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Abstract

It is common practice to write C models of circuits due to the greater simulation ef-
ficiency. Once the C program satisfies the requirements, the circuit is designed in a
hardware description language (HDL) such as Verilog. It is therefore highly desirable
to automatically perform a correspondence check between the C model and a circuit
given in HDL. We present an algorithm that checks consistency between an ANSI-
C program and a circuit given in Verilog using Predicate Abstraction. The algorithm
exploits the fact that the C program and the circuit share many basic predicates. In
contrast to existing tools that perform predicate abstraction, our approach is SAT-based
and allows all ANSI-C and Verilog operators in the predicates. We report experimental
results on an out-of-order RISC processor. We compare the performance of the new
technique to Bounded Model Checking (BMC).
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1 Introduction

ANSI-C is a language designed for best execution efficiency.This is why C programs
are often used as a model for circuits that require extensivetesting and simulations. The
testing is done using the fast C model. Once the C model satisfies the requirements, it is
used as a specification for building the circuit in a languagethat will yield to an efficient
circuit, such as Verilog or VHDL. Due to time-to-market constraints, there is often not
enough time to perform the same rigorous evaluation of the Verilog implementation as
it was performed for the C model.

Thus, it is highly desirable to determine if the C and Verilogprograms are consistent
[20].

Related Work There are already multiple different approaches to this problem:
There are tools that take a C program in a specific form as inputand translate it into

a circuit. The two circuits can then be compared using standard equivalence checkers,
as done by Séméria et al. [24]. However, the C program has tobe very similar to the
circuit, e.g., they must share the same registers and must perform the computations in
the same number of steps.

Matsumoto, Saito, and Fujita compare two C-based hardware descriptions [16].
First, the differences are identified syntactically, and then compared using symbolic
simulation. The method also assumes very strong similarityof the two descriptions.

In [12], Bounded Model Checking (BMC) [4, 3] is applied to both a circuit and an
ANSI-C program. No particular similarity is assumed, and the notion of equivalence
can be adapted using C language constructs. However, no attempt is made to abstract
the program or the circuit, which limits the capacity of the method. Furthermore,
Bounded Model Checking only shows the absence of inconsistencies up to a given
bound. Determining if this bound is large enough to guarantee the absence of any
inconsistencies is non-trivial [13].

The concept of verifying the equivalence of a software implementation and a syn-
chronous transition system was introduced by Pnueli, Siegel, and Shtrichman [23].
Since the target code is generated automatically by a compiler, the C program is as-
sumed to have a specific form.

With the exception of [12], the related work requires a very strong correspondence
of the circuit and the program. However, the programs written for simulation purposes
often do not show such a strong correspondence. This means that these programs
would have to be rewritten for equivalence checking, which is undesirable. Thus, we
would like to be able to compare programs and circuits that achieve the same goal in
completely different ways.

The criterion we use for equivalence is input/output equivalence: assuming the
circuit and program obtain corresponding input, we want to show that they produce
corresponding output. However, if this property is checkedcycle-by-cycle, this would
require that the C program has to becycle accurate, i.e., it would have to compute all
the values the circuit computes in the same number of steps.

We would like to be more flexible about the points in time used for the I/O equiv-
alence check. The user of the framework should be able to customize it for anything
from complete cycle-accuracy to an occasional check of computational results. This
means that both the circuit and the program should be allowedto perform a possible
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lengthy computation completely independent from each other. Once each transition
system is finished, only the results are compared. The numberof transitions required
for each machine to obtain the results may not be related at all. Obviously, the time
required may depend on input data and the algorithms used by the machines. This
flexibility is achieved by distinguishing external and internal transitions. The external
transitions of the two machines are synchronized, and the equivalence check is only
performed on these transitions.

Contribution We formalize I/O equivalence for transition systems with external and
internal transitions, similar toweak bisimulationas described by Milner [18]. We de-
scribe a method to reduce this equivalence criterion to a safety property of a special
product machine of the two transition systems. We then describe how to use predicate
abstraction in order to prove the safety property, and thus,the I/O equivalence.

