Abstraction-based Satisfiability Solving of
Presburger Arithmetic

Daniel Kroening, Joél Ouaknine
Sanjit Seshia, Ofer Strichman

January 2004
CMU-CS-04-100

School of Computer Science

Carnegie Mellon University
Pittsburgh, PA 15213

This research was sponsored by the Semiconductor Research Corporation (SRC) under
contract no. 99-TJ-684, the National Science Foundation (NSF) under grants no. CCR-
9803774 and CCR-0121547, the Office of Naval Research (ONR) and the Naval Research
Laboratory (NRL) under contract no. N00014-01-1-0796, and the Army Research Office
(ARO) under contract no. DAAD19-01-1-0485. The views and conclusions contained in
this document are those of the authors and should not be interpreted as representing
the official policies, either expressed or implied, of SRC, NSF, ONR, NRL, ARO, the
U.S. Government or any other entity.

Keywords: Presburger arithmetic, Boolean satisfiability, theorem proving, ab-
straction.

Abstract

We present a new abstraction-based framework for deciding satisfiability of
quantifier-free Presburger arithmetic formulas. Given a Presburger formula ¢,
our algorithm invokes a SAT solver to produce proofs of unsatisfiability of ap-
proximations of ¢. These proofs are in turn used to generate abstractions of ¢ as
inputs to a theorem prover. The SAT-encodings of the approximations of ¢ are
obtained by instantiating the variables of the formula over finite domains. The
satisfying integer assignments provided by the theorem prover are then used to
selectively increase domain sizes and generate fresh SAT-encodings of ¢. The ef-
ficiency of this approach derives from the ability of SAT solvers to extract small
unsatisfiable cores, leading to small abstracted formulas. We present experimen-
tal results which suggest that our algorithm is considerably more efficient than
directly invoking the theorem prover on the original formula.

1 Introduction

Decision procedures for arithmetic over the integers have many applications in
formal verification. For instance, the quantifier-free fragment of Presburger arith-
metic has been used in infinite-state model checking [7], symbolic timing verifi-
cation [2], and RTL-datapath analysis [6]. Unfortunately, the satisfiability prob-
lem for quantifier-free Presburger arithmetic is known to be NP-complete [22].
Consequently, efficient techniques and tools for solving such problems are very
valuable.

In this paper, we present an abstraction-based algorithm for the satisfia-
bility solving of quantifier-free Presburger formulas (QFP formulas for short).
Presburger arithmetic is the first-order theory of linear arithmetic over the non-
negative integers. It was shown to be decidable in [24], although the best-known
decision algorithms have complexity triply exponential in the size of the for-
mula [26]. For many applications, however, the quantifier-free fragment of Pres-
burger arithmetic suffices.

The algorithm we propose receives as input a QFP formula and attempts
to satisfy it over a small range of integers, through a Boolean encoding of the
formula and interaction with a SAT solver. In case the Boolean formula is found
to be unsatisfiable, the SAT solver is able to supply us with a proof of this fact,
in the form of a (small) unsatisfiable core. This in turn can be used to pin-
point the linear arithmetic constraints of the original QFP formula that cannot
be satisfied over our bounded domain. This (likewise small) set of linear con-
straints represents an abstraction of the original QFP formula: whenever these
constraints cannot be satisfied over the whole of the non-negative integers, the
original formula is unsatisfiable as well. The advantage of this operation is that
it is generally much easier to solve the abstracted formula than the original one.
We can do so by using any of the existing decision procedures for Presburger
arithmetic. The abstracted formula may however be satisfiable; in that case, we
increase the size of our bounded integer domain to accommodate the satisfying
integer assignment supplied by the decision procedure. We then repeat the whole
process until the original formula is shown to be either satisfiable or unsatisfiable.

Note that while the domain over which we work (the integers) is infinite,
termination is guaranteed provided the inner Presburger decision procedure we
use is itself complete.

Our implementation of this algorithm uses the SAT solvers zChaff [29] and
SMVSAT!, as well as the commercial constraint-solving package CPLEX [15].
Our experimental results, which include both random formulas as well as indus-
trial benchmarks, suggest that our algorithm is considerably more efficient than
directly invoking our inner CPLEX-based Presburger decision procedure on its
own.

