
A Monadic Analysis of Information Flow Security with

Mutable State

Karl Crary Aleksey Kliger Frank Pfenning

July 2003

CMU-CS-03-164

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

Abstract

We explore the logical underpinnings of higher-order, security-typed languages
with mutable state. Our analysis is based on a logic of information flow de-
rived from lax logic and the monadic metalanguage. Thus, our logic deals with
mutation explicitly, with impurity reflected in the types, in contrast to most
higher-order security-typed languages, which deal with mutation implicitly via
side-effects.
More importantly, we also take a store-oriented view of security, wherein secu-
rity levels are associated with regions of the mutable store. In contrast, most
other accounts are value-oriented, in that security levels are associated with in-
dividual values. Our store-oriented viewpoint allows us to address information
flow security while still using a largely conventional logic, but we show that it
does not lessen the expressive power of the logic. An interesting feature of our
analysis lies in its treatment of upcalls (low-security computations that include
high-security ones), employing an “informativeness” judgment indicating under
what circumstances a type carries useful information.

This material is based on work supported in part by NSF grants CCR-9984812
and CCR-0121633. Any opinions, findings, and conclusions or recommendations in
this publication are those of the authors and do not reflect the views of this agency.

Keywords: Type theory; language-based security; non-interference; muta-
ble state; monads

Contents

1 Introduction 2

2 Secure Monadic Calculus 4
2.1 Syntax . 4
2.2 Static Semantics . 6
2.3 Operational Semantics . 9

3 Upcalls 10
3.1 An example with unit . 11
3.2 A more general example . 12
3.3 Informativeness . 12

4 Type Safety 15

5 Non-interference 16
5.1 Equivalence relation . 16
5.2 Hexagon lemmas . 19
5.3 Non-interference theorem . 25

6 Encoding value-oriented secure languages 25
6.1 A purely functional language: SLam calculus 26
6.2 An imperative language: λREF

SEC . 30

7 Related Work 37

8 Conclusion 38

A Judgments 40
A.1 Informativeness judgment rules 40
A.2 Typing judgment rules . 41
A.3 Equivalent view judgments rules 43

B Evaluation Rules 45

C Proofs 47
C.1 Type safety proof . 49

C.1.1 Properties of informativeness and subtyping 49
C.1.2 Typing judgment properties 52
C.1.3 Store properties . 56
C.1.4 Preservation, Progress and Type safety 57

C.2 Structural properties of equivalence 64
C.3 Term Hexagon lemma proof . 67
C.4 High Security Step proof . 70
C.5 Hexagon lemma proof . 73

1

D The SLam Calculus 84
D.1 Operational semantics . 84
D.2 Typing rules . 85
D.3 Type-correct translation proof . 86

E λREF
SEC well-typed translation proof 87

1 Introduction

Security-typed languages use a type system to track the flow of information
within a program to provide properties such as secrecy and integrity. Secrecy
states that high-security information does not flow to low-security agents, and
integrity dually states that low-security agents cannot corrupt high-security in-
formation. In this paper, we will restrict our attention to secrecy properties.
A variety of security-typed languages have been proposed, and several of them
are both higher-order (i.e., support first-class functions) and provide mutable
state [3, 8, 10, 12, 19].

In this paper, we explore the logical underpinnings of higher-order, security-
typed languages with mutable state. Although most such languages rely on
side-effects to manage mutable state, a logical analysis requires us to make
store effects explicit. Thus, an appropriate programming language is Moggi’s
monadic metalanguage [6, 7], and the corresponding logic (via a Curry-Howard
isomoprhism) is lax logic [2].

Our presentation of lax logic is based on that of Pfenning and Davies [9].
The principal distinctive feature of Pfenning and Davies’s account is a syntactic
distinction between terms and expressions, where terms are pure and expres-
sions are (possibly) effectful. They show that this distinction allows the logic to
possess some desirable properties (local soundness and local completeness) that
state in essence that the logic’s presentation is canonical. Although these prop-
erties are not particularly important here, the distinction also provides a clean
separation between the pure and effectful parts of our analysis, which greatly
simplifies our system.

A basic but important novelty of our account lies in the way we structure the
security discipline. Most security-typed languages associate security levels with
values, thus producing a situation in which some values are better than others.
Although one could doubtless build a logic based on this structure (perhaps
building on Abadi et al. [1]), it would certainly differ from the conventional
logic in which one value is as good as another.

Instead, we adopt a structure in which security is associated with the mutable
store and with operations on that store. Not only does this provide a more
conventional logic, it also meshes nicely with our focus on effects. A natural
question is whether this store-oriented security discipline limits the expressive
power of our account relative to ones based on a value-oriented discipline, but
we show (in Section 6) that it does not.

2

Overview The static semantics of our analysis is based on two typing judg-
ments, one for terms (M) and one for expressions (E). Recall that terms are
pure and that security is associated with effects, so the typing judgment for
terms makes no mention of security levels. Thus, the typing judgment takes the
form Σ; Γ ` M : A (where Γ is the usual context and Σ assigns a type to the
store).

Expressions, on the other hand, may have effects and therefore may interact
with the security discipline. Each location in the store has a security level
associated with it indicating the least security level that is authorized to read
that location. Thus, the typing judgment for expressions tracks the security
levels of all locations an expression reads or writes. Only the reads are of direct
importance to the security discipline (recall that we do not address integrity),
but writes must also be tracked since they provide a means of information flow.
The judgment takes the form:

Σ; Γ ` E ÷(r,w) A

indicating that r is a upper bound to the levels of E’s reads, and w is a lower

bound to the levels of its writes, and also that E has type A. Naturally we
require that r v w, or else E could manifestly be leaking information.

In lax logic, expressions are internalized as terms using the monadic type
©A. A term of type ©A is a suspended expression of type A. Thus, the intro-
duction form for the monadic type is a term construct, and the elimination form
(which releases the suspended expression) is an expression construct. Similarly,
our expressions are internalized as terms using a monadic type written ©(r,w)A.
Since the effects of the suspended expression will be released when the monad
is eliminated, the levels of those effects must be recorded in the monad type.

Most of the rules in our account follow from the intuitions above. One re-
maining novelty deals with the information content of types. Ordinarily, an
expression would be deemed to be leaking information if it were to read from
a high-security location, use the result of the read to form a value, and pass
that value to a low-security computation. However, that expression would not

be leaking information if one could show that the type of that value contained
no information, or contained information usable only by a high-security com-
putation (who could have performed the read anyway). Thus the type system
contains a judgment ` A ↗ a stating that the type A contains information
only for computations at the level a at least. This notion of informativeness is
essential to accounting for the key issue of upcalls (low-security computations
that include high-security computations).

The remainder of this paper is organized as follows: In Section 2 we present
our basic logical account, including static and dynamic semantics, but omitting
the key issue of upcalls. In Section 3 we extend our account to deal with upcalls.
In Section 5 we state and prove a non-interference theorem. In Section 6 we show
that our store-oriented account provides at least the expressive power of value-
oriented accounts by embedding several previous approaches into our language.
Section 7 discusses some related work, Section 8 offers some concluding remarks.

3

A, B, C ∈ types ::= 1 | bool | A → B
| refa A | refra A | refwa A
| ©o A

M, N ∈ terms ::= x variables
| ∗ unit
| true | false boolean values
| if M then N1 else N2 conditional
| λx : A.M abstraction
| MN application
| ` store location
| val E suspended computation

E, F ∈ expressions ::= [M] return
| let val x = M in E sequencing
| refa (M : A) store allocation
| !M store read
| M := N store write

Γ ∈ contexts ::= · | Γ, x : A
Σ ∈ store types ::= {} | Σ{` : A}

V ∈ values ::= ∗ | true | false

| λx : A.M | ` | val E
H ∈ stores ::= {} | H{` 7→ V }
S ∈ computation states ::= (H, Σ, E)

let x = E in F ≡ let val x = val E in F
run M ≡ let val x = M in [x]

Figure 1: Syntax

2 Secure Monadic Calculus

We now describe the syntax, typing rules and operational semantics of our
language.

2.1 Syntax

As in other work on information flow, we have in mind an arbitrary fixed lattice
(that is, a partial order (L,v) equipped with a join t, meet u, and least ⊥ and
greatest > elements) of security levels. We use the meta-variables a, b, c, r, w, ζ
to range over elements of L.

The full syntax of our language is given in Figure 1. The language is split into
two syntactic categories: terms M and the expressions E, following Pfenning
and Davies [9] . The terms are pure and evaluated to values V , while the
expressions are executed for effect (but also return a value).

4

Operation levels To track the flow of information, we classify expressions
not only by the value that they return, but also by the security levels of their
effects. In particular, we keep track of an operation level o = (r, w), for each
expression. The security level r is an upper bound on the security levels of
the store locations that the expression reads, while w is a lower bound on the
security level of the store locations to which it writes.

Since expressions that write at a security level below their read level are
obviously insecure, we restrict the operation levels to be elements of the set O:

O = {(r, w) ∈ L× L | r v w}

Henceforth, when we write an operation level (r, w), we will implicitly assume
that it is an element of O.

The operation levels have a natural ordering (r, w) � (r′, w′). Given some
expression E, if it reads from level at most r, then it surely reads from level at
most r′, provided that r v r′. Similarly, if it writes at level at least w, then it
writes at level at least w′, provided that w′ v w. That is, operation levels are
covariant in the reads and contravariant in the writes:

(r, w) � (r′, w′) iff (r v r′ and w′ v w)

There is a subsumption principle for operation levels: if expression E has oper-
ation level o, and o � o′, then E has operation level o′.

Terms At the term level, we have variables, unit, booleans and conditional
terms, function abstractions and applications. In support of our operational
semantics, store locations are also terms. With each location ` is associated a
fixed security level Level(`). The store associates locations with the values they
contain. A subtyping relation (explored later in this paper), allows us to treat
store cells as either read-write, read-only, or write-only.

The term val E allows expressions to be included at the term level as an
element of the monadic type ©oA. Since terms are pure, a val E does not
execute the expression E, but rather represents a suspended computation.

Expressions The expressions include a trivial return expression [M]. The
return expression has no effect, and simply returns the value to which M evalu-
ates. In general, when an expression has no read effects, we say its read level is
⊥, and if an expression has no write effects, we say its write level is >. Accord-
ingly, the operation level of [M] is (⊥,>). Note that (⊥,>) is the least element
in the � ordering, so our subsumption principle will let us weaken the operation
level of [M] to any operation level.

The sequencing expression let val x = M in F evaluates M down to some
val E, and executes E followed by F . The return value of expression E is bound
to the variable x in F . If E and F both have operation level o, then so does the
sequencing expression.

5

We will often write let x = E in F as syntactic sugar for let val x =
val E in F , and run M for let val y = M in [y]. The derived typing rules
are given in Appendix A.2.

In addition, there are expressions that allocate, read from, and write to the
store. A read expression !M has operation level (a,>), where a is the security
level of the store location being read, and returns the contents of the store
location. Dually, a write expression M := N has operation level (⊥, a) and
updates the store location with the value of N ; it does not return an interesting
value (i.e., it returns unit).

Store allocation refa (M : A) specifies the security level a and type A of the
new store location.

Allocation cannot leak information. Evidently, it is not a read operation.
Less obviously, it is not a write operation either. With a write, another expres-
sion may learn something about the current computation by observing a change
in the value stored at a particular store location. However, the key to this sce-
nario is that the same location is mentioned by more than one expression. On
the other hand, allocation creates a new location that is mentioned nowhere else.
Thus, there can be no implicit flow of information via an allocation expression.
As a result, allocation has operation level (⊥,>).

States A computation state is a partially executed program, and consists of
a triple (H, Σ, E) of a store H , a store type Σ and a closed expression E. The
store maps locations to values, and the store type maps locations to the types
of those values.

We assume that in a state (H, Σ, E), the store binds occurrences of store
locations ` in H and E, and we identify computation states up to renaming of
store locations. In addition, as usual, we identify all constructs up to renaming
of bound variables.

2.2 Static Semantics

The type system of our language consists of two main mutually recursive judg-
ments for typing terms and expressions, and some judgments for typechecking
stores, and computation states that are summarized in Table 1. The first judg-
ment

Σ; Γ ` M : A

says that the term M has type A in the context Γ, where the store has type Σ.
The second judgment typechecks expressions

Σ; Γ ` E ÷o A

says that the expression E returns a value of type A and performs only opera-
tions within level o, as discussed above. Each rule is given with its rule number,
and the full set of rules appears in Appendix A.2.

We assume that contexts Γ are well-formed, that is, they contain at most
one occurrence of each variable x. We tacitly rename bound variables prior to

6

Table 1: Typing judgments
Judgment Meaning

Σ; Γ ` M : A Term M has type A
Σ; Γ ` E ÷o A Expression E has type A

and operation level o
` A ≤ B Type A is a subtype of B
` H : Σ Store H has type Σ
` S ÷o A Computation state S is well-typed

adding them to a context to maintain well-formedness. Similarly, we assume
that store types are well-formed, that is, they contain at most one occurrence
of each store location `.

Terms The typing rules for terms are unsurprising for a simply-typed lambda
calculus with unit, abstraction and applications. A store location ` (provided
that it is in dom(Σ)) has a ref-type with its security level:

Σ; Γ ` ` : refLevel(`) Σ(`)
(24)

A computation term val E has the type ©oA, provided the expression E
has type A and operation level o:

Σ; Γ ` E ÷o A

Σ; Γ ` val E : ©oA
(27)

Expressions The typing rules for expressions follow our informal description.
Trivial computations have the type of their return value, and operation level
(⊥,>):

Σ; Γ ` M : A

Σ; Γ ` [M] ÷(⊥,>) A
(29)

The sequencing expression typechecks provided both of the sub-computations
have the same operation level (which may require using the weakening rule for
operation levels):

Σ; Γ ` M : ©oA Σ; Γ, x : A ` E ÷o A

Σ; Γ ` let val x = M in E ÷o A
(30)

Allocation returns a new read/write store location:

Σ; Γ ` M : A

Σ; Γ ` refa (M : A) ÷(⊥,>) refa A
(31)

For read and write expressions we only require that the corresponding store
location is readable or writable, respectively:

Σ; Γ ` M : refra A

Σ; Γ `!M ÷(a,>) A
(32)

7

Σ; Γ ` M : refwa A Σ; Γ ` N : A

Σ; Γ ` M := N ÷(⊥,a) 1
(33)

In general we may weaken the operation level of a computation (indeed, as noted
above, this is often necessary for the letval typing rule to apply):

Σ; Γ ` E ÷o A o � o′

Σ; Γ ` E ÷o′ A
(34)

Subtyping A subsumption rule allows us to weaken the type A of a term M
or an expression E, provided A is a subtype of B:

Σ; Γ ` M : A ` A ≤ B

Σ; Γ ` M : B
(28)

Σ; Γ ` E ÷o A ` A ≤ B

Σ; Γ ` E ÷o A
(36)

Read-only store cells are covariant in the type of their contents and in their
security level, and dually write-only cells are contravariant in each:

` A ≤ B a v b

` refra A ≤ refrb B
(17)

` B ≤ A b v a

` refwa A ≤ refwb B
(18)

Read/write store cells are neither covariant nor contravariant, but may be weak-
ened to read-only or write-only cells:

` A ≤ B a v b

` refa A ≤ refrb B
(15)

` B ≤ A b v a

` refa A ≤ refwb B
(16)

Finally, the monadic type ©oA is covariant in the return value type and oper-
ation level

` A ≤ B o � o′

` ©oA ≤ ©o′B
(14)

Stores and states A store H is well-typed with store type Σ, provided that
each value Vi in the store is well typed under Σ and the empty context, where
Σ has the same domain as H

dom(Σ) = {`1, . . . , `n} Σ; · ` Vi : Σ(`i) for 1 ≤ i ≤ n

` {`1 7→ V1, . . . `n 7→ Vn} : Σ
(37)

(Note that since Σ appears on the left in the premise of the rule, it must be
well-formed).

