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Abstract

This paper presents experimental results on the performance effect of using symbolic
simulation with SAT-based reparametrization within the Counterexample Guided Ab-
straction Refinement framework. Abstraction refinement has been applied successfully
to prove safety properties of large industrial circuits. However, all existing abstraction
refinement frameworks simply use SAT-based Bounded Model Checking (BMC) to re-
fute the property. The model used for the BMC instance is not abstracted, and thus
is susceptible to the state space explosion problem. We address this issue by using a
symbolic simulator with a SAT-based reparametrization algorithm as a replacement
for BMC within the abstraction refinement framework. The reparametrization is per-
formed as soon as the equations maintained by the symbolic simulator become too
large. We discuss the quality of the refinement information that is extracted from the
symbolic simulator.





1 Introduction

Model checking [CGP00] has become a widely applied technique that produces
a major enhancement in circuit design reliability and robustness. However, the
effectiveness of model checking of such systems is severely constrained by the
state space explosion problem, and much of the research in this area is targeted
at reducing the state-space of the model used for verification. One principal
method in state space reduction is Abstraction. Abstraction techniques reduce
the program state space by mapping the set of states of the actual system to an
abstract, and smaller, set of states in a way that preserves the behaviors of the
system that are of interest.

Many methods define the transition relation of the abstract circuit so that
it is guaranteed to be a conservative over-approximation of the original circuit,
i.e., any safety property that can be established on the abstraction also holds on
the original circuit. Thus, if the model checker returns that the property holds
on the abstract model, the algorithm terminates and the property holds on the
original circuit.

The drawback of the conservative abstraction is that when model checking of
the abstraction fails it may produce a counterexample that does not correspond
to a counterexample on the original (concrete) circuit. This is usually called a
spurious counterexample. In order to distinguish spurious from real counterex-
amples, the counterexample is simulated on the concrete circuit. If the simulation
succeeds, the counterexample is real. If not so, it is spurious.

When a spurious counterexample is encountered, abstraction refinement is
performed by adjusting the abstraction in a way that eliminates this counterex-
ample.

Automated Abstraction Refinement

The abstract-refine process as described above is often performed in an infor-
mal, manual manner, and requires considerable expertise. The counterexample
guided abstraction refinement framework (CEGAR) automates this approach
[CGJ+00,CCS+02]. It has been applied successfully to both hardware and soft-
ware. The abstraction refinement loop for software was introduced and promoted
by the SLAM project at Microsoft [BR00].

First, an initial abstraction is computed. The model checking is then per-
formed on the abstract model. Thus, if the property holds on the abstract model,
it also holds on the concrete model, and the algorithm terminates. The abstrac-
tion greatly reduces the size of the model, making BDD based model checking
feasible.

However, if the property does not hold on the abstract model, the property is
not refuted, as the counterexample may result from spurious behavior added by
the abstraction process. Thus, the abstract counterexample obtained from the
model checker is then simulated on the concrete, unabstracted machine. Only if
this simulation run succeeds, the property is refuted. Otherwise, the abstraction
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has to be refined and the process starts over. The refinement step is automated
by using information obtained from the failed simulation.

The existing publications on abstraction refinement for hardware favor SAT-
based Bounded Model Checking (BMC) to perform the simulation. In Bounded
Model Checking, the transition system is unwound up to a given depth k to form
an equation. The equation is satisfiable if and only if an error state is reachable
within k steps. In the CEGAR framework, the number of steps k is the length
of the abstract counterexample.

Note that the model used by the Bounded Model Checker is the original,
full-size model, restricted to an abstract counterexample trace. Thus, the SAT
instance will roughly be k times the size of a SAT instance corresponding to the
circuit. In case of large industrial circuits, the size of this instance is already
prohibitive. Previous experimental results show that the simulation step in the
CEGAR framework can be a serious bottleneck [CCS+02].