! We thank Ken McMillan for providing us with this proof-generating SAT solver.

1.1 Related work

There currently exist a number of algorithms and tools for solving QFP, some of
which we discuss in Section 2. We refer the reader to the excellent surveys [16, 12]
for a more detailed presentation of the matter. While no single technique is found
to dominate all others, Ganesh et al. [12] report that ILP-based methods perform
best in most contexts. To the best of our knowledge, however, no existing tools
make use of the sort of abstractions that we have just described.

McMillan and Amla [20] use a related technique to accelerate model checking
algorithms over finite Kripke structures. More precisely, they invoke a bounded
model checker to decide which state variables should be made visible in order
to generate a ‘good’ abstraction for the next iteration of model checking. Our
approach differs from theirs in several respects: we work over an infinite domain,
we use a Presburger decision procedure instead of a model checker, and we seek
to eliminate constraints rather than variables.

Henzinger et al. [13] use a theorem prover to refute counterexamples gener-
ated by predicate abstraction in software verification. When the counterexample
is shown to be spurious, the proof is ‘mined’ for new predicates to use in pred-
icate abstraction. Although similar in spirit, this approach differs significantly
from ours in both the domain of application and the techniques used.

Our framework also bears certain similarities with automated counterexample
guided abstraction refinement [17]. Chauhan et al. [8], for example, use a SAT
solver to derive an abstraction sufficient to refute a given abstract counterex-
ample in model checking. The successive abstractions they obtain, however, are
cumulative, in that state variables made visible at some point are never subse-
quently re-hidden. In contrast, our approach generates a fresh abstraction every
time.

2 Preliminaries

2.1 Boolean satisfiability

We begin by recalling some well-known facts concerning (propositional) Boolean
formulas and Boolean satisfiability.

Let by,bs,... be Boolean variables. A literal is either a b; or its negation.
A (Boolean) clause is a disjunction of zero or more literals—by convention, the
empty clause is equivalent to False.

Let ¢ be a Boolean formula with free variables by, ... ,b,. It is possible to
manufacture a Boolean formula cnf(¢) with free variables by, ... ,b,4, (where
the bpt1, ... ,bytp are fresh Boolean variables), such that

— cnf(¢) is in conjunctive normal form (CNF): cnf(¢) = /\;":1 Bj, where each
Bj is a Boolean clause,

— cnf(¢) is satisfiable iff ¢ is satisfiable; more precisely, 3by,11, - - . , byypcnf(Q)
is tautologically equivalent to ¢, and

— The number of variables and the size of cnf(¢) are both linear in the size of

¢.

Linear-time algorithms for computing cnf(¢) are well-known; see, for instance, [23].
A SAT solver is an algorithm which determines, given a Boolean formula ¢
in CNF, whether ¢ is satisfiable. In the affirmative case, the SAT solver will
produce a satisfying assignment for ¢. If, on the other hand, ¢ is unsatisfiable,
the SAT solver can be required to produce a proof of unsatisfiability [30, 20].
Such a proof in turns yields an unsatisfiable core, i.e., an unsatisfiable subset of
clauses of ¢. In practice, SAT solvers tend to generate small unsatisfiable cores.
The SAT solvers we have used in our experiments are zChaff [29] and SMVSAT.

2.2 Presburger arithmetic

Presburger arithmetic can be defined as the first-order theory of the structure
(N,0,1,<,+), where N denotes the set of non-negative integers. In this paper,
we focus on the quantifier-free fragment of Presburger arithmetic.

More precisely, let z1, 2, ... be variables ranging over non-negative integers.
A linear constraint is any expression of the form

n
E a;xr; ~ C ,
i=1

where each a; and c are integer constants (i.e., a;, ¢ € Z), and ~ is a comparison
operator (~ € {<,<,>,>,=}). Quantifier-free Presburger formula (henceforth
QFP formulas) are Boolean combinations of linear constraints:

Definition 1. The collection of QFP formulas is defined inductively as follows:

— Any linear constraint is a QFP formula, and
— If o1 and ¢ are QFP formulas, then so are @1, ¢1 A ¢2, and @1 V ¢s.