During the abstraction of the transition system, we add the safety property as a
constraint to the current state. This is a special form of inductive reasoning, and allows
to exploit structural similarities of the two machines automatically. The more the two
machines share, the stronger is the constraint. In the special case of two machines
that have the exact same set of latches, the problem becomes equivalent to SAT-based
combinational equivalence checking.

This approach is less flexible than the approach in the related work: In [12], the
ANSI-C program is able to refer to the value of any circuit signal in any given cycle.
In contrast to that, the approach proposed in this paper onlyallows to refer to current
signal values, not past values. However, we believe that this is not a strong restriction,
and that the benefits of abstraction out-weight this downside. In particular, we are able
to conclude that the circuit and program are consistent for any number of steps, not for
just a given bound.

Outline In section 2, we formalize the correctness criterion. In section 3, we describe
how to reduce it to a safety property of the product machine using given relations for
input and output. In section 4, we show possible ways to writecircuit specifications
in the form of efficient C programs and how to automatically generate the input/output
relations for a particular form of correspondence. In section 5, we report experimental
results.

2 Formal Equivalence Criterion

We use the following formalism to model both the C program andthe circuit: A transi-
tion systemT = (S, I, I, R, L) consists of a set of statesS, a set of initial statesI ⊆ S,
a transition relationR, which relates a current states ∈ S to a next-states′ ∈ S.

L(s) is a labeling function: it maps a states ∈ S to the action (or event) that is
generated by the state. We consider only one action,σ, which is used to synchronize
the two machines, and the silent eventτ , which denotes an internal transition. No
synchronization is done when a machine generates aτ -action. A states with L(s) = σ
is called avisible state, a states with L(s) = τ is a hidden state. Analogously, a
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transition out of a state labeled withτ is called an invisible or weak transition, and a
transition labeled withσ is a visible or strong transition [18].

We call a sequence of statest(0), . . . , t(n) of a machine a trace of the machine iff
the state oft(0) is an initial state, and all subsequent states are related using R:

t(0) ∈ I

∀i < n : t(i)R t(i + 1)

By V t, we denote the sequence of states where the first state is the first visible state
in the sequencet, the second state is the second visible state int, and so on.

Let the circuit be given byT1 = (S1, I1, I1, R1, L1), and the ANSI-C program
be given byT2 = (S2, I2, I2, R2, L2). We will describe several restrictions of these
transition systems, but note that we donot requireS1 = S2, i.e., the registers/latches
do not have to correspond to any program variables or vice versa. This is in contrast
to the work presented in [24], which assumes a one-on-one mapping of registers and
variables.

Instead of comparing the states of the two machines, we propose to check the exter-
nally visible I/O behavior only. Informally, in visible states, we require that the outputs
match assuming that the inputs have matched so far. We assumethat there is a user-
provided relation that specifies what matching inputs and outputs are. The relation may
be generated automatically for a restricted program syntax, e.g., by means of a variable
mapping (section 4). Formally, input is modeled by means of non-determinism in the
transition relationsR1 andR2. The output is assumed to be a function of the current
statess1 ands2. Thus, it is sufficient to relate the states. Let=̂I denote the consistency
relation for inputs, and̂=O for outputs:

=̂I : S1 ←→ S2

=̂O : S1 ←→ S2

Two tracest1 of T1 andt2 of T2 are said to be input consistent iff the inputs of all
external transitions of the traces are consistent:

t1=̂It2 :⇐⇒ ∀i : V t1(i) =̂I V t2(i) (1)

Analogously, two tracest1 of T1 andt2 of T2 are said to be output consistent iff the
outputs of all external transitions of the traces are consistent:

t1=̂Ot2 :⇐⇒ ∀i : V t1(i) =̂O V t2(i) (2)

Formally, we define two transition systemsT1 andT2 to be I/O consistent, iff input
consistency implies output consistency for all valid traces:

T1=̂T2 :⇐⇒ (t1=̂It2) =⇒ (t1=̂Ot2) (3)

3 Implementation

3.1 The Product Machine

This section describes how we apply counterexample guided abstraction refinement in
order to check equivalence as defined in the previous section. We define a specific
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product machineTp as follows: The set of statesSp of the product machine isS1×S2.
Thus, a state ofTp is a pair of one state ofT1 and one state ofT2. The initial state of
the machine must be a pair of initial states of the corresponding machines (no attempt
is made to synchronize the initial states).

