonality of the inclusion rules. Worse, it leads to
some serious performance issues due to the need to perform “splitting” of the sorts of function
arguments into unions of minimal components during sort checking, as was done by Free-
man [Fre94] (splitting will be considered in detail in Section 6.1).

We have thus chosen to simply combine the subsorting relationship in this chapter with
the subsorting relationship for functions used in previous chapters. The rules for functions are
just the standard contravariant/covariant rule, along with algorithmic rules for breaking down
intersections (closely following the rules in Section 3.7) and corresponding rules for breaking
down unions of sorts for goals of the form Θ ` R � UtS. While this is a little ad-hoc, it appears
to result in a subsorting relationship that is practical and predictable, based on experience so
far with the implementation. However, further experience is needed to be sure that there are
no situations where important inclusions are rejected by our formulation.

Interestingly, this subsorting relation corresponds exactly with that obtained with an ex-
tension of the semantics of Frisch, Castagna and Benzaken, and in the next section we will take
advantage of this correspondence to prove basic properties of subsorting. It would be possible
to instead define subsorting in terms of this semantics, but we have chosen not to since some
features of this semantics have been explicitly chosen to make this correspondence precise, and
are difficult justify otherwise.

Formally, we extend the previous definitions of types and sorts as follows.

Types A,B ::= . . . | A→B

Sorts R,S ::= . . . | R→ S

Valid types

`Σ A : type `Σ B : type
typarrow

`Σ A→B : type

Valid refinements

`Σ R @ A `Σ S @ B
srtarrow

`Σ R→ S @ A→B

The subsorting rules for functions follow. Here, we write Θ ` R � S as an abbreviation for the
form Θ ` R � . t S.
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Θ ` S1 � R1 Θ ` R2 � S2

Θ ` R1 →R2 � S1 → S2

Θ ` R1 � S1 → S2

Θ ` R1 &R2 � S1 → S2

Θ ` R2 � S1 → S2

Θ ` R1 &R2 � S1 → S2

R @ A1 →A2 Θ ` R � S1 Θ ` R � S2

Θ ` R � S1 &S2

R @ A1 →A2

Θ ` R � >A1→A2

R @ A1 →A2 Θ ` R � U

Θ ` R � U t S

R @ A1 →A2 Θ ` R � S
(U 6= .)

Θ ` R � U t S

With the extension to function sorts this judgment can serve as the main subsorting judgment
for our language: it can compare any two sorts. This is contrast to previous work on refinements
for ML which only allowed restricted occurrences of functions in the judgment that compared
recursive definitions, and hence required a separate judgment for the main subsorting judgment
of the language, with some duplication between the two judgments.

The implementation takes advantage of this by using only a single subsorting function. This
function is actually used in two ways: our implementation first compares datasort declarations
to determine a lattice of equivalence classes of refinements for a datatype, and then uses this
lattice to determine subsorting instances during sort checking of expressions. However, it avoids
duplicating code between these two forms of subsorting by using a single generalized function
which includes a parameter that is a function for comparing refinements of base types. See
Section 8.3 for more details.

The termination of the extended algorithm requires only a small extension to to the previous
termination proof.

Theorem 5.7.1 (Termination of � with Functions)
There is no infinite sequence J1, J2, . . . with each Jn a conclusion of an instance of one of the
algorithmic inclusion rules, and Jn+1 one of the corresponding premises.

Proof: We modify the well order in the previous termination proof (Theorem 5.6.1) as follows.
We add two new well orders to the end of the lexicographic ordering for syntactic inclusion

of R and U respectively in the form Θ ` R � U .

As discussed above, there is no straightforward way to extend the previous definition of sub-
sorting to the functions of our language: once we have function values like λx.M the semantics
can no longer be inductive on values. Thus, for sorts which involve functions we instead define
R ≤ S to hold exactly when . `Σ R � S. This is somewhat unsatisfactory, and in the next sec-
tion we consider an inductive semantics that validates the same inclusions as . `Σ R � S, but
which uses quite different constructs in place of the actual function values. We could instead
define R ≤ S in terms of that inductive semantics, but it seems preferable to use the algorith-
mic judgment . `Σ R � S because the function values in the inductive semantics have been
explicitly designed to match the algorithmic judgment, and so conceptually the algorithmic
judgment comes first.
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5.8 An inductive counterexample-semantics with functions

Defining R ≤ S in terms of the algorithmic judgment R � S is somewhat unsatisfactory, and
fact earlier we criticized previous work on refinements because it required the programmer to
understand the inclusion algorithm. Some form of declarative specification would help the pro-
grammer to reason about which inclusions hold. The inductive semantics serves this purpose
well in the absence of functions, and also allows relatively straightforward proofs of basic prop-
erties of the subsorting relationship. In this section we consider an extension of the inductive
semantics to function sorts that serves both these purposes, but which is non-standard in the
sense that it replaces the actual function values by artificial forms. These artificial “function
values” are explicitly designed to produce the same inclusions as the subsorting algorithm, and
to allow the semantics to be inductive on the structure of values.

Counterexamples for inclusions

If we consider the way the inductive semantics of Section 5.4 is likely to be used to reason about
inclusions in the absence of function sorts, an important concept is that of a counterexample: an
inclusion R ≤ S holds whenever there is no value V that is in [[R]] but not in [[S]]. Such reasoning
is very intuitive and is also nicely compositional: the value V may be used to construct larger
counterexamples as follows.

• If cR in body(ρ) and cS in body(u), and this is the only occurrence of cS in body(u),
then cV is a counterexample for ρ ≤ u.

• If R′ is non-empty and contains V ′, then (V,V ′) is a counterexample for R×R′ ≤ S×S′

for any S′.

The situation is somewhat more complicated for inclusions involving unions, particularly for
products, but the basic idea remains the same: counterexamples are built from smaller coun-
terexamples for “sub-problems”.

However, constructing counterexamples for inclusions like R1 →R2 ≤ S1 → S2 seems more
difficult: for example, if S1 ≤/ R1 then our algorithm will reject the inclusion R1→R2 ≤ S1→S2,
but if we have a a value V that is in [[S1]] but not in [[R1]] then there does not seem to be a direct
way to construct a function value of the form λx.M that is in [[R1 → R2]] but not [[S1 → S2]].
Intuitively, it seems enough to specify that the counterexample “maps V to something invalid”
and is otherwise well-behaved. This motivates us to consider whether we can construct a non-
standard semantics for sorts that replaces the function values λx.M with artificial “function
values” that are designed to be particularly appropriate for characterizing the essential features
of counterexamples. For example, a counterexample for the inclusion R1→R2 ≤ S1→S2 could
be simply written as V 7→ !, indicating “a function value that maps V to something invalid”
(and is otherwise well-behaved). Such a non-standard semantics would extend the intuitive
compositional reasoning of the earlier inductive semantics to datasort declarations involving
function sorts. However, it would do so at the cost of requiring the use of a different semantics
from the standard semantics of the language when reasoning about inclusions.
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Proving basic properties of subsorting

The lack of an inductive semantics is also unsatisfactory because we can no longer use it to
show basic properties of the subsorting relationship R ≤ S such as reflexivity, transitivity,
and that R1&R2 is a greatest lower bound. These properties are essential for the proofs in
Chapter 6. Alas, proving these properties seems difficult without an inductive semantics: the
techniques used in Chapter 3 do not extend easily, particularly to the judgment for products.
Formulating the induction hypotheses in terms of failures of the inclusion algorithm (as in the
proof of completeness, Theorem 5.6.12) seems to allow proofs of reflexivity and transitivity, but
the property that R1&R2 is greater than any lower bound seems resistant to proof even with
this technique. To use an inductive semantics for such proofs only requires that the semantics
and the algorithm agree on which inclusions hold: it does not matter whether the semantics of
functions coincides with the actual functions included in the language.

Designing a non-standard inductive semantics based on counterexamples

We are thus motivated to consider the design of a non-standard semantics that validates the
same inclusions as our algorithm, and is inductive on the structure of values, with non-standard
forms in place of the standard function values λx.M . These non-standard “function values”
will be “finite characterizations” of functions that specify the potential behavior of the function
for some finite number of input and output values. This is essentially the approach to defining
subtyping inductively proposed by Frisch, Castagna and Benzaken [FCB02], although in their
case the semantics is still constructed mostly “from first principles”, while in our case our
semantics is explicitly designed to allow counterexamples to be formed whenever an inclusion is
rejected by our algorithm. Interestingly, our semantics turns out to be roughly a generalization
of that of Frisch, Castagna and Benzaken with constructs that have an appealing duality. The
main purpose of this semantics in the context of this dissertation is to allow proofs of properties
of the algorithmic subsorting judgment. However, it is also intended to help programmers to
determine which subsorting relationships should hold, since it allows counterexamples to be
constructed in a relatively intuitive way.

The extension of the inductive semantics to functions is designed so that whenever an inclu-
sion R ≤ U does not hold, in the semantics there is a “characterization” of a counterexample
which is contained in R but not U . For example, pos→ pos ≤ nat→ pos does not hold, and a
characterization of a counterexample is: “a function which maps z to z”. Here the second z can
be replaced by any invalid value, so is not essential to the counterexample, and we could instead
write it as: “a function which maps z to something invalid”. These characterizations explicitly
mention all values involved in the counterexample, hence the semantics remains inductive. The
key observation here is that whenever an inclusion does not hold, a counterexample can always
be characterized in terms of some finite set of values inhabiting the argument sorts and result
sorts.

This focus on inductive counterexamples appears to be both a powerful and intuitive tech-
nique, and is closely related to the work of Frisch, Castagna and Benzaken [FCB02]. However,
their focus is slightly different, mostly because they start from an inductive semantics, and
later demonstrate that their full semantics validates the same inclusions, while we focus on the
relationship to the algorithmic subsorting judgment, which naturally leads to a greater focus
on counterexamples (similar to the proof of completeness without functions, Theorem 5.6.12).
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5.8.1 Syntax and semantics

In the inductive semantics of Frisch, Castagna and Benzaken [FCB02], the values inhabiting
a function space are finite sets of pairs M 7→N of values, with each pair specifying that the
function potentially maps the first value to the second. This is the starting point for the
semantics below.

We differ in that we include only one of M and N from each pair, since (in our case) only
one component is “essential” in any counterexample for R1 →R2 � S1 → S2. Thus, we include
constructs: M 7→ ! and ? 7→N . The first means roughly “M maps to something invalid (outside
every sort)”, while the second means “something valid (in every sort) maps to N”. We also
include a construct M ∧ N for combining two counterexamples, producing a counterexample
that will non-deterministically choose to act like M or like N each time it is used, and hence
is only contained in those sorts that contain both M and N . We also have the zero-ary form
> which indicates a function that never returns a result (i.e. that non-terminates for every
input), and is contained in every function sort R→S. It is required as a counterexample when
we have an empty union on the right, i.e., R→ S ≤ .. These constructs allow us to form lists
of characteristics for a counterexample, similar to the sets of pairs in the inductive semantics
of by Frisch, Castagna and Benzaken.

Due to the omission of distributivity rules, we have fewer inclusions than Frisch, Castagna
and Benzaken, and thus we need more values to serve as counterexamples. Interestingly, adding
dual constructs M ∨N and ⊥ to M ∧N and > results in exactly the required counterexamples
for our algorithmic subsorting rules. Thus, it seems that our subsorting relationship is less
ad-hoc than it might have appeared at first. The construct M ∨ N roughly corresponds to a
form of “don’t know” non-determinism: either M or N is chosen depending on what is required
by the context, hence M ∨N is contained in every sorts that contains either M or N . This may
be thought of as a form of effect, although it is certainly different from the actual effects usually
included in an ML-like language. This difference does not matter here: what is important is
that ∨ allows counterexamples to be constructed for inclusions that are rejected, such as those
which require distributivity. For example, the distributivity instance

(R→ S1)&(R→ S2) ≤ R→ (S1 &S2)

is rejected unless either
S1 ≤ S2 or S2 ≤ S1.

If V1 and V2 are counterexamples for each of these, then (? 7→V1)∨(? 7→V2) is a counterexample
for the distributivity instance.

We also include the zero-ary form ⊥ of M ∨N , which is not contained in any function sort
R→ S, since we will need it as the counterexample for >A→B ≤ S1 → S2.

We thus extend the syntax of terms (i.e. values), the validity judgment for terms, and the
inductive semantics to functions as follows.

Syntax

Terms M,N, V ::= . . . | M 7→ ! | ? 7→N | M ∧N | > | M ∨N | ⊥
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Valid terms (values)

`Σ M : A M is a valid term of type A (where A is a valid type)

` M : A

` M 7→ ! : A→B

` N : B

` ? 7→N : A→B ` > : A→B ` ⊥ : A→B

` M : A→B ` N : A→B

` M ∧N : A→B

` M : A→B ` N : A→B

` M ∨N : A→B

Semantics

M 7→ ! ∈ [[R→S]] if M /∈ R

? 7→N ∈ [[R→S]] if N ∈ S

M∧N ∈ [[R→S]] if M ∈ [[R→S]] and N ∈ [[R→S]]

> ∈ [[R→S]] (i.e. > in every R→S)
M∨N ∈ [[R→S]] if M ∈ [[R→S]] or N ∈ [[R→S]]

⊥ /∈ [[R→S]] (i.e. ⊥ never in R→S)

5.8.2 Soundness and Completeness

We now extend our soundness and completeness proofs to the algorithmic rules for functions,
using this inductive “counterexample” semantics for functions. Our main motivation for extend-
ing these proofs is that it allows us to easily show basic properties of our algorithmic subsorting
relation, such as reflexivity, transitivity, and that R&S is a greatest lower bound.

First, we require a small lemma relating the semantics of a sort to the type refined by the
sort.

Lemma 5.8.1 If V ∈ [[R]] and R @ A then ` V : A.

Proof: By induction on R, V lexicographically.

The previous proof of soundness extends without difficulty to functions with our semantics,
although requires a subcase for each form of function value in the case for the covariant-
contravariant rule. We call the extension a “soundness” theorem, since it extends the previous
soundness theorem (5.6.10) (and similarly for the other extensions of theorems which follow).
However, here it plays a slightly different role, since ≤ is defined in terms of �. While it still
demonstrates that � is sound with respect to ⊆ in the semantics, here � conceptually comes
before the semantics.

Theorem 5.8.2 (Soundness of � with Functions)

1. If . `Σ R � U and V ∈ [[R]] then V ∈ [[U ]].
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2. If . `Σ Ψ1 � Ψ2 and cV ∈ [[Ψ1]] then cV ∈ [[Ψ2]].

3. If . `Σ (R1\U1)⊗ (R2\U2) � U

and V1 ∈ ([[R1]]\[[U1]]) and V2 ∈ ([[R2]]\[[U2]])

and V = (V1,V2) then V ∈ [[U ]].

Proof: By induction on the structure of V and the inclusion derivation, lexicographically. The
cases not involving functions are exactly as before (in the proof of Theorem 5.6.10). The proofs
of the lemmas used in the previous proof do not require any modification: each is specific
to refinements of a particular form of type (a, 1 or A×B) and does not require cases to be
considered for refinements of other types.

The cases involving functions are as follows.

Case:
Θ ` S1 � R1 Θ ` R2 � S2

Θ ` R1 →R2 � S1 → S2

Subcase: V1 7→ ! ∈ [[R1 →R2]]

V1 /∈ [[R1]] Def. [[.]]
Suppose V1 ∈ [[S1]]
Then, V1 ∈ [[R1]] Ind. Hyp. (V1 smaller)
Contradicting V1 /∈ [[R1]]

So, V1 /∈ [[S1]] By Contradiction
V1 7→ ! ∈ [[S1 → S2]] Def. [[.]]

Subcase: ? 7→V2 ∈ [[R1 →R2]]

V2 ∈ [[R2]] Def. [[.]]
V2 ∈ [[S2]] Ind. Hyp. (V2 smaller)
? 7→V2 ∈ [[S1 → S2]] Def. [[.]]

Subcase: V1 ∧ V2 ∈ [[R1 →R2]]

V1 ∈ [[R1 →R2]] Def. [[.]]
V2 ∈ [[R1 →R2]] Def. [[.]]
V1 ∈ [[S1 → S2]] Ind. Hyp. (V1 smaller)
V2 ∈ [[S1 → S2]] Ind. Hyp. (V2 smaller)
V1 ∧ V2 ∈ [[S1 → S2]] Def. [[.]]

Subcase: > ∈ [[R1 →R2]]

> ∈ [[S1 → S2]] Def. [[.]]
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Subcase: V1 ∨ V2 ∈ [[R1 →R2]]

V1 ∈ [[R1 →R2]] or
V2 ∈ [[R1 →R2]] Def. [[.]]
V1 ∈ [[S1 → S2]] or
V2 ∈ [[S1 → S2]] Ind. Hyp. (V1, V2 smaller)

V1 ∨ V2 ∈ [[S1 → S2]] Def. [[.]]

Subcase: ⊥ ∈ [[R1 →R2]]

Cannot occur Def. [[.]]

Case:
Θ ` R1 � S1 → S2

Θ ` R1 &R2 � S1 → S2

V ∈ [[R1 &R2]] Assumed
V ∈ [[R1]] Def. [[.]]
V ∈ [[S1 → S2]] Ind. Hyp.

(same V , subderivation)

Case:
Θ ` R2 � S1 → S2

Θ ` R1 &R2 � S1 → S2

Dual to the previous case.

Case:
R @ A1 →A2 Θ ` R � S1 Θ ` R � S2

Θ ` R � S1 &S2

V ∈ [[R]] Assumed
V ∈ [[S1]] Ind. Hyp. (same V , subderivation)
V ∈ [[S2]] Ind. Hyp. (same V , subderivation)
V ∈ [[S1 &S2]] Def. [[.]]

Case:
R @ A1 →A2

Θ ` R � >A1→A2

V ∈ [[R]] Assumed
R @ A1 →A2 Assumed
`Σ V : A1 →A2 Lemma 5.8.1
V ∈ [[>A1→A2 ]] Def. [[.]]
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Case:
R @ A1 →A2 Θ ` R � U

Θ ` R � U t S

V ∈ [[R]] Assumed
V ∈ [[U ]] Ind. Hyp. (same V , subderivation)
V ∈ [[U t S]] Def. [[.]]

Case:
R @ A1 →A2 Θ ` R � S

(U 6= .)
Θ ` R � U t S

V ∈ [[R]] Assumed
V ∈ [[S]] Ind. Hyp. (same V , subderivation)
V ∈ [[U t S]] Def. [[.]]

For the extension of the completeness proof, we require the following lemmas.

Lemma 5.8.3
If R, S @ A→B and V1 ∈ [[R]] and V2 ∈ [[S]] then V1 ∨ V2 ∈ [[R&S]].

Proof: By induction on the structure of R,S.

Case: V1 ∈ [[R1 →R2]] and V2 ∈ [[S1 → S2]].

V1 ∨ V2 ∈ [[R1 →R2]] Def. [[.]]
V1 ∨ V2 ∈ [[S1 → S2]] Def. [[.]]
V1 ∨ V2 ∈ [[(R1 →R2)&(S1 → S2)]] Def. [[.]]

Case: V1 ∈ [[R1 &R2]] and V2 ∈ [[S]].

V1 ∈ [[R1]] and V1 ∈ [[R2]] Def. [[.]]
V1 ∨ V2 ∈ [[R1 &S]] Ind. Hyp.
V1 ∨ V2 ∈ [[R2 &S]] Ind. Hyp.

V1 ∨ V2 ∈ [[(R1 &S)&(R2 &S)]] Def. [[.]]
V1 ∨ V2 ∈ [[(R1 &R2)&S]] Def. [[.]]

Case: V1 ∈ [[R]] and V2 ∈ [[S1 → S2]].

Dual to the previous case. (Although strictly speaking, this case is only required when
R = R1 →R2 since otherwise it overlaps with the previous case.)

Lemma 5.8.4
If R @ A→B then > ∈ [[R]].

Proof: By induction on R.
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Lemma 5.8.5
If R @ A→B and V1 ∈ [[R]] and V2 ∈ [[R]] then V1 ∧ V2 ∈ [[R]].

Proof: By induction on R.

Case: V1 ∈ [[R1 →R2]] and V2 ∈ [[R1 →R2]].

V1 ∧ V2 ∈ [[R1 →R2]] Def. [[.]]
Case: V1 ∈ [[R1 &R2]] and V2 ∈ [[R1 &R2]].

V1 ∈ [[R1]] and V1 ∈ [[R2]] Def. [[.]]
V2 ∈ [[R1]] and V2 ∈ [[R2]] Def. [[.]]
V1 ∧ V2 ∈ [[R1]] Ind. Hyp.
V1 ∧ V2 ∈ [[R2]] Ind. Hyp.
V1 ∧ V2 ∈ [[R1 &R2]] Def. [[.]]

Case: R = [[>A1→A2 ]].

V1 ∧ V2 ∈ [[>A1→A2 ]] Def. [[.]]

Lemma 5.8.6
If R @ A→B and V1 /∈ [[R]] or V2 /∈ [[R]] then V1 ∧ V2 /∈ [[R]].

Proof: By induction on R.

Case: V1 /∈ [[R1 →R2]] or V2 /∈ [[R1 →R2]].

V1 ∧ V2 ∈ [[R1 →R2]] Def. [[.]]
Case: V1 /∈ [[R1 &R2]] or V2 /∈ [[R1 &R2]].

V1 /∈ [[R1]] or V1 /∈ [[R2]] Def. [[.]]
V1 ∧ V2 /∈ [[R1]] or
V1 ∧ V2 /∈ [[R2]] Ind. Hyp.
V1 ∧ V2 /∈ [[R1 &R2]] Def. [[.]]

Case: V2 /∈ [[R1 &R2]].
Dual to the previous case.

Case: V1 /∈ [[>A1→A2 ]] or V2 /∈ [[>A1→A2 ]].

Cannot occur Def. [[.]]

Lemma 5.8.7
If U, S @ A→B and V1 /∈ [[U ]] or V2 /∈ [[U ]] then V1 ∧ V2 /∈ [[U ]].

Proof: By induction on U .
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Case: V1 /∈ [[.]] or V2 /∈ [[.]].
Then [[.]] is empty, hence V1 ∧ V2 /∈ [[.]].

Case: V1 /∈ [[U t S]].

V1 /∈ [[U ]] and V1 /∈ [[S]] Def. [[.]]
V1 ∧ V2 /∈ [[U ]] Ind. Hyp.
V1 ∧ V2 /∈ [[S]] Preceding lemma
V1 ∧ V2 /∈ [[U t S]] Def. [[.]]

Case: V2 ∈ [[U t S]].

Dual to the previous case.

Theorem 5.8.8 (Soundness of Failure of � with Functions)

1. If Θ `Σ R � U fails then there exists V ∈ [[R]] such that V /∈ [[U ]].

2. If Θ `Σ Ψ1 � Ψ2 fails
then there exists cV ∈ [[Ψ1]] such that cV /∈ [[Ψ2]].

3. If Θ `Σ (R1\U1)⊗ (R2\U2) � U fails
then there exists V1 ∈ [[R1]] and V2 ∈ [[R2]]
such that V1 /∈ U1 and V2 /∈ U2 and (V1,V2) /∈ [[U ]].

Proof: By induction on the termination order of the algorithm. The cases not involving func-
tions are exactly as before (in the proof of Theorem 5.6.12). The cases involving functions are
as follows.

Case: Θ ` R1 →R2 � S1 → S2 fails because Θ ` S1 � R1 fails.
The induction hypothesis yields V1 ∈ [[S1]] with V1 /∈ [[R1]].
Then (V1 7→ !) ∈ [[R1 →R2]] and (V1 7→ !) /∈ [[S1 → S2]].

Case: Θ ` R1 →R2 � S1 → S2 fails because Θ ` R2 � S2 fails.
The induction hypothesis yields V2 ∈ [[R2]] with V2 /∈ [[S2]].
Then (? 7→V2) ∈ [[R1 →R2]] and (? 7→V2) /∈ [[S1 → S2]].

Case: Θ ` R1 &R2 � S1 → S2 fails.
Then the algorithm will have checked both

Θ ` R1 � S1 → S2 and Θ ` R2 � S1 → S2

and found that both fail.
Applying the induction hypothesis yields:
V1 ∈ [[R1]] such that V1 /∈ [[S1 → S2]] and also
V2 ∈ [[R2]] such that V2 /∈ [[S1 → S2]].
Then, V1 ∨ V2 ∈ [[R1 &R2]] and V1 ∨ V2 /∈ [[S1 → S2]], as required.
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Case: Θ ` >A1→A2 � S1 → S2 fails because it matches no rule.
Then ⊥ ∈ [[>A1→A2 ]] and ⊥ /∈ [[S1 → S2]].

Case: Θ ` R � S1 &S2 fails because Θ ` R � S1 fails (with R @ A→B).
The induction hypothesis yields V ∈ [[R]] with V /∈ [[S1]].
Thus V /∈ [[S1 &S2]] by the definition of [[.]].

Case: Θ ` R � S1 &S2 fails because Θ ` R � S2 fails (with R @ A→B).
Dual to the previous case.

Case: Θ ` R � U t S fails because Θ ` R � U fails and Θ ` R � S fails (with R @ A→B).
The induction hypothesis yields V1 ∈ [[R]] with V1 /∈ [[U ]] and V2 ∈ [[R]] with V2 /∈ [[S]].
Then V1 ∧ V2 ∈ [[R]] and V1 ∧ V2 /∈ [[U t S]] (by Lemma 5.8.6 and Lemma 5.8.7).

Case: Θ ` R � . fails because it matches no rule (with R @ A→B).
Then > ∈ [[R]] (Lemma 5.8.4) and > /∈ [[.]].

As before, to prove our completeness result, we combine the soundness of failure theorem with
the termination theorem.

Theorem 5.8.9 (Completeness of � with Functions)

1. If [[R]] ⊆ [[U ]] then . ` R � U .

2. If [[Ψ1]] ⊆ [[Ψ2]] then . ` Ψ1 � Ψ2.

3. If ([[R1]]\[[U1]])× ([[R2]]\[[U2]]) ⊆ [[U ]] then . ` (R1\U1)⊗ (R2\U2) � U .

Proof: By contradiction, as before. We assume that the algorithm does not succeed, then use
the Termination of � with Functions Theorem (5.7.1) to show that the algorithm fails, and then
use the Soundness of Failure with Functions Theorem (5.8.8) to show that the set inclusion does
not hold.

Finally, we combine soundness and completeness to obtain an equivalence between [[R]] ⊆ [[U ]]
and R � U , as before.

Theorem 5.8.10 (Correctness of � with Functions)

1. [[R]] ⊆ [[U ]] if and only if . ` R � U .

2. [[Ψ1]] ⊆ [[Ψ2]] if and only if . ` Ψ1 � Ψ2.

3. ([[R1]]\[[U1]])× ([[R2]]\[[U2]]) ⊆ [[U ]] if and only if
. ` (R1\U1)⊗ (R2\U2) � U .

Proof: From left to right: by the Completeness of � with Functions Theorem (above, 5.8.9).
From right to left: by the first part of the Soundness of � with Functions Theorem (5.8.2).
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Now, we can use this theorem to avoid separately proving many basic properties of R � S, as
was required in Section 3.7. Instead, such properties can be inherited from the corresponding
properties for sets, as in the following corollary. Separately proving these properties turns out to
be surprisingly difficult, and this corollary is our main motivation for introducing the inductive
semantics of functions: these properties are required for the proofs in Chapter 6. We include
properties for Ψ1 � Ψ2 as well, since these will also be required in the proofs.

Corollary 5.8.11 (Properties of �)
The binary relations . ` R � S and . ` Ψ1 � Ψ2 are reflexive and transitive, and . ` R � S
has greatest lower bounds given by R1 &R2 and maximum refinements given by >A.

Proof:
From the corresponding properties of ⊆, since:
. ` R � S is equivalent to [[R]] ⊆ [[S]]
. ` Ψ1 � Ψ2 is equivalent to [[Ψ1]] ⊆ [[Ψ2]]

[[R&S]] = [[R]] ∩ [[S]]

[[>A]] = {M | `Σ M : A}
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Chapter 6

Sort checking with datasorts and
pattern matching

We now consider sort assignment and sort checking for a language with base sorts defined
using datasort declarations. The core of this language is essentially an instantiation of the
framework in Chapter 3. The base subsorting relation is now determined by comparing datasort
declarations, as described in Chapter 5, rather than being directly declared in a signature.
Similarly, the sorts associated with of each constructor c are determined from the datasort
declarations. A major difference from Chapter 3 is that we add an elimination construct for
datatypes: case expressions with sequential pattern matching, which additionally serve as the
elimination construct for products, as in ML and Haskell.

Previous work on refinement types for ML [Fre94] only treated the simple single-level case
construct, and argued that pattern matching could be compiled into this construct prior to
performing sort inference. But this is unsatisfactory because it requires a programmer to reason
in terms of this compilation when considering whether their program is sort correct, and worse
it requires them to interpret error messages based on this compilation. Thus, it seems desirable
to specify sort correctness directly at the source level, including pattern matching. In this
chapter we present such a specification, as sort assignment rules for a language with sequential
pattern matching. We demonstrate that our language satisfies an appropriate progress and sort
preservation theorem, and then present a sort checking algorithm for our language and prove
it correct with respect to our sort assignment rules.

But first we treat some issues related to the sorts for case expressions and constructors,
and in particular our choice to use inversion principles rather than splitting.

6.1 Splitting, inversion principles and sorts of constructors

Splitting

We make a major departure from the previous work on sorts for ML in that we don’t perform
“splitting” (see Freeman [Fre94]). Splitting breaks all sorts down into unions of minimal com-
ponents. For example, with the following declarations the sort bool would be split into the
union of tt and ff.
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datasort bool = true | false
datasort tt = true
datasort ff = false

We continue this example by considering the sorts for the following function declarations both
with and without splitting.

(*[ val not <: tt -> ff & ff -> tt ]*)
fun not true = false

| not false = true

(*[ val g <: bool -> bool ]*)
fun g y = not (not y)

The declaration of g is rejected without splitting, because the sort of the parameter y is bool,
and the sort of not does not include a component matching this sort. With splitting this
declaration is accepted, because we split the sort of the parameter into tt and ff and check
the body of g separately for each part. This example could be modified so that it is accepted
without splitting by adding the required component to the sort for not, i.e. as follows.

(*[ val not <: tt -> ff & ff -> tt & bool -> bool ]*)
fun not true = false

| not false = true

This is similar to the situation with the removal of the problematic distributivity subsorting
rule in Chapter 3, which sometimes results in extra components being required in the sorts
of functions. Splitting is related to the following dual of the problematic distributivity rule,
which is generally included in systems with both union and intersection types, such as that of
Barbanera, Dezani-Ciancaglini and de’Liguoro [BDCdL95], and which appears to be sound in
the presence of effects.

(R1 → S)&(R2 → S) ≤ (R1 ∨R2)→ S

As demonstrated by the the above example, splitting leads to more programs being accepted.
However, it has a high cost: it requires a case analysis every time a variable is assigned a
sort that can be split, and multiple splittable sorts have a multiplicative effect. Further, when
a base lattice has many elements the number of components in each split can become quite
large: in the worst case exponential in the number of datasort declarations. This means that
the efficiency of sort checking in the presence of splitting is likely to be very sensitive to the
addition of new datasort declarations.

Inversion principles

We thus choose not to perform splitting. This choice requires us to find an alternative that is
easy to specify, predictable and natural for a programmer, and that avoids efficiency problems.
The solution presented here appears to meet these goals, but some more experience is required
to judge whether programmers find it natural, and whether efficiency is ever a problem.
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Our approach is to determine an inversion principle for each datasort that is used whenever
an object is matched against a constructor. In the simplest case the inversion principle for a
datasort is exactly the body of its datasort declaration. E.g. if we have the declaration

r = c1 R1 t c2 R2

and we encounter a situation where an object with sort r is matched against a constructor,
then we consider the following two cases.

1. The object has the form c1 V1 with V1 ∈ R1.

2. The object has the form c2 V2 with V2 ∈ R2.

We only perform the case analysis indicated by an inversion principle when an object is matched
against a constructor, unlike splitting which always breaks up sorts into minimal components.
Our inversion principles also generally require fewer cases to be analyzed than splitting. For
example, consider the following declarations.

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat
and zero = bnil ]*)

(*[ inc <: nat -> pos ]*)
fun inc bnil = b1 bnil

| inc (b0 x) = b1 x
| inc (b1 x) = b0 (inc x)

With these declarations, the inversion principle for nat would have three cases corresponding to
the three cases in its definition, i.e., one for each constructor. Thus, the body of each branch of
the function inc is analyzed only once, with the assignment x ∈ pos for the second branch, and
the assignment x ∈ nat for the third branch. With splitting, the sort nat is decomposed into
the union of pos and zero, so the body of the third branch would need to analyzed separately
under the assignments x ∈ pos and x ∈ zero.

The inversion principle for a datasort is determined reasonably directly from the cases in its
datasort declaration. This means that a programmer can alter a datasort declaration so that
it yields a different inversion principle even though it specifies an equivalent set of values. For
example, consider the following variation of the previous datasort declarations.

(*[ datasort nat2 = bnil | b0 of pos2 | b1 of zero | b1 of pos2
and pos2 = b0 of pos2 | b1 of zero | b1 of pos2
and zero = bnil ]*)

These declarations declare datasorts containing the same values as the declarations above, but
the resulting inversion principle for nat2 would result in the third case for inc being analyzed
twice: once with x ∈ pos2 and once with x ∈ zero. Thus, it is possible to emulate the case
analysis performed by splitting when matching against a constructor by choosing appropriate
datasort declarations.

At first it might appear strange to use different inversion principles for datasort declarations
that specify the same sets of values. In fact, an earlier version of our implementation always
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used the same inversion principle for datasorts containing the same set of values: it always
chose the most detailed principle.1 Our choice to allow different inversion principles seems
justified by the control it gives the programmer over the cases that are considered during sort
checking. Also, our experience indicates that programmers have a tendency to naturally choose
datasort declarations corresponding to the cases that need to be considered in their code.
Should the most detailed principle be required, the programmer can always write their datasort
declaration in a way that corresponds to this principle. Additionally, using inversion principles
that are closely based on the datasort declarations generally makes it easier for a programmer
to understand the case analysis that is being performed. This is particularly important when a
programmer is faced with an error message generated during sort checking and is determining
the source of the error.

Sorts of constructors and multiple datasort declarations

A similar issue arises with the sorts of constructors. Consider the the two previous sets of
datasort declarations.

(*[ datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat
and zero = bnil ]*)

(*[ datasort nat2 = bnil | b0 of pos2 | b1 of zero | b1 of pos2
and pos2 = b0 of pos2 | b1 of zero | b1 of pos2
and zero = bnil ]*)

As before, these declarations define equivalent sets of values. However, the most direct and
natural way of assigning sorts to constructors based on these two sets of declarations leads to
the following inequivalent sorts for the constructor b1. Here, and from now on, -> is assumed
to have higher precedence than &.

b1 ∈ nat -> nat & nat -> pos

b1 ∈ zero -> nat2 & zero -> pos2 &
pos2 -> nat2 & pos2 -> pos2

The first sort for b1 is more general than the second: the first is equivalent to nat -> pos
while the second is equivalent to zero -> pos2 & pos2 -> pos2, and thus the first is a subsort
of the second due to the contravariance of -> , and the fact that pos and pos2 are equivalent.
However, the second is not a subsort of the first. Thus, with the second set of declarations the
following example would be rejected.

(*[ val prefix1 <: nat2 -> nat2 ]*)
prefix1 x = b1 x

1The current version of the implementation allows reverting to this behavior via a user-settable flag, although
we have yet to find an examples where this is desirable.
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We could obtain equivalent results for these two declarations by strengthening the sort of
the constructor b1 for the second declaration. This could be done by applying the following
distributivity rule. (This rule is a small variant of the distributivity rule related to splitting
near the start of this section, and can easily be derived from that rule.)

(R1 → S1)&(R2 → S2) ≤ (R1∨R2)→ (S1∨S2)

An earlier version of the implementation applied this rule to each pair of conjuncts in the
constructor sort, but in some cases this proved to have a large performance cost. This is
because generally the there is no sort in our language which is equivalent to the union of
R1 and R2, so instead a least upper bound needs to be constructed by considering all upper
bounds of R1 and R2, which in general seems to require enumerating all sorts compatible with
R1 and R2. Such an enumeration has a potentially huge performance cost, and is infeasible
for even simple higher-order sorts, and so doesn’t seem to be justified.2 Additionally, forcing
the sorts of constructors to be reasonably apparent in the datasort declarations is likely to
make it easier for a programmer to follow the sorts associated with their program. Further,
should a situation arise where a programmer requires the inversion principle associated with
the declaration of nat2, but also requires b1 ∈ nat2 -> pos2, then they can simply include both
sets of declarations.

(*[ datasort nat2 = bnil | b0 of pos2 | b1 of zero | b1 of pos2
and pos2 = b0 of pos2 | b1 of zero | b1 of pos2
and zero = bnil

datasort nat = bnil | b0 of pos | b1 of nat
and pos = b0 of pos | b1 of nat ]*)

The second set of declarations actually does not lead to new elements being added to the
lattice of refinements, since the declared datasorts are equivalent to elements added by the first
declaration. Instead, nat becomes a synonym for nat2 and pos becomes a synonym for pos2.
However, the second declaration does lead to the sort of the constructor b1 being strengthened
to nat2 -> pos2.

If we reverse the order of these declarations, so that nat and pos are defined first, then the
definitions of nat2 and pos2 result in the inversion principles for nat and pos being strength-
ened. Thus, these inversion principles are no longer based on only the components of the
original datasort declaration. In general, the inversion principle for a datasort is based on its
own declaration, as well as the declarations of all equivalent or larger datasorts. This ensures
that the case analysis performed when an object is assigned one sort is at least as accurate
as the case analysis that would be performed for a supersort. This “monotonicity of inversion
principles” is important because a programmer may have in mind the case analysis correspond-
ing to a particular sort for an object, while the case analysis performed during sort checking
could be based on a more precise sort.

Our approach to inversion principles and sorts of constructors has the advantage of allowing
the programmer a large amount of control over this aspect of sort checking. More experience is

2There is a flag in the implementation that allows reverting to this behavior.
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required to determine whether there are situations where this approach is awkward. At worst,
our approach may require the programmer to include two datasort declarations for each sort.
The control provided by this approach has the additional advantage that it is generally easy
to formulate datasort declarations that emulate alternative approaches, so that the impact of
such approaches can be judged without needing to implement them directly.

Formal specification of inversion principles and sorts of constructors

The inversion principle for a base refinement ρ is defined formally as the datasort body for the
intersection of all base sorts r which are supersorts, as follows.

invΣ(ρ) = bodyΣ(&{r | ρ ≤ r})

Here we use the definitions of bodyΣ(.) and ≤ from Chapter 5. For convenience, we repeat the
definition of bodyΣ(.) below.

body(r) = Ψ when r = Ψ in Σ

body(ρ1&ρ2) = t {c(R1&R2) | cR1 in body(ρ1), cR2 in body(ρ2)}
body(>a) = t {c>A | cA in D} when a = D in Σ

The definition of invΣ(ρ) can result in redundant and empty components in the inversion prin-
ciple, which can easily be removed as an optimization in an implementation. As mentioned
above, this definition includes supersorts to ensure that inversion principles are monotonic (this
monotonicity will be formally proved later, in Lemma 6.6.10).

By contrast, the sorts for constructors are always determined directly from the datasort
bodies for a base sort, rather than the intersection of all supersorts. Formally, we have the
following judgment, which will later be used when assigning sorts to constructor applications
(in Section 6.5).

`Σ c S � ρ Constructor c maps from S to ρ.

cR in bodyΣ(ρ) S � R

`Σ c S � ρ

If instead of bodyΣ(ρ) we used invΣ(ρ), the sorts obtained would be weaker. For example, with
the earlier declarations of nat, pos, zero, nat2 and pos2, using bodyΣ(ρ) leads to the following
holding (removing the redundant sorts arising from nat and nat2).

b1 nat � pos
b1 zero � pos2
b1 pos2 � pos2

Using invΣ(ρ) would lead to only the following holding (simplifying intersections of base sorts
appropriately).

b1 zero � pos
b1 pos2 � pos
b1 zero � pos2
b1 pos2 � pos2
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This is because pos2 is equivalent to pos, hence pos2 is included as one of the supersorts when
we calculate invΣ(pos). This results in strictly weaker sorts for b1, and in fact b1 nat � pos is
strictly stronger than all the other sorts for the constructor.

We remark that our judgment `Σ c S � ρ is not strictly necessary, since in what follows
we could make use of bodyΣ(ρ) directly instead. Our reason for introducing it is partly as a
notational convenience, but it is also to slightly separate this aspect from what follows, to make
it easier to consider alternative ways of defining the sorts for constructors. Further, the sort
assignment rules which follow have their dependence on the signature Σ isolated to uses of three
forms: the function invΣ(ρ) and the judgments `Σ c S � ρ and `Σ R � U (with U=S or
U= .). It seems likely that there are other sensible ways to define these three forms, thus we
anticipate the generalization of what follows to a form that is parameterized with respect to the
alternative definitions of these forms. However, it seems clear that such a generalization would
require some constraints to ensure that such alternative definitions are sensible and consistent,
and formulating these constraints appropriately does not appear to be easy. We plan to consider
this further in future work.

6.2 Syntax with pattern matching

We now consider the syntax of our language ML&case with datasorts defined in a signature, as
in Chapter 5, and with a case elimination construct which allows a sequence of patterns. Each
pattern may eliminate many constructor applications, as well as products. The sequence of
patterns may overlap, in which case the first matching branch is chosen (as in ML or Haskell).

This language is as an extension of the language in Chapter 5, and in particular uses the
same signatures and subsorting. The language of terms is significantly extended to include
variables, functions, and our case construct. We also include recursion via a fixed-point term
construct, and corresponding expression variables u, so that appropriate functions over recursive
datatypes can be defined. This language is expressive enough to allow terms to be constructed
corresponding to many functions from real ML programs (although not those using effects or
parametric polymorphism). We do not include let here because in the absence of parametric
polymorphism it can be considered as syntactic sugar for a case with a single branch.

Expression M ::= x | λx:A.M | M1 M2

| cM | (M1,M2) | () | case M of Ω
| u | fix u.M

Branches Ω ::= A. | (P ⇒ M | Ω)
Pattern P ::= x | c P | (P1, P2) | ()

A case expression caseM of Ω consists of a term M that is the subject of the case, and a
sequence of branches Ω of the following form.