Remark 1. Note that an integer variable x can easily be represented in Pres-
burger arithmetic by two non-negative variables: x = x4y — xz_. It is equally
straightforward to encode Boolean variables as equalities of the form z = 1,
together with constraints of the form x < 1 conjoined at the outermost level.

We are interested in the satisfaction problem for QFP formulas: given a QFP
formula ¢, is there an assignment of non-negative integers to the variables of ¢
under which ¢ evaluates to True?

Ganesh et al. [12] present an excellent survey of decision procedures for satis-
fiability solving of QFP formulas. The abstraction-based algorithm we describe
in Section 3 can be used in conjunction with any such decision procedure; it
is however desirable that the procedure also generate satisfying integer assign-
ments. We briefly describe in the next two paragraphs how we use the commercial
package CPLEX [15], together with the SAT solver zChaff, to achieve this.? Put
succinctly, our decision procedure iteratively refines Boolean encodings of the

2 We also experimented with the tool LP_SOLVE [18] but encountered difficulties with
certain formulas, for which LP_.SOLVE appears to be unsound.

QFP formula based on satisfying assignments from zChaff that are inconsis-
tent with the linear arithmetic. This technique is known as ‘lazy explication of
axioms’, and was originally proposed by the authors of the tools ICS [14, 10],
CVC [9, 4, 5], Math-SAT [19, 3], and Verifun [11].

CPLEX uses integer linear programming techniques (and in particular the
simplex algorithm) to decide whether a conjunction of linear arithmetic con-
straints is satisfiable. When such a conjunction is satisfiable, CPLEX also gen-
erates a satisfying integer assignment.

Our CPLEX-based QFP solver is implemented as follows. Given a QFP for-
mula ¢, we first extract a ‘Boolean skeleton’ ¢p.o; from ¢, by simply replacing
each linear constraint in ¢ with a fresh Boolean variable. We then invoke zChaff
to determine whether ¢, is satisfiable. If it is not, then ¢ cannot possibly be
satisfiable either, and we terminate. Otherwise, we take the satisfying assignment
(say b) provided by zChaff and form a corresponding conjunction of linear con-
straints, which we then submit to CPLEX. If CPLEX is able to find a satisfying
assignment for this conjunction of linear constraints, then this assignment also
satisfies ¢, and we are done. Otherwise, we augment the Boolean formula ¢,
with a ‘blocking’ clause ruling out the Boolean assignment b produced earlier by
zChaff. We then repeat the procedure with the new Boolean formula until the
satisfiability of ¢ is established or refuted.

In the remainder of this paper, let us refer to our implementation of the
above algorithm as ‘PresSolver’.

Remark 2. Among other existing QFP solvers, let us mention (i) the OMEGA
tool [25], which converts a QFP formula into disjunctive normal form and then
applies an extension of the Fourier-Motzkin linear programming algorithm on
each disjunct; (ii) the automata-based tool LASH [28]; and (iii) the previously
mentioned ILP-based tools LP_SOLVE, ICS, and CVC.

Our abstraction-based framework can be used in conjunction with any of
these decision procedures, and indeed we intend to carry out a number of ex-
periments with them in the near future. We have so far mostly worked with the
commercial package CPLEX mainly because of its high reliability, completeness
over the integers, and efficiency. While ICS and CVC are not at present complete
over the integers, and are therefore unsuitable for our purposes, their implemen-
tors inform us that they are planning to release complete versions of these tools
in the near future.

3 Abstraction-based Presburger Satisfiability Solving

We now present the main contribution of this paper, a SAT-based algorithm that
generates increasingly precise abstractions of QFP formulas. Our abstractions are
obtained by eliminating linear constraints from QFP formulas in a conservative
manner. The choice of which constraints to eliminate is guided by an iterative
interaction with a SAT solver.

