Checking Consistency of C and Verilog
using Predicate Abstraction and Induction

Edmund Clarke Daniel Kroening

June 25, 2004
CMU-CS-04-131

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

It is common practice to write C models of circuits due to theager simulation ef-

ficiency. Once the C program satisfies the requirements,itbeitcis designed in a

hardware description language (HDL) such as Verilog. Ihex¢fore highly desirable
to automatically perform a correspondence check betwesi€tmodel and a circuit

given in HDL. We present an algorithm that checks consistdretween an ANSI-

C program and a circuit given in Verilog using Predicate Adgtion. The algorithm

exploits the fact that the C program and the circuit shareynieasic predicates. In

contrast to existing tools that perform predicate abstvacbur approach is SAT-based
and allows all ANSI-C and Verilog operators in the predisai#/e report experimental
results on an out-of-order RISC processor. We compare ttferpgnce of the new

technique to Bounded Model Checking (BMC).

This research was sponsored by the Gigascale Systems Eeszmter (GSRC), the Na-
tional Science Foundation (NSF) under grant no. CCR-9883it& Office of Naval Research
(ONR), the Naval Research Laboratory (NRL) under contractN00014-01-1-0796, and by
the Defense Advanced Research Projects Agency, and the Resgarch Office (ARO) under
contract no. DAAD19-01-1-0485, and the General Motors &lmitative Research Lab at CMU.
The views and conclusions contained in this document argetbb the author and should not
be interpreted as representing the official policies, eigxpressed or implied, of GSRC, NSF,
ONR, NRL, DOD, ARO, or the U.S. government.

Keywords: Predicate Abstraction, Verilog, SAT, Equivalence Chegkin

1 Introduction

ANSI-C is a language designed for best execution efficiembys is why C programs
are often used as a model for circuits that require extemssting and simulations. The
testing is done using the fast C model. Once the C model sastife requirements, it is
used as a specification for building the circuit in a languagéwill yield to an efficient
circuit, such as Verilog or VHDL. Due to time-to-market ctnaints, there is often not
enough time to perform the same rigorous evaluation of thiddgeimplementation as
it was performed for the C model.

Thus, itis highly desirable to determine if the C and Verilwggrams are consistent
[20].

Related Work There are already multiple different approaches to thiblera:

There are tools that take a C program in a specific form as enpaitranslate it into
a circuit. The two circuits can then be compared using st@helguivalence checkers,
as done by Sémeéria et al. [24]. However, the C program hhs teery similar to the
circuit, e.g., they must share the same registers and mufsirpethe computations in
the same number of steps.

Matsumoto, Saito, and Fujita compare two C-based hardweseriptions [16].
First, the differences are identified syntactically, anenttompared using symbolic
simulation. The method also assumes very strong similafitiie two descriptions.

In [12], Bounded Model Checking (BMC) [4, 3] is applied to hat circuit and an
ANSI-C program. No particular similarity is assumed, ane tiotion of equivalence
can be adapted using C language constructs. However, moptie made to abstract
the program or the circuit, which limits the capacity of thethod. Furthermore,
Bounded Model Checking only shows the absence of incomsigte up to a given
bound. Determining if this bound is large enough to guamtie absence of any
inconsistencies is non-trivial [13].

The concept of verifying the equivalence of a software im@atation and a syn-
chronous transition system was introduced by Pnueli, Siegal Shtrichman [23].
Since the target code is generated automatically by a cemplile C program is as-
sumed to have a specific form.

With the exception of [12], the related work requires a vergrsg correspondence
of the circuit and the program. However, the programs writte simulation purposes
often do not show such a strong correspondence. This meahshése programs
would have to be rewritten for equivalence checking, whghndesirable. Thus, we
would like to be able to compare programs and circuits thhaieze the same goal in
completely different ways.

The criterion we use for equivalence is input/output edeivee: assuming the
circuit and program obtain corresponding input, we wanthtowsthat they produce
corresponding output. However, if this property is checggde-by-cycle, this would
require that the C program has to dgle accuratei.e., it would have to compute all
the values the circuit computes in the same number of steps.