A computation state (H, Σ, E) is well-typed provided that the store and the
expression are each well-typed with the same store type:

` H : Σ Σ; · ` E ÷o A

` (H, Σ, E) ÷o A
(38)

8

2.3 Operational Semantics

A computation state is called terminal if it is of the form (H, Σ, [V]). An evalua-
tion relation S → S′ gives the small-step operational semantics for computation
states. We write S ↓ if for some terminal state S ′, S →∗ S′. Since terms
are pure and do not have an effect on the store, their evaluation rules may be
given simply by the relation M → M ′ (no store is required). The entire set of
evaluation rules is given in Appendix B.

We write M [N/x] and E[N/x] for the capture-avoiding substitution of N
for x in the term M or expression E. We write H{` 7→ V } for finite map that
extends H with V at `.

It is instructive to consider how a computation in state
S0 = (H, Σ, let val x = M in F) would evaluate. There are three stages:

1. Letval1 is repeatedly applied until M is evaluated down to a value val E,
S1 = (H, Σ, let val x = val E in F)

2. Letvalval is then applied until the subcomputation (H, Σ, E) is evalu-
ated to a terminal state (H ′, Σ′, [V]),
S2 = (H ′, Σ′, let val x = val [V] in F)

3. Letval substitutes the value V for x in F and computation continues in
state S2 = (H ′, Σ′, F [V/x]).

For the proof of non-interference (specifically for the proof of the Hexagon
Lemma), it will be useful to have the following lemma. It says that if a term
evaluates to a value (or if a computation state evaluates to a terminal state) then
the syntactic subterms (or subexpressions) of the given term (or computation
state) will likewise evaluate to values (or terminal states). That is, our account
is call-by-value.

Lemma 2.1 (Subterm/Subexpression Termination). • If (H, Σ, E) ↓
in n steps, then

1. if E = [M] then M →n V

2. if E = let val x = M in F then M →k val E′,

(H, Σ, E′) ↓ in m steps

and k + m < n

3. if E = refa (M : A) then M →k V and k < n

4. if E =!M then M →k V and k < n

5. if E = M := N then M →k V1, N →m V2 and k + m < n

• If M →n V then

1. If M = N1N2, then N1 →k V1 and V1N2 →m V1V2 and k + m < n

2. If M = if N1 then N2 else N3 then N1 →k V1 and k < n

9

Proof by induction on the number of steps in the evaluation relation, by
cases on the last rule. The details are given in Appendix C.

Our operational semantics are deterministic. Of course computation states
are only deterministic up to renaming of store locations: recall that we consider
store locations to be bound by the store in a computation state. We allow
a bound store location ` to be renamed `′, as long as Level(`) = Level(`′).
(Alternately, think of each security level as determining a collection of store
locations; each bound store location may be renamed only to a location within
the same collection.) Determinacy is used in the proof of non-interference.

Lemma 2.2 (Determinacy). If M → M1 and M → M2 then M1 = M2. If

S → S1 and S → S2 then S1 = S2

Proof. by induction on the evaluation relations. By cases on M → M1 (or
S → S1).

In each case, by the structure of M (resp., S), there is a single evaluation
rule for M → M2 (resp., S → S2), then by IH.

Since allocation extends the store, the following lemma shows that in any
sequence of evaluation steps (of a not-necessarily well-typed state), the store
type only grows. We use this fact in the HSS Lemma.

Lemma 2.3 (Store Size). If (H, Σ, E) →∗ (H ′, Σ′, E′) then Σ′ ⊇ Σ

Proof. Suffices to show for one step: if (H, Σ, E) → (H ′, Σ′, E′) then Σ′ ⊇ Σ.
The multi-step result follows because ⊇ is reflexive and transitive. We proceed
by induction on the evaluation derivation (H, Σ, E) → (H ′, Σ′, E′) Consider the
last evaluation rule used:

• Case Ref: Evidently, Σ′ ⊇ Σ.

• Case Letvalval: By IH

• In the remaining cases, the store type is unchanged.

3 Upcalls

Although the approach discussed so far is secure, it falls short of a practical
language. There is no way to include a computation that reads from the high-
security store in a larger low security computation. In any program with a high
security read, the read level of the entire program is pushed up. However, many
programs that contain upcalls to high security computations followed by low
security code are secure.

Consider the program let z = P in E where P ÷(>,>) 1 and E has operation
level (⊥,⊥). As we argued in the introduction, P does not leak information

10

because 1 carries no information. Thus we would like to give the entire program
the operation level (⊥,⊥). However the type system we have presented so far
would instead promote the operation level of E and the entire program to (>,>).

In order to have a logic of information flow, we must offer an account of up-
calls. Indeed, the power to perform high security computations interspersed in
a larger low-security computation is the sine qua non of useful secure program-
ming languages. We offer a detailed analysis of two cases where upcalls do not
violate our intuitive notion of security. From these examples, we develop a gen-
eral principle for treating upcalls. We take up the question of non-interference
in Section 5.

3.1 An example with unit

Let E be some expression with type A and operation level (r, w) (recall that
this implies that r v w). In general, E may read values from store locations
with security level below r, write values to store locations with security level at
least w, and return some value of type A.

Suppose that A = 1. In that case, no matter what E does, if it terminates, it
must return ∗. The return value is not informative.1 Any other computation F
that may gain information through the execution of E must be able to read store
locations at security level at least w. But since r v w, F could just directly
read any store locations that E reads. On the other hand, any computation
with operation level (r′, w′) where w 6v r′ can neither observe E’s effects nor
gain any information from its (uninformative) return value.

As a result, in either case, we can say that E has an effective read level of
⊥ just as if it had no reads:

Σ; Γ ` E ÷(r,w) 1

Σ; Γ ` E ÷(⊥,w) 1
(∗)

Note that the read level now refers only to informative reads, not all reads.

The new rule allows us to have some high-security computations prior to low
security ones. Suppose Σ; · ` E ÷(>,>) 1, and Σ; x : 1 ` F ÷(⊥,⊥) A for some A.
That is, E is a high-security computation, and F is a low-security one. With
the new rule, the upcall to E, followed by the low-security computation F , can
be type checked using the new rule (∗), E has operation level (⊥,>), which can
be weakened to (⊥,⊥) by rule (34), and thus:

....
Σ; · ` E ÷(⊥,⊥) 1

Σ; · ` val E : ©(⊥,⊥)1
(27)

Σ; x : 1 ` F ÷(⊥,⊥) A

Σ; · ` let val x = val E in F ÷(⊥,⊥) A
(30)

1We are dealing here with weak non-interference: the knowledge that E terminated at all
is deemed not to carry any information.

11

Note that the rule (∗) does not alter the write level of the expression (that
is, the operation level in the conclusion is not (⊥,>)). Such a rule would allow
programs to leak information.

3.2 A more general example

Now consider a computation E with operation level (r, w), but this time, suppose
that E has type refa B for some type B. Are there any situations where E may
be given a different operation level?

Suppose that r v a. In that case, any computation that may read the refa B
is also able to read any store locations that E may read. Again, any computation
can either do what E does itself, or it cannot gain information from E’s return
value.

On the other hand, consider the case where r 6v a. The particular value
of type refa B that E returns may carry information from store locations at
security level r. For example, E may return one of two such store locations
`1 or `2 from level a based on some boolean value V from a store location at
security level r. In that case, a computation that reads at security level a may
learn something about E’s reads (at level r) by reading from E’s return value.
Since r 6v a, this represents a violation of secure information flow.

So if E returns a refa B, we can demote its reading level whenever r v a,
because any computation that wishes to make use of that return value would
need a read level of at least r. In other words, a refa B is informative only to
computations that may read at least at some security level (namely a) above r.

Thus, we may wish to add a new rule for refa B:

Σ; Γ ` E ÷(r,w) refa B r v a

Σ; Γ ` E ÷(⊥,w) refa B
(∗∗)

However, instead we add a general rule that allows us to demote the reading
level of an expression E:

Σ; Γ ` E ÷(r,w) A ` A ↗ r

Σ; Γ ` E ÷(⊥,w) A
(35)

where the new judgment ` A ↗ r formalizes the idea that values of type A, if
they are informative at all, are informative only at level r or above.2

In terms of our new notation, our earlier observations are that ` 1 ↗ r for
any r, and ` refa A ↗ r whenever r v a.

3.3 Informativeness

We now consider some properties of the new judgment ` A ↗ a. Several
structural rules for the judgment are immediate. If A is any type at all, then

` A ↗ ⊥
(1)

2Informativeness is closely related to protectedness in DCC [1]. We discuss the relationship
in Section 7.

12

That is, if A is informative at all, then it’s informative only at ⊥ or above. In
the interest of brevity, in the sequel we will say “informative only above a” to
mean “informative only at a and above.”

Also, if A is informative only above a and if b v a, then A is informative
only above b. That is, we may choose to discard some knowledge about when a
type is informative

` A ↗ a b v a

` A ↗ b
(10)

Finally, suppose A is informative only above a, and A is informative only
above b. Then for any r if values of type A are informative to computations
that read at r, we know that both a v r and b v r. Therefore, for any such r,
a t b v r. So in fact, A is informative only above a t b:

` A ↗ a ` A ↗ b

` A ↗ a t b
(11)

With the structural rules in place, we may consider each of the types in
our language. We should keep in mind, that by adding rules to the judgment
` A ↗ a we increase the expressive power of the language by allowing more
programs to be well-typed. It is always safe to add more restrictive rules in
place of more liberal ones. Below we take the most permissive rules that still
maintain non-interference, although it is not clear in all cases that there exist
programs which need the added flexibility of certain rules.

A value of type bool is informative for any computation at all, since it may
be trivially analyzed with a conditional. So aside from the structural axiom
` A ↗ ⊥, there should be no other rules for bool. We would give a similar
account of other type constructors that may be analyzed by cases. For example
sum types A + B or integers int.

A value of type A → B is used by applying it to some value and using the
result. So A → B is informative exactly when B is:

` B ↗ a

` A → B ↗ a
(3)

One straightforward rule for refs says that a ref is only informative if we can
get at the value within it.

` refa A ↗ a
(5)

However there is another rule for refs. Even if a computation can read
from a store location of type refb A (i.e., its read level is above b), only if A is
informative at its operation level, can refb A be informative:

` A ↗ a

` refb A ↗ a
(6)

Read-only store locations are useful only to computations that may read
from them. Consequently, by an argument similar to the one for read-write

13

store cells, we have the two rules:

` A ↗ a

` refrb A ↗ a
(7)

` refrb A ↗ b
(8)

For write-only store cells refwa A, we have to consider aliasing. One way that
a computation may learn whether two store locations are aliases is by writing
a known value to one of them, and then reading out the value from the other.
Because of subtyping, if a lower-security computation has a store location ` of
type refra A, a value of type refwa A may be informative if the computation can
read from (the seemingly unrelated) `. As a result, we have the following rule:

` refwa A ↗ a
(9)

It is instructive to consider in detail the problem with write-only store lo-
cations refwa A. Suppose that instead of the rule (9), we had the following
rule

` refwa A ↗ b
(incorrect)

That is, the same as the rule for unit: a value of type refwa A is only informative
above some security level b, for any b, i.e. not informative.

The following computation shows that with the incorrect rule, it is possible
to leak high security information (whether the value of secret , a >-security bool,
is true) to a low security computation3:

let x = ref⊥ (false : bool) in

let y = ref⊥ (false : bool) in

let z = (let q = !secret in

[if q then x else y]) in

let = z := true in

run !x

The program lets z alias either x or y depending on the value of secret. The
computation whose value is assigned to z may be subsumed to type refw⊥ bool,
and by the incorrect rule, ` refw⊥ bool ↗ >, so the operation level of that
computation can be dropped to (⊥,>) (and subsumed to (⊥,⊥)). Then by
writing a known value to z, whether we can observe a change in another alias
of the same location is sufficient to learn about secret . We can give the entire
computation the operation level (⊥,>) while it demonstrably returns the high-
security value.

Finally, consider the type ©(r,w)A. A value of this type is informative both
to computations that may read at least security level w (that is, the level the
suspended expression writes to), and to computations for which the type A is
informative:

` A ↗ a

` ©(r,w)A ↗ w u a
(4)

14

λc : ©(>,>)bool.
val

let wref = ref> (val [∗] : ©(⊥,>)1) in

let w = [val (let b = run c in run (if b then val (let w′ = !wref in run w′) else val [∗]))] in

let = wref := w in

run w

Figure 2: untilFalse : ©(>,>)bool → ©(⊥,>)1

With informativeness in hand, many more useful terms become well-typed.
Consider, for example, the term in Figure 2. The function untilFalse takes as
argument a computation that reads and writes high before returning a boolean,
and runs that computation repeatedly until it returns false. Recursion is accom-
plished using backpatching: a store location with a dummy value is allocated
and is bound to wref , recursive calls in the body of the loop dereference wref
and run the contents. The recursive knot is tied by overwriting the contents of
wref with the real loop body w.

Interestingly, although untilFalse takes a high-security computation as an
argument, our type system is able to give it the type ©(>,>)bool → ©(⊥,>)1,
that is its return type is a low-security computation. Intuitively, even if f is
a high-security computation, untilFalse f does not leak any information to
low-security since any information gained from f ’s return value is used only
within the loop. To formally show that untilFalse is well-typed, observe that
Γ ` let b = run c in run (. . .) ÷(>,>) 1, and since ` 1 ↗ >, it can be given
operation level (⊥,>). The rest of the typing derivation is straightforward.

4 Type Safety

Our language enjoys the usual type safety property: well-typed computations
do not become stuck. We may show type safety in the usual manner — using
Canonical Forms, Preservation and Progress lemmas.

Lemma 4.1 (Canonical Forms). If Σ; · ` V : A and

1. if A = 1 then V = ∗

2. if A = bool then V = true or V = false

3. if A = B → C then V = λx : B′.M

4. if A = refa B then V = ` and ` ∈ dom(Σ)

5. if A = refra B then V = ` and ` ∈ dom(Σ)

3Recall that let x = E in F is syntactic sugar for let val x = val E in F

15

6. if A = refwa B then V = ` and ` ∈ dom(Σ)

7. if A = ©oB then V = val E

Proof. by induction on the typing derivation; by inspection of the last typing
rule used.

Lemma 4.2 (Preservation). If ` S ÷o A and S → S′ then ` S′ ÷o A

Proof by induction on the evaluation relation. Proof given in Appendix
C.1.4.

Lemma 4.3 (Progress). If ` S ÷o A then either S is terminal, or ∃S ′ such

that S → S′

Proof by induction on the typing derivation. Proof given in Appendix C.1.4.

Theorem 4.4 (Type Safety). If ` S and S →∗ S′ then S′ is not stuck.

Proof. By induction on the number of evaluation steps. If S takes zero steps,
then by Progress, it is not stuck. If S takes n + 1 steps, then by Preservation it
takes a step to some well-typed state, and so by the induction hypothesis, S ′ is
not stuck.

5 Non-interference

Informally, non-interference says that computations that have a low read level
do not depend on values in high security store locations. As in similar arguments
[19, 18], “low” means below some fixed security level ζ, and “high” means not
below ζ.

Operationally, the low security sub-computations of a program should be-
have identically irrespective of the values in the high security store locations.
On the other hand, it is okay for high security sub-computations to behave
differently depending on values in high security store locations. However once
a high security sub-computation completes, the low security behavior should
again be identical modulo the parts of the computation state that are “out of
view” of the low security part of the program.

Formally, we define an equivalence property of computation states such that
two states are equivalent whenever they agree on the “in view” parts of the com-
putation state. Then, in the style of a confluence proof modulo an equivalence
relation [5], we show that this property is preserved under evaluation.

5.1 Equivalence relation

We axiomatize the desired property as a collection of equivalence judgments (on
states, stores, terms and expressions) that are summarized in Table 2.

16

Stores and States Certainly values in high security store locations are out
of view. Less obviously, some values in the low security locations are out of
view as well: if a low security store location appears only out of view, its value
is also out of view. We parametrize the store equivalence judgment by a set U
of in-view store locations. Two (well-typed) stores are equivalent only if their
in view values are equivalent:

` H1 : Σ1 ` H2 : Σ2

Σ1 � U = Σ2 � U
Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`) for ` ∈ U

` (H1 : Σ1) ≈
U
ζ (H2 : Σ2)

(58)

Where the notation Σ � X is the restriction of Σ to just the locations in the set
X .