Let ¢ be a QFP formula. If we view the linear constraints occurring in ¢ as
atomic propositions, we can convert ¢ into a satisfaction-equivalent QFP formula

¢’ in CNF by invoking the procedure described in Section 2.1. Note that ¢’ may
require the introduction of fresh Boolean variables; as discussed in Remark 1,
these are modeled as new constrained integer variables. For the remainder of this
section, let us therefore assume without loss of generality that the QFP formula
¢ is given to us in CNF.

Write ¢ = /\;”:1 C;, with each C; a (Presburger) clause. (A Presburger clause
is a disjunction of linear constraints.) Let x1, ... ,z, be the collection of variables
appearing in ¢. Suppose we are given a function size which assigns to each
variable x; a positive integer size(x;). Intuitively, size(x;) denotes the maximum
number of bits allowed in the binary representation of z;; put another way,
size(x;) implicitly represents the constraint z; < 2%%¢(%),

Let C3% stand for the formula CjAN,¢ ;, @i < 2°%°("0) where Jj is the set of
indices of the variables that appear in C';. We can encode C’;ize as an equivalent
Boolean formula booI(C]t‘ize), as follows. For each variable x; appearing in Cj,
allocate size(x;) Boolean variables, one for each of the bits allowed in the binary
representation of x;. The linear constraints in C; are then encoded as Boolean
formulas on these Boolean variables. Note that the encoding uses exact (i.e.,
arbitrary-precision) bit-vector arithmetic.

Next, let B5**¢ = cnf(bool(C5%*¢)) denote the CNF representation of this
Boolean formula, ensuring in the process that all newly introduced auxiliary
Boolean variables are fresh. Write

(bsize = }"\ Cj._size and Cbe(¢size) = 7\ B;ize .
j=1

j=1
(Here cbe stands for ‘CNF Boolean Encoding’.) The two main points are:

— The QFP formula ¢*%*¢ is satisfiable iff the Boolean formula cbe(¢®%¢) is
satisfiable, and _
— Any satisfying assignment for ¢**¢ is also a satisfying assignment for ¢.

Observe that since each Bjize is a conjunction of Boolean clauses, cbe($*%*¢)
is itself in CNF; let us therefore write cbe(¢**¢) = AL_; Ax. Note that it is
straightforward when building cbe(¢***¢) to maintain a table recording, for each
clause Ay, of cbe(¢***¢), its ‘origin’ orig(Ax) = C; in ¢. While it is possible for
several Presburger clauses to yield a common Boolean clause Ay, orig(Ay) only
records one of them. It is clear that, whenever orig(Ax) = C;, any satisfying in-
teger assignment for C’;”e yields a corresponding satisfying Boolean assignment
for Ay.

We now come to the crux of the paper, our abstraction-based algorithm for
solving QFP formulas, which we call ‘ASAP’ (Abstraction-based Satisfiability
Algorithm for Presburger). ASAP takes as input a QFP formula ¢ in CNF
with free variables z1,...,x,, and either outputs a satisfying assignment of
non-negative integers to these variables, or declares ¢ to be unsatisfiable. ASAP
repeatedly invokes as subroutines both a SAT solver (SMVSAT) and a quantifier-
free Presburger arithmetic decision procedure (PresSolver, which itself is based
on CPLEX and zChaff).

10

ASAP first attempts to satisfy an over-constrained version of ¢ in which
the integer variables are only allowed to range over a bounded domain. This is
achieved by encoding the over-constrained QFP formula as a Boolean formula,
which is then given as input to SMVSAT. If a satisfiable assignment is found,
then ¢ is clearly also satisfiable, and an integer witness is easily extracted from
the satisfying Boolean assignment produced by SMVSAT. Otherwise, SMVSAT
returns an unsatisfiable core, which is in turn used to pinpoint a subset of the
clauses of ¢ as unsatisfiable over the chosen bounded domain. The conjunction of
these clauses is clearly a conservative abstraction of ¢, in that if it is unsatisfiable
then so is ¢. We therefore run PresSolver on this abstracted QFP formula. If
it is found to be satisfiable, we increase the size of our bounded domain to
accommodate the satisfying assignment supplied by PresSolver, and repeat the
whole process. We continue until a conclusive judgment on the satisfiability of
¢ is obtained.