P1 ⇒ M1 | . . . | Pn ⇒ Mn |A.
Here, the type annotation A on A. is required to ensure uniqueness of types when there are
no branches. We generally omit the A when the list of branches is non-empty, or when A is
otherwise clear from the context, or of little interest. As usual, we generally omit the “.” for
non-empty lists.
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6.3 Typing and pattern contexts

Our presentation of the typing for ML&case is based on a correspondence between pattern
matching and formulations of logics in the sequent-calculus style of Gentzen [Gen35, Gen69].
This is an instance of the Curry-Howard isomorphism [How80] between typed languages and
logics. The correspondence between patterns and left rules has been observed previously: see,
for example, the work of Breazu-Tannen, Kesner and Puel [KPT96].

We have chosen this style of presentation because we believe it leads to the correct logical
view of the role of pattern matching in functional languages. This becomes critical when we
present the sort assignment rules for ML&case: other common approaches to the typing of
pattern matching do not seem to extend nearly as elegantly to our sorts. Our focus is on
capturing the essence of pattern matching as intuitively and elegantly as possible, and thus we
do not directly relate our presentation to any particular sequent calculus.

This style of presentation requires a generalization of contexts to include assumptions which
assign a type to a pattern rather than to a variable. The patterns in such assumptions are broken
down by rules which correspond to sequent calculus left rules, eventually leading to an ordinary
set of assignments of types to variables.

To allow our system to be more easily compared to other approaches to typing of patterns,
we require that all pattern assumptions be broken down into ordinary assumptions prior to
considering the constructs in the body of a branch. This requirement is not strictly necessary,
but without it there are some complications related to ill-typed pattern matches if none of the
variables bound by the pattern are used. In the sort assignment rules in Section 6.5 no such
complications arise, and we allow more flexible reasoning by a programmer by allowing pattern
assumptions to be broken down later as needed.

For the type system we enforce the requirement by including both ordinary contexts
and pattern contexts in our language, with the latter only being used when breaking down
assumptions prior to checking the body of a branch. The syntax for these two forms of
contexts follows. We recall that variables of the form u expression variables, and are only
bound by the fixed-point construct, hence only occur in variable contexts and never in patterns.

Variable Contexts Γ ::= . | Γ, x:A | Γ, u:A
Pattern Contexts Φ ::= . | Φ, P :A

We require variables to appear at most once in a variable context. We omit the formal validity
judgments for contexts. The validity judgment for variable contexts is standard: it requires
that the type assigned to each variable be valid.

The validity judgment for pattern contexts similarly only requires that the type assigned
to each pattern be valid. This allows odd pattern assumptions such those which are ill-typed,
like (x,y) : 1, and those which repeat variables, such as (x,x) : A×B. The typing rules ensure
that such assumptions can never appear as part of typing derivation: we consider the validity
of these assumptions to be dual to the validity of terms, and hence it is appropriate that the
validity of both are judged by the typing rules.

Formally we have the following judgments for the validity of terms.

146



Valid terms

Γ `Σ M : A Term M has type A in under Γ,Σ.

Γ `Σ A 1 Ω : B Branches Ω map from A to B under Γ,Σ.

Γ;Φ `Σ M : B Term M has type B under Γ,Φ,Σ.

The typing rules for these judgments appear in Figure 6.1.

6.4 Reduction semantics

We now present a reduction style semantics for our language following Wright and
Felleisen [WF94], thus in a similar style to Chapter 4. We distinguish the following terms
as values.

Values V,W ::= x | λx.M | () | (V,W ) | c V

We have the following evaluation contexts within which a reduction may occur.

E ::= [ ] | E M | V E | cE | (E,M) | (V,E) | case E of Ω

As in Chapter 4 we write E[M ] to indicate the term obtained by replacing the hole [ ] in E
by M . A program state is either a term M , or a single special state indicating that a match
exception has occurred due to a case subject not matching the pattern of any branch.

Program States π ::= M | MatchException

We write M 7→ π for a one-step computation, defined by the following reduction rules. Each
rule reduces a redex N that appears in an evaluation position in the term M , i.e. M = E[N ]
for some E. We maintain the invariant that M does not contain free variables x or u.

E[(λx.M) V ] 7→ E[{V/x}M ]
E[case V of P ⇒ M | Ω] 7→ E[σM ] (if V = σP )
E[case V of P ⇒ M | Ω] 7→ E[case V of Ω] (@σ.V = σP )

E[case V of .] 7→ MatchException
E[fix u.M ] 7→ E[{fix u.M/u}M ]

The rules for matching against a pattern check whether the case subject V is a substitution in-
stance of the pattern P , and if so applies the corresponding substitution σ = {V1/x1, . . . , Vn/xn}
to the body of the branch. We feel that this elegantly captures the semantics of pattern match-
ing. We remark that every pattern P is also a syntactically a term M . We consider that
patterns are distinguished from terms by the position that they appear in a term rather than
intrinsically by their form. This is similar to the standard treatment of variables: variable
occurrences are either terms or binding occurrences depending on where they appear in a term.

We now consider progress for well-typed terms and preservation of types. We only sketch a
proof of this theorem, since our main interest is in the corresponding result for sorts. We first
require substitution lemmas for values, expressions and patterns.
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x:A in Γ
Γ ` x : A

(a = D) in Σ cB in D `Σ M : B

Γ `Σ cM : a

Γ, x:A `Σ M : B

Γ ` λx:A.M : A→B

Γ ` M : A→B Γ ` N : A

Γ ` M N : B

u:A in Γ
Γ ` u:A

Γ, u:A ` M : A

Γ ` fix u.M : A

Γ ` M : A Γ ` N : B

Γ ` (M,N) : A×B Γ ` () : 1

Γ ` M : A Γ ` A 1 Ω : B

Γ ` case M of Ω : B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ;P :A ` M : B Γ ` A 1 Ω : B

Γ ` A 1 (P ⇒ M | Ω) : B Γ ` A 1 (B.) : B

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Γ; (Φ, P1:A1, P2:A2) ` M : B

Γ; (Φ, (P1, P2) :A1×A2) ` M : B

Γ;Φ ` M : B

Γ; (Φ, ():1) ` M : B

a = D in Σ cA in D Γ; (Φ, P :A) `Σ M : B

Γ; (Φ, c P :a) `Σ M : B

Γ ` M : B

Γ; . ` M : B

(Γ, x:A); Φ ` M : B

Γ; (Φ, x:A) ` M : B

Figure 6.1: Typing rules for terms, branches and patterns.
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Lemma 6.4.1 (Value substitution for types)
If V :A and (Γ, x:A); Φ ` M : B

then Γ;Φ ` {V/x}M ∈ B.

Proof: (sketch)
By induction on the structure of the derivation of (Γ, x:A); Φ ` M : B.

The case for a value variable matching x simply uses the derivation of V :A (via weakening).
The remaining cases simply rebuild the derivation.

Lemma 6.4.2 (Expression substitution for types)
If M :A and (Γ, u:A); Φ ` N : B

then Γ;Φ ` {M/u}N ∈ B.

Proof: (sketch)
By induction on the structure of the derivation of (Γ, u:A); Φ ` N : B.

The case for an expression variable matching u simply uses the derivation of M :A (via weak-
ening). The remaining cases simply rebuild the derivation.

Lemma 6.4.3 (Pattern substitution for types)
If V :A and V = σP and .;P :A ` M : B

then σM ∈ B.

Proof: (sketch)
By induction on the structure of the derivation of .;P :A ` M :B, generalizing to the following.

If V1:A1 and . . . and Vn:An, and V1 = σP1 and . . . and Vn = σPn,
and .; (P1:A1, . . . , Pn:An) ` M : B

then σM : B.

The case for a variable pattern uses the value substitution lemma above, and the remaining
cases are straightforward.

Theorem 6.4.4 (Progress and Type Preservation)
If ` M : A then one of the following holds.

1. M is a value.

2. M 7→ N , with ` N : A.

3. M 7→ MatchException.

Proof: (sketch)
By induction on the structure of the typing derivation for M , using the above substitution
lemmas for values, expressions and patterns, and using inversion on the form of values inhabiting
function, product, and base types.
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This theorem is not quite sufficient to ensure that programs never go wrong: it ensures that non-
values always reduce to appropriately typed program states,, but does not rule the possibility of
terms having other possible reductions that lead to ill-typed terms. To rule out this possibility,
we now prove that evaluation is deterministic. First, we require the following lemma.

Lemma 6.4.5 If N is not a value then E[N ] is not a value.

Proof: By induction on the structure of E.

Case: E = []: Then, E[N ] = N , hence is not a value.

Case: E = cE1: Then E1[N ] is not a value (ind. hyp.), so c E1[N ] is not a value.

Case: E = (E1,M2): Then E1[N ] is not a value (ind. hyp.), so (E1[N ],M2) is not a value.

Case: E = (V1,E2): Then E2[N ] is not a value (ind. hyp.), so (V1,E2[N ]) is not a value.

Case: E = E1 M2 or V1 E2 or case E1 of Ω: Immediate.

Theorem 6.4.6 (Determinism of 7→)
If M 7→ π and M 7→ π′ then π = π′.

Proof:
Let E[X] and E′[X ′] be the decompositions of M for the L.H.S. of the two reductions. Then,
X and X ′ are each one of the following forms.

X, X ′ ::= (λx.N) V | case V of Ω | fixu.N

Hence, neither X nor X ′ is a value.

We show by induction on the structure of M that M = E[X] = E[X ′] implies that E = E′

and X = X ′. The result follows because the E[X] on the L.H.S. of the reduction rules have
disjoint possibilities for X, hence M 7→ π and M 7→ π′ must be obtained by the same rule, and
the R.H.S. of each reduction rule is completely determined by the choice of E and X.

We have the following cases for M = E[X] = E′[X ′] in the induction.
Case: M = x or λx.M or cV or (V1,V2) or ().

Cannot occur, since M = E[X] and X not a value implies that
M is not a value, by the preceding lemma.

Case: M = M1 M2 with M1 not a value.
Then the only possibility is E[X] = E1[X] M2 and E′[X ′] = E′1[X

′] M2.
But then E1[X] = E′1[X

′] = M1.
And then E1 = E′1 and X = X ′ (ind. hyp.).
Thus, E = E′.

Case: M = V1 M2 with M2 not a value.
Then the only possibility is E[X] = V1 E2[X] and E′[X ′] = V1 E′2[X

′]
(using the above lemma to rule out E[X] = E1[X]M2 and E[X ′] = E′1[X

′]M2).
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But then E2[X] = E′2[X
′] = M2.

And then E2 = E′2 and X = X ′ (ind. hyp.).
Thus, E = E′.

Case: M = V1 V2.
Then the only possibility is V1 = λx.N1

and E = [] with X = (λx.N1) V2 and E′ = [] with X ′ = (λx.N1) V2.
Case: M = cM1 with M1 not a value.

Then the only possibility is E[X] = cE1[X] and E′[X ′] = cE′1[X
′].

But then E1[X] = E′1[X
′] = M1.

And then E1 = E′1 and X = X ′ (ind. hyp.).
Thus, E = E′.

Case: M = (M1,M2) with M1 not a value.
Then the only possibility is E[X] = (E1[X],M2) and E′[X ′] = (E′1[X

′],M2).
But then E1[X] = E′1[X

′] = M1.
And then E1 = E′1 and X = X ′ (ind. hyp.).
Thus, E = E′.

Case: M = (V1,M2) with M2 not a value.
Then the only possibility is E[X] = (V1,E2[X]) and E′[X ′] = (V1,E

′
2[X

′])
(using the above lemma to rule out E[X] = (E1[X],M2) and E[X ′] = (E′1[X

′],M2)).
But then E2[X] = E′2[X

′] = M2.
And then E2 = E′2 and X = X ′ (ind. hyp.).
Thus, E = E′.

Case: M = case M1 of Ω with M1 not a value.
Then the only possibility is E[X] = case E1[X] of Ω and E′[X ′] = case E′1[X

′] of Ω.
But then E1[X] = E′1[X

′] = M1.
And then E1 = E′1 and X = X ′ (ind. hyp.).
Thus, E = E′.

Case: M = case V1 of Ω.
Then the only possibility is E = [] with X = case V1 of Ω

and E′ = [] with X ′ = case V1 of Ω.

Case: M = u.
Cannot occur: no decomposition E[X] matches the form u.

Case: M = fixu.M1.
Then the only possibility is E = [] with X = fixu.M1 and E′ = [] with X ′ = fixu.M1.

We note that it is necessary include match exceptions in the semantics in order for the progress
theorem to hold. By contrast, the corresponding result for sorts rules out match exceptions,
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and would thus satisfy progress with respect to a semantics that omitted match exceptions.
However, since we take the view that types judge the validity of terms, and not sorts, the
semantics with match exceptions is the one that we are most interested in.

The semantics without match exceptions may still be of interest though: we can consider it
to be a “refinement” of the semantics that includes match exceptions. It seems likely that there
are other instances where refinements of the type system of a language can be related to such
“refined” semantics. We plan to consider this notion of “refining” semantics further in future
work.

6.5 Declarative sort assignment

We now consider sort assignment for ML&case. The sort assignment judgments require an
appropriate form of pattern sort context ∆ containing assumptions for both variables and
patterns, which is defined below. For simplicity, value variables x are treated as a special
case of patterns, hence we have two kinds of assumptions: those for patterns and those for
expressions variables u. Pattern sort assumptions have the form P∈Z where Z is a pattern
sort, which are a generalization of sorts that are designed to accurately describe the values
that may reach a particular branch of a case expression. The form P∈Z can thus be used to
express an assumption that some of the values reaching a branch match the branch’s pattern.
Pattern sort contexts ∆ thus generalize sort contexts with features appropriate for a language
with pattern matching. The new features may only appear at the top-level of a pattern sort,
i.e., outside of all sorts R that appear within the pattern sort.

Pattern Sort Z ::= R | cZ | (Z1, Z2) | () | Z1 t Z2 | ⊥A

Pattern Sort Context ∆ ::= . | ∆, P∈Z | ∆, u∈R

The constructs cZ, (Z1,Z2) and () mirror the constructs for values and patterns. An alternative
would be to use the notation Z1×Z2 and 1 instead of (Z1,Z2) and (), but this would conflict
with the notation for sorts, in particular when Z1 and Z2 are sorts, potentially leading to
confusion. Further, the purpose of these constructs is to directly describe the structure of
values, so it seems preferable to mirror the constructs used for values (and in the case of cZ
there seems to be no obvious alternative). Informally, cZ is the pattern sort containing every
value cV that has V contained in Z, (Z1,Z2) contains every value (V1,V2) that has V1 in Z1

and V2 in Z2, and the pattern sort () contains only the value ().
The construct Z1 t Z2 forms a union of two pattern sorts, i.e., a pattern sort containing

all values in either Z1 or Z2. The construct ⊥A is an empty pattern sort. The type A in ⊥A

is required so that each pattern sort refines a unique type. We omit A when it is clear from
context, or of little interest.

We extend notion of refinement to pattern sorts and pattern sort contexts as follows.

`Σ Z @. A Z is a valid pattern sort refining type A.

`Σ ∆ @ Γ;Φ ∆ is a valid pattern sort context refining Γ and Φ.
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Valid pattern sorts

R @ A

R @. A

Z @. B cB in D a = D in Σ

cZ @. a

Z1 @. A Z2 @. B

(Z1,Z2) @. A×B () @. 1

Z1 @. A Z2 @. A

Z1 t Z2 @. A ⊥A @. A

Valid pattern sort contexts

. @ .
∆ @ Γ;Φ Z @. A

(∆, P∈Z) @ Γ; (Φ, P :A)

∆ @ Γ;Φ R @ A

(∆, u∈R) @ (Γ, u:A); Φ

For uniqueness, the refinement judgment for pattern sort contexts ∆ @ Γ;Φ places all assump-
tions of the form x:A in the pattern context Φ, although they could equally be placed in Γ.
This is not so important, since Γ; (Φ, x:A) ` M :A if and only if (Γ, x:A); Φ ` M :A. In some
cases we need to relate a pattern context Φ to an ordinary context Γ which includes appropriate
types to the variables in the patterns in Φ. We do this via the following judgment.

`Σ Φ ∼= Γ Pattern context Φ is equivalent to Γ

Equivalence of pattern and ordinary contexts

. ∼= .
Φ ∼= Γ1 Γ2 ` P : A every x in Γ2 is in P

Φ, P :A ∼= Γ1,Γ2

The condition “every x in Γ2 is in P” is required since the typing derivation allows unused
variables in Γ2. An equivalent alternative that avoids this condition would be to use left rules
to relate Φ and Γ, via a hypothetical judgment that is parametric in the M and A on the right,
as follows.

[Γ; . ` M : A]
...

.; Φ ` M : A

Φ ∼= Γ

We now define the sort assignment judgments. The first is similar to the standard sort
assignment judgment as in previous chapters, although generalized to pattern sort contexts.
The second is used when matching against the body of a case expression.
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∆ `Σ M ∈ R Expression M has sort R
under pattern sort context ∆ and signature Σ.
(Where Γ; Φ `Σ M ∈ A with ∆ @ Γ;Φ and R @ A.)

∆ `Σ Z 1 Ω ∈ R Matching pattern sort Z with branches Ω yields
sort R under pattern sort context ∆ and signature Σ.
(Where Γ1,Γ2 ` A 1 Ω : B with ∆ @ Γ1; Φ2

and Φ2
∼= Γ2 and Z @ A and R @ B.)

We also require a judgment which defines an inclusion of pattern sorts in sort unions,
and is used to ensure that assumptions for variables of the form x∈Z can be converted into
ordinary sort assumptions x∈R (via a case analysis when the union has many components).
A sort union Y is a union of a list of sorts. Formally, we define sort unions as a subclass of
pattern sorts, as follows.

Sort Union Y ::= ⊥ | Y t R

The inclusion of pattern sorts in sort unions is defined as follows.

`Σ Z � Y Pattern sort Z is contained in sort union Y under Σ.
(Where Z @. A and Y @. A for some A.)

We generally omit the signature Σ from instances of the above judgments to avoid clut-
ter, since it is fixed throughout the rules which follow. We also often omit the ` when there
are no assumptions, and in particular we write Z � Y for `Σ Z � Y .

The sort assignment rules appear in Figure 6.2, and the pattern sort inclusion rules appear
in Figure 6.3. We divide the sort assignment rules into three parts, for consistency with the
presentation of the typing rules, even though here the left rules are part of the same judgment
as the ordinary, right rules for term constructs.

The sort assignment and pattern sort inclusion rules make use of the definitions of construc-
tor sorts and inversion principles from Section 6.1, which in turn make use of the definitions of
datasort bodies from Section 5.5. For convenience, these definitions are repeated in Figure 6.4.

Right rules

One critical feature of the sort assignment rules is that the variable rule is restricted to assump-
tions involving ordinary sorts x∈R, and does not allow other forms of pattern sorts. Thus,
pattern sorts are only used during pattern matching, and for assumptions for variables bound
in patterns, but only ordinary sorts are assigned to terms.

Otherwise, the first group of rules is essentially the rules from Chapter 3 other than the rule
for constants, which is replaced by a rule for constructor applications using the form c S � ρ
introduced in Section 6.1. We add standard introduction rules for products, rules for fix and
expression variables based on those in Chapter 4, and a rule for case expressions which matches
a sort for the case object with the cases in the case expression.
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x∈R in ∆

∆ ` x ∈ R

∆, x∈R ` M ∈ S

∆ ` λx.M ∈ R→S

∆ ` M ∈ R→S ∆ ` N ∈ R

∆ ` M N ∈ S

u∈R in ∆

∆ ` u ∈ R

∆, u∈R ` M ∈ R

∆ ` fix u.M ∈ R

cS � ρ ∆ ` M ∈ S

∆ ` cM ∈ ρ

∆ ` M ∈ R ∆ ` N ∈ S

∆ ` (M,N) ∈ R×S ∆ ` () ∈ 1

∆ ` M ∈ R ∆ ` R 1 Ω ∈ S

∆ ` case M of Ω ∈ S

∆ ` M ∈ R R � S

∆ ` M ∈ S

∆ ` V ∈ R ∆ ` V ∈ S

∆ ` V ∈ R&S ∆ ` V ∈ >A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆, P∈Z ` M∈R ∆ ` (Z\P ) 1 Ω ∈ R

∆ ` Z 1 (P ⇒ M | Ω) ∈ R

Z � ⊥
∆ ` Z 1 . ∈ R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

∆, P1∈Z1, P2∈Z2 ` M∈R

∆, (P1, P2)∈ (Z1,Z2) ` M∈R

∆, P1∈S1, P2∈S2 ` M∈R

∆, (P1, P2)∈S1×S2 ` M∈R

∆ ` M∈R

∆, ()∈ () ` M∈R

∆ ` M∈R

∆, ()∈ 1 ` M∈R

∆, P∈Z ` M∈R

∆, c P ∈ cZ ` M∈R

c 6= c2

∆, c P ∈ c2 Z ` M∈R

∆, c P ∈ inv(ρ) ` M∈R

∆, c P ∈ ρ ` M∈R

∆, P∈⊥ ` M∈R

∆, P∈Z1 ` M∈R ∆, P∈Z2 ` M∈R

∆, P ∈Z1tZ2 ` M∈R

Z � Y ∆, x∈Y ` M∈R

∆, x∈Z ` M∈R

S � Y ∆, P∈Y ` M∈R

∆, P∈S ` M∈R

Figure 6.2: Sort assignment rules for terms, branches, and patterns
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`Σ R � S

R � S

`Σ R � .
R � ⊥

Z1 � Y1 Z2 � Y2

Z1tZ2 � t{R |R in Y1 or Y2}

() � 1

Z1 � Y1 Z2 � Y2

(Z1, Z2) � t{R1×R2 | R1 in Y1, R2 in Y2} ⊥ � ⊥

Z � R1 t . . . t Rn cR1 � ρ1 . . . c Rn � ρn

cZ � ρ1 t . . . t ρn

Figure 6.3: Pattern sort inclusion rules

body(r) = Ψ when r = Ψ in Σ

body(ρ1&ρ2) = t {c (R1&R2) | cR1 in body(ρ1), cR2 in body(ρ2)}
body(>a) = t {c>A | cA in D} when a = D in Σ

inv(ρ) = body(&{r | ρ � r})

`Σ c S � ρ Constructor c maps from S to ρ.

cR in body(ρ) S � R

`Σ c S � ρ

Figure 6.4: Bodies, inversion principles and constructor sorts (repeated from before)
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Rules for lists of branches

The judgment for the branches of a case expression considers the body of each branch under
the assumption that the pattern for the branch matches the pattern sort describing the values
that may reach that case. It uses the subtraction operator Z\P (defined below) to calculate a
pattern sort describing the values that reach each branch. When there are no more branches,
we check that the final pattern sort is empty, ensuring that every possible value is matched by
some case.

Left rules

The third group contains the left rules for the judgment ∆ `Σ M ∈ R. These rules match
patterns against pattern sorts in the pattern assumptions P∈Z in ∆. We include enough rules
to match every well-formed pattern assumption P∈Z in the conclusion. We allow the order of
assumptions in ∆ to be exchanged, hence these rules apply to any assumption in the context
∆, not just the last one. We could make this explicit in the rules by adding a ∆′ to the end of
each context. E.g., the rule for t could be written as follows.

∆, P∈Z1,∆′ ` M∈R ∆, P∈Z2,∆′ ` M∈R

∆, P ∈Z1tZ2,∆′ ` M∈R

Omitting these ∆′ and implicitly allowing exchange results in a less cluttered presentation. This
is important since already each rule is parametric in a ∆, an M and an R; with ∆′ as well the
underlying simplicity of each rule would be less obvious. Further, these declarative rules are
intended to reflect the reasoning used by programmer, and allowing implicit exchange seems to
most accurately reflect the intention that the programmer need not keep track of the order of
assumptions.

The left rule for an assumption of the form c P∈ρ expands ρ using its inversion principle
inv(ρ) as defined in Section 6.1. Note that an inversion principle has the form of a datasort
body Ψ = c1 R1 t . . . t cn Rn, which corresponds to a pattern sort.

Inversion principles involve unions, and unions also arise from the subtraction operator Z\P
when P involves pairs. The left rule for a pattern assumption involving such a union P∈Z1tZ2

performs a case analysis: we check that the desired conclusion holds under P∈Z1 and under
P∈Z2. This rule is essentially the left rule for disjunction, and our operator t is essentially a
restricted form of union types designed specifically to allow case analysis when assigning sorts
to pattern matches. Using left rules allows us to specify this case analysis in a very natural
way, while other approaches to sort assignment for patterns do not seem well suited for this
purpose.

Two of the left rules involve pattern assumptions that are false: c P∈c2 Z and P∈⊥. In
these cases the conclusion holds without checking the expression M at all. These correspond
to situations where the expression M appears in a branch that is unreachable.

Finally, we have two forms of subsumption: the first applies only to variable pattern as-
sumptions x∈Z, while the second applies only to pattern sort assumptions with (non-pattern)
sorts P∈S. Each allows the pattern sort to be replaced by a sort union Y . Attempting to
combine the two left subsumption rules into a single, more general rule leads to a situation

157



where an inversion principle can be applied inappropriately via subsumption from cP∈cZ to
cP∈Y , with Y = ρ1 t . . . t ρn. 3

Inclusion in sort unions

The rules for the judgment Z � Y are designed to be somewhat minimal, while still incorporat-
ing subsorting R � S and allowing every pattern sort to be replaced by a sort union. It seems
possible to enrich this judgment to a more general inclusion between pattern sorts, although it
is not clear what we would gain from doing so, and it is clear that we need to be careful with
such an enrichment. In particular, we do not want to allow every inclusion that is validated by
considering the sets of values that inhabit pattern sorts. If we did, it would allow unrestricted
case analysis of a datasort to be performed, since we would have ρ � c1 R1 t . . . t cn Rn pro-
vided all values in ρ have the form ciV with V ∈ Ri (thus including ρ � inv(ρ)). This violates
one of the principles behind the design of the system: that case analysis for a datasort is only
performed when it is matched against a constructor, and only using its inversion principle.

Pattern sort subtraction

The rule for matching a pattern sort against a case makes use of the subtraction operator Z\P
which calculates a pattern sort representing that part of Z not matched by the pattern P .
The definition of this operator is closely based on the left rules for sort assignment: each rule
involving a pattern assumption of the form P∈Z leads to a clause for the definition of Z\P .
The definition of Z\P thus contains the following clauses. When Z and P match more than
one clause we use the earliest one (although this choice is not significant).

Z \ x = ⊥
(Z1, Z2) \ (P1, P2) = ((Z1\P1), Z2) t (Z1, (Z2\P2))

R \ (P1, P2) = ((R1\P1), R2) t (R1, (R2\P2)) (if R
⇒' R1⊗R2)

Z \ () = ⊥
(cZ) \ (c P ) = c (Z\P )
(cZ) \ (c′ P ) = cZ (when c 6= c′)

ρ \ (c P ) = inv(ρ) \ (c P )
⊥ \ P = ⊥

(Z1 t Z2) \ P = (Z1\P ) t (Z2\P )

This definition is inductive, but requires a complicated well-ordering due to the case which
uses the inversion principle inv(ρ). To simplify the situation, we formally make the definition
inductive on P,Z lexicographically by modifying the right-hand side for this case to the slightly
less intuitive expression which follows.

ρ \ (c P ) =
⊔
{c(R\P ) | cR in inv(ρ)}

t
⊔
{c′R′ | c′R′ in inv(ρ) and c′ 6= c}

3Previously these were combined into one form, but this leads to the completeness theorem for the checking
algorithm being false.
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The definition of Z\P covers every case that can arise when the types associated with Z
and P are the same. Each clause is relatively straightforward. The result of subtracting a pair
pattern is a union: a pair fails to match a pair pattern when either the first component fails
to match, or the second component fails to match. To subtract a constructor pattern c P from
a base refinement ρ we first expand ρ using its inversion principle. This follows the guiding
principle that we make use of the inversion principle for ρ whenever an object with sort ρ is
matched against a constructor, and do not use it at any other time.

One notable choice that we have made here is in the definition of subtraction for products.
An alternative definition is the following (and similarly for R\(P1,P2)).

(Z1, Z2) \ (P1, P2) = (Z1\P1, Z2\P2) t (Z1\P1, Z2∧P2)
t (Z1∧P1, Z2\P2)

This requires the intersection operation on pattern sorts Z∧P to be defined, in a similar manner
to Z\P . We have chosen against this alternative since it is a little more complex, and we would
like the declarative sort assignment system to be as simple as possible.

However, we observe that the above alternative definition leads to a slightly more detailed
case analysis. We have implemented and experimented with this alternative definition in our
sort checker for SML, and so far we have not encountered an example where this more detailed
analysis is desirable. Interestingly, the more detailed alternative is often more efficient: when
there is a sequence of subtractions for products the actual definition often leads to unions with
many redundant components because values in ((Z1\P1), (Z2\P2)) are represented in both parts
of the union. Such redundant components are removed prior to checking the body of a branch,
but they still have a measurable effect on the performance of the implementation.

6.6 Progress and sort preservation theorem

We now consider a proof of a theorem that states that our operational semantics preserves
sorts, and additionally that progress is satisfied without the possibility of a match exception for
closed terms which can be assigned sorts. In order to prove this theorem we require a suitable
notion of when closed values inhabit pattern sorts: previously pattern sorts have only been con-
sidered in assumptions. We thus introduce a new judgment for this purpose, with the expected
rules. The syntax for this judgment V ∈Z intersects with the abbreviated syntax for a sort
assignment judgment M∈R with no assumptions. However no confusion should occur, since
when the pattern sort Z is a sort S, the two judgments coincide. When we wish to explicitly re-
fer to the original sort assignment judgment, we include the prefix ` (as in the first rule below).
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V ∈ Z Value V is assigned sort Z.
(Where V :A and Z @. A.)

` V ∈ R

V ∈ R () ∈ ()

V1 ∈ Z1 V2 ∈ Z2

(V1,V2) ∈ (Z1,Z2)

V ∈ Z

cV ∈ cZ

V ∈ Z1

V ∈ Z1tZ2

V ∈ Z2

V ∈ Z1tZ2

Our first two lemmas correspond directly to those in the proof of the progress and type preser-
vation theorem in Section 4.5. The first is value preservation, which is extended to the value
substitutions σ = {V1/x1, . . . , Vn/xn} used in the semantics for pattern matching, and which
include {V ′/x}V as a special case.

Lemma 6.6.1 (Value Preservation)

1. σV is a value.

2. {M/u}V is a value.

Proof: By straightforward inductions on V . The case for a variable that appears in σ follows
because σ only contains values. The case for u cannot occur, since u is not a variable. The
remaining cases simply rebuild the value.

The expression substitution lemma for this language has two parts, corresponding to the two sort
assignment judgments. We remark that patterns bind variables, so substitution avoids capturing
such variables. We delay consideration of the value substitution lemma until later, when we
will be in a position to prove an appropriate generalization for pattern sort assumptions.

Lemma 6.6.2 (Expression Substitution Lemma)
If ∆ ` M : R then the following hold.

1. If ∆, u:R ` N : S then ∆ ` {M/u}N : S.

2. If ∆, u:R ` Z 1 Ω ∈ S then ∆ ` Z 1 {M/u}Ω ∈ S.

Proof: By induction on the structure of the derivation involving u. The case for the variable
rule with u makes use of the derivation of ∆ ` M : R. The remaining cases simply rebuild the
derivation.

We now prove some lemmas that characterize the values inhabiting sorts, pattern sorts, sort
unions Y , the sort unions U of Chapter 5, and datasort bodies.

Lemma 6.6.3 (Weak Value Inversion for Datasorts)
If V ∈ρ then V = cW and W∈R
with cR in body(ρ′) for some ρ′ � ρ.
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Proof: By induction on the structure of D :: V ∈ρ.

Case: c S � ρ ` W ∈ S

` cW ∈ ρ

cR in body(ρ) with S � R Inv. on �

W∈R Subsumption Rule
ρ � ρ Reflexivity (5.8.11)

Case: ` V ∈ ρ2 ρ2 � ρ1

` V ∈ ρ1

V = cW and W∈R with
cR in body(ρ3) and ρ3 � ρ2. Ind. Hyp.
ρ3 � ρ1 Transitivity (5.8.11)

Case: ` V ∈ ρ1 ` V ∈ ρ2

` V ∈ ρ1 & ρ2

V = cW and W∈R1

with cR1 in body(ρ′1) and ρ′1 � ρ1. Ind. Hyp.
V = cW and W∈R2

with cR2 in body(ρ′2) and ρ′2 � ρ2. Ind. Hyp.
W∈R1&R2 &-Intro
c (R1&R2) in body(ρ′1&ρ′2) Def. body

ρ′1&ρ′2 � ρ1&ρ2 Lemma 5.8.11

Case:
` V ∈ >a

V : a Well-formedness of V ∈ >a

V = cW with W : B
and (cB) in D and (a = D) in Σ Inv. on V : a

W ∈ >B >-Intro
c>B in body(>a) Def. body

Lemma 6.6.4 If ` (V1, V2) ∈ R

then ` V1 ∈ R1 and ` V2 ∈ R2 and R1×R2 � R for some R1, R2.

Proof: By induction on D :: ` V ∈ R.

Case:
` V1 ∈ R1 ` V2 ∈ R2

` (V1, V2) ∈ R1×R2

Then R = R1×R2,
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and R1×R2 � R1×R2 Reflexivity (5.8.11)

Case:
` (V1, V2) ∈ S S � R

` (V1, V2) ∈ R

V1 ∈ S1 and V2 ∈ S2 and S1×S2 � S Ind. Hyp.
S1×S2 � R Transitivity (5.8.11)

Case:
` (V1, V2) ∈ R ` (V1, V2) ∈ S

` (V1, V2) ∈ R&S

V1 ∈ R1 and V2 ∈ R2 and R1×R2 � R Ind. Hyp.
V1 ∈ S1 and V2 ∈ S2 and S1×S2 � S Ind. Hyp.
V1 ∈ R1&S1 and V2 ∈ R2&S2 &-Intro
(R1&S1)×(R2&S2) � R Lemmas 5.8.11, 5.8.10
(R1&S1)×(R2&S2) � S Lemmas 5.8.11, 5.8.10
(R1&S1)×(R2&S2) � R&S Lemma 5.8.11

Case: ` (V1, V2) ∈ >A×B

V1 ∈ >A and V2 ∈ >B >-Intro

>A×>B � >A×B Lemma 5.8.10

Lemma 6.6.5 If R @ 1 then . ` () ∈ R.

Proof: By a straightforward induction on R.
The cases for R = 1 and R = >1 are immediate.
The case for R = R1 & R2 applies the induction hypothesis to R1 and R2, then uses &-
introduction.

Lemma 6.6.6 (Product Inclusion Inversion)
If R1×R2 � S1×S2 then one of the following holds:

1. R1 � S1 and R2 � S2

2. R1 � .
3. R2 � .
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Proof: By inversion on D :: R1×R2 � S1×S2.

(R1\.)⊗ (R2\.) � S1×S2 Inv.
(R1\S1)⊗ (R2\.) � . Inv.
(R1\.)⊗ (R2\S2) � . Inv.
R1 � S1 or R2 � . Inv.
R1 � . or R2 � S1 Inv.
(R1 � S1 and R2 � S2) or R1 � . or R2 � .

We now show a generalized form of subsumption, which holds trivially for inclusions of the form
R � S, by the subsumption rule. However, in its general form, including unions and datasort
bodies, this is the key lemma which allows us to determine the impossibility of values inhabiting
some pattern sorts (such as at the end of a list of branches), and also allows us to justify our
inversion principles.

This lemma has similarities to the soundness theorem for � (5.6.10 and 5.8.2): both relate
the inhabitants of sorts, unions, and bodies when an algorithmic inclusion holds. However, here
the notion of inhabitation is via the sort assignment judgment, while in the soundness theorem
inhabitation was via the inductive semantics. The proofs of the two lemmas have a similar
structure.

Lemma 6.6.7 (Generalized subsumption)

1. If R � U and V ∈R
then V ∈S for some S in U .

2. If Ψ1 � Ψ2 and V ∈R and cR in Ψ1

then V ∈S with c S in Ψ2.

3. If R1\U1 ⊗R2\U2 � U

and V1∈R1 and V2∈R2 and V = (V1,V2)

then V1∈S1 for some S1 in U1

or V2∈S2 for some S2 in U2

or V ∈S for some S in U .

Proof: By induction on the structure of the value V and the subsorting derivation, lexico-
graphically. We have the following cases for the derivation.

Case:
bρc � buc in Θ

Θ ` ρ � u

Cannot occur: Θ = . throughout the lemma.

Case: bρc≤buc not in . bρc≤buc ` bodybρc � ubodybuc
. ` ρ � u
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V ∈ρ Assumption
V = cW with W∈R1

and cR1 in body(ρ1) and ρ1 � ρ Weak Inv. Lem. (6.6.3)
ρ1 � u Transitivity (5.8.11)
body(ρ1) � body(u) Lemma 5.6.2
W ∈ S1 and cS1 in ubody(u) Ind. Hyp. (W smaller)
cS1 in body(ρ1) for some ρ1 in u Def. ubody

cS1 � ρ1 Rule for �

cW ∈ ρ1 Constr. App. Rule
As required, since V = cW and ρ1 in u.

Case:
R @ 1

. ` R � U t S

V : 1 Well-formedness of V ∈ R

V = () Inv. on V : 1

S @ 1 Well-formedness of . ` R � U t S

V ∈ S Lemma 6.6.5

Case:
R

⇒' R1 ⊗R2 . ` (R1\.)⊗ (R2\.) � U

. ` R � U

V ∈ R Assumed

R @ A1×A2 Well-formedness of R
⇒' R1 ⊗R2

V : A1×A2 Well-formedness of V ∈ R

V = (V1,V2) Inv. on V : A1×A2

V1 ∈ S1 and V2 ∈ S2 with S1×S2 � R Lemma 6.6.4
R � R1×R2 Lemma 5.6.8
S1×S2 � R1×R2 Transitivity (5.8.11)

(S1 � R1 and S2 � R2)
or S1 � . or S2 � . Prod. Inv. Lemma 6.6.6

If S1 � . then:
V1 ∈ S1 with S1 in . Ind. Hyp. (smaller V )
Contradiction.

(The case for S2 � . is dual.)

So, S1 � R1 and S2 � R2

V1 ∈ R1 and V2 ∈ R2 Subsumption Rule
(V1,V2) ∈ S with S in U Ind. Hyp.

(same V , subderivation)
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Case: . ` . � Ψ

Cannot occur, since . is empty.

Case:
. ` Ψ1 � Ψ2 . ` R1 � t{S2 | c1 S2 in Ψ2}

. ` Ψ1t c1R1 � Ψ2

V ∈ R with cR in Ψ1t c1R1 Assumed
cR in Ψ1 or cR = c1R1

If cR in Ψ1 then:
V ∈ S with cS in Ψ2 Ind. Hyp. (same V , subderiv.)

Otherwise: c = c1 and R = R1

V ∈ S with S in t{S | c S in Ψ2} Ind. Hyp. (same V , subderiv.)
cS in Ψ2

Case:

. ` (R1\U1t S1) ⊗ (R2\U2) � U

S
⇒' S1 ⊗ S2 . ` (R1\U1) ⊗ (R2\U2t S2) � U

. ` (R1\U1) ⊗ (R2\U2) � U t S

Either V1∈S′1 for some S′1 in U1 t S1

or V2∈S′2 for some S′2 in U2

or V ∈S′ for some S′ in U Ind. Hyp.
(same V , subderiv.)

Either V1∈S′′1 for some S′′1 in U1

or V2∈S′′2 for some S′′2 in U2 t S2

or V ∈S′′ for some S′′ in U Ind. Hyp.
(same V , subderiv.)

In each case, we have one of three required alternatives,
except for the following case:

V1∈S1 with S1 in U1 t S1 and
V2∈S2 with S2 in U2 t S2

Then:
(V1,V2) ∈ S1×S2 Rule for ×
S1×S2 � S Lemmas 5.6.8, 5.8.10
(V1,V2) ∈ S Subsumption Rule

Case:
. ` R1 � U1

. ` R1\U1 ⊗R2\U2 � .
V1∈R1 Assumed
V1∈S1 for some S1 in U1 Ind. Hyp. (V1 smaller)
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Case:
. ` R2 � U2

. ` R1\U1 ⊗R2\U2 � .
Dual to the previous case.

Case: . ` S1 � R1 . ` R2 � S2

. ` R1 →R2 � S1 → S2

V ∈R1 →R2 Assumption
V ∈S1 → S2 Subsumption rule

[The other cases for rules for functions which have a single sort on the right hand side
are essentially the same.]

Case:
R @ A1 →A2 Θ ` R � U

Θ ` R � U t S

V ∈R Assumed
V ∈S′ for some S′ in U Ind. Hyp. (Same V , subderiv.)

Case:
R @ A1 →A2 Θ ` R � S

(U 6= .)
Θ ` R � U t S

V ∈R Assumed
V ∈S Subsumption rule

Next we prove a similar result for inclusions Z � Y , which has a useful corollary for the case
when Y has no components.

Lemma 6.6.8 (Subsumption for sort unions)
If V ∈Z and Z � Y then ` V ∈S for some S in Y .

Proof: By induction on the structure of the derivation of Z � U .

Case:
. `Σ R � .

R � ⊥

V ∈R Assumed
V ∈S with S in . Gen. Subs. Lem. (6.6.7)
Impossible, case cannot occur.

Case:
. `Σ R � S

R � S

By the subsumption rule.
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Case:
Z1 � Y1 Z2 � Y2

Z1 t Z2 � t{R |R in Y1 or Y2}
Then, V ∈Z1 or V ∈Z2 (inversion)
So, V ∈S for some S in Y1 or Y2 (ind. hyp.)

Case: ⊥ � ⊥
Then, V ∈⊥ is impossible. (No rule matches this conclusion.)
Case cannot occur.

Case: () � 1

Then, V = () and ` () ∈ 1.