For a pair of computation states, only low security locations that are common
to both computations are in-view. Since allocation does leak information, it
is possible for two programs to allocate different low security locations while
executing high security sub-computations. However such locations are out of
view for the low security sub-computation.

Pairs of computation states are equivalent if their stores are equivalent on
the in-view locations, and if they have equivalent expressions:

` (H1 : Σ1) ≈
dom(H1)∩dom(H2)∩↓(ζ)
ζ (H2 : Σ2) Σ1; Σ2; · ` E1 ≈ζ E2 ÷o A

` (H1, Σ1, E1) ≈ζ (H2, Σ2, E2) ÷o A
(59)

Where ↓(ζ) = {` | Level(`) v ζ} is the set of all low security locations.

Terms and Expressions High security sub-computations of a program may
return different values to the low security sub-computations. However, by the
upcall rule, the type of those values must be informative only at high security.

Values of a type that is informative only at high security are out of view.
As a result, any two values of such a type are equivalent since two such values
vacuously agree on their in view parts:

Σ1; Γ ` V1 : A Σ2; Γ ` V2 : A ` A ↗ a a 6v ζ

Σ1; Σ2; Γ ` V1 ≈ζ V2 : A
(39)

The remaining rules for term and expression equivalence are congruence rules
that merely require corresponding sub-terms or sub-expressions to be equivalent.
They are listed in Appendix A.3.

Having defined the equivalence judgments, we establish several structural
properties. First we show that it is reflexive, symmetric and transitive, so that
it is indeed a partial equivalence relation. The proofs are given in Appendix
C.2.

Next, we establish inversion and functionality. Inversion will let us by cases
in subsequent proof. Functionality is the analog of a substitution for the equiv-
alence judgment.

17

Table 2: Equivalence judgments
Judgment Meaning

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A Term Equivalence
Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o A Expression Equivalence
` (H1 : Σ1) ≈

U
ζ (H2 : Σ2) Store Equivalence

` S1 ≈ζ S2 ÷o A State Equivalence

Lemma 5.1 (Equivalent Term Inversion). If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A
then either

there exists a B, such that ` B ≤ A and ` B ↗ a and a 6v ζ and

M1 and M2 are values and Σi; Γ ` Mi : B for i = 1, 2,

or

1. if M1 = x then ` Γ(x) ≤ A and M2 = x.

2. if M1 = ∗ then ` 1 ≤ A and M2 = ∗.

3. if M1 = true then ` bool ≤ A and M2 = true.

4. if M1 = false then ` bool ≤ A and M2 = false.

5. if M1 = if N1 then P11 else P12 then M2 = if N2 then P21 else P22

and Σ1; Σ2; Γ ` N1 ≈ζ N2 : bool and Σ1; Σ2; Γ ` P11 ≈ζ P21 : B and

Σ1; Σ2; Γ ` P12 ≈ζ P22 : B′ and ` B ≤ A, ` B′ ≤ A

6. if M1 = ` then ` refb B ≤ A and M2 = ` and b v ζ and Σi(`) = B for

i = 1, 2 and Level(`) = b

7. if M1 = λx : B.N1 then ` B → C ≤ A and M2 = λx : B.N2 and

Σ1; Σ2; Γ, x : B ` N1 ≈ζ N2 : C

8. if M1 = val E1 then ` ©oB ≤ A and M2 = val E2 and Σ1; Σ2; Γ ` E1 ≈ζ

E2 ÷o B

9. if M1 = N1P1 then M2 = N2P2 and Σ1; Σ2; Γ ` N1 ≈ζ N2 : B → C and

Σ1; Σ2; Γ ` P1 ≈ζ P2 : B and ` C ≤ A

Proof. by induction on the derivation.

Lemma 5.2 (Functionality). If Σ1; Σ2; Γ, Γ′ ` M1 ≈ζ M2 : A then

1. if Σ1; Σ2; Γ, x : A, Γ′ ` N1 ≈ζ N2 : C then Σ1; Σ2; Γ, Γ′ ` N1[M1/x] ≈ζ

N2[M2/x] : C

2. if Σ1; Σ2; Γ, x : A, Γ′ ` E1 ≈ζ E2 ÷o C then Σ1; Σ2; Γ, Γ′ ` E1[M1/x] ≈ζ

E2[M2/x] ÷o C.

18

` M1 ≈ζ M2 : A

	�
�

�
�

� @
@

@
@

@R
M ′

1 M ′
2

..............

∗

R 	..
..
..
..
..
..
..

∗

` M ′′
1 ≈ζ M ′′

2 : A

Figure 3: Informal statement of the Term Hexagon Lemma

Proof. by induction on the TD.

Although we established Functionality for arbitrary terms to be substituted
for x, as befits a call by value language, we only substitute values in the proof
of non-interference.

5.2 Hexagon lemmas

Non-interference will follow as a consequence of a pair of Hexagon Lemmas:
one for terms and one for expressions. We show that by starting with some
two related terms (or expressions) that both take a step, we can find zero or
more steps that each of them could take so that we get back to related states
(respectively, expression).

The lemma for terms is summarized in Figure 3, the name “Hexagon Lemma”
is motivated by the shape of this diagram.

Lemma 5.3 (Term Hexagon Lemma). For all ζ, if Σ1; Σ2; · ` M1 ≈ζ M2 : A
and M1 → M ′

1 and M2 → M ′
2 and M ′

1 ↓ and M ′
2 ↓, then there exist M ′′

1 , M ′′
2

such that M ′
1 →∗ M ′′

1 , M ′
2 →∗ M ′′

2 , Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

Proof by induction on the given derivation. Most cases are vacuous. In the
cases of function application and if-then-else, proceed by subcases on M1 → M ′

1.
The full proof is given in Appendix C.3.

Before we prove the Hexagon Lemma for expressions, we need the following
technical lemma. Intuitively it says that a computation running above the
security level of the observer does not affect the store in any way that is visible
to the observer.

Lemma 5.4 (Single High Security Step). If ` (H, Σ, E) ÷o A, o = (r, w)

and w 6v ζ, and (H, Σ, E) → (H ′, Σ′, E′) then ` (H : Σ) ≈
dom(Σ)∩↓(ζ)
ζ (H ′ : Σ′).

19

Proof by induction on the evaluation relation. The details are given in
Appendix C.4.

Corollary 5.5 (Multiple High Security Steps). If ` (H, Σ, E) ÷o A, o =

(r, w) and w 6v ζ, and (H, Σ, E) →n (H ′, Σ′, E′) then ` (H : Σ) ≈
dom(Σ)∩↓(ζ)
ζ

(H ′ : Σ′).

Proof. by induction on n, the number of steps.
By inversion,

• ` H : Σ

• Σ; · ` E ÷o A

If n = 0, the result follows by Reflexivity.
If n > 0, then (H, Σ, E) → (H ′′, Σ′′, E′′) →n−1 (H ′, Σ′, E′).

1. By Single High Security Step, ` (H : Σ) ≈U
ζ (H ′′ : Σ′′) where U =

dom(Σ) ∩ ↓(ζ)

2. By Preservation, ` (H ′′, Σ′′, E′′) ÷o A

3. By IH, ` (H ′′ : Σ′′) ≈U ′

ζ (H ′ : Σ′) where U ′ = dom(Σ′) ∩ ↓(ζ)

4. By Store Size, Σ′ ⊇ Σ

5. Therefore, U ′ ⊇ U

6. By Store Equivalence Coarsening, ` (H ′′ : Σ′′) ≈U
ζ (H ′ : Σ′)

7. By Transitivity ` (H : Σ) ≈U
ζ (H ′ : Σ′) since U ⊇ U ′ ∩ U

The following corollary of the Multiple High Security Steps Lemma is used
in the proof of the hexagon lemma for expressions. Essentially it says that
given two related stores, executing any two computations (even ones at different
types!) that are high security with respect to a ζ-observer will produce stores
that are indistinguishable by a ζ-observer.

One complication in this corollary is that evaluation of two distinct com-
putation states S1, S2 may inadvertently allocate the same store location ` for
distinct purposes. However we will show that for each such `, we may choose
an element of the α-equivalence class of S1 or S2 such that all such accidental
sharing is eliminated.

Corollary 5.6 (High Security Step (HSS)). Given (H1, Σ1, E1) and (H2, Σ2, E2)
such that

• ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ),

• Σi; · ` Ei ÷oi
Ci for some oi = (ri, wi), Ci with wi 6v ζ for i = 1, 2,

20

and if (H1, Σ1, E1) →
∗ (H ′

1, Σ
′
1, E

′
1) and (H2, Σ2, E2) →

∗ (H ′
2, Σ

′
2, E

′
2) then

• ` (H ′
1 : Σ′

1) ≈
U
ζ (H ′

2 : Σ′
2)

• and U = dom(Σ′
1) ∩ dom(Σ′

2) ∩ ↓(ζ)

Proof. 1. By Regularity of Equivalence, ` (Hi : Σi) for i = 1, 2

2. By Multiple High Security Steps, for i = 1, 2:

• ` (Hi : Σi) ≈
Ui

ζ (H ′
i : Σ′

i) where Ui = dom(Σi) ∩ ↓(ζ)

3. By Regularity, ` H ′
i : Σ′

i for i = 1, 2

4. Note also that U ⊆ Ui for i = 1, 2

5. Consider ` ∈ U

(a) Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : A, Σ1(`) = Σ2(`) = A

(b) Evidently, also ` ∈ Ui

(c) Σi; Σ
′
i; · ` Hi(`) ≈ζ H ′

i(`) : A, Σi(`) = Σ′
i(`) = A, for i = 1, 2

(d) By Symmetry, Σ′
1; Σ1; · ` H ′

1(`) ≈ζ H1(`) : A

(e) By Transitivity, Σ′
1; Σ

′
2; · ` H ′

1(`) ≈ζ H ′
2(`) : A

6. So, by rule (58), ` (H ′
1 : Σ′

1) ≈
U
ζ (H ′

2 : Σ′
2)

7. By Regularity, dom(H ′
i) = dom(Σ′

i) for i = 1, 2

8. Now let U ′ = dom(Σ′
1) ∩ dom(Σ′

2) ∩ ↓(ζ)

9. By Store Size, Σ′
i ⊇ Σi, so U ′ ⊇ U

10. Suppose ` ∈ U ′ \ U

(a) Since ` ∈ U ′, ` ∈ dom(Σ′
i) for i = 1, 2

(b) Since ` 6∈ U , then ` 6∈ dom(Σi) for at least one of i = 1 or i = 2

(c) Suppose ` 6∈ dom(Σ1) (the other case is similar)

(d) Choose a fresh store location `′ 6∈ dom(Σ′
1)∪dom(Σ′

2) with Level(`′) =
Level(`), and systematically rename ` with `′ in (H ′

1, Σ
′
1, E

′
1).

(e) Evidently we have an element of the α-equivalence class of (H ′
1, Σ

′
1, E

′
1)

where ` 6∈ dom(H ′
1)

11. So U ′ = U

We may now show a hexagon lemma for expressions.

Lemma 5.7 (Hexagon Lemma). For all ζ, if o = (r, w) with r v ζ, and if

• ` S1 ≈ζ S2 ÷o C

21

• S1 → S′
1, S2 → S′

2

• S′
1 ↓, S′

2 ↓

then there exist S′′
1 , S′′

2 such that

• S′
1 →∗ S′′

1 , S′
2 →∗ S′′

2

• · ` S′′
1 ≈ζ S′′

2 ÷o C

The full proof is given in Appendix C.5. We highlight several important
cases below.

We proceed first by Inversion on ` S1 ≈ζ S2 ÷o C, to get that

• S1 = (H1, Σ1, E1), S2 = (H2, Σ2, E2)

• ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)

• Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C

And then, by induction on the derivation of Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C. In
each case we exhibit the appropriate S ′′

i = (H ′′
1 , Σ′′

1 , E′′
1), S′′

2 = (H ′′
2 , Σ′′

2 , E′′
2).

• Case
Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(r′,w) C ` C ↗ r′

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(⊥,w) C
(51)

By pattern matching, r = ⊥

Consider two subcases: either r′ v ζ or r′ 6v ζ. The former case follows
eventually by the induction hypothesis. In the latter case,

1. Since r′ v w, then w 6v ζ

2. Since S′
i ↓, (Hi, Σi, Ei) →

+ (H ′′
i , Σ′′

i , [Vi]) for some S′′
i = (H ′′

i , Σ′′
i , [Vi])

for i = 1, 2

3. Therefore we can apply HSS to get

– ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

– U = dom(H ′′
1) ∩ dom(H ′′

2) ∩ ↓(ζ)

4. By repeatedly applying Preservation, Σ′′
i ; · ` [Vi]÷(r′,w)C for i = 1, 2

5. And by various typing rules, Σ′′
1 ; Σ′′

2 ; · ` [V1] ≈ζ [V2] ÷o C

• Case

Σ1; Σ2; · ` M1 ≈ζ M2 : A

Σ1; Σ2; · ` refa (M1 : A) ≈ζ refa (M2 : A) ÷(⊥,>) refa A
(55)

By pattern matching, Ei = refa (Mi : A), o = (⊥,>), C = refa A

There are two possible evaluation rules for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1)

– Subcase Ref1 follows eventually from the Term Hexagon Lemma.

22

– Subcase Ref: M1 value, H ′
1 = H1{`1 7→ M1}, Σ′

1 = Σ1{`1 : A},
E′

1 = [`1], where `1 6∈ dom(H1), Level(`1) = a

1. By Equivalent Values, M2 is a value

2. Only Ref rule is applicable to (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2):

H ′
2 = H2{`2 7→ M2}, Σ′

2 = Σ2{`2 : A}, E′
2 = [`2], where

`2 6∈ dom(H2), Level(`2) = a

3. Consider two subcases now, either a v ζ or a 6v ζ:

∗ Subcase a v ζ

(a) Since in both S′
1 and S′

2, `1 and `2 are freshly allocated, we
may α-vary S′

1, S
′
2 such that `1 = `2 = ` for an appropriate

`

(b) Then Level(`) = a, ` 6∈ dom(H1) ∪ dom(H2)

(c) Let S′′
i = (Hi{` 7→ Mi}, Σi{` : A}, [`]) for i = 1, 2

(d) The result follows since the freshly allocated location is (by
construction) in the set U ′′ = U ∪{`} of common locations
between S′′

1 and S′′
2 , and it contains equivalent values.

∗ Subcase a 6v ζ
In this case the newly allocated locations `1, `2 are not in the
common set of S′′

1 and S′′
2 since they have high security levels.

Furthermore Σ1{`1 : A}; Σ2{`2 : A}; · ` `1 ≈ζ `2 : refa A,
since ` refa A ↗ a and a 6v ζ. The result follows.

• Case
Σ1; Σ2; · ` M1 ≈ζ M2 : refra C

Σ1; Σ2; · `!M1 ≈ζ !M2 ÷(a,>) C
(56)

By pattern matching, Ei =!Mi, o = (r, w) = (a,>). Recall that a = r v ζ

There are two applicable rules for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1)

– Subcase Bang1 follows by the Term Hexagon Lemma

– Subcase Bang: M1 = `1, H ′
1 = H1, Σ′

1 = Σ1, E′
1 = [H1(`1)]

1. By Equivalent Values, M2 is a value

2. The single applicable evaluation rule for (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2)

is Bang: M2 = `2, H ′
2 = H2, Σ′

2 = Σ2, E′
2 = [H2(`2)]

3. Let S′′
i = (Hi, Σi, [Hi(`i)]) for i = 1, 2

4. So it only remains to show that Σ1; Σ2; · ` Hi(`1) ≈ζ H2(`2) : C

5. By Equivalent Term Inversion on Σ1; Σ2; · ` `1 ≈ζ `2 : refra C,
there are two possibilities:

∗ Either Σi; · ` `i : B and ` B ≤ refra C and ` B ↗ b and
b 6v ζ
It follows by inversions that B is either refrb′ B′ or refb′ B′

and in either case ` B′ ↗ c for some c 6v ζ. The result
follows.

23

∗ Or `1 = `2 = ` where Level(`) = b v ζ,
and ` refb Σ1(`) ≤ refra C and Σ1(`) = Σ2(`). This case
follows since ` is in the common set of Σ1, Σ2 and since the
stores are equivalent.