Section 4 presents experimental evidence which suggests that ASAP is con-
siderably more efficient than PresSolver on its own. ASAP is described in pseudo-
code in Figure 1.

Algorithm ASAP
Input: QFP formula ¢ in CNF with free variables xi,...,%n
Output: satisfying assignment for ¢ or ‘UNSAT’

let size(z;) =1 for each i
repeat forever
run SMVSAT on cbe(¢***)
if cbe(¢**¢) is satisfiable then
return(corresponding satisfying assignment for ¢
else
let A,cx Ar be an unsatisfiable core of che(¢
let ¥ = A ,cx orig(Ax)
run PresSolver on o
if 9 is unsatisfiable then
return(‘UNSAT’)
else

S’iZ{i)

sz‘ze)

let vi1,...,v, be a satisfying assignment for
let size(x;) = max([logy(vsi)], size(z;)) for each i
end

Fig. 1. ASAP: an abstraction-based Presburger satisfiability solving algorithm

Theorem 1. The algorithm ASAP described in Figure 1 is correct and always
terminates.

Proof. We first examine the issue of correctness. Observe that v is less con-
strained a QFP formula than ¢, in that it contains only a subset of the clauses
of ¢. Thus if ¥ is unsatisfiable, then so is ¢. On the other hand, suppose that

11

ASAP terminates with an assignment ¥ of non-negative integers to the variables.
T is a satisfying assignment for ¢®%*¢, for some instance of size. But since any
satisfying assignment for ¢*%#¢ is automatically a satisfying assignment for ¢, v
is indeed a satisfying assignment for ¢, as required.

We now claim that, in any execution of ASAP, we never see two identical
instances of the QFP formula . Since v is always a conjunction of a subset of the
clauses of ¢, it only has finitely many possible instantiations, which immediately
entails the termination of the algorithm.

It remains to establish our claim. Suppose, on the contrary, that two identical
instances of 1 are observed in a given execution of ASAP. The first time around,
an unsatisfiable core A,y Ar of cbe(¢**¢) is obtained, and the function size
is then subsequently increased to size’ to accommodate a satisfying integer as-
signment v for 1. In other words, 1) = /. orig(Ax) and ¢*=¢ 7] evaluates to
True. (Here @[15”6/ denotes the QFP formula v conjoined with linear constraints
of the form z; < 25%¢"))

Some iterations later, we encounter a second unsatisfiable core A, ; A; of
cbe(¢**#") such that ¢ = Nicr, orig(A;). Writing C;;y=orig(4;), we have that

-
size

0 [0] evaluates to true for every | € L, since T is a satisfying assignment for

wsm,. Since each iteration of the repeat loop increases (pointwise) the function

size, we conclude that size” > size’, and therefore that C’;élz)e” [0] also evaluates

to true for every [€ L. Let b be the Boolean assignment to the bit-variables
prescribed by size” corresponding to the integer assignment 7. We immediately

get that A;[b] evaluates to True for each I € L, and therefore that A, ., A; is
satisfiable, contradicting our earlier hypothesis. O

Remark 3. We record the following observations concerning ASAP:

— Any ILP-based solver, such as PresSolver, offers the option of generating
satisfying integer assignments that moreover minimize some linear ‘objec-
tive function’ f(x1,...,2,). In the case at hand, it is desirable that sat-
isfying assignments be as compact as possible; more precisely, they should
ideally minimize the number of new bits that are required for their repre-
sentation. A simple linear function which approximates this requirement is
f(z1,...,2n) = Y1 @;, and in fact that is the function that PresSolver
uses. Note that while minimizing the number of bits subsequently leads to
easier queries for the SAT solver, the minimization requirement is an addi-
tional burden for the ILP-based Presburger solver.

— Note that, while our inner Presburger decision procedure PresSolver gen-
erates satisfying integer assignments, many theorem proving tools do not.
Nonetheless, we could still use a pure decision procedure in ASAP by simply
requiring, on every iteration, that the function size be increased by 1 for
each of its arguments.

