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Abstract

We present CLL, a concurrent programming language that symmetrically integrates functional and concur-
rent logic programming. First, a core functional language is obtained from a proof-term assignment to a
variant of intuitionistic linear logic, called FOMLL, via the Curry-Howard isomorphism. Next, we intro-
duce a Chemical Abstract Machine (CHAM) whose molecules are typed terms of this functional language.
Rewrite rules for this CHAM are derived by augmenting proof-search rules for FOMLL with proof-terms.
We show that this CHAM is a powerful concurrent language and that the linear connectives ⊗, ∃, ⊕, (

and & correspond to process-calculi connectives for parallel composition, name restriction, internal choice,
input prefixing and external choice respectively. We also demonstrate that communication and synchro-
nization between CHAM terms can be performed through proof-search on the types of terms. Finally, we
embed this CHAM as a construct in our functional language to allow interleaving functional and concurrent
computation in CLL.
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1 Introduction

There are several ways to design a typed concurrent programming language. We may start from a syntax and
operational semantics for the terms of the language and add types in order to guarantee certain properties of
typed terms. Such properties include but are not limited to type-safety, deadlock freedom and several secu-
rity properties. Examples of such languages are typed variants of the π-calculus [20, 21, 22], join-calculus
[16], CML [31] and Concurrent Haskell [28]. A completely different approach is to begin from a logic and
lift it to a type system for a programming language using the Curry-Howard isomorphism. Proof-terms that
are witnesses for proofs in the logic become the terms of the programming language and proof normaliza-
tion corresponds to the operational semantics. This approach has been successfully applied to the design of
functional programming languages. When we come to the concurrent paradigm where we allow creation of
processes executing in parallel and communicating with each other through one of several mechanisms like
shared memory, message queues or synchronization constructs like semaphores, monitors and events, at-
tempts to design languages using the Curry-Howard isomorphism have mostly been theoretical. Most work
[1, 2] in this direction is restricted to classical linear logic [18] and away from practice.1

A completely different meeting point for logic and concurrent programming is concurrent logic program-
ming [34]. In this approach, one uses parallelism inherent in proof-search to design a logic programming
language which simulates concurrent process behavior. As is usual with all logic programming, only pred-
icates and logical propositions play a part in programming and proof-terms are not used. Examples of
languages of this kind are Concurrent Prolog[33] and FCP[23].

In this report, we use both the Curry-Howard isomorphism and proof-search to design a concurrent program-
ming language from logical principles. We call this language CLL (Concurrent Linear Language). Our un-
derlying logic is a first-order intuitionistic linear logic where all right synchronous connectives (⊗,⊕, 1,∃)
are restricted to a monad. We refer to this logic as FOMLL (First-Order Monadic Linear Logic). Using
linear logic to build the type system for a concurrent language seems a natural choice since processes are
linear entities. Ever since Girard’s first work on linear logic [18], deep connections between linear logic
and concurrency have been suggested. For example, Abramsky develops a concurrent computational inter-
pretation of classical linear logic in [1]. FOMLL differs from the logic used by Abramsky in two essential
ways. First, it is intuitionistic. Second, it is equipped with a monad. We use a monad in FOMLL because
concurrent computations have effects like deadlocks and the monad separates pure functional terms from ef-
fectful concurrent computations, enabling us to prove a type-safety theorem. This use of monads goes back
to Moggi’s work [26] and similar uses of monads in concurrent languages like CML, Concurrent Haskell
and Facile [31, 28, 17]. FOMLL has also been used in the Concurrent Logical Framework [35] which has
been used to represent several concurrent languages [12].

We design CLL in three steps. First, we construct a purely functional language (called f CLL for functional
CLL) by adding proof-terms to FOMLL. f CLL admits basic linear functional constructs like abstraction,
linear pairing, disjunctions, replication and recursive types, recursion and first-order dependent types. It
also allows parallelism - parts of programs may be evaluated in parallel. However, there is no primitive
for communication between parallel processes. In the second step, we embed f CLL in a concurrent logic
programming language called lCLL (logic programming CLL). The semantics of this logic programming

1Abramsky’s work [1] mentions some computational interpretations of intuitionistic linear logic also. However, these are
sequential, not concurrent, interpretations and are not of much interest in the context of this report.

3



language are presented as a Chemical Abstract Machine (CHAM) [4, 5, 7]. Molecules in lCLL CHAM con-
figurations are terms of f CLL annotated with their types. Rewrite rules for these CHAM configurations are
derived from proof-search rules for FOMLL. lCLL differs from other logic programming languages in two
respects. First, we use the forward style of proof-search, not the traditional backward style. Second, proof-
terms obtained during proof-search play a computational role in lCLL, which is not the case with other logic
programming languages. lCLL is a powerful concurrent language that can encode all basic concurrency
constructs like input and output processes, parallel composition for processes, choices, communication and
even n-way synchronization. In the third step, we embed lCLL back in f CLL as a language construct. This
makes functional and concurrent logic programming symmetric in the language. Since lCLL configurations
produce side effects like deadlocks, we restrict all CHAM configurations to the monad in f CLL. The resul-
tant language is called full-CLL. We sometimes drop the prefix ‘full’ if it is clear from context.

An implementation of full-CLL in the Concurrent Logical Framework is available from the author’s home-
page at http://www.cs.cmu.edu/˜dg.

The contributions of this work are as follows. First, we show that proof-search in logic has an interest-
ing computational interpretation - it can be viewed as a procedure to link together programs to form larger
programs, which can then be executed. Working with FOMLL, we also show how proof-search can be ex-
ploited to add concurrency constructs to a programming language. Second, we demonstrate how functional
and logic programming can be symmetrically integrated in a single framework that allows interleaving func-
tional computation and proof-search. Third, we establish that functional and concurrent programming can
be integrated symmetrically in a typed setting. In particular, we describe a method that allows concurrent
computations inside functional programs to return non-trivial results, which can be used for further func-
tional evaluation. Finally, we show that there is a correspondence between various concurrent constructs
like parallel composition, name restriction, choices etc. and connectives of linear logic like ⊗, ∃ and &.

Organization of the report. In section 2 we present the syntax, types and semantics of f CLL. We prove
a type-safety result for this language and illustrate the expressiveness of our parallel construct with some
examples. In section 3 we build the concurrent logic programming lCLL and prove a type-preservation
result for it. lCLL is integrated with f CLL as a monadic construct to obtain full-CLL in section 4. We prove
a type-safety theorem for the whole language. A number of examples to illustrate the constructs in full-CLL
are presented in section 5. Section 6 discusses related work and concludes the report.

2 fCLL: Functional Programming in CLL

Syntax. As mentioned in the introduction, f CLL is the functional core of CLL. It is designed from an
underlying logic (FOMLL), which under the Curry-Howard isomorphism corresponds to the type system.
Hence the syntax of types is presented first. We assume a number of sorts, which are finite or infinite sets of
index refinements (index terms are denoted by t). Index variables are denoted by i. See [36] for a detailed
description of index refinements. Sort names are denoted by γ and its variants. Atomic type constructors
denoted by P and its decorated variants have kinds which are given by the grammar:

K ::= Type

| γ → K

We assume the existence of at least one infinite sort, namely the sort of channel names. This sort is called
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chan. Channels are denoted by the letter k and its decorated variants. We assume the existence of some
implicit signature that gives the kinds of all atomic type constructors.

Types in CLL are derived from a variant of first-order intuitionistic linear logic [35, 13, 19] called FOMLL.
We classify types into two categories based on the top level type constructor. If the top level constructor is
atomic, &, →, ( or ∀, we call the type asynchronous following Andreoli[3]. In a sequent style presentation
of linear logic, the right rules for asynchronous constructors are invertible, whereas their left rules are not.
If the top constructor is !, ⊗, 1, ⊕, ∃ or µ, we call the type synchronous. In sharp contrast to asynchronous
connectives, right rules for synchronous connectives are not invertible, whereas their left rules are. All
synchronous types are restricted to a monad, whose constructor is denoted by {. . .}. Types are generated by
the following grammar:

A,B ::= (Asynchronous types)
P t1 . . . tn (Atomic types)

| A&B (With or additive conjunction)
| A→ B (Unrestricted implication)
| A ( B (Linear implication)
| {S} (Monadic type)
| ∀i : γ.A (Universal quantification)

S ::= (Synchronous or monadic types)
A (Base synchronous types)

| S1 ⊗ S2 (Tensor or multiplicative conjunction)
| 1 (Unit of tensor)
| S1 ⊕ S2 (Additive disjunction)
| !A (Replication or exponential)
| µα.S (Iso-recursive type)
| ∃i : γ.S (Existential quantification)
| α (Recursive type variable)

For proof-terms, we distinguish three classes of terms. “Pure” terms, sometimes simply called terms, de-
noted by N , represent proofs of asynchronous types. Proofs of synchronous types are represented by two
classes of syntax: monadic terms, denoted by M and expressions denoted by E. In general, monadic terms
are constructive; they correspond to introduction rules of synchronous connectives. Expressions correspond
to elimination terms and are the site of all parallelism in f CLL, as discussed later. The whole monad is
presented in a judgmental style [29]. The syntax of terms and expressions in the language is given below.
We assume the existence of three disjoint and infinite sets of variables - term variables denoted by x, y, . . .,
recursion variables denoted by u, v, . . . and “choice” variables denoted by ζ, ς, . . .

Terms, N ::= x | 〈N1, N2〉 | π1N | π2N | λx.N | λ̂x.N | N1 N2 | N1 ˆN2 | {E}
| Λi : γ.N | N [t]

Monadic terms, M ::= N |M1 ⊗M2 | 1 | inlM | inrM | !N
| fold(M) | u | µu.M | [t,M ] |M1|ζM2

Expressions, E ::= M | let {p} = N in E | E1|ζE2

patterns, p ::= x | 1 | p1 ⊗ p2 | p1|ζp2 | !x | [i, p] | fold(p)

For elimination of the synchronous connectives, ⊗,⊕, 1,∃ and µ, we use let constructions similar to [10]. As
opposed to usual elimination rules, which correspond to natural deduction style eliminations, the use of lets
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gives rise to rules corresponding to left sequent rules of the sequent calculus. Choice variables {ζ, ς, . . .}
are used to distinguish case branches for eliminating the connective ⊕. For a detailed description of this
treatment see [10]. For clarity, we sometimes annotate bound variables and fold constructs with their types.

Type System. We use four contexts in our typing judgments: Σ (index variable context), Γ (unrestricted
context), ∆ (linear context) and Ψ (recursion context). The grammars generating these contexts are:

Σ ::= · | Σ, i : γ
Γ ::= · | Γ, x : A
∆ ::= · | ∆, p : S if p⇒ S
Ψ ::= · | Ψ, u : S

The judgment p ⇒ S, read as “p matches S” is described in figure 1. Subsequently, it is assumed that
whenever p : S occurs in a context, p ⇒ S. Given a context, the variables it defines are called its defined
variables, dv. Related concepts are defined linear variables, dlv and defined index variables, div. These
are precisely described in figure 2. Given a context Σ;Γ;∆;Ψ, we assume that the sets dv(Γ), dv(∆),
dv(Ψ), div(Σ) and div(∆) are all pairwise disjoint. We use four typing judgments in our type system:

Σ;Γ;∆;Ψ ` N : A

Σ;Γ;∆;Ψ ` M # S

Σ;Γ;∆;Ψ ` E ÷ S

Σ ` t : γ

The last judgment is external to the language and we do not specify how we check the well-sortedness of
refinement terms. We simply assume the following properties of this judgment:

1. Substitution: If Σ ` t : γ and Σ, i : γ ` t′ : γ′, then Σ ` t′ [t/i] : γ′.

2. Weakening: If Σ ` t : γ, then Σ, i : γ ` t : γ.

3. Strengthening: If Σ, i : γ ` t : γ and i 6∈ t, then Σ ` t : γ.

The other three typing judgments assume that all types in Γ,∆ and Ψ are well-formed with respect to the
refinement term context Σ. The type P t1 . . . tn is well formed in Σ if Kind(P ) = γ1 . . . γn → Type and
Σ ` ti : γi for i = 1 . . . n. The well formedness of other types is obtained by lifting this relation in the
standard way. The typing rules for f CLL are given in figures 3, 4, 5 and 6. It may be observed here that
there is no ⊕− L rule for terms similar to the rules ⊕− LM and ⊕− LE (see figure 6) because we do not
allow choice branches in pure terms. This is done because we found that in practice choice branches in pure
terms are never needed.

Operational Semantics. We use call-by-value semantics for f CLL. However, certain constructs have to be
evaluated lazily due to linearity constraints and the presence of a monad. For example, pairs at the level
of terms have to be lazy because the two components of a pair share the same linear resources and only
the component that will be used in the remaining computation should be evaluated. Thus evaluation of
the components of a pair is postponed till one of the components is projected. The monad is also a lazy
construct because it encloses expressions, whose evaluation can have side effects. We do not evaluate the
body of a functional abstraction (λx.N , λ̂x.N and Λi.N ), since evaluation is restricted to closed terms,
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x⇒ A !x⇒!A

1 ⇒ 1
p⇒ S

[i1, p] ⇒ ∃i2 : γ.S

p1 ⇒ S1 p2 ⇒ S2

p1 ⊗ p2 ⇒ S1 ⊗ S2

p⇒ S(µα.S(α))

fold(p) ⇒ µα.S(α)

p1 ⇒ S1 p2 ⇒ S2

p1|ζp2 ⇒ S1 ⊕ S2

Figure 1: p⇒ S

dv(x) = {x} dv(!x) = {x}
dv(p1 ⊗ p2) = dv(p1) ∪ dv(p2) dv(1) = φ
dv(p1|ζp2) = {ζ} ∪ dv(p1) ∪ dv(p2) dv([i, p]) = dv(p)
dv(fold(p)) = dv(p)

dv(·) = φ dv(Γ, x : A) = dv(Γ) ∪ {x}
dv(∆, p : S) = dv(∆) ∪ dv(p) dv(Ψ, u : S) = dv(Ψ) ∪ {u}
dv(Σ) = φ

dlv(x) = {x} dlv(!x) = φ
dlv(p1 ⊗ p2) = dlv(p1) ∪ dlv(p2) dlv(1) = φ
dlv(p1|ζp2) = dlv(p1) ∪ dlv(p2) dlv([i, p]) = dlv(p)
dlv(fold(p)) = dlv(p)

dlv(·) = φ dlv(∆, p : S) = dlv(∆) ∪ dlv(p)
dlv(Γ) = φ dlv(Ψ) = φ
dlv(Σ) = φ

div(x) = φ div(!x) = φ
div(p1 ⊗ p2) = div(p1) ∪ div(p2) div(1) = φ
div(p1|ζp2) = div(p1) ∪ div(p2) div([i, p]) = {i}
div(fold(p)) = div(p)

div(·) = φ div(∆, p : S) = div(∆) ∪ div(p)
div(Γ) = φ div(Ψ) = φ
div(Ψ) = φ div(Σ) = dom(Σ)

Figure 2: Defined variables of patterns and contexts
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Hyp1

Σ;Γ;x : A; Ψ ` x : A
Hyp2

Σ;Γ, x : A; ·; Ψ ` x : A

Σ;Γ;∆;Ψ ` N1 : A1 Σ;Γ;∆;Ψ ` N2 : A2
&-I

Σ;Γ;∆;Ψ ` 〈N1, N2〉 : A1&A2

Σ;Γ;∆;Ψ ` N : A1&A2
&-E1

Σ;Γ;∆;Ψ ` π1N : A1

Σ;Γ;∆;Ψ ` N : A1&A2
&-E2

Σ;Γ;∆;Ψ ` π2N : A2

Σ;Γ, x : A;∆;Ψ ` N : B
→-I

Σ;Γ;∆;Ψ ` λx.N : A→ B

Σ;Γ;∆, x : A; Ψ ` N : B
(-I

Σ;Γ;∆;Ψ ` λ̂x.N : A ( B

Σ;Γ;∆;Ψ ` N1 : A→ B Σ;Γ; ·; Ψ ` N2 : A
→-E

Σ;Γ;∆;Ψ ` N1 N2 : B

Σ;Γ;∆1; Ψ ` N1 : A ( B Σ;Γ;∆2; Ψ ` N2 : A
(-E

Σ;Γ;∆1,∆2; Ψ ` N1 ˆN2 : B

Σ;Γ;∆;Ψ ` E ÷ S
{}-I

Σ;Γ;∆;Ψ ` {E} : {S}

Σ, i : γ; Γ;∆;Ψ ` N : A
∀-I

Σ;Γ;∆;Ψ ` Λi : γ.N : ∀i : γ.A

Σ;Γ;∆;Ψ ` N : ∀i : γ.A(i) Σ ` t : γ
∀-E

Σ;Γ;∆;Ψ ` N [t] : A(t)

Figure 3: Type system for Terms
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Σ;Γ;∆;Ψ ` N : A
: #

Σ;Γ;∆;Ψ ` N # A

Hyp3

Σ;Γ; ·; Ψ, u : S ` u # S
1-R

Σ;Γ; ·; Ψ ` 1 # 1

Σ; Γ;∆1; Ψ ` M1 # S1 Σ;Γ;∆2; Ψ ` M2 # S2
⊗-R

Σ;Γ;∆1,∆2; Ψ ` M1 ⊗M2 # S1 ⊗ S2

Σ;Γ;∆;Ψ ` M # S1
⊕-R1

Σ;Γ;∆;Ψ ` inlM # S1 ⊕ S2

Σ;Γ;∆;Ψ ` M # S2
⊕-R2

Σ;Γ;∆;Ψ ` inrM # S1 ⊕ S2

Σ;Γ; ·; Ψ ` N : A
!-R

Σ;Γ; ·; Ψ ` !N # !A

S = µα.S′(α) Σ; Γ;∆;Ψ ` M # S ′(S)
fold-R

Σ;Γ;∆;Ψ ` fold(M) # S

Σ;Γ; ·; Ψ, u : S ` M # S
rec

Σ;Γ; ·; Ψ ` µu.M # S

Σ;Γ;∆;Ψ ` M # S(t) Σ ` t : γ
∃-R

Σ;Γ;∆;Ψ ` [t,M ] # ∃i : γ.S(i)

Figure 4: Type system for Monadic Terms

Σ;Γ;∆;Ψ ` M # S
# ÷

Σ;Γ;∆;Ψ ` M ÷ S

Σ;Γ;∆1; Ψ ` N : {S} Σ;Γ;∆2, p : S; Ψ ` E ÷ S ′

{}-E

Σ;Γ;∆1,∆2; Ψ ` let {p} = N in E ÷ S ′

Figure 5: Type system for Expressions
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T % Z ::= N : A |M # S | E ÷ S

Σ;Γ, x : A;∆;Ψ ` T % Z
!-L

Σ;Γ;∆, !x :!A; Ψ ` T % Z

Σ;Γ;∆, p1 : S1, p2 : S2; Ψ ` T % Z
⊗-L

Σ;Γ;∆, p1 ⊗ p2 : S1 ⊗ S2; Ψ ` T % Z

Σ;Γ;∆;Ψ ` T % Z
1-L

Σ;Γ;∆, 1 : 1;Ψ ` T % Z

Σ;Γ;∆, p : S(µα.S(α));Ψ ` T % Z
fold-L

Σ;Γ;∆, fold(p) : µα.S(α);Ψ ` T % Z

Σ, i : γ; Γ;∆, p : S; Ψ ` T % Z
∃-L (i 6∈ Σ, Γ, ∆, p, Ψ, Z)

Σ;Γ;∆, [i, p] : ∃i : γ.S; Ψ ` T % Z

Σ;Γ;∆, p1 : S1; Ψ ` M1 # S Σ;Γ;∆, p2 : S2; Ψ ` M2 # S
⊕-LM

Σ;Γ;∆, p1|ζp2 : S1 ⊕ S2; Ψ ` M1|ζM2 # S

Σ;Γ;∆, p1 : S1; Ψ ` E1 ÷ S Σ;Γ;∆, p2 : S2; Ψ ` E2 ÷ S
⊕-LE

Σ;Γ;∆, p1|ζp2 : S1 ⊕ S2; Ψ ` E1|ζE2 ÷ S

Figure 6: Type system : Left rules for patterns

monadic terms and expressions only. We call a term, monadic term or expression closed if it has no free
variables. Apart from these restrictions, all other constructs in f CLL (⊗, inl, inr, !, fold and existentials)
are evaluated eagerly. Values for f CLL are described below:

Term values, V ::= λx.N | λ̂x.N | {E} | 〈N1, N2〉 | Λi.N
Monadic values, Mv ::= V |Mv1

⊗Mv2
| 1 | inlMv | inrMv | !V | foldMv | [t,Mv]

There are no values at the expression level, because expressions evaluate to monadic values. We define two
operations on terms, monadic terms and expressions of f CLL: leftζ and rightζ , which are the left and
right case branches for the choice variable ζ , respectively. Figure 7 defines some of the interesting cases
of these operations. The definitions for the remaining syntactic constructors are obtained by lifting these
definitions homomorphically. Thus leftζ(x) = x, leftζ(λx.N) = λx.leftζ(N), leftζ(N1 N2) =
leftζ(N1) leftζ(N2), leftζ(M1 ⊗M2) = leftζ(M1)⊗ leftζ(M2), leftζ({E}) = {leftζ(E)}, etc.
The result of substituting a monadic value Mv for a pattern p of the corresponding “shape” in a program T
(subst(M/p, T )) is given in figure 8. This substitution is defined by induction on the structure of the pat-
tern p. The base substitutions [V/x] and [t/i] are the usual capture avoiding substitutions for free variables
and free index variables respectively.