Case:
Z1 � Y1 Z2 � Y2

(Z1, Z2) � t{R1×R2 | R1 in Y1, R2 in Y2}

V ∈(Z1,Z2) Assumed
V = (V1,V2) and V1∈Z1 and V2∈Z2 Inversion
V1∈S1 for some S1 in Y1 Ind. Hyp.
V2∈S2 for some S2 in Y2 Ind. Hyp.
(V1,V2) ∈ S1×S2 Rule for ×
S1×S2 in t{R1×R2 | R1 in Y1, R2 in Y2}

Case:
Z � R1 t . . . t Rn cR1 � ρ1 . . . c Rn � ρn

cZ � ρ1 t . . . t ρn

V ∈ cZ Assumed
V = cW and W∈Z Inversion
W∈Ri for some Ri in R1 t . . . t Rn Ind. Hyp.
cW ∈ ρi Rule for Constr. Appl.

Corollary 6.6.9 (Correctness of emptiness)
If Z � ⊥ then there is no V satisfying V ∈Z.

Proof: Immediate from the above lemma.

Next we prove a lemma which demonstrates that our definition of the inversion principle of a
base refinement ρ is well behaved. We remark that this property fails if we instead directly use
body(ρ) as the inversion principle for ρ.
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Lemma 6.6.10 (Monotonicity of inversion principles)
If ρ1 � ρ2 and c S in inv(ρ1)
then S � R and cR in inv(ρ2) for some R.

Proof: By the definition of inv(.) we have:

inv(ρ1) = body(&{r | ρ1 � r})
inv(ρ2) = body(&{r | ρ2 � r})

The result follows because ρ1 � ρ2 implies:

{r | ρ2 � r} ⊆ {r | ρ1 � r}

&{r | ρ1 � r} � &{r | ρ2 � r}

body(&{r | ρ1 � r}) � body(&{r | ρ2 � r})

Applying the Generalized Subsumption Lemma (6.6.7) yields the required result.

Next we have a lemma that demonstrates that our inversion principles are consistent with the
values inhabiting datasorts.

Lemma 6.6.11 (Strong value inversion for datasorts)
If V ∈ρ then V = cW for some c and W
satisfying W∈S and c S in inv(ρ).

Proof:
V = cW with W∈R

and cR in body(ρ′) and ρ′ � ρ Weak Inv. Lemma (6.6.3)
inv(ρ) = body(&{r | ρ � r}) Def. inv(.)
ρ � &{r | ρ � r} & is g.l.b. (5.8.11)
ρ′ � &{r | ρ � r} Transitivity (5.8.11)
body(ρ′) � inv(ρ) Lemma 5.6.2

W∈S with cS in inv(ρ) Gen. Subs. Lemma (6.6.7)

Lemma 6.6.12 (Value inversion for pairs)
If V ∈ R1×R2 then V = (V1,V2) with V1∈R1 and V2∈R2.
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Proof:
V : A1×A2 for some A1 and A2 Well-formedness of V ∈S1×S2

V = (V1,V2) Inversion
V1∈S1 and V2∈S2 with S1×S2 � R1×R2 Lemma 6.6.4
(S1 � R1 and S2 � R2)

or S1 � . or S2 � . Prod. Inv. Lemma 6.6.6
If S1 � . then:

V1 ∈ S1 with S1 in . Gen. Subs. Lemma (6.6.7)
Contradiction.

(The case for S2 � . is dual.)

So, S1 � R1 and S2 � R2

V1 ∈ R1 and V2 ∈ R2 Subsumption Rule

We continue by proving a substitution lemma for the situation where a substitution σ is applied
to a sort assignment derivation with a corresponding pattern sort assumption.

Lemma 6.6.13 (Pattern substitution)
If V ∈Z and V = σP and P∈Z ` M ∈ R

then σM ∈ R.

Proof: By induction on the derivation of P∈Z ` M ∈ R, generalizing to:

If V1∈Z1 and . . . and Vn∈Zn, and V1 = σP1 and . . . and Vn = σPn,
and ∆2 = P1∈Z1, . . . , Pn∈Zn

and the domain of σ excludes variables bound in ∆1 then:

1. If ∆1,∆2 ` M ∈ R then ∆1 ` σM ∈ R.

2. If ∆1,∆2 ` S 1 Ω ∈ R then ∆1 ` S 1 σΩ ∈ R.

Case:
x∈R in ∆2

∆1,∆2, ` x ∈ R

Pi = x and Vi∈R and Vi = σx Assumed
` σx ∈ R Since Vi = σx

Case:
x∈R in ∆1

∆1,∆2 ` x ∈ R

σx = x σ excludes ∆1

∆1 ` x ∈ R Variable rule
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Case:
u∈R in ∆1

∆1,∆2 ` u ∈ R

As for the previous case.

Case:
∆1, x∈R,∆2 ` M ∈ S

∆1,∆2 ` λx:A .M ∈ R→S

Then, rename x so that x is not in σ

∆1, x∈R ` σM ∈ S Ind. Hyp.
∆1 ` λx:A .(σM) ∈ R→S Rule for λ

∆1 ` σ (λx:A .M) ∈ R→S x not in σ

Case:
∆1,∆2 ` M ∈ R ∆1,∆2 ` R 1 Ω ∈ S

∆1,∆2 ` case M of Ω ∈ S

∆1 ` σM ∈ R Ind. Hyp.
∆1 ` R 1 σΩ ∈ S Ind. Hyp.
∆1 ` σ(case M of Ω ∈ S) Rule for case

Case: [The remaining right rules.]
Each similarly rebuilds the derivation, after applying the induction hypothesis.

Case:
∆1, P∈Z,∆2 ` M∈R ∆1,∆2 ` (Z\P ) 1 Ω ∈ R

∆1,∆2 ` Z 1 (P ⇒ M | Ω) ∈ R

Then, rename var’s bound by P in P ⇒ M so that σ excludes P

∆1, P∈Z ` σM ∈ R Ind. Hyp.
∆1 ` (Z\P ) 1 σΩ ∈ R Ind. Hyp.
∆1 ` Z 1 (P ⇒ σM | σΩ) ∈ R Rule
∆1 ` Z 1 σ(P ⇒ M | Ω) ∈ R

Case:
Z � ⊥

∆1,∆2 ` Z 1 . ∈ R

∆1 ` Z 1 . ∈ R Rule

Case:
(∆′1, P

′
1∈Z ′1, P

′
2∈Z ′2),∆2 ` M∈R

(∆′1, (P
′
1, P

′
2)∈ (Z ′1,Z

′
2)),∆2 ` M∈R

σ excludes var’s in ∆′1, (P
′
1, P

′
2)∈ (Z ′1,Z

′
2) (= ∆1) Assumed

σ excludes var’s in ∆′1, P
′
1∈Z ′1, P

′
2∈Z ′2

∆′1, P
′
1∈Z ′1, P

′
2∈Z ′2 ` σM∈R Ind. Hyp.

∆′1, (P
′
1, P

′
2)∈ (Z ′1,Z

′
2) ` σM∈R Left rule for pairs
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Case:
(∆′1, P∈Z ′1),∆2 ` M∈R (∆′1, P∈Z ′2),∆2 ` M∈R

(∆′1, P ∈Z ′1tZ ′2),∆2 ` M∈R

σ excludes var’s in ∆′1, P ∈Z ′1tZ ′2 (= ∆1) Assumed
σ excludes var’s in ∆′1, P ∈Z ′1 and ∆′1, P ∈Z ′2
∆′1, P∈Z ′1 ` σM∈R Ind. Hyp.
∆′1, P∈Z ′2 ` σM∈R Ind. Hyp.
∆′1, P ∈Z ′1tZ ′2 ` σM∈R Left rule for t

Case: [The remaining left rules involving ∆1.]
Each similarly rebuilds the derivation, after applying the induction hypothesis.

Case:
∆1, (∆′2, P

′
1∈Z ′1, P

′
2∈Z ′2) ` M∈R

∆1, (∆′2, (P
′
1, P

′
2)∈ (Z ′1,Z

′
2)) ` M∈R

Vi ∈ (Z ′1,Z
′
2) Assumed

Vi = (W1,W2) with W1∈Z ′1 and W2∈Z ′2 Inversion
(W1,W2) = σ(P ′1, P

′
2) Assumed

W1 = σP ′1 and W2 = σP ′2
∆1 ` σM∈R Ind. Hyp.

Case:
∆1, (∆′2, P

′
1∈S1, P

′
2∈S2) ` M∈R

∆1, (∆′2, (P
′
1, P

′
2)∈S1×S2) ` M∈R

Vi ∈ S1×S2 Assumed
Vi = (W1,W2) with W1∈S1 and W2∈S2 Value Inv. Lem. (6.6.12)
Vi = σ(P ′1, P

′
2) Assumed

W1 = σP ′1 and W2 = σP ′2
∆1 ` σM∈R Ind. Hyp.

Case:
∆1,∆′2 ` M∈R

∆1, (∆′2, ()∈ ()) ` M∈R

∆1 ` σM∈R Ind. Hyp.

Case:
∆1,∆′2 ` M∈R

∆1, (∆′2, ()∈ 1) ` M∈R

∆1 ` σM∈R Ind. Hyp.
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Case:
∆1, (∆′2, P∈Z) ` M∈R

∆1, (∆′2, c P ∈ cZ) ` M∈R

Vi∈cZ Assumed
Vi = cW with W∈Z Inversion
Vi = σ(cP ) Assumed
W = σP

∆1 ` σM∈R Ind. Hyp.

Case:
(c 6= c2)

∆1, (∆′2, c P ∈ c2 Z) ` M∈R

Vi∈c2Z Assumed
Vi = c2W with W∈Z Inversion
Vi = σ(cP ) = c(σP ) Assumed
Contradiction, case cannot occur.

Case:
∆1, (∆′2, c P ∈ inv(ρ)) ` M∈R

∆1, (∆′2, c P ∈ ρ) ` M∈R

Vi∈ρ Assumed
Vi = cW with W∈S and cS in inv(ρ) Strong Inv. Lem. (6.6.11)
cW ∈ cS Rule for cZ

cW ∈ inv(ρ) Rule for t, repeatedly
∆1 ` σM∈R Ind. Hyp.

Case:
Zi � Y ∆1, (∆′2, x∈Y ) ` M∈R

∆1, (∆′2, x∈Zi) ` M∈R

Vi∈Zi Assumed
Vi∈S with S in Y Sort Union Subs. Lem. (6.6.8)
Vi∈Y Rule for t, repeatedly
∆1 ` σM∈R Ind. Hyp.

Case:
S � Y ∆1, (∆′2, Pi∈Y ) ` M∈R

∆1, (∆′2, Pi∈S) ` M∈R

Vi∈S Assumed
Vi∈S′ with S′ in Y Sort Union Subs. Lem. (6.6.8)
Vi∈Y Rule for t, repeatedly
∆1 ` σM∈R Ind. Hyp.
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Case:
∆1, (∆′2, Pi∈Z ′1) ` M∈R ∆1, (∆′2, Pi∈Z ′2) ` M∈R

∆1, (∆′2, Pi ∈Z ′1tZ ′2) ` M∈R

Vi ∈ Z ′1tZ ′2 Assumed
Vi ∈ Z ′1 or Vi ∈ Z ′2 Inversion
∆1 ` σM∈R Ind. Hyp. (in each case)

Case: ∆1, (∆′2, Pi∈⊥) ` M∈R

Vi ∈ ⊥ Assumed
Impossible, case cannot occur. (No rule matches this conclusion.)

Next we prove a lemma that justifies our use of pattern subtraction to produce a pattern sort
characterizing values not matched by a pattern. This is required in the proof of progress for
the case where we have an expression of the form caseV of P⇒M | Ω.

Lemma 6.6.14 (Coverage of pattern subtraction)
If V ∈Z and Γ ` P : A and Z @ A then one of the following holds:

1. V = σP for some σ containing only variables in P

2. V ∈ Z\P

Proof: By induction on P,Z lexicographically, following the definition of Z\P .

Case: P\x = ⊥
Then V = σx, choosing σ = {V/x}.

Case: (Z1, Z2) \ (P1, P2) = ((Z1\P1), Z2) t (Z1, (Z2\P2))

V ∈ (Z1, Z2) Assumed
V = (V1,V2) with V1∈Z1 and V2∈Z2 Inversion
V1 = σ1P1 or V1∈Z1\P1 Ind. Hyp.
V2 = σ2P2 or V2∈Z2\P2 Ind. Hyp.

(V1,V2) = (σ1P1, σ2P2)
or (V1,V2)∈((Z1\P1), Z2)
or (V1,V2)∈(Z1, (Z2\P2))

(V1,V2) = (σ1σ2)(P1, P2) σ1, σ2 disjoint
or (V1,V2)∈((Z1\P1), Z2) t (Z1, (Z2\P2)) Rule for t

Case: R \ (P1, P2) = ((R1\P1), R2) t (R1, (R2\P2)) with R
⇒' R1⊗R2

V ∈R Assumed
R � R1×R2 Lemma 5.6.8
V ∈R1×R2 Subsumption
V = (V1,V2) with V1∈R1 and V2∈R2 Val. Inv. Lem. 6.6.12
Then, following the previous case.

173



Case: Z \ () = ⊥
V ∈Z Assumed
Γ ` () : A Assumed
A = 1 Inversion
Z @ 1 Assumed
V : 1 Well-formedness of V ∈Z

V = () Inversion
V = σ() where σ = . (empty substitution)

Case: (cZ) \ (c P ) = c (Z\P )

V ∈ cZ Assumed
V = cW with W∈Z Inversion
W = σP or W ∈Z\P Ind. Hyp.
cW = σ(cP ) Def. Substitution

or cW ∈ c(Z\P ) Rule for cW

Case: (cZ) \ (c′ P ) = cZ with c 6= c′

V ∈ cZ Assumed

Case: ρ \ (c P ) =
⊔
{c(R\P ) | cR in inv(ρ)}

t
⊔
{c′R′ | c′R′ in inv(ρ) and c′ 6= c}

V ∈ ρ Assumed
V = c′W with W∈S and c′S in inv(ρ) Strong Value Inv. (6.6.11)

Suppose c′ = c:
c(S\P ) in ρ\(cP )
W = σP or W ∈S\P Ind. Hyp.
cW = σ(cP ) or cW ∈ c(S\P ) Def. Subst., Rule for cZ

cW = σ(cP ) or cW ∈ ρ \ (c P ) Rule for t repeatedly

Suppose c′ 6= c:
c′S in ρ\(cP )
c′W ∈ c′S

c′W ∈ ρ\(cP ) Rule for t repeatedly

Case: ⊥ \ P = ⊥
V ∈⊥ Assumed
Impossible, case cannot occur
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Case: (Z1 t Z2) \ P = (Z1\P ) t (Z2\P )

V ∈ Z1 t Z2 Assumed
V ∈ Z1 or V ∈ Z2 Inversion
Assuming the former (the latter is dual):
V = σP or V ∈Z1\P Ind. Hyp.
V = σP or V ∈ (Z1\P ) t (Z2\P ) Rule for t

The statement of our progress and sort preservation theorem requires a very slightly differ-
ent notion of sort assignment than provided by our declarative rules. This is because sort
preservation can be temporarily violated: when we perform a reduction of the form

E[caseV of P⇒M | Ω] 7→ E[caseV of Ω]

and V is assigned the sort R in the given sorting derivation for the former expression, we
find ourselves wanting to assign V a pattern sort R\P in the latter expression. But, the sort
assignment rules do not allow us to assign pattern sorts to terms, only sorts (recall that the rules
for assigning pattern sorts to values are part of a separate judgment that was only introduced
to allow the technical development in this section).

This situation might seem awkward, but this problem can be easily fixed, in one of three
ways.

1. We could alter the operational semantics so that the appropriate branch is always chosen
in a single step, thus avoiding the need to assign pattern sorts to the intermediate steps.

2. Similarly, we could alter the statement of the theorem so that it only asserts the existence
of a sequence of reductions M 7→+ N of length at least one, resulting in a term with the
same sort as the input.

3. Alternatively, we could add the rules assigning pattern sorts to values to the sort assign-
ment judgment.

The first option seems less than ideal because it complicates the semantics of pattern matching
somewhat. The second option results in a somewhat less precise theorem than the one that we
prove: in particular it does not indicate the situations where sort preservation is temporarily
violated. The third option seems excessive, since the rules added would not be required for any
programs, only for states during the execution of programs.

We thus make the following definition, which allows us to prove a theorem that seems to
most accurately reflects the situation, and that can easily be modified to obtain proofs of any
of the three alternative theorems mentioned above.

Definition 6.6.15 M ∈̂R means that one of the following holds.

1. M ∈ R

2. M = E[caseV of Ω] with V ∈Z

and ` Z 1 Ω ∈ S and u∈S ` E[u] ∈ R.
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The following lemma allows us to compose derivations involving N ∈̂ S without requiring an
explicit case analysis each time.

Lemma 6.6.16 (Expression Substitution for ∈̂)
If u∈R1 ` E[u] ∈ R2 and M ∈̂R1 then E[M ] ∈̂R2.

Proof:
If M∈R1 then E[M ] ∈ R2, by the Expression Substitution Lemma (6.6.2).

If M = E′[caseV of Ω] with V ∈Z and ` Z 1 Ω ∈ S and u∈S ` E′[u] ∈ R1

then:
E[M ] = E2[caseV of Ω] where E2[.] = E[E′[.]]
u∈S ` E2[u] ∈ R2 Expr. Subst. Lem.
E[M ] ∈̂R2 Def. ∈̂

Lemma 6.6.17 (Case reduction)
If V ∈Z and ` Z 1 Ω ∈ S and u∈S ` E[u] ∈ R

then E[caseV of Ω] 7→ E[N ] with E[N ] ∈̂R.

Proof: We have the following cases for D :: Z 1 Ω ∈ S

Case:
Z � ⊥

` Z 1 . ∈ S

V ∈Z Assumed
Impossible, case cannot occur Correctness of Emptiness (6.6.9)

Case:
P∈Z ` M ′∈S ` (Z\P ) 1 Ω′ ∈ S

` Z 1 (P ⇒ M ′ | Ω′) ∈ S

Suppose there exists σ such that V = σP :

E[caseV of (P ⇒ M ′ | Ω′)] 7→ E[σM ′] Red. Rule
V ∈Z Assumed
σM ′ ∈ S Pat. Subst. Lem. (6.6.13)
E[σM ′] ∈ R Expr. Subst. Lem. (6.6.2)

Otherwise, for all σ, V 6= σP , and so:

E[caseV of (P ⇒ M ′ | Ω′)] 7→ E[caseV of Ω′] Red. Rule
V ∈ Z\P Coverage of Pat. Subtr. (6.6.14)
` (Z\P ) 1 Ω′ ∈ S Assumed (premise of rule)
u∈S ` E[u] ∈ R Assumed (Def. ∈̂ above)
E[caseV of Ω′] ∈̂R Def. ∈̂
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Lemma 6.6.18 (Value inversion for →)
If V ∈R and R � S1 → S2

then V = λx.M with x∈S1 ` M ∈ S2.

Proof: By induction on the structure of D :: V ∈R.

The cases for variables cannot occur, since the context is empty.
The cases for applications, fix, case are not values.
The cases for cM , (M1,M2) and () cannot occur, since they lead to sorts incompatible with
S1 → S2.

Thus, the following are the only possible cases.

Case:
x∈R1 ` M ∈ R2

` λx:A .M ∈ R1→R2

R1 →R2 � S1 → S2 Assumed
S1 � R1 and R2 � S2 Inversion
x∈S1 ` x∈R1 Rule for x, Subsumption
x∈S1 ` {x/x}M ∈ R2 Pattern Subst. Lem. (6.6.13)
x∈S1 ` M ∈ S2 Subsumption Rule

Case:
` V ∈ R2 R2 � R

` V ∈ R

R � S1 → S2 Assumed
R2 � S1 → S2 Transitivity (5.8.11)
V = λx.M with x∈S1 ` M ∈ S2 Ind. Hyp.

Case:
` V ∈ R1 ` V ∈ R2

` V ∈ R1 &R2

R1 &R2 � S1 → S2 Assumed
R1 � S1 → S2 or R2 � S1 → S2 Inversion
V = λx.M with x∈S1 ` M ∈ S2 Ind. Hyp. (in each case)

Case: ` V ∈ >A

>A � S1 → S2 Assumed
Impossible, case cannot occur.

Lemma 6.6.19 (Contextual Evaluation)
If M 7→ N then E′[M ] 7→ E′[N ].
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Proof: By analysis of cases for M 7→ N .
We recall that we have the following rules for 7→.

E[(λx.M) V ] 7→ E[{V/x}M ]
E[case V of P ⇒ M | Ω] 7→ E[σM ] (if V = σP )
E[case V of P ⇒ M | Ω] 7→ E[case V of Ω] (@σ.V = σP )

E[case V of .] 7→ MatchException
E[fix u.M ] 7→ E[{fix u.M/u}M ]

Then, for the four rules of the form E[M ′] 7→ E[N ′], the result holds, since also E′[E[M ′]] 7→
E′[E[N ′]].

Further, the rule involving MatchException does not match our assumption that M 7→ N , hence
is outside the scope of the lemma.

Finally, we have the main theorem of this section.

Theorem 6.6.20 (Progress and sort preservation)
If M ∈̂R then one of the following holds.

1. M is a value.

2. M 7→ N , with N ∈̂R.

Proof:
When M∈R: by induction on the structure of the derivation of M∈R. The cases appear below.

Otherwise: the second part of the definition of ∈̂ matches the Case Reduction Lemma (6.6.17),
which yields the required result.

The cases for the induction when M∈R are as follows.

Case:
` M ′ ∈ S ` S 1 Ω ∈ R

` case M ′ of Ω ∈ R

M ′ = V or M ′ 7→ N with N ∈̂S Ind. Hyp.

If M ′ = V then:
u∈R ` E[u] ∈ R where E = [ ] Var. Rule
case M ′ of Ω 7→ N with N ∈̂R Case Red. Lem. (6.6.17)

Otherwise M ′ 7→ N with N ∈̂S. Then:
case M ′ of Ω 7→ case N of Ω Context Eval. Lem. (6.6.19)
u∈S ` case u of Ω ∈ R Rule for case
` case N of Ω ∈̂R Expr. Subst. for ∈̂ (6.6.16)

Case:
x∈R1 ` M ′ ∈ R2

` λx.M ′ ∈ R1→R2

λx.M ′ is a value.
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Case:
` M1 ∈ R2→R ` M2 ∈ R2

` M1 M2 ∈ R

M1 = V1 or M1 7→ N1 with N1∈̂R2 →R Ind. Hyp.

If M1 7→ N1 with N1∈̂R2 →R:

M1 M2 7→ N1 M2 Context Eval. Lem. (6.6.19)
u∈R2 →R ` u M2 ∈ R Rules for u, Appl.
` N1 M2 ∈̂R Expr. Subst. for ∈̂ (6.6.16)

Otherwise M1 = V1, and then:

V1 = λx.M ′
1 and x∈R2 ` M ′

1 ∈ R Value Inv. for → (6.6.18)
M2 = V2 or M2 7→ N2 with N2∈̂R2 Ind. Hyp.

If M2 7→ N2 with N2∈̂R2:

V1 M2 7→ V1 N2 Context Eval. Lem. (6.6.19)
u∈R2 ` V1 u ∈ R Rules for u, Appl.
` V1 N2 ∈̂R Expr. Subst. for ∈̂ (6.6.16)

Otherwise M2 = V2, and then:

(λx.M ′
1) V2 7→ {V2/x}M ′

1 Red. Rule
{V2/x}M ′

1 ∈ R Pat. Subst. Lem. (6.6.13)

Case:
u:R ` M ′ ∈ R

` fix u.M ′ ∈ R

fix u.M ′ 7→ {fix u.M ′/u}M ′ Red. Rule
{fix u.M ′/u}M ′ ∈ R Expr. Subst. Lem. (6.6.2)

Case:
c S � ρ ` M ′ ∈ S

` cM ′ ∈ ρ

M ′ = V ′ or M ′ 7→ N ′ with N ′∈̂S Ind. Hyp.

If M ′ 7→ N ′ with N ′∈̂S:

cM ′ 7→ cN ′ Context Eval. Lem. (6.6.19)
u∈S ` c u ∈ ρ Rules for u, Constr. Appl.
` cN ′ ∈̂ ρ Expr. Subst. for ∈̂ (6.6.16)

Otherwise M1 = V1, and then:

c V1 is a value.

179



Case:
` M1 ∈ R1 ` M2 ∈ R2

` (M1,M2) ∈ R1×R2

M1 = V1 or M1 7→ N1 with N1∈̂R1 Ind. Hyp.

If M1 7→ N1 with N1∈̂R1:

(M1,M2) 7→ (N1,M2) Context Eval. Lem. (6.6.19)
u∈R2 →R ` (u,M2) ∈ R Rules for u, Appl.
` (N1,M2) ∈̂R Expr. Subst. for ∈̂ (6.6.16)

Otherwise M1 = V1, and then:

M2 = V2 or M2 7→ N2 with N2∈̂R2 Ind. Hyp.

If M2 7→ N2 with N2∈̂R2:

(V1,M2) 7→ (V1,N2) Context Eval. Lem. (6.6.19)
u∈R2 ` (V1,u) ∈ R Rules for u, Appl.
` (V1,N2) ∈̂R Expr. Subst. for ∈̂ (6.6.16)

Otherwise M2 = V2, and then:

(V1,V2) is a value.

Case: ` () ∈ 1

() is a value.

Case:
` M ∈ S S � R

` M ∈ R

M = V or M 7→ N with N ∈̂S Ind. Hyp.

When M = V : as required.

When M 7→ N with N ∈̂S:
u∈S ` u∈R Rules for u, Subsumption
` N ∈̂R Expr. Subst. for ∈̂ (6.6.16)

Case:
` V ∈ R ` V ∈ S

` V ∈ R&S

Immediate.

Case: ` V ∈ >A

Immediate.

Case: Left rules and variable rules: cannot occur since the context is empty.

180



6.7 Bidirectional sort checking with pattern matching

In this section we show how to extend bidirectional sort checking the language of this chapter,
and in particular to the sequential pattern matching construct.

6.7.1 Syntax

We have the following syntax for inferable and checkable terms, following Section 3.11. Branches
are designated as always containing checkable terms. We require the body of a recursive expres-
sion fixu.M to be an annotated expression (C∈L) in order to force the sorts assigned to u to be
explicit; the resulting expression is inferable. We include pairs of checkable terms as checkable,
and an empty product as inferable, but do not include pairs of inferable terms as inferable. The
latter seems less essential, and does not fit with our general principle that introduction forms
are checkable, while elimination forms are inferable. Further, it complicates the annotatability
proof. (However, our implementation does allow inferable pairs.)

We also introduce a restriction Π of contexts for those containing only ordinary assumptions
that do not involve patterns, since our algorithm transforms pattern sort assumptions into such
assumptions prior to checking the body of a branch.

Inferable Terms I ::= x | u | cC | I C | () | fixu:A.(C∈L) | (C∈L)

Checkable Terms C ::= I | λx:A.C | (C1, C2) | case I of Ωc

Checkable Branches Ωc ::= . | (P ⇒ C | Ωc)

Non-pattern context Π ::= . | x∈R | u∈R

6.7.2 Sort checking algorithm

The judgments for inferring and checking sorts for term constructs are based on those in Sec-
tion 3.11, with additional judgments based on Section 6.5 for checkable branches, pattern con-
texts with a checkable branch body, and an algorithmic form of the inclusion Z � Y that
synthesizes Y . We additionally have a judgment R

⇒
� S which non-deterministically extracts

the conjuncts of refinements of function types. Finally, we have a judgment A
⇒
⊥ R that

synthesizes empty refinements of a given type, when they exist.
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Π `Σ I
⇒
∈ R Term I has R as an inferable sort under context Π.

(Where Γ ` I : A and Π @ Γ and R @ A.)

Π `Σ C
⇐
∈ R Term C checks against sort R under context Π.

(Where Γ ` C : A and Π @ Γ and R @ A.)

Π `Σ Z 1 Ωc ⇐∈ R Matching pattern sort Z with branches Ωc checks
against sort R under context Π.

(Where Γ `Σ S 1 Ωc : A and Π @ Γ and Z @. S
and R @ A.)

Π;∆ `Σ C
⇐
∈ R Term C checks against sort R under context Π

and pattern context ∆.
(Where Γ1; (Φ1,Φ2) ` C : A and Π @ Γ1; Φ2

and ∆ @ .; Φ2 and Φ2
∼= Γ2 and R @ A.)

R
⇒
� S S is synthesized as a conjunct of function sort R

(Where R @ A→B and S @ A→B.)

`Σ Z
⇒
� Y Y is a minimum sort union covering pattern sort Z.

(Where Z @. A and Y @. A.)

`Σ A
⇒
⊥ R R is synthesized as an empty refinement of A.

(Where R @ A.)

The rules for these judgments are based directly on the rules for term constructs from Sec-
tion 3.11, and the rules for branches and left rules from Section 6.5 but with a checkable
term on the right. We add checking rules for products, recursion, and case, and use a more
algorithmic form of the constructor application rule.

In the left rules, we restrict the use of inclusions Z
⇒
� Y to variable patterns via a rule

that also performs the case analysis designated by the sort union Y , and thus creates ordinary,
non-pattern assumptions in the context Π. When all assumptions have been converted to non-
pattern assumptions, we have a rule that commences checking the term constructs in the branch
body on the right.

Another difference from the declarative system is that we do not allow assumptions to be
exchanged in the algorithmic system. This is to avoid specifying an algorithm with excessive
non-determinism. In fact, it does not matter which order pattern assumptions are treated by
the algorithm, however if we were to allow exchange then our completeness theorem would
only apply to algorithms which tried every possible order. Fixing a single order forces the
completeness theorem to consider possible mismatches between the order used by the algorithm
and the order used in a declarative derivation.

The judgment R
⇒
� S has only three rules: one for when we reach an arrow, and two that non-

deterministically decompose an intersection. This judgment is required in order represent the
elimination of intersections in a way that accurately reflects what is done in the implementation:
in Chapter 3 we instead used elimination rules in the algorithmic judgment for inferable terms,
but this results in some unnecessary non-determinism.

The inclusion rules for
⇒
� are based on those for �, but with two differences. Firstly, when
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the input is a sort R the minimum union is the singleton union R, except when R is empty, in
which case the minimum union is the empty union. Secondly, we have a more algorithmic rule
for constructor applications.

The judgment A
⇒
⊥ R is required when checking products, to allow for uses of subsumption

with R1×R2 � S1×S2 derived from R1 � . or R2 � .. The judgment only has rules for base
types and products: there are no empty refinements for a function types or the unit type 1.
For a base type a the least refinement is formed by intersecting of all base sorts r @ a, which
is then checked for emptiness. For products, we synthesize each empty sort R for the first
component, and use these to construct the empty sort R×>. We then do similarly for the
second component.

x∈R in Π

Π ` x
⇒
∈ R

u∈R in Π

Π ` u
⇒
∈ R

cS in body(ρ) Π ` C
⇐
∈ S

Π ` cC
⇒
∈ ρ

Π ` ()
⇒
∈ 1

Π ` I
⇒
∈ S S

⇒
� S1→S2 Π ` C

⇐
∈ S1

Π ` I C
⇒
∈ S2

R in L Π, u∈R ` C
⇐
∈ R

Π ` fix u.(C∈L)
⇒
∈ R

R in L Π ` C
⇐
∈ R

Π ` (C∈L)
⇒
∈ R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π, x∈R ` C
⇐
∈ S

Π `λx.C
⇐
∈ R→S

Π ` λx.C
⇐
∈ R Π ` λx.C

⇐
∈ S

Π `λx.C
⇐
∈ R&S Π `λx.C

⇐
∈ >

R@A1×A2 A1
⇒
⊥S1 Π ` C1

⇐
∈S1 Π ` C2

⇐
∈ >

Π ` (C1, C2)
⇐
∈ R

R@A1×A2 A2
⇒
⊥S2 Π ` C1

⇐
∈> Π ` C2

⇐
∈ S2

Π ` (C1, C2)
⇐
∈ R

Π ` I
⇒
∈R R � S

Π ` I
⇐
∈S

R
⇒' R1⊗R2 Π ` C1

⇐
∈R1 Π ` C2

⇐
∈R2

Π ` (C1, C2)
⇐
∈ R

Π ` I
⇒
∈R Π ` R 1 Ωc ⇐∈ S

Π ` case I of Ωc ⇐∈ S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π;P∈Z ` C
⇐
∈ R Π ` (Z\P ) 1 Ωc ⇐∈ R

Π ` Z 1 (P ⇒ C | Ωc)
⇐
∈ R

Z
⇒
� ⊥

Π ` Z 1 . ⇐∈ R
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Π;∆, P1∈Z1, P2∈Z2 ` C
⇐
∈R

Π;∆, (P1, P2)∈(Z1,Z2) ` C
⇐
∈R

S
⇒' S1⊗S2 Π;∆, P1∈S1, P2∈S2 ` C

⇐
∈R

Π;∆, (P1, P2)∈S ` C
⇐
∈R

Π;∆ ` C
⇐
∈ R

Π;∆, ()∈() ` C
⇐
∈ R

Π;∆ ` C
⇐
∈ R

Π;∆, ()∈S ` C
⇐
∈ R

Π;∆, P∈Z ` C
⇐
∈R

Π;∆, c P∈cZ ` C
⇐
∈R

c 6= c2

Π;∆, c P∈c2 Z ` C
⇐
∈R

Π;∆, c P∈inv(ρ) ` C
⇐
∈R

Π;∆, c P∈ρ ` C
⇐
∈R

Π;∆, P∈Z1 ` C
⇐
∈R Π;∆, P∈Z2 ` C

⇐
∈R

Π;∆, P∈Z1tZ2 ` C
⇐
∈R Π;∆, P∈⊥ ` C

⇐
∈R

Z
⇒
� S1t . . .tSn Π, x∈S1;∆ `C

⇐
∈R . . . Π, x∈Sn;∆ `C

⇐
∈R

Π;∆, x∈Z ` C
⇐
∈R

Π ` C
⇐
∈R

Π; . ` C
⇐
∈R

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

R→S
⇒
� R→S

R1
⇒
� S

R1&R2
⇒
� S

R2
⇒
� S

R1&R2
⇒
� S

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. ` R �/ .
R
⇒
� R

. ` R � .
R
⇒
� ⊥

Z1
⇒
� Y1 Z2

⇒
� Y2

Z1 t Z2
⇒
� Y1 t Y2

⊥
⇒
� ⊥

()
⇒
� 1

Z1
⇒
� Y1 Z2

⇒
� Y2

(Z1, Z2)
⇒
� t{R1×R2 |R1 in Y1, R2 in Y2}

Z
⇒
� S1 t . . . t Sn

cZ
⇒
� &{r | cS1 � r} t . . . t &{r | cSn � r}

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

&{r | r @ a} � .
a
⇒
⊥ &{r | r @ a}

A
⇒
⊥ R

A×B
⇒
⊥ R×>B

B
⇒
⊥ S

A×B
⇒
⊥ >A×S

The sort synthesis rule for constructor applications is not quite algorithmic: it does not specify
how to determine ρ such that cS in body(ρ), and in fact syntactically there are an infinite
number of possibilities, since ρ may include repetitions of each base sort r. The intention is
that only one representative ρ = r1& . . .&rn should be considered for each set {r1, . . . , rn} of
base sorts refining the type that c belongs to. In the implementation this is further optimized to
remove redundant combinations of S and ρ, generally leading to a small number of possibilities.
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As in Chapter 2 and Chapter 3 we must extend the typing judgment and declarative sort
assignment judgment to terms with annotations. We do this just like before, using the follow-
ing rules, an erasure function, and appropriate theorems relating annotated terms with their
erasures.

R1 @ A . . . Rn @ A Γ ` M : A

Γ ` (M ∈R1, . . . , Rn) : A

R in L ∆ ` M ∈ R

∆ ` (M∈L) ∈ R

‖M∈L‖ = ‖M‖
‖x‖ = x

‖cM‖ = c ‖M‖
‖λx:A.M‖ = λx:A.‖M‖

‖M N‖ = ‖M‖ ‖N‖
‖u‖ = u

‖fixu:A.M‖ = fixu:A.‖M‖
‖(M,N)‖ = (‖M‖,‖N‖)

‖()‖ = ()
‖caseM of Ω‖ = case ‖M‖of ‖Ω‖

‖(P⇒M | Ω)‖ = P⇒‖M‖ | ‖Ω‖
‖.‖ = .

Lemma 6.7.1 (Value Erasure)
If M is a value then ‖M‖ is a value.

Proof:
By a straightforward induction on the structure of M .

Lemma 6.7.2 (Typing Erasure)
If Γ ` M : A then Γ ` ‖M‖ : A.

Proof:
By a straightforward induction on the structure of the derivation.

Lemma 6.7.3 (Sorting Erasure)
If Π ` M ∈ R then Π ` ‖M‖ ∈ R.

Proof:
By a straightforward induction on the structure of the derivation. Each case simply rebuilds
the derivation (using the Value Erasure Lemma for those rules which require values), except
for the case for the rule for annotations, which follows.

Case:
R in L ∆ ` M ∈ R

∆ ` (M∈L) ∈ R

Then, ‖(M∈L)‖ = ‖M‖ and ∆ ` ‖M‖ ∈ R (Ind. Hyp.), as required.
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6.7.3 Termination of sort checking

Theorem 6.7.4

1. For any input R the algorithmic judgment
R
⇒
⊥ S terminates, producing output S

(for possibly many different S).

2. For any input Z the algorithmic judgment

Z
⇒
� Y terminates, producing a unique output Y .

3. For any input A the algorithmic judgment
A
⇒
⊥ R terminates, producing output R

(for possibly many different R).

Proof: By straightforward inductions on R, Z and A respectively.

Theorem 6.7.5

1. For any inputs Π and I the algorithmic judgment
Π ` I

⇒
∈ R terminates, with output R (for possibly many different R).

2. For any inputs Π, C and R the algorithmic judgment
Π ` I

⇐
∈ R terminates.

3. For any inputs Π, Z,Ωc and R the algorithmic judgment
Π ` Z 1 Ωc ⇐∈ R terminates.

4. For any inputs Π,∆, C and R the algorithmic judgment
Π;∆ ` C

⇐
∈ R terminates.

Proof: By induction on a well order on instances J of the judgments which is defined lexico-
graphically from the following simpler well orders.

1. The syntactic inclusion ordering on the terms I and C and the branches Ωc on the right
hand side.

2. An ordering based on which judgment J is an instance of, which is defined by:

Π ` I
⇒
∈ R less than Π ` C

⇐
∈ R less than Π;∆ ` C

⇐
∈ R.

(This part of the whole well-order is never needed for judgments of the form Π ` Z 1

Ωc ⇐∈ R.)

3. For instances of the judgment Π ` C
⇐
∈ R: the syntactic inclusion ordering on R (to

exclude the possibility of an infinite sequence of uses of the &-introduction rule)

4. For instances of the judgment Π; ∆ ` C
⇐
∈ R: the lexicographic ordering built from the

following well orders.
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(a) The ordering according to the sum of the sizes of the patterns P in the context ∆.

(b) The ordering according to the total number of occurrences of base refinements ρ that
appear in the pattern sorts in ∆, and which do not appear enclosed by a constructor
pattern sort of the form cZ.

(c) The sum of the sizes of the pattern sorts Z that appear in ∆.

It is straightforward to check that each premise is less that each conclusion according to this
well ordering. The following cases are interesting.

Case:
Π; (∆, c P∈inv(ρ)) ` C

⇐
∈ R

Π; (∆, c P∈ρ) ` C
⇐
∈ R

Then, part 4b of the ordering is decreased, since ρ appears in the conclusion but not the
premise, and inv(ρ) has the form c1R1 t . . .t cn Rn and hence has no ρ′ appearing except
when enclosed by a constructor.

Case:
Π; (∆, P∈Z) ` C

⇐
∈ R

Π; (∆, c P∈cZ) ` C
⇐
∈ R

Then, part 4a of the ordering is decreased. Hence, the whole ordering is decreased (even
though part 4b is increased).

6.7.4 Soundness of sort checking

As in Chapter 2 and Chapter 3, the proof of soundness of sort checking is relatively simple: the
derivations of the algorithmic system correspond to a fragment of the declarative system. We
start with the following lemma, which has similarities to the distributivity property required of
signatures in Section 3.2.

Lemma 6.7.6 (Distributivity of �)

1. If cR1 � s1 and cR2 � s2 then c(R1&R2) � (s1&s2).

2. If a = D and cB in D then c>B � >a.

Proof:
For part 1:

body(s1&s2) = t{c(S1&S2) | cS1 in body(s1), cS2 in body(s2)} Def. body

cS′1 in body(s1) with R1 � S′1 Def. �

cS′2 in body(s2) with R2 � S′2 Def. �

c(S′1&S′2) in body(s1&s2)
R1&R2 � S′1&S′2 & is g.l.b. (5.8.11)
c(R1&R2) � (s1&s2) Def. �
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For part 2:

body(>a) = t {c>A | cA in D} with a = D in Σ Def. body

cB in D Assumed
c>B in body(>a)
>B � >B Reflexivity (5.8.11)
c(>B) � (>a) Def. �

The statement of the soundness theorem has one part for each judgment in the algorithm. Each
part is designed to be general enough to support the inductive proof which follows.

Theorem 6.7.7 (Soundness of Sort Checking)

1. If Π ` I
⇒
∈ R then Π ` I ∈ R.

2. If Π ` C
⇐
∈ S then Π ` C ∈ S.

3. If Π ` Z 1 Ωc ⇐∈ R then Π ` Z 1 Ω ∈ R.

4. If Π;∆ ` C
⇐
∈ R then (Π,∆) ` C ∈ R.

5. If R
⇒
� S then R � S.

6. If Z
⇒
� Y then Z � Y .

7. If A
⇒
⊥ R then R � ..

Proof:
By induction on the structure of the derivations. Most cases simply rebuild the derivation,
using the corresponding rule in the declarative system. We show only a few such cases; the
remaining ones are similar. We also show the cases that require more than just rebuilding the
derivation.

We have the following cases for part 1 which require more than simply rebuilding the derivation.

Case:
(c S) in body(ρ) Π ` C

⇐
∈ S

Π ` cC
⇒
∈ ρ

Π ` C ∈ S Ind. Hyp.
S � S Reflexivity (5.8.11)
cS � ρ Rule for �

Π ` cC ∈ ρ
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Case:
Π ` I

⇒
∈ S S

⇒
� S1→S2 Π ` C

⇐
∈ S1

Π ` I C
⇒
∈ S2

Π ` I ∈ S Ind. Hyp.
S � S1→S2 Ind. Hyp.
Π ` I ∈ S1→S2 Subsumption Rule
Π ` C ∈ S1 Ind. Hyp.
Π ` I C ∈ S2 Rule for appl.