We would like to be more flexible about the points in time usadtfie 1/0 equiv-
alence check. The user of the framework should be able tomizt it for anything
from complete cycle-accuracy to an occasional check of edatipnal results. This
means that both the circuit and the program should be alldovgerform a possible

lengthy computation completely independent from eachrotfnce each transition
system is finished, only the results are compared. The nuoflisnsitions required
for each machine to obtain the results may not be related.aOéViously, the time

required may depend on input data and the algorithms usetidoynachines. This
flexibility is achieved by distinguishing external and imtal transitions. The external
transitions of the two machines are synchronized, and thé/alence check is only
performed on these transitions.

Contribution We formalize 1/0 equivalence for transition systems witteesal and
internal transitions, similar taweak bisimulatioras described by Milner [18]. We de-
scribe a method to reduce this equivalence criterion to etygiroperty of a special
product machine of the two transition systems. We then dmsbiow to use predicate
abstraction in order to prove the safety property, and tthgsl/O equivalence.

During the abstraction of the transition system, we add #fetg property as a
constraint to the current state. This is a special form ofidtide reasoning, and allows
to exploit structural similarities of the two machines autdically. The more the two
machines share, the stronger is the constraint. In the apesse of two machines
that have the exact same set of latches, the problem becauirslent to SAT-based
combinational equivalence checking.

This approach is less flexible than the approach in the eklatek: In [12], the
ANSI-C program is able to refer to the value of any circuitngifin any given cycle.
In contrast to that, the approach proposed in this paperaltdws to refer to current
signal values, not past values. However, we believe thaishiot a strong restriction,
and that the benefits of abstraction out-weight this dovendid particular, we are able
to conclude that the circuit and program are consistentrfgmaimber of steps, not for
just a given bound.

Outline In section 2, we formalize the correctness criterion. Iniead, we describe

how to reduce it to a safety property of the product machiregugiven relations for

input and output. In section 4, we show possible ways to vaiiteuit specifications

in the form of efficient C programs and how to automaticallpgate the input/output
relations for a particular form of correspondence. In sech, we report experimental
results.

2 Formal Equivalence Criterion

We use the following formalism to model both the C program tuaccircuit: A transi-
tion systeni” = (S, I,Z, R, L) consists of a set of statés a set of initial states C 5,
a transition relatior, which relates a current stagec S to a next-stata’ € S.

L(s) is a labeling function: it maps a statec S to the action (or event) that is
generated by the state. We consider only one actipmhich is used to synchronize
the two machines, and the silent eventwhich denotes an internal transition. No
synchronization is done when a machine generateaction. A states with L(s) = o
is called avisible state, a state with L(s) = 7 is a hidden state. Analogously, a

transition out of a state labeled withis called an invisible or weak transition, and a
transition labeled withr is a visible or strong transition [18].

We call a sequence of statg9), ..., ¢(n) of a machine a trace of the machine iff
the state of(0) is an initial state, and all subsequent states are related &

t0)el
Vi<mn:tli)Rt(i+1)

By V't, we denote the sequence of states where the first state issthadible state
in the sequence the second state is the second visible state amd so on.

Let the circuit be given byiy = (51, 1,741, R1, L1), and the ANSI-C program
be given byT, = (S, Iz, I, Ra, L2). We will describe several restrictions of these
transition systems, but note that we ot requireS; = Sy, i.e., the registers/latches
do not have to correspond to any program variables or vicgaverhis is in contrast
to the work presented in [24], which assumes a one-on-on@imgof registers and
variables.

Instead of comparing the states of the two machines, we peteccheck the exter-
nally visible 1/0 behavior only. Informally, in visible ses, we require that the outputs
match assuming that the inputs have matched so far. We agbaithere is a user-
provided relation that specifies what matching inputs ariguts are. The relation may
be generated automatically for a restricted program syetgx, by means of a variable
mapping (section 4). Formally, input is modeled by meansoof-determinism in the
transition relationg?; and R;. The output is assumed to be a function of the current
statess; andss. Thus, it is sufficient to relate the states. Egtdenote the consistency
relation for inputs, ané for outputs:

=5 0 S e— 8

o S1+—&

Two traceg; of 71 andt, of T, are said to be input consistent iff the inputs of all
external transitions of the traces are consistent:

tléjtg = Vi: Vt (2) 21 Vtg(i) (1)

Analogously, two traces, of 77 andt, of T5 are said to be output consistent iff the
outputs of all external transitions of the traces are co@sis

tlgotg = Vi: Vit (’L) 2O VtQ(Z) (2)