If the constrained BMC SAT instance is satisfiable, the abstract counterex-
ample can be simulated on the concrete model and a bug is found. If not, the
abstraction is refined using various heuristics, which often use information ob-
tained from the BMC run. In [CCS+02], the conflict graph maintained by the
SAT solver is used to derive a measure of the importance of the variables. The
most important variables are used to build the abstract model.

Symbolic Simulation

However, BMC is not the only technique that is applicable for the simulation
step in the abstraction refinement loop. Symbolic simulation is a widely applied
technique for the analysis of synchronous circuits. As in BMC, the transition
relation is unwound into equations that represent the set of states that is reach-
able in exactly k steps. The equations are parameterized in the initial state
and the inputs of the circuit. Thus, the set of states is stored in a parametric

representation.
Most implementations of symbolic simulators use BDDs [Bry86] to represent

these equations [CM90,Jon99,AJS99,Goe03,GB03,YS02]. However, these BDDs
may grow exponentially in the number of simulation steps, as the number of
variables grows. In order to address this problem, symbolic simulators compute
a new, equivalent parametric representation once the simulator is about to run
out of memory. The new representation can be significantly smaller since it
usually requires fewer variables. The process of converting one parametric rep-
resentation to another is called reparameterization. In [CM90] and [Jon99], the
reparameterization algorithm first converts the parametric representation into
characteristic function form and then parameterizes this form. In [Goe03], an
algorithm is given for computing set union in parametric form. Algorithms for
reparameterization and quantification are given that are based on this set union
algorithm. However, the reparameterization is done using BDDs, hence as the
number of simulation steps grows, the algorithm quickly becomes very expen-
sive. This is due to the fact that each simulation step introduces more input
variables, which need to be quantified during reparameterization.
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In [CCK03a,CCK04], a symbolic simulator with SAT-based reparametriza-
tion is presented. The equations are not stored using BDDs, but simply as a
syntax tree with sharing. Thus, the equations only grow linearly with the num-
ber of simulation steps. Once they become too large, the algorithm performs
a reparametrization using a SAT solver. This algorithm outperforms the BDD-
based symbolic simulators on large examples. However, proving a safety property
correct using a forward symbolic simulator requires unwinding the circuit up to
the completeness threshold [KS03]. This is infeasible for large examples. Thus,
the symbolic simulator is useful as means of refutation only, as is BMC. How-
ever, the symbolic simulator in [CCK04] only allows transition functions, not
arbitrary transition relations.

Contribution

This paper presents experimental results on a combination of two already exist-
ing techniques:

– We extend the symbolic simulation algorithm presented in [CCK04] in order
to handle arbitrary transition relations in order to allow constraining the
simulation run with values from the abstract counterexample.

– We compare the performance of the CEGAR framework using BMC and
using a SAT-based symbolic simulator. Our new experiments show that the
symbolic simulator addresses the capacity problem caused by BMC, and that
the overall performance benefits greatly from the reduced simulation time.

– During reparametrization, some information from the earlier transitions is
lost, as only the set of reachable states is retained. This lost information
is no longer available to compute a refinement in the case the simulation
fails. The experiments show that this loss is insignificant for most circuits.
However, the new algorithm fails on a few medium-size benchmarks due to
insufficient refinement.

Related Work In [CGKS02], various ways of obtaining refinement information
are explored. The refutation is done using SAT-based BMC.

In [MA03], the CEGAR framework is changed as follows: An abstract coun-
terexample is no longer obtained. The only information of interest is the length
m of the abstract counterexample. This length m is then used as the bound for
a normal, unconstrained BMC instance. If the BMC instance is satisfiable, a
bug is found. If this is not the case, information from the SAT solver is used to
generate the next abstract model.

In [McM03], a new framework is introduced: The algorithm initially performs
Bounded Model Checking for some m steps in order to refute the property. If
this fails, the proof of unsatisfiability extracted from the SAT solver is used to
simplify a fixed-point computation. The purpose of the fixed-point computation
is to detect the case when the property actually holds. This may fail, and if so,
the algorithm is repeated with an increased value of m.