The following are some of the cases for part 1 which simply rebuild the derivation (the others
are similar).

Case:
R in L Π, u∈R ` C

⇐
∈ R

Π ` fix u.(C∈L)
⇒
∈ R

Π, u∈R ` C ∈ R Ind. Hyp.
Π, u∈R ` (C∈L) ∈ R Rule for Annot.
Π ` fix u.(C∈L) ∈ R Rule for fix

Case:
R in L Π ` C

⇐
∈ R

Π ` (C∈L)
⇒
∈ R

Π ` C ∈ R Ind. Hyp.
Π ` (C∈L) ∈ R Rule for Annot.

We have the following cases for part 2 (and some additional cases which simply rebuild the
derivation).

Case:
R

⇒' R1⊗R2 Π ` C1
⇐
∈ R1 Π ` C2

⇐
∈ R2

Π ` (C1, C2)
⇐
∈ R

Π ` C1 ∈ R1 Ind. Hyp.
Π ` C2 ∈ R2 Ind. Hyp.
Π ` (C1, C2) ∈ R1×R2 Rule for Pairs
R1×R2 � R Lemma 5.6.8
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Case:
R@A1×A2 A1

⇒
⊥S1 Π ` C1

⇐
∈S1 Π ` C2

⇐
∈ >

Π ` (C1, C2)
⇐
∈ R

Π ` C1 ∈ S1 Ind. Hyp.
Π ` C2 ∈ > Ind. Hyp.
Π ` (C1, C2) ∈ S1×> Rule for Pairs
S1 � . Ind. Hyp.
[[S1]] ⊆ {} Lemma 5.8.10
[[S1×>]] ⊆ {} Def. [[.]]
S1×> � R Lemma 5.8.10
Π ` (C1, C2) ∈ R Subsumption Rule

Case:
R@A1×A2 A2

⇒
⊥S2 Π ` C1

⇐
∈> Π ` C2

⇐
∈ S2

Π ` (C1, C2)
⇐
∈ R

Dual to the previous case.

Case:
Π ` I

⇒
∈ R R � S

Π ` I
⇐
∈ S

Π ` I ∈ R Ind. Hyp.
Π ` I ∈ S Subsumption Rule

Both cases for part 3 simply rebuild the derivation.

Case:
Π;P∈Z ` C

⇐
∈ R Π ` (Z\P ) 1 Ωc ⇐∈ R

Π ` Z 1 (P ⇒ C | Ωc)
⇐
∈ R

Π, P∈Z ` C ∈ R Ind. Hyp.
Π ` (Z\P ) 1 Ωc ∈ R Ind. Hyp.
Π ` Z 1 (P ⇒ C | Ωc) ∈ R Rule

Case:
Z
⇒
� ⊥

Π `Σ Z 1 . ⇐∈ R

Z � ⊥ Ind. Hyp.
Π `Σ Z 1 . ∈ R Rule
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We have the following cases for part 4 (and some additional cases that simply rebuild the
derivation).

Case:
Z
⇒
� S1t . . .tSn (Π, x∈S1);∆ ` C

⇐
∈R . . . (Π, x∈Sn);∆ ` C

⇐
∈R

Π; (∆, x∈Z) ` C
⇐
∈R

Z � S1 t . . . Sn Ind. Hyp.
Π, x∈S1,∆ ` C ∈ R and . . . and
Π, x∈Sn,∆ ` C ∈ R Ind. Hyp. (for each)

Π, x∈(S1t . . .tSn),∆ ` C ∈ R Rule for t, repeatedly
Π, (∆, x∈Z) ` C ∈ R Left Subsumption Rule

Case:
Π ` C

⇐
∈ R

Π; . ` C
⇐
∈ R

Π ` C ∈ R Ind. Hyp.
(Π, .) ` C ∈ R Since (Π, .) = Π

We have the following cases for Part 5.

Case: R→S
⇒
� R→S : By reflexivity (Lemma 5.8.11).

Case:
R1

⇒
� S

R1&R2
⇒
� S

R1 � S Ind. hyp.
R1&R2 � R1 & is g.l.b. (5.8.11)
R1&R2 � S Transitivity (5.8.11)

Case:
R2

⇒
� S

R1&R2
⇒
� S

Dual to the previous case.

We have the following cases for Part 6.

Case:
. ` R � .

R
⇒
� ⊥

R � ⊥ Rule for Empty Sort

Case:
. ` R �/ .

R
⇒
� R

R � R Reflexivity (5.8.11)
R � R Rule for Subsort
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Case:
Z1

⇒
� Y1 Z2

⇒
� Y2

Z1 t Z2
⇒
� Y1 t Y2

Z1 � Y1 Ind. Hyp
Z2 � Y2 Ind. Hyp
Z1 t Z2 � Y1 t Y2 Rule for t

Case: ()
⇒
� 1

() � 1 Rule for ()

Case:
Z1

⇒
� Y1 Z2

⇒
� Y2

(Z1, Z2)
⇒
� t{R1×R2 |R1 in Y1, R2 in Y2}

Z1 � Y1 Ind. Hyp
Z2 � Y2 Ind. Hyp
(Z1, Z2) � t{R1×R2 |R1 in Y1, R2 in Y2} Rule for (Z1,Z2)

Case:
Z
⇒
� S1t . . .tSn

cZ
⇒
� &{r | cS1 � r} t . . . t &{r | cSn � r}

Z � S1t . . .tSn Ind. Hyp

For each Si:

cSi � r for each r in &{r | cSi � r}
c(Si & . . .&Si) � &{r | cSi � r} Dist. of � (6.7.6)
cSi � &{r | cSi � r} & is g.l.b (5.8.11)

cZ � &{r | cS1 � r} t . . . t &{r | cSn � r} Rule for cZ

We have the following cases for Part 7.

Case:
&{r | r @ a} � .
a
⇒
⊥ &{r | r @ a}

Immediate.

Case:
A
⇒
⊥ R

A×B
⇒
⊥ R×>B

Then R � . (ind. hyp.),
so R×>B � . (rules for ×).

Case:
B

⇒
⊥ S

A×B
⇒
⊥ >A×S

Dual to the previous case.

6.7.5 Completeness of sort checking

As in Chapter 2 and Chapter 3, demonstrating completeness of the sort checking algorithm
is more difficult than soundness. Further, some new complications result from the flexibility
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allowed in the declarative left rules for pattern sort assumptions.
We handle these complications by extending the technique used in the previous completeness

proofs: proving an inversion lemma corresponding to each rule in the algorithmic system. These
lemmas roughly state that if there is a declarative derivation with a conclusion matching the
form of the algorithmic rule, then there are derivations for the premises of the rule. Since this
implies that there is a derivation ending with an instance of the rule, the inversion lemmas for
left rules are related to the permutability of left rules in sequent calculi.

We will require the following lemma in the proof of the inversion lemma for the left sub-
sumption rule.

Lemma 6.7.8 (Completeness of
⇒
�)

If Z � Y ′ then Z
⇒
� Y

with each S in Y satisfying S � S′ for some S′ in Y ′.

Proof: By induction on structure of the derivation of Z � Y ′.

Case:
. `Σ R � S

R � S

If R � . then:

R
⇒
� ⊥ Rule for empty sort

Second part holds vacuously No S in ⊥

Otherwise R �/ ., and then:

R
⇒
� R Rule for non-empty sort

R � S Assumed

Case:
. `Σ R � .

R � ⊥
R
⇒
� ⊥ Rule for empty sort

Second part holds vacuously No S in ⊥

Case:
Z1 � Y ′1 Z2 � Y ′2

Z1 t Z2 � t{R |R in Y ′1 or Y ′2}

Z1
⇒
� Y1 with S1 in Y1 implies

S1 � S′1 for some S′1 in Y ′1 . Ind. Hyp.

Z2
⇒
� Y2 with S2 in Y2 implies

S2 � S′2 for some S′2 in Y ′2 . Ind. Hyp.

Z1 t Z2
⇒
� Y1 t Y2 Rule for t

S in Y1 t Y2 implies:
S in Y1 or S in Y2 Def. “in”

S � S′ for some S′ in Y ′1
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or S � S′ for some S′ in Y ′2 Instantiating above

S � S′ for some S′ in t{R |R in Y ′1 or Y ′2} Def. “in”

Case: ⊥ � ⊥

⊥
⇒
� ⊥ Rule for ⊥

Second part holds vacuously No S in ⊥

Case: () � 1

()
⇒
� 1 Rule for ()

() � () Reflexivity (5.8.11)

Case:
Z1 � Y ′1 Z2 � Y ′2

(Z1, Z2) � t{R′1×R′2 | R′1 in Y ′1 , R
′
2 in Y ′2}

Z1
⇒
� Y1 with S1 in Y1 implies

S1 � S′1 for some S′1 in Y ′1 Ind. Hyp.

Z2
⇒
� Y2 with S2 in Y2 implies

S2 � S′2 for some S′2 in Y ′2 Ind. Hyp.

(Z1,Z2)
⇒
� t{R1×R2 | R1 in Y1, R2 in Y2} Rule for t

R1×R2 in t{R1×R2 | R1 in Y1, R2 in Y2} implies:

R1 in Y1 and R2 in Y2 Def. “in”
R1 � R′1 for some R′1 in Y ′1 Instantiating above
R2 � R′2 for some R′2 in Y ′2 Instantiating above
R1×R2 � R′1×R′2 Rules for ×
R′1×R′2 in t{R′1×R′2 | R′1 in Y ′1 , R

′
2 in Y ′2} Def. “in”

Case:
Z � R1 t . . . t Rn cR1 � ρ1 . . . c Rn � ρn

cZ � ρ1 t . . . t ρn

Z
⇒
� S1 t . . . t Sm with Si � Rj for some Rj for each Si Ind. Hyp.

cZ
⇒
� &{r | cS1 � r} t . . . t &{r | cSm � r} Rule for cZ

For each &{r | cSi � r}:
Si � Rj Instantiating above
cRj � ρj Assumed
cR′j in body(ρj) with Rj � R′j Inv. on �

R′j = S′1& . . .&S′h
where ρj = r1& . . .&rh
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and c S′1 in body(r1), . . ., c S′h in body(rh) Def. body, repeatedly

R′j � S′k for each S′k & is g.l.b (5.8.11)
Rj � S′k for each S′k Transitivity (5.8.11)
Si � S′k for each S′k Transitivity (5.8.11)
cSi � rk for each rk Rule for �

&{r | cSi � r} � ρj & is g.l.b (5.8.11)

We have three kinds of inversion lemmas: those corresponding to rules for synthesizing sorts of
terms, those corresponding to rules for checking terms against sorts, and those corresponding
left rules. For the first two, we restrict the context to be of the form Π since this is the form
in the corresponding algorithmic rules: our completeness proof will follow the steps of the
algorithm, hence will only require these lemmas for this form of context. We have no inversion
lemmas corresponding to the rules for the judgment Π ` Z 1 Ωc ⇐

∈ R: standard inversion
suffices for this judgment.

Lemma 6.7.9 (Inversion Lemmas)

1. (a) If Π ` x∈R then x∈S in Π for some S � R.

(b) If Π ` u∈R then u∈S in Π for some S � R.

(c) If Π ` cM ∈ ρ then cS in body(ρ′) and Π ` M ∈ S and ρ′ � ρ for some S and ρ′.

(d) If Π ` M N ∈ R then Π ` M ∈ R2 →R and Π ` N ∈ R2

for some R2.

(e) If Π ` (M∈L) ∈ R then Π ` M ∈ S for some S in L with S � R.

(f) If Π ` () ∈ R then 1 � R.

(g) If Π ` fixu.(M∈L) ∈ R

then Π, u∈S ` M ∈S for some S in L with S � R.

2. (a) If Π ` λx.M ∈ R and R � S1 → S2 then Π, x∈S1 ` M ∈ S2.

(b) If Π ` (M1,M2) ∈ R and R
⇒' R1 ⊗R2

then Π ` M1 ∈ S1 and Π ` M2 ∈ S2

for some S1 and S2 with S1×S2 � R1×R2.

(c) If Π ` caseM of Ω ∈ R and R � R′

then Π ` M ∈ S and Π ` S 1 Ω ∈ R′ for some S.

3. Each of the following hold when J has one of the two forms M ∈ R and Z 1 Ω ∈ R, i.e.
they hold for the two forms of judgment ∆ ` M∈R and ∆ ` Z 1 Ω ∈ R.

(a) If ∆, P∈Z1tZ2 ` J then ∆, P∈Z1 ` J and ∆, P∈Z2 ` J .

(b) If ∆, (P1,P2)∈S ` J then S
⇒' S1 ⊗ S2 and ∆, P1∈S1, P2∈S2 ` J .

(c) If ∆, (P1,P2)∈(Z1,Z2) ` J then ∆, P1∈Z1, P2∈Z2 ` J .

(d) If ∆, ()∈() ` J then ∆ ` J .
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(e) If ∆, ()∈S ` J then ∆ ` J .

(f) If ∆, cP∈cZ ` J then ∆, P∈Z ` J .

(g) If ∆, cP∈ρ ` J then ∆, cP∈inv(ρ) ` J .

(h) If ∆, x∈Z ` J

then Z
⇒
� Y and for each S in Y we have ∆, x∈S ` J .

Proof: Each part is proved by a separate induction on the structure of the given sort assignment
derivation. (Although some parts make use of earlier parts.)

Parts 1a-1g and 2a-2c each have one case for the rule involving the corresponding term
construct, and one case for the subsumption rule. There are additional cases for the & and >A

introduction rules for those parts where the term may be a value. The remaining cases cannot
occur, since they involve rules which have a different term construct in the conclusion.

Parts 3c-3h each have only one truly interesting case: that for left subsumption rule applied
to the last assumption. They also have one case for the corresponding declarative left rule
applied to the last assumption, for which the required result is immediate. Additionally they
have one case for each right rule, one for each of the rules for ∆ ` Z 1 Ω

⇐
∈ R, one case for each

left rule applied to a different assumption. These cases simply apply the induction hypothesis
as appropriate and then rebuild the derivation.

1. (a) If Π ` x∈R then x∈S in Π for some S � R.

Case:
x∈R in Π

Π ` x ∈ R

R � R Reflexivity (5.8.11)

Case:
Π ` x ∈ S S � R

Π ` x ∈ R

x∈S′ in Π with S′ � S Ind. Hyp.
S′ � R Transitivity (5.8.11)

Case:
Π ` x ∈ R1 Π ` x ∈ R2

Π ` x ∈ R1&R2

x∈S1 in Π with S1 � R1 Ind. Hyp.
x∈S2 in Π with S2 � R2 Ind. Hyp.
S1 = S2 x occurs only once in Π
S1 � R1 &R2 & is g.l.b (5.8.11)
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Case: Π ` x ∈ >A

Π @ Γ with Γ ` x∈A Well-formedness of Π ` x∈>A

x:A in Γ Inversion
x∈S in Π with S @ A Def. Π `@ Γ
Π ` x ∈ S Rule for x

S � >A > is maximum (5.8.11)

(b) If Π ` u∈R then u∈S in Π for some S � R.

As for the first two cases of the previous part, replacing x by u. The latter two
cases are not needed for u, since it is not a value.

(c) If Π ` cM ∈ ρ then cS in body(ρ′) and Π ` M ∈ S and ρ′ � ρ for some S and ρ′.

Case: cS � ρ Π ` M ∈S

Π ` cM ∈ ρ

cS′ in body(ρ) with S � S′ Def. �

Π ` M ∈S′ Subsumption Rule

Case:
Π ` cM ∈ ρ2 ρ2 � ρ

Π ` cM ∈ ρ

cS in body(ρ′)
with Π ` M ∈ S and ρ′ � ρ2 Ind. Hyp.

ρ′ � ρ Transitivity (5.8.11)

Case:
Π ` cV ∈ ρ1 Π ` cV ∈ ρ2

Π ` cV ∈ ρ1&ρ2

cS1 in body(ρ′1)
with Π ` V ∈ S1 and ρ′1 � ρ1 Ind. Hyp.

cS2 in body(ρ′2)
with Π ` V ∈ S2 and ρ′2 � ρ2 Ind. Hyp.

c(S1&S2) in body(ρ′1&ρ′2) Def. body(.)
Π ` V ∈ S1&S2 &-intro.
ρ′1&ρ′2 � ρ1&ρ2 & is g.l.b (5.8.11)
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Case: Π ` cV ∈ >a

Π @ Γ with Γ ` cV : a Well-form. of Π ` cV ∈>a

Γ ` V : B with cB in D

and a = D in Σ Inversion

c>B in body(>a) Def. body(.)
Π ` V ∈ >B Rule for Constr. App.
>a � >a Reflexivity (5.8.11)

(d) If Π ` M N ∈ R then Π ` M ∈ R2 →R and Π ` N ∈ R2

for some R2.

Case: Π ` M ∈ S→R Π ` N ∈ S

Π ` M N ∈ R

Immediate, choosing R2 = S.

Case:
Π ` M N ∈ S S � R

Π ` M N ∈ R

Π ` M ∈ S2 → S with Π ` N ∈ S2 Ind. Hyp.
S2 � S2 Reflexivity (5.8.11)
S2 → S � S2 →R Rule for →
Π ` M ∈ S2 →R Subsumption Rule

(e) If Π ` (M∈L) ∈ R then Π ` M ∈ S for some S in L with S � R.

Case: R in L Π ` M ∈ R

Π ` (M∈L) ∈ R

R � R Reflexivity (5.8.11)

Case:
Π ` (M∈L) ∈ R′ R′ � R

Π ` (M∈L) ∈ R

Π ` M ∈ S with S in L and S � R′ Ind. Hyp.
S � R Transitivity (5.8.11)
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(f) If Π ` () ∈ R then 1 � R.

This can be proved inductively, similar to the other parts, but there is also a simpler
non-inductive proof, which follows.

R @ A and Π @ Γ with Γ ` () : A Well-form. of Π ` () ∈ R

A = 1 Inv. on Γ ` () : A

R @ 1 Substituting into R @ A

1 @ 1 Validity Rule for 1

1 � R Inclusion Rule for 1

(g) If Π ` fixu.(M∈L) ∈ R

then Π, u∈S ` M ∈ S for some S in L with S � R.

Case: Π, u∈R ` (M∈L) ∈ R

Π ` fixu.(M∈L) ∈ R

Π, u∈R ` M∈S

with S in L and S � R By Part 1e

Π, u∈S ` u∈R Rule for u, Subsumption
Π, u∈S ` M∈S Exp. Subst. Lem. (6.6.2)

Case:
Π ` fixu.(M∈L) ∈ R′ R′ � R

Π ` fixu.(M∈L) ∈ R

Π, u∈S ` M∈S

with S in L and S � R′ Ind. Hyp.
S � R Transitivity (5.8.11)

2. (a) If Π ` λx.M ∈ R and R � S1 → S2 then Π, x∈S1 ` M ∈ S2.

Case: Π, x∈R1 ` M ∈ R2

Π ` λx.M ∈ R ∈ R1 →R2

R1 →R2 � S1 → S2 Assumed
S1 � R1 and R2 � S2 Inversion
Π, x∈S1 ` x∈R1 Rule for x, Subsumption
Π, x∈S1 ` M ∈R2 Pat. Subst. Lem. (6.6.13)
Π, x∈S1 ` M ∈S2 Subsumption Rule

Case:
Π ` λx.M ∈ R′ R′ � R

Π ` λx.M ∈ R

R′ � S1 → S2 Transitivity (5.8.11)
Π, x∈S1 ` M ∈S2 Ind. Hyp.
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Case:
Π ` λx.M ∈ R1 Π ` λx.M ∈ R2

Π ` λx.M ∈ R1&R2

R1&R2 � S1 → S2 Assumed
R1 � S1 → S2 or R1 � S1 → S2 Inversion

If R1 � S1 → S2:
Π, x∈S1 ` M ∈S2 Ind. Hyp.

Otherwise R2 � S1 → S2:
Π, x∈S1 ` M ∈S2 Ind. Hyp.

Case: Π ` λx.M ∈ >A1→A2

>A1→A2 � S1 → S2 Assumed
Cannot occur, no rule matches this conclusion.

(b) If Π ` (M1,M2) ∈ R then Π ` M1 ∈ S1 and Π ` M2 ∈ S2

for some S1 and S2 with S1×S2 � R.

Case: Π ` M1 ∈ R1 Π ` M2 ∈ R2

Π ` (M1,M2) ∈ R1×R2

R1×R2 � R1×R2 Reflexivity (5.8.11)

Case:
Π ` (M1,M2) ∈ R′ R′ � R

Π ` (M1,M2) ∈ R

Π ` M1 ∈ S1 and Π ` M2 ∈ S2

with S1×S2 � R′ Ind. Hyp

S1×S2 � R Transitivity (5.8.11)
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Case:
Π ` (V1,V2) ∈ R1 Π ` (V1,V2) ∈ R2

Π ` (V1,V2) ∈ R1&R2

Π ` V1 ∈ S11 and Π ` V2 ∈ S12

with S11×S12 � R1 Ind. Hyp

Π ` V1 ∈ S21 and Π ` V2 ∈ S22

with S21×S22 � R2 Ind. Hyp

Π ` V1 ∈ S11&S21 &-Intro.
Π ` V2 ∈ S12&S22 &-Intro.

S11&S12 � S11 & is g.l.b (5.8.11)
S11&S12 � S12 & is g.l.b (5.8.11)
(S11&S21)×(S12&S22) � S11×S12 Rules for ×
(S11&S21)×(S12&S22) � R1 Transitivity (5.8.11)

(S11&S21)×(S12&S22) � R2 As above, dual to R1

(S11&S21)×(S12&S22) � R1&R2 & is g.l.b (5.8.11)

Case: Π ` (V1,V2) ∈ >A1×A2

Π ` V1 ∈>A1 Rule for >
Π ` V2 ∈>A2 Rule for >
>A1×>A1 � >A1×A2 > is maximum (5.8.11)

(c) If Π ` caseM of Ω ∈ R

then Π ` M ∈ S and Π ` S 1 Ω ∈ R′ for some R′ � R and S.

Case: Π ` M ∈ S Π ` S 1 Ω ∈ R

Π ` case M of Ω ∈ R

R � R Reflexivity (5.8.11)

Case:
Π ` case M of Ω ∈ R′ R′ � R

Π ` case M of Ω ∈ R

Π ` M ∈ S and Π ` S 1 Ω ∈ R′′

for some R′′ � R′ and S Ind. Hyp.
R′′ � R Transitivity (5.8.11)

3. (a) If ∆, P∈Z1tZ2 ` J then ∆, P∈Z1 ` J and ∆, P∈Z2 ` J .

The only interesting cases are the first two below, for the rule for t and left
subsumption since they are the only ones where the assumption P∈Z1tZ2 is
replaced by another assumption. Only the second one is truly interesting: the first
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is immediate.

Case:
∆, P ∈Z1 ` M∈R ∆, P ∈Z2 ` M∈R

∆, P ∈Z1tZ2 ` M∈R

Immediate.

Case:
Z1 t Z2 � Y ∆, x∈Y ` M∈R

∆, x∈Z1tZ2 ` M∈R

Y = t{R |R in Y1 or Y2} with Z1 � Y1, Z2 � Y2

Inv. on Z1 t Z2 � Y
Y = ((⊥ t S1) t . . .) t Sn

where {S1, . . . Sn} = {Si |Si in Y1 or Y2}
∆, x∈Si ` M∈R for each Si Ind. Hyp., repeatedly

∆, x∈Y1 ` M∈R Rule for t, repeatedly
∆, x∈Y2 ` M∈R Rule for t, repeatedly
∆, x∈Z1 ` M∈R Pattern subsumption
∆, x∈Z2 ` M∈R Pattern subsumption

For this part we additionally show some of the cases that simply rebuild the
derivation, although we skip these in the later parts, since they are completely
straightforward.

Case:
x∈R in (∆, P∈Z1tZ2)

∆, P∈Z1tZ2 ` x ∈ R

x∈R in ∆ R 6= Z1tZ2

∆, P∈Z1 ` x ∈ R Rule for x

∆, P∈Z2 ` x ∈ R Rule for x

Case:
∆, P∈Z1tZ2, x∈R ` M ∈ S

∆, P∈Z1tZ2 ` λx.M ∈ R→S

∆, P∈Z1, x∈R ` M ∈ S and
∆, P∈Z2, x∈R ` M ∈ S Ind. Hyp.

∆, P∈Z1 ` λx.M ∈ R→S Rule for λ

∆, P∈Z2 ` λx.M ∈ R→S Rule for λ
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Case:
∆, P∈Z1tZ2 ` M ∈ R ∆, P∈Z1tZ2 ` R 1 Ω ∈ S

∆, P∈Z1tZ2 ` case M of Ω ∈ S

∆, P∈Z1, x∈R ` M ∈ S and
∆, P∈Z2, x∈R ` M ∈ S Ind. Hyp.

∆, P∈Z1 ` R 1 Ω ∈ S and
∆, P∈Z2 ` R 1 Ω ∈ S Ind. Hyp.

∆, P∈Z1 ` case M of Ω ∈ S Rule for case
∆, P∈Z2 ` case M of Ω ∈ S Rule for case

Case:
∆, P∈Z1tZ2, P

′∈Z ` M∈R ∆, P∈Z1tZ2 ` (Z\P ′) 1 Ω ∈ R

∆, P∈Z1tZ2 ` Z 1 (P ′ ⇒ M | Ω) ∈ R

∆, P∈Z1, P
′∈Z ` M ∈ R and

∆, P∈Z2, P
′∈Z ` M ∈ R Ind. Hyp.

∆, P∈Z1 ` (Z\P ′) 1 Ω ∈ R and
∆, P∈Z2 ` (Z\P ′) 1 Ω ∈ R Ind. Hyp.

∆, P∈Z1 ` Z 1 (P ′ ⇒ M | Ω) ∈ R Rule for P ⇒ M | Ω
∆, P∈Z1 ` Z 1 (P ′ ⇒ M | Ω) ∈ R Rule for P ⇒ M | Ω

Case: The remaining right rules.
Each similarly rebuilds the derivation after applying the induction hypothesis
to the premises.

Case:
∆, P1∈Z ′1, P2∈Z ′2, P∈Z1tZ2 ` M∈R

∆, (P1,P2)∈(Z ′1,Z
′
2), P∈Z1tZ2 ` M∈R

∆, P1∈Z ′1, P2∈Z ′2, P∈Z1 ` M∈R and
∆, P1∈Z ′1, P2∈Z ′2, P∈Z2 ` M∈R Ind. Hyp.

∆, (P1,P2)∈(Z ′1,Z
′
2), P∈Z1 ` M ∈R Rule for (Z1,Z2)

∆, (P1,P2)∈(Z ′1,Z
′
2), P∈Z2 ` M ∈R Rule for (Z1,Z2)
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Case:
∆, P ′∈Z ′1, P∈Z1tZ2 ` M∈R ∆, P ′∈Z ′2, P∈Z1tZ2 ` M∈R

∆, P ′∈Z ′1tZ ′2, P∈Z1tZ2 ` M∈R

∆, P ′∈Z ′1, P∈Z1 ` M ∈R and
∆, P ′∈Z ′1, P∈Z2 ` M ∈R Ind. Hyp.

∆, P ′∈Z ′2, P∈Z1 ` M ∈R and
∆, P ′∈Z ′2, P∈Z2 ` M ∈R Ind. Hyp.

∆, P ′∈Z ′1tZ ′2, P∈Z1 ` M ∈R Rule for t
∆, P ′∈Z ′1tZ ′2, P∈Z2 ` M ∈R Rule for t

Case: The remaining left rules.
Each similarly rebuilds the derivation after applying the induction hypothesis
to the premises.

(b) If ∆, (P1,P2)∈S ` J then S
⇒' S1 ⊗ S2 and ∆, P1∈S1, P2∈S2 ` J .

Case:
∆, P1∈S1, P2∈S2 ` M∈R

∆, (P1,P2)∈S1×S2 ` M∈R

S1×S2
⇒' S1 ⊗ S2 Rule for ×

Case:
S � Y ∆, (P1,P2)∈Y ` M∈R

∆, (P1,P2)∈S ` M∈R

∆, (P1,P2)∈S @ Γ with Γ ` M∈R Well-formedness

Γ = Γ′, (P1,P2)∈A with S@A Inv. on ∆, (P1,P2)∈S @ Γ

A = A1×A2 Inv. on type deriv.

S
⇒' S1 ⊗ S2 Lemma 5.6.8

Then, we have two subcases for the derivation of S � Y .
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Subcase:
S � S′

S � S′

S′
⇒' S′1 ⊗ S′2 and

∆, P1∈S′1, P2∈S′2 ` M∈R Ind. Hyp.
S′ � S′1×S′2 Lemma 5.6.8

S � S′1×S′2 Transitivity (5.8.11)
S1×S2 � S′1×S′2 Transitivity (5.8.11)
(S1 � S′1 and S2 � S′2)

or S1 � . or S2 � . Prod. Inv. Lem. 6.6.6

If S1 � S′1 and S2 � S′2:

∆, P1∈S1, P2∈S′2 ` M∈R Left Subsumption
∆, P1∈S1, P2∈S2 ` M∈R Left Subsumption

If S1 � . then:

S1 � ⊥
∆, P1∈⊥, P2∈S2 ` M∈R Rule for ⊥
∆, P1∈S1, P2∈S2 ` M∈R Left Subsumption

If S2 � . then:
Dual to that for S1 � .

Subcase:
S � .
S � ⊥

S1×S2 � . Lemmas 5.6.8, 5.8.10
S1 � . or S2 � .
If S1 � . then:

S1 � ⊥
∆, P1∈⊥, P2∈S2 ` M∈R Rule for ⊥
∆, P1∈S1, P2∈S2 ` M∈R Left Subsumption

If S2 � . then:
Dual to that for S1 � .

(c) If ∆, (P1,P2)∈(Z1,Z2) ` J then ∆, P1∈Z1, P2∈Z2 ` J .

There is no subsumption case for this part: neither subsumption rule matches the
conclusion. Hence, the following is only the case which does not simply rebuild the
derivation.

Case:
∆, P1∈Z1, P2∈Z2 ` M∈R

∆, (P1, P2)∈ (Z1,Z2) ` M∈R

Immediate.
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(d) If ∆, ()∈() ` J then ∆ ` J .

Again, neither subsumption rule matches the conclusion for this part. Hence, the
following is only the case which does not simply rebuild the derivation.

Case:
∆ ` M∈R

∆, ()∈ () ` M∈R

Immediate.

(e) If ∆, ()∈S ` J then ∆ ` J .

Case:
∆ ` M∈R

∆, ()∈S ` M∈R

Immediate.

Case:
S � Y ∆, ()∈Y ` M∈R

∆, ()∈S ` M∈R

(Y = S′ and S � S′) or (Y = ⊥ and S � .) Inversion

If Y = S′ and S � S′

∆, ()∈S′ ` M∈R Substituting Y = S′

∆ ` M∈R Ind. Hyp.

If Y = ⊥ and S � . then:
S @ 1 Well-formedness
[[S]] = {()} Lemma 5.6.7
[[.]] = {} Def. [[.]]
S �/ . Soundness of � (5.8.2)
Contradicts S � ., case cannot occur.

(f) If ∆, cP ∈cZ ` J then ∆, P∈Z ` J .

Again, neither subsumption rule matches the conclusion for this part. Hence, the
following is only the case which does not simply rebuild the derivation.

Case:
∆, P∈Z ` M∈R

∆, cP ∈cZ ` M∈R

Immediate.

(g) If ∆, cP ∈ρ ` J then ∆, cP ∈ inv(ρ) ` J .

Case:
∆, cP ∈ inv(ρ) ` M∈R

∆, cP ∈ρ ` M∈R

Immediate.

206



Case:
ρ � Y ∆, cP ∈Y ` M∈R

∆, cP ∈ρ ` M∈R

Subcase:
ρ � ρ′

ρ � ρ′

∆, cP ∈ρ′ ` M∈R Substituting Y = ρ′

∆, cP ∈ inv(ρ′) ` M∈R Ind. Hyp.

For each c′S′ in inv(ρ′):
∆, cP ∈c′S′ ` M∈R Part 3a, repeatedly

Now, for each cS in inv(ρ):
cS′ in inv(ρ′) with S � S′ Mono. of inv (6.6.10)
∆, cP ∈cS′ ` M∈R Instance of above
∆, P∈S′ ` M∈R Part 3f
∆, P∈S ` M∈R Left Subsumption Rule
∆, cP ∈cS ` M∈R Rule for cP ∈cS

And, for each c′S in inv(ρ) with c′ 6= c:
∆, cP ∈c′S ` M∈R Rule for c′ 6= c

So: ∆, cP ∈ inv(ρ) ` M∈R Rule for t, repeatedly

Subcase:
ρ � .
ρ � ⊥

&{r | ρ � r} � ρ & is g.l.b. (5.8.11)
&{r | ρ � r} � . Transitivity (5.8.11)
body(&{r | ρ � r}) � . Lemma 5.6.2
inv(ρ) � . Def. inv

Now, for each cS in inv(ρ):
S � . Inversion on inv(ρ) � .
S � ⊥ Rule for S � ⊥
∆, P∈⊥ ` M∈R Rule for ⊥
∆, P∈S ` M∈R Left Subsumption
∆, cP ∈cS ` M∈R Rule for cP ∈cS

And, for each c′S in inv(ρ) with c′ 6= c:
∆, cP ∈c′S ` M∈R Rule for c′ 6= c

So: ∆, cP ∈ inv(ρ) ` M∈R Rule for t, repeatedly

(h) If ∆, x∈Z ` J

then Z
⇒
� Y and for each S in Y we have ∆, x∈S ` J .
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For this part the subsumption case coincides with the case for the rule being
inverted. However, we have an additional interesting case: that for uses of the
variable x when Z is a sort.

Case:
Z � Y ′ ∆, x∈Y ′ ` M∈R

∆, x∈Z ` M∈R

Z
⇒
� Y with S in Y implies S � S′ for some S′ in Y ′

Compl.
⇒
� (6.7.8)

∆, x∈S′ ` M∈R for each S′ in Y ′ Part 3a, repeatedly
∆, x∈S ` M∈R for each S in Y Left subsumption rule

Case:
x∈R in ∆, x∈R

∆, x∈R ` x∈R

R � R Rule for �
R
⇒
� Y with S in Y implies S � R Compl.

⇒
� (6.7.8)

∆, x∈S ` x∈R for each S in Y Left subsumption rule

In the completeness proof we generally need to account for the possibility that the algorithm
may use stronger sorts than are assigned by a declarative derivation. In the case of the
judgment ∆ `Z 1 Ω ∈ S this requires a suitable notion of inclusion for the pattern sort Z.
The judgment Z � Y is not a suitable for this purpose: it is designed to distribute unions
outwards so that Y is always a sort union. We thus introduce a new judgment Z ⊆ Z ′ which is
designed to satisfy the following properties: it generalizes subsorting R � S and it is preserved
by pattern subtraction.

Z ⊆ Z ′ Z is compositionally included in Z ′

(Where Z @ A and Z ′ @ A.)

R � S

R ⊆ S

R � .
R ⊆ Z

Z ⊆ Z ′

cZ ⊆ cZ ′

Z ⊆ ⊥

cZ ⊆ Z ′ () ⊆ ()

Z1 ⊆ Z ′1 Z2 ⊆ Z ′2

(Z1,Z2) ⊆ (Z ′1,Z
′
2)

Z1 ⊆ ⊥

(Z1,Z2) ⊆ Z ′

Z2 ⊆ ⊥

(Z1,Z2) ⊆ Z ′

⊥ ⊆ Z ′

Z1 ⊆ Z ′ Z2 ⊆ Z ′

Z1tZ2 ⊆ Z ′

Z ⊆ Z ′1

Z ⊆ Z ′1tZ ′2

Z ⊆ Z ′2

Z ⊆ Z ′1tZ ′2

Lemma 6.7.10 (Preservation of ⊆)
If Z ⊆ Z ′ then Z\P ⊆ Z ′\P .
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Proof: By induction on the definition of Z\P and the derivation of Z ⊆ Z ′, lexicographically.
We first treat the four rules for Z ⊆ Z ′ involving t and ⊥. We then consider the remaining

cases following the definition of Z ′\P , using inversion from Z to determine which of the eight
remaining rules matches the conclusion Z ⊆ Z ′.

Case: ⊥ ⊆ Z ′ . Then ⊥\P = ⊥ and ⊥ ⊆ Z ′\P (rule for ⊥).

Case:
Z1 ⊆ Z ′ Z2 ⊆ Z ′

Z1 t Z2 ⊆ Z ′

Z1\P ⊆ Z ′\P and Z2\P ⊆ Z ′\P Ind. Hyp.
(Z1\P ) t (Z2\P ) ⊆ Z ′\P Rule for t
(Z1 t Z2) \ P ⊆ Z ′\P Def. \

Case:
Z ⊆ Z ′1

Z ⊆ Z ′1 t Z ′2

Z\P ⊆ Z ′1\P Ind. Hyp.
Z\P ⊆ (Z ′1\P ) t (Z ′2\P ) Rule for t
Z\P ⊆ (Z ′1 t Z ′2) \ P Def. \

Case:
Z ⊆ Z ′2

Z ⊆ Z ′1 t Z ′2
. Dual to the previous case.

Case: Z\x = ⊥. Then ⊥ ⊆ Z ′\x (rule for ⊥).

Case: Z \ () = ⊥. Then ⊥ ⊆ Z ′\() (rule for ⊥).

Case: (Z1, Z2) \ (P1, P2) = ((Z1\P1), Z2) t (Z1, (Z2\P2))

By inversion on Z ⊆ Z ′ we have one of the following subcases.

Subcase: Z ′ = (Z ′1,Z
′
2) and Z1 ⊆ Z ′1 and Z2 ⊆ Z ′2

(Z ′1,Z
′
2) \ (P1,P2) = ((Z ′1\P1),Z ′2) t (Z ′1,(Z

′
2\P1)) Def. \

Z1\P ⊆ Z ′1\P Ind. Hyp.
((Z1\P1),Z2) ⊆ ((Z ′1\P1),Z ′2) Rule for pairs
((Z1\P1),Z2) ⊆ (Z ′1, Z

′
2) \ (P1, P2) Right rule for t

(Z1,(Z2\P2)) ⊆ (Z ′1, Z
′
2) \ (P1, P2) Similarly, dual to above

(Z1, Z2) \ (P1, P2) ⊆ (Z ′1, Z
′
2) \ (P1, P2) Left rule for t

Subcase: Z1 ⊆ ⊥
Z1\P1 ⊆ ⊥\P1 Ind. Hyp.
Z1\P1 ⊆ ⊥ Def. \
((Z1\P1),Z2) ⊆ Z ′\(P1, P2) Rule for first part empty
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(Z1,(Z2\P2)) ⊆ Z ′\(P1, P2) Rule for first part empty
(Z1,Z2)\(P1, P2) ⊆ Z ′\(P1, P2) Left rule for t

Subcase: Z2 ⊆ ⊥
Dual to that for Z1 ⊆ ⊥.

Case: R\(P1, P2) = ((R1\P1), R2) t (R1, (R2\P2)) with R
⇒' R1⊗R2

By inversion on Z ⊆ Z ′ we have one of the following subcases.

Subcase: R � .
R1×R2 � . Transitivity (5.8.11)
R1 � . or R2 � . Inversion

If R1 � . then:
R1 ⊆ ⊥ Rule for empty sort
R1\P1 ⊆ ⊥\P1 Ind. Hyp.
R1\P1 ⊆ ⊥ Def. \
((R1\P1),R2) ⊆ Z ′\(P1, P2) Rule for first part empty
(R1,(R2\P2)) ⊆ Z ′\(P1, P2) Rule for first part empty
R\(P1, P2) ⊆ Z ′\(P1, P2) Left rule for t

If R2 � . then:
Dual to that for R1 � ..

Subcase: Z ′ = R′ and R � R′

R′
⇒' R′1 ⊗R′2 Lemma 5.6.8

R′\(P1,P2) = ((R′1\P1),R′2) t (R′1,(R
′
2\P1)) Def. \

R1×R2 � R′1×R′2 Transitivity (5.8.11)
(R1 � R′1 and R2 � R′2)

or R1 � . or R2 � . Prod. Inv. Lemma 6.6.6

If R1 � R′1 and R2 � R′2 then:
R1\P1 ⊆ R′1\P1 and R2\P2 ⊆ R′2\P2 Ind. Hyp.
((R1\P1),R2) ⊆ ((R′1\P1),R′2) Rule for pairs
((R1\P1),R2) ⊆ R′\(P1, P2) Right rule for t
(R1,(R2\P2)) ⊆ R′\(P1, P2) Similarly, dual to above
R\(P1, P2) ⊆ R′\(P1, P2) Left rule for t

If R1 � . then:
As for the case for R1 � . in the previous subcase.

If R2 � . then:
As for the case for R2 � . in the previous subcase.
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Case: (cZ1) \ (c P1) = c (Z1\P1)

By inversion on Z ⊆ Z ′ we have one of the following subcases.

Subcase: Z ′ = cZ ′1 with Z1 ⊆ Z ′1
(cZ ′1) \ (c P1) = c (Z ′1\P1) Def. \
Z1\P1 ⊆ Z ′1\P1 Ind. Hyp.
c(Z1\P1) ⊆ c(Z ′1\P1) Rule for c

Subcase: Z1 ⊆ ⊥
Z1\P1 ⊆ ⊥\P1 Ind. Hyp.
Z1\P1 ⊆ ⊥ Def. \
c(Z1\P1) ⊆ Z ′\(cP1) Rule for c with ⊥

Case: (cZ1) \ (c2 P2) = cZ1 with c2 6= c

By inversion on Z ⊆ Z ′ we have one of the following subcases.

Subcase: Z ′ = cZ ′1
(cZ ′1) \ (c2 P2) = cZ ′1 Def. \
cZ1 ⊆ cZ ′1 Assumed

Subcase: Z1 ⊆ ⊥
cZ1 ⊆ Z ′\(c2P2) Rule for c with ⊥

Case: ρ \ (c P ) =
⊔
{c(R\P ) | cR in inv(ρ)}

t
⊔
{c1 R1 | c1 R1 in inv(ρ) and c1 6= c}

By inversion on Z ⊆ Z ′ we have one of the following subcases.