Formally, we define two transition systeffisandT> to be I/O consistent, iff input
consistency implies output consistency for all valid tsace

TI=T, <= (1=1ty) = (t1=0ts) 3)

3 Implementation
3.1 The Product Machine

This section describes how we apply counterexample guidstiaction refinement in
order to check equivalence as defined in the previous sectiém define a specific

product machin&, as follows: The set of states, of the product machine iS; x Ss.
Thus, a state df}, is a pair of one state df; and one state df;. The initial state of
the machine must be a pair of initial states of the correspgmiachines (no attempt
is made to synchronize the initial states).

The transition relatiom?,, of T}, is constructed as follows: First, we define relations
A1 andA,, which take a state € S, a next state’inS,,, and a Boolean value If
the Boolean value is true); and A, are identical to the original transition relations
R, and Rs, respectively. If it is false, only equal states are reldatedach other, and
thus the state of the machine does not change:

N R(s,s’) : ¢
Ag(s,c,s) = {5:5’ . otherwise

Note that the equality in the definition above is equalityved states inS,,, not a mix-
ture of both transition systems. Intuitivelyis a "clock enable signal” for the transition
systems. If not active, the state of the corresponding maathdes not change.

A transition system is allowed to make a transition iff thansition is either a-
transition, or if both transition systems are ready to makei@ansition. We use; and
¢y as a shorthand for these conditions.

cp = (Ll(sl)ZT)\/(LQ(SQ)ZO')
co = (La(s2) =7)V (Li(s1) =0)

We also label the states of the product machine using théirigbfeinction L,,. A
state(sy, s2) of the product machine is labeled withif and only of both transition
systems are about perfornwdransition. It is labeled with otherwise.

Ly(s1,82) = (Li(s1) =0 A La(s2) =0)

If the product machine makesatransition, we require that the inputs of both

transition systems are consistent. We pses a shorthand for this restriction:
p(Sl, 82) i Lp(Sl, 82) =0 = (812182)

This allows us to define the transition relation as folloviwe product machine can
make a transition fronsy, s3) to (s}, s5) iff the states obey the restrictigrand allow
making the steps of the two machines usihgandAs:

(s1,82)Rp(sY,85) <= p(s1,82) A
Aq(s1,c1,87) A
Ao (52,02, 55)
Thus, given the machind§ andT5, the product machine can be constructed easily.

For all reachable states of the product machine that ardeldlvéth o, we check that
the two state$s;, so) are output consistent:

Li(s1,82) = 0 = 51=052 (4)

Claim 1 Ty andT; are /O equivalentifé; =0 s2 holds for all reachable statgs, s2)
of T}, that are labeled wittv, i.e., perform I/O.

3.2 Using Abstraction

Claim 1 reduces the criterion for I/O equivalence to a safegperty on the product
machine. We check this safety property using counterexauided abstraction re-
finement (CEGAR) [14, 1, 5]. We perform a predicate abstoadti 0], i.e., the latches
of the circuit and the variables of the program are replageBdwolean variables that
correspond to a predicate on the original variables antidatc

Note thatboth transition systems are abstracted. Using abstractionHecling
equivalence requires care in order to avoid false positi¥e¥s argue that we do not
obtain false positives as we reduce the equivalence aiitéoia safety property, which
can be verified using overapproximations without riskingdgositives.

The first step is to obtain an initial abstraction of the prctadnachine. This abstrac-
tion is then checked using a symbolic model checker. We perfosave abstraction,
i.e., if the property holds on the abstract model, we can lealecthat it also holds
on the concrete model, and thus, 1/0 equivalence is showthelproperty does not
hold on the abstract model, we expect the model checker twde@ counterexam-
ple. This abstract counterexample is then simulated on ¢inerete machine. This
step corresponds to Bounded Model Checking on the concrathinme with additional
constraints that are derived from the abstract counterplam

If the simulation is successful, we obtain a concrete caerample from the
Bounded Model Checker. This counterexample is for the prbchachine and there-
fore allows us to extract separate tracesfprand7; that demonstrate the inconsis-
tency. If the simulation fails, the abstract counterexamigbkpurious, and the abstrac-
tion has to be refined.