All cited approaches therefore solely rely on Bounded Model Checking to
refute the property. The extensions that are introduced by these publications
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are used only to improve refinement or to detect the case that the property is
true. The related work does not address the simulation bottleneck.

Outline In section 2, we provide background information about counterexample
guided abstraction refinement and related techniques. In section 3, we describe
how the reparametrization step can be adjusted to take additional constraints
on the transition relation into account. In section 4, we report the results of our
new experiments. In section 5, we describe how to detect fixed points during the
symbolic simulation.

2 SAT-Based Counterexample Guided Abstraction

Refinement

We briefly describe the SAT-based CEGAR framework used in [CCS+02] in this
section. More details can be found in the referenced paper.

2.1 Localization Reduction

For circuits, a very simple and inexpensive form of abstraction, called Localiza-

tion Reduction [Kur94] has proven to be effective: Latches are replaced by free
inputs, and the logic that computes the next value of the latch is removed. The
remaining latches are called the visible latches. The latches that are removed
are called invisible latches. The resulting circuit is smaller, and hence easier to
verify.

This method defines the transition relation of the abstract circuit so that
it is guaranteed to be a conservative over-approximation of the original cir-
cuit, i.e., any safety property φ that can be established on the abstraction
also holds on the original circuit. An example of a more general abstraction
technique is predicate abstraction. The drawback of any conservative abstrac-
tion is that when the verification of the abstract model fails, one may obtain a
counterexample that does not correspond to any concrete counterexample. This
is usually called a spurious counterexample. When a spurious counterexample
is encountered, refinement is performed by adjusting the set of visible latches
in a way that eliminates this counterexample. The abstraction refinement pro-
cess has been automated by the Counterexample Guided Abstraction Refinement

paradigm [Kur94,CGJ+00,DD01], or CEGAR for short.
This framework is shown below: one starts with a coarse abstraction h, and

then one verifies the abstract transition relation M̂ induced by h. If the abstract
model checking run fails and generates a counterexample, the counterexample is
simulated on the concrete model M to see if it is valid or not. If it is not valid,
the counterexample is analyzed to infer the refinement h′ of the abstraction
function. The actual steps of the loop follow the abstract-verify-refine paradigm
and depend on the abstraction and refinement techniques used.

1. Generate an initial abstraction function h.
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2. Model check M̂ . If M̂ |= φ, return TRUE.

3. If M̂ 6|= φ, check the generated counterexample Ĉ on M . If the counterex-
ample is real, return FALSE.

4. Refine h, and goto step 2.

2.2 Validating the Abstract Counterexample

Given an abstract model M̂ and a safety formula φ, we run the usual BDD-
based symbolic model checking algorithm to determine if M̂ |= φ. Suppose that
the model checker produces an abstract counterexample path 〈c0, c1, . . . , ck〉. Let
t(0), . . . , t(k) be a trace in the concrete machine. In order to check whether this
counterexample also exists in the concrete model M or not, we symbolically
simulate M beginning with the initial state I(t(0)) using a fast SAT checker.
At each stage of the symbolic simulation, we constrain the values of the visible
variables according to the abstract counterexample. Thus, the equation for BMC-
based symbolic simulation is:

I(t(0)) ∧ c0(t(0)) ∧ R(t(0), t(1)) ∧ c1(t(1)) ∧ . . .

∧R(t(k − 1), t(k)) ∧ c(t(k)) (1)

Each c(t(i)) is a predicate that constraints the visible variables in the state
t(i). The invisible variables are not constrained. If this propositional formula is
satisfiable, we successfully simulated the counterexample on the concrete ma-
chine and can conclude that M 6|= φ. As done in BMC, a counterexample trace
can be extracted from the satisfiable assignment provided by the SAT solver.