Subcase: ρ � .
&{r | ρ � r} � ρ & is g.l.b. (5.8.11)
&{r | ρ � r} � . Transitivity (5.8.11)
body(&{r | ρ � r}) � . Lemma 5.6.2
inv(ρ) � . Def. inv

Now, for each c1R in inv(ρ):
R � . Inversion on inv(ρ) � .
R ⊆ ⊥ Rule for empty sort
R\P ⊆ ⊥ when c1 = c Ind. Hyp.
c(R\P ) ⊆ Z ′\(cP ) when c1 = c Rule for c with ⊥
c1R ⊆ Z ′\(cP ) when c1 6= c Rule for c with ⊥

So, for each c1S in ρ\(cP ):
c1S ⊆ Z ′\(cP ) Def. \

ρ\(cP ) ⊆ Z ′\(cP ) Rule for t, repeatedly
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Subcase: Z ′ = ρ′ and ρ � ρ′

Then, for each c1R in inv(ρ):
R � R′ for some cR′ in inv(ρ′) Mono. of inv (6.6.10)
R ⊆ R′ Rule for sort
R\P ⊆ R′\P when c1 = c Ind. Hyp.
c(R\P ) ⊆ c(R′\P ) when c1 = c Rule for c

c(R\P ) ⊆ ρ′\(cP ) when c1 = c Right t rule, repeatedly

c1R ⊆ c1R
′ when c1 6= c Rule for c

c1R ⊆ ρ′\(cP ) when c1 6= c Right rule for t, repeatedly

ρ \ (c P ) ⊆ ρ′\(cP ) Left rule for t, repeatedly

We continue with two small lemmas. The first relates ⊆ to � for empty sorts and the second
is a generalized form of inversion for Y ⊆ Y ′ when Y and Y ′ are sort unions.

Lemma 6.7.11 If Z ⊆ ⊥ then Z � ⊥.

Proof: By induction on the structure of the derivation of Z ⊆ ⊥. We have one case for each
rule which has a conclusion Z ⊆ Z ′ with Z ′ not required to be of a particular form.

Case:
R � .
R ⊆ ⊥

Then R � ⊥ (rule for ⊥).

Case:
Z ⊆ ⊥
cZ ⊆ ⊥

Then Z � ⊥ (ind. hyp.)
so cZ � ⊥ (rule for c).

Case:
Z1 ⊆ ⊥

(Z1,Z2) ⊆ ⊥
Then Z1 � ⊥ (ind. hyp.)
so (Z1,Z2) � ⊥ (rule for pairs).

Case:
Z2 ⊆ ⊥

(Z1,Z2) ⊆ ⊥
Dual to the previous case.

Case: ⊥ ⊆ ⊥ Then ⊥ � ⊥ (rule for ⊥).

Case:
Z1 ⊆ ⊥ Z2 ⊆ ⊥

Z1tZ2 ⊆ ⊥
Then Z1 � ⊥ and Z2 � ⊥ (ind. hyp.)
so Z1tZ2 � ⊥ (rule for t).

Lemma 6.7.12
If Y ⊆ Y ′ and R in Y then R � . or R � S for some S in Y ′.

Proof: By induction on structure of the derivation of Y ⊆ Y ′.
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Case:
R � R′

R ⊆ R′
Immediate.

Case:
R � .
R ⊆ Z ′

Immediate.

Case:
Y1 ⊆ Y ′ Y2 ⊆ Y ′

Y1t Y2 ⊆ Y ′

R in Y1 or R in Y2

R � . or R � S for some S in Y ′ Ind. hyp. in each case

Case:
Y ⊆ Y ′1

Y ⊆ Y ′1 t Y ′2

R � . or R � S for some S in Y ′1 Ind. hyp.
R � . or R � S for some S in Y ′1 t Y ′2 Def. “in”

Case:
Y ⊆ Y ′2

Y ⊆ Y ′1 t Y ′2
Dual to the previous case.

Next, we prove a lemma which relates the judgment Z ⊆ Z ′ to the sort union inclusion judgment
Z � Y , making use of the preceding two lemmas.

Lemma 6.7.13
If Z ⊆ Z ′ and Z ′ � Y ′ then there is some Y such that the following hold.

• Z � Y and Y ⊆ Y ′.

• R �/ . for each R in Y .

Proof: By induction on the structure of the derivations of Z ′ � Y ′ and Z ⊆ Z ′, lexicographi-
cally.

Case:
R � R′

R ⊆ R′
and

R′ � S′

R′ � S′

Subcase: R′ �/ .
Then R � R′ (rule for sorts) and R′ ⊆ S′ (rule for sorts).

Subcase: R′ � .
Then R � . (trans.), so R � ⊥ (rule) and ⊥ ⊆ S′ (rule).

Case:
R � R′

R ⊆ R′
and

R′ � .
R′ � ⊥

Then R � . (trans.), so R � ⊥ (rule) and ⊥ ⊆ ⊥ (rule).
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Case:
R � .
R ⊆ Z ′

and Z ′ � Y ′

Then R � ⊥ (rule for empty sort) and ⊥ ⊆ Y ′ (rule for empty sort).

Case:
Z ⊆ Z ′

cZ ⊆ cZ ′
and

Z ′ � R1 t . . . t Rn cR1 � ρ1 . . . c Rn � ρn

cZ ′ � ρ1 t . . . t ρn

Z � S1 t . . . t Sm and S1 t . . . t Sm ⊆ R1 t . . . t Rn

with not Si � . for each Si Ind. hyp.

For each Si:
Si � . or Si � Rj for some Rj Lemma 6.7.12
not Si � . in Y Above
Si � Rj for some Rj Other case is impossible

Let Ŷ be such that for each Si, Ŷ contains ρj (with j chosen as above).
Then, for each ρj and corresponding Si:

cR in body(ρj) with Rj � R Inv. on �

Si � R Transitivity
cSi � ρj Rule for �

not R � . Since not Si � ., transitivity
not body(ρj) � . Requires R � ., by inversion
not ρj � . Lemmas 5.6.2, 5.8.10

So:
cZ � Ŷ Rule for c

not ρj � . for each ρj in Ŷ Above
ρj ⊆ ρ1 t . . . t ρn for each ρj Right rule for t, repeatedly

Ŷ ⊆ ρ1 t . . . t ρn Left rule for t, repeatedly

Case:
Z ⊆ ⊥

cZ ⊆ Z ′
and Z ′ � Y ′

Then Z � ⊥ (lemma 6.7.11) and ⊥ ⊆ Y ′ (rule for ⊥).

Case: () ⊆ () and () � 1

Then () � 1 (rule) and 1 ⊆ 1 (rule for sorts, via reflexivity).

Case:
Z1 ⊆ Z ′1 Z2 ⊆ Z ′2

(Z1,Z2) ⊆ (Z ′1,Z
′
2)

and
Z ′1 � Y ′1 Z ′2 � Y ′2

(Z ′1,Z
′
2) � t{R1×R2 |R1 in Y ′1 , R2 in Y ′2}

Z1 � Y1 and Y1 ⊆ Y ′1 for some Y1 Ind. hyp.
Z2 � Y2 and Y2 ⊆ Y ′1 for some Y2 Ind. hyp.
(Z1,Z2) � t{S1×S2 |S1 in Y1, S2 in Y2} Rule for pairs
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If S1 in Y1 and S2 in Y2 then:
S1 � . or S1 � R1 for some R1 in Y ′1 Lemma 6.7.12
S2 � . or S2 � R2 for some R2 in Y ′2 Lemma 6.7.12
S1×S2 � R1×R2 Rules for ×, in each case
S1×S2 ⊆ R1×R2 Rule for sorts
S1×S2 ⊆ t{R1×R2 |R1 in Y ′1 , R2 in Y ′2} Right t rule, rep.

t{S1×S2 |S1 in Y1, S2 in Y2} ⊆ t{R1×R2 |R1 in Y ′1 , R2 in Y ′2}
Left t rule, rep.

Case:
Z1 ⊆ ⊥

(Z1,Z2) ⊆ Z ′
and Z ′ � Y ′

Z1 � ⊥ Lemma 6.7.11
(Z1,Z2) � ⊥ Rule for empty first component
⊥ ⊆ Y ′ Rule for ⊥

Case:
Z2 ⊆ ⊥

(Z1,Z2) ⊆ Z ′
and Z ′ � Y ′

Dual to the previous case.

Case: ⊥ ⊆ Z ′ and Z ′ � Y ′

Then ⊥ � ⊥ (rule for ⊥) and ⊥ ⊆ Y ′ (rule for ⊥).

Case:
Z1 ⊆ Z ′ Z2 ⊆ Z ′

Z1tZ2 ⊆ Z ′
and Z ′ � Y ′

Z1 � Y1 and Y1 ⊆ Y for some Y1 Ind. hyp.
Z2 � Y2 and Y2 ⊆ Y for some Y2 Ind. hyp.
Z1 t Z2 � Y1 t Y2 Rule for t
Y1 t Y2 ⊆ Y Rule for t

Case:
Z ⊆ Z ′1

Z ⊆ Z ′1tZ ′2
and

Z ′1 � Y ′1 Z ′2 � Y ′2

Z ′1 t Z ′2 � t{R |R in Y ′1 or Y ′2}
Z � Y and Y ⊆ Y ′1 for some Y Ind. hyp.
Y ⊆ Y ′1 t Y ′2 Rule for t

Case:
Z ⊆ Z ′2

Z ⊆ Z ′1tZ ′2
and

Z ′1 � Y ′1 Z ′2 � Y ′2

Z ′1 t Z ′2 � t{R |R in Y ′1 or Y ′2}
Dual to the previous case.

We now prove two small lemmas for ⊆: that it is reflexive, and that empty pattern sorts (i.e.,
those with Z ⊆ ⊥) behave like ⊥ in sort assignment derivations.

215



Lemma 6.7.14 (Reflexivity of ⊆)
For all Z, Z ⊆ Z.

Proof: By induction on Z.
The cases for R, cZ, (), and (Z1,Z2) and ⊥ follow by the corresponding rules (i.e. the rules
not involving ⊥ in the premise). The case for t follows.

Case: Z = Z1 t Z2

Z1 ⊆ Z1 and Z2 ⊆ Z2 Ind. hyp.
Z1 ⊆ Z1tZ2 and Z2 ⊆ Z1tZ2 Right rules for t
Z1tZ2 ⊆ Z1tZ2 Left rule for t

Lemma 6.7.15 (Correctness of Emptiness via ⊆)
If Z ⊆ ⊥ then ∆, P∈Z ` M ∈R holds for any ∆, P , M and R.
(Provided ∆, P∈Z ` M ∈R is well-formed).

Proof: By induction on the structure of the derivation of Z ⊆ ⊥.
We first treat the cases where P is a variable or Z is a sort, and then treat the remaining cases
following the derivation of Z ⊆ ⊥.

Case: P = x

∆, x∈⊥ ` M ∈R Rule for ⊥
∆, x∈Z ` M ∈R Left subsumption for x

Case:
S � .
S ⊆ ⊥

∆, P∈⊥ ` M ∈R Rule for ⊥
S � ⊥ Rule for empty sort
∆, P∈S ` M ∈R Left subsumption for R

Case:
Z ⊆ ⊥
cZ ⊆ ⊥

and P = cP ′

∆, P ′∈Z ` M ∈R Ind. hyp.
∆, cP ′∈cZ ` M ∈R Rule for cP∈cZ

Case:
Z ⊆ ⊥
cZ ⊆ ⊥

and P = c′P ′ and c′ 6= c

∆, c′P ′∈cZ ` M ∈R Rule for c′P∈cZ

Case:
Z1 ⊆ ⊥

(Z1,Z2) ⊆ ⊥
and P = (P1,P2)

∆, P1∈Z1, P2∈Z2 ` M ∈R Ind. hyp.
∆, (P1,P2)∈(Z1,Z2) ` M ∈R Rule for pairs
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Case:
Z2 ⊆ ⊥

(Z1,Z2) ⊆ ⊥
and P = (P1,P2)

Dual to the previous case.

Case: ⊥ ⊆ ⊥
∆, P∈⊥ ` M ∈R Rule for ⊥

Case:
Z1 ⊆ ⊥ Z2 ⊆ ⊥

Z1tZ2 ⊆ ⊥
∆, P∈Z1 ` M ∈R Ind. hyp.
∆, P∈Z2 ` M ∈R Ind. hyp.
∆, P∈Z1tZ2 ` M ∈R Rule for t

We now use the preceding lemmas to prove a subsumption lemma for the compositional inclusion
judgment Z ⊆ Z ′. The proof requires the induction hypothesis to be generalized to allow a
context ∆ to be replaced by any ∆′ ⊆ ∆, which is defined pointwise, meaning that if P∈Z in
∆ then P∈Z ′ in ∆′ for some Z ′ ⊆ Z.

This lemma is required to show completeness when checking the body of a branch P ⇒ M :
the assumptions ∆ arising from P during checking will satisfy ∆ ⊆ ∆′, where ∆′ are the
corresponding assumptions in any declarative sort assignment derivation.

This lemma is also interesting because it validates forms of reasoning that are even more
flexible than those allowed by the rules of the declarative system: we can think of subsumption
via ⊆ as an admissible rule. We could have included the rules of ⊆ directly in the original
declarative system, but doing so would result in a relatively large system. Also, it would have
added to the complexity of the earlier proofs, particularly for sort preservation and progress.

Lemma 6.7.16 (Subsumption for ⊆)
If ∆ ⊆ ∆′ then the following hold.

1. If ∆′ ` Z 1 Ω ∈ R then ∆ ` Z 1 Ω ∈ R.

2. If ∆′ ` M ∈R then ∆ ` M ∈ R.

Proof: By induction on the structure of the sort assignment derivation, and the sum of the
sizes of the compositional inclusion derivations in ∆ ⊆ ∆′, lexicographically.

We first treat the cases where one of the derivations in ∆ ⊆ ∆′ involves one of the rules for
Z ⊆ Z ′ which do not require Z ′ to be of a particular form. We then treat the remaining cases,
following structure of the sort assignment derivation.

The cases for the right rules simply rebuild the derivation, since they either do not involve
the context, or only involve assumptions of the form x∈R. We show the cases for x, λ and case
only; the others are similar.
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Case: ∆ ⊆ ∆′,
S � .
S ⊆ Z ′

and ∆′, P∈Z ′ ` M ∈R

S � ⊥ Lemma 6.7.11
∆, P∈⊥ ` M ∈R Rule for ⊥
∆, P∈S ` M ∈R Left subsumption rule

Case: ∆ ⊆ ∆′,
Z ⊆ ⊥

cZ ⊆ Z ′
and ∆′, P∈Z ′ ` M ∈R

Z ⊆ ⊥ Rule for c with ⊥
∆, P∈Z ` M ∈R Lemma 6.7.15

Case: ∆ ⊆ ∆′,
Z1 ⊆ ⊥

(Z1,Z2) ⊆ Z ′
and ∆′, P∈Z ′ ` M ∈R

(Z1,Z2) ⊆ ⊥ Rule for empty first comp.
∆, P∈(Z1,Z2) ` M ∈R Lemma 6.7.15

Case: ∆ ⊆ ∆′,
Z2 ⊆ ⊥

(Z1,Z2) ⊆ Z ′
and ∆′, P∈Z ′ ` M ∈R

Dual to the previous case.

Case: ∆ ⊆ ∆′, ⊥ ⊆ Z ′ and ∆′, P∈Z ′ ` M ∈R

∆, P∈⊥ ` M ∈R Rule for ⊥.

Case: ∆ ⊆ ∆′,
Z1 ⊆ Z ′ Z2 ⊆ Z ′

Z1tZ2 ⊆ Z ′
and ∆′, P∈Z ′ ` M ∈R

∆, P∈Z1 ` M ∈R Ind. hyp.
∆, P∈Z2 ` M ∈R Ind. hyp.
∆, P∈Z1tZ2 ` M ∈R Rule for t

Case: ∆ ⊆ ∆′,
Z1 ⊆ Z ′1 Z2 ⊆ Z ′2

(Z1,Z2) ⊆ (Z ′1,Z
′
2)

and
∆′, P1∈Z ′1, P2∈Z ′2 ` M∈R

∆′, (P1, P2)∈ (Z ′1,Z
′
2) ` M∈R

∆, P1∈Z1, P2∈Z2 ` M∈R Ind. hyp.
∆, (P1, P2)∈(Z ′1,Z

′
2) ` M∈R Left rule for pair

Case: ∆ ⊆ ∆′,
S1×S2 � S′1×S′2

S1×S2 ⊆ S′1×S′2
and

∆, P1∈S′1, P2∈S′2 ` M∈R

∆, (P1, P2)∈S′1×S′2 ` M∈R

(S1 � S′1 and S2 � S′2)
or S1 � . or S2 � . Prod. Inv. Lemma 6.6.6

Subcase: S1 � S′1 and S2 � S′2
∆, P1∈S1, P2∈S2 ` M∈R Ind. hyp.
∆, (P1, P2)∈S1×S2 ` M∈R Left rule for ×
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Subcase: S1 � . (the subcase for S2 � . is dual)
S1 ⊆ ⊥ Rule for empty sort
∆, P1∈S1, P2∈S2 ` M∈R Lemma 6.7.15
∆, (P1, P2)∈S1×S2 ` M∈R Left rule for ×

Case: ∆ ⊆ ∆′, () ⊆ () and
∆′ ` M∈R

∆′, ()∈() ` M∈R
∆ ` M∈R Ind. hyp.
∆, ()∈() ` M∈R Left rule for ()

Case: ∆ ⊆ ∆′,
S � 1

S ⊆ 1
and

∆′ ` M∈R

∆′, ()∈1 ` M∈R

∆ ` M∈R Ind. hyp.
∆, ()∈1 ` M∈R Left rule for 1
∆, ()∈S ` M∈R Left subsumption rule

Case: ∆ ⊆ ∆′,
Z ⊆ Z ′

cZ ⊆ cZ ′
and

∆′, P∈Z ′ ` M∈R

∆′, cP ∈cZ ′ ` M∈R

∆, P∈Z ` M∈R Ind. hyp.
∆, cZ∈cP ` M∈R Left rule for cP ∈cZ

Case: ∆ ⊆ ∆′,
Z ⊆ Z ′

cZ ⊆ cZ ′
and

c′ 6= c

∆′, c′P ∈ cZ ′ ` M∈R

∆, c′P ∈ cZ ` M∈R Left rule for c′P ∈ cZ

Case: ∆ ⊆ ∆′,
ρ � ρ′

ρ ⊆ ρ′
and

∆′, cP ∈ inv(ρ′) ` M∈R

∆′, cP ∈ ρ′ ` M∈R

For each c′S in inv(ρ):
c′S′ in inv(ρ) with S � S′ Mono. of inv (6.6.10)
c′S ⊆ c′S′ Rule for c, via rule for sorts
c′S ⊆ inv(ρ) Right rule for t, repeatedly

inv(ρ) ⊆ inv(ρ′) Left rule for t, repeatedly
∆, cP ∈ inv(ρ) ` M∈R Ind. hyp.
∆, cP ∈ρ ` M∈R Left rule for cP ∈ρ

Case: ∆ ⊆ ∆′, Z ⊆ ⊥ and ∆′, P∈⊥ ` M∈R

All cases for Z ⊆ ⊥ already considered.

Case: ∆ ⊆ ∆′,
Z ⊆ Z ′1

Z ⊆ Z ′1tZ ′2
and

∆′, P∈Z ′1 ` M∈R ∆′, P∈Z ′2 ` M∈R

∆′, P ∈Z ′1tZ ′2 ` M∈R

∆, P ∈Z ` M∈R Ind. hyp.
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Case: ∆ ⊆ ∆′,
Z ⊆ Z ′2

Z ⊆ Z ′1tZ ′2
and

∆′, P∈Z ′1 ` M∈R ∆′, P∈Z ′2 ` M∈R

∆′, P ∈Z ′1tZ ′2 ` M∈R

∆, P ∈Z ` M∈R Ind. hyp.

Case: ∆ ⊆ ∆′, Z ⊆ Z ′ and
Z ′ � Y ′ ∆′, x∈Y ′ ` M∈R

∆′, x∈Z ′ ` M∈R

Z � Y and Y ⊆ Y ′ for some Y Lemma 6.7.13
∆, x∈Y ` M∈R Ind. hyp.
∆, x∈Z ` M∈R Left subsumption rule for x

Case: ∆ ⊆ ∆′,
S � S′

S ⊆ S′
and

S′ � Y ′ ∆′, P∈Y ′ ` M∈R

∆′, P∈S′ ` M∈R

∆, x∈Y ′ ` M∈R Ind. hyp.
∆, x∈S′ ` M∈R Left subsumption rule for sorts
∆, x∈S ` M∈R Left subsumption rule for sorts

Case: ∆ ⊆ ∆′,
S � S′

S ⊆ S′
and

x∈S′ in ∆′, x∈S′

∆′, x∈S′ ` x∈S′

∆, x∈S ` x∈S Rule for x
∆, x∈S ` x∈S′ Right subsumption rule

Case: ∆ ⊆ ∆′ and
∆′, x∈S ` M ∈ R

∆′ ` λx.M ∈ S→R

∆, x∈S ⊆ ∆′, x∈S Def. ∆ ⊆ ∆′, Reflexivity
∆, x∈S ` M ∈ R Ind. hyp.
∆ ` λx.M ∈ S→R Rule for λ

Case: ∆ ⊆ ∆′ and
∆′ ` M ∈ R ∆′ ` R 1 Ω ∈ S

∆′ ` case M of Ω ∈ S
∆ ` M ∈ R Ind. hyp.
∆ ` R 1 Ω ∈ S Ind. hyp.
∆ ` case M of Ω ∈ S Rule for case

Case: ∆ ⊆ ∆′ and
∆′, P∈Z ` M∈R ∆′ ` (Z\P ) 1 Ω ∈ R

∆′ ` Z 1 (P ⇒ M | Ω) ∈ R
Z ⊆ Z Lemma 6.7.14
∆, P∈Z ⊆ ∆′, P∈Z Def. ∆ ⊆ ∆′

∆, P∈Z ` M∈R Ind. hyp.
∆ ` (Z\P ) 1 Ω ∈ R Ind. hyp.
∆ ` Z 1 (P ⇒ M | Ω) ∈ R Rule for non-empty branches
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Case: ∆ ⊆ ∆′ and
Z � ⊥

∆′ ` Z 1 . ∈ R
∆ ` Z 1 . ∈ R Rule for empty Z

We now combine the previous lemma with the Preservation of ⊆ Lemma (6.7.10) to prove a
lemma validating a form of subsumption that involves the sort of the case object in the sort
assignment judgment for branches. This is a key lemma in the completeness proof.

Lemma 6.7.17 (Subsumption for case objects)
If Z ⊆ Z ′ and ∆ ` Z ′ 1 Ω ∈ R then ∆ ` Z 1 Ω ∈ R.

Proof: By induction on the structure of the derivation of ∆ ` Z ′ 1 Ω ∈ R.

Case:
∆, P∈Z ′ ` M∈R ∆ ` (Z ′\P ) 1 Ω ∈ R

∆ ` Z ′ 1 (P ⇒ M | Ω) ∈ R

∆, P∈Z ⊆ ∆, P∈Z ′ Def. ∆ ⊆ ∆′

∆, P∈Z ` M∈R Ind. hyp.
Z\P ⊆ Z ′\P Preservation of ⊆ (6.7.10)
∆ ` (Z\P ) 1 Ω ∈ R Ind. hyp.
∆ ` Z 1 (P ⇒ M | Ω) ∈ R Rule for non-empty branches

Case:
Z ′ � ⊥

∆ ` Z ′ 1 . ∈ R

Z � Y and Y ⊆ ⊥ for some Y = R1 t . . . t Rn

with Ri �/ . for each Ri in Y Lemma 6.7.13
Y � ⊥ Lemma 6.7.11
Ri � . for all Ri in Y Inversion on Y � ⊥, repeatedly
Y = ⊥ Ri � . contradicts Ri �/ .
∆ ` Z 1 . ∈ R Rule for empty Z

The next two lemmas capture the completeness of the auxiliary judgments A
⇒
⊥ S and R

⇒
� S.

Lemma 6.7.18 (Completeness of
⇒
⊥)

If R @ A and R � . then A
⇒
⊥ S for some S.

Proof: By induction on the structure of A.

Case: A = a, R = ρ

For each s in ρ:
s @ a Well formedness of ρ

&{r | r @ a} � s & is g.l.b. (5.8.11)
&{r | r @ a} � ρ & is g.l.b. (5.8.11)
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ρ � . Assumption
&{r | r @ a} � . Transitivity

a
⇒
⊥ &{r | r @ a} Rule for a

Case: A = A1 ×A2, R @ A1 ×A2

R
⇒' R1⊗R2 Lemma 5.6.8

R1×R2 � . Transitivity
R1 � . or R2 � . Inversion on R1×R2 � .
Subcase: R1 � . (the subcase for R2 � . is dual)

A1
⇒
⊥ S1 for some S1 � . Ind. hyp.

A1×A2
⇒
⊥ S1×>A2 Rule for first component empty

Case: A = A1→A2

Impossible: no rule matches R � . with R @ A1→A2.

Lemma 6.7.19 (Completeness of
⇒
�)

If R � S1→S2 then R
⇒
� R1→R2 with S1 � R1 and R2 � S2.

Proof: By induction on the structure of the derivation of R � S1→S2. The only rules matching
a conclusion of the form R � S1→S2 are the following.

Case:
S1 � R1 R2 � S2

R1→R2 � S1→S2
Then R1→R2

⇒
� R1→R2 (rule for →).

Case:
R1 � S1→S2

R1 &R2 � S1→S2

Then R1
⇒
� R1→R2 (ind. hyp.)

so R1&R2
⇒
� R1→R2 (rule for &).

Case:
R2 � S1→S2

R1 &R2 � S1→S2
Dual to the previous case.

We now use the preceding lemmas to prove the main theorem of this section: the completeness
of the sort checking algorithm. Our choice to use inversion lemmas does not allow us to structure
the proof of completeness by induction on the given derivation: we would not be able to apply
the induction hypothesis to the result of the inversion lemma. In the completeness proofs in
Chapter 2 and Chapter 3 we used induction on the structure of terms for this reason, but this
is not sufficient here: the left rules deconstruct patterns in the context rather than terms. We
thus require a more complicated induction ordering, and it suffices to use the same well order as
used in the termination proof for the algorithm. Choosing this order also allows the structure
of the completeness proof to follow the steps taken by the algorithm.
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Theorem 6.7.20 (Completeness of Sort Checking)

1. If Π ` I ∈ R then Π ` I
⇒
∈ R′ for some R′ � R.

2. If Π ` C ∈ R then Π ` C
⇐
∈ R.

3. If (Π,∆) ` C ∈ R then Π ; ∆ ` C
⇐
∈ R.

4. If Π ` Z 1 Ωc ∈ R then Π ` Z 1 Ωc ⇐∈ R.

Proof:
By induction on the form of the conclusion of the algorithmic sort checking derivation, according
to the same well ordering as the termination theorem. Thus, lexicographically on the following.

• The term I or C or the cases Ωc.

• Which judgment the conclusion is an instance of (which allows each part to use earlier
parts of the induction hypothesis).

• The sort R or S.

• The sum of the sizes of the patterns P in ∆.

• The number of occurrences of base sorts ρ in ∆ not enclosed by a constructor c.

• The sum of the sizes of the pattern sorts Z in ∆.

For parts 1,2 and 4 we have one case for each construct matching the grammars for I, C and
Ωc, respectively. In part 3 we have one case for each possible form for the last assumption in ∆,
and one case for when ∆ is empty (hence all assumptions are in Π, and are of the form x∈R).

Almost all the cases have the same structure: they decompose the declarative sort assign-
ment derivation using the appropriate inversion lemma, then apply the induction hypothesis to
each part, as appropriate, and finally rebuild the derivation using the appropriate algorithmic
rule.

Part 1: If Π ` I ∈ R then Π ` I
⇒
∈ R′ for some R′ � R.

Case: Π ` x∈R

x∈R′ in Π for some R′ � R Inv. Lemma (6.7.9, 1a)
Π ` x

⇒
∈ R′ Rule for x

Case: Π ` u∈R

u∈R′ in Π for some R′ � R Inv. Lemma (6.7.9, 1b)
Π ` u

⇒
∈ R′ Rule for u
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Case: Π ` cC ∈ ρ

cR′ in body(ρ′) and Π ` C ∈R′ and ρ′ � ρ
for some R′ and ρ′ Inv. Lemma (6.7.9, 1c)

Π ` C
⇐
∈ R′ Ind. hyp.

Π ` cC
⇒
∈ ρ′ Rule for c

Case: Π ` I C ∈ R

Π ` I ∈ R2 →R and Π ` C ∈ R2

for some R2 Inv. Lemma (6.7.9, 1d)
Π ` I

⇒
∈ S1 for some S1 � R2 →R Ind. hyp.

S1
⇒
� R′2 →R′ with R2 � R′2 and R′ � R Compl. of

⇒
� (6.7.19)

Π ` C ∈R′2 Right subsumption rule
Π ` C

⇐
∈ R′2 Ind. hyp.

Π ` I C
⇒
∈ R′ Rule for appl.

Case: Π ` (C∈L) ∈ R

Π ` C ∈ R′ for some R′ in L with R′ � R Inv. Lemma (6.7.9, 1e)
Π ` C

⇐
∈ R′ Ind. hyp

Π ` (C∈L)
⇒
∈ R′ Rule for annotation

Case: Π ` () ∈ R

1 � R Inv. Lemma (6.7.9, 1f)
Π ` ()

⇒
∈ 1 Rule for ()

Case: Π ` fix u.(C∈L) ∈ R

Π, u∈R′ ` C ∈R′ for some R′ in L
with R′ � R Inv. Lemma (6.7.9, 1g)

Π, u∈R′ ` C
⇐
∈ R′ Ind. hyp.

Π ` fix u.(C∈L)
⇒
∈ R′ Rule for fix with annot.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 2: If Π ` C ∈ R then Π ` C
⇐
∈ R′.

Case: Π ` I ∈ R

Π ` I
⇒
∈ R′ for some R′ � R Ind. hyp (same I, earlier part)

Π ` I
⇐
∈ R Rule for I

Case: Π ` λx.C ∈ >
Π ` λx.C

⇐
∈ > Rule for λ with >

Case: Π ` λx.C ∈ R1 &R2

R1 &R2 � R1 & is g.l.b. (Lemma 5.8.11)
Π ` λx.C ∈ R1 Subsumption
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Π ` λx.C
⇐
∈ R1 Ind. hyp. (same C, smaller R)

Π ` λx.C
⇐
∈ R2 Similarly, dual to the above

Π ` λx.C
⇐
∈ R1 &R2 Rule for λ with &

Case: Π ` λx.C ∈ R1→R2

R1→R2 � R1→R2 Reflexivity
Π, x∈R1 ` C ∈R2 Inv. Lemma (6.7.9, 2a)
Π, x∈R1 ` C

⇐
∈R2 Ind. hyp.

Π ` λx.C
⇐
∈ R1→R2 Rule for λ with →

Case: ∆ ` (C1, C2) ∈ R

R
⇒' R1 ⊗R2 for some R1 and R2 Lemma 5.6.8

Π ` C1 ∈ S1 and Π ` C2 ∈ S2

for some S1 and S2 with S1×S2 � R1×R2 Inv. Lemma (6.7.9, 2b)

(S1 � R1 and S2 � R2)
or S1 � . or S2 � . Prod. Inv. Lemma 6.6.6

Subcase: S1 � R1 and S2 � R2

Π ` C1 ∈R1 and Π ` C2 ∈R2 Subsumption rule

Π ` C1
⇐
∈R1 and Π ` C2

⇐
∈R2 Ind. hyp.

Π ` (C1,C2)
⇐
∈ R Rule for pairs

Subcase: S1 � . (the subcase for S2 � . is dual)

A1
⇒
⊥ S′1 for some S′1 Completeness of

⇒
⊥ (6.7.18)

[[S1]] ⊆ {} Lemma 5.8.10
[[S1]] ⊆ [[S′1]] {} is minimal
S1 � S′1 Lemma 5.8.10
Π ` C1 ∈S′1 Subsumption rule

Π ` C1
⇐
∈S′1 Ind. hyp. (smaller C)

S2 � > Rule for >
Π ` C2 ∈> Subsumption rule

Π ` C2
⇐
∈> Ind. hyp. (smaller C)

Π ` (C1,C2)
⇐
∈ R Rule for first component empty

Case: Π ` case I of Ωc ∈ R

Π ` I ∈ S′ and Π ` S 1 Ωc ∈ R for some S Inv. Lemma (6.7.9, 2c)
Π ` I

⇒
∈ S′ with S′ � S Ind. hyp.

Π ` S′ 1 Ωc ∈ R Subs. for case objects (6.7.17)
Π ` S′ 1 Ωc ⇐∈ R Ind. Hyp.
Π ` case I of Ωc ⇐∈ R
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. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 3: If (Π,∆) ` C ∈ R then Π ; ∆ ` C
⇐
∈ R.

Case: Π,∆, P∈Z1tZ2 ` C ∈R

Π,∆, P∈Z1 ` C ∈R and Π,∆, P∈Z2 ` C ∈R Inv. Lemma (6.7.9, 3a)

Π; (∆,P∈Z1) ` C
⇐
∈R and Π; (∆,P∈Z2) ` C

⇐
∈R Ind. Hyp. (smaller Z)

Π; (∆, P∈Z1tZ2) ` C
⇐
∈R Left rule for t

Case: Π,∆, P∈⊥ ` C ∈R

Π; (∆, P∈⊥) ` C
⇐
∈R Left rule for ⊥

Case: Π,∆, (P1,P2)∈S ` C ∈R

S
⇒' S1⊗S2 and Π,∆, P1∈S1, P2∈S2 ` C ∈R Inv. Lemma (6.7.9, 3b)

Π; (∆, P1∈S1, P2∈S2) ` C
⇐
∈R Ind. Hyp. (smaller P )

Π; (∆, (P1,P2)∈S) ` C
⇐
∈R Left rule for ×

Case: Π,∆, (P1,P2)∈(Z1,Z2) ` C ∈R

Π,∆, P1∈Z1, P2∈Z2 ` C ∈R Inv. Lemma (6.7.9, 3c)

Π; (∆, P1∈Z1, P2∈Z2) ` C
⇐
∈R Ind. Hyp. (smaller P )

Π; (∆, (P1,P2)∈(Z1,Z2)) ` C
⇐
∈R Left rule for pair

Case: Π,∆, ()∈() ` C ∈R

Π,∆ ` C ∈R Inv. Lemma (6.7.9, 3d)
Π;∆ ` C

⇐
∈R Ind. Hyp. (smaller total P in ∆)

Π; (∆, ()∈()) ` C
⇐
∈R Left rule for ()

Case: Π,∆, ()∈S ` C ∈R

Π,∆ ` C ∈R Inv. Lemma (6.7.9, 3e)
Π;∆ ` C

⇐
∈R Ind. Hyp. (smaller total P in ∆)

Π; (∆, ()∈S) ` C
⇐
∈R Left rule for () with S

Case: Π,∆, cP ∈cZ ` C ∈R

Π,∆, P∈Z ` C ∈R Inv. Lemma (6.7.9, 3f)

Π; (∆, P∈Z) ` C
⇐
∈R Ind. Hyp. (smaller P )

Π; (∆, cP ∈cZ) ` C
⇐
∈R Left rule for cP ∈cZ

Case: Π,∆, cP ∈c′Z ` C ∈R

Π; (∆, cP ∈c′Z) ` C
⇐
∈R Left rule for cP ∈c′Z

Case: Π,∆, cP∈ρ ` C ∈R

Π,∆, cP∈inv(ρ) ` C ∈R Inv. Lemma (6.7.9, 3g)

Π; (∆, cP∈inv(ρ)) ` C
⇐
∈R Ind. Hyp. (fewer ρ not enclosed by c)

Π; (∆, cP∈inv(ρ)) ` C
⇐
∈R Left rule for inv
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Case: Π,∆, x∈Z ` C ∈R

Z
⇒
� Y and for each S in Y

we have Π,∆, x∈S ` C ∈R Inv. Lemma (6.7.9, 3h)
For each S in Y we have:

(Π, x∈S);∆ ` C
⇐
∈R Ind. hyp. (smaller total P in ∆)

Π; (∆, x∈Z) ` C
⇐
∈R Left rule for x∈Z

Case: Π ` C ∈R (with ∆ = .)
Π ` C

⇐
∈ R Ind. hyp. (earlier part)

Π; . ` C
⇐
∈ R Left rule for .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Part 4: If Π ` Z 1 Ωc ∈ R then Π ` Z 1 Ωc ⇐∈ R.

Case:
Π, P∈Z ` C∈R ∆ ` (Z\P ) 1 Ωc ∈ R

∆ ` Z 1 (P ⇒ C | Ωc) ∈ R

Π, P∈Z ` C
⇐
∈ R Ind. hyp.

Π ` (Z\P ) 1 Ωc ⇐∈ R Ind. hyp.

Π ` Z 1 (P ⇒ C | Ωc)
⇐
∈ R Rule for non-empty branches

Case:
Z � ⊥

Π ` Z 1 . ∈ R

Z
⇒
� Y with each S in Y satisfying

S � S′ for some S′ in ⊥ Compl. of
⇒
� (6.7.8)

Y contains no S ⊥ contains no S′

Y = ⊥
Π ` Z 1 . ⇐∈ R Rule for empty Z

6.7.6 Annotatability

We now extend the annotatability theorem from Chapter 3 to the additional constructs of this
chapter. The appropriate definitions of minimal inferable and checkable terms are as follows.
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Definition 6.7.21

Minimal Inferable Terms
m

I ::= x | u | c
m

C |
m

I
m

C | (λx:A.
m

C)∈L

| fixu:A.(
m

C∈L) | () | (
m

C,
m

C)∈L

| (case
m

I of
m

Ω)∈L

Minimal Checkable Terms
m

C ::= x | u | c
m

C |
m

I
m

C | λx:A.
m

C

| fixu:A.(
m

C∈L) | () | (
m

C,
m

C)

| case
m

I of
m

Ω

Minimal Branches
m

Ω ::= . | (P⇒m

C |
m

Ω)

The annotation combination functions extend as expected. We also require an annotation
combination function for minimal branches, which we also write as

m

Ω1
c
1

m

Ω2. Its definition is
purely compositional, and so it is not explicitly given here. Similarly, the compositional cases
for

i
1 and

c
1 are omitted here. The interesting cases are the non-compositional cases for

i
1 and

c
1, which are the ones involving annotations. These cases are as follows.

((λx.
m

C1)∈L1)
i
1 ((λx.

m

C2)∈L2) = (λx.
m

C1
c
1

m

C2)∈L1,L2

fixu.(
m

C1∈L1)
i
1 fixu.(

m

C2∈L2) = fixu.(
m

C1
c
1

m

C2 ∈L1,L2)

((
m

C11,
m

C12)∈L1)
i
1 ((

m

C21,
m

C22)∈L2) = (
m

C11
c
1

m

C21,
m

C12
c
1

m

C22)∈L1,L2

((case
m

I1 of
m

Ω1)∈L1)
i
1 ((case

m

I2 of
m

Ω2)∈L2) = (case
m

I1
i
1

m

I2 of
m

Ω1
i
1

m

Ω2)∈L1,L2

fixu.(
m

C1∈L1)
c
1 fixu.(

m

C2∈L2) = fixu.(
m

C1
c
1

m

C2 ∈L1,L2)

The annotation combination lemma extends without difficulty, using an additional part for
minimal branches, as follows.

Lemma 6.7.22 (Annotation Combination)

1. If ‖
m

I1‖ = ‖
m

I2‖ and either ∆ `
m

I1 ∈ R or ∆ `
m

I2 ∈ R

then ∆ ` (
m

I1
i
1

m

I2) ∈ R.

2. If ‖
m

C1‖ = ‖
m

C2‖ and either ∆ `
m

C1 ∈ R or ∆ `
m

C2 ∈ R

then ∆ ` (
m

C1
c
1

m

C2) ∈ R.

3. If ‖
m

Ω1‖ = ‖
m

Ω2‖ and either ∆ ` Z 1
m

Ω1 ∈ R or ∆ ` Z 1
m

Ω2 ∈ R

then ∆ ` Z 1 (
m

Ω1
c
1

m

Ω2) ∈ R.

Proof: By induction on the structure of the sort assignment derivation. All of the additional
cases are completely straightforward, except for the cases for fix. The following is the case for
fix with

i
1 and ∆ `

m

I1 ∈ R; the case for fix with
i
1 ∆ `

m

I2 ∈ R is dual, and the cases for fix
with

c
1 are identical except that

i
1 is replaced by

c
1 in the last step.
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Case:
∆, u∈R ` (

m

C1∈L1) ∈ R

∆ ` fix u.(
m

C1∈L1) ∈ R
with fix u.(

m

C2∈L2) and ‖
m

C1‖ = ‖
m

C2‖

‖
m

C1∈L1‖ = ‖
m

C2∈L2‖ Def. ‖.‖
∆, u∈R ` (

m

C1∈L1)
i
1 (

m

C2∈L2) ∈ R By ind. hyp.

(
m

C1∈L1)
i
1 (

m

C2∈L2) = ((
m

C1
c
1

m

C2)∈L1, L2) By def.
i
1,

c
1

∆ ` fixu.(
m

C1
c
1

m

C2 ∈L1,L2) ∈ R Rule for fix

∆ ` (fixu.(
m

C1∈L1))
i
1 (fixu.(

m

C2∈L2)) ∈ R Def. of
i
1

Finally, we have the main annotatability theorem, which also extends without difficulty once
we add an additional part for minimal branches.

Theorem 6.7.23 (Annotatability)

1. If ∆ ` M ∈ R then we can construct a minimal inferable term
m

I and a minimal checkable
term

m

C such that ‖
m

I‖ = M and ∆ `
m

I ∈ R and ‖
m

C‖ = M and ∆ `
m

C ∈ R.

2. If ∆ ` Z 1 Ω ∈ R then we can construct a minimal branches expression
m

Ω such that
‖

m

Ω‖ = Ω and ∆ ` Z 1
m

Ω ∈ R.

Proof: By a straightforward induction on the structure of the sort assignment derivation, using
the previous lemma to combine annotations. The following is the case for fix.