• Case

Σ1; Σ2; · ` M1 ≈ζ M2 : refwa A Σ1; Σ2; · ` N1 ≈ζ N2 : A

Σ1; Σ2; · ` M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

By pattern matching, Ei = Mi := Ni, o = (r, w) = (⊥, a), C = 1

There are three applicable rules for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1). If the

rule was Assn1 or Assn2, the result follows from the Term Hexagon
Lemma.

Otherwise, the rule was Assn, and we have: M1 = `1, N1 value, H ′
1 =

H1{`1 7→ N1}, Σ′
1 = Σ1, E′

1 = [∗]

1. By Equivalent Values, M2, N2 are values

2. The only applicable evaluation rule for (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2)

is Assn, and we have: M2 = `2, H ′
2 = H2{`2 7→ N2}, Σ′

2 = Σ2,
E′

2 = [∗]

3. Let S′′
i = (Hi{`i 7→ Ni}, Σi, [∗]). It suffices to show that the updated

stores are still equivalent.

4. By Equivalent Term Inversion on Σ1; Σ2; · ` `1 ≈ζ `2 : refwa A, there
are two possibilities:

– Either Σi; · ` `i : B and ` B ≤ refwa A, ` B ↗ b and b 6v ζ
By Subtyping Inversion, either B = refwb′ B′ or B = refb′ B′ and
in either case ` A ≤ B′ and a v b′

∗ If B = refwb′ B′, then it eventually follows from inversions
that Level(`i) 6v ζ, and so the `i are not in the common set
U of locations, and the result follows.

∗ If B = refb′ B′

(a) By Subtyping Inversion, B′ = Σi(`i) and b′ = Level(`i) for
i = 1, 2

(b) By Informativeness Inversion, b v b′ t c and ` B′ ↗ c for
some c

(c) Since b 6v ζ, either b′ 6v ζ or c 6v ζ

(d) If b′ 6v ζ, we can use the same argument as the previous
subcase: B = refwb′ B′.

(e) So instead suppose b′ v ζ; it must be the case that c 6v ζ.

(f) Consider `1 (the argument for `2 is symmetric)

(g) Evidently Level(`1) = b′ v ζ, so suppose `1 ∈ U (if not,
same argument as previous subcase)

24

(h) If `1 = `2 then the situation is the same as the next subcase
(`1 = `2 = `, ...) below; so suppose `1 differs from `2

(i) So `1 ∈ dom(Σ2) = dom(H2)

(j) By heap typing inversion, Σ2; · ` H2(`1) : Σ2(`1)

(k) Since `1 ∈ U , Σ2(`1) = Σ1(`1) = B′

(l) By rule (39), Σ1; Σ2; · ` N1 ≈ζ H2(`1) : Σ1(`1)

(m) Therefore for all ` ∈ U , Σ′′
1 ; Σ′′

2 ; · ` H ′′
1 (`) ≈ζ H ′′

2 (`) : Σ′′
1 (`)

(n) So by rule (58), ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

– Or `1 = `2 = ` and Level(`) v ζ and Σ1(`) = Σ2(`), and `
refLevel(`) Σ1(`) ≤ refwa A
We can show that ` is in the common set U of locations; the
result follows by a straightforward derivation.

5.3 Non-interference theorem

Finally we are ready to prove non-interference. Starting with some initial store
H (well-typed with store type Σ) and an expression to execute E with a free
variable x, if we plug in different values V1, V2 for x, then provided that the
in-view parts of V1, V2 are equivalent, we expect that if the resulting pro-
grams (H, Σ, E[V1/x]), (H, Σ, E[V2/x]) run to termination, the resulting ter-
minal states will be equivalent on their in view parts.

Theorem 5.8 (Non-interference). If ` H : Σ and Σ; x : A ` E÷(r,w)B and if

Σ; Σ; · ` V1 ≈r V2 : A then if (H, Σ, E[V1/x]) →∗ S1 and (H, Σ, E[V2/x]) →∗ S2

and both S1, S2 are terminal, then ` S1 ≈r S2 ÷(r,w) B

Proof. By Reflexivity and Functionality, we can show that

Σ; Σ; · ` E[V1/x] ≈r E[V2/x] ÷(r,w) B

By repeated application of the Hexagon Lemma, the two computations evaluate
to equivalent terminal states. Since the operational semantics are deterministic,
those terminal states are S1 and S2, respectively.

6 Encoding value-oriented secure languages

Our account differs substantially from prior secure programming languages
where each value has a security level. In such languages, terms are classified
by security types: pairs of an ordinary type and a security level. The type
system ensures that each term is assigned a security level at least as high as
the security level of the terms contributing to it. In our account only the store
provides security. A natural question is whether we sacrifice expressive power
in comparison to value-oriented secure languages.

We will show that our language is at least as expressive by showing how to
embed several value-oriented secure languages in our account. The embeddings
are not only type correct, but also preserve security properties of the source
languages. We assume some familiarity with SLam [3].

25

t ∈ types ::= 1 | bool | s1 → s2

s ∈ security types ::= (t, a)

e ∈ expressions ::= x | ∗a | truea | falsea

| if e1 then e2 else e3

| (λx : s.e)a

| protectae

Figure 4: SLam Calculus Syntax

6.1 A purely functional language: SLam calculus

Our presentation of the SLam calculus is based on the purely-functional call-
by-value variant presented in Abadi, et al. [1]. The types of SLam include unit,
booleans and functions from security annotated values to security annotated
results. The syntax of expressions is summarized in Figure 4. In addition to
variables, SLam has a security-annotated unit value, and security-annotated
boolean values, and functions. Since functions are themselves values, abstrac-
tions are annotated not only with the security type of the argument, but also
with a security level for the function itself. One additional operation protectae
is used to increase the security level of the value of e.

The complete operational semantics and typing rules of SLam are presented
in Appendix D.

The idea of the embedding is to translate expressions e of SLam to expres-
sions E (not terms) of our language in such a manner that the operation level
of E is (⊥,>). That is, the translated expression does not read (informative)
values above ⊥ nor does it write below >.

In order to get the desired effect, we store the result of e in a ref cell. The
ref has the effect of sealing the return value of e at its corresponding security
level: values stored in a ref cell are informative only at the security level of the
ref. So for example if e had security type (bool,>), the result of the translation
would be a newly allocated store location of type ref> bool.

Finally, since a refa A is informative only above a, we may demote the read
level of E to ⊥. And since SLam is purely functional, there are no writes in the
translation, so the write level is >.

Suppose x is a SLam variable with security type (bool,>). The SLam ex-
pression

if x then false> else true>

negates x. In the translation, x stands for a >-level store location containing
that contains a boolean: refr> bool. The expression if x then false else true is

26

translated into the expression:

let y = !x in

let val y′ = (if y then val ref> (false : bool)
else val ref> (true : bool)) in

[y′]

First y is bound to the value stored in x. That sub-expression has operation
level (>,>), there so must the other sub-expressions for the translation to be
well-typed. Based on the value of y, y′ is bound to the result of one of the two
allocation expressions, and the value of y′ is the result of the whole expression.
The entire expression has operation level (>,>) and return type ref> bool. Since
that type is informative only at >, the operation level may be lowered to (⊥,>).

The Encoding We define the function · to formalize our embedding of SLam
security types:

(t, a) = refra t

1 = 1

bool = bool

s1 → s2 = s1 → ©(⊥,>)s2

Since SLam security types are translated to store types in our language, the
translation of SLam functions must be able to read from the store. So the
translation of the SLam function type has a monadic codomain.

The encoding for SLam expressions is given by a judgment Γ ` e : s ⇒ E
in Figure 5). We assume that the metavariable y stands for variables in our
calculus that are not used in SLam expressions. We use run M as syntactic
sugar for let val y = M in [y]

Here s1 ≤ s2 is the SLam subtyping judgment, given in Figure 6. The
following lemma shows that type translation translates SLam subtypes into
subtypes in our language.

Lemma 6.1. If s1 ≤ s2 then ` s1 ≤ s2

Proof. by induction on the derivation of s1 ≤ s2

Let Γ be defined by · = ·, Γ, x : s = Γ, x : s. We show that the translation
from SLam is type-correct. Then type-correctness of our embedding is given by
the following theorem:

Theorem 6.2 (Type-correct translation). If Γ ` e : s ⇒ E then {}; Γ `
E ÷(⊥,>) s

The proof is by induction on the given derivation; it is given in Appendix
D.3.

27

Γ ` e : s ⇒ E

Γ ` x : Γ(x) ⇒ [x]

Γ ` ∗a : (1, a) ⇒ refa (∗ : 1)

Γ ` truea : (bool, a) ⇒ refa (true : bool)

Γ ` falsea : (bool, a) ⇒ refa (false : bool)

Γ ` e1 : (bool, a) ⇒ E1 Γ ` e2 : s ⇒ E2 Γ ` e3 : s ⇒ E3

Γ ` if e1 then e2 else e3 : s t a ⇒

let y1 = E1 in

let y2 = !y1 in

run (if y2

then val E2

else val E3)

Γ, x : s ` e : s′ ⇒ E

Γ ` (λx : s.e)a : (s → s′, a) ⇒ refa (λx : s.val E : s → ©(⊥,>)s′)

Γ ` e1 : (s → s′, a) ⇒ E1 Γ ` e2 : s ⇒ E2

Γ ` e1e2 : s′ t a ⇒

let y1 = E1 in

let y2 = !y1 in

let y3 = E2 in

run (y2 y3)

Γ ` e : s ⇒ E
Γ ` protectae : s t a ⇒ E

Γ ` e : s1 ⇒ E s1 ≤ s2

Γ ` e : s2 ⇒ E

Figure 5: SLam encoding

28

s1 ≤ s2

s1 ≤ s1

s1 ≤ s2 s2 ≤ s3

s1 ≤ s3

a v a′

(1, a) ≤ (1, a′)

a v a′

(int, a) ≤ (int, a′)

s′1 ≤ s1 s2 ≤ s′2 a v a′

(s1 → s2, a) ≤ (s′1 → s′2, a
′)

Figure 6: SLam subtyping judgment

Security Of course a type correct (but insecure) embedding could be con-
structed by ignoring the security levels of the source and placing everything at
level ⊥. We wish to show that the embedding is actually secure. To do so,
we show that the following property, an instance of SLam’s non-interference
theorem, is preserved by the embedding:

if a 6v b, and if ` f : ((t, a) → (bool, b), b) and ` e1, e2 : (t, a) then
fe1 u fe2

Corresponding to the SLam expression f is its translation F in our language,
which has type:

refrb (refra t → ©(⊥,>)refrb bool)

That is, F evaluates to a store location that contains a function from store
locations (of appropriate type) to computations that return a store location
containing a boolean. We would like to show that given different initial locations,
the result store locations contain the same boolean value, since the security level
a of the inputs is high in relation to the security level b of the results.

Theorem 6.3 (Adequacy of translation). Suppose ` f : ((t, a) → (bool, b), b) ⇒
F and a 6v b. Let H, Σ be arbitrary such that ` H : Σ, and let Σ; · ` `1, `2 :
refra t. Let

E = let y = F in

let z = !y in

run (z y0)

for i = 1, 2, and suppose

(H, Σ, E[`1/y0]) →
∗ (H1, Σ1, [V1])

and

(H, Σ, E[`2/y0]) →
∗ (H2, Σ2, [V2])

then V1 = `′1 and V2 = `′2 and H1(`
′
1) = H2(`

′
2)

Proof. By the type-correctness of the translation,

{}; · ` F ÷(⊥,>) refrb (refra t → ©(⊥,>)refrb bool)

29

By various typing rules and reflexivity, it is easy to show that

Σ; Σ; y0 : refra t ` E1 ≈b E2 ÷(b,>) refrb bool

Furthermore, since a 6v b,

Σ; Σ; · ` `1 ≈b `2 : refra t

So by non-interference,

` (H1, Σ1, [V1]) ≈b (H2, Σ2, [V2]) ÷(b,>) refrb bool

From which it follows for i = 1, 2 that Vi = `′i by a Canonical Forms lemma,
and Level(`′i) v b by inversion . By inversion on the equivalence derivations, it
follows that `′1 = `′2 and by inversion on the store equivalence, it follows that

Σ1; Σ2; · ` H1(`
′
1) ≈b H2(`

′
2) : bool

And since bool is informative only above ⊥, by inversion on the equivalence,
H1(`

′
1) = H2(`

′
2)

6.2 An imperative language: λ
REF
SEC

When a computation analyzes a value of a datatype by cases, each arm —
by virtue of control flow — gains information about the subject of the case
expression. In a purely functional setting, that additional information may only
be used to compute the return value of the expression. Thus it suffices to require
the return type of each arm (and thus the entire case expression) to be at least
as secure as the case subject.

On the other hand, in an imperative setting, information gained via control-
flow may leave an expression non-locally (e.g., via a write to the store). As a
result, it becomes necessary to track such implicit flows of information. Secure
imperative languages use a so-called program counter security level, pc, as a
lower bound on the information that a computation may gain via control flow.
Consequently, the results and effects of each expression must be at least as
secure as any information gained via control flow.

In contrast to value-oriented secure programming languages, in our account
we expect that case analysis is at the term level, and thus the arms of the
case term do not have side-effects. We show that our approach is at least as
expressive as imperative value-oriented secure languages.

We consider the language λREF
SEC (summarized in Figure 7) of Zdancewic [15].

In addition to unit and boolean types, it has function types that are annotated
with a lower bound on the write effects of the function body, and store locations.
The base values of λREF

SEC are annotated with a security level inside expressions.
The typing rules for λREF

SEC are given by a pair of mutually recursive judgments
for base values and expressions, given in Figures 8 and 9.

The following key property is maintained by the λREF
SEC typing judgment.

Intuitively, it captures the idea that the value of an expression is at least as
secure as the information that the expression gains via implicit information
flow.

30

t ∈ types ::= 1 | bool | s1
pc
−→ s2 | ref s

s ∈ security types ::= (t, a)

bv ∈ base values ::= ∗ | true | false | ` | λ[pc]x : s.e

e ∈ expressions ::= x | bva |
| if e1 then e2 else e3

| e1e2

| (ref (e : s)) | !e | e := e′

Figure 7: λREF
SEC Syntax

Σ; Γ ` bv : t

Σ; Γ ` ∗ : 1

Σ; Γ ` true : bool Σ; Γ ` false : bool

Σ; Γ ` ` : Σ(`)

Σ; Γ, x : s[pc] ` e : s′

Σ; Γ ` λ[pc]x : s.e : s
pc
−→ s′

Σ; Γ ` bv : t′ ` t′ ≤ t

Σ; Γ ` bv : t

Figure 8: λREF
SEC base value typing.

31

Σ; Γ[pc] ` e : s

Σ; Γ, x : s[pc] ` x : s t pc

Σ; Γ ` bv : t

Σ; Γ[pc] ` bva : (t, a t pc)

Σ; Γ[pc] ` e1 : (bool, a) Σ; Γ[pc t a] ` e2 : s Σ; Γ[pc t a] ` e3 : s

Σ; Γ[pc] ` if e1 then e2 else e3 : s

Σ; Γ[pc] ` e1 : (s′
pc′

−−→ s, a) Σ; Γ[pc] ` e2 : s′ pc t a v pc′

Σ; Γ[pc] ` e1e2 : s t a

Σ; Γ[pc] ` e : s

Σ; Γ[pc] ` (ref (e : s)) : (ref s, pc)

Σ; Γ[pc] ` e : (ref s, a)

Σ; Γ[pc] `!e : s t a

Σ; Γ[pc] ` e1 : (ref (t, b), a) Σ; Γ[pc] ` e2 : (t, b) a v b

Σ; Γ[pc] ` e1 := e2 : (1, pc)

Σ; Γ[pc] ` e : s′ ` s′ ≤ s

Σ; Γ[pc] ` e : s

Figure 9: λREF
SEC expression typing.

32

Lemma 6.4. If Σ; Γ[pc] ` e : (t, a) then pc v a.

The proof of this fact appears as Lemma 3.2.1 in Zdancewic’s thesis [15].

Encoding As with purely functional SLam, our embedding places source-
language values into target-language store cells in order to emulate the sealing
behavior of security types. A slight complication arises in the translation of
ref types since our language associates a security level with ref cells, but λREF

SEC

does not. In value-oriented security languages, the contents of ref cells have
a security level, however. So we use the security level of the contents as the
security level of the ref cell itself in our translation.