The transition relationRp of Tp is constructed as follows: First, we define relations
∆1 and∆2, which take a states ∈ Sx, a next states′inSx, and a Boolean valuec. If
the Boolean value is true,∆1 and∆2 are identical to the original transition relations
R1 andR2, respectively. If it is false, only equal states are relatedto each other, and
thus the state of the machine does not change:

∆x(s, c, s′) :=

{
R(s, s′) : c
s = s′ : otherwise

Note that the equality in the definition above is equality of two states inSx, not a mix-
ture of both transition systems. Intuitively,c is a ”clock enable signal” for the transition
systems. If not active, the state of the corresponding machine does not change.

A transition system is allowed to make a transition iff the transition is either aτ -
transition, or if both transition systems are ready to make aσ-transition. We usec1 and
c2 as a shorthand for these conditions.

c1 := (L1(s1) = τ) ∨ (L2(s2) = σ)

c2 := (L2(s2) = τ) ∨ (L1(s1) = σ)

We also label the states of the product machine using the labeling functionLp. A
state(s1, s2) of the product machine is labeled withσ if and only of both transition
systems are about perform aσ transition. It is labeled withτ otherwise.

Lp(s1, s2) := (L1(s1) = σ ∧ L2(s2) = σ)

If the product machine makes aσ-transition, we require that the inputs of both
transition systems are consistent. We useρ as a shorthand for this restriction:

ρ(s1, s2) :⇐⇒ Lp(s1, s2) = σ =⇒ (s1=̂Is2)

This allows us to define the transition relation as follows: the product machine can
make a transition from(s1, s2) to (s′

1
, s′

2
) iff the states obey the restrictionρ and allow

making the steps of the two machines using∆1 and∆2:

(s1, s2)Rp(s
′

1
, s′

2
) :⇐⇒ ρ(s1, s2) ∧

∆1(s1, c1, s
′

1
) ∧

∆2(s2, c2, s
′

2
)

Thus, given the machinesT1 andT2, the product machine can be constructed easily.
For all reachable states of the product machine that are labeled with σ, we check that
the two states(s1, s2) are output consistent:

L1(s1, s2) = σ =⇒ s1=̂Os2 (4)

Claim 1 T1 andT2 are I/O equivalent iffs1=̂Os2 holds for all reachable states(s1, s2)
of Tp that are labeled withσ, i.e., perform I/O.
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3.2 Using Abstraction

Claim 1 reduces the criterion for I/O equivalence to a safetyproperty on the product
machine. We check this safety property using counterexample guided abstraction re-
finement (CEGAR) [14, 1, 5]. We perform a predicate abstraction [10], i.e., the latches
of the circuit and the variables of the program are replaced by Boolean variables that
correspond to a predicate on the original variables and latches.

Note thatboth transition systems are abstracted. Using abstraction for checking
equivalence requires care in order to avoid false positives. We argue that we do not
obtain false positives as we reduce the equivalence criterion to a safety property, which
can be verified using overapproximations without risking false positives.

The first step is to obtain an initial abstraction of the product machine. This abstrac-
tion is then checked using a symbolic model checker. We perform a save abstraction,
i.e., if the property holds on the abstract model, we can conclude that it also holds
on the concrete model, and thus, I/O equivalence is shown. Ifthe property does not
hold on the abstract model, we expect the model checker to provide a counterexam-
ple. This abstract counterexample is then simulated on the concrete machine. This
step corresponds to Bounded Model Checking on the concrete machine with additional
constraints that are derived from the abstract counterexample.

If the simulation is successful, we obtain a concrete counterexample from the
Bounded Model Checker. This counterexample is for the product machine and there-
fore allows us to extract separate traces forT1 andT2 that demonstrate the inconsis-
tency. If the simulation fails, the abstract counterexample is spurious, and the abstrac-
tion has to be refined.