2.3 SAT-Based Refinement

If the counterexample is spurious, then formula 1 is unsatisfiable. Modern SAT
checkers can identify the cause of unsatisfiability of a SAT instance (see, e.g.,
[ZM03]). In [CCS+02], we proposed two methods to determine a small set of vari-
ables necessary for the unsatisfiability of the SAT formula. The first method is
based on scoring invisible variables during the SAT check. Essentially, a weighted
score based on the number of backtracks a variable receives during the SAT check
and the number of times the variable appears in a conflict clause is computed.
The invisible state variables from all the simulation steps are ranked based on
this score, and a small set of the highest scored variables are used for the refine-
ment. In the second method, a conflict dependency graph is built to analyse the
relations between various conflicts that occur during unsatisfiable SAT check.
From the roots of this directed graph (vertices with no incoming edges), the
causes for the unsatisfiability are inferred. The variables corresponding to the
roots of the graph are then used as new visible variables.

The set of refinement candidates identified from conflict analysis is usually
not minimal, i.e., not all registers in this set are required to invalidate the current
spurious abstract counterexample. To remove those that are unnecessary, we
have adapted the greedy refinement minimization algorithm in [WHL+01]. This
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refinement algorithm has two phases. The first phase identifies the registers
sufficient to prevent the spurious counterexample. In the second phase, a minimal
set of registers necessary to prevent the counterexample is identified. For our
experiments we only use the second phase, in which we remove one register at a
time to see if the counterexample is removed or not. If not, then the register is
not required in the refinement.

Note that data from of the whole counterexample is used to infer refinement
information. If reparameterization is used, we lose all the information from the
counterexample up to the last time the parametrization was done, and hence
only the last segment of the counterexample is analysed to infer refinement.

3 SAT Based Reparameterization in Symbolic Simulation

In [CCK04], we presented an algorithm for SAT-based reparameterization in
symbolic simulation for functional circuits. In order to use it to simulate abstract
counterexamples in the CEGAR framework, it has to be extended to handle
handle general transition relations (for example through SMV style TRANS and
INVAR) statements.

This section describes the parameterization algorithm when R(v̄, v̄′) is the
transition relation of the system. We assume that the states v̄ of the transition
system are an assignment to a vector of n state bits. The bit i of the vector v is
denoted by vi.

Let c0(v̄), c1(v̄), . . . , ck(v̄) be predicates on concrete states v̄. The predicates
correspond to the constraints imposed by an abstract counterexample with k

steps that we are interested in simulating on the concrete machine.
Let τ(t) denote a predicate that holds if and only if t is a valid concrete trace

of length k in the model M conforming with the counterexample c0, . . . , ck, or
formally:

τ(t) :⇐⇒ I(t(0)) ∧ c0(t(0))
k−1∧

j=0

(R(t(j), t(j + 1)) ∧ cj+1(t(j + 1))) (2)

We aim at obtaining a small, symbolic representation for the set of all states
v̄ such that there exists a trace of length k in M that ends in the state v̄. We
denote the set by X .

X := {v̄ ∈ S | ∃t ∈ Sk+1 : τ(t) ∧ v̄ = t(k)} (3)

The set X is then used in a new simulation instance instead of the original initial
state predicate I. This process can be iterated to explore the model further until
the counterexample is either found to be real or spurious. In order to make this
process efficient, a small, symbolic representation for X must be found. We now
describe how to compute a parametric representation for X .

For each state bit vi, a (re-)parametrization algorithm computes a new func-
tion hi(p̄). The function maps a parameter vector p̄ to the value of the state bit i.
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The vector of all such functions is denoted by h̄(p̄). The set of states represented
by the functions is simply the range of h̄, i.e., the set of values of the functions
for arbitrary parameters. Thus, the representation is called parametric. Formally,
the set of states represented by the functions h̄(p̄) = (h1(p̄), h2(p̄), . . . , hn(p̄)) is
denoted by Y:

Y := {v̄ ∈ S | ∃p̄ ∈ P.h̄(p̄) = v̄} (4)

The parameter p̄ is a vector of bits {p1, p2, . . . , pl}, where l ≤ n. We denote the
set of all parameter vectors by P. Thus, the number of parameters is at most
equal to the number of state variables.