Function types are translated into functions types that return monadic types.

In a λREF
SEC function of type s

pc
−→ s′ the program counter annotation pc is a con-

servative approximation of the information gained by the body of the function.
Therefore, values written by the body must have security level at least pc. Thus,
the corresponding writes in the translation must have write level at least pc.
Consequently, the corresponding translated type for a function is s → ©(⊥,pc)s′.
The type encoding is summarized below:

(t, a) = refra t

1 = 1

bool = bool

ref (t, a) = refa (t, a)

s1
pc
−→ s2 = s1 → ©(⊥,pc)s2

The encoding for SLam expressions is given by a pair of judgments Σ; Γ `
bv : t ⇒ M and Σ; Γ[pc] ` e : s ⇒ E, shown in Figures 10 and 11. We assume
that the metavariable y stands for variables in our calculus that do not appear
in λREF

SEC programs.

Type-correctness In order to show that our proposed encoding preserves
typing, we first have to establish the following facts. The first shows that our
encoding judgments agree with λREF

SEC typing judgments; the second shows that
the encoding preserves subtyping.

Lemma 6.5. 1. If Σ; Γ ` bv : t ⇒ M then Σ; Γ ` bv : t

2. If Σ; Γ ` e : s ⇒ E then Σ; Γ ` e : s

Proof. By induction on the given derivations. Observe that in each case, the
rules of the encoding judgment have the same premises as the corresponding
typing rules.

33

Σ; Γ ` bv : t ⇒ M

Σ; Γ ` ∗ : 1 ⇒ ∗

Σ; Γ ` true : bool ⇒ true

Σ; Γ ` false : bool ⇒ false

Σ; Γ ` ` : Σ(`) ⇒ `

Σ; Γ, x : s1[pc] ` e : s2 ⇒ E

Σ; Γ ` λ[pc]x : s1.e : s1
pc
−→ s2 ⇒ λx : s1.val E

Σ; Γ ` bv : t′ ⇒ E ` t′ ≤ t

Σ; Γ ` bv : t ⇒ E

Figure 10: λREF
SEC base value encoding.

Lemma 6.6 (Subtyping Translation). 1. If ` t′ ≤ t then ` t′ ≤ t

2. If ` s′ ≤ s then ` s′ ≤ s

Proof. Both parts simultaneously, by induction on the given derivation.

Finally, we need to extend our type-translation to store types

Σ, ` : s = Σ, ` : s

We are now ready to show type-correctness.

Theorem 6.7 (Well-typed Translation). 1. If Σ; Γ ` bv : t ⇒ M then

Σ; Γ ` M : t

2. If Σ; Γ[pc] ` e : s ⇒ E then Σ; Γ ` E ÷(⊥,pc) s

The proof is by simultaneous induction on the given derivations. The full
proof is available in Appendix E.

Non-interference As with the purely-functional language, we show that our
encoding respects an instance of the non-interference theorem for λREF

SEC .

Theorem 6.8 (λREF
SEC non-interference). Suppose Σ0; x : (t, a)[b] ` f : (bool, b) ⇒

F where a 6v b, and suppose that H, Σ are such that Σ ⊇ Σ0, and ` H : Σ. If

Σ; · ` `i : refra t for i = 1, 2 and if there exist H1, H2, Σ1, Σ2, V1, V2 such that

(H ′, Σ′, F [`i/x]) →∗ (Hi, Σi, [Vi])

34

Σ; Γ[pc] ` e : s ⇒ E

Σ; Γ, x : s[pc] ` x : s t pc ⇒ [x]

Σ; Γ ` bv : t ⇒ M

Σ; Γ[pc] ` bva : (t, a t pc) ⇒ refatpc (M : t)

Σ; Γ[pc] ` e1 : (bool, a) ⇒ E1 Σ; Γ[pc t a] ` e2 : s ⇒ E2 Σ; Γ[pc t a] ` e3 : s ⇒ E3

Σ; Γ[pc] ` if e1 then e2 else e3 : s ⇒

let y = E1 in

let y′ = !y in

run if y′

then val E2

else val E3

Σ; Γ[pc] ` e1 : (s′
pc′

−−→ s, a) ⇒ E1 Σ; Γ[pc] ` e2 : s′ ⇒ E2 pc t a v pc′

Σ; Γ[pc] ` e1e2 : s t a ⇒

let y1 = E1 in

let y2 = E2 in

let y′
1 = !y1 in

run (y′
1y2)

Σ; Γ[pc] ` e : s ⇒ E

Σ; Γ[pc] ` ref (e : (t, a)) : (ref (t, a), pc) ⇒
let y = E in

refa (y : (t, a))

Σ; Γ[pc] ` e : (ref s, a) ⇒ E

Σ; Γ[pc] `!e : s t a ⇒ let y = E in let y′ = !y in !y′

Σ; Γ[pc] ` e1 : (ref (t, b), a) ⇒ E1 Σ; Γ[pc] ` e2 : (t, b) ⇒ E2 a v b

Σ; Γ[pc] ` e1 := e2 : (1, pc) ⇒

let y1 = E1 in

let y2 = E2 in

let y′
1 = !y1 in

let = y′
1 := y2 in

refpc (∗ : 1)

Σ; Γ[pc] ` e : s1 ⇒ E ` s1 ≤ s2

Σ; Γ[pc] ` e : s2 ⇒ E

Figure 11: λREF
SEC expression encoding.

35

for i = 1, 2 then Vi = `′i and H1(`
′
1) = H2(`

′
2) as booleans.

Proof. 1. By the type-correctness of the translation, and by heap extension,
Σ; x : refra t ` F ÷(⊥,b) refrb bool

2.
Σ; x : refra t ` F ÷(⊥,b) refrb bool

Σ; x : refra t ` F ÷(b,b) refrb bool

3.
Σ; · ` `i : refra t for i = 1, 2 a 6v b ` refra t ↗ a

Σ; Σ; · ` `1 ≈b `2 : refra t
(39)

4. Therefore, by non-interference,

` (H1, Σ1, [V1]) ≈b (H2, Σ2, [V2]) ÷(b,b) refrb bool

5. By inversion,
Σ1; Σ2; · ` V1 ≈b V2 : refrb′ bool

with b′ v b

6. By regularity, for i = 1, 2,

Σi; · ` Vi : refrb′ bool

7. By Canonical Forms, for i = 1, 2, Vi = `′i ∈ dom(Σi)

8. Since Level(`′i) = b′ v b, `′1 = `′2 ∈ dom(Σ1) ∩ dom(Σ2) ∩ ↓(b)

9. Therefore, Σ1; Σ2; · ` H1(`
′
1) ≈b H2(`

′
2) : bool

10. Since ` bool ↗ ⊥, by equivalent term inversion, H1(`
′
1) = H2(`

′
2).

An encoding into our account is useful not only to show that our language
is at least as powerful as value-oriented secure languages, but it may also be
used to guide the design of such languages. We explore one alternative design
for λREF

SEC .
As mentioned above (in Lemma 6.4), λREF

SEC typing judgments maintain the
invariant that in well-typed programs the program counter security level is a
lower bound on the security levels of the values computed by the program. The
present formulation of λREF

SEC leaves the invariant implicit; it is a consequence of
the typing rule for base values and variables:

Σ; Γ ` bv : t

Σ; Γ[pc] ` bva : (t, a t pc) Σ; Γ, x : s[pc] ` x : s t pc

36

An alternative formulation would instead check that pc is below the secu-
rity level of any values propagated by the computation. The proof of type-
correctness of the translation into our language may be used as a guide: any-
where that Lemma 6.4 is invoked in the proof, we may instead alter the typing
rule to check the pc explicitly and rely on subsumption to raise the security
level of values where required:

Σ; Γ ` bv : t

Σ; Γ[pc] ` bva : (t, a) Σ; Γ, x : s[pc] ` x : s

Σ; Γ[pc] ` e1 : (bool, a) Σ; Γ[pc t a] ` e2 : s Σ; Γ[pc t a] ` e3 : s

Σ; Γ[pc] ` if e1 then e2 else e2 : s t a

Σ; Γ[pc] ` e1 : (ref (t, b), a) Σ; Γ[pc] ` e2 : (t, b) a t pc v b

Σ; Γ[pc] ` e1 := e2 : (bool,⊥)

Σ; Γ[pc] ` e : s

Σ; Γ[pc] ` ref (e : s) : (ref s,⊥)

Note in particular that the alternate rule for if-expressions now has a similar
form to the corresponding rule in SLam. Only writes depend critically on the
program counter security level, since it is only through side-effects that infor-
mation gained via control flow can escape non-locally (i.e., not in the result of
an expression).

7 Related Work

There is a large body of existing work on type systems for secure information
flow. Volpano, Smith and Irvine [14] first showed how to formulate an infor-
mation flow analysis as a type system. An excellent survey by Sabelfeld and
Myers [13] outlines the key ideas in the design of secure programming languages.

Prior work on secure languages with imperative features, such as Pottier and
Simonet’s work on core-ML [11, 12] take the side-effect view of computations: a
term of any type A may have a side-effect. In contrast, we have taken a monadic
view of computation: only expressions may have an effect.

Our account is most related to the Dependency Core Calculus of Abadi,
Banerjee, et al. [1]. Like our language, DCC uses a family of monads to reason
about information flow. However in DCC, terms of monadic type are used to
seal up values at a security level. In our account, monads are used in a more
traditional role as a means of threading state through a program.

Central to DCC is the notion of protectedness of a type at a security level.
If T is protected at a then T is at least as secure as a. This is closely related to
our notion of informativeness. (Also, a similar notion called “tampering levels”
appears in Honda and Yoshida [4].)

37

When viewed through the lens of the encoding of SLam, the two relations
serve the same purpose, ensuring that a computation’s output is at least as
secure as its inputs. In DCC, this is done directly. In our account, this occurs
indirectly: to access a value carrying information only at a particular level, a
computation must adopt a read level at least as high. (However, our account
also offers the facility — not employed in the SLam embedding — not to seal
all computations’ return values in order to obtain a ⊥ effective read level).

The definitions of protectedness and informativeness are the same on the
standard type operators, but do not include the idiosyncratic cases: our lan-
guage has no analog of DCC’s monad, nor does DCC contain references or a
traditional (i.e., effects-oriented) monad. Moreover, if it did, we conjecture that
DCC’s definition for these would be somewhat different from ours.

Nevertheless, the similarity between the two suggests that our account might
be profitably combined with DCC to produce a language capable of expressing
security in both value-oriented and store-oriented fashions.

8 Conclusion

We give an account of secure information flow in the context of a higher-order
language with mutable state. Moreover, motivated by the logical underpinnings
of computation, we arrive at an store-oriented approach to security. Rather than
sealing values at a security level, we instead associate security with the store.
A family of monadic types is used to keep track of the effects of computations.
To account for upcalls, we classify the informativeness of types at particular
security levels.

Since we treat terms apart from the effectful expressions, our approach can
straightforwardly encompass additional type constructors. The question of how
to account for additional effects requires further work. From the point of view
of non-interference, effects introduce the possibility of different behavior from
seemingly related expressions. We expect that by further refining the monadic
type to restrict the behavior of related terms, we may be able to account for
effects such as I/O or non-local control transfers.

Our formulation of the monadic language is in the style of Pfenning and
Davies [9]. One avenue of future work is to study whether there is a formula-
tion of information flow in a modal logic that decomposed our monad into the
possibility and necessity modalities.

Several questions remain about our language. In the case that the lattice
of security levels L is finite, it is obvious that the informativeness judgment
` A ↗ a is decidable. Although it is reasonable to assume that in a practical
secure programming system, there would only be a finite number of security
levels, it is nonetheless interesting to know whether ` A ↗ a is decidable even
in the general case where L may be infinite.

A general open problem in the area of secure programming languages is
how to devise a type system for a language with declassification operations.
Declassification occurs when a low-security computation makes use of a high-

38

security value, but in a way such that the information gained from the high-
security value is deemed an acceptable leak. Recently, Zdancewic and Myers [17]
show how to characterize so-called robust declassification in programs such that
an attacker may observe the declassified values, but may not exploit them to
gain additional high-security information. Zdancewic [16] then gives a type
system for robust declassification. Since declassification is fundamentally an
operation, we conjecture that our store-oriented viewpoint could be meshed
with Zdancewic and Myers to provide a logic of declassification.

References

[1] M. Abadi, A. Banerjee, N. Heintze, and J. G. Riecke. A core calculus of
dependency. In Twenty-Sixth ACM Symposium on Principles of Program-

ming Languages, pages 147–160, San Antonio, Texas, Jan. 1999.

[2] P. N. Benton, G. M. Bierman, and V. C. V. de Paiva. Computational types
from a logical perspective. Journal of Functional Programming, 8(2):177–
193, 1998.

[3] N. Heintze and J. G. Riecke. The SLam calculus: Programming with
secerecy and integrity. In Twenty-Fifth ACM Symposium on Principles of

Programming Languages, pages 365 – 377, San Diego, California, Jan. 1998.

[4] K. Honda and N. Yoshida. A uniform type structure for secure information
flow. In Twenty-Ninth ACM Symposium on Principles of Programming

Languages, pages 81–92, Jan. 2002.

[5] G. Huet. Confluent reductions: Abstract properties and applications to
term rewriting systems. Journal of the ACM, 27(4):797 – 821, Oct. 1980.

[6] E. Moggi. Computational lambda-calculus and monads. In Fourth IEEE

Symposium on Logic in Computer Science, pages 14–23, 1989.

[7] E. Moggi. Notions of computation and monads. Information and Compu-

tation, 93:55–92, 1991.

[8] A. C. Myers. JFlow: Practical mostly-static information flow control. In
Twenty-Sixth ACM Symposium on Principles of Programming Languages,
pages 228–241, San Antonio, Texas, Jan. 1999.

[9] F. Pfenning and R. Davies. A judgmental reconstruction of modal logic.
Mathematical Structures in Computer Science, 11(4):511–540, 2001.

[10] F. Pottier and S. Conchon. Informaiton flow inference for free. In 2000

ACM International Conference on Functional Programming, pages 46–57,
Montréal, Canada, Sept. 2000.

39

[11] F. Pottier and V. Simonet. Information flow inference for ML. In Twenty-

Ninth ACM Symposium on Principles of Programming Languages, Jan.
2002.

[12] F. Pottier and V. Simonet. Information flow inference for ML. ACM

Transactions on Programming Languages and Systems, 25(1):117–158, Jan.
2003.

[13] A. Sabelfeld and A. C. Myers. Language-based information-flow security.
IEEE Journal on Selected Areas in Communications, 21(1):5 – 19, Jan.
2003. special issue on Formal Methods in Security.

[14] D. Volpano, G. Smith, and C. Irvine. A sound type system for secure flow
analysis. Journal of Computer Security, 4(3):167–187, 1996.

[15] S. Zdancewic. Programming Languages for Information Security. PhD
thesis, Department of Computer Science, Cornell University, Ithaca, New
York, 2002.

[16] S. Zdancewic. A type system for robust declassification. In Nineteenth

Mathematical Foundations of Programming Semantics, Electronic Notes in
Theoretical Computer Science, Mar. 2003.

[17] S. Zdancewic and A. C. Myers. Robust declassification. In Fourteenth IEEE

Computer Security Foundations Workshop, pages 15 – 23, Cape Brenton,
Nova Scotia, Canada, 2001.

[18] S. Zdancewic and A. C. Myers. Secure information flow and CPS. In Tenth

European Symposium on Programming, volume 2028 of Lecture Notes in

Computer Science, pages 46 – 61. Springer-Verlag, Apr. 2001.

[19] S. Zdancewic and A. C. Myers. Secure information flow via linear contin-
uations. Higher Order and Symbolic Computation, 15(2-3):209–234, Sept.
2002.