Formally, we assume that the algorithm maintains a set ofn predicatesp1, . . . , pn.
The predicates are functions that map a concrete statex ∈ Sp into a Boolean value.
When applying all predicates to a specific concrete state, one obtains a vector ofn
Boolean values, which represents an abstract statex̂. We denote this function byα(x).
It maps a concrete state into an abstract state and is therefore calledabstraction func-
tion.

We perform an existential abstraction [6], i.e., the abstract machine can make a
transition from an abstract statêx to x̂′ iff there is a transition fromx to x′ in the
concrete machine andx is abstracted tôx andx′ is abstracted tôx′. We call the abstract
product machinêT , and we denote the transition relation ofT̂ by R̂.

R̂ := {x̂, x̂′ | ∃x, x′ ∈ Sp : xRpx
′∧

α(x) = x̂ ∧ α(x′) = x̂′}
(5)

Note that in practice, additional transitions are often added to the abstract transi-
tion relation in order to make the computation ofR̂ easier. This is common for the
abstraction of both circuits and programs.

The abstraction of a safety propertyP (x) is defined as follows: for the property to
hold on an abstract statêx, the property must hold on all statesx that are abstracted to
x̂.

P̂ (x̂) :⇐⇒ ∀x ∈ Sp : (α(x) = x̂) =⇒ P (x) (6)
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The same abstraction is also used for the initial state predicate. Thus, ifP holds on
all reachable states of the abstract machine,P also holds on all reachable states of the
concrete machine. This leads to

Claim 2 T1 andT2 are I/O equivalent if the abstraction of eq. (4) holds for allreach-
able states of̂T .

A state violating the safety property is called abad state.

3.3 Using Induction during Abstraction

As we are checking an invariant, it is straight-forward to make the following restriction
of the abstract transition relation: When considering a concrete transitionx to x′, we
can safely assume that the property holds in the statex. Thus, we can use the following
transition relationR̂−:

R̂− := {x̂, x̂′ | R̂(x, x′) ∧ P̂ (x̂)} (7)

Note that the next statex′ is not restricted. Intuitively, we are removing all transitions
out of bad states. This restriction is justified as follows: The abstraction of the initial
state is not restricted, and it is checked that it satisfiesP̂ . It can now be argued induc-
tively that the restriction tôR− does not remove paths to bad states, as only transitions
out of bad states are removed. Transitions into bad states are onlyremoved if they
originate from a bad state.

This restrictions allows us to benefit automatically from any parts of the two tran-
sition systems that are equal. This applies to both latches and combinational circuitry.
The reason for this is the fact that if such latches are present, the property will assert
that the corresponding latches/variables are equal. Our tool will then collapse the logic
that is shared by both transition systems. In the special case that both transition sys-
tems have the exact same set of latches/variables, the problem is reduced to SAT-based
combinational equivalence checking. While we do not propose to use our tool for this
special case, we benefit from the reduction in case some partsof the transition system
are equal.

The following two sections describe how to abstract the program and the circuit
given the set of predicates.

3.4 Abstracting the Program

Predicate abstraction of ANSI-C programs in combination with counterexample guided
abstraction refinement has become a widely applied technique. It was introduced by
Ball and Rajamani [1] and promoted by the success of the SLAM project [2]. The
goal of this project is to verify that Windows device driversobey API conventions.
SLAM models the program variables using unbounded integer numbers, and does not
take overflow or bit-wise operators into account. The abstraction of the program is
computed using a theorem prover such as Simplify [9]. The property checked mainly
depends on the control flow, and thus, this treatment is sufficient. However, for C
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programs that represent a circuit model, we expect extensive use of bit-wise operators,
and we expect that the limited range of the variables will be crucial.

Thus, we compute the abstraction not using Simplify or similar tools, but using
SAT: this allows us to precisely model the semantics of the bit vector arithmetic as
described in the ANSI-C standard. Furthermore, it allows usto support all ANSI-C
integer operators, including the bit-wise operators [7].