The call-by-value evaluation rules for f CLL are given in figures 9, 10 and 11. We use three reduction
judgments - N → N ′, M 7→ M ′ and E ↪→ E′. The rules are standard. We allow reductions of M1

and M2 to interleave when we reduce M1 ⊗M2. Thus the two components of a tensor may be evaluated
in parallel. For reasons mentioned earlier, pairs and the monad at the term level are evaluated lazily. The
reduction rules for abstractions and applications are standard call-by-value.
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leftζ(M1|ζM2) = M1 leftζ(M1|εM2) = leftζ(M1)|εleftζ(M2) ε 6= ζ
leftζ(E1|ζE2) = E1 leftζ(E1|εE2) = leftζ(E1)|εleftζ(E2) ε 6= ζ

leftζ(let {p} = N in E) = (let {p} = leftζ(N) in leftζ(E)) (ζ 6∈ dv(p))

rightζ(M1|ζM2) = M2 rightζ(M1|εM2) = rightζ(M1)|εrightζ(M2) ε 6= ζ

rightζ(E1|ζE2) = E2 rightζ(E1|εE2) = rightζ(E1)|εrightζ(E2) ε 6= ζ

rightζ(let {p} = N in E) = (let {p} = rightζ(N) in rightζ(E)) (ζ 6∈ dv(p))

Figure 7: Choice projections for f CLL

T ::= N |M | E

subst(1/1, T ) = T subst(V/x, T ) = T [V/x]
subst(!V/!x, T ) = subst(V/x, T ) subst([t,Mv ]/[i, p], T ) = subst(Mv/p, T [t/i])

subst(inlMv/(p1|ζp2), T ) = subst(Mv/p1, leftζ(T ))

subst(inrMv/(p1|ζp2), T ) = subst(Mv/p2, rightζ(T ))

subst(Mv1
⊗Mv2

/p1 ⊗ p2, T ) = subst(Mv2
/p2, subst(Mv1

/p1, T ))

subst(fold(Mv)/fold(p), T ) = subst(Mv/p, T )

Figure 8: Substitution of monadic values for patterns
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N → N ′
→ π1

π1 N → π1N
′

N → N ′
→ π2

π2 N → π2N
′

→ 〈〉π1

π1 〈N1, N2〉 → N1

→ 〈〉π2

π2 〈N1, N2〉 → N2

N1 → N ′
1

→ APP1

N1 N2 → N ′
1 N2

N2 → N ′
2

→ APP2

V N2 → V N ′
2

→ λAPP

(λx.N) V → N [V/x]

N1 → N ′
1

→ LAPP1

N1 ˆN2 → N ′
1 ˆN2

N2 → N ′
2

→ LAPP2

V ˆN2 → V ˆN ′
2

→ λ̂LAPP

(λ̂x.N)ˆV → N [V/x]

N → N ′
→ ∀

N [t] → N ′ [t]
→ ΛAPP

(Λi : γ.N) [t] → N [t/i]

Figure 9: Reduction for terms, N → N ′

N → N ′
→7→

N 7→ N ′
N → N ′

7→!

!N 7→ !N ′

M1 7→ M ′
1

7→ ⊗1

M1 ⊗M2 7→ M ′
1 ⊗M2

M2 7→ M ′
2

7→ ⊗2

M1 ⊗M2 7→ M1 ⊗M ′
2

M 7→ M ′
7→ ⊕1

inlM 7→ inlM ′
M 7→ M ′

7→ ⊕2

inrM 7→ inrM ′

M 7→ M ′
7→ FOLD

foldM 7→ foldM ′

M 7→ M ′
7→ ∃

[t,M ] 7→ [t,M ′]

7→ µ

µu.M 7→ M [µu.M/u]

Figure 10: Reduction for monadic terms, M 7→ M ′

M 7→ M ′
7→↪→

M ↪→ M ′
↪→ LETRED

let {p} = {Mv} in E ↪→ subst(Mv/p,E)

N → N ′
↪→ LET1

let {p} = N in E ↪→ let {p} = N ′ in E

E ↪→ E′
↪→ LET2

let {p} = {E} in E1 ↪→ let {p} = {E ′} in E1

Figure 11: Reduction for expressions,E ↪→ E ′
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Contexts for expression evaluation:

C[ ] ::= [ ]
| let {p} = N in C[ ]
| let {p} = {C[ ]} in E

Reduction rules:

M 7→ M ′ M closed
7→↪→

C[M ] ↪→ C[M ′]

(let {p} = {Mv} in E) closed
↪→ LETRED

C[let {p} = {Mv} in E] ↪→ C[subst(Mv/p,E)]

N → N ′ N closed
↪→ LET1

C[let {p} = N in E] ↪→ C[let {p} = N ′ in E]

Figure 12: Generalized evaluation rules for expressions

2.1 Parallel Evaluation in Expressions

Consider the following expression when dv(p1) ∩ fv(N2) = φ.

E = let {p1} = N1 in

let {p2} = N2 in E
′

If E is a closed expression, then according to the rules in figure 11, it is evaluated as follows. First N1 is
evaluated to a term of the form {E1}. Then E1 is evaluated to a monadic value Mv1

of shape p1. This
monadic value is then substituted for p1 in the expression let {p2} = N2 in E′. Subsequently, N2 is
evaluated. But by the given condition N2 is a closed term. Hence subst(Mv1

/p1, N2) = N2 and therefore
there is no need to postpone the evaluation of N2 until N1 is completely evaluated. We may interleave or
parallelize the evaluation of N1 and N2, without affecting the result of the computation. This idea allows
us to generalize the evaluation rules for expressions to those shown in figure 12. The generalized rules for
evaluating expressions are presented using evaluation contexts on expressions. We obtain parallel evalua-
tion from these rules using the following heuristic - if E is a closed expression and E = C1[E1] = C2[E2]
where E1 and E2 are closed and non-overlapping sub-expressions of E, then E1 and E2 may be evaluated
in parallel.

Even though these generalized rules allow parts of expressions to evaluate in parallel, they provide no
primitive for communication between simultaneously evaluating sub-terms. In section 3, we introduce lCLL,
which is a concurrent logic programming language that allows asynchronous message passing between
parallel processes.

2.2 Type-Safety

We establish the type-safety theorem for f CLL by proving progress and preservation theorems. The progress
theorem states that a typed term is either a value or it can step further. The preservation theorem says that
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⇐= −1

Σ;Γ;∆ ⇐= Σ;Γ;∆, 1 : 1
⇐= −!

Σ;Γ, x : A;∆ ⇐= Σ;Γ;∆, !x :!A

⇐= −⊗

Σ;Γ;∆, p1 : S1, p2 : S2 ⇐= Σ;Γ;∆, p1 ⊗ p2 : S1 ⊗ S2

⇐= −∃

Σ, i : γ; Γ;∆, p : S(i) ⇐= Σ;Γ;∆, [i, p] : ∃i : γ.S(i)

⇐= −fold

Σ;Γ;∆, p : S(µα.S(α)) ⇐= Σ;Γ;∆, fold(p) : µα.S(α)

⇐= −REF

Σ;Γ;∆ ⇐= Σ;Γ;∆
Σ;Γ;∆ ⇐= Σ′; Γ′;∆′ Σ′; Γ′;∆′ ⇐= Σ′′; Γ′′;∆′′

⇐= −TRANS

Σ;Γ;∆ ⇐= Σ′′; Γ′′;∆′′

Figure 13: Context entailment, Σ; Γ; ∆ ⇐= Σ′; Γ′; ∆′

reduction of a typed term under the evaluation rules preserves its type. Together these two imply type-safety
i.e. any typed term either evaluates to a value or diverges indefinitely. In order to establish these theorems,
we need a few results.

Notation 1. We use T % Z to denote any of N : A, M # S or E ÷ S.

Definition 1 (Context Entailment). The relation Σ;Γ;∆ ⇐= Σ′; Γ′;∆′, read as Σ;Γ;∆ entails Σ′; Γ′;∆′,
is shown in figure 13.

Lemma 1 (⇐= properties).

1. If Σ;Γ;∆ ⇐= Σ′; Γ′;∆′, then Σ ⊇ Σ′ and Γ ⊇ Γ′.

2. If Σ;Γ;∆ ⇐= Σ′; Γ′;∆′, then

(a) dv(Γ) ∪ dv(∆) = dv(Γ′) ∪ dv(∆′)

(b) dlv(∆) = dlv(∆′)

(c) div(Σ) ∪ div(∆) = div(Σ′) ∪ div(∆′)

3. If D :: Σ; Γ;∆;Ψ ` T % Z and Σ;Γ;∆ ⇐= Σ′; Γ′;∆′, then D can be extended to a derivation
D′ :: Σ′; Γ′;∆′; Ψ ` T % Z using the rules ⊗− L, 1 − L, ∃ − L, ! − L and fold− L only.

4. (Weakening) If Σ;Γ;∆ ⇐= Σ′; Γ′;∆′, then

(a) Σ,Σ′′; Γ;∆ ⇐= Σ′,Σ′′; Γ′;∆′

(b) Σ;Γ,Γ′′;∆ ⇐= Σ′; Γ′,Γ′′;∆′

(c) Σ;Γ;∆,∆′′ ⇐= Σ′; Γ′;∆′,∆′′

Proof. In each case by induction on the given derivation Σ;Γ;∆ ⇐= Σ′; Γ′;∆′.

Definition 2 (Height of a derivation). The height of a derivation D, height(D) is defined to be the length
of longest path from the conclusion to any leaf.
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Lemma 2 (Weakening). If Σ;Γ;∆;Ψ ` ψ, then

1. Σ, i : γ; Γ;∆;Ψ ` ψ.

2. Σ;Γ, x : A;∆;Ψ ` ψ.

3. Σ;Γ;∆;Ψ, u : S ` ψ.

Proof. By induction on the given derivation.

Lemma 3 (Left inversion).

1. If Σ;Γ;∆, p : 1;Ψ ` ψ, then p = 1 and Σ;Γ;∆;Ψ ` ψ.

2. If Σ;Γ;∆; p :!A; Ψ ` ψ, then p =!x and Σ;Γ, x : A;∆;Ψ ` ψ.

3. If Σ;Γ;∆, p : A; Ψ ` ψ, then p = x.

4. If Σ;Γ;∆, p : S1 ⊗ S2; Ψ ` ψ, then p = p1 ⊗ p2 and Σ;Γ;∆, p1 : S1, p2 : S2; Ψ ` ψ.

5. If Σ;Γ;∆, p : ∃i : γ.S; Ψ ` ψ, then p = [i, p1] and Σ, i : γ; Γ;∆, p1 : S; Ψ ` ψ.

6. If Σ;Γ;∆, p : S1 ⊕ S2; Ψ ` ψ, then p = p1|ζp2, Σ;Γ;∆, p1 : S1; Ψ ` leftζ(ψ) and Σ;Γ;∆, p2 :
S2; Ψ ` rightζ(ψ). (leftζ(N : A) = leftζ(N) : A, etc.)

7. If Σ;Γ;∆, p : µα.S(α);Ψ ` ψ, then p = fold(p′) and Σ;Γ;∆, p′ : S(µα.S(α));Ψ ` ψ.

Proof. Each statement may be separately proved by induction on the given typing derivation.

Lemma 4 (Strong right value inversion).

1. If D :: Σ; Γ;∆;Ψ ` V : A → B then V = λx.N and there is a derivation D ′ :: Σ; Γ, x :
A;∆;Ψ ` N : B with height(D′) ≤ height(D).

2. If D :: Σ; Γ;∆;Ψ ` V : A ( B then V = λ̂x.N and there is a derivation D′ :: Σ; Γ;∆, x :
A; Ψ ` N : B with height(D′) ≤ height(D).

3. If D :: Σ; Γ;∆;Ψ ` V : A&B then V = 〈N1, N2〉 and there are derivations D1 :: Σ; Γ;∆;Ψ ` N1 :
A and D2 :: Σ; Γ;∆;Ψ ` N2 : B with height(D1) ≤ height(D) and height(D2) ≤ height(D).

4. If D :: Σ; Γ;∆;Ψ ` V : {S} then V = {E} and there is a derivation D ′ :: Σ; Γ;∆;Ψ ` E ÷ S
with height(D′) ≤ height(D).

5. If D :: Σ; Γ;∆;Ψ ` V : ∀i : γ.A(i), i 6∈ Σ then V = Λi : γ.N(i) and there is a derivation
D′ :: Σ, i : γ; Γ;∆;Ψ ` N(i) : A(i) with height(D ′) ≤ height(D).

Proof. Each statement can be proved separately by induction on the given typing derivation.

Lemma 5 (Right monadic value inversion).

1. If Σ;Γ;∆;Ψ ` Mv # A, then Mv = V and Σ;Γ;∆;Ψ ` V : A.
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2. If Σ;Γ;∆;Ψ ` Mv # !A, then Mv =!V and for some Σ′ and Γ′, Σ′; Γ′; ·; Ψ ` V : A and
Σ′; Γ′; · ⇐= Σ;Γ;∆.

3. If Σ;Γ;∆;Ψ ` Mv # S1 ⊗ S2, then Mv = Mv1
⊗Mv2

and for some Σ′,Γ′,∆′
1,∆

′
2, the following

three hold:

(a) Σ′; Γ′;∆′
1,∆

′
2 ⇐= Σ;Γ;∆

(b) Σ′; Γ′;∆′
1; Ψ ` Mv1

# S1

(c) Σ′; Γ′;∆′
2; Ψ ` Mv2

# S2

4. If Σ;Γ;∆;Ψ ` Mv # 1, then Mv = 1 and for some Σ′ and Γ′, Σ′; Γ′; · ⇐= Σ;Γ;∆.

5. If Σ;Γ;∆;Ψ ` Mv # S1 ⊕ S2, then one of the following holds

(a) Mv = inlM ′
v and Σ;Γ;∆;Ψ ` M ′

v # S1

(b) Mv = inrM ′
v and Σ;Γ;∆;Ψ ` M ′

v # S2

6. If Σ;Γ;∆;Ψ ` Mv # ∃i : γ.S(i), then Mv = [t,M ′
v] and for some Σ′, Γ′ and ∆′, the following

three hold:

(a) Σ′; Γ′;∆′ ⇐= Σ;Γ;∆

(b) Σ′ ` t : γ

(c) Σ′; Γ′;∆′; Ψ ` M ′
v # S(t)

7. If Σ;Γ;∆;Ψ ` Mv # µα.S(α), then Mv = fold(M ′
v) and Σ;Γ;∆;Ψ ` M ′

v # S(µα.S(α)).

Proof. In each case by induction on the given typing derivation.

Lemma 6 (Strong right inversion for expressions).

1. If D :: Σ; Γ;∆;Ψ ` M ÷ S, then there exists D ′ :: Σ; Γ;∆;Ψ ` M # S with height(D′) ≤
height(D).

2. If D :: Σ; Γ;∆;Ψ ` let {p} = N in E ÷ S ′, then there exist Σ′,Γ′,∆′
1,∆

′
2, S,D1,D2 such that

(a) Σ′; Γ′;∆′
1,∆

′
2 ⇐= Σ;Γ;∆

(b) D1 :: Σ′; Γ′;∆′
1; Ψ ` N : {S} and height(D1) ≤ height(D)

(c) D2 :: Σ′; Γ′;∆′
2, p : S; Ψ ` E ÷ S ′ and height(D2) ≤ height(D)

Proof. By induction on the given typing derivation.

Lemma 7 (Substitution).

1. If D :: Σ; Γ;∆;Ψ ` V : A and D′ :: Σ; Γ;∆′, x : A; Ψ ` T %Z , then Σ;Γ;∆,∆′; Ψ ` T [V/x] %Z .

2. If Σ ` t : γ and D′ :: Σ, i : γ; Γ;∆;Ψ ` T (i) %Z(i), then Σ;Γ[t/i];∆[t/i]; Ψ[t/i] ` T (t) %Z(t).

3. If D :: Σ; Γ;∆;Ψ ` Mv # S and D′ :: Σ; Γ;∆′, p : S; Ψ ` T % Z , then
Σ;Γ;∆,∆′; Ψ ` subst(Mv/p, T ) % Z .
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4. If D :: Σ; Γ; .; Ψ ` V : A and D′ :: Σ; Γ, x : A;∆′; Ψ ` T % Z , then Σ;Γ;∆′; Ψ ` T [V/x] % Z .

5. If D :: Σ; Γ; .; Ψ ` M # S and D′ :: Σ; Γ;∆′; Ψ, u : S ` T %Z , then Σ;Γ;∆′; Ψ ` T [M/u] %Z .

Proof. Statements (1), (2), (4) and (5) can be proved by induction on derivation D ′. To prove (3), we use
induction on the derivation D, lemmas 2 and 3 and statements (1) and (2).

Lemma 8 (Preservation).

1. If Σ;Γ;∆;Ψ ` N : A and N → N ′, then Σ;Γ;∆;Ψ ` N ′ : A.

2. If Σ;Γ;∆;Ψ ` M # S and M 7→ M ′, then Σ;Γ;∆;Ψ ` M ′ # S.

3. If Σ;Γ;∆;Ψ ` E ÷ S and E ↪→ E ′, then Σ;Γ;∆;Ψ ` E ′ ÷ S.

Proof. By simultaneous induction on the height of the given typing derivation, using lemmas 7, 6 and 4. For
the case of expressions, we perform a sub-induction on the evaluation context C[ ] and use lemma 6.

Lemma 9 (Progress).

1. If Σ; ·; ·; · ` N : A, then either N = V or for some N ′, N → N ′.

2. If Σ; ·; ·; · ` M # S, then either M = Mv or for some M ′, M 7→ M ′.

3. If Σ; ·; ·; · ` E ÷ S, then either E = Mv or for some E ′, E ↪→ E′.

Proof. By induction on the given typing derivation.

Theorem 1 (Type-Safety).

1. If Σ; ·; ·; · ` N : A and N →∗ N ′, then either N ′ = V or there exists N ′′ such that N ′ → N ′′.

2. If Σ; ·; ·; · ` M # S and M 7→∗ M ′, then either M ′ = Mv or there exists M ′′ such that M ′ 7→M ′′.

3. If Σ; ·; ·; · ` E ÷ S and E ↪→∗ E′, then either E ′ = Mv or there exists E ′′ such that E ′ ↪→ E′′.

Proof. By induction on the number of steps in the reduction. The statement at the base case (no reduction)
is the same as the progress lemma (lemma 9). For the induction step, we use preservation (lemma 8).