Formally, we assume that the algorithm maintains a setmedicate9y, ..., p,.
The predicates are functions that map a concrete stateS, into a Boolean value.
When applying all predicates to a specific concrete state,alrains a vector of
Boolean values, which represents an abstract $tafée denote this function by(x).

It maps a concrete state into an abstract state and is themdtedabstraction func-
tion.

We perform an existential abstraction [6], i.e., the alwttraachine can make a
transition from an abstract stateto i’ iff there is a transition frome to z’ in the
concrete machine angis abstracted té andz’ is abstracted té’. We call the abstract
product maching’, and we denote the transition relationioby £.

R :={&4'| 3z, €8S,:xRya'A
_ N a (5)
alz) =3 Nalz')=4"}

Note that in practice, additional transitions are ofteneatitb the abstract transi-
tion relation in order to make the computation ®feasier. This is common for the
abstraction of both circuits and programs.

The abstraction of a safety prope(z) is defined as follows: for the property to
hold on an abstract stafe the property must hold on all statesthat are abstracted to
Z.

P(#) <= VzeS,:(a(zr)=2%) = P(x) (6)

The same abstraction is also used for the initial state pageli Thus, ifP holds on
all reachable states of the abstract machiha)so holds on all reachable states of the
concrete machine. This leads to

Claim 2 T andT; are I/O equivalent if the abstraction of eq. (4) holds for@ach-
able states of .

A state violating the safety property is callethad state

3.3 Using Induction during Abstraction

As we are checking an invariant, it is straight-forward tdanthe following restriction
of the abstract transition relation: When considering accete transition: to =/, we
can safely assume that the property holds in the staidwus, we can use the following
transition relation?

R~ :={& & | R(z,2') A P(2)} 7)

Note that the next statef is not restricted. Intuitively, we are removing all traiits
out of bad states. This restriction is justified as followseTabstraction of the initial
state is not restricted, and it is checked that it satisfiett can now be argued induc-
tively that the restriction td:~ does not remove paths to bad states, as only transitions
out of bad states are removed. Transitions into bad states areremigved if they
originate from a bad state.

This restrictions allows us to benefit automatically frony garts of the two tran-
sition systems that are equal. This applies to both latchés€ambinational circuitry.
The reason for this is the fact that if such latches are ptesiesn property will assert
that the corresponding latches/variables are equal. @uwiti then collapse the logic
that is shared by both transition systems. In the specia tas both transition sys-
tems have the exact same set of latches/variables, theepnabreduced to SAT-based
combinational equivalence checking. While we do not pregosuse our tool for this
special case, we benefit from the reduction in case somegfatis transition system
are equal.

The following two sections describe how to abstract the mogand the circuit
given the set of predicates.

3.4 Abstracting the Program

Predicate abstraction of ANSI-C programs in combinatiahwounterexample guided
abstraction refinement has become a widely applied technitjuwvas introduced by
Ball and Rajamani [1] and promoted by the success of the SLAdjept [2]. The
goal of this project is to verify that Windows device driverisey API conventions.
SLAM models the program variables using unbounded integeers, and does not
take overflow or bit-wise operators into account. The abstra of the program is
computed using a theorem prover such as Simplify [9]. The@ry checked mainly
depends on the control flow, and thus, this treatment is geritic However, for C

programs that represent a circuit model, we expect extensg of bit-wise operators,
and we expect that the limited range of the variables will teial.

Thus, we compute the abstraction not using Simplify or gimibols, but using
SAT: this allows us to precisely model the semantics of thevéctor arithmetic as
described in the ANSI-C standard. Furthermore, it allowsousupport all ANSI-C
integer operators, including the bit-wise operators [7].

The control flow structure is not changed during the abstrack.e., the abstraction
will contain a program counter construction that modelsottiginal control flow of the
C program. The conversion of all ANSI-C control flow statemseincludinggot o
andswi t ch is straight-forward. However, unbounded recursion is nppsrted, as
we are not using a push-down-automaton. However, we do moatxunbounded
recursion in programs that serve as circuit model. What nesria the abstraction of
the branching conditions and the basic blocks, i.e., serpseaf instructions without
any control flow statements.

3.4.1 Abstracting the Basic Blocks

A basic block is a sequence of assignment statements. Wadrfirstform the basic
block into static single assignment form (SSA). If pointereferencing operators are
used, this requires a standard points-to analysis.