The control flow structure is not changed during the abstraction, i.e., the abstraction
will contain a program counter construction that models theoriginal control flow of the
C program. The conversion of all ANSI-C control flow statements includinggoto
andswitch is straight-forward. However, unbounded recursion is not supported, as
we are not using a push-down-automaton. However, we do not expect unbounded
recursion in programs that serve as circuit model. What remains is the abstraction of
the branching conditions and the basic blocks, i.e., sequences of instructions without
any control flow statements.

3.4.1 Abstracting the Basic Blocks

A basic block is a sequence of assignment statements. We firsttransform the basic
block into static single assignment form (SSA). If pointer dereferencing operators are
used, this requires a standard points-to analysis.

After the transformation into SSA, the assignments in the basic block are turned
into equalities. After that, these equalities are conjuncted to form an equation system,
which is equivalent to the concrete transition relation forthe basic block. We denote it
by T (v, v′).

The abstract transition relationB(x̂, x̂′) relates a current statêx (before the execu-
tion of the basic block) to a next statêx′ (after the execution of the basic block). It is
defined usingα as follows:

{(x̂, x̂′) | (α(v) = x̂) ∧ T (v, v′) ∧ (α(v′) = x̂′)} (8)

We compute this set using SAT-based Boolean quantification,as described in section
3.7.

3.4.2 Abstracting the Branching Conditions

The expressions used in the branching conditions of the program are ideal candidates
for predicates, and thus, the branching condition will often be a Boolean combination
of predicates. If this is so, the predicates are simply replaced by their corresponding
Boolean variables. If not so, the expression is abstracted using SAT in analogy to a
basic block.

3.5 Abstracting the Circuit

Let Sc denote the set of states of the (concrete) circuit, andRc the concrete transition
relation. The abstract transition relation of the circuit can be computed directly using
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the circuit-part of the relation defined in definition 5:

{(x̂, x̂′) | ∃x, x′ ∈ Sc, : xRcx
′∧

α(x) = x̂ ∧ α(x′) = x̂′}
(9)

This set is obtained using a Boolean quantification, as described in section 3.7. If this
equation is already too hard for the SAT solver due to the sheer size of the circuit, it
can be partitioned into components. The components are thenabstracted separately.
The final abstract transition relation is then the conjunction of the relations obtained
for each part. However, this partitioning may introduce additional spurious behavior.

In [8], a similar approach to the abstraction of hardware is described. The main
difference to the approach presented here is that [8] treatsthe SAT solver like a theorem
prover, and enumerates particular abstract transitions instead of performing a Boolean
quantification. The idea of using a Boolean quantification for hardware abstraction
was introduced by Lahiri, Bryant, and Cook [15]. While we areusing a bit-accurate
representation of the circuit, [15] is using a word-level representation, which does not
permit the use of bit-level operators.

3.6 Simulation and Refinement

In order to check the abstract model, we use SMV. If the property does not hold on
the abstract model, SMV returns a counterexample trace. This trace is then simulated
on the concrete model. This simulation corresponds to a series of BMC instances
with additional constraints. The unwinding bound for the program loop constructs
and the circuit can be taken from the abstract counterexample. As the instances are
very similar, incremental SAT can be used. If the last BMC instance is satisfiable, the
counterexample can be concretized, and the algorithm terminates.

If not so, the set of predicates has to be refined. This is done by computing precon-
ditions of the constraint that causes the counterexample tobe spurious.

3.7 Quantification using SAT

For the abstraction of both the circuit and the C program we need to obtain a repre-
sentation for a set of Boolean vectorsx such that a function is true for this argument.
The vectorx corresponds to the abstract present and next-state. In addition to x, the
function also takes an existentially quantified vectory, which is used for intermediate
variables for the CNF conversion and for the concrete states.

{x ∈ {0, 1}i | ∃y ∈ {0, 1}j : f(x, y)} (10)

This corresponds to a quantification of they variables.
The quantification is done by modifying the SAT solver Chaff [19] as follows: Ev-

ery time a satisfying assignment forf(x, y) is found, the algorithm records the values
of the literals corresponding tox (the variablesnot to be quantified), and then adds a
blocking clause in terms of these literals that eliminates all satisfying assignments with
the same value forx. The literals in the blocking clauses all have a decision level, since
the assignment is complete. The solver then backtracks to the highest of these decision
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levels and continues its search for further, different satisfying assignments. Eventually,
the additional constraints will make the problem unsatisfiable, and the algorithm ter-
minates. The blocking clauses added by the algorithm are a DNF representation of the
desired set.