The functions hi have a specific structure. The function hi only depends on
the parameters p1 to pi. The algorithm computes these functions in the order
h1, h2, . . . , hn.

Note that a particular assignment to the state variables v1 to vi may restrict
the possible values any later bit may have. As an example, consider the set of
states consisting of the three states (0, 1), (1, 0) and (1, 1). If h1 maps a particular
p̄ to 0, then h2 must map the same p̄ to 1. We say that the second state bit is
forced to 1. In contrast to that, if h1 maps p̄ to 1, the value of h2 is not restricted.
It may either be 0 or 1, i.e., it has free choice.

Intuitively, each new parameter pi allows for the free choice of the ith state
bit vi. Let h

1
i (p1, . . . , pi−1) denote the Boolean condition under which the state

bit vi is forced to take value 1, let h0
i (p1, . . . , pi−1) denote the Boolean condition

under which the state bit vi is forced to take value 0, and hci (p1, . . . , pi−1) denote
the Boolean condition under which vi is free to choose a value (is not forced to
either 0 or 1).

For the example above, suppose we let the first bit be represented by the free
parameter p1. If the first bit is 0, then the second bit is forced to be 1. Thus, the
Boolean condition under which v2 is forced to 1 is h1

2(p1) = ¬p1. Moreover, if the
first bit is 1, then the second bit is free to be either 0 or 1. Thus, hc2(p1) = p1.
Note that h0

2(p1) = 0, since the second bit is not forced to 0 in any condition.

The following decomposition of hi was introduced in [GB03]:

hi(p1, . . . , pi) = h1
i (p1, . . . , pi−1) ∨ (pi ∧ h

c
i (p1, . . . , pi−1)) . (5)

Intuitively, Equation 5 is interpreted as follows. If h1
i holds, the value of bit vi is

1 regardless of the other two functions, hence the first term in the equation. If
hci is true, the choice is free, and the bit is given by the parameter pi. Otherwise,
the bit is forced to zero.

The three conditions h0
i , h

1
i and hci are mutually exclusive and complete, thus

hci = ¬(h
1
i ∨ h

0
i ) = ¬h

1
i ∧ ¬h

0
i . (6)

Continuing our example, we get h2(p1, p2) = ¬p1 ∨ (p2 ∧ p1). Thus, to compute
hi, it is sufficient to compute any two of the three functions h1

i , h
0
i and hci , which

we describe now.
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3.1 Computing h
1

i
and h

0

i

As described above, choosing specific values for the parameters p1 to pi−1 re-
stricts the value the function hi can have, as the values for the previous bits v1 to
vi−1 may force vi to be either 0 or 1. We formalize this as follows: the predicate
ρi takes as arguments the parameters p1 to pi−1 and a trace t. It is true if and
only if the following two conditions hold:

1. The trace is a valid trace in M, i.e., τ(t) holds.
2. The first i− 1 state bits of the last state in the trace match the values given

by the functions h1(p1), h2(p1, p2), . . . , hi−1(p1, . . . , pi−1).

Formally, ρi is defined as:

ρi(p1, . . . pi−1, t) := τ(t) ∧
i−1∧

j=1

hj(p1, . . . , pj) = t(k)j . (7)

Here, t(k)j denotes the j
th state bit of state t(k). Intuitively, ρi(p1, p2, . . . , pi−1, t)

indicates that a trace t is valid and it conforms to the parameters p1, p2, . . . , pi−1.
Note that ρ1(t) = τ(t), thus, ρ1 is 1 for any valid trace and ρi(p1, . . . , pi−1, t) = 0
for any invalid trace t.