2.3 Examples

In this section we explain program construction in f CLL through a number of examples. We present these
examples in ML-like syntax. We assume that we have named and recursive functions, conditionals and
datatype constructions at the term level, which may be added to f CLL presented above in a straightforward
manner.

Divide and Conquer. Our first example is a general divide and conquer program. Let us suppose we have a
type P of problems and a type A of solutions. A general divide and conquer method assumes the following
input functions:

1. divide : P → P × P that divides a given problem into two subproblems, each of which is strictly
smaller than the original.
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2. istrivial : P → bool that decides if the input problem is at its base case.

3. solve : P → A that returns the solution to a base case problem.

4. merge : A → A → A that combines solutions of two subproblems obtained using divide into a
solution to the original problem.

In f CLL, we have no product type (which would be present in a non-linear language). So we encode
the product type as A × B = {!A ⊗ !B}. Then we have the following divide and conquer function,
divAndConquer:

divAndConquer =
λ(divide) : P → {!P⊗!P}. λ(istrivial) : P → bool.
λ(solve) : P → {!A}. λ(merge) : A→ A→ {!A}. λp : P .
if (istrivial p) then solve p
else

{
let {!p1⊗!p2} = divide p in
let {!s1} = divAndConquer divide istrivial solve merge p1 in

let {!s2} = divAndConquer divide istrivial solve merge p2 in

let {!s} = merge s1 s2 in
!s

}

The return type of divAndConquer is {!A}. Observe that in this program, the two let eliminations corre-
sponding to the two recursive calls may occur in parallel i.e. the terms divAndConquer divide istrivial
solve merge p1 and divAndConquer divide istrivial solve merge p2 can be evaluated simultaneously.
This is because the second term does not use the variable s1. Therefore the program above attains the paral-
lelism that is expected in a divide and conquer approach.

Bellman-Ford algorithm. We now present a parallel implementation of Bellman-Ford algorithm for single
source shortest paths in directed, non-negative edge-weighted graphs. Assume that a directed graph G has
n vertices, numbered 1, . . . , n. For each vertex we have a list of incoming edges called the adjacency list
of the vertex. Each element of the adjacency list is a pair, the first member of which is an integer, which
is the source vertex of the edge and the second member is a non-negative real number, which is the weight
of the edge. The whole graph is represented as a list of adjacency lists, one adjacency list for each vertex.
During the course of the algorithm, we have approximations of shortest distance from the source vertex to
each vertex. These are stored as a list of reals. The type of this list is called distlist.

type distlist = {!real} list
type adjlist = {!int⊗ !real} list
type edgelist = {!adjlist} list

The following function finds the ith element of a list l.
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val find: ′a list → int → ′a
find =

λl:′a list. λi:int.
if (i = 1) then head(l) else find(tail(l))(i− 1)

The main routine of the Bellman-Ford algorithm is a relaxation procedure that takes as input a vertex, v
(which in our case is completely represented by the adjacency list, al. The exact vertex number of the
vertex is immaterial), a presently known approximation of shortest distances to all vertices from the source
(called dl), the present known approximation of the shortest distance from the source to v and returns a new
approximation to the shortest distance from source to v.

val relax: adjlist → distlist → real → {!real}
relax =

λ(al):adjlist. λ(dl):distlist. λd:real.
case(al) of

[] => {!d}
| (a :: al) =>

{
let{!v⊗!w} = a in
let{!d′} = find dl v in
let{!d′′} = relax al dl d in

!min(d′′, d′ + w)
}

The calls find dl v and relax al dl d can be reduced in parallel in the above function. The main
loop of the Bellman-Ford algorithm is a function relaxall, that applies the function relax to all the
vertices. To make the code simpler, we assume that this function actually takes as argument two copies of
the distance list. To make the code more presentable, we drop the λ-calculus notation and use standard ML’s
fun notation.

val relaxall: edgelist → distlist → distlist → {!distlist}
fun relaxall [] [] dl = {![]}
| relaxall (al :: el)(d :: dl′)(dl) =

{
let{!al′} = al in
let{!d′} = d in
let{!d1} = relax al′ dl d′ in
let{!l} = relaxall el dl′ dl in

!({!d1} :: l)
}
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In the above function, the calls relax al′ dl d′ and relaxall el dl′ dl can be reduced in parallel.
This results in simultaneous relaxation for the whole graph.

Suppose now that our source vertex is the vertex 1. Then we can initialize the distlist to the value
[0,∞, . . . ,∞]. Using this initial value of the distlist, we iterate the function relaxall n times. The
resultant value of distlist is the list of minimum distances from the source (vertex 1) to all the other
vertices. The function BF below takes as input a graph (in the form of an edgelist) and returns the
minimum distances to all vertices from the vertex 1.

fun BF (el: edgelist) =
(* makedistlist: int → {!distlist} *)
let fun makedistlist 0 = {![]}

| makedistlist k =
{

let{!l} = makelist (k − 1)
in

!({!∞} :: l)
}

(* loop: int → distlist → {!distlist} *)
fun loop 0 dl = {!dl}
| loop k dl =

{
let{!dl′} = relaxall el dl dl
in

loop (k − 1) dl′

}

(* length: ’a list → {!int} *)
fun length [] = {!0}
| length (x :: l) =

{
let{!len} = length(l)
in

!(1 + len)
}

in
{

let{!n} = length el in
let{!l} = makedistlist (n− 1) in
let{!dl} = loop n ({!0} :: l) in

!dl
}
end
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3 lCLL: Concurrent Logic Programming in CLL

As mentioned in the introduction, an alternate paradigm used for concurrent languages is concurrent logic
programming [34]. In this paradigm, proof-search in logic simulates computation and assignment to vari-
ables as well as communication are implemented through unification. Concurrency is inherent in such a
setting because many parts of a proof can be computed or searched in parallel. We use similar ideas to
create a concurrent logic programming language that allows concurrent computation of terms. We call this
language lCLL.

lCLL differs significantly from other logic programming languages. Traditionally, logic programming uses
only logical propositions and predicates but no proof-terms. Even if proof-terms are synthesized by the
proof-search mechanism, they are merely witnesses to the proof found by the search. They play no compu-
tational role. In sharp contrast, we interpret proof-terms as programs and use the proof-search mechanism
to link programs together. This linking mechanism is directed by the types of the terms that can be viewed
as logical propositions through the Curry-Howard isomorphism. The whole idea may be viewed as an ex-
tension of the Curry-Howard isomorphism to include proof-search - in computational terms, proof-search
corresponds to linking together programs using their types. For example, if N1 : A ( B and N2 : A, then
the proof-search mechanism can link N1 and N2 together to produce the term N1 ˆN2 : B. lCLL extends
this idea to all the connectives in FOMLL, and is rich enough to express most concurrency constructs.

We present lCLL as a Chemical Abstract Machine (CHAM)[4, 5]. The molecules in lCLL CHAM configu-
rations are f CLL programs annotated by their types. The rewrite rules for these CHAM configurations are
derived by modifying the inference rules for a proof-search method for FOMLL. One question that remains
at this stage is which proof-search method we use for FOMLL and we answer this question next.

Proof-search in logic can be implemented in two different but related styles. In the backward style, search
is started from the proposition to be proved as the goal. Each possible rule (assumption of the form A→ B)
that can be used to conclude this goal is then considered and the premises of the rule applied become the
subgoals for the proof-search. This process of matching a goal against the conclusion of a rule and making
the rule’s premises the subgoals for the remaining search is called backchaining. It is continued till the set
of goals contains only axioms or no more rules apply. In the former case, the (sub) goal is provable. In
the latter case, the (sub) goal cannot be proved and the proof-search must backtrack and find other possible
rules to apply to some earlier goals in the search. There is an inherent non-determinism in this proof-search
mechanism - at any step, one may apply any of the possible rules whose conclusion matches the goal at
hand. This kind of non-determinism is called don’t-know non-determinism. Since there is a possibility of
backtracking if a bad rule is applied, search strategies are complete in the sense that proof-search will always
find a proof of a proposition that is true. Most logic programming languages like Prolog use this style of
theorem-proving.

A very different approach to proof-search is to start by assuming that the only known facts are axioms and
then apply rules to known facts to obtain more facts which are true. This can be continued till the goal to be
proved is among the facts known to be true, or no new facts can be concluded. In the former case, proof-
search succeeds whereas in the latter case it fails. The process of applying a rule to known facts to obtain
more facts in called forward chaining. In this style, search is exhaustive and does not require backtracking.
This is known as the forward or inverse style of theorem-proving. One important aspect of the forward style
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in linear logic is that the facts obtained during this method are also linear. As a result, each fact may be
used to conclude exactly one more fact and subsequently be removed from the set of known facts. This re-
introduces non-determinism in the facts we choose to conclude. It also introduces the need to backtrack if we
want completeness. However, in some applications, incompleteness is acceptable and the forward method is
implemented without backtracking. Such implementations work as follows. At any stage, the proof-search
procedure non-deterministically picks up any of the facts that it can conclude and continues. Such a proof-
search procedure is non-deterministic in a sense different from don’t-know non-determinism. The procedure
simply concludes an arbitrary selection of facts and terminates, without caring about the goal. Hence this
non-determinism is called don’t-care non-determinism. A large number of concurrent logic programming
languages use this non-determinism because it closely resembles non-deterministic synchronization between
parallel processes in process calculi. We also choose to use this method of proof-search for lCLL. In our
case, using this method is even more advantageous because we use proof-search to link programs together
and execute them. Backtracking in such a setting is counter-intuitive and computationally expensive.

Our computation strategy for lCLL CHAM configurations is as follows. Each CHAM configuration is
started with a certain number of type-annotated terms and a goal type. Once started, the configuration is
allowed to rewrite according to a specific set of non-deterministic rules, which are based on forward chaining
rules for proof-search in FOMLL. We do not backtrack. If ever the CHAM configuration reaches a state
where it has exactly one term of the goal type, computation of the lCLL CHAM configuration succeeds, else
it fails. Thus we use don’t-care non-determinism and CHAM configurations can get stuck without reaching
the goal. As a result, we do not have a progress lemma for lCLL as a whole. However, we develop a notion
of types for CHAM configurations and prove a type-preservation lemma for CHAM rewrite moves. This
preservation lemma implies a weak type-safety theorem for lCLL CHAM configurations. This theorem
states that individual f CLL terms in lCLL CHAM configurations obtained by rewriting well-typed CHAM
configurations are either values or they can reduce further. As before, we are interested in the execution of
closed terms only and we assume that terms in lCLL CHAMs do not have free variables in them. In order
to demonstrate the expressiveness of lCLL, we present a translation of an asynchronous π-calculus [6] to it.
Examples of more sophisticated programs in lCLL are described in section 5.

3.1 Introducing lCLL

We introduce constructs and rewrite rules in lCLL step by step. Informally described, our CHAM solutions
consist of f CLL terms labeled by their types. We use the notation ∆̂ for such solutions.

∆̂ ::= · | ∆̂, N : A | ∆̂,M # S | ∆̂, E ÷ S

The rewrite rules on these solutions fall into three categories. The first one, called structural rules allow
rewrite of monadic values. These rules, in general, are derived from the left rules for synchronous connec-
tives of a sequent style presentation of FOMLL. Like their logical counterparts, they are invertible. They
correspond to heat-cool rules in the CHAM terminology. However, like other well-designed CHAMs, lCLL
uses these rules in the forward (heating) direction only. We use the symbol ⇀ for structural rules oriented in
the forward direction.2 The second set of rules is functional rules that allow in-place computation of terms
using the evaluation rules for f CLL. These rules do not affect the types of terms as shown in lemma 8. They
are not invertible and correspond to administrative moves in CHAMs. We denote functional rules using the

2Traditionally, the symbol 
 is used to denote heat-cool rules in CHAMs, in order to emphasize their reversibility. We use ⇀

instead of 
 to emphasize that lCLL uses these rules in the forward direction only.
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symbol �. The final set of rules is derived from left rules for asynchronous connectives of FOMLL. These
rules are called reaction rules because of their close connection to reaction rules in CHAMs. Reaction rules
are also non-invertible. They are denoted by −→. We do not have any rules corresponding to right sequent
rules of asynchronous connectives, because from the point of view of a programming language they corre-
spond to synthesis of abstractions (functions) and additive conjunctions (choices). For example, consider
the following typing rule.

Σ;Γ;∆, x : A; Ψ ` N : B
(-I

Σ;Γ;∆;Ψ ` λ̂x.N : A ( B

If used as a rule in a proof-search, the proof-term λ̂x.N is synthesized by the proof-search mechanism.
However, from the point of view of a programming language, this proof-term is a function whose exact
behavior is not known and hence we do not use the above and similar rules in our proof-search.

3.1.1 Structural Rules for Monadic Values and Synchronous Connectives

As mentioned earlier, structural rules are derived from left rules for synchronous connectives and like their
logical counterparts, they are invertible. For practical reasons, we use them in the forward direction only.
The principal terms on which they apply are always monadic values. We systematically derive structural
rules for all synchronous connectives by looking at the corresponding typing rules.

Multiplicative Conjunction, (⊗). Consider the left rule for tensor in FOMLL:

Σ;Γ;∆, p1 : S1, p2 : S2; Ψ ` ψ
⊗-L

Σ;Γ;∆, p1 ⊗ p2 : S1 ⊗ S2; Ψ ` ψ

This rule is invertible, as proved in lemma 3. In order to derive a CHAM rewrite rule from this rule, we
substitute a monadic value Mv for p1 ⊗ p2. Since the type is S1 ⊗ S2, Mv = Mv1

⊗Mv2
. This gives us the

following structural rule:

∆̂, (Mv1
⊗Mv2

) # (S1 ⊗ S2) ⇀ ∆̂,Mv1
# S1,Mv2

# S2

Linear Unit (1). Reasoning as above, we arrive at the following rule for the unit:

∆̂, 1 # 1 ⇀ ∆̂

Additive disjunction (⊕). Consider the left rule for additive disjunction:

Σ;Γ;∆, p1 : S1; Ψ ` E1 ÷ S Σ;Γ;∆, p2 : S2; Ψ ` E2 ÷ S
⊕-LE

Σ;Γ;∆, p1|ζp2 : S1 ⊕ S2; Ψ ` E1|ζE2 ÷ S

From the invertibility of this rule it follows that whenever we can use S1 ⊕ S2 to prove some conclusion S,
we can also use either S1 or S2 to prove S. Operationally, this decision can be made using the actual term
that has type S1 ⊕ S2. If it has the form inlM1, then we use S1 and if it has the form inrM2, we use S2.
This intuition gives us the following two rewrite rules:

∆̂, inlMv # (S1 ⊕ S2) ⇀ ∆̂,Mv # S1

∆̂, inrMv # (S1 ⊕ S2) ⇀ ∆̂,Mv # S2
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Thus ⊕ acts as an internal choice operator in our language.3

Iso-recursive type (µα.S(α)). We use the following rule for iso-recursive types.

∆̂, fold(Mv) # µα.S(α) ⇀ ∆̂,Mv # S(µα.S(α))

Existential quantification (∃). The left rule for existentials is:

Σ, i : γ; Γ;∆, p : S; Ψ ` ψ
∃-L

Σ;Γ;∆, [i, p] : ∃i : γ.S; Ψ ` ψ

This rule suggests that in our rewrite system we add a context Σ of index variables and the rule below. We
use the symbol ||| to separate different kinds of contexts in CHAMs.

Σ ||| ∆̂, [t,Mv ] # ∃i : γ.S(i) ⇀ Σ, i : γ ||| ∆̂,Mv # S(i)

While attractive from a logical point of view, such a rule is not sound for a programming language. First,
Mv does not have type S(i). Instead it has the type S(t). Thus the right hand side of this rewrite rule is
“ill-formed”. Second, we have completely lost the abstracted term t, which is not good from a programming
perspective. The other alternative shown below is “type correct” but eliminates the abstraction over t, which
is contradictory to the idea of using the ∃ quantifier.

∆̂, [t,Mv ] # ∃i : γ.S(i) ⇀ ∆̂,Mv # S(t)

To correctly implement this rule, we keep the abstraction t/i in a separate context of substitutions. We
denote this context by σ̂.

σ̂ ::= · | σ̂, t/i : γ

Our correct rewrite rule is:

Σ ||| σ̂ ||| ∆̂, [t,Mv ] # ∃i : γ.S(i) ⇀ Σ, i : γ ||| σ̂, t/i : γ ||| ∆̂,Mv # S(i) (i fresh)

If we have a configuration Σ ||| σ̂ ||| ∆̂,Mv # S, then Mv has the type S[σ̂], where S[σ̂] is the result of apply-
ing the substitution σ̂ to S. Since nested existentials may be present, the i chosen at each step is fresh. An
important invariant we maintain while evaluating lCLL CHAM configurations is that terms, monadic terms
and expressions in CHAM solutions are always closed under σ̂, i.e. if T % Z ∈ ∆̂ in a CHAM configuration
Σ ||| σ̂ ||| ∆̂, then fv(T ) ∩ dom(σ̂) = φ. Thus the substitution σ̂ is meant to be applied only to types, not to
proof-terms.

Exponential (!). Consider the left rule for exponentials:

Σ;Γ, x : A;∆;Ψ ` ψ
!-L

Σ;Γ;∆, !x :!A; Ψ ` ψ

This rule suggests that we introduce a new solution Γ̂ of unrestricted values i.e. values that may be used any
number of times. Due to typing restrictions in f CLL, all such values must have asynchronous types.

Γ̂ ::= · | Γ̂, V : A

3The proof-terms inl Mv and inr Mv play an important role in the use of these rules. In linear logic without proof-terms, it is
not possible to conclude S1 and S2 from an assumption S1 ⊕ S2.
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The corresponding rewrite rule is:

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, !V # !A ⇀ Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂

Type Ascription. Once an expression evaluates to a monadic value or a monadic term of type A evaluates
to a value, we need to be able to change its type ascription in order to evaluate further. This is achieved by
the following rules.

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V # A ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V : A

Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv ÷ S ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv # S

3.1.2 Functional Rules for In-place Computation

We also need some rules to allow evaluation of terms and expressions to reduce them to values. One such
rule is the following:

N → N ′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N : A � Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N ′ : A

The type preservation lemma (lemma 8) guarantees that if N has type A, then so does N ′. The remaining
rules in this category are:

M 7→ M ′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂,M # S � Σ ||| σ̂ ||| Γ̂ ||| ∆̂,M ′ # S

E ↪→ E′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, E ÷ S � Σ ||| σ̂ ||| Γ̂ ||| ∆̂, E′ ÷ S

3.1.3 Summary of Structural and Functional Rules

We summarize all the structural and functional rules in figure 14.

3.1.4 Reaction Rules for Term Values and Asynchronous Connectives

Consider a sequent style presentation of the asynchronous connectives of FOMLL (&, (, →, ∀). The left
or elimination rules for such a presentation are given in figure 15. Using these rules, we can derive one
possible set of CHAM reaction rules for lCLL, as given below. These logic rules are not invertible and the
corresponding CHAM rules are irreversible. As we shall see, these rules are too general to be useful for
concurrent programming, and we will replace them with a different set of rules later.

Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂ −→ Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂, V : A

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, 〈N1, N2〉 : A1&A2 −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N1 : A1

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, 〈N1, N2〉 : A1&A2 −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N2 : A2

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, {E} : {S} −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, E ÷ S

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V1 : A ( B, V2 : A −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V1 ˆV2 : B

Σ ||| σ̂ ||| Γ̂, V2 : A ||| ∆̂, V1 : A→ B −→ Σ ||| σ̂ ||| Γ̂, V2 : A ||| ∆̂, V1 V2 : B

Σ ` t : γ

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N : ∀i : γ.A(i) −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N [t] : A(t)
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CHAM solutions

∆̂ ::= · | ∆̂, N : A | ∆̂,M # S | ∆̂, E ÷ S

Γ̂ ::= · | Γ̂, V : A
σ̂ ::= · | σ̂, t/i : γ

CHAM configurations

Σ ||| σ̂ ||| Γ̂ ||| ∆̂

Structural rules, Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ⇀ Σ ||| σ̂′ ||| Γ̂′ ||| ∆̂′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, (Mv1
⊗Mv2

) # (S1 ⊗ S2) ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv1
# S1,Mv2

# S2 (⇀ −⊗)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, 1 # 1 ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂ (⇀ −1)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, inlMv # (S1 ⊕ S2) ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv # S1 (⇀ −⊕1)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, inrMv # (S1 ⊕ S2) ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv # S2 (⇀ −⊕2)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, fold(Mv) # µα.S(α) ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv # S(µα.S(α)) (⇀ −µ)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, [t,Mv ] # ∃i : γ.S(i) ⇀ Σ, i : γ ||| σ̂, t/i : γ ||| Γ̂ ||| ∆̂,Mv # S(i) (⇀ −∃)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, !V # !A ⇀ Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂ (⇀ −!)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V # A ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V : A (⇀ − # :)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv ÷ S ⇀ Σ ||| σ̂ ||| Γ̂ ||| ∆̂,Mv # S (⇀ − ÷ # )

Functional rules, Σ ||| σ̂ ||| Γ̂ ||| ∆̂ � Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂′

N → N ′
� − →

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N : A � Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N ′ : A

M 7→ M ′
� − 7→

Σ ||| σ̂ ||| Γ̂ ||| ∆̂,M # S � Σ ||| σ̂ ||| Γ̂ ||| ∆̂,M ′ # S

E ↪→ E′
� − ↪→

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, E ÷ S � Σ ||| σ̂ ||| Γ̂ ||| ∆̂, E′ ÷ S

Figure 14: Structural and Functional rules for the CHAM
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Contexts

Γ ::= · | Γ, A
∆ ::= · | ∆, A | ∆, S

ψ ::= S | A

Σ;Γ;∆ → ψ

Σ;Γ;A → A
Σ;Γ, A;∆, A → ψ

Σ;Γ, A;∆ → ψ

Σ;Γ;∆, A → ψ

Σ;Γ;∆, A&B → ψ

Σ;Γ;∆, B → ψ

Σ;Γ;∆, A&B → ψ

Σ;Γ;∆1 → A Σ;Γ;∆2, B → ψ

Σ;Γ;∆1,∆2, A ( B → ψ

Σ;Γ; · → A Σ;Γ;∆, B → ψ

Σ;Γ;∆, A→ B → ψ

Σ ` t : γ Σ;Γ;∆, A(t) → ψ

Σ;Γ;∆,∀i : γ.A(i) → ψ

Σ;Γ;∆, S → S ′

Σ;Γ;∆, {S} → S ′

Figure 15: Sequent calculus left rules for asynchronous connectives
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These simple rewrite rules, however, allow too much non-determinism to be useful in a programming lan-
guage. For example, consider the following configuration which uses an index refinement by sort γ on the
types A and B:

k : γ,m : γ ||| · ||| · ||| V1 : A(k), V2 : (∀i : γ.A(i) ( {B(i)})

We expect the reaction to go as follows:

k : γ,m : γ ||| · ||| · ||| V1 : A(k), V2 : (∀i : γ.A(i) ( {B(i)})

−→ k : γ,m : γ ||| · ||| · ||| V1 : A(k), V2 [k] : A(k) ( {B(k)}

�∗ k : γ,m : γ ||| · ||| · ||| V1 : A(k), V ′
2 : A(k) ( {B(k)}

−→ k : γ,m : γ ||| · ||| · ||| V ′
2 ˆ V1 : {B(k)}

However, there is another possible sequence of reactions that gets stuck:

k : γ,m : γ ||| · ||| · ||| V1 : A(k), V2 : (∀i : γ.A(i) ( {B(i)})

−→ k : γ,m : γ ||| · ||| · ||| V1 : A(k), V2 [m] : A(m) ( {B(m)}

�∗ k : γ,m : γ ||| · ||| · ||| V1 : A(k), V ′′
2 : A(m) ( {B(m)}

At this point the CHAM configuration cannot react further. This problem has occurred because we chose a
wrong term (m) to instantiate the universal quantifier at the first step. In order to rectify this situation, we
use chaining of reactions i.e. a “look-ahead” to see what reactions to perform. One important problem at
this stage is to decide how much look-ahead to perform. At one extreme, we have seen that performing no
look-ahead at all is not a good forward chaining strategy. The other possible extreme is to perform complete
look-ahead, i.e. to predict all reaction steps needed to reach the desired goal. Unfortunately, this problem
is undecidable. Therefore, we choose a solution which lies between the two extremes. We let each reaction
chain correspond to exactly one focusing step in a focused theorem prover for our underlying logic.

Focusing in proof-search [3] was introduced as a method of reducing the search space of proofs. Tradition-
ally, focusing is used in backwards proof-search only. However it is possible to use focusing in a forward
chaining procedure (see for example [14]). Here we will try to combine focusing and forward reasoning to
obtain reaction rules for lCLL CHAM configurations that do not have the problem mentioned above. We
will start by combining forward chaining and focusing for FOMLL without proof-terms. Later we will add
proof-terms to our rules to obtain the reaction rules for lCLL.

Focusing with forward chaining in FOMLL. In a forward chaining procedure new facts are concluded
from known facts based on some rules. At any point of time in a forward chaining procedure, a certain
set of linear facts and a certain set of unrestricted facts are known to be true. We denote these using the
conventional notation ∆ and Γ respectively.

∆ ::= · | ∆, A | ∆, S
Γ ::= · | Γ, A

Since we are working at first order, the known facts can be parametric in some indexes. We record these
indexes explicitly in a context of parameters, Σ.

Σ ::= · | Σ, i : γ
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We represent the facts known at any time using the notation Σ;Γ;∆. Now the principal judgment in a
forward chaining procedure is a rewrite judgment Σ;Γ;∆ → Σ′; Γ′;∆′, which means that given the facts
Σ;Γ;∆, we can conclude the facts Σ′; Γ′;∆′. In this judgment, Σ′, Γ′ and ∆′ are outputs. As it turns out,
since we are dealing only with asynchronous connectives here, Σ and Γ do not change in this judgment.
Thus we can write this judgment more explicitly as Σ;Γ;∆ → Σ;Γ;∆′. We have already seen some
examples of rules of this judgment(with proof-terms) earlier. We abandoned these rules because they are
ineffective for linking programs. The rules we saw earlier are reproduced below without proof-terms.

Σ;Γ;∆, A1&A2 → Σ;Γ;∆, A1

Σ;Γ;∆, A1&A2 → Σ;Γ;∆, A2

Σ;Γ;∆, A ( B,A → Σ;Γ;∆, B
Σ;Γ, A;∆, A → B → Σ;Γ, A;∆, B

Σ ` t : γ

Σ;Γ;∆,∀i : γ.A(i) → Σ;Γ;∆, A(t)

As we saw, these rules are too general in the sense that they allow too many possible computations, all of
which are not desirable. Going back to our example of the computation that got stuck, we observe that we
wanted to forward chain the two types A(k) and ∀i : γ.A(i) ( {B(i)} to conclude {B(k)}. This required
instantiation of the second type with k to obtain A(k) ( {B(k)} and then an elimination of ( to obtain
{B(k)}. However, using the rules presented above, we could also instantiate ∀i : γ.A(i) ( {B(i)} with m
instead of k and reach a deadlock. As we noticed, we need to perform a look-ahead, or a certain amount of
reasoning to decide that we have to instantiate the second type with k, not m. This kind of look-ahead can
be done using focusing. Rather than arbitrarily selecting m or k to instantiate ∀i : γ.A(i) ( {B(i)}, we
begin a focus on ∀i : γ.A(i) ( {B(i)}. Once this type is under a focus, we perform backwards reasoning
with backtracking on this type to decide what to do till we have either successfully concluded a fact, or we
have exhausted all possibilities.

We present a focused forward chaining procedure for FOMLL (without proof-terms) in two steps. In the
first step, we present some focusing rules that allow us to conclude a single fact of the form {S} from a set
of facts Σ;Γ;∆. This judgment is written Σ;Γ;∆ → {S}. In the second step, we modify some of these
rules to obtain a focusing forward chaining procedure for FOMLL. The principal judgment of this procedure
is as mentioned before - Σ;Γ;∆ → Σ;Γ;∆′.

Concluding single facts with forward chaining in FOMLL. We begin with the first step i.e. we present
focusing rules that allow us to conclude a single fact of the form {S} from a set of facts Σ;Γ;∆. This
process consumes the facts in ∆. Figures 16 and 17 show four related judgments. All rules in these figures
are used backwards. The rules in figure 16 will later be replaced by a new set of rules to obtain a focused
forward chaining procedure for FOMLL.

The principal judgment in figure 16 is Σ;Γ;∆ → {S}. We read this judgment as follows - “if we can
deduce Σ;Γ;∆ → {S} from the rules in figures 16 and 17 using backward reasoning, then in a forward
chaining procedure we can conclude the linear fact {S} from the unrestricted facts in Γ and the linear facts
in ∆”. Thus this judgment allows us to combine forward and backward reasoning. The proposition {S} is
an output of this judgment. In order to deduce Σ;Γ;∆ → {S}, we must first focus on a fact in either Γ
or ∆. This is done using one of the two rules that conclude Σ;Γ;∆ → {S}. Once we have focused on
a formula, we move to the second judgment in figure 16 - Σ;Γ;∆;A ⇒ {S}. The proposition A at the
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Contexts

Γ ::= · | Γ, A
∆ ::= · | ∆, A | ∆, S

Σ;Γ;∆ → {S} (Inputs: Σ,Γ,∆; Output: {S})

Σ;Γ;∆;A ⇒ {S}
→ −1

Σ;Γ;∆, A → {S}

Σ;Γ, A;∆;A ⇒ {S}
→ −2

Σ;Γ, A;∆ → {S}

Σ;Γ;∆;A ⇒ {S} (Inputs: Σ,Γ,∆, A; Output: {S})

⇒ −HY P

Σ;Γ; ·; {S} ⇒ {S}
Σ ` t : γ Σ;Γ;∆;A(t) ⇒ {S}

⇒ −∀

Σ;Γ;∆;∀i : γ.A(i) ⇒ {S}

Σ;Γ;∆;A1 ⇒ {S}
⇒ −&1

Σ;Γ;∆;A1&A2 ⇒ {S}

Σ;Γ;∆;A2 ⇒ {S}
⇒ −&2

Σ;Γ;∆;A1&A2 ⇒ {S}

Σ;Γ;∆1 →A P Σ;Γ;∆2;B ⇒ {S}
⇒ − (

Σ;Γ;∆1,∆2;P ( B ⇒ {S}

Σ;Γ; · →A P Σ;Γ;∆;B ⇒ {S}
⇒ − →

Σ;Γ;∆;P → B ⇒ {S}

Figure 16: Focused left rules for asynchronous connectives (Part I)
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Σ;Γ;∆ →A P (Inputs: Σ,Γ,∆, P ; Outputs: None)

Σ;Γ;∆;A ⇒A P
→A −1

Σ;Γ;∆, A →A P

Σ;Γ, A;∆;A ⇒A P
→A −2

Σ;Γ, A;∆ →A P

Σ;Γ;∆;A ⇒A P (Inputs: Σ,Γ,∆, A, P ; Outputs: None)

⇒A −HY P

Σ;Γ; ·;P ⇒A P
Σ ` t : γ Σ;Γ;∆;A(t) ⇒A P

⇒A −∀

Σ;Γ;∆;∀i : γ.A(i) ⇒A P

Σ;Γ;∆;A1 ⇒A P
⇒A −&1

Σ;Γ;∆;A1&A2 ⇒A P

Σ;Γ;∆;A2 ⇒A P
⇒A −&2

Σ;Γ;∆;A1&A2 ⇒A P

Σ;Γ;∆1 →A P ′ Σ;Γ;∆2;B ⇒A P
⇒A − (

Σ;Γ;∆1,∆2;P
′ ( B ⇒A P

Σ;Γ; · →A P ′ Σ;Γ;∆;B ⇒A P
⇒A − →

Σ;Γ;∆;P ′ → B ⇒A P

Figure 17: Focused left rules for asynchronous connectives (Part II)
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end of the three contexts is the formula in focus. {S} is an output in this judgment also. In this judgment,
we keep eliminating the top level connective of the formula in focus till we are left with a single formula
of the form {S}. This formula {S} becomes the output of the judgment. If this does not happen, we must
backtrack and find some other sequence of eliminations to apply.

In order to eliminate an implication (( or →), we have to show that the argument of the implication is prov-
able. This requires the introduction of the auxiliary judgments shown in figure 17. They are Σ;Γ;∆ →A P
and Σ;Γ;∆;A ⇒A P . The symbol A in the subscript of ⇒A and →A stands for auxiliary. These judg-
ments are exactly like those in figure 16 with three differences. First, the conclusion is an atomic propo-
sition P instead of {S}. The proposition must be atomic because as mentioned earlier, our backwards
reasoning does not use any right rules. Second, these judgments are not principal; even if we can conclude
Σ;Γ;∆ →A P , the forward chaining procedure cannot conclude P from the unrestricted facts Γ and the
linear facts ∆. The judgments of figure 17 can be used only to prove that the formula needed in the argu-
ment of an implication actually holds. Third, the conclusion of the sequent, P , is an input in the auxiliary
judgments. On the other hand, the conclusion {S} is an output in the judgments of figure 16.

There are some remarks to be made here. The principal judgment Σ;Γ;∆ → {S} always has a fact of
the type {S} in the conclusion. Thus the forward chaining procedure always concludes facts of the form
{S} when it uses focusing. Further, backward search never eliminates a monad in focus. Thus the monad is
also the constructor where backwards reasoning stops. Having such a clear demarcation of where backward
reasoning stops is essential in writing correct programs.

Forward chaining rules for FOMLL. So far we have seen how we can combine focusing with forward
chaining to successfully conclude a single fact from a number of given facts. We now come to the sec-
ond step. We use the rules in figures 16 and 17 to obtain a forward chaining procedure for FOMLL. As
mentioned earlier, the principal judgment we want to obtain is Σ;Γ;∆ → Σ;Γ;∆ ′. This judgment is
to be read as follows - “given the parametric index assumptions in Σ and the unrestricted facts Γ, we can
conclude the linear facts ∆′ from the linear facts ∆”. We already know how to conclude a single fact from
a given set of facts. Now we allow this deduction to occur in any arbitrary context. We want to say that
if Σ;Γ;∆ → {S}, then we can conclude Σ,Σ′′; Γ,Γ′′; {S},∆′′ from the facts Σ,Σ′′; Γ,Γ′′;∆,∆′′ for
arbitrary Σ′′, Γ′′ and ∆′′. We can integrate this closure under contexts directly into the backwards search
rules. To do that, we reformulate the rules of figure 16. These modified rules are shown in figure 18. A
step-by-step explanation of the transformation of rules is given below.

We begin by changing the judgment Σ;Γ;∆ → {S} to Σ;Γ;∆ → Σ;Γ;∆′. There are two rules to derive
this new judgment, both of which are shown in figure 18. This judgment is the principal forward chaining
judgment for FOMLL and the context ∆′ is an output. Next we revise the judgment Σ;Γ;∆;A ⇒ {S}. We
change this to Σ;Γ;∆;A ⇒ Σ;Γ;∆′. We do this one by one for all the rules. In the rule ⇒ −HY P (see
figure 16), we conclude {S} if we have focused on {S}. Since we are now implementing a forward chaining
rewrite judgment, we can change this to the unconditional rewrite rule Σ;Γ;∆; {S} ⇒ Σ;Γ;∆, {S}. In the
rule ⇒ −∀ (figure 16), we instantiate a universally quantified term in focus as we move from the conclusion
of the rule to the premises and the right hand side of the sequents in the second premise and conclusion is
the same. This gives us the following revised rule:

Σ ` t : γ Σ;Γ;∆;A(t) ⇒ Σ;Γ;∆′

⇒ −∀

Σ;Γ;∆;∀i : γ.A(i) ⇒ Σ;Γ;∆′
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Contexts

Γ ::= · | Γ, A
∆ ::= · | ∆, A | ∆, S

Σ;Γ;∆ → Σ;Γ;∆′ (Inputs: Σ,Γ,∆; Output: ∆′)

Σ;Γ;∆;A ⇒ Σ;Γ;∆′
→ −1

Σ;Γ;∆, A → Σ;Γ;∆′

Σ;Γ, A;∆;A ⇒ Σ;Γ;∆′
→ −2

Σ;Γ, A;∆ → Σ;Γ;∆′

Σ;Γ;∆;A ⇒ Σ;Γ;∆′ (Inputs: Σ,Γ,∆, A; Output: ∆′)

⇒ −HY P

Σ;Γ;∆; {S} ⇒ Σ;Γ;∆, {S}
Σ ` t : γ Σ;Γ;∆;A(t) ⇒ Σ;Γ;∆′

⇒ −∀

Σ;Γ;∆;∀i : γ.A(i) ⇒ Σ;Γ;∆′

Σ;Γ;∆;A1 ⇒ Σ;Γ;∆′
⇒ −&1

Σ;Γ;∆;A1&A2 ⇒ Σ;Γ;∆′

Σ;Γ;∆;A2 ⇒ Σ;Γ;∆′
⇒ −&2

Σ;Γ;∆;A1&A2 ⇒ Σ;Γ;∆′

Σ;Γ;∆1 →A P Σ;Γ;∆2;B ⇒ Σ;Γ;∆′
⇒ − (

Σ;Γ;∆1,∆2;P ( B ⇒ Σ;Γ;∆′

Σ;Γ; · →A P Σ;Γ;∆;B ⇒ Σ;Γ;∆′
⇒ − →

Σ;Γ;∆;P → B ⇒ Σ;Γ;∆′

Figure 18: Judgments → and ⇒ for forward chaining in FOMLL

The rules ⇒ −&1 and ⇒ −&2 can be modified similarly (see figure 18). For the rules ⇒ − ( and
⇒ − →, we need to replace the {S} in the right hand sides of the sequents by Σ;Γ;∆ ′. In this manner we
can revise the entire system in figure 16 and obtain the system in figure 18. The judgments →A and ⇒A in
figure 17 are auxiliary and do not change.

In summary, the rules of figures 17 and 18 are focused rewrite rules for a forward chaining procedure for
FOMLL. The principal judgment is Σ;Γ;∆ → Σ;Γ;∆′ (figure 18). It is used as follows. If using backward
reasoning we can conclude the judgment Σ;Γ;∆ → Σ;Γ;∆′, then in a forward chaining procedure for
FOMLL, we can conclude the linear facts ∆′ from the linear facts ∆, if the unrestricted context has the the
facts Γ. Further, this conclusion is parametric in the assumptions in Σ. As remarked earlier, the backward
search procedure constructs the set of facts ∆′. We now augment these rules with proof-terms to obtain
reaction rules for CHAM configurations.

Reaction rules for CHAMs. We augment the rules in figures 18 and 17 with proof-terms to obtain focused
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reaction rules for lCLL-CHAMs. These new rules are shown in figures 19 and 20. The judgments −→, =⇒,
−→A and =⇒A are obtained by adding proof-terms to the judgments →, ⇒, →A and ⇒A respectively. We
also add the context of substitutions σ̂ to all our judgments. This process is straightforward. As an illus-
tration, we explain some of the rules. In the rule =⇒ −&1, we have a focus on a formula A1&A2, whose
proof-term is N . As we reason backwards, we replace A1&A2 by A1 and its witness N by π1 N , which is a
proof of A1. In the rule =⇒ −∀, we instantiate the proof N of ∀i : γ.A(i) by a concrete index term. Since
we assumed earlier that index variables in the domain of σ̂ must not occur in terms inside configurations, we
instantiate N with t[σ̂] instead of t.4 Observe that N [t[σ̂]] has the type A(t)[σ̂] if N has the type ∀i : γ.A(i)
and t : γ. The rule −→ −{} is a new rule to eliminate the monadic constructor, as mentioned earlier. It is
instructive to compare figures 18 and 17 with figures 19 and 20 respectively.