Case:
∆, u∈R ` M ∈ R

∆ ` fix u.M ∈ R

∆, u∈R `
m

C ∈ R for some
m

C with ‖
m

C‖ = M Ind. hyp.

∆, u∈R ` (
m

C∈R) ∈ R Rule for annotation

∆ ` fix u.(
m

C∈R) ∈ R Rule for fix

‖fix u.(
m

C∈R)‖ = fix u.M Def. ‖.‖
fix u.(

m

C∈R) is minimal inferable and minimal checkable Def.
m

I and
m

C
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Chapter 7

Extending to Standard ML

Standard ML includes many, many features beyond the language treated in the previous chap-
ters. In this chapter we consider a number of issues that arise when extending sort checking
to the full SML language. An additional aim of this chapter is to provide a sufficient level of
detail to allow the reader to write programs in the language accepted by the sort checker, while
leaving the details of the implementation of the sort checker until Chapter 8.

7.1 Annotation syntax

The annotations required for sort checking are contained within special comments such as the
those in the following code.

(*[ datasort tt = true ]*)

(*[ sortdef twott = tt * tt ]*)

( (fn x => x) (*[ <: tt -> tt ]*) ) true

(*[ val f <: tt -> tt ]*)
fun f true = true

Any comment that begins with (*[ and ends with ]*) is treated as an annotation rather than
a comment by the sort checker. This choice means that the annotations will be ignored by SML
implementations that are unaware of sorts, and so programs can be compiled and executed
without removing the annotations.

The first annotation above is a datasort declaration that declares a refinement of the SML
datatype bool. The syntax of datasort declarations closely mirrors the syntax of Standard ML
datatype declarations.

The second annotation is a sort abbreviation. It defines twott to be an abbreviation for
the sort tt * tt. This form of declaration is very similar to SML type declarations. We use
the keyword sortdef rather than sort because the latter seems likely to be a commonly used
variable name in existing SML programs.

The third annotation is a sort annotation: the expression (fn x => x) is annotated with
the sort tt -> tt. Sort annotations may appear after expressions, or within patterns. Sort
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annotations can include comma-separated alternatives, as in the preceding chapters, in which
case each alternative is tried. Sort annotations at the top level of patterns in value declarations
are treated as though they were attached to the expression, in order to make the expression an
inferable form. Other sort annotations are treated as bounds: every case matching the pattern
must have a subsort of the bound.

The fourth annotation is a value sort specification. Value sort specifications are similar
to sort annotations, but apply to any following SML fun or val declarations which bind the
variable named in the annotation (f in this case). We allow the keyword val to be omitted in
the case when an annotation comment contains only value sort specifications. This is convenient
because it allows the indentation of these specifications to match that of the declaration which
follows, as in the example below.

Value sort specifications allow the sorts of mutually recursive functions to be declared by
having a sequence of value sort specifications prior to the function definitions. This is illustrated
in the following example (which is an extract of code for converting λ-expressions to weak-head
normal form from the experiment in Section 9.2).

(*[ whnf <: term -> whnf ]*)
(*[ apply <: whnf * term -> whnf ]*)

fun whnf (Var(n)) = Var(n)
| whnf (Lam(e)) = Lam(e)
| whnf (App(e1,e2)) = apply (whnf e1, e2)

and apply (Var(n), e2) = App(Var(n), e2)
| apply (Lam(e), e2) = whnf (subst (e, Dot(e2, Shift(0))))
| apply (App(e11, e12), e2) = App(App(e11, e12), e2)

Value sort specifications can also include comma-separated alternatives, which are treated just
like alternative annotations for expressions.

7.2 Default sorts

One of the guiding principles in the design of our sort checker is that code which does not
use sorts should be accepted without change in most cases. Thus, we would like to accept
code fragments which contain no sort annotations at all. But, such code generally does not
meet our grammar for checkable code, so it is not in a form suitable for direct checking by our
bidirectional algorithm. We solve this by defining a default refinement for each type. When a
required annotation is missing in an expression, the expression is treated as though it contains
an annotation with the default refinement of the appropriate type.

The default refinements are chosen so that sort checking an unannotated term always suc-
ceeds provided that ordinary SML type checking succeeds and provided that there are no
unmatched patterns in case statements. Most SML implementations give a warning when there
are unmatched patterns, so all code which does not produce such a warning nor a type error
will sort check without annotations. Thus, the default refinements in some sense “mirror” the
ordinary SML types.

To make this more concrete, suppose we have the following datatype declarations.
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datatype monotype = Int of int | Bool of bool
| Nil | Cons of monotype * monotype
| Fun of monotype -> monotype

Then the default refinement for T is generated by treating the program as though it contained
a datasort declaration that mirrors the datatype declaration.

(*[ datasort monotype = Int of int | Bool of bool
| Nil | Cons of monotype * monotype
| Fun of monotype -> monotype

]*)

Here int and bool are the default refinements of the corresponding base types. These default
refinements are the only refinements of these types, and they include all values of the type.
The default refinement of a datatype always has the same name as the datatype. The default
refinement of the type monotype -> monotype is the sort monotype -> monotype. In general,
the default refinement is obtained by replacing each occurrence of a type name by its default
refinement. This means that default refinements look exactly like the types that they refine.

These default sorts do not always include every expression of the corresponding type. E.g.
The following expression is rejected by the sort checker because the pattern does not cover all
of the sort monotype, and the default refinement is monotype -> monotype.

(* double has type: monotype -> monotype *)
fun double (Int x) = Int (x + x)

Such expressions with unmatched patterns are often an indication that there are interesting
invariants that can be captured using sorts. Thus, it does not seem so bad that our sort checker
rejects such code. In this case, a new datasort declaration could be added as follows.

(*[ datasort mtInt = Int of int ]*)

(*[ double <: mtInt -> mtInt ]*)
fun double (Int x) = Int (x + x)

Alternatively, code which is rejected can always be modified so that it is accepted by adding
a catch-all case that raises an exception. For our example, this yields the following code.

fun double (Int x) = Int (x + x)
| double _ = raise Match

For the convenience of those who choose to leave unmatched cases with respect to sorts,
these errors are treated slightly differently from other errors. They are reported as “warnings”,
and appear before all other errors. Also, if the only errors encountered are such warnings, then
the sort checking process is considered to have “succeeded”.

Experience so far indicates that these default sorts are intuitive, convenient, and do not
lead to unexpected results.

In some cases it is desirable to override the default sort with a different refinement. This is
done by shadowing the default sort using a sort declaration that defines a sort with the same
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name. This allows the programmer to in some sense “promote” a sort to a type, since all
unannotated code will be checked against the default refinement chosen by the programmer.
The following example demonstrates this mechanism.

(*[ sortdef monotype = mtInt ]*)

fun double (Int x) = Int (x + x)

This example sort checks because the type of double is monotype -> monotype and the default
refinement of this type is mtInt -> mtInt due to the sortdef declaration.

7.3 Layered patterns

Standard ML includes one form of pattern that does not immediately fit into the scheme
described in the Chapter 6. This is the “layered” form of pattern, i.e. the construct x as P
which binds the variable x to the value that is matched against the pattern P .

The following example demonstrates the interaction between layered patterns and sort
checking.

(*[ datasort ff = false
datasort mtBool = Bool of bool
datasort mtBaseList = Nil | Cons of mtInt * mtBaseList

| Cons of mtBool * mtBaseList
and mtIntBaseList = Nil | Cons of mtInt * mtBaseList

]*)

(*[ tailFrom <: (mtInt -> bool & mtBool -> ff)
-> mtBaseList -> mtIntBaseList ]*)

fun tailFrom choose (wholeList as Cons (head, tail)) =
if choose head then

wholeList
else

tailFrom choose tail
| tailFrom check Nil = Nil

The function tailFrom takes a monotype list containing integers and booleans, and returns
the tail of the list starting from the first element accepted by the function choose. The sort
assigned verifies that if choose always returns false for booleans, then the resulting list must
start with an integer (or be empty).

When sort checking this example, the inversion principle for mtBaseList includes two cases
for Cons, so we check the first clause of tailFrom against each. In the first case, the sort for
head is mtInt, while in the second it is mtBool. To obtain the required the sort it is critical to
assign the sort mtIntBaseList to the variable wholeList in the first case.

So, we cannot assign a sort to the variable in a layered pattern until after we have applied
the inversion principles for the constructors in the pattern, and performed the resulting case
analysis. Each case will assign sorts to the variables in the pattern, which we can then use to
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synthesize a sort for the whole pattern using the sorts of the constructors in the pattern. The
variable in the layered pattern is then assigned the synthesized sort.

This approach to assigning sorts to layered patterns is essentially the same as treating the
variable x in a layered pattern x as P as if it was instead bound using let to an expression
that follows the structure of the pattern P. For the example above, our approach is equivalent
to transforming the layered pattern into the following code using let.

(*[ tailFrom <: (mtInt -> bool & mtBool -> ff)
-> mtBaseList -> mtIntBaseList ]*)

fun tailFrom choose (Cons (head, tail)) =
let val wholeList = Cons (head, tail)
in

if choose head then
wholeList

else
tailFrom choose tail

end
| tailFrom check Nil = Nil

We additionally note that this approach to layered patterns is sometimes convenient when
we would like to “improve” the sort of a variable that forms part of the object of case expression.
For example, suppose we have the following function declaration.

(*[ f <: monotype -> mtInt ]*)
fun f x =

case x of
Int y => double x

| _ => Int 0

This declaration results in a sort error, because the sort assigned to x is monotype, and
double requires that its argument to have sort mtInt. But, inside the first branch of the case,
we know that x matches Int y so we would like to assign x the more precise sort mtInt. We
can do this by slightly changing the function declaration so that it introducing a new variable
x that shadows the previous one, and is bound in a layered pattern, as follows.

(*[ f <: monotype -> mtInt ]*)
fun f x =

case x of
x as (Int y) => double x

| _ => Int 0

An alternative to this might be to automatically “improve” the sorts of variables that appear
in a case object, but we feel that this transformation is quite natural: if we require a more precise
sort, we introduce a new variable so that we can assign it the more precise sort. Further, the
presence of the layered pattern is likely to make it easier for the programmer to keep track of
where such “improvements” are required.
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7.4 Parameterized datatypes

Standard ML datatype declarations may include type parameters, such as ’a in the following
declaration.

datatype ’a option = NONE | SOME of ’a

This declaration defines a datatype constructor option which can be applied to any type. The
development in Chapter 5 does not account for such parameters and type constructors, so in
this section we consider the issues that arise when they are included.

7.4.1 Adding parameters to datasort declarations

Firstly, if we want to define refinements of these type constructors, then it seems natural to al-
low parameterized datasort declarations. We thus include such declarations with the restriction
that the parameters must match the datatype declaration being refined, following the work of
Freeman [Fre94] (we revisit this restriction later in this chapter). This allows us to define refine-
ments of the above datatype with the following declarations (the first is the default refinement,
and can be omitted).

(*[ datasort ’a option = NONE | SOME of ’a
and ’a some = SOME of ’a
and ’a none = NONE ]*)

As in Chapter 5, datasort declarations such as these affect sort checking in three ways.

1. They determine the sorts for constructors.

2. They are used to calculate inversion principles.

3. They determine subsort inclusion relationships between datasorts.

The introduction of parameters in datasort declarations does not require any essential change
in the way that sorts for constructors and inversion principles are determined. However, deter-
mining inclusions involving parameterized datasorts does require something new compared to
Chapter 5. We describe our approach in the next subsection.

7.4.2 Inclusion of parameterized datasorts using variances

Our approach inclusion of parameterized datasorts is based on that used by Freeman [Fre94]. To
determine inclusion between sorts constructed using parameterized datasorts we first compare
the datasort bodies using the approach in Chapter 5 while keeping the datasort parameters
abstract. We then compare the respective sorts to which the datasort constructors are applied,
following the variance of each parameter. These variances are determined by the positions
where each parameter occurs in the body of a datasort declaration.

For example, suppose we want to know whether the following inclusion holds.

tt some ≤ bool option
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First we compare the two datasort bodies, and find that the inclusion holds.

SOME of ’a ≤ NONE | SOME of ’a

Then, we compare the two sort arguments covariantly, since the parameter appears covariantly
in the body of each datasort declaration. Thus, we check the following inclusion.

tt ≤ bool

This holds, and so we conclude that the original inclusion holds.
We differ from Freeman in that we allow each refinement of a datatype to have a different

variance for its parameters. We also treat the interaction between intersections and covariant
parameters differently from Freeman, to avoid including a form of distributivity.

Further, rather than infer the variance of parameters (as was done by Freeman) we provide
a special syntax for declaring the variance of sort variables in the case when a datatype involves
functions, references or other types that are not covariant in all positions. The four kinds of
variance are: covariant, contravariant, ignored and mixed variance. The respective syntax for
sort variables with these variances is as follows.

’+a ’-a ’?a ’!a

Making these variances explicit seems preferable, since it allows for better error messages when
the actual variances differ from those intended by the programmer, and it allows weaker vari-
ances to be declared in anticipation of potential changes. It also allows the variances for abstract
types to be declared in signatures, using the same syntax. Further, having variance information
explicit in the syntax helps a programmer to understand the sorts associated with a program.
In the common case of a datatype definition that doesn’t involve functions, references, or non-
covariant types, all parameters are assumed to be covariant unless otherwise specified.

Another difference from Freeman is that the underlying approach to inclusion of datasort
bodies is based on Chapter 5 which is complete with respect to a straightforward inductive
semantics (excluding functions), and so is arguably more intuitive and predictable. However,
with parameterized datasort declarations it seems harder to directly characterize which inclu-
sions hold in terms of inclusions of between sets of values. As pointed out by Skalka [Ska97], the
approach of using variances to determine inclusions is fundamentally incomplete with respect
to the the sets of values inhabiting each sort, even for the case of checking inclusion in an empty
sort (i.e., checking emptiness). We discuss this in detail in the following subsection.

7.4.3 Incompleteness of inclusion via variances

The following example illustrates the incompleteness of our approach with respect to the sets
of values inhabiting each sort.

(tt && ff) option ≤ bool none

Our approach rejects this inclusion because ’a option is not included in ’a none. However,
when we consider the values inhabiting the two sorts, we find that they both contain exactly
one value, namely NONE, so the values in the first sort are included in the second sort. The
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reason the first sort only contains NONE is that any value of the form SOME V must have V
inhabiting the sort tt && ff, but this sort is empty.

We can still characterize the subsortings as those that hold for all possible values of the sort
parameters, but this does not directly extend to the case when sorts like (tt && ff) option
and bool none appear in the datasort bodies, such as the following.

datatype aType = C of bool option

(*[ datasort aSort = C of (tt & ff) option
and anEquivalentSort = C of bool none ]*)

The work of Skalka [Ska97] resolves this difficulty, in the special case of checking emptiness of
a sort, by substituting the sort arguments into a datasort body and then checking the emptiness
of the resulting body, instead of checking the body while keeping the parameters abstract and
then checking the arguments using variances. This substitution approach essentially reduces
the problem back to that for the unparameterized case, and it seems that it should extend to
checking inclusion rather than emptiness. A major technical accomplishment in the work of
Skalka [Ska97] is a treatment of this substitution process that demonstrates that infinite loops
cannot occur provided that the datatypes being refined do not use polymorphic recursion.
The following example uses polymorphic recursion and would lead to an infinite loop when
performing substitutions.

datatype ’a hyperList = Nil
| Cons of ’a * (’a hyperList) hyperList

(*[ datasort ’a even = Nil | Cons of ’a * (’a hyperList) odd
and ’a odd = Cons of ’a * (’a hyperList) even

]*)

datatype ’a hyperTree = Leaf of ’a
| Node of (’a hyperTree) hyperTree

* (’a hyperTree) hyperTree

(*[ datasort ’a even = Leaf of ’a
| Cons of ’a * (’a hyperList) odd

and ’a odd = Cons of ’a * (’a hyperList) even
]*)

Polymorphically recursive datatypes are rare in SML programs, perhaps because of the lack of
polymorphic recursion in functions makes it impossible to deconstruct them recursively. So,
perhaps it would not be so bad to forbid them completely in order to adopt the approach of
Skalka. So far, we have chosen not to for a number of reasons.

1. One of the central goals of this work was to consider refinements in the context of a full,
commonly used language. It would weaken our claim that we had done so if we started
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introducing restrictions such as removing polymorphic recursion in datatypes. (Although
this reason is perhaps less important than the others, particularly the next reason.)

2. Doing so greatly reduces the modularity of the analysis of datasort declarations. Using
the variance approach, the analysis of a datasort declaration only depends upon mini-
mal information about the sort constructors that appear in the datasort bodies. This
information is the variance of parameters and the inclusions that hold between those sort
constructors, and possibly also the inclusions between unions of sort constructors. Thus,
using the variance approach makes it feasible to design a suitable extension of SML sig-
natures that allow the specification of this information while keeping the datasort bodies
opaque.

3. The substitution approach may have a serious impact on performance, because it requires
inclusions for parameterized datasorts to be rechecked for each set of parameters. A
sophisticated approach to memoization for inclusion results might avoid this by tracking
the dependence of each result on the corresponding inclusions between the parameters.

4. Experience so far with the approach in the current implementation has not indicated a
need for determining a richer set of inclusions.

We are hopeful that there is an extension of the variance approach that retains its modularity
while matching the inclusions determined by the substitution approach. For the examples above
involving the type ’a option it would be sufficient to add to the variance information some
“strictness” information that specifies that ’a option = ’a none when ’a is empty. In general
though it seems that something more than this is required, as demonstrated by the following
examples.

The first example demonstrates that the concept of strictness would need to be generalized
to account for emptiness of multiple variables: the sort option2 is contained in the none
provided that both ’a and ’b are empty.

datatype (’a, ’b) option2 = NONE | SOME1 of ’a | SOME2 of ’b
(*[ datasort (’a, ’b) none = NONE ]*)

The second example demonstrates that emptiness alone is not enough: information about
unions is sometimes required also (and emptiness is then the zero-ary case of a union). In the
declarations that follow, the same values are contained in both aSort and anEquivalentSort,
but this fact depends upon the fact that bool is contained in the union of tt and ff.

(*[ datasort aSort = C of tt some | C of ff some
and anEquivalentSort = C of bool some ]*)

Consideration of these examples suggests that extending the variance approach to a form of
constrained inclusions might obtain completeness with respect to inclusion of values. For the
examples above, the appropriate constrained inclusions are the following.

(’a, ’b) option2 ≤ (’c, ’d) none when ’a ≤ ⊥, ’b ≤ ⊥

’a some ≤ (’b some | ’c some) when ’a ≤ (’b | ’c)
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The variance approach may seen as a special case of these constrained inclusions. It corresponds
to constrained inclusions that only involve direct inclusions between the sort parameters of the
respective datasorts, such as the following.

’a some ≤ ’b some when ’a ≤ ’b

Consideration of the inclusion algorithm in Chapter 5 indicates that including constrained
inclusions with constraints involving unions and emptiness should be sufficient to obtain com-
pleteness with respect to inclusions of values. Roughly, this is because such constraints are
sufficient to express the “unsolvable” subgoals that would arise if the algorithm were applied
“parametrically” to a goal involving some unknown sorts.

We intend to look into this further in future work, and we are also planning to experiment
with the substitution approach.

7.4.4 Issues with instantiations of datatypes

Another issue related to parametric datasort declarations is that of directly defining refinements
of particular instantiations of parameterized datatypes. For example, we might want to define
a sort for lists of booleans which contain an even number of true values. We could try the
following.

(*[ datasort evenTrues = nil
| :: of tt * oddTrues
| :: of ff * evenTrues

and oddTrues = :: of tt * evenTrues
| :: of ff * oddTrues

]*)

Unfortunately, declarations like this must be rejected with the parametric approach that we
currently use, because a datasort declaration is required to be parameterized in the same way
as the datatype declaration that it refines. This leads to an awkward issue in practice: what do
we do when we want to define such refinements of instantiations of pre-existing parameterized
datatypes? It seems that the best that we can do with the current approach is to replace the
instantiation of a parametrized datatype by a specialized datatype. For the evenTrues example
above, this approach would add a new datatype for boolean lists, as follows.

datatype bools = bsnil
| ::: of bool * bools

Then, the above datasort declarations for evenTrues and oddTrues can be easily modified to
refine this type, by replacing occurrences of the constructors by bsnil and :::. The problem
with this approach is that it prohibits the use of generic functions defined for the original
parameterized datatype. Instead the code for such functions would need to be copied to the
new instantiated datatype, leading to code maintenance problems.

This issue seems like one that would arise reasonably often in practice. In fact, it arose in
one of the examples described in Chapter 9. In that example, part of the code for a parser used
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a list to represent a stack of unresolved operators, with some relatively complicated invariants
concerning where different sorts of operators could occur in the list. This was unproblematic
for this example, because none of the standard list functions were used in the code. However,
it seems highly likely that situations would arise in practice where refinements of instantia-
tions of datatypes are desirable, but the generic functions for these datatypes need to be used
extensively.

Thus, it seems desirable to find some way to allow such refinements to be defined without
introducing a completely new type. It appears that this would fit better with the substitution
approach to parameterized datasort inclusion than the variance approach, since with the substi-
tution approach we could directly compare datasort definitions like evenTrues with substituted
instances such as tt list.

However, it does seem possible to extend the variance approach so that it allows datasort
declarations that are still parameterized, but which have instances that correspond to sorts
like evenTrues. To achieve this, we need to allow more than one parameter refining the cor-
responding type parameter in the datatype declaration. For example, this would allow us to
define evenTrues with the following declarations.

(*[ datasort (’a, ’b) even1List = nil
| :: of ’a * (’a, ’b) odd1List
| :: of ’b * (’a, ’b) even1List

and (’a, ’b) odd1List = :: of ’a * (’a, ’b) even1List
| :: of ’b * (’a, ’b) odd1List

sortdef evenTrues = (tt, ff) even1List
]*)

While this design seems to be a promising solution, it is not at all clear what is the best way to
resolve these issues. Some more experience with programming with the current implementation
will help to judge how often these issues arise, and what solution is most appropriate in practice.
Regardless, this seems like an interesting and potentially fruitful direction for future research.

7.5 Parametric polymorphism

Standard ML includes type schemes with parametric polymorphism, unlike the formal lan-
guages considered in prior chapters. This is relatively major difference, and in fact parametric
polymorphism is generally considered one of the defining features of an ML-like language.

Following Freeman [Fre94], we define the refinements of polymorphic type schemes as corre-
sponding sort schemes, with the restriction that there is exactly one sort variable refining each
type variable. This allows our approach to extend to languages with parametric polymorphism,
although we still need some method for instantiating the sort schemes of polymorphic variables.

When we have an occurrence of a variable with a polymorphic type scheme, ordinary ML
type inference will determine an appropriate instantiation of the type scheme. The correspond-
ing sort scheme can be instantiated with any refinement of this type, and thus the sort scheme
can be instantiated by enumerating the distinct refinements of the type. This is the basic
approach used by our implementation of a sort checker for SML.
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Alas, the number of distinct refinements of a type can be huge, as discussed in Section 3.10,
and so in some situations this enumeration is far from practical. This is particular true when
the type scheme of a polymorphic variable is instantiated with a function type that has a non-
trivial lattice of refinements. Such instantiations seem to be reasonably rare, although it is clear
that they do occur in practice. In such situations, the current design requires the occurrence of
the polymorphic variable to appear in a checkable position in the program. This may require
the programmer to annotate the variable with the intended sort instance.

An earlier version of the implementation did not enforce this restriction: instead violations
of it potentially lead to infeasible enumerations. This seems unsatisfactory, so we have recently
made this a strict requirement: such variable occurrences are assigned only the default refine-
ment if they appear in non-checkable positions. This generally avoids impractical instantiations,
and leads to appropriate error messages when required annotations are absent.

However, it seems possible that there are situations where the annotations required by the
current approach are excessive, and more experience is needed to determine whether the current
solution is sufficient in practice. In only one of our experiments so far have we encountered
variable occurrences that required annotations. In that case the required annotations seemed
reasonable, although only after we defined new variables for particular instantiations of the
polymorphic variable that were used repeatedly (this will be discussed further in Section 9.3).

If further experience indicates that our current approach leads to excessive annotations, it
seems possible that many annotations could be avoided using an approach similar to the local
type inference of Pierce and Turner [PT98]. However, adapting local type inference to our
situation appears to be non-trivial, in particular due to the presence of intersections.

A very promising and simpler alternative is to allow the programmer to provide “mode”
annotations for the problematic variables, which specify appropriate information about how a
sort scheme should be instantiated based on sorts associated with the context of an occurrence.
For example, it might be specified that a sort scheme for a function should be instantiated by
inferring the sort for the argument, thus instantiating via the argument sort of the function.
Or, it might be specified that applications of the function must appear in checkable positions,
with the sort scheme instantiated via the result sort of the function.

This appears to be an appropriate extension of bidirectional checking to polymorphic vari-
ables: in particular it allows polymorphic variables to be defined for which sort checking pro-
ceeds similarly to built-in constructs. For example, the following signature specifies a type bits
for bit strings with refinements nat and pos, along with values for constructors bnil, b0 and
b1 and with a function for a single-level “case” construct.

type bits (*[ sortdef nat < bits
and pos < nat ]*)

val bnil : bits (*[ val bnil <: nat ]*)
val b0 : bits -> bits (*[ val b0 <: pos -> pos ]*)
val b1 : bits -> bits (*[ val b1 <: nat -> pos ]*)

val bcase : bits -> (unit -> ’a) -> (bits -> ’a) -> (bits -> ’a) -> ’a
(*[ val bcase <: bits -> (unit -> ’a) -> (bits -> ’a) -> (bits -> ’a) -> ’a

& nat -> (unit -> ’a) -> (pos -> ’a) -> (nat -> ’a) -> ’a
& pos -> (unit -> ’a) -> (pos -> ’a) -> (nat -> ’a) -> ’a ]*)
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Then, we could specify that applications of this function should only appear in checkable posi-
tions, that the first argument should be inferable and the second third and fourth arguments
checkable, with a declaration along the lines of the following.

(*[ mode bcase : inf -> chk -> chk -> chk -> chk ]*)

In this case it is clear that the sort variable ’a should be instantiated via the sort that the whole
application is checked against. This is because the occurrence of ’a in this part of the sort for
bcase is in an “input” position, i.e., this sort will be known each time an application of bnat
is checked, while all other occurrences of a appear within sorts of checkable arguments, which
are “output” positions, i.e., sorts that need to generated each time an application of bnat is
encountered.

This approach requires each sort variable in a sort scheme to appear in at least once in
an input position. It is not entirely clear what to do when a sort variable appears multiple
times in input positions: this could be disallowed, or the resulting instantiating sort for each
occurrence could be tried in sequence. Alternatively, some precedence could be defined so
that e.g., occurrences in earlier arguments are used for instantiation in preference to later
arguments (resulting in subsorting checks against the sorts obtained from other occurrences).
Yet another approach would be to form upper and lower bounds as appropriate according to
the variances of the positions where the sort variable occurs, although this might not fit well
with our implementation in the case of upper bounds, which can be very expensive to compute.

A more flexible approach would be to allow the occurrence (or occurrences) that should be
used for instantiation to be designated by the programmer. For example, one way this might
be done is illustrated in the following specification for a polymorphic function which randomly
decides whether to swap the two components of a pair. The sort of the argument is repeated
in the mode specification, and the second occurrence in the argument sort is designated by
modifying the sort variable to the form ’^a.

val maybe_swap : ’a * ’a -> ’a * ’a (* Swaps with prob. of 0.5. *)

(*[ mode maybe_swap : inf[’a * ’^a] -> inf ]*)

There appear to be a number of possible choices here as to exactly how to mode information
should be expressed, and what should be allowed. A full investigation of these choices is left
to future work, but it seems reasonably clear that the basic concept of allowing such modes
to be declared for polymorphic variables is more satisfactory than the approach to parametric
polymorphism that is currently included in the implementation.

7.6 Other core SML constructs

Extending to the rest of the core language of Standard ML is relatively straightforward, and our
implementation allows all Standard ML programs to be checked. Some SML features present
interesting opportunities to exploit refinements, such as the extensible exception datatype.
We have not attempted to pursue such opportunities, but plan to in future work.

We briefly comment on the few remaining interesting features of our extension.
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7.6.1 Exceptions

The extensible nature of the exception type, and the relationship between exceptions and control
flow present some potentially interesting opportunities and challenges for the use of sorts. We
have not yet properly investigated these issues. Our design for exceptions is relatively basic,
and is designed to extend sort checking to programs involving exceptions in a convenient way.

For each declaration of an SML exception, we assign the exception constructor the default
refinement of the appropriate type. There is currently no way to declare another refinement for
an exception constructor.

When an exception is matched in a case statement, we treat the exception type as “open
ended”, in the sense that even if every defined exception is listed, it is still considered that there
are unmatched cases. This is because the exception type is extensible.

In a handle expression, we do not consider it a sort error for there to be unmatched cases.
So, the issue of open-endedness does not result in sort errors in this common case of matching
against exceptions. Allowing such unmatched cases is consistent with the normal use of such
expressions.

Expressions of the form raise E are checkable only, not inferable, since it is in many cases
it is expensive to construct the principal sort, which is the least refinement of the corresponding
type. Similarly handle expressions are checkable only, to avoid the need to take an upper bound
of sorts of the unexceptional expression and the exceptional expressions.

In future work, we may consider allowing refinements to be declared using a syntax like the
following.

exception myException of bool * bool
(*[ exception myException of tt * bool

| myException of bool * tt ]*)

Such a declaration would declare a sort and an inversion principle for myException other than
the default.

We might additionally consider the definition of refinements of the exception type itself.

(*[ datasort allowedExceptions = myException of bool * bool
| anotherException ]*)

One issue that arises here is whether we should allow refinements of the exception datatype
that are themselves extensible.

Another potential future direction is to consider refinements that track the potential excep-
tions raised by expressions, which seems to fit within the framework for refinements for effects
described by Mandelbaum, Walker and Harper [MWH03].

7.6.2 Let expressions

SML expressions include a let form which may introduce a local set of core-level declarations
for an expression. Such expressions are inferable if the body of the let is, otherwise they are
checkable. Any value declarations introduced should involve expressions which are inferable
(perhaps because they contain a sort constraint) otherwise the default sort will be used, as
described in Section 7.2.
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7.6.3 Local datatype and datasort declarations

Local datatypes in SML may in some sense “escape” from the scope of their declaration, as in
the following example.

local
datatype myBool = myTrue | myFalse

in
fun myNot myTrue = myFalse

| myNot myFalse = myTrue
val myBoolVal = myTrue

end
val myResult = myNot myBoolVal

Local datasort declarations are treated in the same way, so the following is allowed.

local
datatype myBool = myTrue | myFalse
(*[ datasort myTT = myTrue and myFF = myFalse ]*)

in
(*[ myNot <: myBool -> myBool & myFF -> myTT ]*)
fun myNot myTrue = myFalse

| myNot myFalse = myTrue

(*[ myBoolVal <: myTT ]*)
val myBoolVal = myTrue

end
val myResult = myNot myBoolVal

Notice that in this example, the inclusion of myTT in myBoolVal is required in order to check
the application of myNot to myBoolVal. Thus, information about inclusion relationships needs
to be retained after the scope of a datasort declaration, and needs to be associated with sorts
that depend on the datasort declaration.

Following SML, we use the notion of type names and introduce the corresponding notion
of sort names to track this information. During sort checking we have also have a type-name
refinement environment, which maps each type name to the required information about the
sortnames that refine it. These type-name environments play a similar role to the sets of type
names in the static semantics of Standard ML [MTHM97], except that some extra information
is associated with each type name, so they are environments rather than sets.

One effect of this design is that the inversion principles and sorts of constructors that
are affected by a datasort declaration do not revert when leaving the scope of the datasort
declaration. This seems consistent with the SML treatment of datatypes. On the other hand,
in some cases it does seem desirable to be able to make local datasort declarations without this
affecting the sort checking of other parts of the program. We intend to look into this in future
work.
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7.6.4 Patterns containing ref

SML pattern matching can be used to match against a reference cell. The following example
demonstrates that this can leads to unsoundness unless we treat reference cells differently when
sort checking instances of pattern matching.

(*[ datasort tt = true and ff = false ]*)

val r = ref true
fun set () = r := false

(*[ f <: bool ref -> tt ]*)
fun f (y as (ref true)) = (set(); !y)
| f (ref false) = true

(*[ x <: tt ]*)
val x = f r

In this example, if we treat ref like other constructors, then the sort assigned to y will be
tt ref. But, the call the set modifies the reference so that !y returns false.

To remedy this, we always determine the sorts for such variables using the original sorts
assigned to the reference, i.e. the sorts assigned in the input to the first branch. This does not
affect the use of pattern sort subtraction to determine reachability of each branch: it is sound
to treat ref like other constructors when subtracting, as long as the result of the subtraction
is not used to determine the sorts of variables.

7.6.5 Datatype replication

When an SML datatype replication expression like the following is encountered, the default
refinement is replicated along with the datatype.

datatype myOption = datatype option

There is no need for a corresponding datasort replication construct. The required refinements can
simply be replicated using sortdef, as in the following example.

(*[ sortdef ’a mySome = ’a some
and ’a myNone = ’a none ]*)

Datasort can also be replicated using datasort declarations which achieves the same result.

7.6.6 Boolean conditionals

SML includes if boolean conditional expressions like the following.

if done then
finish ()

else
keep_going ()

The definition of SML [MTHM97] defines such expressions to be abbreviations for a correspond-
ing case expression. The example above is thus an abbreviation for the following.
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case done of
true => finish ()

| false => keep_going ()

This turns out to be convenient, since it means that the appropriate inversion principle for
bool is applied. For example, the example at the end of Section 7.3 requires that the inversion
principle for ff be used so that only the false branch is checked.

7.7 Modules

Extending sort checking to include the module system of SML presents a few new issues. We
have focused on relatively minimal design that allows all SML programs to be checked. Thus, to
large extent the design for sorts follows the corresponding treatment of types in the Definition
of Standard ML [MTHM97]. There is certainly scope to consider a richer design, and we
expect experience with the current design will help in determining what additional features are
desirable.

7.7.1 Structures

SML structures include declarations from the “core” language, i.e. the non-module declarations.
The sort annotations we have considered up to now are an addition to that core language, and
hence they can appear as part of structures. Thus, structures can include datasort declarations
and sortdef declarations. They can also include sort annotations on expressions, and value
sort specifications. The following is an example of the use of these forms in a structure.

structure Monotype =
struct

datatype monotype =
Int of int | Bool of bool

| Nil | Cons of monotype * monotype
| Fun of monotype -> monotype

(*[ datasort mtInt = Int of int ]*)

type mtArrow = monotype -> monotype
(*[ sortdef mtIntToInt = mtInt -> mtInt ]*)
(*[ sortdef mtAllToInt = monotype -> mtInt ]*)

(*[ val double <: mtIntToInt ]*)
fun double (Int x) = Int (x + x)

(*[ val tryDouble <: mtAllToInt ]*)
fun tryDouble (Int x) = double (Int x)
| tryDouble nonInt = raise Match

val quiteLikelyFour = double (Int 2 (*[ <: mtInt ]*) )
end
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One minor difference compared to the situation without structures is that datasort declarations
can include constructor names that include a path to the structure containing the corresponding
datatype declaration, as in the following example.

structure mtBaseList =
struct
(*[ datasort mtIntList =

Monotype.Nil
| Monotype.Cons of Monotype.mtInt * mtIntList

]*)

(*[ append <: mtIntList -> mtIntList
-> mtIntList ]*)

fun append (Monotype.Cons (h, t)) l =
Monotype.Cons (h, append t l)

| append Monotype.Nil l = l
end

7.7.2 Signatures

Extending the signatures of SML to include sorts requires a little more thought than structures,
in particular for refinements of opaque types. We have datasort, sort, subsorting, and value
sort specifications in signatures, as in the following example, which is a signature that could be
assigned to the structure Monotype above.

signature MONOTYPE =
sig
datatype monotype =

Int of int | Bool of bool
| Nil | Cons of monotype * monotype
| Fun of monotype -> monotype

(*[ datasort mtInt = Int of int ]*)

type mtArrow
(*[ sortdef mtIntToInt |: mtArrow ]*)
(*[ sortdef mtAllToInt < mtArrow ]*)

(*[ subsort mtAllToInt < mtIntToInt ]*)

(*[ val double <: mtInt -> mtInt ]*)
val double : monotype -> monotype

(*[ val tryDouble <: mtAllToInt ]*)
val tryDouble : mtArrow

(*[ val quiteLikelyFour <: mtInt ]*)
val quiteLikelyFour : monotype

end

Datasort specifications in signatures are transparent, in the sense that they expose the datasort
declaration that must appear in any structure matching the signature. We have the restriction
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that the datasort must be a refinement of a datatype that is itself transparent. In the example,
mtInt is a datasort specification refining the transparent datatype specification monotype.

Value sort specifications specify sorts for values which have their types specified in same
signatures using ordinary SML value specifications. The specified sort for a value must be
a refinement of the corresponding type. In the examples, the sorts declared for double and
quiteLikelyFour are both refinements of the corresponding types. Comma separated alterna-
tives are not allowed in signatures: there is no need for them, since we never need to backtrack
over module level declarations.

Sort specifications specify refinements of opaque types. In the example above, mtIntToInt is
specified to be a refinement of the opaque type mtArrow (the symbol |: is intended to represent
@). Similarly, mtAllToInt is specified to be refinement of the same type that must be a subsort
of the default refinement of mtArrow, using and alternative form of sort specification allows an
upper bound to be specified. This form seems to be convenient in practice, although the upper
bound could instead be specified using a separate subsorting specification.

Subsorting specifications specify inclusions between refinements of opaque types. In the ex-
ample above, the refinement mtAllToInt is specified to be a subsort of mtIntToInt. Subsorting
specifications have some similarities with the type sharing specifications of SML. In particu-
lar, the syntax for a subsorting specification includes the whole specification that precedes it,
and modifies the environment of that specification by equating some sorts. For example, the
subsorting declaration above results in the sorts mtAllToInt and mtAllToInt & mtIntToInt
being equal. This form of subsorting specification allows any finite lattice of refinements to be
declared, just like the the subsorting declarations in signatures in Chapter 2.

One weakness of our design with respect to refinements of opaque types is that currently
they are not allowed for types that are later instantiated using where. It seems that what is
required to allow such refinements is a corresponding construct that instantiates them. For
this to work, when a type is instantiated using where, we must require that all refinements are
instantiated appropriately. For now, when refinements of such types are needed, the signature
needs to be copied and instantiated manually in order to make the types transparent without
using where.

One of the key features of the SML modules system is the ability to specify sharing between
types. In our current design, all refinements of types that are involved in a sharing specification
are matched up by name, and must correspond precisely between the two types. This is
convenient in the common case where all refinements of a type are defined in the same module
as the type, and propagate though modules via various paths along with the type. In this case
the type sharing declarations automatically force the desired sharing of refinements. However,
it seems that a more general mechanism which allowed separate specification of sort sharing
might be desirable in some cases.

Variance annotations are are particularly important for opaque sorts in signatures. They
provide a mechanism for specifying partial information about the sorts that must appear in any
structure matching a signature. This allows client code to make use of the variance information
during sort checking, without depending on the exact implementation of a sort in a particular
structure implementing the signature.

Datatype replication in signatures also replicates the default sort, just as in structures. Sim-
ilarly, no datasort replication mechanism is needed in signatures, instead datasort declarations
can be used since datasort declarations are not generative.
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One additional feature is included in the modules language of sorts. It allows the program-
mer to specify that the sort checker should assume that a structure has a particular signature
without actually checking the contents of the structure at all. This is used in the implemen-
tation to skip checking of all the structures in the SML Standard Basis each time the system
is started. It seems that it might also be useful when checking large systems in the case that
some modules are unlikely to change and have already been checked, or when some modules
have been determined to satisfy the specified sorts in some way other than by running the sort
checker.

The following is an example of the use of this construct, which is taken from the stub code
used to set up the sorts for the Standard Basis. (Currently no interesting refinements are
defined in these stubs, but they are necessary to allow checking code that uses the Standard
Basis.)

structure Bool:BOOL =
struct (*[ assumesig BOOL ]*)

type bool = bool
fun not true = false
| not false = true

fun toString false = "false"
| toString true = "true"

fun getstring str getc source =
(* ... etc. (remaining declarations omitted) *)

end

Here, the use of assumesig specifies that the sort checker should skip checking of the declara-
tions in the body of the structure, and instead assume that they satisfy the signature BOOL.

7.7.3 Signature matching

Matching a structures against signatures is done in essentially the same way at the level of
sorts as at the level of types. One difference is that the sort schemes for values in a structure
may be subsorts of the corresponding sorts in the signature. As for types, the sort schemes in
the structure may be more polymorphic than those in the signature. If this is the case, the
sort scheme in the signature must match the form of the sort scheme in the structure. This
is because the combination of instantiation and subsorting is expensive to check in general, as
discussed in Chapter 7.5.

Also, we allow the declared variance of sort constructors to be richer in the structure than
the signature.

When matching against an lattice of refinements of an opaque type, we check that the sorts
realizing the refinements satisfy the specified lattice structure, i.e. that every specified inclusion
is satisfied (and perhaps more).