After the transformation into SSA, the assignments in th&idblock are turned
into equalities. After that, these equalities are conjedd¢b form an equation system,
which is equivalent to the concrete transition relationtfe basic block. We denote it
by 7 (v,7").

The abstract transition relatidfy#, #’) relates a current state(before the execu-
tion of the basic block) to a next staté (after the execution of the basic block). It is
defined usingy as follows:

{@,2)](a@) =2) ANT[@,7) A (a@') = i)} (8)
We compute this set using SAT-based Boolean quantificatismlescribed in section
3.7.

3.4.2 Abstracting the Branching Conditions

The expressions used in the branching conditions of therpnogre ideal candidates
for predicates, and thus, the branching condition will ofte a Boolean combination
of predicates. If this is so, the predicates are simply gaaby their corresponding
Boolean variables. If not so, the expression is abstracsgtyUSAT in analogy to a

basic block.

3.5 Abstracting the Circuit

Let S, denote the set of states of the (concrete) circuit, Apthe concrete transition
relation. The abstract transition relation of the circ@ihde computed directly using

the circuit-part of the relation defined in definition 5:

{(Z,2")| 3z, 2" € Sc,: xR’
a(z) = & A a(a’) = i/} ©)

This set is obtained using a Boolean quantification, as destim section 3.7. If this
equation is already too hard for the SAT solver due to therssiee of the circuit, it
can be partitioned into components. The components areabsinacted separately.
The final abstract transition relation is then the conjurctf the relations obtained
for each part. However, this partitioning may introduceitiddal spurious behavior.

In [8], a similar approach to the abstraction of hardwaredscatdibed. The main
difference to the approach presented here is that [8] tHeatSAT solver like a theorem
prover, and enumerates particular abstract transiticstea of performing a Boolean
quantification. The idea of using a Boolean quantificationtfardware abstraction
was introduced by Labhiri, Bryant, and Cook [15]. While we asing a bit-accurate
representation of the circuit, [15] is using a word-leveinesentation, which does not
permit the use of bit-level operators.

3.6 Simulation and Refinement

In order to check the abstract model, we use SMV. If the ptypdwes not hold on
the abstract model, SMV returns a counterexample traces tféde is then simulated
on the concrete model. This simulation corresponds to &serfi BMC instances
with additional constraints. The unwinding bound for thegmam loop constructs
and the circuit can be taken from the abstract counterexanfd the instances are
very similar, incremental SAT can be used. If the last BMQdnse is satisfiable, the
counterexample can be concretized, and the algorithm heites.

If not so, the set of predicates has to be refined. This is dgreimputing precon-
ditions of the constraint that causes the counterexamyie gpurious.

3.7 Quantification using SAT

For the abstraction of both the circuit and the C program wedre obtain a repre-
sentation for a set of Boolean vectarsuch that a function is true for this argument.
The vectorz corresponds to the abstract present and next-state. Iticadth x, the
function also takes an existentially quantified vegtowhich is used for intermediate
variables for the CNF conversion and for the concrete states

{z€{0,1}" 3y € {0,1} : f(z,y)} (10)

This corresponds to a quantification of theariables.

The quantification is done by modifying the SAT solver Cha8]as follows: Ev-
ery time a satisfying assignment féfx, y) is found, the algorithm records the values
of the literals corresponding te (the variablesiotto be quantified), and then adds a
blocking clause in terms of these literals that eliminatbsadisfying assignments with
the same value far. The literals in the blocking clauses all have a decisioellesince
the assignment is complete. The solver then backtrackethitihest of these decision

levels and continues its search for further, differens$gitig assignments. Eventually,
the additional constraints will make the problem unsatidéiaand the algorithm ter-
minates. The blocking clauses added by the algorithm are & i@presentation of the
desired set.

This technique is commonly used in other areas, for exanmpl&d, 11] and was
suggested earlier for solving quantified formulae in [2]], 22 [15], our implementa-
tion of this algorithm was applied to predicate abstracfmmhardware and software
systems. It outperformed BDDs on all software examples.3aséc algorithm can be
improved by heuristics that try to enlarge the cube represdny each clause. McMil-
lan [17] uses conflict graph analysis in order to enlarge theec Gupta et al. [11] use
BDDs for the enlargement. However, these techniques arenlgethe scope of this
article.