12

4 Implementation and Experimental Results

We implemented our tool ASAP within the UCLID verification system [27],
which is implemented in Moscow ML [21], a dialect of Standard ML. In imple-
menting ASAP, we used PresSolver as a decision procedure for QFP formulas,
and SMVSAT as a proof-generating SAT solver. SMVSAT outputs a proof as a
set of resolution steps. The set of all original (i.e., not introduced by resolution)
clauses that appear in this proof constitute the unsatisfiable core. ASAP inter-
acts with PresSolver and SMVSAT using a file-based interface. The total running
time for ASAP is the cumulative time spent in generating input for SMVSAT
and PresSolver, in running SMVSAT and PresSolver, and in analyzing their
output.

We performed an experimental evaluation to investigate whether using Pres-
Solver within ASAP could achieve a significant speed-up over directly using
PresSolver on the input formula. We used two benchmark sets of QFP formu-
las in CNF: randomly generated formulas, and formulas generated in real-world
software verification problems.

The experiments were performed on a Linux workstation with an AMD
Athlon 1.5 GHz dual-processor CPU, with 3 GB of RAM. Both ASAP and
PresSolver are single-threaded.

4.1 Results on Random Benchmarks

We ran both ASAP and PresSolver on a set of 45 randomly generated formulas
with a timeout of 1200 seconds. The formulas included both unsatisfiable and
satisfiable instances. We generated the formulas recursively as follows: for each
node, we randomly select either a boolean operator (A, V, —) or a relational
operator (:, <, etc.). In case of a relation, we generate a linear constraint, ran-
domly selecting the coefficients of the variables and the constant term from the
range [0,100]. The number of variables is fixed, but the number of linear con-
straints can vary, allowing us to generate over-constrained formulas that have a
reasonable likelihood of being unsatisfiable. The depth of nesting of Boolean op-
erators in the formula is bounded, eventually forcing the selection of a relational
operator.

Figure 2 compares, for each formula, the total run-time of ASAP with the
run-time of PresSolver. In the plot, the x-coordinate of each point is the time
taken by ASAP, and the y-coordinate is the time taken by PresSolver. We also
plot the diagonal line y = x: points above the diagonal correspond to benchmarks
on which ASAP outperforms PresSolver, while points below it correspond to
benchmarks on which ASAP is outperformed.

The results show that ASAP outperforms PresSolver on most of the bench-
marks, completing on all benchmarks within a minute while PresSolver times
out on 6 benchmarks. On larger benchmarks for which PresSolver terminates,
we notice that ASAP performs an order of magnitude better; the speed-up is
more than a factor of 100 on some benchmarks. PresSolver outperforms ASAP
on some smaller formulas, but ASAP completes within 4 seconds on all of these;

13

the reason for PresSolver’s superior performance on these is simply because the
original formulas themselves are fairly small (about 80 clauses), so that ASAP’s
extra overhead is comparatively more costly.

timeout
768

256

64

16

0.25

Total Time for PresSolver (sec.)

00625 [<ok S SN NS N S——

0.0625 0.25 1 4 16 64 256
Total Time for ASAP (sec.)

Fig. 2. Comparing ASAP against PresSolver on random benchmarks. The
timeout was 1200 seconds. Note the log scale on both axes.

We also investigated how the maximum size of any abstracted formula 1,
measured in terms of number of CNF clauses, compares with that of the original
formula ¢. This was done by computing the ratio of the number of clauses in 1
with the number of clauses in ¢. We found the smallest such ratio to be 0.009,
where the original formulas has 648 clauses and the largest abstraction contains
just 6. The largest ratio was 0.206, with 354 clauses in the original formula, and
73 in the largest abstraction. This reduction is the main reason for the speed-ups
achieved over directly using PresSolver on ¢.