Now the condition h1
i can be easily expressed as follows: We want a Boolean

condition in {p1, . . . , pi−1} variables under which vi is forced to take the value 1.
Thus, if an assignment (p1, p2, . . . , pi−1) makes h1

i (p1, . . . , pi−1) true, then that
implies that all traces t that conform with this assignment end in a state t(k)
where t(k)i is 1.

h1
i (p1, . . . , pi−1) = ∀t ∈ S

k+1. (ρi(p1, . . . , pi−1, t)→ t(k)i = 1) (8)

Analogously, h0
i can be expressed as

h0
i (p1, . . . , pi−1) = ∀t ∈ S

k+1. (ρi(p1, . . . , pi−1, t)→ t(k)i = 0) . (9)

Note that h1(p1) = p1, unless the bit v1 is always 1 or 0, in which case h1 = 1
or h1 = 0. This follows automatically from ρ1 = τ(t). The Equations 5 to 9 give
us an algorithm for computing a symbolic representation of the set of states
reachable in exactly k steps.

As described in [CCK04], we use the procedure described in [CCK03b] to
obtain hαi by the use of SAT-based enumeration. We also use incremental SAT
and a single SAT-enumeration for computing both h0

i and h1
i , as it is done in

[CCK04].

4 Experimental Results

We embed the symbolic simulation algorithm with SAT-based reparametrization
into the abstraction refinement framework described in [CCS+02]. The symbolic
simulation algorithm is used to replace BMC as means of simulating abstract
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counterexamples. The refinement information is extracted from the full simu-
lation run as in [CCS+02]. In contrast to that, the proposed algorithm with
symbolic simulation extracts refinement information only from the last segment
of the counterexample simulation. This may result in refinement information of
lower quality. Not that both algorithms are just refinement heuristics, and none
guarantees the elimination of the spurious counterexample.

Both methods use a BDD-based model checker for the verification of the
abstract model. The model checker is based on NuSMV and uses dynamic vari-
able ordering. Apart from deriving refinement information, the initial variable
orders for the BDD-based model checker are also derived from the analysis of
failed counterexample, as described in [CCS+02]. In the very first iteration of
the abstraction refinement loop, no variable orders are provided to NuSMV.

Table 1 lists the circuits that we used for the experiments, and provides some
characteristics of the circuits. The circuits are from three different classes. The D
and M series circuits are processor benchmarks. The IU circuits are models of the
picoJava microprocessor from Synopsys, and the s-series circuits are ISCAS89
sequential benchmarks.

The D, M and IU series benchmarks already come with properties. In con-
trast to that, there are no properties available for the ISCAS89 circuits. We
used random simulation to infer reasonable properties for these circuits. The
property verified for the s3271 circuit is AGAF(

∨6

i=0
ManFinali), for s13207

the property is AG¬(g12 ∧ g1229 ∧ g1325 ∧ 1391 ∧ g1431 ∧ g972 ∧ g182), for
s15850 the property is AG¬(g109 ∧ g878 ∧ g901), and for s38417, the property
is AG¬(g222∧ g342). We also experimented with other ISCAS89 circuits, how-
ever, the length of the longest counterexample to simulate on these circuits was
either too short to be of interest, or the time taken by the SAT-based simulation
was too small a fraction of the total time.

circuit # latches # inputs bug. length

D6 161 16 20
D18 498 247 28
D19 285 49 32
D20 532 30 14
M3 334 155 true
M4 744 95 true
M5 316 104 true
IUp1 4494 361 true
IUp2 4494 361 true
IUp3 4494 361 true
s3271 116 26 true
s13207 669 31 true
s15850 597 14 true
s38417 1636 28 true

Table 1. Circuits used for abstraction-refinement experiment.
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We performed our experiments on a machine with dual AMD Athlon MP
1800+ processors and 3GB memory. The reparameterization is done as soon as
the size of the SAT instance for the simulation exceeds 700MB. The total amount
of memory was limited to 2.5GB.