4 Circuit Specification using C

4.1 Cycle Accurate C Programs

The equivalence criterion defined in section 2 allows a walege of styles for the
ANSI-C program. This is done by adjusting the relations theftne input and output
equivalence, and by defining the labeling functioappropriately.

A cycle accurate C model has to compute the values of all éstcli the circuit in
every cycle. These values have to be stored in speciallgdatsd program variables.
In our tool, this is done by a separate file which contains drydar each latch con-
taining the name of the latch in the circuit and the name ofGhgrogram variable.
Let v; andvy denote such a pair of a corresponding latch and a variablellfsuch
variablesl/.

A special "next cycle” command indicates that this compatats finished. It can
be used in arbitrary locations. When invoked, the C programkes an externally
visible transition. This is done by defining, (the labeling function for the program)
to beo for states that have a program counter value corresponalithget’next cycle”
command.; (the labeling function for the circuit) is defined to be camity o.

Furthermore, the "next cycle” command asserts that theegatomputed by the C
program match the values in the circuit. This is done by dedifio as\ ., v1 = va.

The C program performs input by reading the correspondipgtisignals of the
circuit. This is enforced by defining; for the input signals and variables in analogy
to 2O.

4.2 Non-Cycle Accurate C Programs

The related work in [12] allows accessing the values of tly@als of the circuit in
arbitrary cycles by using the syntax gnal [cycl e] . Our approach does not allow
this, and restricts the access to the cycle value in the cuocle only. However,
one can still write a wide range of non-cycle accurate C nobgladding additional
program variables to "remember” previous signal values.

It is not necessary for the C program to compute the value$ tatehes for each
cycle. Instead, only selected values may be compared byg asirexplicitasser t
statement. As an example, the following fragment checksal@unter (a variable
imported from the circuit) increases only:

extern int counter;

while(l) {
int previous=counter;
next _cycle();
assert (count er >=previ ous) ;

}

This C program makes no attempt to actually reproduce thepatation of the circuit;
it is used as a monitor only. Note that, in contrast to [128r¢his no need to refer to a
bound, as we perform an unbounded verification. Whel e loop is unbounded.

The assertions are implemented as follows: First, the fondt; is defined to be
o for states that have a program counter value correspondliziggsser t statement.
Second=¢ is defined to hold if the assertions are true. Formallypletdenote the
program counter of assertionandcond;(s1, s2) the condition of the assertion. Then,
=0 is defined as follows:
=0(s1,82) = /\(SQ.pC = pc; = cond(s1, $2))

3

The following example illustrates how inputs are synchzedi suppose the circuit
performs a divisiornl /= using an iterative algorithm that is controlled by a state ma
chine. If the signat eady is true, the state machine reads a new valul the signal
done is true, the division is finished. The C program waits for tleady signal and
copies the value of from the circuit. It then waits for thdone signal and checks the
division result, which is provided by the circuit as

extern unsigned int x, r;
extern _Bool ready, done;

while(l) {
/* local variable to renenber x */
unsi gned int ny_x;

/* wait for ready, then copy x */

whi | e(!ready) next_cycle();

my _X=X;

/* wait for done, then check result */
whi |l e(!done) next_cycle();

assert (r==1/ny_x);

next _cycle(); /* next round */

10

This is implemented by simply adding constraintstp. The match between the vari-
ables of the C program and the signals in the circuit can benzatied if there is a
syntactical rule. As an example, our implementation matolsiables and signals
based on their names. Signals within the Verilog moduleangdry are mapped using
struct types. Another way to implement this mapping would be a fig gxplicitly
lists the corresponding signals and variables.

5 Experimental Results

We compare the performance of the approach presented ipdper with an im-
plementation using Bounded Model Checking as suggestetlin Bounded Model
Checking is used for refutation only, i.e., it cannot codethat there is no error trace.
Instead, it checks the correspondence of the program acuitailp to a given number
of cycles. In contrast to that, the approach presented snghper can conclude that
both transition systems match. The experiments are peefdmon a 1.5 GHz AMD
machine with 3 GB of memory running Linux.