A Judgments

A.1 Informativeness judgment rules

` A ↗ a

` A ↗ ⊥
(1)

` 1 ↗ a
(2)

` B ↗ a

` A → B ↗ a
(3)

40

` A ↗ a

` ©(r,w)A ↗ w u a
(4)

` refb A ↗ b
(5)

` A ↗ a

` refb A ↗ a
(6)

` A ↗ a

` refrb A ↗ a
(7)

` refrb A ↗ b
(8)

` refwa A ↗ a
(9)

` A ↗ a b v a

` A ↗ b
(10)

` A ↗ a ` A ↗ b

` A ↗ a t b
(11)

A.2 Typing judgment rules

` A ≤ B

` A ≤ A
(12)

` A ≤ A′ ` B′ ≤ B

` A′ → B′ ≤ A → B
(13)

` A ≤ B o � o′

` ©oA ≤ ©o′B
(14)

` A ≤ B a v b

` refa A ≤ refra′ B
(15)

` B ≤ A b v a

` refa A ≤ refwa′ B
(16)

` A ≤ B a v b

` refra A ≤ refrb B
(17)

41

` B ≤ A b v a

` refwa A ≤ refwb B
(18)

Σ; Γ ` M : A

Σ; Γ ` ∗ : 1
(19)

Σ; Γ ` x : Γ(x)
(20)

Σ; Γ ` true : bool
(21)

Σ; Γ ` false : bool
(22)

Σ; Γ ` M : bool Σ; Γ ` N1 : A Σ; Γ ` N2 : A

Σ; Γ ` if M then N1 else N2 : A
(23)

Σ; Γ ` ` : refLevel(`) Σ(`)
(24)

Σ; Γ, x : A ` M : B

Σ; Γ ` λx : A.M : A → B
(25)

Σ; Γ ` M : A → B Σ; Γ ` N : A

Σ; Γ ` MN : B
(26)

Σ; Γ ` E ÷o A

Σ; Γ ` val E : ©oA
(27)

Σ; Γ ` M : A ` A ≤ B

Σ; Γ ` M : B
(28)

Σ; Γ ` E ÷o A

Σ; Γ ` M : A

Σ; Γ ` [M] ÷(⊥,>) A
(29)

Σ; Γ ` M : ©oA Σ; Γ, x : A ` E ÷o B

Σ; Γ ` let val x = M in E ÷o B
(30)

Σ; Γ ` M : A

Σ; Γ ` refa (M : A) ÷(⊥,>) refa A
(31)

42

Σ; Γ ` M : refra A

Σ; Γ `!M ÷(a,>) A
(32)

Σ; Γ ` M : refwa A Σ; Γ ` N : A

Σ; Γ ` M := N ÷(⊥,a) 1
(33)

Σ; Γ ` E ÷o′ A o′ � o

Σ; Γ ` E ÷o A
(34)

Σ; Γ ` E ÷(r,w) A ` A ↗ r

Σ; Γ ` E ÷(⊥,w) A
(35)

Σ; Γ ` E ÷o B ` B ≤ C

Σ; Γ ` E ÷o C
(36)

` H : Σ

dom(Σ) = {`1, . . . , `n} Σ; · ` Vi : Σ(`i) for 1 ≤ i ≤ n

` {`1 7→ V1, . . . , `n 7→ Vn} : Σ
(37)

` S ÷o A

` H : Σ Σ; · ` E ÷o A

` (H, Σ, E) ÷o A
(38)

Derived typing rules for syntactic sugar

Σ; Γ ` E ÷o A Σ; Γ, x : A ` F ÷o C

Σ; Γ ` let x = E in F ÷o C

Σ; Γ ` M : ©oC

Σ; Γ ` run M ÷o C

A.3 Equivalent view judgments rules

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

` A ↗ a a 6v ζ Σ1; Γ ` V1 : A Σ2; Γ ` V2 : A

Σ1; Σ2; Γ ` V1 ≈ζ V2 : A
(39)

Σ1; Σ2; Γ ` ∗ ≈ζ ∗ : 1
(40)

43

Σ1; Σ2; Γ ` x ≈ζ x : Γ(x)
(41)

Σ1; Σ2; Γ ` true ≈ζ true : bool
(42)

Σ1; Σ2; Γ ` false ≈ζ false : bool
(43)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : bool

Σ1; Σ2; Γ ` N1 ≈ζ N2 : A
Σ1; Σ2; Γ ` P1 ≈ζ P2 : A

Σ1; Σ2; Γ `
if M1 then N1 else P1 ≈ζ

if M2 then N2 else P2 : A

(44)

Σ1; Σ2; Γ, x : A ` M1 ≈ζ M2 : B

Σ1; Σ2; Γ ` λx : A.M1 ≈ζ λx : A.M2 : A → B
(45)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A → B
Σ1; Σ2; Γ ` N1 ≈ζ N2 : A

Σ1; Σ2; Γ ` M1N1 ≈ζ M2N2 : B
(46)

Level(`) v ζ Σ1(`) = Σ2(`)

Σ1; Σ2; Γ ` ` ≈ζ ` : refLevel(`) Σ1(`)
(47)

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o A

Σ1; Σ2; Γ ` val E1 ≈ζ val E2 : ©oA
(48)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A ` A ≤ B

Σ1; Σ2; Γ ` M1 ≈ζ M2 : B
(49)

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o′ C o′ � o

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C
(50)

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(r,w) C ` C ↗ r

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(⊥,w) C
(51)

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o B ` B ≤ C

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C
(52)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : C

Σ1; Σ2; Γ ` [M1] ≈ζ [M2] ÷(⊥,>) C
(53)

44

Σ1; Σ2; Γ ` M1 ≈ζ M2 : ©oA
Σ1; Σ2; Γ, x : A ` E1 ≈ζ E2 ÷o C

Σ1; Σ2; Γ `
let val x = M1 in E1 ≈ζ

let val x = M2 in E2 ÷oC

(54)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

Σ1; Σ2; Γ `
refa (M1 : A) ≈ζ

refa (M2 : A) ÷(⊥,>)refa A

(55)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : refra A

Σ1; Σ2; Γ `!M1 ≈ζ !M2 ÷(a,>) A
(56)

Σ1; Σ2; Γ ` M1 ≈ζ M2 : refwa A
Σ1; Σ2; Γ ` N1 ≈ζ N2 : A

Σ1; Σ2; Γ ` M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

` (H1 : Σ1) ≈
U
ζ (H2 : Σ2)

` Hi : Σi for i = 1, 2
Σ1 � U = Σ2 � U
Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`) for all ` ∈ U

` (H1 : Σ1) ≈
U
ζ (H2 : Σ2)

(58)

` S1 ≈ζ S2 ÷o C

` (H1 : Σ1) ≈
dom(Σ1)∩dom(Σ2)∩↓(ζ)
ζ (H2 : Σ2)

Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C

` (H1, Σ1, E1) ≈ζ (H2, Σ2, E2) ÷o C
(59)

B Evaluation Rules

M → M ′

M → M ′

if M then N1 else N2 → if M ′ then N1 else N2
If1

if true then N1 else N2 → N1
IfTrue

if false then N1 else N2 → N2
IfFalse

45

M → M ′

MN → M ′N
App1

N → N ′

V N → V N ′ App2

(λx : A.M)V → M [V/x]
App

S → S′

M → M ′

(H, Σ, [M]) → (H, Σ, [M ′])
Ret1

M → M ′

(H, Σ, let val x = M in E) → (H, Σ, let val x = M ′ in E)
Letval1

(H, Σ, E) → (H ′, Σ′, E′)

(H, Σ, let val x = val E in F) → (H ′, Σ′, let val x = val E ′ in F)
Letvalval

(H, Σ, let val x = val [V] in E) → (H, Σ, E[V/x])
Letval

M → M ′

(H, Σ, refa (M : A)) → (H, Σ, refa (M ′ : A))
Ref1

` 6∈ dom(H) Level(`) = a

(H, Σ, refa (V : A)) → (H{` 7→ V }, Σ{` : A}, [`])
Ref

M → M ′

(H, Σ, !M) → (H, Σ, !M ′)
Bang1

(H, Σ, !`) → (H, Σ, [H(`)])
Bang

46

M → M ′

(H, Σ, M := N) → (H, Σ, M ′ := N)
Assn1

N → N ′

(H, Σ, V := N) → (H, Σ, V := N ′)
Assn2

` ∈ dom(H)

(H, Σ, ` := V) → (H{` 7→ V }, Σ, [∗])
Assn

C Proofs

Subterm/Subexpression Termination

• If (H, Σ, E) ↓ in n steps, then

1. if E = [M] then M →n V

2. if E = let val x = M in F then M →k val E′,

(H, Σ, E′) ↓ in m steps

and k + m < n

3. if E = refa (M : A) then M →k V and k < n

4. if E =!M then M →k V and k < n

5. if E = M := N then M →k V1, N →m V2 and k + m < n

• If M →n V then

1. If M = N1N2, then N1 →k V1 and V1N2 →m V1V2 and k + m < n

2. If M = if N1 then N2 else N3 then N1 →k V1 and k < n

Proof. by induction on the number of steps in the evaluation relation.
Part (1)
If n = 0, evidently E = [V], so V →0 V .
If n > 0, then (H, Σ, E) → S and S ↓ in n − 1 steps. Proceed by cases on

the last rule used in (H, Σ, E) → S

• Case Ret1: E = [M], S = (H, Σ, [M ′]), M → M ′.

By IH, M ′ →n−1 V , so M →n V

47

• Case Letval1: E = let val x = M in F , S = (H, Σ, let val x = M ′ in F),
M → M ′

By IH, M ′ →k val E′, (H, Σ, E′) ↓ in m steps, and k + m < n − 1. So
M ′ →k+1 val E′, and k + 1 + m < n.

• Case Letvalval: E = let val x = val E ′ in F , S = (H ′, Σ′, let val x =
val E′′ in F), (H, Σ, E′) → (H ′, Σ′, E′′).

By IH, val E′′ →0 val E′′, (H ′, Σ′, E′′) ↓ in m steps, m < n − 1. So
(H ′, Σ′, E′) ↓ in m + 1 steps, m + 1 < n.

• Case Letval: E = let val x = val [V] in F , S = (H, Σ, F [V/x]).

Evidently val [V] →0 val [V], and (H, Σ, [V]) →0 (H, Σ, [V]), and 0 < n.

• Case Ref1: E = refa (M : A), S = (H, Σ, refa (M ′ : A)), M → M ′.

By IH, M ′ →k V , k < n − 1. So M →k+1 V , and k + 1 < n.

• Case Ref: E = refa (V : A), S = (H{` 7→ V }, Σ{` : A}, [`]), ` 6∈ dom(H).

Evidently V →0 V , 0 < n.

• Cases Bang1, Bang: Similar to Ref1, Ref, respectively.

• Case Assn1, Assn2, Assn: Similar to previous cases.

Part (2)
If n = 0, evidently M is a value. Case is vacuously true.
If n > 0, then M → M ′ and M ′ →n−1 V . Proceed by cases on the last rule

used in M → M ′.

• Case App1: M = N1N2, M ′ = N ′
1N2, N1 → N ′

1

By IH, N ′
1 →k V1, N2 →m V2, and k + m < n − 1. So N →k+1 V1, and

k + 1 + m < n.

• Case App2: Similar to preceding case.

• Case App: M = (λx : A.N)V2, M ′ = N [V2/x]

Evidently (λx : A.N) →0 (λx : A.N), and V2 →0 V2 and 0 < n.

• Case If1: M = if N1 then N2 else N3, M ′ = if N ′
1 then N2 else N3,

N1 → N ′
1

By IH, N ′
1 →k V1, k < n − 1. So N1 →k+1 V1, and k + 1 < n.

• Cases IfTrue, IfFalse: Evident.

48

C.1 Type safety proof

C.1.1 Properties of informativeness and subtyping

Before we go on to prove type safety and non-interference, we take the time to
prove several (standard) lemmas.

Lemma C.1 (Informativeness Inversion). If ` A ↗ a and if

• A = bool then a = ⊥

• A = B → C then ` C ↗ a

• A = ©(r,w)B then a v w u b and ` B ↗ b

• A = refb B then ` B ↗ c and a v c t b

• A = refrb B then ` B ↗ c and a v c t b

• A = refwb B then a v b

Proof. by induction on the given derivation. By cases on the last rule used.

• Case rule (1). For each case of A, immediate.

• Case rule (2). Vacuous.

• Case rule (3). Evidently A = B → C, and ` C ↗ a.

• Case rule (4). Evidently A = ©(r,w)B and a = w u b where ` B ↗ b.

• Case rule (5). Evidently A = refa B. Let c = ⊥, then ` B ↗ c and
a v ⊥ t a

• Case rule (6). Evidently A = refb B and ` B ↗ a. Then a v a t b.

• Case rules (7), (8). Similar to cases for rules (5), (6), respectively.

• Case rule (9). Evidently A = refwa B.

• Case rule (10). Evidently ` A ↗ a′ and a v a′. By subcases on the
structure of A:

– Subcase A = 1. Vacuous.

– Subcase A = bool. By IH, a′ = ⊥, so a = ⊥.

– Subcase A = B → C. By IH, ` C ↗ a′. By rule (10), ` C ↗ a

– Subcase A = ©(r,w)B. By IH, a′ v w u b and ` B ↗ b. So evidently
a v w u b.

– Subcase A = refb B. By IH, a′ v c t b and ` B ↗ c. So evidently
a v c t b.

– Subcase A = refrb B. Same as previous subcase.

49

– Subcase A = refwb B. By IH, a′ v b. So a v b.

• Case rule (11). Evidently ` A ↗ a1 and ` A ↗ a2 and a = a1 t a2. By
subcases on the structure of A:

– Subcase A = 1. Vacuous.

– Subcase A = bool. By IH, a1 = a2 = a = ⊥.

– Subcase A = B → C. By IH, ` C ↗ a1, ` C ↗ a2. By rule (10),
` C ↗ a

– Subcase A = ©(r,w)B.

1. By IH, ai v w u bi and ` B ↗ bi for i = 1, 2.

2. By rule (11), ` B ↗ b1 t b2.

3. ai v w u bi v w u (b1 t b2) for i = 1, 2.

4. So a v w u (b1 t b2).

• Subcase A = refb B.

1. By IH, ai v ci t b, and ` B ↗ ci for i = 1, 2

2. a1 t a2 v c1 t c2 t b

3. By rule (11), ` B ↗ c1 t c2

• Subcase A = refrb B. Similar to previous subcase

• Subcase A = refwb B. By IH, ai v b, so a1 t a2 v b.

Lemma C.2 (Subtyping Inversion). If ` A′ ≤ A and if

• A = 1 then A′ = 1

• A = bool then A′ = bool

• A = B → C then A′ = B′ → C ′ and ` B ≤ B′ and ` C ′ ≤ C

• A = refa B then A′ = refa B

• A = refra B then

– either A′ = refra′ B′ with ` B′ ≤ B and a′ v a

– or A′ = refa′ B′ with ` B′ ≤ B and a′ v a

• A = refwa B then

– either A′ = refwa′ B′ with ` B ≤ B′ and a v a′

– or A′ = refa′ B′ with ` B ≤ B′ and a v a′

• A = ©oB then A′ = ©o′B′ and ` B′ ≤ B and o′ � o

50

and moreover, all the result derivations are subderivations of the given deriva-

tion.

Proof. by cases on the last rule used in the given derivation. Each case follows
immediately from the rules.