This technique is commonly used in other areas, for example in [17, 11] and was
suggested earlier for solving quantified formulae in [21, 22]. In [15], our implementa-
tion of this algorithm was applied to predicate abstractionfor hardware and software
systems. It outperformed BDDs on all software examples. Thebasic algorithm can be
improved by heuristics that try to enlarge the cube represented by each clause. McMil-
lan [17] uses conflict graph analysis in order to enlarge the cube. Gupta et al. [11] use
BDDs for the enlargement. However, these techniques are beyond the scope of this
article.

4 Circuit Specification using C

4.1 Cycle Accurate C Programs

The equivalence criterion defined in section 2 allows a wide range of styles for the
ANSI-C program. This is done by adjusting the relations thatdefine input and output
equivalence, and by defining the labeling functionL appropriately.

A cycle accurate C model has to compute the values of all latches of the circuit in
every cycle. These values have to be stored in specially designated program variables.
In our tool, this is done by a separate file which contains an entry for each latch con-
taining the name of the latch in the circuit and the name of theC program variable.
Let v1 andv2 denote such a pair of a corresponding latch and a variable forall such
variablesV .

A special ”next cycle” command indicates that this computation is finished. It can
be used in arbitrary locations. When invoked, the C program makes an externally
visible transition. This is done by definingL2 (the labeling function for the program)
to beσ for states that have a program counter value corresponding to the ”next cycle”
command.L1 (the labeling function for the circuit) is defined to be constantlyσ.

Furthermore, the ”next cycle” command asserts that the values computed by the C
program match the values in the circuit. This is done by defining=̂O as

∧
v∈V v1 = v2.

The C program performs input by reading the corresponding input signals of the
circuit. This is enforced by defininĝ=I for the input signals and variables in analogy
to =̂O.

4.2 Non-Cycle Accurate C Programs

The related work in [12] allows accessing the values of the signals of the circuit in
arbitrary cycles by using the syntaxsignal[cycle]. Our approach does not allow
this, and restricts the access to the cycle value in the current cycle only. However,
one can still write a wide range of non-cycle accurate C models by adding additional
program variables to ”remember” previous signal values.
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It is not necessary for the C program to compute the values of all latches for each
cycle. Instead, only selected values may be compared by using an explicitassert
statement. As an example, the following fragment checks that a counter (a variable
imported from the circuit) increases only:

extern int counter;

while(1) {
int previous=counter;
next_cycle();
assert(counter>=previous);

}

This C program makes no attempt to actually reproduce the computation of the circuit;
it is used as a monitor only. Note that, in contrast to [12], there is no need to refer to a
bound, as we perform an unbounded verification. Thewhile loop is unbounded.

The assertions are implemented as follows: First, the function L2 is defined to be
σ for states that have a program counter value corresponding to anassert statement.
Second,̂=O is defined to hold if the assertions are true. Formally, letpci denote the
program counter of assertioni, andcond i(s1, s2) the condition of the assertion. Then,
=̂O is defined as follows:

=̂O(s1, s2) :=
∧

i

(s2.pc = pci =⇒ cond(s1, s2))

The following example illustrates how inputs are synchronized: suppose the circuit
performs a division1/x using an iterative algorithm that is controlled by a state ma-
chine. If the signalready is true, the state machine reads a new valuex. If the signal
done is true, the division is finished. The C program waits for theready signal and
copies the value ofx from the circuit. It then waits for thedone signal and checks the
division result, which is provided by the circuit asr.

extern unsigned int x, r;
extern _Bool ready, done;

while(1) {
/* local variable to remember x */
unsigned int my_x;

/* wait for ready, then copy x */
while(!ready) next_cycle();
my_x=x;

/* wait for done, then check result */
while(!done) next_cycle();
assert(r==1/my_x);

next_cycle(); /* next round */
}
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This is implemented by simply adding constraints to=̂I . The match between the vari-
ables of the C program and the signals in the circuit can be automated if there is a
syntactical rule. As an example, our implementation matches variables and signals
based on their names. Signals within the Verilog module hierarchy are mapped using
struct types. Another way to implement this mapping would be a file that explicitly
lists the corresponding signals and variables.