As for the case of FOMLL, these rules are conditional rewrite rules for CHAM configurations that use
backward reasoning and focusing. The principal judgment here is Σ ||| σ̂ ||| Γ̂ ||| ∆̂ −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′. The
interpretation is the same as before - if we can conclude the judgment Σ ||| σ̂ ||| Γ̂ ||| ∆̂ −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′ using
backward reasoning, then the CHAM configuration Σ ||| σ̂ ||| Γ̂ ||| ∆̂ rewrites to the configuration Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

using a single reaction step.

The type P in the judgment Σ ||| σ̂ ||| Γ̂ ||| ∆̂ =⇒A N : P must be atomic because we do not use right rules
for asynchronous connectives in our proof-search. One consequence of this is that all arguments passed to
functions during the focusing steps have atomic types i.e. in the rules =⇒ − ( and =⇒ − →, the term N1

is forced to have an atomic type P (see figure 19). In order to pass values of other types to functions during
the linking steps, the values must be abstracted to atomic types. This requires an extension of the language
with suitable primitives like datatypes as in ML.5

This completes our discussion of rewrite rules for lCLL CHAMs. In summary, there are three types of
rewrite rules in lCLL: structural (⇀), functional (�) and reaction (−→). Structural and functional rules are
shown in figure 14. Reaction rules require some backward reasoning. They are shown in figures 19 and 20.

3.2 Programming Technique: Creating Private Names

We illustrate here how to use the existential quantifier to create fresh names. Suppose we have a constant
cγ : γ in the sort γ. Now consider a typed monadic term of the form [cγ ,M(cγ)] # ∃i : γ.S(i). If this term
is put in a solution, the only way it rewrites is using the rule ⇀ −∃:

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, [cγ ,M(cγ)] # ∃i : γ.S(i) ⇀ Σ, k : γ ||| σ̂, cγ/k : γ ||| Γ̂ ||| ∆̂,M(cγ) # S(k)

In the type S(i) on the right hand side, cγ has been abstracted by k which is a fresh name by the side
condition on this rewrite rule. In effect, we have created a fresh name k of sort γ. We can use this mechanism
to create more private names using the same name cγ for the index term again and again. Based on this idea,
we define a new language construct as follows.

priv k : γ in M # S(k) =
[cγ , M [cγ/k] ] # ∃i : γ.S(i)

4Since this rule is used backward, t is determined through unification in a practical implementation. Thus in practice this rule is
implemented as follows. We replace i with a unification variable X to obtain the type A(X). Unification on types determines the
exact index term t that substitutes X . Then we instantiate N with t[σ̂].

5Datatypes can also be implemented by introducing existential, recursive and sum types at the level of pure terms.
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Σ ||| σ̂ ||| Γ̂ ||| ∆̂ −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′ (Inputs: Σ, σ̂, Γ̂, ∆̂; Output: ∆̂′)

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| V : A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

−→ − =⇒ −1

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V : A −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂ ||| V : A =⇒ Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂′

−→ − =⇒ −2

Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂ −→ Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂′

−→ −{}

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, {E} : {S} −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, E ÷ S

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′ (Inputs: Σ, σ̂, Γ̂, ∆̂, N,A; Output: ∆̂′)

=⇒ −HY P

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : {S} =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂, N : {S}

Σ ` t : γ Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N [t[σ̂]] : A(t) =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

=⇒ −∀

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : ∀i : γ.A(i) =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| π1 N : A1 =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

=⇒ −&1

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A1&A2 =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| π2 N : A2 =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

=⇒ −&2

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A1&A2 =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

Σ ||| σ̂ ||| Γ̂ ||| ∆̂1 −→A N1 : P Σ ||| σ̂ ||| Γ̂ ||| ∆̂2 ||| N2 ˆN1 : A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

=⇒ − (

Σ ||| σ̂ ||| Γ̂ ||| ∆̂1, ∆̂2 ||| N2 : P ( A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

Σ ||| σ̂ ||| Γ̂ ||| · −→A N1 : P Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N2 N1 : A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

=⇒ − →

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N2 : P → A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

Figure 19: Reaction rules for the CHAM (Part I)
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Σ ||| σ̂ ||| Γ̂ ||| ∆̂ −→A N : P (Inputs: Σ, σ̂, Γ̂, ∆̂, P ; Output: N )

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| V : A =⇒A Σ ||| σ̂ ||| Γ̂ ||| ∆̂′

−→A − =⇒A −1

Σ ||| σ̂ ||| Γ̂ ||| ∆̂, V : A −→A N : P

Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂ ||| V : A =⇒A Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂′

−→A − =⇒A −2

Σ ||| σ̂ ||| Γ̂, V : A ||| ∆̂ −→A N : P

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N′ : A =⇒A N : P (Inputs: Σ, σ̂, Γ̂, ∆̂, N ′, A, P ; Output: N )

=⇒A −HY P

Σ ||| σ̂ ||| Γ̂ ||| · ||| N : P =⇒A N : P

Σ ` t : γ Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N ′ [t[σ̂]] : A(t) =⇒A N : P
=⇒A −∀

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N ′ : ∀i : γ.A(i) =⇒A N : P

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| π1 N
′ : A1 =⇒A N : P

=⇒A −&1

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N ′ : A1&A2 =⇒A N : P

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| π2 N
′ : A2 =⇒A N : P

=⇒A −&2

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N ′ : A1&A2 =⇒A N : P

Σ ||| σ̂ ||| Γ̂ ||| ∆̂1 −→A N1 : P Σ ||| σ̂ ||| Γ̂ ||| ∆̂2 ||| N2 ˆN1 : A =⇒A N : P ′

=⇒A − (

Σ ||| σ̂ ||| Γ̂ ||| ∆̂1, ∆̂2 ||| N2 : P ( A =⇒A N : P ′

Σ ||| σ̂ ||| Γ̂ ||| · −→A N1 : P Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N2 N1 : A =⇒A N : P ′

=⇒A − →

Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N2 : P → A =⇒A N : P ′

Figure 20: Reaction rules for the CHAM (Part II)
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Syntax

A ::= x̄〈y1 . . . yn〉 | x(y1 . . . yn).P (Actions)
C ::= A | C + C (External Choice)
P ::= C | P |P | νx.P | 0 (Processes)

CHAM solutions

m ::= P | νx.S (Molecules)
S ::= φ | S ] {m} (Solutions)

Equations on terms and solutions

C1 + (C2 + C3) = (C1 + C2) + C3

C1 + C2 = C2 + C1

νx.P = νy.P [y/x] y 6∈ P
νx.S = νy.S[y/x] y 6∈ S

CHAM semantics

x(y1 . . . yn).P + C1 , x̄z1 . . . zn + C2 → P [z1/y1] . . . [zn/yn]
νx.P ⇀ νx.{P}

νx.S, P ⇀ νx.(S ] {P})
P1|P2 ⇀ P1, P2

0 ⇀

Figure 21: The π-calculus: syntax and semantics

The typing rule for this construct is

Σ, k : γ; Γ;∆;Ψ ` M # S(k)
priv

Σ;Γ;∆;Ψ ` (priv k : γ inM # S(k)) # ∃i : γ.S(i)

3.3 Example: Encoding the π-calculus

In this section, we show an encoding of variant of the π-calculus [6] in lCLL. The syntax and semantics
of the π-calculus we use are shown in figure 21. The encoding we choose for this calculus is based on an
encoding of a similar calculus in MSR [11]. We assume that the signature for our language contains a family
of type constructors outn for n = 0, 1, . . .. These have the kinds:

out0 : chan → Type

out1 : chan → chan → Type

out2 : chan → chan → chan → Type
...
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Assume also that we have a family of constants out0, out1, . . . having the types:

out0 : ∀x : chan. out0 x
out1 : ∀x : chan. ∀y1 : chan. out1 x y1

out2 : ∀x : chan. ∀y1 : chan. ∀y2 : chan. out2 x y1 y2
...

In effect, for any n, and any k1, . . . , kn+1 : chan, outn k1 . . . kn+1 is actually a singleton type i.e. the
only closed value of this type is outn [k1] . . . [kn+1]. Let us also assume a family of destructor functions
destroyout

n
which have the types:

destroyout
0

: ∀x : chan. out0 x ( {1}

destroyout
1

: ∀x : chan. ∀y1 : chan. out1 x y1 ( {1}

destroyout
2

: ∀x : chan. ∀y1 : chan. ∀y2 : chan. out2 x y1 y2 ( {1}
...

The corresponding reduction rule is:

destroyout
n

[k1] . . . [kn+1] ˆ (outn [k1] . . . [kn+1]) → {1}

We now translate the π-calculus into our language. Every π-calculus term is translated into a type and a
term. These translations are shown in figure 22. Let fn(A), fn(C) and fn(P ) stand for the free names
contained in an action, choice and process respectively. Then the following typing lemma holds.

Lemma 10 (Typing of translated terms).

1. fn(A) : chan; ·; ·; · ` pAq : ppAqq

2. fn(C) : chan; ·; ·; · ` pCq : ppCqq

3. fn(P ) : chan; ·; ·; · ` pPq # ppPqq

Proof. By induction on the structure of the π-calculus term A, C or P .

Definition 3 (Translation of π-terms). We define the translation, 〈P 〉 of a π-term P as the CHAM config-
uration fn(P ) : chan ||| · ||| · ||| pPq # ppPqq.

To illustrate how reductions occur in this framework, consider the π-process, P = (x̄〈y〉+C1) | (x(z).0+
C2). The translation of this process at types and terms is:

ppPqq = (out1 x y & ppC1qq) ⊗ ((∀z : chan. out1 x z ( {1}) & ppC2qq)
pPq = 〈out1 [x] [y], pC1q〉 ⊗ 〈N1(x), pC2q〉

where N1(x) is an abbreviation defined as follows:

N1(x) = Λz : chan. λ̂m : out1 x z.
{
let {1} = destroyout

1
[x] [z] ˆm

in 1
}
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Translation into types

ppx̄〈y1, . . . yn〉qq = outn x y1 . . . yn

ppx(y1, . . . , yn).Pqq = ∀y1 . . . yn : chan. outn x y1 . . . yn ( {ppPqq}
ppC1 + C2qq = ppC1qq & ppC2qq

pp0qq = 1
ppP1|P2qq = ppP1qq ⊗ ppP2qq

ppνx.Pqq = ∃x : chan.ppPqq

Translation into terms

px̄〈y1, . . . yn〉q = outn [x] [y1] . . . [yn]

px(y1, . . . , yn).Pq = Λy1 . . . yn : chan. λ̂m : outn x y1 . . . yn.
{
let {1} = destroyout

n
[x] [y1] . . . [yn] ˆm

in

pPq

}
pC1 + C2q = 〈pC1q, pC2q〉
p0q = 1
pP1|P2q = pP1q ⊗ pP2q

pνx.Pq = priv x : chan in pPq

Figure 22: Translation of the π-calculus
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The process P reduces to 0 in the π-calculus. Correspondingly we have the following reduction sequence
on the translated term:

〈P 〉 = x : chan, y : chan ||| · ||| · ||| pPq # ppPqq

⇀ x : chan, y : chan ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 # (out1 x y & ppC1qq),
〈N1(x), pC2q〉 # ((∀z : chan. out1 x z ( {1}) & ppC2qq)

⇀2 x : chan, y : chan ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : (out1 x y & ppC1qq),
〈N1(x), pC2q〉 : ((∀z : chan. out1 x z ( {1}) & ppC2qq)

−→ x : chan, y : chan ||| · ||| · ||| (π1 〈N1(x), pC2q〉) [y] ˆ (π1 〈out1 [x] [y], pC1q〉) : {1} (1)
�∗ x : chan, y : chan ||| · ||| · ||| {let {1} = destroyout

1
[x] [y] ˆ (out1 [x] [y]) in 1} : {1}

−→ x : chan, y : chan ||| · ||| · ||| (let {1} = destroyout
1

[x] [y] ˆ (out1 [x] [y]) in 1) ÷ 1 (2)

� x : chan, y : chan ||| · ||| · ||| (let {1} = {1} in 1) ÷ 1
� x : chan, y : chan ||| · ||| · ||| 1 ÷ 1
⇀ x : chan, y : chan ||| · ||| · ||| 1 # 1
⇀ x : chan, y : chan ||| · ||| · ||| ·

The reaction steps here have been marked (1) and (2). Step (2) is the elimination of {. . .} in the monad.
Step (1) requires some backwards reasoning and the exact proof that allows this step is shown in figure 23.
All rules used in this proof are from figure 19. It is instructive to observe that chaining of reactions allows
us to simulate the correct behavior of external choice in the π-calculus. The remaining steps in the above
reduction are either structural rearrangement (⇀) or functional evaluation (�).

The rewrite steps shown above show how π-calculus reductions are simulated in the translation. The exact
formulation of a correctness result for the translation requires a notion of observation on lCLL-CHAM
configurations, which is a subject of future research.

3.4 Types for lCLL CHAM Configurations

Since terms in lCLL CHAM configurations already have types with them, we need to create a judgment
like Σ;Γ;∆;Ψ ` Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ in order to type lCLL CHAM configurations. The obvious intu-
ition of splitting resources in ∆ for all terms in ∆̂ does not not work. For example, consider proving
·; ·; ·;∆ ` · ||| · ||| · ||| x1 : A1, x2 : A2 when ∆ = x1 ⊗x2 : A1 ⊗A2. Intuitively, we want this to be provable
but ∆ is a singleton and cannot be split. From such observations, we arrive at the following definition.

Definition 4 (lCLL typing relation). Let Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ be a CHAM configuration. Let ∆̂ = T1 %Z1 . . . Tn %Zn

and Γ̂ = V1 : A1 . . . Vm : Am. We say that Σ;Γ;∆;Ψ ` Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ iff there exist ∆1 . . .∆n, Γ′ and Σ′′

such that the following conditions hold:

1. Σ′′ ⊇ Σ′

2. Σ′′; Γ′;∆1 . . .∆n ⇐= Σ;Γ;∆

3. For each t/i : γ ∈ σ̂, i : γ ∈ Σ′ and Σ′′ ` t : γ

4. For 1 ≤ i ≤ n, Σ′′; Γ′;∆i; Ψ ` Ti % Zi[σ̂]

5. For 1 ≤ j ≤ m, Σ′′; Γ′; ·; Ψ ` Vj : Aj [σ̂]
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Σ = x : chan, y : chan
γ = (π1 〈N1(x), pC2q〉) [y] ˆ (π1 〈out1 [x] [y], pC1q〉) : {1}

D1 =

=⇒A −HY P

Σ ||| · ||| · ||| · ||| π1〈out1 [x] [y], pC1q〉 : out1 x y
=⇒A

π1〈out1 [x] [y], pC1q〉 : out1 x y
=⇒A −&1

Σ ||| · ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : out1 x y & ppC1qq

=⇒A

π1〈out1 [x] [y], pC1q〉 : out1 x y
−→A − =⇒A −1

Σ ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : out1 x y & ppC1qq

−→A

π1〈out1 [x] [y], pC1q〉 : out1 x y

D1

=⇒ −HY P

Σ ||| · ||| · ||| · ||| (π1 〈N1(x), pC2q〉) [y] ˆ (π1 〈out1 [x] [y], pC1q〉) : {1} =⇒ γ
=⇒ − (

Σ ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : out1 x y & ppC1qq |||
(π1〈N1(x), pC2q〉) [y] : out1 x y ( {1}

=⇒ γ

=⇒ −∀

Σ ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : out1 x y & ppC1qq |||
π1〈N1(x), pC2q〉 : (∀z : chan. out1 x z ( {1})

=⇒ γ

=⇒ −&1

Σ ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : out1 x y & ppC1qq |||
〈N1(x), pC2q〉 : (∀z : chan. out1 x z ( {1} & ppC2qq)

=⇒ γ

−→ − =⇒ −1

Σ ||| · ||| · ||| 〈out1 [x] [y], pC1q〉 : out1 x y & ppC1qq,
〈N1(x), pC2q〉 : (∀z : chan. out1 x z ( {1} & ppC2qq)

−→ γ

Figure 23: Main reduction step for π-calculus example
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We also say that Σ;Γ;∆;Ψ ` Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A iff Σ;Γ;∆;Ψ ` Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂, N : A.

This definition essentially allows the context ∆ to be split into several contexts, one for each of the terms in
∆̂.

Lemma 11. Let Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ be a CHAM configuration. Let ∆̂ = T1 % Z1 . . . Tn % Zn, Γ̂ = V1 :
A1 . . . Vm : Am and suppose there exist ∆, ∆1 . . .∆n, Γ, Σ and Ψ such that the following hold:

1. Σ ⊇ Σ′.

2. For each t/i : γ ∈ σ̂, i : γ ∈ Σ′ and Σ ` t : γ

3. For each 1 ≤ i ≤ n, Σ;Γ;∆i; Ψ ` Ti % Zi[σ̂]

4. For each 1 ≤ j ≤ m, Σ;Γ; ·; Ψ ` Vj : Aj [σ̂]

5. Σ;Γ;∆;Ψ ` N : A[σ̂]

Then,

1. Σ;Γ;∆1 . . .∆n; Ψ ` Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂.

2. Σ;Γ;∆,∆1 . . .∆n; Ψ ` Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A.

3. If Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A =⇒A N ′ : P , then Σ;Γ;∆,∆1 . . .∆n; Ψ ` N ′ : P [σ̂].

4. If Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂ −→A N ′ : P , then Σ;Γ;∆1 . . .∆n; Ψ ` N ′ : P [σ̂].

Proof. Proof of (1) and (2) is immediate from definition 4. Proof of (3) and (4) follows by a mutual induc-
tion on the given rewrite derivation.

Lemma 12.

1. If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ⇀ Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′, then Σ ⊆ Σ′ and
Σ′; Γ;∆;Ψ ` Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′.

2. If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ � Σ ||| σ̂ ||| Γ̂ ||| ∆̂′, then Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂′.

3. If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ |||N ′ : A and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ |||N ′ : A =⇒A N : P , then Σ;Γ;∆;Ψ ` N :
P [σ̂].

4. If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ −→A N : P , then Σ;Γ;∆;Ψ ` N : P [σ̂].

5. If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ||| N : A =⇒ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′, then
Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂′.

6. If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ −→ Σ ||| σ̂ ||| Γ̂ ||| ∆̂′, then Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂′.

Proof. Proof of (1) follows from lemma 5. (2) is immediate from lemma 8. (3) and (4) follow from lemma
11 and lemma 1(3). For (5) we use induction on the derivation of the given rewrite relation and lemma 11.
(6) follows immediately from (5).
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Definition 5 (lCLL CHAM moves). We define a lCLL CHAM rewrite move ⇒ as ⇒ = ⇀ ∪ � ∪ −→.
⇒∗ denotes the reflexive-transitive closure of ⇒.

Lemma 13 (lCLL preservation). If Σ;Γ;∆;Ψ ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ⇒∗ Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′, then
Σ ⊆ Σ′ and Σ′; Γ;∆;Ψ ` Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′.

Theorem 2 (Type-safety for terms in lCLL CHAMs). If Σ; ·; ·; · ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ⇒∗

Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′, then for any typed f CLL term T % Z in ∆̂′, it is the case that T is a value or T reduces to
some T ′.

Proof. Using lemma 13, Σ′; ·; ·; · ` Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′. Let ∆̂′ = T1 % Z1, . . . , Tn % Zn. By defini-
tion 4, there exist Σ′′,Γ′,∆1, . . . ,∆n such that Σ′′; Γ′;∆1, . . . ,∆n ⇐= Σ′; ·; · and for each 1 ≤ i ≤ n,
Σ′′; Γ′;∆i; · ` Ti % Zi[σ̂

′]. Now from lemma 1 it is clear that Γ′ = · and ∆1 = . . . = ∆n = ·. Thus, for
each 1 ≤ i ≤ n, Σ′′; ·; ·; · ` Ti % Zi[σ̂

′]. Using the progress lemma for f CLL (lemma 9), each Ti must
either be a value, or it can reduce further.

3.5 Comparing process-calculi and lCLL

As seen from the encoding of the π-calculus in section 3.3, lCLL can encode several basic concurrency
primitives. In fact, there is a correspondence between the constructs of process-calculi like the π-calculus
and constructors of lCLL. Various common constructs of process-calculi, together with their equivalents in
lCLL are listed below.