The benchmarks (table 1) we use are taken from an implenmamtaitan out-of-
order RISC microprocessor with Tomasulo scheduler [26F ftocessor implements
a MIPS-like ISA, and features precise interrupts by meargsrebrder buffer [25].

bug Run time BMC [12] Run time
Benchmark | # latches length| min. | 10 | 20 | 30] 40 | abstraction
ALU_PI PE1 163 2 1.7s 3.7s| 370.7s| 21.8s| 8.2s 36.6s
ALU_PI PE2 163 - - | 303.7s * * * 31.0s
RF1 1024 - - | 13.7s| 84.8s| 134.0s| 356.8s 0.5s
RF2 1024 1 0.7s 7.7s| 20.3s| 44.4s * 0.7s
ROB1 2963 - - 3.8s| 10.3s| 21.8s| 116.0s 0.2s
ROB2 2963 - -| 63.3s * * * 3.8s
ROB3 2963 16 5.7s 2.5s 7.0s| 10.6s| 14.3s 1.8s
ROB4 2963 64 | 106.0s| 2.5s 5.3s 9.8s| 21.5s 14.1s

Table 1: Experimental Results. If no bug length is given,ghegram and circuit are
consistent. The run time for BMC is given for various depti$ie "min” column
contains the run time for BMC for the shortest counterexamplstar (*) denotes that
the timeout of 1000s was exceeded. The best times for refatate in bold.

The ALU_PI PE circuit implements pipelined versions of arithmetic citsu The
corresponding C program observes the values that enteiigbbng and wait for the
result at the end of the pipeline. They then compare thetregtlhl an internally com-
puted result. The C program computes the result in one steguirg the two to be
consistent requires predicates that assert the corrsotfidise intermediate results in
the pipeline. These predicates are computed automatidafing the abstraction re-
finement phase. Note that for the satisfiable instances itine iequired until BMC
finds a counterexample actually decreases with the bouned.ukatisfiable instance

11

is hard for BMC.

The RF circuit contains the integer register file. The C programckkeproperties
of the register values.

The ROB circuit is the reorder buffer of the design. It contains ayéanumber
of latches. In theROB1 benchmark, the C programs check properties of the control.
The ROB2 benchmark has C program which is a bit-accurate implementaf the
control part. TheROB3 benchmark uses the C program to check a (failing) property of
a counter in the design.

In conclusion, BMC can outperform the abstraction basedcgah if there is a
short counterexample. This can be justified by the fact thatbstraction based ap-
proach has to perform a simulation in order to confirm a caestample. This simu-
lation is as hard as a BMC instance. If the counterexamptiig,lthe simulation step
apparently benefits from the additional constraints fromahstract counterexample.

However, the abstraction based approach is superior ifihygepty actually holds.

In this case, the abstraction based approach can conclaiéne is no counterexam-
ple, while BMC cannot.

6 Conclusion and Future Work

The paper presents an algorithm to check the correspondérec€ program and a
circuit given in Verilog. The C program may be cycle accurateartial implementa-
tion, or just a monitor. The equivalence criterion is foripedl and then reduced to a
safety property. This property is then checked using pegdiebstraction. We show
the effectiveness of the algorithm using benchmarks fromegssor design.

In the future, we plan to implement floating point arithmédicthe C program, as C
programs with floating point arithmetic are commonly useeéféisient circuit model.
Furthermore, we would like to investigate refinement altponis that are specialized
for this algorithm.

References

[1] T. Ball and S. Rajamani. Boolean programs: A model anccess for software
analysis. Technical Report 2000-14, Microsoft Researebyiary 2000.

[2] T. Ball and S. K. Rajamani. Automatically validating tporal safety properties
of interfaces. InThe 8th International SPIN Workshop on Model Checking of
Software volume 2057 o£.NCS pages 103-122. Springer, May 2001.

[3] A.Biere, A. Cimatti, E. M. Clarke, M. Fujita, and Y. Zhuy$bolic model check-
ing using SAT procedures instead of BDDs. Design Automation Conference
(DAC’99), 1999.

[4] A.Biere, A. Cimatti, E. M. Clarke, and Y. Yhu. Symbolic rdel checking without
BDDs. InTools and Algorithms for Construction and Analysis of Systpages
193-207, 1999.

12

[5] E. Clarke, O. Grumberg, S. Jha, Y. Lu, and V. H. Countenepie-guided ab-
straction refinement. I@omputer Aided Verificatigpages 154-169, 2000.