Lemma C.3 (Transitivity of subtyping). The following rule is admissible

` A ≤ B ` B ≤ C

` A ≤ C

Proof. by induction on the derivations.
By cases on ` B ≤ C

• Case

` B ≤ B
(12)

By pattern matching B = C. Immediate

• Case
` C1 ≤ B1 ` B2 ≤ C2

` B1 → B2 ≤ C1 → C2
(13)

1. By pattern matching B = B1 → B2, C = C1 → C2.

2. By inversion, A = A1 → A2 and ` B1 ≤ A1 and ` A2 ≤ B2

3. By IH, ` C1 ≤ A1 and ` A2 ≤ C2

4. By rule (13), ` A ≤ C

• Case
` B′ ≤ C ′ ob � oc

` ©ob
B′ ≤ ©oc

C ′
(14)

1. By pattern matching B = ©ob
B′, C = ©oc

C ′

2. By inversion, A = ©oa
A′ and ` A′ ≤ B′ and oa � ob

3. By IH, ` A′ ≤ C ′

4. Evidently oa � oc

5. By rule (14), ` A ≤ C

• Case
` B′ ≤ C ′ b v c

` refb B′ ≤ refrc C ′
(15)

1. By pattern matching B = refb B′ and C = refrc C ′

2. By inversion, A = B. Immediate.

• Case
` C ′ ≤ B′ c′ v b′

` refb B′ ≤ refwc C ′
(16)

51

1. By pattern matching B = refb B′ and C = refwc C ′

2. By inversion, A = B. Immediate.

• Case
` B′ ≤ C ′ b v c

` refrb B′ ≤ refrc C ′
(17)

1. By pattern matching B = refrb B′, C = refrc C ′

2. By inversion, either A = refa A′ or A = refra A′, and in either case
a v b and ` A′ ≤ B′

3. By IH, ` A′ ≤ C ′

4. Evidently a v c

5. By either rule (15) or (17), ` A ≤ C

• Case
` C ′ ≤ B′ c v b

` refwb B′ ≤ refwc C ′
(18)

1. By pattern matching, B = refwb B′, C = refwc C ′

2. By inversion, either A = refa A′ or A = refwa A′, and in either case
b v a and ` B′ ≤ A′

3. By IH, ` C ′ ≤ A′

4. Evidently c v a

5. By either rule (16) or (18), ` A ≤ C

C.1.2 Typing judgment properties

Lemma C.4 (Substitution). If Σ; Γ, Γ′ ` M : A and

1. if Σ; Γ, x : A, Γ′ ` N : B then Σ; Γ, Γ′ ` N [M/x] : B

2. if Σ; Γ, x : A, Γ′ ` E ÷o B then Σ; Γ, Γ′ ` E[M/x] ÷o B

Proof. Parts (1) and (2) simultaneously by induction on Σ; Γ, x : A, Γ′ ` N : B
(or Σ; Γ, x : A, Γ′ ` E ÷o B). By cases on the last rule used.

Part (1)

• Case rules (19), (21), (22), (24): Immediate.

• Case rules (23), (26), (27), (28): By IH.

• Case

Σ; Γ, x : A, Γ′ ` x′ : (Γ, x : A, Γ′)(x′)
(20)

If x′ 6= x then x′[M/x] = x′, and by rule (20), Σ; Γ, Γ′ ` x′ : (Γ, Γ′)(x′)

If x′ = x then x′[M/x] = N , so (Γ, x : A, Γ′)(x′) = A, and Σ; Γ, Γ′ ` N : A.

52

• Case
Σ; Γ, x : A, Γ′, y : C ` P : D

Σ; Γ, x : A, Γ′ ` λy : B.P : C → D
(25)

1. By IH, Σ; Γ, Γ′, y : C ` P [M/x] : D

2. By rule (25), Σ; Γ, Γ′ ` λy : C.P [M/x] : C → D

3. By properties of substitution, N [M/x] = (λy : C.P)[M/x] = λy :
C.P [M/x]

4. So, Σ; Γ, Γ′ ` N [M/x] : B

Part (2)

• Case rules (29), (31), (32), (33), (34), (35), (36): By IH.

• Case

Σ; Γ, x : A, Γ′ ` P : ©oC Σ; Γ, x : A, Γ′, y : C ` F ÷o B

Σ; Γ, x : A, Γ′ ` let val y = P in F ÷o B
(30)

1. By IH, Σ; Γ, Γ′ ` P [M/x] : ©oC

2. By IH, Σ; Γ, Γ′, y : C ` F [M/x] ÷o B

3. By rule (30), Σ; Γ, Γ′ ` let val y = P [M/x] in F [M/x] ÷o B

4. By properties of substitution, E[M/x] = let val y = P in F [M/x] =
let val y = P [M/x] in F [M/x]

5. So Σ; Γ, Γ′ ` E[M/x] ÷o B

Lemma C.5 (Inversion). Two parts:

• If Σ; Γ ` M : A and

1. if M = x then ` Γ(x) ≤ A

2. if M = ∗ then ` 1 ≤ A

3. if M = true or M = false then ` bool ≤ A

4. if M = if N1 then N2 else N3 then Σ; Γ ` N1 : bool, Σ; Γ ` N2 : B,

Σ; Γ ` N3 : B′, and ` B ≤ A, ` B′ ≤ A

5. if M = λx : B.N then Σ; Γ, x : B ` N : C and ` B → C ≤ A

6. if M = NP then Σ; Γ ` N : B → C and Σ; Γ ` P : B and ` C ≤ A

7. if M = ` then ` refLevel(`) Σ(`) ≤ A

8. if M = val E then Σ; Γ ` E ÷o B and ` ©oB ≤ A

• If Σ; Γ ` E ÷o A and

1. if E = [M] then Σ; Γ ` M : A

53

2. if E = let val x = M in F then Σ; Γ ` M : ©o′B and Σ; Γ, x : B `
F ÷o′ C, ` C ≤ A and o′ = (r′, w′) with either o′ � o or ` C ↗ r′

and (⊥, w′) � o

3. if E = refa (M : B) then ` refa B ≤ A and Σ; Γ ` M : B

4. if E =!M then Σ; Γ ` M : refra B and ` B ≤ C, ` C ≤ A and either

(a,>) � o or ` C ↗ a

5. if E = M := N then Σ; Γ ` M : refwa B, Σ; Γ ` N : B, ` 1 ≤ A, and

(⊥, a) � o

Proof. by induction on the given derivation. By cases on the last rule used.
For part (1), in cases of rules (19) − (27) the result is immediate, by rule

(12). In case of rule (28), the result follows by IH, and transitivity.
For part (2), consider the following cases:

• Case rules (29), (30), (31), (32), (33): Immediate

• Case
Σ; Γ ` E ÷o′ A o′ � o

Σ; Γ ` E ÷o A
(34)

By IH, there are five subcases

– Subcase E = [M], Σ; Γ ` M : A. Immediate

– Subcase E = let val x = M in F , Σ; Γ ` M : ©o′′B, Σ; Γ, x : B `
F÷o′′ C, ` C ≤ A, and o′′ = (r′′, w′′) with either o′′ � o′ or ` C ↗ r′′

and (⊥, w′′) � o′. Evident, since o′ � o

– Subcase E = refa (M : B), ` refa B ≤ A Σ; Γ ` M : B. Immediate

– Subcase E =!M , Σ; Γ ` M : refra B and ` B ≤ C,` C ≤ A and
either (a,>) � o′ or ` C ↗ a. Evident, since o′ � o

– Subcase E = M := N , Σ; Γ ` M : refwa B, Σ; Γ ` N : B, ` 1 ≤ A,
and (⊥, a) � o′. Evident since o′ � o

• Case
Σ; Γ ` E ÷(r,w) A ` A ↗ r

Σ; Γ ` E ÷(⊥,w) A
(35)

By pattern matching, o = (⊥, w)

By IH, there are five subcases

– Subcase E = [M], Σ; Γ ` M : A. Immediate

– Subcase E = let val x = M in F , Σ; Γ ` M : ©o′B, Σ; Γ, x : B `
F ÷o′ C, ` C ≤ A, and o′ = (r′, w′) with either o′ � (r, w) or
` C ↗ r′ and (⊥, w′) � (r, w).

∗ If o′ � (r, w)

1. By definition, r′ v r, and w v w′

54

2. By rule (36), Σ; Γ, x : B ` F ÷o′ A

3. By rule (12), ` A ≤ A

4. By rule (10), ` A ↗ r′

5. By definition, (⊥, w′) � o

∗ If ` A ↗ r′ and (⊥, w′) � (r, w),
By definition, (⊥, w′) � o

– Subcase E = refa (M : B), ` refa B ≤ A Σ; Γ ` M : B. Immediate

– Subcase E =!M , Σ; Γ ` M : refra B and ` B ≤ C, ` C ≤ A and
either (a,>) � (r, w) or ` C ↗ a.

∗ If (a,>) � (r, w)

1. By definition, a v r

2. By rule (12), ` A ≤ A

3. By rule (10), ` A ↗ a

∗ If ` C ↗ a
Immediate

– Subcase E = M := N , Σ; Γ ` M : refwa B, Σ; Γ ` N : B, ` 1 ≤ A,
and (⊥, a) � (r, w).

By definition, w v a. So (⊥, a) � (⊥, w)

• Case
Σ; Γ ` E ÷o B ` B ≤ A

Σ; Γ ` E ÷o A
(36)

By IH, there are five subcases

– Subcase E = [M], Σ; Γ ` M : B

By rule (28), Σ; Γ ` M : A

– Subcase E = let val x = M in F , Σ; Γ ` M : ©o′C and Σ; Γ, x : C `
F ÷o′ D, ` D ≤ B and o′ = (r′, w′) with either o′ � o or ` D ↗ r′

and (⊥, w′) � o

By transitivity, ` D ≤ A.

– Subcase E = refa (M : C), ` refa C ≤ B Σ; Γ ` M : C

By transitivity, ` refa C ≤ A

– Subcase E =!M , Σ; Γ ` M : refra C and ` C ≤ D, ` D ≤ B and
either (a,>) � o or ` D ↗ a

By transitivity, ` D ≤ A

– Subcase E = M := N , Σ; Γ ` M : refwa C, Σ; Γ ` N : C, ` 1 ≤ B,
and (⊥, a) � o

By transitivity, ` 1 ≤ A

Lemma C.6 (Canonical Forms). If Σ; · ` V : A and

55

1. if A = 1 then V = ∗

2. if A = bool then V = true or V = false

3. if A = B → C then V = λx : B′.M

4. if A = refa B then V = ` and ` ∈ dom(Σ)

5. if A = refra B then V = ` and ` ∈ dom(Σ)

6. if A = refwa B then V = ` and ` ∈ dom(Σ)

7. if A = ©oB then V = val E

Proof. by induction on the typing derivation; by inspection of the last typing
rule used.

C.1.3 Store properties

Lemma C.7 (Store Weakening). If Σ′ ⊇ Σ and Σ′ well-formed, and

• if Σ; Γ ` M : A then Σ′; Γ ` M : A

• if Σ; Γ ` E ÷o C then Σ′; Γ ` E ÷o C

Proof. by simultaneous induction on the given derivations. By cases on the last
rule used.

• Case

Σ; Γ ` ` : refLevel(`) Σ(`)
(24)

1. Since Σ′ is well-formed, there is at most one occurrence of ` in Σ′

2. Evidently ` ∈ dom(Σ), therefore ` ∈ dom(Σ′).

3. Since Σ′ ⊇ Σ, Σ′(`) = Σ(`).

4. By rule (24), Σ′; Γ ` ` : refLevel(`) Σ′(`).

• All the remaining cases are straightforward by IH.

Corollary C.8 (Allocation Safety). If Σ; · ` V : A, ` H : Σ and if ` 6∈
dom(H) then ` H{` 7→ V } : Σ{` : A}

Proof. 1. By inversion, dom(H) = dom(Σ), and Σ; · ` H(`) : Σ(`′) for each
`′ ∈ dom(H)

2. Therefore ` 6∈ dom(Σ), and therefore Σ′ = Σ{` : A} is well-formed.

3. By Store Weakening, Σ′; · ` V : A

4. By Store Weakening, Σ′; · ` H(`′) : Σ(`′) for `′ ∈ dom(H)

56

5. Since Σ′ ⊇ Σ, Σ′(`′) = Σ(`′) for `′ ∈ dom(H)

6. Evidently dom(H{` 7→ V }) = dom(Σ′)

7. By rule (37), ` H{` 7→ V } : Σ′

Lemma C.9 (Store Update). If ` H : Σ and if ` ∈ dom(Σ) and Σ; · ` V :
Σ(`) then ` H{` 7→ V } : Σ

Proof. 1. By Inversion, dom(H) = dom(Σ)

2. So dom(H{` 7→ V }) = dom(Σ)

3. Consider `′ ∈ dom(Σ)

4. If `′ = `, then H{` 7→ V }(`′) = V , so Σ; · ` H{` 7→ V }(`′) : Σ(`′)

5. If `′ 6= `, then H{` 7→ V }(`′) = H(`′) so Σ; · ` H{` 7→ V }(`′) : Σ(`′)

6. By rule (37), ` H{` 7→ V } : Σ

C.1.4 Preservation, Progress and Type safety

Lemma C.10 (Term Preservation). If Σ; · ` M : A and M → M ′ then

Σ; · ` M ′ : A

Proof. by induction on the evaluation relation. By cases on the last rule used.

• Case If1: M = if N1 then N2 else N3, M ′ = if N ′
1 then N2 else N3,

N1 → N ′
1

1. By Inversion, Σ; · ` N1 : bool, Σ; · ` N2 : B, Σ; · ` N3 : B′ and
` B ≤ A, ` B′ ≤ A

2. By IH, Σ; · ` N ′ : bool

3.

Σ; · ` N ′
1 : bool

Σ; · ` N2 : B ` B ≤ A

Σ; · ` N2 : A
(28)

Σ; · ` N3 : B′ ` B′ ≤ A

Σ; · ` N3 : A
(28)

Σ; · ` M ′ : A
(23)

• Case IfTrue: M = if true then N2 else N3, M ′ = N2

1. By Inversion, Σ; · ` true : bool, Σ; · ` N2 : B, Σ; · ` N3 : B′, ` B ≤ A,
` B′ ≤ A.

2. By rule (28), Σ; · ` N2 : A

• Case IfFalse: M = if false then N2 else N3, M ′ = N3

Similar to previous case.

57

• Case App1: M = NP , N → N ′, M ′ = N ′P

1. By Inversion, Σ; · ` N : B → C and Σ; · ` P : B and ` C ≤ A

2. By IH, Σ; · ` N ′ : B → C

3.
Σ; · ` N ′ : B → C Σ; · ` P : B

Σ; · ` N ′P : C
(26)

` C ≤ A

Σ; · ` M ′ : A
(28)

• Case App2: M = NP , P → P ′, M ′ = NP ′

1. By Inversion, Σ; · ` N : B → C and Σ; · ` P : B and ` C ≤ A

2. By IH, Σ; · ` P ′ : B

3.
Σ; · ` N : B → C Σ; · ` P ′ : B

Σ; · ` NP ′ : C
(26)

` C ≤ A

Σ; · ` M ′ : A
(28)

• Case App: M = (λx : B.N)P , M ′ = N [P/x]

1. By Inversion, Σ; · ` λx : B.N : B′ → C ′ and Σ; · ` P : B′ and
` C ′ ≤ A

2. By Inversion, Σ; x : B ` N : C and ` B → C ≤ B′ → C ′

3. By Subtyping Inversion, ` B′ ≤ B ` C ≤ C ′

4. By transitivity, ` C ≤ A

5. By rule (28), Σ; · ` P : B

6. By Substitution, Σ; · ` N [P/x] : C

7. By rule (28, Σ; · ` M ′ : A

Preservation If ` S ÷o A and S → S′ then ` S′ ÷o A

Proof. by induction on the evaluation relation.
By pattern matching, S = (H, Σ, E), S ′ = (H ′, Σ′, E′), o = (r, w)
By Inversion,

• ` H : Σ

• Σ; · ` E ÷o A

Now proceed by cases on the last rule used in S → S ′

• Case Ret1: E = [M], H ′ = H , Σ′ = Σ, E′ = [M ′], M → M ′

1. By Inversion, Σ; · ` M : A

58

2. By Term Preservation, Σ; · ` M ′ : A

3.
Σ; · ` M ′ : A

Σ; · ` [M ′] ÷(⊥,>) A
(29)

(⊥,>) � o

Σ; · ` E′ ÷o A
(34)

4. By rule (38), ` S′ ÷o A

• Case Letval1: E = let val x = M in F , H ′ = H , Σ′ = Σ, E′ = let val x =
M ′ in F , M → M ′

1. By Inversion, Σ; · ` M : ©o′B and Σ; x : B ` F ÷o′ C, ` C ≤ A with
o′ = (r′, w′) and either o′ � o or both ` C ↗ r′ and (⊥, w′) � o

2. By Term Preservation, Σ; · ` M ′ : ©o′B

3. By rule (30) Σ; · ` let val x = M ′ in F ÷o′ C

4. If o′ � o

Σ; · ` E′ ÷o′ C o′ � o

Σ; · ` E′ ÷o C
(34)

` C ≤ A

Σ; · ` E′ ÷o A
(36)