Table 2 describes the comparative experiment of the new technique with the
results as described in [CCS+02]. The refinement technique used and all other
parameters were the same in both sets of experiments. The only difference is the
algorithm used for simulation.

The columns marked “sym” are for the new algorithm, while the columns
marked ”fmcad” are for the old algorithm. The set marked “# refn” compares
the number of refinement iterations required, the set marked “|reg|” compares
the number of latches in the final abstract model, the set marked “max |CE|”
compares the length of the longest counterexample encountered, the set marked
“sim. time” compares the time spent in the simulation of abstract counterexam-
ples over all refinement iterations, and the set marked “total time” compares the
total time to prove the property or to disprove it. The last column marked “#
rep” lists the total number of reparameterizations done across various simula-
tions for the circuit. Verification was not complete for circuits when the numbers
are in bold typeface with an accompanying symbol. The run times are given in
seconds.

ckt # refn |reg| max |CE| sim. time total time # rep
fmcad sym fmcad sym fmcad sym fmcad sym fmcad sym

D6 48 48 39 39 20 20 438 362 845 718 23
D18 142 127 253 253 28 28 3598 2740 9873 8349 56
D19 37 49 103 112 32 32 4348 1329 14528 12087 95
D20 74 74 265 265 14 14 1359 338 2794 2192 23
M3 58 42† 128 87† 54 54† 4378 2088† 15306 >21600† 3
M4 173 94† 336 184† 44 39† 15540 4776† 20327 >21600† 21
M5 7 11 30 30 6 10 3427 2902 8653 10312 3
IUp1 8‡ 13 12‡ 19 72‡ 72 3390‡ 1295 4877‡ 4063 117
IUp2 6 6 13 13 22 22 1298 605 2498 1335 16
IUp3 17? 32 19? 41 52? 67 > 21600? 3022 > 21600? 5836 325
s3271 32 32 38 38 48 48 117 96 198 174 3
s13207 15 15 23 23 43 43 2231 1035 4066 2454 13
s15850 8 8 18 18 56 36 1643 669 2998 2108 8
s38417 19 19 29 29 53 53 1347 462 1655 1077 14

Table 2. Comparison of SAT based reparameterization symbolic simulation against
plain SAT based simulation as in [CCS+02]. †: Model checking of abstract model timed
out, ‡: Simulation of counterexample failed, and ?: Simulation of counterexample timed
out.

In Figure 1, we show the scatter plots of the simulation time and the total
model checking time for both techniques. The horizontal axis is for the new
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Fig. 1. Scatter plots of simulation time and total time.
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simulation algorithm, while the old algorithm is represented by the vertical axis.
For the failed instances, we used the time value 21600 in the scatter plots.

The new simulation algorithm yields useful refinement information in most
experiments, and the improvement in run-time is due to the faster simulation.
The large circuits IUp1 and IUp3 fail to verify with the original simulation algo-
rithm, but can be verified with the new technique. The simulation using SAT-
based BMC exceeds the memory bound for IUp1 and the time bound for IUp3.
The difference between IUp1 and IUp3 is due to the fact that there is only one
very long counterexample for IUp1, while for IUp3 there are multiple long coun-
terexamples. The sum of the time required to simulate all the counterexamples
exceeds the time bound.

However, the medium-sized circuits M3 and M4 show negative results. These
circuits fail to verify within the time limit of 6 hours because the BDD-based
model checking of abstract model times out. We examined the failure of the new
algorithm for the circuits M3 and M4. For the M4 circuit, the new set of latches
obtained from the truncated simulation using the new technique was different
from that obtained by the original algorithm. Thus, the failure is caused by the
low quality of the refinement information.