7.7.4 Functors

There are no particularly new issues that arise when we consider sorts for functors. Essentially,
we have covered all the issues in the sections on signatures and structures.
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7.8 Grammar for the language with sort annotations

For completeness, we now present a formal grammar in the style of the Definition of Standard
ML [MTHM97] for our extended language including sort annotations. We do not separate out
inferable and checkable expressions here, since the implementation does not have a restriction
on the form of expressions allowed. Instead, it reverts to using the default refinement when
required annotations are absent, as described in Section 7.2.

sort ::= tyvar
| { 〈sortrow〉 }
| sortseq longtycon
| sort1 -> sort2

| ( sort )
| sort1 & sort2

| topsort[type]

sortrow ::= lab <: sort 〈 , sortrow〉

sortlist ::= sort 〈, sortlist〉

pat ::= . . .
| pat (*[ <: sortlist ]*)

atexp ::= . . .
| ( exp (*[ <: sortlist ]*) )

dec ::= . . .
| (*[ sortdec ]*)
| (*[ valsortdec ]*)

sortdec ::= val valsortdec
| datasort datsortbind 〈withsort sortbind〉
| sortdef sortbind
| sortdec1 〈;〉 sortdec2

valsortdec ::= vid <: sortlist 〈and valsortdec〉

datsortbind ::= tyvarseq tycon = consortbind 〈and datsortbind〉

consortbind ::= 〈op〉 longvid 〈of ty〉 〈| consortbind〉

sortbind ::= tyvarseq tycon = sort 〈and sortbind〉
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spec ::= . . .
| (*[ sortspec ]*)
| spec (*[ subsort longinter1 < longinter2 ]*)

sortspec ::= val valsortspec
| datasort datsortspec
| sortdef sortspec
| sortspec1 〈;〉 sortspec2

valsortspec ::= vid <: sort 〈and valsortspec〉

datsortspec ::= tyvarseq tycon = consortspec 〈and datsortspec〉

consortspec ::= longvid 〈of ty〉 〈| consortspec〉

sortspec ::= tyvarseq tycon |: longtyconinter 〈and sortspec〉
| tyvarseq tycon < longtyconinter 〈and sortspec〉

longinter ::= longtycon 〈 & longinter〉

strexp ::= struct (*[ assumesig sigexp ]*) strdec end

Currently there is no direct syntax for specifying empty datasorts: the only way to refer to
them is via intersections of disjoint refinements of a datatype.
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Chapter 8

Implementation

We have built an implementation of sort checking for Standard ML based on the ideas in
the preceding chapters. In the context of this thesis work, this implementation demonstrates
that our approach can be scaled up to a fully featured language such as SML. It also allows
us to evaluate our language design and algorithms by performing realistic experiments with
programming with sorts using real SML programs, as reported in Chapter 9.

8.1 Reuse of an existing SML front end

In order to check SML programs, our sort checker needs to include a parser for SML. Addition-
ally, since our sort checker assumes that its input has already been type checked, and requires
type information produced during type checking, we require a type checker for SML. We could
have build our own parser and type checker for SML, but this would have been a relatively
large amount of work.

Thus, we have chosen to reuse the front end of an existing SML compiler, namely the ML
Kit compiler, version 3. The ML Kit compiler was chosen because it was designed to be easy to
modify and extend. It is also particularly suitable because it includes a mechanism that adds
annotations to the abstract syntax tree, including the typing information required by the sort
checker.

8.1.1 Integration with the ML Kit elaborator

The Kit compiler implements the elaboration phase of SML in a way that closely follows the
definition of SML [MTHM97]. The elaboration phase produces an abstract syntax tree that
contains annotations with a variety of information, including type information. We use this
annotated abstract syntax tree as the input to the sort checking phase.

We avoid commencing the sort checking phase when there is a type error found during
elaboration. This allows the sort checker to depend upon the type correctness of the input, which
avoids the consideration of many error cases that should already be caught during elaboration.

The new syntax for sort annotations was added to the parsing code of the ML Kit. The
elaborator was modified so that it also checks that the types associated with these annotations
annotations are consistent. This means that the sort checker can always rely on types being
consistent, even in the sort annotations themselves.
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At the module level it is convenient to integrate sort checking directly into the elaborator,
since a separate sort checking phase would have to duplicate much of the code the elaborator in
order to reproduce the environments used during elaboration. Thus, our design adds the code
for sort checking directly to the elaboration code for each module level construct. This sort
checking code is only run when no elaboration errors have been encountered so far in any part
of the program. When a core level object is encountered (such as the body of a structure) the
elaboration code for the object is called, and if no errors are discovered the sort checking code
for the object is called.

8.1.2 An alternative approach to integration

The core level sort checking code also requires a variety of information from the corresponding
code in ML Kit elaboration phase. It obtains this information via the annotations on the AST
produced by the elaboration phase, which worked quite well in most cases. However, in some
cases the code in the sort checker is quite tightly coupled with the corresponding code in the
elaboration, and communicating via the AST is somewhat clumsy. In addition, the core level
sort checking code also needs to duplicate some of the work done in the elaboration phase
to determine the environments and types used during elaboration. Much of the time spent
debugging was related to bugs where the sort checker somehow came to use environments and
sorts that were inconsistent with those used during elaboration.

We could attempt to avoid these issues by integrating the sort checking phase into the
elaboration code for each construct, as is done at the module level. However, this is not so easy,
because the sort checking phase requires that type inference has been completed. In particularly,
the use of side effects when unifying types means that the type of each expression may not be
known until elaboration of a whole core-level object has completed. One way around this would
be to use higher order functions to separate the two stages, so that the elaboration code for each
construct returns a result that includes a function for performing the required sort checking.
This would be an interesting design to pursue, and would allow the sort checking code access
to all the relevant data structures used during elaboration without the need to explicitly store
those structures in the abstract syntax tree.

Such an approach may be worth considering in potential future implementations of refine-
ment checking. The main reason this approach was not used in this work was that it seemed
important for modularity to separate the sort checking code as much as possible from the elab-
orator. Also, the possibility of using higher-order functions in this way was only realized after
a reasonably large commitment had been made to the current design.

8.2 Representations: types, sorts and environments

Since our sort sort checking code depends upon the elaborator in the ML Kit, we use the the
ML Kit representations of the static objects of SML, i.e. types, type variables, type names,
etc. We also use of some of the representations of environments used by the elaborator. These
representations were also used as a starting point for the representations of the corresponding
notions at the level of refinements, i.e. sorts, sort variables, sort schemes, sort functions, sort
names, etc. and the various environments used during sort checking.
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We could have instead decided to modify the existing representations at the level of types
so that they could be used at the level of sorts as well. For example, we could have added
intersections to the representation of types instead of creating a new representation for sorts.
This would have avoided the need to duplicate of a lot of code for basic operations related
to types. It would also have allowed the reuse of the representation of environments used by
the elaborator, thus would similarly have avoided the need for duplication of basic operations
related to environments.

The choice was made to have a separate representation for sorts from types for a number
of reasons.

1. The representation of types in the ML Kit is much more complicated than what is needed
during sort checking. In particular, the representation of types is specifically designed to
allow unification by imperative update, while keeping track of “binding levels” of types
following the type inference algorithm of Rémy[Rém92].

2. Some of the basic operations at the level of types are clearly not implemented in the way
that is appropriate for our sort checker. For example, applying a substitution to a type
is implemented by code that essentially just returns the type unchanged. This is because
these “substitutions” are an artifact of a previous version of the ML Kit that did not use
imperative update for unification but instead accumulated substitutions. In the current
version, all substitutions are done “on the fly”. However, our sort checker is not based on
unification at all, and we certainly need a proper implementation of substitution.

3. Our environments are different enough from those at the level of types that it would have
been awkward to extend the ML Kit environments in a way that was suitable for both
elaboration and sort checking. We could have attempted to use a functor to parameterize
the common parts of the implementation with respect to those parts that are different,
but this would still likely have been awkward, due to the mutual recursion between the
main data types used to represent environments.

4. Using different representations results in greater modularity between the existing ML Kit
code and that added for sort checking. This reduces the chances that our additions will
result in bugs in the elaborator. We did uncover a number of such bugs, and were able to
quickly assess that they could not have been introduced by us. This modularity also allows
the modifications made in updated versions of the ML Kit elaborator to be incorporated
relatively easily, which is desirable since these versions may fix important bugs.

8.3 Representation of intersections in sorts

One higher level choice that we have made in the implementation is in the way that we handle
intersections in sorts. In particular, we “simplify” all sorts in the manner of Section 3.7,so that
intersections only appear between refinements of function types, reference types, and parame-
terized data types that involve either function or reference types. We do this for efficiency, and
also because it reduces the number of cases that need to be considered when analyzing sorts.
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For refinements of record types, we distribute intersections inwards, using the following
equivalence, as in Chapter 6.

(R1 ×R2)&(S1 × S2) = (R1 &S1)× (R2 &S2)

For refinements of data types and opaque types, we introduce a new sort name to represent
each unique refinement that can be constructed using intersections. These sort names are
the internal identifiers for sorts, just like the type names in the used in definition of SML for
datatypes and opaque types. The implementation constructs the lattice of refinements for each
type name based on upon the declarations of the refinements, and stores the intersection for
each pair of refinements.

With these sort names, every refinement of a type constructed from a type name can usually
be represented as a simplified sort without intersections. The exception to this is when we have
parameterized types with non-covariant parameters, since in this case we cannot combine the
parameters of the different parts of the intersection. For example, we cannot simplify the
intersection in the following.

datatype (’a, ’b) function = Function of ’a -> ’b

(*[ val myFunc <: (tt, ff) function & (ff, tt) function ]*)
val notFunct = Function (fn x => if x then false else true)

In such cases, we still use a different sort name to represent each unique refinement of the
parameterized type, since we depend on having a different sortname for each refinement in
many parts of our implementation.

We represent the operation r &s for each lattice as a map from a pair of sort names to a
sort name for the intersection. We omit the reflexive intersections r &r, and we avoid storing
both r & s and s & r by using the order on the integers that are used as internal identifiers
for sortnames. Currently the data structure used to implement these maps is based on an
implementation of red-black trees by Pfenning that is used in the Twelf implementation [PS98].
During sort checking, these maps are stored in type name refinement environments which store
information about the refinements of each type name, and which play a similar role to the type
name sets in the Definition of Standard ML [MTHM97].

8.4 Analysis of datasort declarations

When a datasort declaration is encountered, we need to determine three things: a modified
lattice of refinements, the inversion principles, and the modified sorts for constructors.

To determine the modified lattice, the body of each new datasort declaration is checked
against each of the current lattice elements that refine the same datatype, checking for equiv-
alence using an implementation based on the datasort inclusion algorithm in Chapter 5 (see
below). If an equivalent element is found, the lattice is unchanged, and the datasort declaration
binds a new name to the existing element. Otherwise a new element is added to the lattice,
and then we continue by constructing the intersection with every other element in the lattice
and then adding a new lattice element for the intersection whenever it is not equivalent to an
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existing lattice element. At the end of this process all intersections of the new element with
another have been added to the lattice.

To complete the lattice, we still need to add the intersections of the new intersection elements
with other lattice elements. Fortunately, we never need to add any further lattice elements:
the lattice element representing the intersection between ρ and ρnew & ρold is determined using
associativity, as follows.

ρ & (ρnew & ρold) = (ρ & ρnew) & ρold

We have then finished calculating the lattice that results from the datasort declarations. We
continue by determining the inversion principles and sorts of constructors following Chapter 5,
removing redundant sorts in each case. We have then finished the analysis of the datasort
declaration.

The only remaining part of the implementation of analysis of datasort declarations is
that which determines equivalence between datasorts. We do this by checking inclusion in
each direction: there seems to be no obvious way to obtain a more efficient algorithm for the
equivalence problem (the problematic case is when we have a union of products). The code for
determining datasort inclusion is one of the most complicated parts of the implementation. It
is also the part that has required the most optimization to obtain acceptable performance.

Our implementation of inclusion between datasorts is based on the algorithm in Chapter 5,
extended with variances as in Chapter 7. This algorithm may take exponential time, and we
cannot expect to obtain any better worst case performance: the problem of inclusion for regular
tree languages is EXPTIME-complete, as shown by Seidl [Sei90]. However, some evidence
indicates satisfactory performance is possible when the instances of the inclusion problem are
based on the use of regular tree grammars to describe sets of values in a programming language.
This evidence includes the work of Aiken and Murphy [AM91], and more recently the work of
Hosoya, Vouillon and Pierce [HVP00] and of Benzaken, Castagna, and Frisch[BCF03]. In each of
these works, some optimizations were found to be critical in obtaining acceptable performance,
and our experience is similar.

8.4.1 Memoization for datasort inclusion

The first optimization is memoization of subgoals. As observed by Aiken and Murphy [AM91],
this is a critical optimization to achieve acceptable performance in implementations of regular
tree algorithms.

One complication when implementing memoization is that we have local assumptions,
namely the assumptions that “a goal currently in progress is true”, as in Chapter 5. Thus,
when the algorithm determines the truth of some subgoal, it is in some sense only truth relative
to the current assumptions, and it would be unsound to memoize the truth of the subgoal with-
out taking the assumptions into account. This situation is particularly interesting due to the
assumptions all being for goals that are currently in progress. We first consider memoization of
false results, and then return to the more interesting question of memoization of true results.

Memoization of false results

For subgoals which are determined to be false, the presence of assumptions is not a problem:
if a subgoal is determined to be false under some assumptions, then it is false in general, and
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we can memoize this result and make use of it regardless of the assumption set. Doing so does
alter the results for some subgoals when in contexts containing assumptions that ultimately
turn out to be false, but it only modifies true results to false in such contexts, which has no
effect on any top level goal.

For example, suppose we have a signature containing the following declarations.

anat = cz 1 t cs anat

reven = cz 1 t cs rodd

rodd = cs reven

If we use the algorithm without memoization to check the goal reven � rodd . Then we make
the assumption reven � rodd , and under this assumption we check the subgoals 1 � . and
rodd � reven . If we check the second subgoal first, we find that it is true in one more step, using
the assumption, but the first subgoal is false, and we determine that the original goal is false.

Now, suppose we modify the algorithm to use memoization of false results. Further suppose
that we have previously checked the goal rodd � reven , and memoized the fact that it is false. If
we check reven � rodd the subgoal rodd � reven matches the memoized result, and the algorithm
determines that this subgoal is false, rather than true as in the algorithm without memoization.
But, this difference has no effect: it occurs because the assumption reven � rodd is a “goal in
progress” that is ultimately false. When we have such an assumption, we must be in the process
of determining that it is false, so there is no harm replacing true results by false results: for
that subgoal we will still obtain false. (This argument depends on the fact that our algorithm
behaves monotonically, i.e. replacing true by false can only change some true subgoals to false.)

We thus use a hash table to memoize every goal of the form ρ ≤ u that is determined to be
false using the algorithm in Chapter 5. Goals of this form are convenient memoization points in
the implementation, since we have a unique sort name for each base sort, and we can represent
ρ as as set of sort names, and u as a set of sets of sort names, and then represent these sets as
sorted lists.

We could extend our memoization scheme to all goals R ≤ U encountered by the algorithm.
We chose not to do this to avoid the cost of calculating hash codes and equality checks for sets
of structured sorts at every step. Also, the gain seems small: any goal which “hits” the memo
table with such a scheme should also hit under our scheme, except that it will hit a little later
when subgoals that involve refinements of datatypes are reached.

In some cases there may be a huge number of such subgoals, such when they are generated
via rules for unions of products in the algorithm in Chapter 5. In such cases memoizing all
goals might conceivably avoid duplicating a large amount of work, and should such cases prove
important in practice then this technique should be considered. The implementation of regular
tree inclusion by Hosoya, Vouillon and Pierce [HVP00] does memoize all subgoals, and they
observe that hash consing can be used to reduce the overhead of looking up structured sorts at
every step.

Memoization of true results

Now, so far we have only considered memoization of false subgoals. To memoize subgoals with
true results we need to consider the assumptions present during evaluation of the subgoals. One
possibility is to only memoize when there are no assumptions, but this seems to greatly limit
the number of true results that are memoized.
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One alternative is to take advantage of the fact that all false subgoals are memoized to
allow memoization of true subgoals. This is done by evaluating a top-level goal as usual, and
then if the goal is found to be true, it is repeated but with a flag set to indicate that true
subgoals should be memoized. Since every false subgoal is memoized in the first evaluation, the
only paths followed are those for true goals, and so all of the assumptions made are actually
true (since assumptions correspond to “goals in progress”). Thus, these assumptions can be
discharged, and every true result during the second evaluation is valid without any assumptions,
and can thus be memoized. It is convenient to memoize these in the same table as false results,
so that we only need to lookup in one table.

In the worst case, the repetition of evaluation for true results takes the same time as the orig-
inal call, but the memoized results may significantly reduce the amount of duplicated work done
later by the algorithm. Until recently our implementation followed this approach, and achieved
sufficient performance for all examples that we tested, so we did not consider it necessary to
consider other approaches.

One example recently motivated us to consider further improvements our implementation,
and in particular to attempt to improve the memoization of true results in our implementation.
This occurred during the purely functional lists experiment, described in Section 9.4. For this
example, our implementation would previously get stuck when solving a particular datasort
inclusion goal, not finishing even when left for 12 hours.

To determine whether this was due to a weakness in our implementation, or due to the
complexity of the example, we translated the relevant datasort declarations into both the
XDuce language of Hosoya, Vouillon and Pierce [HVP00] and the CDuce language of Benzaken,
Castagna, and Frisch[BCF03]. We then constructed appropriate expressions in those languages
to force checking of inclusions corresponding to the problematic inclusion. We found that both
the XDuce and the CDuce implementations were able to quickly determine the validity of the
inclusion.

In an attempt to obtain acceptable performance for this example we made a detailed com-
parison between the memoization of true subgoals with our approach and with the approach
used by Hosoya, Vouillon and Pierce [HVP00] in the XDuce implementation. Our conclusion
was that both approaches appear to memoize the same results at the end of each top level
goal. However, the XDuce approach has the advantage that it allows reuse of results within
subgoals. In particular, it stores all true results immediately, and uses local data structures to
store these rather than a global memo table to avoid propagating memoized results in the case
when an assumption is determined to be false. This has the potential to avoid a large amount
of unnecessary duplication of work while solving a particular goal, compared to the approach
of delaying memoization until the top level goal has completed.

Based on this analysis, we decide to modify our implementation so that it stores true results
in local data structures in the similar way to the XDuce implementation. We differ in that we
still store these results in a hash table at the end of each top level goal. Alas, this modification
did not have the desired effect: the performance was still not satisfactory for the example
mentioned above. We later found a quite different optimization unrelated to memoization that
did have the desired effect (see Section 8.4.2), and also uncovered a number of “performance
bugs” in our implementation in the process. We have chosen to retain the XDuce approach
to memoization of true subgoals anyway, because it seems that there could be some situations
where it avoids a large amount much duplication of work, and it seems that does not ever result
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in a noticeable cost in terms of time or space. 1

It appears that even more true results could be memoized by tracking which assumptions
are actually used in the evaluation of each subgoal. This would allow memoization of a true
subgoal that occurs as part of a goal that is determined to be false, provided the true subgoal
does not depend on the assumption for the goal.

Alternatively, we could attempt to modify the algorithm to avoid the use of local assump-
tions altogether, as is done in the implementation of CDuce by Benzaken, Castagna, and
Frisch[BCF03], who use instead a local solver for Boolean constraints. Their approach does
not appear to have been described in detail, but it seems that they assign a Boolean variable
for the result of each subgoal, and then they look up and share results via these variables,
including when a goal is encountered that is currently in progress. In some sense this approach
uses variables to allow sharing of results before they have even been calculated.

Should we encounter further examples for which the current implementation performs
poorly, these seem like reasonable directions to pursue.

8.4.2 Optimizations for unions of record sorts

We found that we required some additional optimizations to obtain acceptable performance. In
particular we found it necessary to consider optimizations that focus on the interaction between
products and unions, since these are mostly responsible for the combinatorial explosion in the
number of subgoals. This experience corresponds with that reported in the work of Aiken and
Murphy [AM91], the work of Hosoya, Vouillon and Pierce [HVP00] and the work of Benzaken,
Castagna, and Frisch[BCF03].

We apply our optimizations to prior to expanding using the rule from Chapter 5, in an
attempt to avoid the need for this rule, or at least to reduce the number of subgoals that result.
Recall the form of this rule, and the rules for the auxiliary judgment for products.

R
⇒' R1 ⊗R2 Θ ` (R1\.)⊗ (R2\.) � U

Θ ` R � U

S
⇒' S1 ⊗ S2 Θ ` R1\(U1 t S1)⊗R2\U2 � U Θ ` R1\U1 ⊗R2\(U2 t S2) � U

Θ ` R1\U1 ⊗R2\U2 � U t S

Θ ` R1 � U1

Θ ` R1\U1 ⊗R2\U2 � .
Θ ` R2 � U2

Θ ` R1\U1 ⊗R2\U2 � .

The code for the implementation of subsorting for records is surprisingly close to these rules
(in fact, the rules are originally inspired by the implementation). Each of the optimizations for
unions of products applies to a goal of the form R ≤ U with R a product sort and U a union
of product sorts that is compatible with R.

The first optimization is to check the emptiness of each component of R, and succeed if
any component is empty, since then R is empty. The second optimization is to similarly check

1In fact, the number of true results stored locally never reached more than 12 while sort checking our standard
set of examples. We did manage to construct one contrived example where the number reached over 800.
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emptiness of each part of the union U by checking the emptiness of each component, and then
remove those parts that are found to be empty because they have an empty component. We
found the first optimization to be surprisingly critical in obtaining acceptable performance:
without it some of our examples do not terminate after running for many hours. The second
has a more minor effect, but consistently improves performance.

The third optimization is to check whether all of R is included in one of the parts of the
union U . We found this optimization to also be critical in obtaining acceptable performance.

The fourth optimization is to check whether a component of R is syntactically equal to the
corresponding component of all parts of the union U . If so, we ignore this component when
determining inclusion. The correctness of this optimization depends upon the fact that we
have already checked each component for emptiness. In some cases this optimization can have
a major effect, and is particularly important when R and U refine a record type that has a
component that has only the default refinement.

The fifth optimization is to check whether either R1\U1 or R2\U2 is empty before applying
the rule for products with a non-empty union. Emptiness of each these differences is equivalent
to the subsortings R1 ≤ U1 and R2 ≤ U2 respectively. This optimization has a reasonably large
effect on performance: with all other optimizations in place it reduces the total time taken from
36 seconds to 6.7 seconds when analyzing the most complicated datasort declarations that we
have encountered so far (see Section 9.4).

We also include one optimization that is based on the implementation by Benzaken,
Castagna, and Frisch[BCF03]. This optimization avoids the exponential increase in the number
of subgoals for unions of records when one of the fields has disjoint components in each part of
the union. For the examples we have tried so far, this optimization has only a small effect, but
it seems possible that would avoid a large number of subgoals in some cases.

8.4.3 Other optimizations for datasort inclusion

Another critical optimization in our implementation of datasort inclusion involves the check
that determines whether a goal is in the current assumptions. This check is used to determine
whether a goal matches one that is currently in progress, and prevents the algorithm from
looping when we have recursive datasorts. In Chapter 5 this is the check that determines which
of the following two rules is used when we have a goal involving base refinements.

bρc ≤ buc in Θ

Θ ` ρ � u

bρc ≤ buc not in Θ Θ, bρc ≤ buc `Σ bodyΣ(ρ) � bodyΣ(u)

Θ `Σ ρ � u

Our optimization of this check is to match the set of base sorts in bρc using subset inclusion
rather than set equality. Similarly, we represent each buc as a set of sets of base sorts, and
match using the appropriate subset inclusions. Thus, we allow the goal to match against an
assumption that is strictly stronger. To compare the current goal bρgc � bugc against an
assumption bρac � buac we check whether:

sortnames(ρa) ⊆ sortnames(ρg)
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and:
∀ρ1 in ua.∃ρ2 in ug.sortnames(ρ2) ⊆ sortnames(ρ1)

To efficiently check subset inclusion between the sets of sort names in each base refinement
ρ, we represent these sets as sorted lists, using the unique integer identifier attached to each sort
name to determine the order. (We also use these sorted sets for the memoization of datasort
inclusion results, although in that case we match using equality rather than subset due to the
potentially huge number of entries in the memoization table.)

The optimization of matching via subset inclusion potentially has a dramatic effect on
performance for recursive datasorts because it reduces the number of “unrollings” via bodyΣ(ρ)
that are required before matching against an assumption. We found that this optimization
reduced the total time taken to analyze datasort declarations by a factor of about two for each
of our more complicated examples. For one of our more contrived examples (natural numbers
with refinements that each exclude a particular number) the factor is around eight.

We also tested an extension of this optimization which also used subsort inclusion on sort
names when comparing elements (although some inclusions will not yet have been determined if
we are in the process of analyzing datasort declarations). Alas, this actually made the analysis
slightly slower for our test examples, because it requires us to test each element in one set
against every element in the other. With the simple subset test, we can instead take advantage
of the fact that the list is sorted to implement a faster subset test that takes time linear in the
sizes of the lists. Occasionally these sets are large enough for this difference to be noticeable,
and since this optimization does not seem to catch many cases, we have chosen not to include
it.

8.4.4 Minimizing datasort inclusion tests

The final set of optimizations are not optimizations to the datasort inclusion algorithm itself,
but rather avoiding the need to call it in some cases. In particular, during the lattice creation as
described for each new datasort we need to construct each intersection with an existing lattice
element, and then call the datasort inclusion algorithm to compare each such intersection with
every lattice element. Thus, the work done for each new datasort grows with the square of the
size of the lattice.

In many cases it is possible to avoid a large part of this work. When are constructing the
intersection of a new datasort with a lattice element that was itself created for an intersection,
we attempt to use associativity to calculate the lattice element directly. Clearly this will
not always work: intersections with some lattice elements are missing, because have not yet
reached them, or because we will add them in the phase of adding intersections of intersections
via associativity.

We also avoid calling the datasort inclusion algorithm when comparing an intersection
ρnew & ρold with an element ρ by attempting to use the lattice to determine ρ ≤ ρnew and
ρ ≤ ρold. If either of these can be determined to be false, then the result of the comparison is
false: ρnew & ρold can not be equal to ρ. If both can be determined to be true, then we can
avoid checking the inclusion in one direction: we know that ρ ≤ ρnew & ρold so we only need
check whether ρnew & ρold ≤ ρ. This optimization approximately halved the time taken for the
lattice creation in our experiments, and used together with the previous optimization it results
in nearly a three times improvement in performance.
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If we wanted to further minimize the use of the datasort inclusion algorithm we could allow
the programmer to declare those inclusions between datasorts that they intend to hold, and
to only check these inclusions hold. Other inclusions would be assumed to not hold, except
when they follow relatively directly from the declarations. It seems likely that in many cases
the number of declarations required would be small enough to be practical, and in some cases
very few inclusions may be required, or even none. Additionally, these declarations would also
document which inclusions are required when sort checking the expressions in the program,
which would be useful when considering modifications to datatype and datasort declarations.

We could even go one step further and avoid the use of the datasort inclusion algorithm
altogether. To do this we would allow the programmer to declare a set of inclusions between
unions of datasorts that is “consistent” in the sense that each declared inclusion can be checked
only making use of the declared inclusions for base refinements. This means that we can
check each declared inclusion by comparing the datasort bodies using a variant of the datasort
inclusion algorithm that does not accumulate assumptions, but instead uses the declarations
as the set of inclusions that hold between base refinements. In some sense this is allowing the
programmer to declare a “fixed-point” in terms of the inclusions that hold, while the algorithm
in Chapter 5 calculates a greatest fixed-point that contains as many inclusions as possible.
Checking the declared inclusions would still take exponential time in the worst case, but the
exponent is likely to be small, and would be much easier to predict: it would be the maximum
number of times that a value constructor is repeated in a single datasort declaration, where
that constructor takes a product as an argument.

Another alternative would be to avoid the explicit construction of the lattice of unique re-
finements for each datatype and instead directly call the implementation of datasort inclusion
during the sort checking of expressions. In some sense this would “lazily” construct the lattice:
if a particular inclusion is never checked, it is never calculated, and if it is checked then the
memoization in the implementation of datasort inclusion will avoid repeating the work done.
This scheme does seem attractive, particularly because the implementation of the lattice cre-
ation has required some tuning to obtain acceptable performance. However, this scheme would
have the disadvantage that we would need represent intersections of base refinements syntacti-
cally, instead of having a sort name for each equivalence class of base refinements. This would
require some relatively fundamental changes to the implementation. It might reduce the effect
of memoization in some cases, since there may be many base refinements which are equivalent
but which are formed by intersecting different base sorts.

These seem like reasonable directions to pursue if further experience with the implemen-
tation indicates that there are situations where the implementation of datasort inclusion has
unsatisfactory performance.

8.5 Subsort checking

The implementation of subsort checking that is used during the sort checking of expressions
shares most of its code with the datasort inclusion algorithm. However, when a goal involving
base refinements is encountered, the relevant lattice is used to solve the goal directly rather
than using assumptions and comparing datasort bodies.

This works because the subsorting goals that are generated while checking expressions do
not involve unions, and for such goals our algorithm never generates a subgoal involving unions
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(our lattices include intersections, but not unions). Subgoals involving emptiness do arise
though, in particular for records, and so we record the emptiness of each base sort as part of
the datasort analysis. (Only the minimal element of a lattice can be empty, but it need not be.
Also, currently there is no way to declare that a refinement of an opaque type is empty.)

Subsorting is thus implemented as a generalized function that is parameterized by a base
subsort function subSortName that determines inclusions ρ ≤ u involving base refinements.
Thus, we use the following type for the base subsort function.

subSortName : SortName list * SortName list list -> bool

The generalized function is instantiated to the one used during checking of expressions by
applying it to a base subsort function that consults the appropriate lattice, or checks emptiness
if the list representing the union on the right-hand side is empty. This base subsort function
raises an exception if the list representing the union contains more than one element.

Instantiating the generalized subsorting function to the one used during datasort analysis is
somewhat more complicated. The function in the datasort analysis that determines inclusion
between datasorts calls the generalized subsorting function for each subsorting goal, and passes
itself as the function used to solve base subsorting goals. More precisely, the datasort inclusion
function is parameterized by a list of assumptions, so it actually instantiates itself by adding
an additional assumption for the current goal, following the algorithm in Chapter 5, and then
passes the resulting function to the generalized base subsorting function.

8.6 Backtracking and error messages

The implementation of sort checking for expressions is based on the bidirectional algorithm in
Chapter 3, which involves backtracking. This is deep backtracking, meaning that after a goal
has returned a successful result, a subsequent failure may require revisiting the goal to generate
further results. Since SML expressions can contain core-level declarations, this backtracking
extends to core-level declarations also. This issue is complicated by the fact that the sort
checker should produce error messages upon failure, and should generally attempt to continue
in order to produce more than one error message.

Our approach is to implement a small library that contains a type constructor for compu-
tations that may fail and produce a list of errors, and a type constructor for computations that
may backtrack. Composing these two type constructors yields a type constructor for computa-
tions with backtracking and errors. We compose this type constructor from the two simpler ones
so that we can use the just type constructor for errors in when backtracking is not appropriate.
For example, only the judgment for expressions that synthesizes sorts requires backtracking,
but the judgment that checks an expression against a sort does not. Similarly, the analysis of
datasort declarations may return errors, but does not backtrack.

These two type constructors are implemented in a module Comp in our implementation,
which also includes a number of combinators for building backtracking and non-backtracking
computations.
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8.6.1 Computations with errors

The signature for the module Comp contains the following specifications for the type constructor
for computations with errors.

type Error (* Errors to be reported. *)
exception Fail (* Raised when not reporting errors. *)

type ’a Result = ’a * Error list (* Results of computations. *)
type retErrs = bool (* Whether to return errors. *)

(* A type constructor for computations which may fail. When the
bool argument is true, failure is indicated by a non-empty
list of errors, otherwise it is indicated by raising Fail.

*)
type ’a Comp = retErrs -> ’a Result

Exposing that the type constructor for computations is implemented as a function is conve-
nient: functions that construct computations can be implemented by adding an additional
curried argument of type bool which is passed on to any subcomputations as appropriate. We
could have instead kept the type constructor for computations abstract, and instead provided
a constructor like the following.

makeComp : (retErrs -> ’a Result) -> ’a Comp

This would have been somewhat more notationally cumbersome, and it is not clear that much
would be gained.

The type of results is simply the underlying type paired with a list of errors. Each error
corresponds to one error message that is reported. When a result is returned with an empty list
of errors, the computation has succeeded. The reason we include a value of the underlying type
even when the computation fails is that we would like the sort checker to continue checking
after it finds an error, so that more than one error can be reported. This means that failing
computations need to provide some reasonable return value when they fail. The representation
of sorts includes a “bogus” constructor for exactly this purpose: it is considered to be compatible
with every other sort, and is only used by the sort checker when a sort error has been found.

The reason that we require computations to raise exceptions in some cases and return a list
of errors in other cases is that in many cases we are not interested in the errors, and in such
cases it would be inefficient for a failing computation to continue. For example, suppose we are
checking an expression against a sort constraint with alternatives, such as the following.

(*[ val twoIsFour <: tt, ff ]*)
val twoIsFour = (2 = 4)

For this example, our implementation would first check the expression against the first
alternative, and if that fails (or we later backtrack) it would then try the second alternative.
However, to avoid returning multiple errors for the same program location, we only return the
errors for the second alternative. Thus, there is no point in accumulating errors while trying
the first alternative, so that computation is started by passing false. Then, if at any point
the first computation fails it raises the exception Fail, which we can catch and immediately
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proceed to trying the second alternative. Rather than implement this pattern each time we have
multiple alternatives to try, the library includes two combinators tryBothC1 and tryBothC2
which combine two computations into one that first tries the first computation and if that fails
the second is tried. If both fail tryBothC1 returns the errors of the first computation while
tryBothC2 returns the errors of the second.

8.6.2 Backtracking computations

Backtracking computations are represented using the type constructor RComp, which is specified
as follows in the signature for the module Comp.

(* Results that can be "backtracked" by via a computation that
calculates the next result. Do not request error reporting
when initiating the computation of the next result.

*)
datatype ’a Redo = REDO of ’a * (’a Redo) Comp

(* Computations with backtracking. *)
type ’a RComp = ’a Redo Comp

The type constructor Redo could be made opaque, since no part of the sort checking code
depends upon it being transparent. However, we feel that exposing this datatype declaration
is likely to assist in understanding the purpose of these two type constructors and the various
combinators in the library related to backtracking.

The type constructor RComp is specified as computations which have a result that is “redo-
able”. A redo-able result is a pair containing the result and a computation that can be used to
calculate the next result. Thus, RComp is essentially a type constructor for lists of results, with
the whole list and each tail being delayed via the Comp type constructor, and thus incorporating
failure with errors. When one of the “redo” computations is evaluated to calculate a further
result after a success, no list of errors should be requested, and the lack of further results will
always be indicated by raising the exception Fail. This is appropriate because there are only
errors that should be reported when the whole computation does not return even one success,
and in this case the list of errors for the original computation can be used.

8.6.3 Combinators

The library of computations contains various combinators for constructing and composing com-
putations and backtracking computations. Some of the most important combinators are com-
binators that embed ordinary values into the types for successful and non-backtracking compu-
tations, and higher-order “let” forms letC and letR that sequence two computations, passing
each result of the first computation to a function that constructs the second computation. Each
of our type constructors could be considered to have the structure of a monad with respect to
these combinators (see the work of Moggi [Mog91]). However, these combinators have no par-
ticularly special status in our implementation, and we originally included them because they
seemed natural, and only later realized the relationship to monads.

Other combinators include tryBothR1 and tryBothR2 which combine alternative backtrack-
ing computations in a similar way to tryBothC1 and tryBothC2, but which include backtrack-
ing. We also have combinators that take a list of errors and fail immediately, one that generates
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a list of all successful results for a backtracking computation, combinators that adds memoiza-
tion to backtracking computation and non-backtracking computations, and a number of similar
combinators that were found to be convenient in the implementation of the sort checker.

One interesting combinator is a variant of a let called letRC that sequences a backtracking
computation with a non-backtracking one, and constructs a non-backtracking computation,
but one that may backtrack over the first computation if the second one fails. This combinator
made the interface between backtracking and non-backtracking code particularly simple. This
interface is also simplified by the fact that the type constructor for backtracking computations
is an instance of the type constructor for non-backtracking computations.

An alternative approach to simplifying this interface would be to use a single type construc-
tor for both backtracking and non-backtracking computations, essentially by adding a non-
backtracking version of tryBothR. We did not follow this approach because non-backtracking
computations are used more often than backtracking ones in our implementation, and so we felt
that treating them as a special case of backtracking computations was inappropriate. Also, it
seems that something like letRC would still be required with such an approach, to stop subcom-
putations of non-backtracking computations from backtracking unnecessarily, and it would have
been more difficult to recognize this if we had only a single type constructor for computations.

8.6.4 Comparison with other approaches to backtracking

Our approach to implementing backtracking has some similarities to that used by Paulson in
the implementation of Isabelle [Pau86], particularly in that both use a form of list with each
tail being a delayed computation. We experimented with a number of alternative approaches
and variations before choosing this approach. The simplest approach seems to be to represent
backtracking by returning a standard list of results. This approach has the major disadvantage
that all results must be calculated, when often only the first is required, so generally leads to
much worse performance.

The most notable alternative that we considered was to pass to each computation a con-
tinuation function to call with each successful result, and for computations to return normally
when there are no more results. This is the approach is used by Carlsson [Car84] to to imple-
ment deep backtracking in an implementation of logic programming via a functional language,
a technique that was also used by Elliot and Pfenning [EP91]. This approach to backtracking
is somewhat dual to ours: we have “redo” continuations for the case where a computation suc-
ceeds, but a subsequent computation fails and requires a the goal to be revisited. In the case of
implementing logic programming, success continuations appear to be particularly appropriate,
but in our case they seem less so. Mostly this is because using success continuations leads to a
slightly less direct style of programming. This is particularly noticeable for computations that
require failure with errors, but do not require backtracking, which is the more common case in
our implementation.

We also considered implementing our backtracking and non-backtracking computations as
monads using the approach proposed by Filinski [Fil94, Fil99]. This approach would have
the advantage that the ordinary SML let could be used to sequence computations, allowing a
slightly more direct style of programming, and likely also reducing the performance overhead of
sequencing computations. We decided not to use this approach because it requires an extension
of SML with a feature that captures the current continuation as a function, and we did not
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want our implementation to depend on such non-standard features. Also, our “let” combinators
appear to allow a sufficiently natural style of programming, and the overhead involved does not
appear to be a dominant factor in our sort checker.

8.7 Sort checking for core-level declarations and expressions

The implementation of sort checking for core-level declarations largely follows the corresponding
code in the elaboration phase in the ML Kit. The part that deals with expressions is based
on the bidirectional checking algorithm described in Chapter 3 and extended with pattern
matching in Chapter 6. Backtracking and failure in this algorithm are implemented using the
computations with backtracking and errors described in Section 8.6. Thus, our mechanism for
reporting errors does not follow the ML Kit elaborator, and as a result our code does not have
to rebuild an abstract syntax tree, so is somewhat simpler.

8.7.1 Expressions

The main part of the code for sort checking expressions is based on the following functions:

val check_exp : Context -> exp -> unit Comp
val infer_exp : Context -> exp -> Sort RComp

We also have the corresponding functions for atomic expressions, since these are represented
using a different type in the ML Kit. The code for checking and inferring sorts for expressions
is quite directly based on the rules in 3, with the following notable differences.

• Upon failure we generate an error value containing appropriate information.

• We allow an application of a function to an inferable expression as a checkable form. This
required because case expressions in SML are translated to such expressions.

• When we encounter an non-inferable expression while inferring, we check the expression
against the default refinement, as described in 7.

• We also have records, pattern matching, parametric polymorphism, exceptions, special
constants and let expressions introducing core-level declarations. The extension to these
features is mostly straightforward, following Chapter 6, Chapter 7.5 and Chapter 7. We
describe the implementation of checking for pattern matching and core-level declarations
in detail below.

8.7.2 Pattern matching

In SML, functions may involve pattern matching via a sequence of branches, each with an
argument pattern and a result expression. The implementation of sort checking for such pattern
matching is closely based on the algorithm in Chapter 6. Recall that this algorithm requires the
notion of pattern sorts, which are a generalization of sorts to include applications of constructors
and a form of union.

Pattern Sort Z ::= R | cZ | (Z1, Z2) | () | Z1 t Z2 | ⊥
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The implementation of sort checking for pattern matching is based on the following judgments
from Chapter 6.

Π `Σ Z 1 Ωc ⇐∈ R Matching pattern sort Z with branches Ωc checks
against sort R under context Π.

Π;∆ `Σ C
⇐
∈ R Term C checks against sort R under context Π

and pattern context ∆.

`Σ Z
⇒
� Y Y is a minimum sort union covering pattern sort Z.

The major differences from the formal presentation in Chapter 6 are the following.

• In the formal presentation, matching a pattern against a pattern sort is done via the
following goal.

Π;P ∈ Z ` C
⇐
∈ R

Via the rules for this judgment, this ultimately involves checking the expression C against
R under some finite set of contexts that extend Π, i.e. we check

Π,Πi ` C
⇐
∈ R

for some number of standard (non-pattern) contexts Πi.

In the implementation, we instead have a function ref_pat which takes P and Z as input
and returns a list of contexts under which C needs to be checked. The advantage is that
we can remove redundant contexts from this list, and thus avoid unnecessarily checking
C against some contexts. Also, this function avoids the need for a special kind of context
for assumptions about the sorts of patterns.

• The function ref_pat additionally returns a corresponding pattern sort Zi for each con-
text Πi in the result. This pattern sort is the least one such that the assumptions in Πi

imply that the pattern P is contained in Zi. These pattern sorts are used to assign sorts
for layered patterns, and also to check against sort constraints in patterns, as specified in
Chapter 7.

• This function also calculates pattern sorts for the difference Z\P and pattern intersection
Z∧P . The first is needed either as the input pattern sort for the subsequent branch, or for
the emptiness check after the last branch. The second is required for in order to calculate
the first in the case of products, if we use the alternative definition of Z\P for products
in Section 6.5. Calculating these in ref_pat avoids some duplication of work that would
occur if we implemented them as separate operations.

• We simplify pattern sorts containing occurrences of the empty pattern sort ⊥ and empty
sorts “on the fly” as they are constructed. As a result empty sorts can never appear in
pattern sorts, and ⊥ is eliminated completely except for top level occurrences.

This optimization is critical. With the optimization, the largest pattern sort we have
encountered so far has 378 nodes (in the operator fixity resolution example). Without it,
the size of pattern sorts is so large as to make sort checking infeasible for some of our
examples: for these the size quickly grows to the many millions, and progress quickly
comes to a halt once all available RAM has been consumed.
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Putting together the first three points, the main function for in the implementation of pattern
matching has the following type.

val ref_pat : Context -> pat -> PatSort ->
((VarEnv * PatSort) list * PatSort * PatSort) Comp

There is a corresponding, mutually recursive function for atomic patterns.

8.7.3 Value declarations

Sort checking for value declarations is done by the following function.

val ref_valbind : Context * valbind -> VarEnv RComp

This function is a backtracking computation, since there may be many sorts inferred for the
expressions in the declaration.

This function involves somewhat more than just calling infer_exp to infer the sort of the
expression. It first checks whether there is a sort constraint at the top of each pattern, or if there
is value sort specification for the variable bound in the pattern (as described in Section 7.1).
If so, it backtracks over the comma-separated alternatives, and checks the expression against
each.