[6] E. Clarke, O. Grumberg, and D. Long. Model checking andtaetion. In
Principles of Programming Languageknuary 1992.

[7] E. Clarke, D. Kroening, N. Sharygina, and K. Yorav. Pradé abstraction of
ANSI-C programs using SATFormal Methods in System Design (FMS$SR)04.
To appear.

[8] E. Clarke, M. Talupur, and D. Wang. SAT based predicatgralstion for hard-
ware verification. IrProceedings of SAT'Q3/ay 2003.

[9] D. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A theorprover for program
checking. Technical Report HPL-2003-148, HP Labs, July3200

[10] S. Grafand H. Saidi. Construction of abstract stat@lgsavith PVS. In O. Grum-
berg, editorProc. 9th International Conference on Computer Aided \@atfon
(CAV'97), volume 1254, pages 72—-83. Springer Verlag, 1997.

[11] A. Gupta, Z. Yang, P. Ashar, and A. Gupta. SAT-based ienagmputation with
application in reachability analysis. Formal Methods in Computer-Aided De-
sign (FMCAD) number 1954 in LNCS, pages 354-372, 2000.

[12] D. Kroening, E. Clarke, and K. Yorav. Behavioral coteigy of C and Verilog
programs using bounded model checking.Piioceedings of DAC 200%ages
368-371. ACM Press, 2003.

[13] D. Kroening and O. Strichman. Efficient computation e€urrence diameters.
In L. Zuck, P. Attie, A. Cortesi, and S. Mukhopadhyay, editdith International
Conference on Verification, Model Checking, and Abstraetrpretation volume
2575 ofLecture Notes in Computer Sciengeges 298-309. Springer Verlag,
January 2003.

[14] R. Kurshan. Computer-aided verification of coordinating processes:e th
automata-theoretic approactPrinceton University Press, 1994.

[15] S. K. Lahiri, R. E. Bryant, and B. Cook. A symbolic appcbao predicate ab-
straction. In W. A. Hunt and F. Somenzi, edito@mputer-Aided Verification
(CAV), number 2725 in LNCS, pages 141-153. Springer-Verlag,J003.

[16] T. Matsumoto, H. Saito, and M. Fujita. Equivalence dtieg of C-based hard-
ware descriptions by using symbolic simulation and progséicer. InInterna-
tional Workshop on Logic and Synthesis (IWLS;2%)03.

[17] K. McMillan. Applying SAT methods in unbounded symbminodel checking.
In 14th Conference on Computer Aided Verificatipages 250-264, 2002.

[18] R. Milner. Communication and Concurrenclrentice Hall, 1989.

13

[19] M. W. Moskewicz, C. F. Madigan, Y. Zhao, L. Zhang, and SalM. Chaff: En-
gineering an efficient SAT solver. Iroceedings of the 38th Design Automation
Conference (DAC'01)pages 530-535, June 2001.

[20] C. Pixley. Guest Editor’s Introduction: Formal Ver#iton of Commercial Inte-
grated CircuitslEEE Design & Test of Computers8(4):4-5, 2001.

[21] D. Plaisted. Method for design verification of hardwared non-hardware sys-
tems, October 2000. United States Patent, 6,131,078.

[22] D. Plaisted, A. Biere, and Y. Zhu. A satisfiability tesfer quantified boolean
formulae. Journal of Discrete Applied Mathematics (DAM)30(2):291-328,
2003.

[23] A. Pnueli, M. Siegel, and O. Shtrichman. The code vdiaatool (CVT) - au-
tomatic verification of a compilation proceskt. Journal of Software Tools for
Technology Transfer (STT,1)(2):192—-201, 1998.

[24] L. Sémeéria, A. Seawright, R. Mehra, D. Ng, A. Ekanagadnd B. Pangrle. RTL
C-based methodology for designing and verifying a multettded processor. In
Proc. of the 39th Design Automation Conferenpages 123-128. ACM Press,
2002.

[25] J. E. Smith and A. R. Pleszkun. Implementing preciserimipts in pipelined
processorslEEE Transactions on Computef37(5):562-573, 1988.

[26] R. Tomasulo. An efficient algorithm for exploiting migle arithmetic unitsIBM
Journal of Research and Developmgetit(1):25-33, 1967.

14