4.2 Results on Software Verification Benchmarks

We now report on the second set of experiments performed on formulas gen-
erated from software verification. We used a suite of formulas generated in the
WiSA project? in checking for format string vulnerabilities. The benchmarks in-
clude 20 formulas, both satisfiable and unsatisfiable, in an extension of QFP with

3 http://www.cs.wisc.edu/wisa

14

uninterpreted functions. Uninterpreted functions were first eliminated using Ack-
ermann’s technique [1], and both ASAP and PresSolver were run on the resulting
QFP formula. Each generated QFP formula is an arbitrary Boolean combination
of linear constraints. The number of variables in the formulas ranges from 33 to
43, the number of linear constraints ranges between 197 and 267, and the total
number of clauses ranges between 695 and 1054.

PresSolver was unable to solve any of these formulas within a timeout of one
hour. On the other hand, ASAP was able to complete on all but one benchmark
within the timeout. Table 1 shows the results of running ASAP on the WiSA
benchmarks. We give the total time taken by ASAP and the time taken by
PresSolver on abstractions generated by ASAP, summed over all invocations of
PresSolver. We notice that on all benchmarks, the time taken by PresSolver is
the bottleneck for ASAP, accounting for over 90% of the total time on most
benchmarks. ASAP takes on the order of a few minutes to solve each formula.
SMVSAT took less than 5 seconds on each occasion, with the remaining time
spent in generating encodings and parsing output from SMVSAT and PresSolver.

The abstractions generated by ASAP were fairly compact. The last column
in Table 1 shows the ratio of the number of clauses in the largest abstraction
generated by ASAP to the number of clauses in the original formula ¢. We see
that this ratio is roughly between 10 and 15 percent. Again, the compactness of
the abstraction is the main reason why ASAP is able to solve these formulas,
while PresSolver is unable to complete on any. Finally, we note that the number
of iterations taken by ASAP ranged between 19 and 28.

5 Conclusion

We have presented a novel abstraction-based approach to the satisfiability solv-
ing of quantifier-free Presburger formulas. Our experimental results, over both
random formulas as well as industrial benchmarks, indicate that embedding a
theorem prover for QFP formulas within our framework can achieve significant
speed-ups over directly using the prover on the input formula.

In the future, we would like to experiment with a number of other Pres-
burger solvers, and in particular ICS and CVC. While these tools are at present
incomplete over the integers, and hence not suitable for our purposes, their im-
plementors inform us that new releases will remedy this, something we look
forward to.

Another research direction would be to investigate whether the abstraction-
based methodology presented here could be applied to other logics and theories,
possibly over different domains such as bit vectors, real numbers, etc.

Acknowledgments

We thank Vinod Ganapathy and Somesh Jha for providing us with benchmark
formulas.

15

Benchmark ASAP Time Max. Ratio

PresSolver Time|Total Time|#(1) clauses)

(sec.) (sec.) |#(¢ clauses)
s-5-3 199.70 230.44 0.139
s-5-5 239.48 262.00 0.142
s-5-6 193.53 215.56 0.148
s-5-7 274.08 303.45 0.142
s-6-5 286.88 310.05 0.125
s-6-6 261.93 292.05 0.132
xs-5-2 408.56 434.16 0.120
xs-5-3 596.82 631.77 0.122
Xs-5-5 970.01 994.11 0.124
xs-5-6 934.18 959.76 0.126
xs-5-7 978.83 1008.53 0.124
xs-5-9 126.44 150.90 0.155
xs-5-10 127.93 155.01 0.155
xs-5-11 1034.01 1062.88 0.161
xs-6-2 648.44 683.79 0.103
xs-6-5 1051.57 1116.78 0.106
xs-6-6 1008.85 1043.09 0.110
xs-6-9 132.04 158.97 0.135
xs-6-10 184.51 220.18 0.135

xs-6-11 * * -

Table 1. ASAP results on WiSA benchmarks. A “*” indicates that ASAP timed
out after 1 hour.

References

[1]
2]

3]

(4]

W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amster-
dam, 1954.

T. Amon, G. Borriello, T. Hu, and J. Liu. Symbolic timing verification of timing
diagrams using Presburger formulas. In Proceedings of DAC 97, pages 226231,
1997.

G. Audemard, P. Bertoli, A. Cimatti, A. Kornilowicz, and R. Sebastiani. A SAT
based approach for solving formulas over boolean and linear mathematical propo-
sitions. In Proceedings of CADE 02, pages 195-210, 2002.