1. Processes. In general, we view monadic terms and expressions as processes in CHAM solutions.

2. Parallelism. Apart from parallelism introduced for expressions in section 2.1, monadic terms of the
form M1 ⊗M2 can be viewed as processes reducing in parallel. Similarly, terms in CHAM solutions
can be viewed as processes executing in parallel.

3. Communication channels. Communication channels can be simulated in lCLL using index refine-
ments of a fixed sort (chan) as we do in section 3.3.

4. Input prefixing. The language constructs Λi.N , λx : P.N and λ̂x : P.N together with the associated
types ∀i : γ.A, P → B and P ( B provide encodings for input processes.

5. Asynchronous output. Any value V of (possibly refined) atomic type P can be viewed as an output
term without continuation because it can be linked to a term of type P ( B as an input. If the
value V : P is linear, then this corresponds to an output that has to be used as an input to exactly one
program. If it is unrestricted, then it can be used as input to any number of programs. Such an output
term corresponds to an asynchronous broadcast.

6. Name restriction. We showed in section 3.2 that channels can be made private using abstraction
semantics of the ∃ quantifier. The priv construct defined in that section can be used to create private
channel names in CHAM executions.

7. Choices. The type constructor & and the associated term constructor 〈N1, N2〉 act as an external
choice operator in our logic programming language. The proof-search procedure can project out one
component of a choice if it can be used to complete a link step. The type constructor ⊕ and the
monadic term constructors inl and inr can be used to simulate internal choice in lCLL.
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Process-calculus construct Equivalent lCLL construct
Process, P Monadic term(M ), expression(E)
Parallel composition, P1|P2 M1 ⊗M2 # S1 ⊗ S2

Communication channel Index refinement of sort chan
Input prefixing, x(y).P Λi.N : ∀i : γ.A, λx.N : P → B and λ̂x.N : P ( B
Asynchronous output, x̄y Linear assumption N : P where P is atomic
Name restriction, νx.P priv x : chan inM # ∃x : chan.S
Internal choice inlM # S1 ⊕ S2, inrM # S1 ⊕ S2

External choice, C1 + C2 〈N1, N2〉 : A1&A2

n-way input N : P1 ( . . . ( Pn ( B
Communication and synchronization Proof-search

Figure 24: Correspondence between process-calculi and lCLL

8. n-way input. Due to chaining of linking steps in the lCLL, we have a mechanism for n-way input in
lCLL. For example, a receiver of type P1 ( P2 ( B always synchronizes simultaneously with two
senders of types P1 and P2.

9. Communication and synchronization. Communication and synchronization in lCLL occurs using
reaction steps (−→).

For an illustration of these constructs in lCLL, the reader is referred to the encoding of the π-calculus in
section 3.3. Figure 24 shows a summary of the above correspondence between process-calculi constructs
and lCLL connectives.

4 Full-CLL: Integrating fCLL and lCLL

f CLL described in section 2 is purely functional. Even though it admits some parallelism in the tensor and
evaluation of expressions, it is essentially free from effects. The concurrent (logic) programming language
lCLL described in section 3 allows an additional layer of concurrency over f CLL. In this section we integrate
in the other direction - we allow concurrent logic programming to occur inside f CLL programs. Since
concurrent computations can deadlock and get stuck, they are not free from effects. As a result, we confine
such concurrent evaluation to the monad only. We extend the grammar for expressions with an additional
construct as follows.

E ::= . . . | link (E ÷ S) to G

where G ::= A | !A | 1 and A is any asynchronous type. G is called a goal type. Observe that G is a subset
of the family of types. We do not allow arbitrary types as goals for reasons described later. The typing rule
for the link construct is the following.

Σ;Γ;∆;Ψ ` E ÷ S
LINK

Σ;Γ;∆;Ψ ` link (E ÷ S) to G ÷ G

It is assumed in the above rule that G is well-formed in the context Σ. The link construct is always
evaluated in the context of index variables Σ in which it is well-typed. To evaluate Σ; link (E ÷ S) to G
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we start a new lCLL CHAM configuration with only the termE ÷ S in it i.e. we start with Σ ||| · ||| · |||E ÷ S.
Then we let this configuration rewrite according to all the rules in figures 14, 19 and 20 until it saturates
i.e. no more rewrite rules apply. If the configuration never saturates, computation runs forever and the link
construct does not terminate. If the configuration saturates in Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂, then the computation of the link
construct succeeds iff one of the following conditions holds.

1. G = A and ∆̂ = V : A. Then the whole construct evaluates to Σ′;V .

2. G = A, ∆̂ = · and there exists V : A ∈ Γ̂. In this case the whole construct evaluates to Σ′;V .

3. G =!A, ∆̂ = · and there exists V : A ∈ Γ̂. Then the whole construct evaluates to Σ′; !V .

4. G = 1 and ∆̂ = ·. In this case the whole construct evaluates to Σ′; 1.

If none of these conditions hold, then the computation fails and evaluation deadlocks. The above conditions
are summarized in the following evaluation rules.

Σ ||| · ||| · ||| E ÷ S ⇒∗ Σ′ ||| σ̂ ||| Γ̂ ||| V : A
↪→ LINK − 1

Σ; link (E ÷ S) to A ↪→ Σ′;V

Σ ||| · ||| · ||| E ÷ S ⇒∗ Σ′ ||| σ̂ ||| Γ̂, V : A ||| ·
↪→ LINK − 2

Σ; link (E ÷ S) to A ↪→ Σ′;V

Σ ||| · ||| · ||| E ÷ S ⇒∗ Σ′ ||| σ̂ ||| Γ̂, V : A ||| ·
↪→ LINK − 3

Σ; link (E ÷ S) to !A ↪→ Σ′; !V

Σ ||| · ||| · ||| E ÷ S ⇒∗ Σ′ ||| σ̂ ||| Γ̂ ||| ·
↪→ LINK − 4

Σ; link (E ÷ S) to 1 ↪→ Σ′; 1

where ⇒ = ⇀ ∪ � ∪ −→, as in definition 5. It is implicitly assumed in these rules that any CHAM
configuration on the right of ⇒∗ is saturated (it cannot be rewritten using the relation ⇒). We also lift the
evaluation relation E ↪→ E ′ from figure 12 to include the context Σ.

E ↪→ E′

Σ;E ↪→ Σ;E ′

At this point we can explain why we restrict the goal G in the construct link (E ÷ S) to G to the set
{A, !A, 1}. The reason for disallowing arbitrary goals is that for goal types other than {A, !A, 1}, compu-
tation of the link construct will always fail because saturated CHAM configurations cannot contain terms
having those types. Suppose, for example, we allow the type G = S1 ⊗S2 as a goal. In order for evaluation
to succeed with S1 ⊗ S2 as a goal, the CHAM rewriting would have to end in a configuration Σ′ ||| σ̂ ||| Γ̂ ||| ∆̂
where ∆̂ = M # S1 ⊗ S2, for some M . However, this is impossible because at this point the CHAM con-
figuration cannot be saturated. We can prove this as follows. By the progress theorem, either M is a value,
or it can reduce further. If M is a value, it has to be of the form Mv1

⊗Mv2
and in that case we can apply the

rule ⇀ −⊗ on the CHAM configuration. If M can reduce further, then the whole CHAM configuration can
reduce using the rule � − 7→. Thus an lCLL CHAM configuration cannot end with a monadic term of type
S1⊗S2 in ∆̂. Similar arguments show that a CHAM configuration cannot saturate if it has a program of any
synchronous type in it. For the particular set of goals, {A, !A, 1}, it is possible for CHAM computations to
succeed without any synchronous types in them. Thus we limit goals to this set. Limiting goal types to the
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set {A, !A, 1} may seem like a big restriction but in practice we found that other goal types are never needed.

We call the resultant language with the link construct full-CLL or CLL for brevity. Full-CLL symmetri-
cally integrates functional and concurrent logic programming. Concurrent logic programming can be nested
inside f CLL programs using the link construct. On the other hand, the functional rewrite rules in CHAMs
allow functional evaluation inside concurrent logic programming. Execution of full-CLL programs occurs
in interleaving phases of functional evaluation and concurrent logic programming.

An important remark related to programming in full-CLL is that it is essential that the top-level construct
of any program that performs concurrent computation be an expression. This is because all concurrency in
full-CLL is restricted to the link construct which is an expression, and evaluation of expressions coerced
into terms is lazy (recall that {E} is a value in CLL). If the top-level construct of a program is a term or a
monadic term, then nested expressions in the program will never be evaluated, and hence the program will
not perform any concurrent computation.

4.1 Type-Safety

Since the link construct may get stuck, full-CLL does not have a progress lemma at the level of expres-
sions. However the monad in CLL is lazy and this lemma still holds at the level of terms and monadic terms.
We also have a type preservation lemma at the level of terms, monadic terms and expressions. Type-safety
lemmas and theorems for full-CLL are given below.

Lemma 14 (Preservation).

1. If Σ;Γ;∆;Ψ ` N : A and N → N ′, then Σ;Γ;∆;Ψ ` N ′ : A.

2. If Σ;Γ;∆;Ψ ` M # S and M 7→ M ′, then Σ;Γ;∆;Ψ ` M ′ # S.

3. If Σ;Γ;∆;Ψ ` E ÷ S and Σ;E ↪→ Σ′;E′, then Σ ⊆ Σ′ and Σ′; Γ;∆;Ψ ` E ′ ÷ S.

Proof. In this case we use induction on the given derivation to simultaneously prove this and lemmas 12
and 13.

Lemma 15 (Progress).

1. If Σ; ·; ·; · ` N : A, then either N = V or for some N ′, N → N ′.

2. If Σ; ·; ·; · ` M # S, then either M = Mv or for some M ′, M 7→ M ′.

Proof. By induction on the given typing derivation. As expected, there is no progress lemma at the level of
expressions.

Theorem 3 (Type-Safety).

1. If Σ; ·; ·; · ` N : A and N →∗ N ′, then either N ′ = V or there exists N ′′ such that N ′ → N ′′.

2. If Σ; ·; ·; · ` M # S and M 7→∗ M ′, then either M ′ = Mv or there exists M ′′ and such that
M ′ 7→M ′′.
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Proof. By induction on the number of steps in the reduction, as for f CLL.

In full-CLL, nested lCLL-CHAM configurations contain full-CLL programs in place of f CLL programs.
This has a significant effect on theorem 2 of section 3.4, which must be modified for lCLL-CHAM con-
figurations that contain full-CLL programs. Since the proof of theorem 2 uses progress (lemma 9), which
no longer holds for expressions in full-CLL, we expect to obtain only a weaker type-safety property for
CHAMs embedded in full-CLL. Indeed, we can prove only the following theorem.

Theorem 4 (Type-safety for terms in CHAMs in full-CLL). If Σ; ·; ·; · ` Σ ||| σ̂ ||| Γ̂ ||| ∆̂ and Σ ||| σ̂ ||| Γ̂ ||| ∆̂ ⇒∗

Σ′ ||| σ̂′ ||| Γ̂′ ||| ∆̂′, then for any typed full-CLL term T % Z in ∆̂′, it is the case that T is an expression or T is
a value or T reduces to some T ′.

The only reason full-CLL programs get stuck is that the forward chaining procedure in some nested link
construct fails to reach its stated goal. In all practical problems that we encountered, we found that it was
possible to write full-CLL programs in a way that embedded link constructs always succeed in producing
the desired goal. An exploration of methods and techniques to prove the correctness of full-CLL programs
formally is left to future work.

5 Programming Techniques and Examples

In order to illustrate the relatively new style of programming that CLL requires, we devote this section to
developing programming techniques and examples of programs in full-CLL. The concurrency primitives
already present in full-CLL are very simple (but expressive) and in order to write useful programs we need
to build library code that implements more conventional concurrency primitives like buffered-asynchronous
message passing, synchronous message passing, non-deterministic synchronous choices etc. We present this
library code as a set of macros. The reasons for using macros in place of functional abstractions are clarity
and brevity. The functional abstraction mechanisms in CLL (Λ, λ and λ̂) are expressive enough to allow
us to rewrite all the library code in this section as functions instead of macros. However, doing so results
in more complicated implementations and types for the abstractions. Thus we use macros for library code
in place of functions. Just as an illustration, we describe the implementation of the primitives for buffered-
asynchronous message passing using functions instead of macros in section 5.4.

Many of the examples in this section are based on similar programs in John Reppy’s book Concurrent
Programming in ML [32]. As a convention, we write all macro names in boldface.

5.1 Example: A Concurrent Fibonacci Program

In this section we build a concurrent program to compute Fibonacci numbers. For this and subsequent
examples, we assume that our language has fundamental functional constructs like basic types (integers,
int and booleans, bool), datatypes (á la ML), recursion at the level of terms and conditional if-then-else
constructs. All these may be added to the language in a straightforward manner. Fibonacci numbers are
defined by the following equations.

fib(0) = 1
fib(1) = 1
fib(n) = fib(n− 1) + fib(n− 2) n ≥ 2
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fun fib (n) =
if (n = 0) then {!1}
else if (n = 1) then {!1}
else

{
let {!n1} = fib (n− 1)
let {!n2} = fib (n− 2)
in

!(n1 + n2)
}

Figure 25: The function fib

fun fibc (n) =
if (n = 0) then {!1}
else if (n = 1) then {!1}
else

{
link

(
(fibc (n− 1) ⊗ fibc (n− 2) ⊗ λn1 : int. λn2 : int. {!(n1 + n2)})
÷ ({!int} ⊗ {!int} ⊗ (int → int → {!int}))

) to !int
}

Figure 26: An incorrect function fibc

We can write a parallel version of the function fib as shown in figure 25. This function does not use
any communication between processes executing in parallel and may be derived from the more general
divAndConquer function described in section 2.3. It has the type int → {!int}.

Figure 26 shows a concurrent, but incorrect implementation of fib. The function fibc has the type
int → {!int}. Given n ≥ 2, we spawn a CHAM with three threads. The first two threads recursively
compute fib(n−1) and fib(n−2). These two computations may spawn nested CHAMs during evaluation.
Such nested CHAMs are distinct from each other and terms in different CHAMs cannot interact. The third
thread is a synchronization thread that waits for the results of these two computations and adds them together
to produce the result. This synchronization is performed automatically by the CHAM. As mentioned earlier,
this implementation is incorrect and the reason for incorrectness is described below.

In the function fibc, there are four ways for the CHAM to proceed after fibc(n − 1) has evaluated to a
value {!N1} and fibc(n − 2) evaluates to a value {!N2}. In one case, n1 gets instantiated to the result of
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evaluating N1 and n2 to the result of evaluating N2:

· ||| · ||| · ||| {!N1} : {!int}, {!N2} : {!int},

λn1 : int. λn2 : int. {!(n1 + n2)} : int → int → {!int}

−→2 · ||| · ||| · ||| !N1 ÷ !int, !N2 ÷ !int,

λn1 : int. λn2 : int. {!(n1 + n2)} : int → int → {!int}

⇀2 · ||| · ||| · ||| !N1 # !int, !N2 # !int,

λn1 : int. λn2 : int. {!(n1 + n2)} : int → int → {!int}

�∗ · ||| · ||| · ||| !V1 # !int, !V2 # !int,

λn1 : int. λn2 : int. {!(n1 + n2)} : int → int → {!int}

⇀2 · ||| · ||| V1 : int, V2 : int ||| λn1 : int. λn2 : int. {!(n1 + n2)} : int → int → {!int}

−→ · ||| · ||| V1 : int, V2 : int ||| ((λn1 : int. λn2 : int. {!(n1 + n2)}) V1 V2) : {!int}

�2 · ||| · ||| V1 : int, V2 : int ||| {!(V1 + V2)} : {!int}

In the second case the instantiations are swapped - n1 is instantiated to V2 and n2 is instantiated to V1.
Assuming that + is commutative, the result of both possible programs is the same and correct. However,
observe that since V1 and V2 are unrestricted values in the configuration, it is possible to instantiate both n1

and n2 with either one of V1 and V2. This gives us two more possible incorrect computations. One of these
is shown below.

. . .

⇀2 · ||| · ||| V1 : int, V2 : int ||| λn1 : int. λn2 : int. {!(n1 + n2)} : int → int → {!int}

−→ · ||| · ||| V1 : int, V2 : int ||| ((λn1 : int. λn2 : int. {!(n1 + n2)}) V1 V1) : {!int}

�2 · ||| · ||| V1 : int, V2 : int ||| {!(V1 + V1)} : {!int}

We can use index refinements to correct this function. Assume that we have a type constructor int : chan →
Type and the constructor-destructor pair refineint and fetchint with the typing rules

Σ ` k : chan Σ;Γ;∆;Ψ ` N : int
int − I

Σ;Γ;∆;Ψ ` refineint [k] ˆ (N) : int k

Σ ` k : chan Σ;Γ;∆;Ψ ` N : int k
int − E

Σ;Γ;∆;Ψ ` fetchint [k] ˆ (N) : int

and the reduction rules
N → N ′

fetchint [k] ˆN → fetchint [k] ˆN ′

N → N ′

refineint [k] ˆN → refineint [k] ˆN ′

fetchint [k] ˆ (refineint [k] ˆn) → n

The function fibc′ shown in figure 27 is a correctly implemented concurrent version of fib that takes
as input a channel name k and an integer n and returns fib(n) refined by channel name k i.e. the value
(refineint [k] ˆ (fib(n))). It has the type ∀k : chan. int → {!(int k)}. In this case there is exactly one
possible program execution.
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fun fibc′ [k] (n) =
if (n = 0) then {!(refineint [k] ˆ 1)}
else if (n = 1) then {!(refineint [k] ˆ 1)}
else

{
link

(
(

priv k1 : chan in

priv k2 : chan in

fibc′ [k1] (n− 1)
⊗ fibc′ [k2] (n− 2)
⊗ λn1 : int k1. λn2 : int k2.

{!(refineint [k] ˆ ((fetchint [k1] ˆ n1) + (fetchint [k2] ˆ n2)))}
)

÷ ∃k1 : chan. ∃k2 : chan. ({!(int k1)} ⊗ {!(int k2)}⊗
(int k1 → int k2 → {!(int k)}))

) to !(int k)
}

Figure 27: The function fibc′

5.2 Programming Technique: Buffered Asynchronous Message Passing

We assume that we have a conditional if-then-else construct for terms, monadic terms and expressions. This
construct has the form if N then T1 else T2 (T stands for any of N , M or E). The associated typing and
reduction rules are shown below.

T ::= . . . | if N then T1 else T2

Σ;Γ;∆;Ψ ` N : bool Σ;Γ;∆′; Ψ ` T1 % Z Σ;Γ;∆′; Ψ ` T2 % Z
if − then − else

Σ;Γ;∆,∆′; Ψ ` if N then T1 else T2 % Z

N → N ′

if N then T1 else T2 ↪→ if N ′ then T1 else T2

if true then T1 else T2 ↪→ T1

if false then T1 else T2 ↪→ T2

We now build a library of programs in CLL to allow us to write programs that use asynchronous, queue
based message passing. For every channel name k that is to be used for communication of values of the
asynchronous type B, we introduce a first-in, first-out queue of elements of type B into our CHAM solution.
In order to distinguish various queues in a CHAM solution just by their types, we refine the queue type with
channel names. Queues have the following abstract specification.

abstype queueB: chan → Type with
empty: ∀i : chan. queueB i
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push: ∀i : chan. queueB i ( B → queueB i
isempty: ∀i : chan. queueB i ( {!bool⊗ queueB i}
pop: ∀i : chan. queueB i ( {!B ⊗ queueB i}
top: ∀i : chan. queueB i ( {!B ⊗ queueB i}
destroy: ∀i : chan. queueB i ( {1}

The above first-in, first-out queue may be implemented using data structures like ML-style lists, which
we assume are present in our language. The exact details of the implementation are not relevant to our
discussion. A more important fact is that queues are linear objects in CHAM solutions, and hence can
be used to capture the notion of state of communication on a particular channel. On the other hand, the
data within the queue is non-linear and can be used multiple times. One can also design a different model
of communication in which the data in the queue is linear. For any queue of type queue k, we view the
elements in the queue as messages that are pending to be read on channel k. Message sending in this model
is asynchronous in the sense that a sender simply appends its message to the end of a message queue and
continues execution. It does not wait for a receiver to receive the message. Thus we can define a ‘send’
macro:

asyncsend(k,N : B);M # S =

λ̂q : queueB k. {(push [k] ˆ q N) ⊗ M}

Intuitively, the above macro should be read as “send the result of evaluating N on channel k and continue
with the process M”.6 If we define the type Asyncsend(k,B, S) = queueB k ( {queueB k ⊗ S}, then
the derived typing rule for asyncsend is

Σ ` k : chan Σ;Γ; ·; Ψ ` N : B Σ;Γ;∆;Ψ ` M # S
asyncsend

Σ;Γ;∆;Ψ ` (asyncsend(k,N : B);M # S) # Asyncsend(k,B, S)

The corresponding receive macro is harder to create. Suppose we want to bind x to a value received on the
channel k in the monadic term M . Then we need to wait till there is a message pending on the message
queue for channel k. This we do by repeatedly synchronizing with the associated queue and checking for
non-emptiness. If the queue is empty, we leave the queue and keep waiting. If it is non-empty, we pop the
queue, bind the value popped to x and return the popped queue to the solution. The following receive macro
implements this.

asyncrecv x : B on k in M # S =

µu. foldAsyncrecv(k,B,S). λ̂q : queueB k.