5 Experimental Results

We compare the performance of the approach presented in thispaper with an im-
plementation using Bounded Model Checking as suggested in [12]. Bounded Model
Checking is used for refutation only, i.e., it cannot conclude that there is no error trace.
Instead, it checks the correspondence of the program and circuit up to a given number
of cycles. In contrast to that, the approach presented in this paper can conclude that
both transition systems match. The experiments are performed on a 1.5 GHz AMD
machine with 3 GB of memory running Linux.

The benchmarks (table 1) we use are taken from an implementation of an out-of-
order RISC microprocessor with Tomasulo scheduler [26]. The processor implements
a MIPS-like ISA, and features precise interrupts by means ofa reorder buffer [25].

bug Run time BMC [12] Run timeBenchmark # latches
length min. 10 20 30 40 abstraction

ALU PIPE1 163 2 1.7s 3.7s 370.7s 21.8s 8.2s 36.6s
ALU PIPE2 163 - - 303.7s * * * 31.0s
RF1 1024 - - 13.7s 84.8s 134.0s 356.8s 0.5s
RF2 1024 1 0.7s 7.7s 20.3s 44.4s * 0.7s
ROB1 2963 - - 3.8s 10.3s 21.8s 116.0s 0.2s
ROB2 2963 - - 63.3s * * * 3.8s
ROB3 2963 16 5.7s 2.5s 7.0s 10.6s 14.3s 1.8s
ROB4 2963 64 106.0s 2.5s 5.3s 9.8s 21.5s 14.1s

Table 1: Experimental Results. If no bug length is given, theprogram and circuit are
consistent. The run time for BMC is given for various depths.The ”min” column
contains the run time for BMC for the shortest counterexample. A star (*) denotes that
the timeout of 1000s was exceeded. The best times for refutation are in bold.

TheALU PIPE circuit implements pipelined versions of arithmetic circuits. The
corresponding C program observes the values that enter the pipeline and wait for the
result at the end of the pipeline. They then compare the result with an internally com-
puted result. The C program computes the result in one step. Proving the two to be
consistent requires predicates that assert the correctness of the intermediate results in
the pipeline. These predicates are computed automaticallyduring the abstraction re-
finement phase. Note that for the satisfiable instances the time required until BMC
finds a counterexample actually decreases with the bound. The unsatisfiable instance
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is hard for BMC.
TheRF circuit contains the integer register file. The C program checks properties

of the register values.
The ROB circuit is the reorder buffer of the design. It contains a large number

of latches. In theROB1 benchmark, the C programs check properties of the control.
TheROB2 benchmark has C program which is a bit-accurate implementation of the
control part. TheROB3 benchmark uses the C program to check a (failing) property of
a counter in the design.

In conclusion, BMC can outperform the abstraction based approach if there is a
short counterexample. This can be justified by the fact that the abstraction based ap-
proach has to perform a simulation in order to confirm a counterexample. This simu-
lation is as hard as a BMC instance. If the counterexample is long, the simulation step
apparently benefits from the additional constraints from the abstract counterexample.

However, the abstraction based approach is superior if the property actually holds.
In this case, the abstraction based approach can conclude that there is no counterexam-
ple, while BMC cannot.

6 Conclusion and Future Work

The paper presents an algorithm to check the correspondenceof a C program and a
circuit given in Verilog. The C program may be cycle accurate, a partial implementa-
tion, or just a monitor. The equivalence criterion is formalized and then reduced to a
safety property. This property is then checked using predicate abstraction. We show
the effectiveness of the algorithm using benchmarks from processor design.

In the future, we plan to implement floating point arithmeticfor the C program, as C
programs with floating point arithmetic are commonly used asefficient circuit model.
Furthermore, we would like to investigate refinement algorithms that are specialized
for this algorithm.
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