C. Barrett, D. Dill, and A. Stump. Checking satisfiability of first-order formulas
by incremental translation to SAT. In Proceedings of CAV 02, volume 2404, pages
236-249. Springer LNCS, 2002.

S. Berezin, V. Ganesh, and D. L. Dill. An online proof-producing decision pro-
cedure for mixed-integer linear arithmetic. In Proceedings of TACAS 03, volume
2619, pages 521-536. Springer LNCS, 2003.

R. Brinkmann and R. Drechsler. RTL-datapath verification using integer linear
programming. In Proceedings of VLSI Design, pages 741-746, 2002.

T. Bultan, R. Gerber, and W. Pugh. Symbolic model checking of infinite state
systems using Presburger arithmetic. In Proceedings of CAV 97, volume 1254,
pages 400-411. Springer LNCS, 1997.

16

[8]
[9]
[10]
[11]

[12]

13)
[14]
[15]
[16]
17)
18]
19]
[20]

[21]
22]

23]

[24]

[25]
[26]
[27]
[28]

[29]
[30]

P. Chauhan, E. M. Clarke, J. H. Kukula, S. Sapra, H. Veith, and D. Wang.
Automated abstraction refinement for model checking large state spaces using
SAT based conflict analysis. In FMCAD 02, pages 33-51, 2002.

CVC. http://verify.stanford.edu/CVC/.

L. de Moura, H. Ruef}; and M. Sorea. Lazy theorem proving for bounded model
checking over infinite domains. In Proceedings of CADE 02, pages 438-455, 2002.
C. Flanagan, R. Joshi, X. Ou, and J. B. Saxe. Theorem proving using lazy proof
explication. In Proceedings of CAV 03, volume 2725, pages 355-367, 2003.

V. Ganesh, S. Berezin, and D. L. Dill. Deciding Presburger arithmetic by model
checking and comparisons with other methods. In Proceedings of FMCAD 02,
volume 2517, pages 171-186. Springer LNCS, 2002.

T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction. In
Proceedings of POPL 02, pages 58-70. ACM, 2002.

ICS. http://www.icansolve.com.

ILOG CPLEX. http://www.ilog.com/products/cplex/.

P. Janici¢, I. Green, and A. Bundy. A comparison of decision procedures in
Presburger arithmetic. Research paper no. 872, Division of Informatics, 1997.
University of Edinburgh.

R. Kurshan. Computer-Aided Verification of Coordinating Processes. Princeton
University Press, 1994.

LP_SOLVE. http://www.freshports.org/math/lp_solve/.

Math-SAT. http://dit.unitn.it/ rseba/Mathsat.html.

K. McMillan and N. Amla. Automatic abstraction without counterexamples. In
Proceedings of TACAS 038, volume 2619, pages 2—17. Springer LNCS, 2003.
Moscow ML. http://www.dina.dk/“sestoft/mosml.html.

C. H. Papadimitriou. On the complexity of integer programming. Journal of the
ACM, 28(4):765-768, 1981.

D. A. Plaisted and S. Greenbaum. A structure-preserving clause form translation.
Journal of Symbolic Computation, 2(3):293-304, 1986.

M. Prefiburger. Uber die Vollstindigkeit eines gewissen Systems der Arith-
metik ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt.
Comptes-rendus du premier congrés des mathématiciens des pays slaves, 395:92—
101, 1929.

W. Pugh. The Omega Test: A fast and practical integer programming algorithm
for dependence analysis. In Supercomputing, pages 4-13, 1991.

R. E. Shostak. A practical decision procedure for arithmetic with function sym-
bols. Journal of the ACM, 26(2):351-360, 1979.

UCLID. http://www.cs.cmu.edu/ uclid.

P. Wolper and B. Boigelot. An automata-theoretic approach to Presburger arith-
metic constraints. In Proceedings of SAS 95, volume 983, pages 21-32. Springer
LNCS, 1995.

zChaff. http://www.ee.princeton.edu/ chaff/zchaff.php.

L. Zhang and S. Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formulas. In Proceedings of SAT 03, 2003.