{
let {!b⊗ q′} = isempty [k] ˆ q in

if b then inl (u⊗ q′)
else

let {!x⊗ q′′} = pop [k] ˆ q′ in

inr (M ⊗ q′′)
}

The type Asyncrecv is defined as follows

Asyncrecv(k,B, S) = µα. queueB k ( {(α ⊗ queueB k) ⊕ (S ⊗ queueB k)}

6N may not be a value and might be evaluated in parallel with M itself. Since evaluation of pure terms has no side effects, the
exact point of evaluation of N does not matter.
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The derived typing rule for this macro is:

Σ ` k : chan Σ;Γ, x : B; ·; Ψ ` M # S
asyncrecv

Σ;Γ; ·; Ψ ` (asyncrecv x : B on k inM : S) # Asyncrecv(k,B, S)

Next we define a macro to actually create a private channel name for communication. This macro uses the
previously defined macro priv . In addition to creating the private channel name, it also creates a new
queue to be used for communication on the channel. This is done by a call to the function empty from the
specification of the type queueB .

privasyncchan k in M # S(k) =
priv k : chan in (M ⊗ (empty [k])) # (S(k) ⊗ (queueB k))

If we define the type Privasyncchan(B, k.S(k)) = ∃k : chan.(S ⊗ queueB k), then the typing rule for
the above construct is7

Σ, k : chan; Γ;∆;Ψ ` M # S(k)
privasyncchan

Σ;Γ;∆;Ψ ` (privasyncchan k inM # S(k)) # Privasyncchan(B, k.S(k))

Finally we define a cleanup macro that destroys the message queue associated with a channel. This macro
is used when the channel is no longer needed for communication. Once this macro is used on a channel,
subsequent attempts to send or receive on the channel will deadlock.

destroyasyncchan k;M # S =

λ̂q : queueB k. { let {1} = destroy [k] ˆ q in M }

If we define Destroyasyncchan(k,B, S) = queueB k ( {S}, then we have the following derived typing
rule

Σ ` k : chan Σ;Γ;∆;Ψ ` M # S
destroyasyncchan

Σ;Γ;∆;Ψ ` (destroyasyncchan k;M # S) # Destroyasyncchan(k,B, S)

All the above constructs are summarized in figure 28. We often omit type annotations from these constructs
if they are clear from the context.

5.3 Example: Sieve of Eratosthenes

We build a concurrent version of the sieve for Eratosthenes for filtering prime numbers from a sequence
[2, . . . , n]. This example uses the asynchronous message passing mechanism described earlier. For this ex-
ample, the messages we send on channels are integers and hence the queue data structure described earlier
uses B = int. We omit the type annotation int from the type queueint. We begin with a function that
sends all numbers from 2 to N on channel k. Let us assume we have a special integer called END which
we use to signal end of data on a (message) queue. This function called integersupto is shown in figure
29. It has the type ∀k : chan. int → {µα.Asyncsend(k, int, 1 ⊕ {α})}.

If we allow integersupto [k]N to execute in a CHAM, then each recursive call of the loop adds a new in-
teger to the queue associated with channel k. Eventually the condition n > N succeeds and integersupto

7We use the notation k.S(k) to indicate that k is bound in the type Privasyncchan(B, k.S(k)).
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Types

Asyncsend(k,B, S) = queueB k ( {queueB k ⊗ S}
Asyncrecv(k,B, S) = µα. queueB k ( {(α⊗ queueB k) ⊕ (S ⊗ queueB k)}
Privasyncchan(B, k.S(k)) = ∃k : chan.(S(k) ⊗ queueB k)
Destroyasyncchan(k,B, S) = queueB k ( {S}

Macros

asyncsend(k,N : B);M # S =

λ̂q : queueB k. {(push [k] ˆ q N) ⊗ M}

asyncrecv x : B on k in M # S =

µu. foldAsyncrecv(k,B,S). λ̂q : queueB k.

{
let {!b⊗ q′} = isempty [k] ˆ q in

if (b = true) then inl (u⊗ q′)
else

let {!x⊗ q′′} = pop [k] ˆ q′ in

inr (M ⊗ q′′)
}

privasyncchan k in M # S(k) =
priv k : chan in (M ⊗ (empty [k])) # (S(k) ⊗ (queueB k))

destroyasyncchan k;M # S =

λ̂q : queueB k. { let {1} = destroy [k] ˆ q in M }

Typing Rules

Σ ` k : chan Σ;Γ; ·; Ψ ` N : B Σ;Γ;∆;Ψ ` M # S
asyncsend

Σ;Γ;∆;Ψ ` (asyncsend(k,N : B);M # S) # Asyncsend(k,B, S)

Σ ` k : chan Σ;Γ, x : B; ·; Ψ ` M # S
asyncrecv

Σ;Γ; ·; Ψ ` (asyncrecv x : B on k inM : S) # Asyncrecv(k,B, S)

Σ, k : chan; Γ;∆;Ψ ` M # S(k)
privasyncchan

Σ;Γ;∆;Ψ ` (privasyncchan k inM # S(k)) # Privasyncchan(B, k.S(k))

Σ ` k : chan Σ;Γ;∆;Ψ ` M # S
destroyasyncchan

Σ;Γ;∆;Ψ ` (destroyasyncchan k;M # S) # Destroyasyncchan(k,B, S)

Figure 28: Macros for asynchronous communication
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(* integersupto: ∀k : chan. int → {µα.Asyncsend(k, int, 1 ⊕ {α})} *)

fun integersupto [k:chan] (N:int) =

(* loop: int → {µα.Asyncsend(k, int, 1 ⊕ {α})} *)
let val loop (n : int) =
{

foldµα.Asyncsend(k,int,1⊕{α}).

if (n > N) then

asyncsend(k,END); inl 1
else

asyncsend(k, n); inr (loop(n+ 1))
}
in

loop 2
end

Figure 29: The function integersupto

terminates with inl 1. Note that other asyncsend and asyncrecv calls on the channel k can be inter-
leaved. For example, if at some point of time, the message queue on k has integers 2 . . . 10, then some other
process may use the macro asyncrecv up to nine times on channel k before any more integers are sent by
integersupto. Next we write a filter function which given an input channel inp, an output channel out
and a prime p, filters the integers on inp for numbers not divisible by p and writes the output to channel out.
This function is shown in figure 30. It has the type ∀inp : chan. ∀out : chan. int → {F (inp, out)}.

Next we come to the program sieve which takes an input channel inp and an output channel out and filters
the input channel for all integers that are relatively prime to their predecessors on the same channel. These
filtered integers are written to the channel out. This program is shown in figure 31. It has the type {∀inp :
chan. ∀out : chan. {R(inp, out)}} where R(inp, out) is the type:

type R(inp, out) =
Asyncrecv(inp, int,

Destroyasyncchan(inp, int, Asyncsend(out, int, 1))
⊕ Asyncsend(out, int, Privasyncchan(int, k.({F (inp, k)} ⊗R(k, out))))
)

The type R(inp, out) is not a regular recursive type since it cannot be expressed using the standard recursive
construct µα.S. Instead, it requires recursive definitions or recursive type binders at kinds higher than
Type. Either may be added to the language without much technical difficulty. Recursive definitions, in
particular, can be added using the standard fold construction as follows. Under the assumption that we
have a definition R(i1 . . . in) = S, where the synchronous type S may mention R again, we have the
following typing rules:

Σ;Γ;∆;Ψ ` M # S
fold-R’

Σ;Γ;∆;Ψ ` foldR(i1 ...in)(M) # R(i1 . . . in)
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type F (inp, out) =
µα. Asyncrecv(inp, int, Destroyasyncchan(inp, int, Asyncsend(out, int, 1))⊕
(α⊕ Asyncsend(out, int, α)))

(∗ filter : ∀inp : chan. ∀out : chan. int → {F (inp, out)} ∗)

fun filter [inp] [out] p =
{

µu. foldF (inp,out)

asyncrecv n : int on inp in

if (n = END)
then inl

destroyasyncchan inp in asyncsend(out, END); 1
else inr

if (n mod p = 0) then inl u
else inr (asyncsend(out, n);u)

}

Figure 30: The function filter

Σ;Γ;∆, p : S; Ψ ` γ
fold-L’

Σ;Γ;∆, foldR(i1 ...in)(p) : R(i1 . . . in);Ψ ` γ

The statement let {!f} = {!u} in . . . in the body of sieve binds f to a pure term which has the same
behavior and type as the recursive variable u. We integrate all the functions together to produce a single
function primes that takes a channel name out and an integer N and produces as output a single queue
of type queue out containing all primes up to N . This function is shown in figure 32. It has the type
∀out : chan. int → {queue out}.

5.4 Implementing Buffered Asynchronous Message Passing using Functions

As mentioned in the introduction to section 5, it is possible to rewrite all the macros for buffered asyn-
chronous message passing presented in section 5.2 as functions. In this section we present the functional
equivalents of all the macros of section 5.2. Similar transformations can be applied to all macros presented
in later sections. The purpose of doing this is to establish that the library code presented here can be rep-
resented using the abstraction mechanisms in CLL, and the use of macros is merely a convenience rather
than a necessity. We start by writing an equivalent functional representation of the macro asyncsend(see
figure 28). As can be seen, this macro requires three arguments - a channel name k, a value N of type B
to send on the channel and a continuation M of type S. The type of asyncsend (k,N : B);M # S is
Asyncsend(k,B, S). This suggests the type for the corresponding functional abstraction: ∀k : chan. B →
{S} ( Asyncsend(k,B, S). We observe three facts here. First, the argument of type B is unrestricted
because we want values passed on channels to be unrestricted. Second, we have to pass M after enclosing
it in a monad because due to syntactic restrictions in CLL, we cannot pass monadic terms as arguments.
Hence the second argument of the functional abstraction is of type {S} instead of S. Third, since we do not
have polymorphism in CLL, we need a separate function for each pair of types (B,S). All these functions
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type R(inp, out) =
Asyncrecv(inp, int,

Destroyasyncchan(inp, int, Asyncsend(out, int, 1))
⊕ Asyncsend(out, int, Privasyncchan(int, k.({F (inp, k)} ⊗R(k, out))))
)

(* sieve : {∀inp : chan. ∀out : chan. {R(inp, out)}} *)

sieve =
{

µu. Λinp : chan. Λout : chan.
{

let {!f} = {!u} in

foldR(inp,out)

asyncrecv p : int on inp in

if (p = END)
then inl

(destroyasyncchan inp in asyncsend(out, END) in 1)
else inr

asyncsend(out, p);privasyncchan k in

(filter [inp] [k] p) ⊗ (f [k] [out])
}

}

Figure 31: The program sieve

(* primes : ∀out : chan. int → {queue out} *)

fun primes [out : chan] (N : int) =
{

let {f} = sieve in
link

(
privasyncchan k in (integersupto [k] N) ⊗ (f [k] [out])
÷ Privasyncchan(k, int, {µα.Asyncsend(k, int, 1 ⊕ {α})} ⊗ {R(k, out)})

) to queue out
}

Figure 32: The function primes
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look exactly the same, except that they have different types. Assuming fixed types B and S, the function
asyncsend’ is shown below. It has the type ∀k : chan. B → {S} ( Asyncsend(k,B, S).

fun asyncsend’ [k : chan] (N : B) (M : {S}) =

λ̂q : queueB k.
{

let {m′} = M in

(push [k] ˆ q N) ⊗ m′

}

Now we consider the macro asyncrecv . This macro takes two arguments - a channel name k on which input
is to be received and a monadic termM of type S that has a free variable x of typeB that is to be bound to the
input value received on the channel k. We can represent the second argument, M , as a function of type B →
{S}. This gives us the type of the functional abstraction corresponding to asyncrecv : ∀k : chan. (B →
{S}) → {Asyncrecv(k,B, S)}. We observe that the return type of this function is {Asyncrecv(k,B, S)}
instead of Asyncrecv(k,B, S) because Asyncrecv(k,B, S) is a synchronous type and owing to syntactic
restrictions in CLL, it cannot be returned directly by a function. The functional abstraction asyncrecv’
is shown below. It has the type ∀k : chan. (B → {S}) → {Asyncrecv(k,B, S)}.

fun asyncrecv’ [k : chan] (M : B → {S}) =
{

µu. foldAsyncrecv(k,B,S). λ̂q : queueB k.

{
let {!b⊗ q′} = isempty [k] ˆ q in

if (b = true) then inl (u⊗ q′)
else

let {!x⊗ q′′} = pop [k] ˆ q′

let {m′} = M x in

inr (m′ ⊗ q′′)
}

}

Next we come to the macro privasyncchan . This macro takes as argument a monadic term M of type S(k)
where k is a parameterized channel name (see the typing rule for privasyncchan in figure 28). In terms
of abstractions, such a monadic term can be represented by the type ∀k : chan.{S(k)}. The functional
abstraction privasyncchan that corresponds to the macro privasyncchan ′ is shown below. It has the
type (∀k : chan.{S(k)}) ( {∃k : chan.{S(k) ⊗ queueB k}}. It is instructive to compare this function
and its return type to the macro privasyncchan and the type Privasyncchan(B, k.S(k)) respectively.

fun privasyncchan’ (M : (∀k : chan.{S(k)})) =
{

priv k : chan in
{

let {m′} = M [k] in

(m′ ⊗ (empty [k])) # (S(k) ⊗ (queueB k))
}

}
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Finally we consider the macro destroyasyncchan . This macro takes two arguments - a channel name k and
a continuation M of type S. Writing an equivalent functional representation for this macro is straightforward
and is shown below. The function destroyasyncchan’ shown below has the type ∀k : chan. {S} (

Destroyasyncchan(k,B, S).

fun destroyasyncchan’ [k : chan] (M : {S}) =

λ̂q : queueB k.
{

let {1} = destroy [k] ˆ q
let {m′} = M in m′

}

Thus the abstraction mechanisms in CLL are expressive enough to allow us to write all the macros presented
so far as functions. However, the bodies and types of these functions are more complicated than those of the
corresponding macros. For the sake of conciseness and clarity we present the remaining library code only
as macros. It should, however, be kept in mind that all these macros can be represented as functions as well.

5.5 Programming Technique: Synchronous Message Passing

The communication primitive in CLL is inherently asynchronous. The basic communication primitive is to
use the theorem prover to link together a function of type P ( B and a value of the input type P using the
rule =⇒ − (. In this case the value itself is consumed and hence senders have no continuation i.e. they are
asynchronous. In section 5.2, we built a library of macros to extend this communication primitive to allow
queuing of messages on a channel. However, communication was asynchronous in the sense that senders
received no confirmation that the message sent had been received before they were allowed to continue
evaluation. Now we build a library of macros to implement synchronous communication, where senders
receive confirmation that their message has been received before they are allowed to continue execution.
As expected, this requires implementation of a protocol over the primitive asynchronous communication.
The protocol we choose is based on a protocol in [6] to implement the synchronous π-calculus (without
choices) in the asynchronous π-calculus. It works as follows. Suppose a sender S wants to sends a value V
to receiver R on channel k. S and R create a private channel each. Let us call these u and t respectively.
First, S sends the channel name u to R on channel k. Once R knows the channel name u, it sends back the
channel name t on the channel u to S. S now forks - in one thread it sends V to R on t and in the other it
resumes execution with its continuation. R on receiving V on t resumes its own execution. In π-calculus
notation, this translation is represented as follows.

〈〈 k̄V. P ′ 〉〉 = νu. (k̄u | u(t). (t̄V | 〈〈 P ′ 〉〉)) (1)
〈〈 k(y). P 〉〉 = νt. k(u). (ūt | t(y). 〈〈 P 〉〉) (2)

In order to implement this protocol, we assume that we have the constructor-destructor pairs (out0 , destroyout0)
and (out1, destroyout1) and the corresponding kinds out0 and out1 from section 3.3. The signature for
these constants is reproduced below.

out0 : chan → Type

out1 : chan → chan → Type

out0 : ∀x : chan. out0 x
out1 : ∀x : chan. ∀y : chan. out1 x y
destroyout

0
: ∀x : chan. out0 x ( {1}

destroyout
1

: ∀x : chan. ∀y : chan. out1 x y ( {1}
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We also need a datatype to encode data being sent on channel k. Our signature for this datatype is

dataB : chan → Type

dataB : ∀x : chan. B ( dataB x
undataB : ∀x : chan. dataB x ( B

The corresponding reduction rules are:

undataB [k] ˆ (dataB [k] ˆV ) → V

N → N ′

dataB [k] ˆN → dataB [k] ˆN ′

N → N ′

undataB [k] ˆN → undataB [k] ˆN ′

The actual implementation of the send and receive macros uses the same encoding as in section 3.3. The
synchronous send macro, called syncsend is defined below.

syncsend (k,N : B);M # S =
priv u : chan in

(out1 [k] [u]) ⊗

Λt : chan. λ̂c : out1 u t.
{

let {1} = destroyout
1

[u] [t] ˆ c

in

(dataB [t] ˆ N) ⊗ M
}

Let us define the type Syncsend(k,B, S) as follows.

Syncsend(k,B, S) = ∃u : chan. ((out1 k u) ⊗ (∀t : chan. out1 u t ( {(dataB t) ⊗ S}))

The derived typing rule for this construct is

Σ ` k : chan Σ;Γ;∆;Ψ ` M # S Σ;Γ;∆′; Ψ ` N : B
syncsend

Σ;Γ;∆,∆′; Ψ ` (syncsend(k,N : B);M # S) # Syncsend(k,B, S)

The definitions syncsend and Syncsend correspond to the translation of the right hand side of equation
(1) according to the rules in figure 22. The corresponding synchronous receive macro is the following.

syncrecv y : B on k in M # S =
priv t : chan in

Λu : chan. λ̂c : out1 k u.
{

let {1} = destroyout
1

[k] [u] ˆ c in

(out1 [u] [t]) ⊗

λ̂y′ : dataB t.
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type BufB(read,write) = µα.Syncrecv(write,B, Syncsend(read,B, α))

(∗ oneCellBufferB : ∀read : chan. ∀write : chan. {BufB(read,write)} ∗)

fun oneCellBufferB [read : chan] [write : chan] =
{

µu. foldBufB(read,write)

syncrecv x : B on write in

syncsend(read, x); u
}

Figure 33: The function oneCellBuffer

{
let {y} = {undataB [t] ˆ y′}
in M

}
}

We define the type Syncrecv(k,B, S) as follows.

Syncrecv(k,B, S) = ∃t : chan. ∀u : chan. out1 k u ( {(out1 u t) ⊗ (dataB t ( {S})}

Then the derived typing rule for syncrecv is

Σ ` k : chan Σ;Γ;∆, y : B; Ψ ` M # S
syncrecv

Σ;Γ;∆;Ψ ` (syncrecv y : B on k inM # S) # Syncrecv(k,B, S)

Again, this encoding is actually the translation of the right hand side of equation (2) according to the rules
in figure 22.