For the M3 circuit the set of latches computed by the new algorithm is the
exact same as computed by the BMC-based algorithm. However, we analyze the
failed counterexample simulation to derive variable orders for the BDDs used
for verifying the abstract model. The BDD variable orders obtained by the new
method were different than those obtained by the old method, and cause the
BDD-based model checker to fail. When we used the variable orders derived by
the old method, the abstract model checking in the new method was successful
for 6 more refinement iterations, after which the model checking of abstract
model checking failed due to a different set of latches.

5 Computing Fixed Points by Introducing Self Loops

The symbolic simulation computes the set of states reachable in exactly k steps.
In order to find fixed points, we need to compute the set of states reachable in
k steps or less and we also need a method to compare two representations. In
[CCK03a], a method to compute the union of the sets of states in parametric form
is presented. However, the method is too expensive to be of any practical use.
The majority of the cost is in invoking reparameterization after each simulation
step. However, the following method can be used to compute the union of the
set of states. The idea is to modify the transition relation such that it also
allows self-loops back to each state. Thus, if the original transition relation is
R(v, v′), we change it to R(v, v′) ∨ (v = v′). For functional circuit descriptions,
this can be achieved by driving each latch input from a multiplexer controlled
by a free input. The multiplexer selects either the original latch input or the
latch state. This is a well known approach for nondeterministically “stalling”
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the state machine.1 When simulating using this modified transition relation for
k steps, we get the set of states reachable in k or less steps.

In order to detect whether we have reached fixed point or not, we need to
compare two state set descriptions for equality. Since our reparameterization al-
gorithm produces canonical representations (provided the order of the state vari-
ables is the same), we only need to compare the two parametric representations
on a function by function basis. Note that we do not need to invoke reparameter-
ization after each step of the simulation. We just need to compare the last two
parametric representations for equality. Suppose Hk(P ) = (hk1(P ), . . . , hkn(P ))
and Hk+δ(P ) = (hk+δ

1 (P ), . . . , hk+δ
n (P )) are the last two parametric representa-

tion. Note that δ can be and is usually greater than 1. In order to compare these
two representations, we need to compare each function hki (P ) with hk+δ

i (P ).
Since we represent these functions by Boolean expressions and not by some
canonical data structure such as a BDD, a method for checking equality is re-
quired. The simplest method is to check hki (P )⊕hk+δ

i (P ) for satisfiability. If the
formula is satisfiable for any i, then the two representations are not equal, and
the fixed point is not yet reached. We can also use state of the art combinational
equivalence checkers to accomplish this task.

For the circuits we experimented with, the diameter is far too large to actually
reach the fixed point. Within the time bound of 6 hours, we were able to simulate
the circuit D24 for 8744 steps without reaching a fixed point, the circuit M4 was
simulated for 238 steps without reaching the fixed point and the circuit IUp1
was simulated for 936 steps without reaching the fixed point. Even though the
the algorithm was not able to reach fixed point for the circuits, the extension of
adding self loops to compute the unions of the sets of states at least theoretically
allows one to use the reparameterization based algorithm for general property
checking. To the best of our knowledge, there is no other algorithm available that
is able to reach these depths in a fixed point iteration on such large circuits.

6 Conclusion and Future Work

Using experiments on large industrial circuits, we show that the use of sym-
bolic simulation with SAT-based reparametrization within the Counterexample
Guided Abstraction Refinement framework can yield significant performance im-
provements and enables the verification of larger circuits.

However, the results also show that there are a few circuits for which the
SAT-based reparametrization provides insufficient refinement information, and
thus, performs worse than BMC. The new technique is therefore not clearly
dominant over the old technique, and the user should be given a choice of both
techniques.

Both CEGAR and symbolic simulation with SAT-based reparametrization
are known already; the contribution of this paper is the quantification of the
performance of the combination.

1 The authors thank Armin Biere for suggesting this.
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Future research will investigate criteria that can predict the success of either
simulation technique and automated ways to decide which technique should be
used. We will also investigate the performance impact using different refinement
algorithms.
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