It then matches the pattern against each sort obtained for the expression, to obtain a variable
environment containing the sorts for each variable in the pattern. If there are unmatched cases,
we fail with a warning.

In some rare cases for value declarations that include patterns with constructors, there may
be a case analysis required when matching the pattern with a sort, in which case an error is
reported, since in general there is no single variable environment that would correspond to the
required case analysis (roughly what is needed is a union). Such value declarations cases can
always be transformed into equivalent declarations with expressions that use case, resulting in
the required case analysis being performed over the body of the case. For example, consider
the following declarations.

datatype d = C1 | C2 of bool
(*[ datasort d2 = C2 of tt | C2 of ff ]*)

(*[ val f <: unit -> d2 ]*)
fun f () = C2 true

val (C2 x) = f ()

The final declaration requires a case analysis: the expression has sort d2 and so we need to
consider both the case where x <: tt and where x <: ff. Backtracking is not what we want
here: backtracking determines whether one of alternatives results in a success, while here we
need to analyze the whole scope of x and check that each part of the case analysis would result
in success. In the absence of some form of union, it seems that the only way to handle this is
to consider it an error. The problematic declaration can be transformed into the following one
using case.
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(*[ val x <: bool ]*)
val x = case f () of x2 => x2

In general, the sort declaration is required, although in this case it is optional since bool is
the default sort.

8.7.4 Other declarations

Since value declarations require backtracking, the function which performs sort checking of
declarations also constructs a backtracking computation. However, the only other declarations
that can involve backtracking are local and sequential declarations, and these only propagate
the backtracking introduced by value declarations.

Otherwise, the sort checking for other SML core-level declarations is quite closely based on
the elaborator of the ML Kit.

8.7.5 Memoization

The implementation memoizes results using references attached to the abstract syntax tree.
For declarations that do not depend on the sorts assigned to variables, this memoization simply
stores the result once it has been calculated, and should we ever check the declaration again,
we reuse the stored result. This is particularly important for the costly analysis of datasort
declarations.

For some time we were unsure as to whether memoization of results for value declarations
and expressions was required to obtain acceptable performance. Such memoization is more
difficult, because we need to take account of the assumptions in the value environment, which
can be large, and are generally very similar. Even checking equality between a single pair of
value environments may take longer than that saved by reusing a memoized result. Since we
had not encountered examples where such memoization would be of obvious benefit, we chose
not to tackle the problem of how to implement such memoization efficiently.

Motivating example

The following small example convinced us that there are situations that arise in practice where
such memoization avoids needlessly repeating huge amounts of work.

(*[ datasort ’a nil = nil
and ’a one = :: of ’a * ’a nil
and ’a two = :: of ’a * ’a one ]*)

val ll = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]

An expression like this was encountered while running the sort checking on its own source code.
The actual expression is in the Timing module of the ML Kit, and contains a list of strings to
be concatenated for formatted output. The refinements for lists were actually irrelevant to this
expression, but regardless they had a huge effect on the time taken for sort checking: the time
taken for this expression is slightly less than an hour (and it might be considered lucky that
the list did not contain 20 elements).
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To see why this example takes so long to sort check, remember that in SML this expression
is syntactic sugar for the following.

1::(2::(3::(4::(5::(6::(7::(8::(9::(10::(11::(12::(13::(14::nil))
)))))))))))

Our sort checking algorithm backtracks excessively over this expression, because with the above
sort declarations, the sort for the constructor :: is as follows (this is exactly as reported by the
sort checker).

con :: <: ’a * ’a one -> ’a two
& ’a * ’a list -> ’a list
& ’a * ’a nil -> ’a one
& ’a * ’a <empty> -> ’a <empty>

Thus, to infer the sort for the top level application of ::, we try each of the four parts of the
intersection sort for ::, and check the arguments of :: against the corresponding sorts. In each
case we check the second argument by inferring the sort and comparing with the goal. Thus,
for each goal we try four cases. As we continue down the list, the number of times we check
each subexpression grows exponentially, up to 414, which is roughly 270 million.

Once we added memoization to the checking for expressions, the time taken for this example
reduced to less than a tenth of a second (even if we were unlucky and there were with 20 in the
list, or even 100). Memoization is not the only way to obtain acceptable performance for this
particular example. For example, we might instead require that the sort of the whole expression
be declared, and check in a top-down fashion without ever inferring sorts. But, requiring all
applications of constructors to appear in checking positions seems limiting, and unnecessary.
And such an approach would not apply to case where we had a repeated function application
in place of ::. In general, it seems that memoization is the most natural approach to avoiding
repetition of work in situations like this.

Approach

The main challenge in implementing this form of memoization efficiently is to avoid comparing
whole value environments for equality each time we check to see whether one of the previous
results had a value environment matching the current one. We tested a näıve implementation,
and found that it increased the time taken for sort checking for most of our larger examples by
more than an order of magnitude.

Our current approach is to restrict attention to those variables declared in the current core-
level declaration. This works because we never backtrack beyond a core-level declaration, and
the case analysis related to pattern matching only involves a particular expression, hence cannot
involve more than a single core-level declaration. We store a memoization table in each node
of the abstract syntax tree.

For expressions that we infer sorts for, this table has the value environment as the key, and
each value is a memoized version of the backtracking computation used to infer the sorts for
the expression. This memoized computation will immediately return a result if at some point
it has been calculated, thus is essentially a lazy list (i.e. memoizing stream) with respect to our
type constructor computations with errors. For expressions that we only check against sorts,
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we use a table that has both the value environment and the sort as the key, and has a memoized
version of the corresponding non-backtracking computation as the value. Value declarations
are memoized in a similar fashion to inferable expressions.

With some tuning, this approach seems to work well: the overhead for our larger examples
is around 10%. However, not much benefit seems to have been gained by memoization for these
examples: only very few goals are matched against memoized results. But, the earlier example
involving a list clearly shows that this is a critical optimization if we want to obtain acceptable
performance for the very wide range of expressions that may be encountered in practice.

Additional opportunities

We could attempt to go much further with memoization. We could restrict attention further to
only those variables that actually appear in an expression or declaration. This would decrease
the overhead, and also increase the number of matches against previous results, since irrelevant
differences between environments would be ignored.

We could also match against previous results using subsorting for both goal sorts and the
sorts in the environments, instead of equality as we do currently. If we did this, it seems
that memoization might remove the need for some of our other optimizations, for example
the removal of redundant contexts during pattern matching. It also seems that some more
experiments are warranted: for our current set of examples there seem to be too few goals in
total for memoization to have much benefit, and the overhead might conceivably prove to be
more of an issue with larger numbers of memoized results in each table.

We plan to investigate these issues further in future work, based on further experience with
the current implementation.

8.8 Sort checking for the SML module system

Rather than implement a separate phase for sort checking after all elaboration for modules
has completed, we decided to instead to integrate sort checking directly into the module-level
elaboration code of the ML Kit. This avoids a lot of duplication of code, particularly since
there is relatively little code that is specific to refinements at the module level (unlike the core
level). Also, an integrated approach is somewhat easier at the module level than the core level
because we do not need to worry about the elaborator using effects to implement unification.

Our modifications to the module-level elaboration code also required extending the repre-
sentations of module-level environments used by that code. In particular, each occurrence of
a core-level environment in these representations was replaced by a pair containing the origi-
nal environment and a corresponding environment for sorts. The environment for sorts should
refine the original environment, meaning that it should have the same structure, but contain
sorts that refine the types in the environment for types. 2 Similarly, each occurrence of a type

2Tracking bugs that result in violations of this property proved somewhat difficult. An essential technique was
to use debugging “assertions” that check this property each time an environment is constructed, but only when
running in a “debugging mode” since these tests are time consuming. Even with this technique, finding such bugs
was tedious, particularly when tracking a violation of the property observed in a large test case. Additionally,
there may be bugs that we are not aware of because they have not yet been triggered by the examples we have
tried. Statically checking this invariant would have been very useful, and should be possible using some form of
dependent refinements, as in the work of Xi and Pfenning [XP99] and Dunfield and Pfenning [DP04].

273



name set in the original representations was replaced by a pair containing the original set and a
corresponding type name environment that contains the required information about the refine-
ments of each type name in the set. These type name sets are used by the ML Kit to tracking
the binding of type names, following the style of the Definition of Standard ML [MTHM97].

The core-level sort checking for a declaration is performed immediately after the core-level
elaboration for the same phrase has completed. Any errors during core-level sort checking
are returned via our computations with errors, as described in Section 8.6. These errors are
attached to top node of the abstract syntax tree for the declaration, in order to integrate with
the ML Kit error reporting mechanism. We added a special kind of “elaboration error” to the
ML Kit to support this integration: such an error contains a non-empty list of sort checking
errors for a declaration. Each of these sort checking error carries its own information about the
location in the source code where the error was detected, unlike ordinary ML Kit errors which
rely on the position in the AST where the error is attached. Warnings during sort checking are
separated out from errors at this point and reported via the ML Kit warning mechanism.

To avoid violating the invariants upon which the sort checking code relies, we avoid invoking
the core-level sort checking code if an elaboration error has previously occurred. We do this by
checking a reference that is set whenever an elaboration error is generated. We similarly check
this reference prior to invoking module-level sort checking code that depends upon invariants
involving the absence of elaboration errors. This is somewhat more awkward than in the core-
level sort checking code, but overall works quite well.

Other interesting features of this part of the implementation include the following.

• Where we have a type realization in the original code (a map from type names to type
functions, as in the Definition of SML), we add a corresponding sort realization. The sort
realization maps each sort name that refines a type name to a sort function that refines
the corresponding type function.

• The implementation of these sort realizations is closely based on ML Kit implementation
of type realizations. One difference is that the sort names which are created in order
to represent intersections are generally omitted from sort realizations. Instead, when
applying a sort realization to such a sort name we find the sort names that were intersected
to create the sort name, and form the intersection of the realizations for those sortnames.
When applying a realization to a sort, this may result in a sort that is not in simplified
form, so we also simplify the resulting sort.

In general, a sort name s may be formed as an intersection in many different ways, for
example we may have s = s1 &s2 and s = r1 & r2. To ensure that all possibilities lead
to equivalent results, sort realizations must always be preserve the lattice structure of
the refinements of each type name. More precisely, a sort realization ρ must satisfy the
following sort equivalence for all compatible sort names r and s.

ρ(r &s) = ρ(r)&ρ(s)

For our example, this means that the intersection of the realizations ρ(s1) and ρ(s2) must
be equivalent to the intersection of the realizations ρ(r1) and ρ(r2), since both must be
equivalent to ρ(s).
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• When matching against the refinements of an opaque type, we need to check that the
sorts realizing the refinements satisfy the specified subsort inclusions (they are allowed to
satisfy more). We do this by checking that the above equation holds for all refinements r
and s of the opaque type.

• To construct the lattice of refinements of an opaque type in a signature, each time a
sort specification is encountered we add new lattice elements for the sort and for the
intersection of the sort with every other lattice element. This doubles the size of the
lattice (although it less that doubles it when the sort specification is of the alternative
form that includes an upper bound).

When a subsort specification is encountered, we generate a realization that “collapses” the
lattice according to the equalities between sorts that follow from the specified subsorting.
This realization turns out to be relatively easy to calculate: for the subsorting r < s
we map every subsort r′ of r to r′&s. Doing so leads to awkward names for sorts that
involve excessive intersections, so we then rename these sorts using a left inverse of this
realization, which generally maps r&s to r. This means that the whole realization maps
r to r, but equates sorts so that the structure of the subsorts of r matches the structure
of the subsorts of r &s in the original lattice.

• When matching signatures, we allow subsorting between the respective sort schemes for
a particular value, as described in Chapter 7. We also allow one sort scheme to be more
general that the other, since Standard ML allows a more general type scheme.

Aside from these points, the code for sort checking at the level of modules is closely based on
the code of the original elaborator.
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Chapter 9

Experiments

In this chapter we describe some experiments with programming with the refinements and
implementation described in the previous chapters. Our focus is mostly on what can be achieved
using refinements, rather than on testing the performance of our implementation, except where
the performance affects the usability of the sort checker. However, in order to give an impression
of the typical performance of the implementation, the following table summarizes the total
number of lines of code for each experiment, the number of lines of sort annotations, the
number of datasorts declared, and the time taken for sort checking. All times were measured
on a 1.7GHz Pentium M, and are the average of five runs. Each time is less than half a second,
indicating that performance is not an issue for the code of any of these experiments (although
a performance issue did arise in the last experiment, which will be described in Section 9.4).

Total lines Ann. lines Datasorts Time (sec.)

Red-black trees 233 29 6 0.12
Normal forms 70 20 4 0.05

Operator resolution 1451 138 18 0.44
Purely functional lists 143 32 12 0.08

Each of these experiments is described in detail in the remainder of this chapter. In order to
give a concrete view of the use of refinements in practice, we present a reasonable portion of
the actual code with refinement annotations for each experiment. We also briefly comment on
the result of each experiment.

The full code for these experiments, including the module-level code, is available from the
following web page. Additional examples will be added to this page.

http://www.cs.cmu.edu/~rowan/sorts.html

The first three of these experiments were conducted with the assistance of Frank Pfenning, and
the fourth was conducted by Kevin Watkins, both of whom I would like to thank.

9.1 Red-black trees

This experiment involved adding sorts to an implementation of red-black balanced binary search
trees. This experiment was carried out with the assistance of Frank Pfenning, who is the
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author of the code. This code is part of the Twelf implementation, and is also used in the
implementation of the sort checker itself.

Red-black trees are guaranteed to be “nearly” balanced via two invariants involving the
colors assigned to nodes. Each node is either red or black. The coloring invariant states that
a red node may not have a red child. The balancing invariant states that every path from the
root to a leaf passes through the same number of black nodes. Together, these invariants imply
that the length of the longest path to a leaf is at most twice the length of the shortest, since at
least every second node on such a path must be black.

In our experiment we only represented and checked the coloring invariant. The balancing
invariant can not be captured using our datasort declarations, since it would require an infinite
number of refinements: one for each possible path length.

This experiment is particularly interesting because the result can be compared with other
work on statically checking the invariants of red-black trees. This includes the work of Xi [Xi98],
who uses dependent refinements indexed by integers to statically check the invariants of red-
black trees. That work is based on the same implementation of red-black trees as ours, so is
particularly easy to compare. Overall, index refinements seem particularly natural for captur-
ing the balancing invariant, but we feel that our approach more naturally captures the coloring
invariant. The combination of index refinements with intersection refinements, as proposed by
Dunfield and Pfenning [DP04], would allow a the natural expression of both invariants. Captur-
ing the invariants in a natural way is very important because it makes it easy for programmers
to write and read their annotations, and also because it allows for informative feedback when
errors are discovered.

Other work on statically checking red-black trees includes that of Kahrs [Kah01] who uses
higher-order nested datatypes, phantom types and existential type variables in Haskell to en-
force the balancing invariant of red-black trees, and uses separate types for red and black nodes
to enforce the coloring invariant. The main disadvantage of this approach to the coloring in-
variant is that it requires separate versions of each function for each of type. This makes the
code longer, more complicated, and slightly less efficient. In our approach, such functions are
instead assigned intersection sorts, and we did not need to modify the underlying code at all.

This is also a particularly good example of the need for intersections in refinements: the
function that inserts an item in a tree involves a recursion that may temporarily violate the
invariant in a particular way, but it will never violate the invariant if the original tree has a
black node at the root. When conducting this experiment, it took a little time to reconstruct
these invariants: the comment documenting them did not quite match the actual code. Had a
sort checking implementation been available as the code was written, this problem could have
been caught. We found the feedback generated by the sort checker to be very useful while
reconstructing these invariants, an unanticipated successful aspect of this experiment. Overall,
this experiment must be considered a success: we were able to elegantly express the desired
invariants using sorts and check them using the implementation.

The code for the data type for red-black trees and the refinements required to check the
coloring invariant appear in Figure 9.1. The code for inserting an item into a red-black tree
appears in Figure 9.2. This includes a local function ins1 that requires a sort involving an
intersection. The first part of the intersection expresses the fact that the result of insertion
may violate the red-black invariant, but only at the root. The second part expresses the fact
that no such violation will occur if the input tree has a black node at the root. Only the first
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is required for the external call to ins1, but the second is required in order to obtain the first:
it is needed for the recursive calls. This use of a stronger sort than is required externally is
somewhat reminiscent to the proof technique of “strengthening” an induction hypothesis. The
only modification that have made to the code for insert is to add an explicit scope for the
type variable ’a, which is required to correctly determine the scope of the type variable in the
annotation for ins1.

We also include the code for the function restore_right which performs rotations on the
tree to restore the coloring invariant. We omit the corresponding function restore_left, since
it is symmetric.

We have left the original comments in the code, even though in some cases they are made
redundant by the sort annotations. A gray background is used for sort annotations in the code
for the function definitions to help emphasize which parts are annotations for the sort checker.1

Chris Okasaki has recently proposed a simpler formulation of the rotations that restore
the coloring invariant [Oka99] that are particular appropriate in a functional setting. This
formulation of the rotations is also the one used by Kahrs [Kah01]. As an additional experiment,
we tried modifying the red-black tree code to use this simpler formulation. We did so in a
relatively näıve fashion: we did not even attempt to check whether the datasort declarations
required modification. Instead we adopted an optimistic approach and modified the code for the
required functions, and then sort checked them to see whether the previous datasort declarations
would suffice. This seems likely to be an approach adopted by many programmers in practice.

The result of this sub-experiment was that the modified code was accepted without the
need to revisit the datasort declarations. The modified code for restore_right appears in
Figure 9.1, (restore_left is symmetric).

9.2 Normal forms with explicit substitutions

Our second experiment involves using sorts to capture normal forms and weak head-normal
forms in a λ-calculus with explicit substitutions. We mostly let the code for this experiment
speak for itself: the desired invariants can be expressed in natural way. We observe that
intersections are not required in this example, thus our refinements are useful in practice without
intersections, at least in some circumstances.

The datatype and datasort declarations for this experiment appear in Figure 9.4, which also
includes the functions for applying substitutions and composing substitutions. The normaliza-
tion functions appear in Figure 9.4, which also includes some examples with appropriate sorts
assigned.

This experiment was carried out by Frank Pfenning. Overall it must be considered a success:
the desired invariants were elegantly expressed by sorts, and checked by the sort checker.

9.3 Twelf operator fixity and precedence resolution

This experiment involved using sorts to check some relatively complicated invariants in part of
the parser used in the Twelf implementation. This code resolves operator fixity and precedence,

1A similar means of distinguishing sort annotations seems useful while programming, and we have built an
extension of the emacs SML mode for this purpose, which is included with the implementation.
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datatype ’a dict =

Empty (* Empty is considered black *)

| Black of ’a entry * ’a dict * ’a dict

| Red of ’a entry * ’a dict * ’a dict

(*[

(* Trees with only black children for red nodes *)

datasort ’a rbt =

Empty

| Black of ’a entry * ’a rbt * ’a rbt

| Red of ’a entry * ’a bt * ’a bt

(* As above but additionally the root node is black *)

and ’a bt =

Empty

| Black of ’a entry * ’a rbt * ’a rbt

(* Trees with a red root node *)

datasort ’a red =

Red of ’a entry * ’a bt * ’a bt

(* invariant possibly violated at the root *)

datasort ’a badRoot =

Empty

| Black of ’a entry * ’a rbt * ’a rbt

| Red of ’a entry * ’a rbt * ’a bt

| Red of ’a entry * ’a bt * ’a rbt

(* invariant possibly violated at the left child *)

datasort ’a badLeft =

Empty

| Black of ’a entry * ’a rbt * ’a rbt

| Red of ’a entry * ’a bt * ’a bt

| Black of ’a entry * ’a badRoot * ’a rbt

(* invariant possibly violated at the right child *)

datasort ’a badRight =

Empty

| Black of ’a entry * ’a rbt * ’a rbt

| Red of ’a entry * ’a bt * ’a bt

| Black of ’a entry * ’a rbt * ’a badRoot

]*)

Figure 9.1: Datatype and datasort declarations for red-black trees
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(* restore_right (Black(e,l,r)) >=> dict

where (1) Black(e,l,r) is ordered,

(2) Black(e,l,r) has black height n,

(3) color invariant may be violated at the root of r:

one of its children might be red.

and dict is a re-balanced red/black tree (satisfying all inv’s)

and same black height n.

*)

(*[ restore right <: ’a badRight -> ’a rbt ]*)

fun restore_right (Black(e:’a entry, Red lt, Red (rt as (_,Red _,_)))) =

Red(e, Black lt, Black rt) (* re-color *)

| restore_right (Black(e, Red lt, Red (rt as (_,_,Red _)))) =

Red(e, Black lt, Black rt) (* re-color *)

| restore_right (Black(e, l, Red(re, Red(rle, rll, rlr), rr))) =

(* l is black, deep rotate *)

Black(rle, Red(e, l, rll), Red(re, rlr, rr))

| restore_right (Black(e, l, Red(re, rl, rr as Red _))) =

Black(re, Red(e, l, rl), rr) (* l is black, shallow rotate *)

| restore_right dict = dict

(*[ insert <: ’a rbt * ’a entry -> ’a rbt ]*)

fun ’a insert (dict, entry as (key,datum)) =

let (* ins (Red _) may violate color invariant at root

ins (Black _) or ins (Empty) will be red/black tree

ins preserves black height *)

(*[ ins <: ’a rbt -> ’a badRoot

& ’a bt -> ’a rbt ]*)

fun ins (Empty) = Red(entry, Empty, Empty)

| ins (Red(entry1 as (key1, datum1), left, right)) =

(case compare(key,key1)

of EQUAL => Red(entry, left, right)

| LESS => Red(entry1, ins left, right)

| GREATER => Red(entry1, left, ins right))

| ins (Black(e1 as (key1, datum1), l, r)) =

(case compare(key,key1)

of EQUAL => Black(entry, l, r)

| LESS => restore_left (Black(e1, ins l, r))

| GREATER => restore_right (Black(e1, l, ins r)))

in

case ins dict

of Red (t as (_, Red _, _)) => Black t (* re-color *)

| Red (t as (_, _, Red _)) => Black t (* re-color *)

| dict => dict (* depend on sequential matching *)

end

Figure 9.2: Functions for insertion into red-black trees
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(*[ restore right <: ’a badRight -> ’a rbt ]*)

fun restore right (Black(e, lt, Red (re, rlt, Red rrt))) =

Red(re, Black (e, lt, rlt), Black rrt)

| restore right (Black(e, lt, Red (re, Red (rlte, rllt, rlrt), rrt))) =

Red(rlte, Black (e, lt, rllt), Black (re, rlrt, rrt))

| restore right dict =

dict

Figure 9.3: Okasaki’s simplified rotations for red-black trees

(*

norm.sml

Author: Frank Pfenning

Some normal-form invariants on lambda-calculus terms

in deBruijn representation with explicit substitutions

*)

datatype term =

Var of int

| Lam of term

| App of term * term;

datatype subst =

Dot of term * subst

| Shift of int

(*[

(* Weak head-normal terms *)

datasort whnf = Lam of term | Var of int | App of head * term

and head = Var of int | App of head * term

(* Normal terms *)

datasort norm = Lam of norm | Var of int | App of elim * norm

and elim = Var of int | App of elim * norm

]*)

(*[ subst <: term * subst -> term ]*)
(*[ comp <: subst * subst -> subst ]*)

fun subst (Var(1), Dot(e, s)) = e

| subst (Var(n), Dot(e, s)) = (* n > 1 *)

subst (Var(n-1), s)

| subst (Var(n), Shift(k)) = Var(n+k)

| subst (Lam(e), s) = Lam (subst (e, Dot(Var(1), comp(s, Shift(1)))))

| subst (App(e1, e2), s) =

App (subst (e1, s), subst (e2, s))

and comp (Shift(0), s’) = s’

| comp (Shift(n), Dot (e, s’)) = comp (Shift (n-1), s’)

| comp (Shift(n), Shift(k)) = Shift(n+k)

| comp (Dot(e, s), s’) = Dot (subst (e, s’), comp (s, s’))

Figure 9.4: Normal forms experiment: Part One
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(*[ whnf <: term -> whnf ]*)
(*[ apply <: whnf * term -> whnf ]*)

fun whnf (Var(n)) = Var(n)

| whnf (Lam(e)) = Lam(e)

| whnf (App(e1,e2)) = apply (whnf e1, e2)

and apply (Var(n), e2) = App(Var(n), e2)

| apply (Lam(e), e2) = whnf (subst (e, Dot(e2, Shift(0))))

| apply (App(e11, e12), e2) = App(App(e11, e12), e2)

(*[ norm <: term -> norm ]*)
(*[ appnorm <: norm * term -> norm ]*)

fun norm (Var(n)) = Var(n)

| norm (Lam(e)) = Lam(norm e)

| norm (App(e1,e2)) = appnorm (norm e1, e2)

and appnorm (Var(n), e2) = App(Var(n), norm e2)

| appnorm (Lam(e), e2) = norm (subst (e, Dot(e2, Shift(0))))

| appnorm (App(e11, e12), e2) = App(App(e11, e12), norm e2)

(*[ K <: norm ]*)

val K = Lam (Lam (Var 2)) (* \x.\y.x *)

(*[ S <: norm ]*)

val S = Lam (Lam (Lam (App (App (Var 3, Var 1), App (Var 2, Var 1)))))

(* \x.\y.\z. x z (y z) *)

(*[ I <: norm ]*)

val I = Lam (Var 1) (* \x. x *)

(*[ ex1 <: norm ]*)

val ex1 = norm (App (I, I)) (* \x. x *)

(*[ ex2 <: norm ]*)

val ex2 = norm (App (App (S, K), K)) (* \x. x *)

Figure 9.5: Normal forms experiment: Part Two
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and uses lists to represent stacks of unresolved operators and atomic values. When attempting
to use datasort declarations to capture the invariants for these lists, we found ourselves wanting
to define refinements of the type of operator lists, which is not possible. This an example of the
problem with instantiations of datatypes described in Subsection 7.4.4. In this case we resolved
the problem by replacing the use of the list type by a specialized datatype for lists of operators
and atoms. This was quite easy in this case, since none of the standard functions for lists are
used in this code.

We also found that we needed to provide sort annotations to correctly instantiate the sort of
one polymorphic function. This is the function error : region * string -> ’a that raises
an exception when an error is found in the input. Rather than annotate each application of
this function, we found it convenient to define names for the three different instantiations that
are required. While this was easy to do, it does suggest that a more sophisticated approach to
parametric polymorphism is desirable in practice.

The datasort declarations for this example would have been slightly simpler if we added a
feature that allowed one datasort to be defined as the union of some others. This should be
relatively easy to implement, and we will consider adding this feature in the near future.

This was the largest of the experiments. Overall, it was a success: despite the complexity
of the invariants, they were quite elegantly expressed using sorts, and checked using the sort
checker. However, there were some minor undesirable outcomes as well: the need to modify the
code to use a specialized datatype, the need to explicitly instantiate a polymorphic function,
and the need to write out datasort declarations for unions in full, as described above. These
indicate areas where improvements could be made, and such improvements will be considered
in future work.

The datatype and datasort declarations appear in Figure 9.3. Various small functions appear
in Figure 9.3. The function for performing a “shift” appears in Figure 9.3, and Figure 9.3
contains the main function for resolving an operator given a stack of unresolved operators and
atoms.

9.4 Kaplan and Tarjan’s purely functional lists

This experiment was performed by Kevin Watkins, and involved an implementation of a data
structure for real-time purely functional lists based on the data structure of Kaplan and Tar-
jan [KT99]. This data structure supports efficient access and concatenation, and depends on
some quite complicated invariants that appear to be suitable candidates for checking using
datasort refinements.

Alas, a performance issue with the analysis of datasort declarations was encountered during
this experiment, and could not be resolved with the version of the implementation available
at that time, despite trying a number of different ways of formulating the invariants. This
performance issue was only recently resolved by adding optimizations to the analysis of data-
sort declarations (see Section 8.4) hence the code has not yet been completed, although the
basic stack operations and their invariants are implemented. Thus, this experiment must be
considered at least a partial failure, although the resolution of the performance issue gives some
optimism that with the current implementation the desired invariants could be successfully
checked using sorts.

284



datatype ’a operator = (* Operators and atoms for fixity parsing *)

Atom of ’a

| Infix of (FX.precedence * FX.associativity) * (’a * ’a -> ’a)

| Prefix of FX.precedence * (’a -> ’a)

| Postfix of FX.precedence * (’a -> ’a)

(*[ datasort ’a Atom = Atom of ’a

and ’a Infix = Infix of (FX.precedence * FX.associativity) * (’a * ’a -> ’a)

and ’a Prefix = Prefix of FX.precedence * (’a -> ’a)

and ’a Postfix = Postfix of FX.precedence * (’a -> ’a);

datasort ’a shiftable =

Infix of (FX.precedence * FX.associativity) * (’a * ’a -> ’a)

| Prefix of FX.precedence * (’a -> ’a)

| Atom of ’a

]*)

type term = ExtSyn.term

type opr = term operator

(* type stack = (ExtSyn.term operator) list *) (* Replaced by the datatype below. *)

(* Specialized list datatype, so that we can define non-parametric refinements. *)

datatype stack = snil | ::: of opr * stack;

infixr 5 :::

(* Various refinements of stacks to enforce invariants *)

(*[ datasort pSnil = snil

and pOp = ::: of term Infix * pAtom

| ::: of term Prefix * pSnil

| ::: of term Prefix * pOp

and pAtom = ::: of term Atom * pSnil

| ::: of term Atom * pOp

datasort pStable = snil (* pOp | pAtom | pSnil *)

| ::: of term Atom * pSnil

| ::: of term Atom * pOp

| ::: of term Infix * pAtom

| ::: of term Prefix * pSnil

| ::: of term Prefix * pOp

datasort pComplete = ::: of term Atom * pSnil

| ::: of term Atom * pOp

| ::: of term Postfix * pAtom

datasort pRedex = ::: of term Postfix * pAtom

| ::: of term Atom * pOp

datasort p = snil (* pStable | pRedex *)

| ::: of term Atom * pSnil

| ::: of term Atom * pOp

| ::: of term Infix * pAtom

| ::: of term Postfix * pAtom

| ::: of term Prefix * pSnil

| ::: of term Prefix * pOp

]*)

Figure 9.6: Datatype and datasort declarations for fixity resolution
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(* An instantiation of error to a particular sort *)

val serror = (Parsing.error (*[ <: Paths.region * string -> (pAtom & pSnil) ]*) )

(* The invariants were described as follows, prior to adding sorts. *)

(* Stack invariants, refinements of operator list *)

(*

<p> ::= <pStable> | <pRed>

<pStable> ::= <pAtom> | <pOp?>

<pAtom> ::= Atom _ :: <pOp?>

<pOp?> ::= nil | <pOp>

<pOp> ::= Infix _ :: <pAtom> :: <pOp?>

| Prefix _ :: <pOp?>

<pRed> ::= Postfix _ :: Atom _ :: <pOp?>

| Atom _ :: <pOp>

*)

(* val reduce : <pRed> -> <p> *)

(*[ reduce <: pRedex -> pAtom ]*)

fun reduce (Atom(tm2):::Infix(_,con):::Atom(tm1):::p’) =

Atom(con(tm1,tm2)):::p’

| reduce (Atom(tm):::Prefix(_,con):::p’) = Atom(con(tm)):::p’

| reduce (Postfix(_,con):::Atom(tm):::p’) = Atom(con(tm)):::p’

(* no other cases should be possible by stack invariant *)

(* val reduceRec : <pStable> -> ExtSyn.term *)

(*[ reduceRec <: pComplete -> term ]*)

fun reduceRec (Atom(e):::snil) = e

| reduceRec (p) = reduceRec (reduce p)

(* val reduceAll : <p> -> ExtSyn.term *)

(*[ reduceAll <: Paths.region * p -> term ]*)

fun reduceAll (r, Atom(e):::snil) = e

| reduceAll (r, Infix _:::p’) = Parsing.error (r, "Incomplete infix expression")

| reduceAll (r, Prefix _:::p’) = Parsing.error (r, "Incomplete prefix expression")

| reduceAll (r, snil) = Parsing.error (r, "Empty expression")

| reduceAll (r, p) = reduceRec (reduce p)

(* val shiftAtom : term * <pStable> -> <p> *)

(* does not raise Error exception *)

(*[ shiftAtom <: term * pStable -> pStable ]*)

fun shiftAtom (tm, p as (Atom _:::p’)) = (* insert juxOp operator and reduce *)

reduce (Atom(tm):::juxOp:::p) (* juxtaposition binds most strongly *)

| shiftAtom (tm, p) = Atom(tm):::p

Figure 9.7: Misc. small functions for fixity resolution
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(* val shift : Paths.region * opr * <pStable> -> <p> *)

(*[ shift <: Paths.region * term shiftable * pStable -> pStable

& Paths.region * term Postfix * pAtom -> pRedex

& Paths.region * term Postfix * pSnil -> pStable

& Paths.region * term Postfix * pOp -> pStable ]*)

fun shift (r, opr as Atom _, p as (Atom _:::p’)) = (* insert juxOp operator and reduce *)

reduce (opr:::juxOp:::p) (* juxtaposition binds most strongly *)

(* Atom/Infix: shift *)

(* Atom/Prefix: shift *)

(* Atom/Postfix cannot arise *)

(* Atom/Empty: shift *)

(* Infix/Atom: shift *)

| shift (r, Infix _, Infix _:::p’) =

serror (r, "Consective infix operators")

| shift (r, Infix _, Prefix _:::p’) =

serror (r, "Infix operator following prefix operator")

(* Infix/Postfix cannot arise *)

| shift (r, Infix _, snil) =

serror (r, "Leading infix operator")

| shift (r, opr as Prefix _, p as (Atom _:::p’)) = (* insert juxtaposition operator *)

opr:::juxOp:::p (* will be reduced later *)

(* Prefix/Infix,Prefix,Empty: shift *)

(* Prefix/Postfix cannot arise *)

(* Postfix/Atom: shift, reduced immediately *)

| shift (r, Postfix _, Infix _:::p’) =

serror (r, "Postfix operator following infix operator")

| shift (r, Postfix _, Prefix _:::p’) =

serror (r, "Postfix operator following prefix operator")

(* Postfix/Postfix cannot arise *)

| shift (r, Postfix _, snil) =

serror (r, "Leading postfix operator")

| shift (r, opr, p) = opr:::p

Figure 9.8: Shift function for fixity resolution
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(* val resolve : Paths.region * opr * <pStable> -> <p> *)

(* Decides, based on precedence of opr compared to the top of the

stack whether to shift the new operator or reduce the stack

*)

(*[ resolve <: Paths.region * term operator * pStable -> pStable ]*)

fun resolve (r, opr as Infix((prec, assoc), _), p as (Atom(_):::Infix((prec’, assoc’), _):::p’)) =

(case (FX.compare(prec,prec’), assoc, assoc’)

of (GREATER,_,_) => shift(r, opr, p)

| (LESS,_,_) => resolve (r, opr, reduce(p))

| (EQUAL, FX.Left, FX.Left) => resolve (r, opr, reduce(p))

| (EQUAL, FX.Right, FX.Right) => shift(r, opr, p)

| _ => serror (r, "Ambiguous: infix after infix of same precedence"))

| resolve (r, opr as Infix ((prec, assoc), _), p as (Atom(_):::Prefix(prec’, _):::p’)) =

(case FX.compare(prec,prec’)

of GREATER => shift(r, opr, p)

| LESS => resolve (r, opr, reduce(p))

| EQUAL => serror (r, "Ambiguous: infix after prefix of same precedence"))

(* infix/atom/atom cannot arise *)

(* infix/atom/postfix cannot arise *)

(* infix/atom/<empty>: shift *)

(* always shift prefix *)

| resolve (r, opr as Prefix _, p) =

shift(r, opr, p)

(* always reduce postfix, possibly after prior reduction *)

| resolve (r, opr as Postfix(prec, _), p as (Atom _:::Prefix(prec’, _):::p’)) =

(case FX.compare(prec,prec’)

of GREATER => reduce (shift (r, opr, p))

| LESS => resolve (r, opr, reduce (p))

| EQUAL => serror (r, "Ambiguous: postfix after prefix of same precedence"))

(* always reduce postfix *)

| resolve (r, opr as Postfix(prec, _), p as (Atom _:::Infix((prec’, _), _):::p’)) =

(case FX.compare(prec,prec’)

of GREATER => reduce (shift (r, opr, p))

| LESS => resolve (r, opr, reduce (p))

| EQUAL => serror (r, "Ambiguous: postfix after infix of same precedence"))

| resolve (r, opr as Postfix _, p as (Atom _:::snil)) =

reduce (shift (r, opr, p))

(* default is shift *)

| resolve (r, opr, p) = shift(r, opr, p)

Figure 9.9: Resolve function for fixity resolution
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The definitions of the types and sorts for this example appear in Figure 9.10. The code for
the stack operations appears in Figure 9.11.

The performance issue arose while trying to extend the datasort declarations to double
ended queues. This requires a number of changes, including the addition of a datatype for
“paragraphs” which are lists of sentences. When the earlier version of the implementation
attempted to check inclusion between some of the refinements of this datatype, it ran for longer
than 12 hours without producing a result. With the current implementation the whole analysis
takes only a few seconds (about 4.8 seconds on a 1.7GHz Pentium M). This is despite the fact
that a lattice with 144 elements and over 10,000 intersections between elements is created.
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datatype ’a bal = Leaf of ’a | Pair of ’a bal * ’a bal

infixr 3 $

infixr 2 $$

nonfix @ @@

(* A "digit" in this representation is a list (of length 0, 1, or 2)

of perfectly balanced trees (each of which has the same depth)

A "word" is a list of digits (of increasing depth)

A "sentence" is a list of words

The "word" and "sentence" structures exist just to give us pointers to various

positions within the data structure where delayed work is waiting to be done.

This interruption of the natural flow of the data structure is what makes the

associated refinements complicated. If we could state the refinements for the

"telescoped" structure instead, and then describe the real structure as a

sequence of "pieces" of the whole structure, where each "piece" fits into a hole

in the next, it might be simpler.

This is sort of analogous to the way a stack-machine based operational semantics

can be stated in terms of a list of continuations, each fitting into the hole in

the next one, with the types (here the refinements) having to mesh in the right way.

*)

datatype ’a word = @ | $ of ’a bal list * ’a word

datatype ’a sentence = @@ | $$ of ’a word * ’a sentence

type ’a stack = ’a sentence

(*[ datasort ’a zero = nil

datasort ’a one = :: of ’a * ’a zero

datasort ’a two = :: of ’a * ’a one

datasort ’a nonempty_w = $ of ’a bal list * ’a word

datasort ’a nonempty_s = $$ of ’a word * ’a sentence

datasort ’a ones_w = @ | $ of ’a bal one * ’a ones_w

datasort ’a zero_ones_w = $ of ’a bal zero * ’a ones_w

datasort ’a two_ones_w = $ of ’a bal two * ’a ones_w

datasort ’a two_s = @@ | $$ of ’a two_ones_w * ’a zero_s

and ’a zero_s = $$ of ’a zero_ones_w * ’a two_s

datasort ’a valid = $$ of ’a ones_w * ’a two_s

datasort ’a nonempty = $$ of ’a nonempty_w * ’a two_s

| $$ of ’a ones_w * ’a nonempty_s

]*)

Figure 9.10: Datatype and datasort declarations for purely functional stacks
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(*[ two_to_zero <: ’a two_s -> ’a zero_s ]*)

fun two_to_zero @@ = ([] $ @) $$ @@

| two_to_zero (([x,y] $ [z] $ wd) $$ sn) =

([] $ @) $$ ([Pair(x,y),z] $ wd) $$ sn

| two_to_zero (([x,y] $ @) $$ ([] $ wd) $$ sn) =

([] $ [Pair(x,y)] $ wd) $$ sn

(*[ push <: ’a * ’a valid -> (’a valid & ’a nonempty) ]*)

fun push (x, @ $$ sn) =

let val ([] $ wd) $$ sn = two_to_zero sn

in ([Leaf(x)] $ wd) $$ sn end

| push (x, ([y] $ wd) $$ sn) =

let val sn = two_to_zero sn

in @ $$ ([Leaf(x),y] $ wd) $$ sn end

(* These cannot be validated without index refinements

to keep track of the depths of the balanced trees within

the structure. *)

fun unleaf (Leaf(x)) = x

| unleaf _ = raise Match

fun unpair (Pair(x,y)) = (x,y)

| unpair _ = raise Match

(*[ zero_to_two <: ’a zero_s -> ’a two_s ]*)

fun zero_to_two (([] $ @) $$ @@) = @@

| zero_to_two (([] $ @) $$ ([xy,z] $ wd) $$ sn) =

let val (x,y) = unpair xy

in ([x,y] $ [z] $ wd) $$ sn end

| zero_to_two (([] $ [xy] $ wd) $$ sn) =

let val (x,y) = unpair xy

in ([x,y] $ @) $$ ([] $ wd) $$ sn end

(*[ pop <: (’a valid & ’a nonempty) -> ’a * ’a valid ]*)

fun pop (([xx] $ wd) $$ sn) =

let val x = unleaf xx

val sn = zero_to_two (([] $ wd) $$ sn)

in (x, @ $$ sn) end

| pop (@ $$ ([xx,y] $ wd) $$ sn) =

let val x = unleaf xx

val sn = zero_to_two sn

in (x, ([y] $ wd) $$ sn) end

Figure 9.11: Stack operations for purely functional lists
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Chapter 10

Conclusion

We have demonstrated that sort checking using a bidirectional approach is practical for real
programs, and that it allows the specification of many common properties in a natural way.
We have done this by building a sort checker for Standard ML based on this approach, which
we hope will be of use to programmers, and should at least allow significant experience to
be gained with the features of our design in the context of real programming. Notable such
features include subtyping, intersection types, a new form of value restriction on polymorphism,
recursively defined refinements of datatypes, and bidirectional checking itself.

Our experiments so far have already suggested improvements to our design, but much of
the future direction of this work depends on further practical experience with programming
with sorts using our implementation. Potential future work has been outlined as appropriate in
the preceding chapters. Notable such work includes considering a more principled approach to
parametric polymorphism, along and the lines of that outlined in Section 7.5. We also plan to
conduct further experiments, and to use the sort checker in all future projects involving SML
programming in order to gain more experience with sort checking in practice.
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