5.6 Example: One Cell Buffer

Using the synchronous send and receive methods defined earlier, we define a one cell buffer8. This buffer
operates on two channels read and write which are used to read and write to the buffer. When the buffer
is empty, sending a value on write has the effect of storing this value in the buffer. Subsequently, attempts
to write to the buffer block, until some process reads the buffer on channel read. After the buffer is read,
attempts to read block until the buffer is written to again. This implementation is shown in figure 33.

5.7 Programming Technique: Synchronous Choices

Choice in the context of concurrent programming refers to a primitive that allows the system to non-
deterministically choose from one of several possibilities. The candidates for the choice may be values,
events (like send and receive) or processes. Usually, the choice is based on some criteria i.e. not all of the

8A one cell buffer is also called an M-structure.

60



possibilities are considered as possible candidates for selection. The simplest notion of choice is internal
choice, where the executing process spontaneously selects from several possible alternatives and continues
with one of these. In our system, the type S1 ⊕S2 represents internal choice between processes. A monadic
term of this type may evaluate to a monadic value of type S1 or S2. The environment in which the process
computes plays no role in this selection. Thus this kind of choice is internal. Another very useful kind
of choice is external. This is a choice resolved by the environment, based on some selection criteria. In
process-calculi like π, several variants of external choice have been suggested. Most of these are based
on selecting some input or output action. For example, in the synchronous π-calculus [24, 25], there is an
associative and commutative (AC) choice operator [] and a syntactic class C to represent external choice
between input and output actions9 .

C ::= x(y).P | x̄y.P | C1[]C2

The semantics of this operator are as follows.

(x(y).P [] C1) | (x̄z.P
′ [] C2) → P [z/y] | P ′

A choice may be resolved by the environment in favor of an action if there is a corresponding co-action. In
[27] it is shown that this kind of choice is strictly more expressive than internal choice and primitive in the
sense that it cannot be implemented in a system without some similar construct. The concurrent program-
ming language CML provides similar constructs called choose and select.

In the case of asynchronous process-calculi (concurrent systems where senders have no continuation) like
the asynchronous π-calculus, mention of external choice operators in literature is rather limited. Most of
these choice operators allow choice between input processes only.

C ::= x(y).P | C1 + C2 (3)

(x(y).P + C1) | x̄z → P [z/y]

As shown in [27], this choice operator is also strictly less expressive than the external choice operator in
synchronous calculi mentioned earlier. lCLL is also an asynchronous language. As seen in section 3.5,
the pairing construct 〈N1, N2〉 and the associated type constructor & act as an external choice primitive in
lCLL because forward chaining can project out either N1 or N2 from a pair 〈N1, N2〉, if it can be used to
complete a reaction step. From the translation in section 3.3, we see that our choice construct corresponds
to the following choice operator in the asynchronous π-calculus.

C ::= x(y).P | x̄y | C1 + C2

(x(y).P + C1) | (x̄z + C2) → P [z/y]

Clearly this operator is at least as expressive as the input-only choice operator in equation (3). We now show
that this operator can be used to implement a complete synchronous external choice operator [] in CLL. The
encoding is not obvious and we present it case by case. Throughout this section, we use analogy with the
π-calculus to describe constructions abstractly.

9This choice operator is called + in the original paper. We call it [] to avoid syntactic ambiguity.
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5.7.1 Input-input Choice

We implement a choice between two receivers. Suppose we have two synchronous receivers, k1(y1).P1 and
k2(y2).P2. Using equation (2), the translations of these two receivers into the asynchronous π-calculus are

〈〈 k1(y1). P1 〉〉 = νt1. k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉)
〈〈 k2(y2). P2 〉〉 = νt2. k2(u2). (ū2t2 | t2(y2). 〈〈 P2 〉〉)

This suggests the following translation for synchronous input-input choices.

〈〈 k1(y1). P1 [] k2(y2). P2 〉〉 = νt1.νt2.
(

(k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉)) +
(k2(u2). (ū2t2 | t2(y2). 〈〈 P2 〉〉))

)

We can now define the operator syncchoicerr that allows us to choose synchronously between two re-
ceivers. It is just a translation of the above term into CLL. We use notation from the language PICT
[30] to denote events in a choice. k?(y : B).M denotes the event of receiving a value of type B on
channel k and binding it to y in M . Observe that the event k?(y : B).M differs from the process
syncrecv y : B on k in M in that the latter will execute on its own. The former, on the other hand,
is notation for a potential communication.

syncchoicerr [k1?(y1 : B1).M1 # S1, k2?(y2 : B2).M2 # S2] =
priv t1 : chan in

priv t2 : chan in

〈

Λu1 : chan. λ̂c : out1 k1 u1.
{

let {1} = destroyout
1

[k1] [u1] ˆ c in

(out1 [u1] [t1]) ⊗

λ̂y′1 : dataB1
t1.

{
let {y1} = {undataB1

[t1] ˆ y′1}
in M1

}
} ,

Λu2 : chan. λ̂c : out1 k2 u2.
{

let {1} = destroyout
1

[k2] [u2] ˆ c in

(out1 [u2] [t2]) ⊗

λ̂y′2 : dataB2
t2.

{
let {y2} = {undataB2

[t2] ˆ y′2}
in M2

}
}

〉
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The typing rule for this macro is

Σ ` ki : chan Σ;Γ;∆, yi : Bi; Ψ ` Mi # Si i = 1, 2
syncchoicerr

Σ;Γ;∆;Ψ `
(syncchoicerr [k1?(y1 : B1).M1 # S1, k2?(y2 : B2).M2 # S2])

# Syncchoicerr(k1, B1, S1, k2, B2, S2)

where Syncchoicerr is defined as

Syncchoicerr(k1, B1, S1, k2, B2, S2) =
∃t1 : chan. ∃t2 : chan.

(∀u1 : chan. out1 k1 u1 ( {(out1 u1 t1) ⊗ (dataB1
t1 ( {S1})}) &

(∀u2 : chan. out1 k2 u2 ( {(out1 u2 t2) ⊗ (dataB2
t2 ( {S2})})

5.7.2 Output-output Choice

Now we implement a synchronous choice between two senders. As for the case of receivers, we begin by
considering two senders k̄1N1.P1 and k̄2N2.P2 in the synchronous π-calculus. Their translations to the
asynchronous π-calculus are

〈〈 k̄1N1. P1 〉〉 = νu1. (k̄1u1 | u1(t1). (t̄1N1 | 〈〈 P1 〉〉))
〈〈 k̄2N2. P2 〉〉 = νu2. (k̄2u2 | u2(t2). (t̄2N2 | 〈〈 P2 〉〉))

From these we obtain the following translation for output-output choice.

〈〈 (k̄1N1.P1) [] (k̄2N2.P2) 〉〉 = νu1. νu2.
(

(k̄1u1 + k̄2u2) |
(u1(t1).(t̄1N1 | 〈〈 P1 〉〉) + u2(t2).(t̄2N2 | 〈〈 P2 〉〉))

)

This encoding works because in order for communication to proceed with the term on the right, the first
communication must occur with k̄1u1 or k̄2u2. Once this has happened, the other option is eliminated from
the choice. As an example, suppose that a receiver receives u1 on k1 before a receiver communicates on
k2. Then the term k̄2u2 is eliminated and since u2 is private, no process can communicate with the term
u2(t2).(t̄2N2 | 〈〈 P2 〉〉). This term gets eliminated when the receiver on k1 replies on u1. Thus we can define
a synchronous choice macro for output as shown below. As before, we use PICT notation to denote events
in the choice. k!(N : B);M denotes the event of sending N of type B on channel k and continuing with
the process M .

syncchoicess [k1!(N1 : B1);M1 # S1, k2!(N2 : B2);M2 # S2] =
priv u1 : chan in

priv u2 : chan in

〈out1 [k1] [u1], out1 [k2] [u2]〉 ⊗
〈

Λt1 : chan. λ̂c : out1 u1 t1.
{

let {1} = destroyout
1

[u1] [t1] ˆ c

in
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(dataB1
[t1] ˆ N1) ⊗ M1

} ,

Λt2 : chan. λ̂c : out1 u2 t2.
{

let {1} = destroyout
1

[u2] [t2] ˆ c

in

(dataB2
[t2] ˆ N2) ⊗ M2

}
〉

The typing rule for this macro is

Σ ` ki : chan Σ;Γ;∆;Ψ ` Mi # Si Σ;Γ;∆′; Ψ ` Ni : Bi
syncchoicess

Σ;Γ;∆,∆′; Ψ `
(syncchoicess [k1!(N1 : B1);M1 # S1, k2!(N2 : B2);M2 # S2])

# Syncchoicess(k1, B1, S1, k2, B2, S2)

where the type Syncchoicess(k1, B1, S1, k2, B2, S2) is defined as

Syncchoicess(k1, B1, S1, k2, B2, S2) =
∃u1 : chan. ∃u2 : chan.

((out1 k1 u1 & out1 k2 u2) ⊗
((∀t1 : chan. out1 u1 t1 ( {(dataB1

t1) ⊗ S1}) &
(∀t2 : chan. out1 u2 t2 ( {(dataB2

t2) ⊗ S2})))

5.7.3 Input-output Choice

Consider a receiver k1(y1).P1 and a sender k̄2N2.P2. The translations of these to the asynchronous π-
calculus are

〈〈 k1(y1). P1 〉〉 = νt1. k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉)
〈〈 k̄2N2. P2 〉〉 = νu2. (k̄2u2 | u2(t2). (t̄2N2 | 〈〈 P2 〉〉))

We can combine these two terms in a choice as follows.

〈〈 (k1(y1). P1) [] (k̄2N2. P2) 〉〉 = νt1. νu2.
(

(k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉) + k̄2u2) |
u2(t2). (t̄2N2 | 〈〈 P2 〉〉)

)

Though this encoding is correct in the π-calculus, we cannot implement it in CLL because we encode
choices using the type connective &, and hence the two components of a choice must use the same linear
resources. This is not the case here since there is a choice between (k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉) and k̄2u2

in the above equation. An alternate encoding that balances all resources is shown below. This encoding is
incorrect because it has an atomicity problem, which is described after the encoding.

〈〈 (k1(y1).P1) [] (k̄2N2.P2) 〉〉 = νt1. νu2.
(
k̄2u2 |
(k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉)

+ u2(t2). (t̄2N2 | 〈〈 P2 〉〉))
)
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The atomicity problem in this encoding is the following. Consider the scenario where there is a receiver
on k2 and a sender on k1 i.e. both actions in the choice can be selected. Since there is a receiver on k2,
the term k̄2u2 can communicate with it. If the process k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉) communicates with
the sender on k1 before the receiver on k2 can reply on u2, the choice is resolved and the continuation
u2(t2). (t̄2N2 | 〈〈 P2 〉〉) is eliminated. This deadlocks the partial communication on k2.

One way to eliminate this problem is to deactivate the input process k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉) once
k̄2u2 has communicated. This can be done by creating a private channel w1 and requiring the input process
to obtain a signal on that. One such encoding is shown below. As we shall see later, an internal communi-
cation can occur in this encoding, and hence it does not work in the π-calculus. However, in CLL, we can
implement this encoding using 3-way synchronization.

〈〈 (k1(y1).P1) [] (k̄2N2.P2) 〉〉 = νt1. νu2. νw1.
(

(w̄1〈〉 + k̄2u2) |
(w1(). k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉)

+ u2(t2). (t̄2N2 | 〈〈 P2 〉〉))
)

As mentioned earlier, the atomicity problem does not arise in this encoding because once k̄2u2 communi-
cates, w̄1〈〉 is eliminated and hence the input process cannot communicate. However, this encoding suffers
from an internal communication problem. The term on the right side above can perform a communication
within itself and reduce, thus resolving the choice internally.

νt1. νu2. νw1.
(

(w̄1〈〉 + k̄2u2) |
(w1(). k1(u1). (ū1t1 | t1(y1). 〈〈 P1 〉〉)

+ u2(t2). (t̄2N2 | 〈〈 P2 〉〉))
)

→
νt1. νu2. νw1.

(k̄2u2 | u2(t2). (t̄2N2 | 〈〈 P2 〉〉))

Thus this encoding does not work in the π-calculus. However, in CLL, we can chain reactions together.
In particular, successive inputs can be chained together i.e. we can force two senders to synchronize si-
multaneously with a receiver. If we chain together the two inputs in w1(). k1(u1). . . ., then this internal
communication on w1 cannot occur without the presence of a sender on k1. Conversely, no sender on k1

can communicate with this term unless w̄1〈〉 is also present. Thus this encoding works for CLL. We build a
macro based on this encoding as follows.

syncchoicers [k1?(y1 : B1).M1 # S1, k2!(N2 : B2);M2 # S2] =
priv t1 : chan in

priv u2 : chan in

priv w1 : chan in

〈out0 [w1], out1 [k2] [u2]〉 ⊗
〈

λ̂c′ : out0 w1.

Λu1 : chan. λ̂c : out1 k1 u1.
{
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let {1} = destroyout
1

[k1] [u1] ˆ c in

let {1} = destroyout
0

[w1] ˆ c′ in

(out1 [u1] [t1]) ⊗

λ̂y′1 : dataB1
t1.

{
let {y1} = {undataB1

[t1] ˆ y′1}
in M1

}
} ,

Λt2 : chan. λ̂c : out1 u2 t2.
{

let {1} = destroyout
1

[u2] [t2] ˆ c

in

(dataB2
[t2] ˆ N2) ⊗ M2

}
〉

The typing rule for this construct is

Σ ` ki : chan
Σ;Γ;∆,∆′, y1 : B1; Ψ ` M1 # S1

Σ;Γ;∆′; Ψ ` N2 : B2

Σ;Γ;∆;Ψ ` M2 # S2
syncchoicers

Σ;Γ;∆,∆′; Ψ `
(syncchoicers [k1?(y1 : B1).M1 # S1, k2!(N2 : B2);M2 # S2])

# Syncchoicers(k1, B1, S1, k2, B2, S2)

where the type Syncchoicers(k1, B1, S1, k2, B2, S2) is defined as follows.

Syncchoicers(k1, B1, S1, k2, B2, S2) =
∃t1 : chan. ∃u2 : chan. ∃w1 : chan

((out0 w1 & out1 k2 u2) ⊗
((out0 w1 ( ∀u1 : chan. out1 k1 u1 ( {(out1 u1 t1) ⊗ (dataB1

t1 ( {S1})}) &
(∀t2 : chan. out1 u2 t2 ( {(dataB2

t2) ⊗ S2})))

The input-output choice construct described here can be generalized to an arbitrary number of senders and
receivers. The extension is straightforward and we elide the details here. We also observe that the choice
macros presented here can be used in conjunction with the macros syncsend and syncrecv defined earlier.
However, separate channels must be used for synchronous and asynchronous communication i.e. channels
used for calls on syncsend or syncrecv must not be used for calls on asyncsend or asyncrecv and
vice-versa.

5.8 Example: Read-Write Memory Cell

We construct a read-write memory cell to illustrate the choice mechanism designed above. A read-write cell
is a process that remembers one single value. It listens to requests to read the value stored on channel read
and to write (change) the value in the cell on channel write. Since a single write can be followed by several
reads, the value stored in the cell has to be non-linear. Further, we assume that the cell is always created with
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type CellB(read,write) = µα.Syncchoicers(write, {!B}, {{α}}, read,B, {α})

(∗ memoryCellB : ∀read : chan. ∀write : chan. B → {CellB(read,write)} ∗)

fun memoryCellB [read : chan] [write : chan] (v : B) =
{

foldCellB(read,write)

syncchoicers

[
write?(x : {!B}).
{

let {!y} = x in

memoryCellB [read] [write] y
},
read!(v : B); memoryCellB [read] [write] v

]
}

Figure 34: The function memoryCell

a value stored in it.10 Figure 34 describes a function memoryCell that creates a memory cell on channels
read and write and initializes it with the value v.

6 Discussion

CLL is a concurrent language designed from logical principles. In the process of designing CLL, we have
accomplished four main objectives. First, we have shown that proof-search in logic has an interesting com-
putational interpretation - it can viewed as a procedure to link together programs to form larger programs.
This may be viewed as an extension of the Curry-Howard isomorphism to include proof-search procedures.
Second, we have obtained a symmetric integration between functional and logic programming. f CLL is
purely functional. lCLL introduced in section 3 embeds this functional language in a concurrent logic pro-
gramming language that performs proof-search on types of programs and then links programs together. In
section 4 we embed the lCLL back into f CLL, making the integration between functional and logic pro-
gramming symmetric. Execution of programs in full-CLL proceeds in interleaving phases of functional
evaluation of programs and proof-search to link parts of programs. To the best of our knowledge, this is the
first time that functional and logic programming have been integrated in this manner.

CLL is also a symmetric integration of functional and concurrent programming in a typed setting. lCLL in
section 3 adds concurrency to the functional language f CLL. Full-CLL allows lCLL CHAMs to be created
and nested inside functional evaluation through the link construct, thus making the integration symmetric.
The idea of integrating functional and concurrent programming is not new. The blue-calculus [8], CML

10This is in sharp contrast with memory cells called I-structures which are created empty and have a write-once, read-many
semantics. See [32] for a description of I-structures.
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[31, 32], JoCAML [15], PICT [30] and Facile [17] all integrate functional and concurrent programming.
All these languages have both functional and concurrent features and are typed. However, there are several
differences between these languages and CLL. First, all these languages have a “flat” model for concurrent
processes, i.e. there is a single global configuration in which all parallel processes execute simultaneously.
When a function creates a sub-process, the process is automatically lifted and placed in this global con-
figuration. This process can then freely communicate with all other processes. Thus communication and
synchronization cannot be localized to specific parts of programs. In sharp contrast, each call to the link

construct in CLL creates a separate configuration for concurrent processes.11 Processes within a configu-
ration can communicate and synchronize with each other, but processes in separate configurations cannot
(for an illustration, see the example of Fibonacci numbers in section 5.1). Another consequence of having
a single configuration for processes in existing concurrent functional languages is that concurrent compu-
tations (processes) do not return values to functional terms directly. This has to be done indirectly through
the message passing mechanism of the language. In CLL, on the other hand, a concurrent computation
started using the link construct directly returns a result that can be used in the remainder of the functional
computation. This results in a significant difference in the structure of programs written in CLL and other
languages. It also makes the integration between functional and concurrent programming more symmetric
in CLL. The third difference between CLL and blue-calculus, CML, JoCAML, PICT and Facile is that every
process in CLL has a distinct type that provides definite information about the behavior of the process. For
example, a process of type S1 ⊗ S2 is a parallel composition of two processes of types S1 and S2. On the
other hand, typing for processes in the other concurrent languages mentioned above is weak and process
types provide no information about the behavior of processes. In Facile, PICT and JoCAML processes have
no types at all. The type system only checks that each individual functional term in a process has a type.
In the blue-calculus, all processes in the global configuration must have the same type. In CML, processes
are not explicitly visible; they are only observable through side-effects like communication. We believe that
having informative types on processes will make it easier to reason about correctness of CLL programs.

The fourth contribution of CLL is an exploration of connections between process-calculi constructs and
connectives of linear logic in the context of programming language design. As seen in section 3.5, the lin-
ear logic connectives ⊗, ∃, &, ⊕, ( and atomic propositions correspond to process-calculi constructs of
parallel composition, name restriction, external choice, internal choice, input prefixing and asynchronous
output respectively. Further, communication channels can be simulated using index refinements and syn-
chronization and communication between processes can be performed using proof-search. Thus there is a
correspondence between linear logic connectives and process-calculi constructs and proof-search in linear
logic and communication in process-calculi. Abramsky’s work on computational interpretations of linear
logic [1] and the MSR framework [11] also explore similar connections between linear logic and concur-
rent computation but as opposed to CLL they do not use this correspondence to construct a programming
language. As far as we know, this is the first time that such connections have been used explicitly in a
programming language.
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