5. If ` C ↗ r′ and (⊥, w′) � o

Σ; · ` E′ ÷o′ C ` C ↗ r′

Σ; · ` E′ ÷(⊥,w′) C
(35)

(⊥, w′) � o

Σ; · ` E′ ÷o C
(34)

` C ≤ A

Σ; · ` E′ ÷o A
(36)

6. By rule (38), ` S′ ÷o A

• Case Letvalval: E = let val x = val E1 in F , E′ = let val x =
val E′

1 in F , (H, Σ, E1) → (H ′, Σ′, E′
1)

1. By Inversion, Σ; · ` val E1 : ©o′B and Σ; x : B ` F ÷o′ C, ` C ≤ A
with o′ = (r′, w′) and either o′ � o or both ` C ↗ r′ and (⊥, w′) � o

2. By Inversion, Σ; · ` E1 ÷o′′ B′ and ` ©o′′B′ ≤ ©o′B

3. By rule (38), ` (H, Σ, E1) ÷o′′ B′

4. By IH, ` (H ′, Σ′, E′
1) ÷o′′ B′

5. By inversion, ` (H ′ : Σ′), Σ′; · ` E′
1 ÷o′′ B′

6. By rule (27), Σ′; · ` val E′
1 : ©o′′B′

7. By rule (28), Σ′; · ` val E′
1 : ©o′B

8. By Store Size, Σ′ ⊇ Σ

9. By Store Weakening, Σ′; · ` F ÷o′ C

59

10. By rule (30) Σ′; · ` let val x = val E ′
1 in F ÷o′ C

11. If o′ � o
Σ′; · ` E′ ÷o′ C o′ � o

Σ′; · ` E′ ÷o C
(34)

12. If ` C ↗ r′ and (⊥, w′) � o

Σ′; · ` E′ ÷o′ C ` C ↗ r′

Σ′; · ` E′ ÷(⊥,w′) C
(35)

(⊥, w′) � o

Σ′; · ` E′ ÷o C
(34)

13. By rule (36), Σ′; · ` E′ ÷o A

14. By rule (38), ` S′ ÷o A

• Case Letval: E = let val x = val [V] in F , H ′ = H , Σ′ = Σ, E′ = F [V/x]

1. By Inversion, Σ; · ` val [V] : ©o′B and Σ; x : B ` F ÷o′ C, ` C ≤ A,
with o′ = (r′, w′) and either o′ � o or both ` C ↗ r′ and (⊥, w′) � o

2. By Inversion, Σ; · ` [V] ÷o′′ B′ and ` ©o′′B′ ≤ ©o′B

3. By Inversion, Σ; · ` V : B′

4. By Subtyping Inversion, ` B′ ≤ B and o′′ � o′

5. By rule (28), Σ; · ` V : B

6. By Substitution, Σ; · ` F [V/x] ÷o′ C

7. If o′ � o
Σ; · ` E′ ÷o′ C o′ � o

Σ; · ` E′ ÷o C
(34)

8. If ` C ↗ r′ and (⊥, w′) � o

Σ; · ` E′ ÷o′ C ` C ↗ r′

Σ; · ` E′ ÷(⊥,w′) C
(35)

(⊥, w′) � o

Σ; · ` E′ ÷o C
(34)

9. By rule (36), Σ; · ` E ′ ÷o A

10. By rule (38), ` S′ ÷o A

• Case Ref1: similar to Ret1

• Case Bang1: similar to Ret1

• Case Assn1: similar to Ret1

• Case Assn2: similar to Ret1

• Case Ref: E = refa (V : B), H ′ = H{` 7→ V }, Σ′ = Σ{` : B}, E′ = [`],
where ` 6∈ dom(H), Level(`) = a

60

1. By Inversion, Σ; · ` V : B, ` refa B ≤ A

2. By Allocation Safety, ` H ′ : Σ′

3.

Σ′; · ` ` : refa B
(24)

` refa B ≤ A

Σ′; · ` ` : A
(28)

Σ′; · ` [`] ÷(⊥,>) A
(29)

(⊥,>) � o

Σ′; · ` E′ ÷o A
(34)

4. By rule (38), ` S′ ÷o A

• Case Bang: E =!`, H ′ = H , Σ′ = Σ, E′ = [H(`)]

1. By Inversion, Σ; · ` ` : refra B, and ` B ≤ C, ` C ≤ A, with either
(a,>) � o or ` C ↗ a

2. By Inversion, ` refLevel(`) Σ(`) ≤ refra B

3. By Subtyping Inversion, Level(`) v a, ` Σ(`) ≤ B

4. By transitivity, ` Σ(`) ≤ C

5. By Store Typing, Σ; · ` H(`) : Σ(`)

6.
Σ; · ` H(`) : Σ(`) ` Σ(`) ≤ C

Σ; · ` E′ ÷(a,>) C
(32)

7. If (a,>) � o, then by rule (34), Σ; · ` E ′ ÷o C

8. If ` C ↗ a, then

Σ; · ` E′ ÷(a,>) C ` C ↗ a

Σ; · ` E′ ÷(⊥,>) C
(35)

Σ; · ` E′ ÷o C
(34)

9. By rule (36), Σ; · ` E ′ ÷o A

10. By rule (38), ` S′ ÷o A

• Case Assn: E = ` := V , H ′ = H{` 7→ V }, Σ′ = Σ, E′ = [∗], ` ∈ dom(H)

1. By Inversion, Σ; · ` ` : refwb B, Σ; · ` V : B, ` 1 ≤ A, (⊥, a) � o

2. By Inversion, ` refLevel(`) Σ(`) ≤ refwb B

3. By Subtyping Inversion, ` B ≤ Σ(`), b v Level(`)

4. By rule (28), Σ; · ` V : Σ(`)

5. By Store Update, ` H ′ : Σ

6.

Σ; · ` ∗ : 1
(19)

` 1 ≤ A

Σ; · ` E′ ÷(⊥,>) 1
(36)

(⊥,>) � o

Σ; · ` E′ ÷o A
(34)

61

7. By rule (38), ` S′ ÷o A

Lemma C.11 (Term Progress). If Σ; · ` M : A then either M is a value, or

∃M ′ such that M → M ′

Proof. by induction on the given derivation. By cases on the last rule used.

• Case
Σ; · ` M : B ` B ≤ A

Σ; · ` M : A
(28)

By IH.

• Case rules (19), (21), (22), (24), (25), (27): Immediate, evidently M is a
value.

• Case rule (20). Vacuous, context is empty.

• Case
Σ; · ` N1 : bool Σ; · ` N2 : A Σ; · ` N3 : A

Σ; · ` if N1 then N2 else N3 : A
(23)

By pattern matching, M = if N1 then N2 else N3.

By IH, either N1 is a value, or N1 → N ′
1.

– Subcase N1 is a value

1. By Canonical Forms, either N1 = true or N1 = false.

2. In the former case, M → N2 by IfTrue

3. In the latter case, M → N3 by IfFalse

– Subcase N1 → N ′
1

Evidently M → M ′ where M ′ = if N ′
1 then N2 else N3 by If.

• Case
Σ; · ` N : B → A Σ; · ` P : B

Σ; · ` NP : A
(26)

By pattern matching, M = NP .

By IH, either N is a value, or N → N ′

– Subcase N is a value By IH, either P is a value, or P → P ′

∗ Subsubcase P is a value

1. By Canonical Forms, N = λx : B′.N ′

2. Let M ′ = N ′[P/x]. Evidently M → M ′ by App.

∗ Subsubcase P → P ′

Let M ′ = NP ′. Evidently M → M ′ by App2.

– Subcase N → N ′

Let M ′ = N ′P . Evidently M → M ′ by App1.

62

Progress If ` S ÷o A then either S is terminal, or ∃S ′ such that S → S′

Proof. By pattern matching, S = (H, Σ, E).
By Inversion, ` H : Σ, and Σ; · ` E ÷o A.
Proceed by induction on the typing derivation, by cases on the last rule used:

• Case rules (36), (34), (35): Immediate by IH.

• Case
Σ; · ` M : A

Σ; · ` [M] ÷(⊥,>) A
(29)

1. By pattern matching, E = [M], o = (⊥,>)

2. By Term Progress, either M is a value or M → M ′

3. If M is a value, then S is terminal

4. If M → M ′, let S′ = (H, Σ, [M ′]); S → S′ by Ret1

• Case
Σ; · ` M : B

Σ; · ` refa (M : B) ÷(⊥,>) refa B
(31)

1. By pattern matching, E = refa (M : B), o = (⊥,>), A = refa B

2. By Term Progress, either M is a value or M → M ′

3. If M is a value, let S′ = (H{` 7→ M}, Σ{` : B}, [`] for ` 6∈ dom(H);
S → S′ by Ref

4. If M → M ′, let S′ = (H, Σ, refa (M ′ : B)); S → S′ by Ref1

• Case
Σ; Γ ` M : refra A

Σ; Γ `!M ÷(a,>) A
(32)

1. By pattern matching, E =!M , o = (a,>)

2. By Term Progress, either M is a value or M → M ′

– If M is a value

(a) By Canonical Forms, M = `, ` ∈ dom(Σ)

(b) By store typing, dom(H) = dom(Σ), so ` ∈ dom(H)

(c) Let S′ = (H, Σ, [H(`)]; S → S′ by Bang

– If M → M ′, let S′ = (H, Σ, !M ′); S → S′ by Bang1

• Case
Σ; Γ ` M : refwa A Σ; Γ ` N : A

Σ; Γ ` M := N ÷(⊥,a) 1
(33)

1. By pattern matching, E = M := N , o = (⊥, a), A = 1

2. By Term Progress, either M is a value, or M → M ′

63

– If M is a value

(a) By Term Progress, either N is a value or N → N ′

∗ If N is a value

i. By Canonical Forms, M = `, ` ∈ dom(Σ)

ii. By store typing, dom(H) = dom(Σ), so ` ∈ dom(H)

iii. Let S′ = (H{` 7→ N}, Σ, [∗]); S → S′ by Assn

∗ If N → N ′, let S′ = (H, Σ, M := N ′); S → S′ by Assn2

– If M → M ′, let S′ = (H, Σ, M ′ := N); S → S′ by Assn1

• Case
Σ; Γ ` M : ©oB Σ; Γ, x : A ` F ÷o A

Σ; Γ ` let val x = M in F ÷o A
(30)

1. By pattern matching, E = let val x = M in F

2. By Term Progress, either M is a value, or M → M ′

– If M is a value

(a) By Canonical Forms, M = val E1

(b) By Inversion, Σ; · ` E1 ÷o′ C, ` ©o′C ≤ ©oB

(c) By IH, (H, Σ, E1) is either terminal or
(H, Σ, E1) → (H ′, Σ′, E′

1)

∗ If (H, Σ, E1) is terminal

i. By pattern matching, E1 = [V]

ii. Let S′ = (H, Σ, F [V/x]); S → S′ by Letval

∗ If (H, Σ, E1) → (H ′, Σ′, E′
1),

let S′ = (H ′, Σ′, let val x = val E ′
1 in F); S → S′ by

Letvalval

– If M → M ′, let S′ = let val x = M ′ in F , S → S′ by Letval1

C.2 Structural properties of equivalence

We show that the judgments for ≈ζ admit reflexivity (for well-typed computa-
tions), symmetry, and transitivity rules, that is they are equivalence relations
on well-typed computation states.

Lemma C.12 (Reflexivity). 1. If Σ; Γ ` M : A then Σ; Σ; Γ ` M ≈ζ M :
A.

2. If Σ; Σ; Γ ` E ÷o C then Σ; Σ; Γ ` E ≈ζ E ÷o C

3. If ` H : Σ then ` (H : Σ) ≈U
ζ (H : Σ) for all U ⊆ dom(H)

4. If ` S ÷o C then ` S ≈ζ S ÷o C

64

Proof. Parts (1) and (2) simultaneously by induction on the given derivation,
by cases on the last rule used. Parts (3) and (4) follow by inversion on the single
rule for the given derivation, and then using parts (1) and (2).

In part (1), the case of store locations is not immediate:

• Case

Σ; Γ ` ` : refLevel(`) Σ(`)
(24)

There are two cases, either Level(`) v ζ or Level(`) 6v ζ:

– Subcase Level(`) v ζ:

Level(`) v ζ Σ(`) = Σ(`)

Σ; Σ; Γ ` ` ≈ζ ` : refLevel(`) Σ(`)
(47)

– Subcase Level(`) 6v ζ:

Σ; Γ ` ` : refLevel(`) Σ(`)
Σ; Γ ` ` : refLevel(`) Σ(`)

` refLevel(`) Σ(`) ↗ Level(`)
(5)

Level(`) 6v ζ

Σ; Σ; Γ ` ` ≈ζ ` : refLevel(`) Σ(`)
(39)

The remaining cases follow by induction

Lemma C.13 (Symmetry). 1. If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A then Σ2; Σ1; Γ `
M2 ≈ζ M1 : A.

2. If Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C then Σ2; Σ1; Γ ` E2 ≈ζ E1 ÷o C

3. If ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2) then ` (H2 : Σ2) ≈

U
ζ (H1 : Σ1)

4. If ` S1 ≈ζ S2 ÷o C then ` S2 ≈ζ S1 ÷o C

Proof. by induction on derivations. Evident as all the judgments are symmetric.

Lemma C.14 (Transitivity). Four parts:

1. If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A and Σ2; Σ3; Γ ` M2 ≈ζ M3 : A then

Σ1; Σ3; Γ ` M1 ≈ζ M3 : A

2. If Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C and Σ2; Σ3; Γ ` E2 ≈ζ E3 ÷o C then

Σ1; Σ1; Γ ` E1 ≈ζ E3 ÷o C

3. If ` (H1 : Σ1) ≈U
ζ (H2 : Σ2) and ` (H2 : Σ2) ≈U

ζ (H3 : Σ3) then

` (H1 : Σ1) ≈
U
ζ (H3 : Σ3)

4. If ` S1 ≈ζ S2 ÷o C and ` S2 ≈ζ S3 ÷o C then ` S1 ≈ζ S3 ÷o C

Proof. Parts (1) and (2) follow by simultaneous induction on derivations.
Part (3):

65

1. By Inversion on each given derivation, ` Hi : Σi for i = 1, 2, 3, Σ1 � U =
Σ2 � U = Σ3 � U , and for each ` ∈ U , Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`)
and Σ2; Σ3; · ` H2(`) ≈ζ H3(`) : Σ2(`)

2. By Part (1), for each ` ∈ U , Σ1; Σ3; · ` H1(`) ≈ζ H3(`) : Σ1(`)

3. By rule (58), ` (H1 : Σ1) ≈
U
ζ (H3 : Σ3)

Part (4):

1. By pattern matching, Si = (Hi, Σi, Ei) for i = 1, 2, 3

2. By Inversion, ` (H1 : Σ1)) ≈U12

ζ (H2 : Σ2), Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C
where U12 = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)

3. By Inversion, ` (H2 : Σ2)) ≈U23

ζ (H3 : Σ3), Σ2; Σ3; · ` E2 ≈ζ E3 ÷o C
where U23 = dom(Σ2) ∩ dom(Σ3) ∩ ↓(ζ)

4. Let U13 = dom(Σ1) ∩ dom(Σ3) ∩ ↓(ζ)

5. Suppose ` ∈ U13 \ (dom(Σ2) ∩ ↓(ζ))

(a) Evidently, ` 6∈ U12 and ` 6∈ U23

(b) Choose `′ 6∈ U13 ∪ dom(Σ2) such that Level(`′) = Level(`)

(c) α-vary (H3, Σ3, E3) with `′ for `

6. So for all ` ∈ U13, ` ∈ dom(Σ2) ∩ ↓(ζ)

7. Evidently, U13 ⊆ U12 and U13 ⊆ U23

8. By Store Equivalence Coarsening, ` (H1 : Σ1) ≈U13

ζ (H2 : Σ2), and `

(H2 : Σ2) ≈
U13

ζ (H3 : Σ3)

9. By Part (3), ` (H1 : Σ1) ≈
U13

ζ (H3 : Σ3)

10. By Part (2), Σ1; Σ3; · ` E1 ≈ζ E3 ÷o C

11. By rule (59), ` S1 ≈ζ S3 ÷o C

Lemma C.15 (Regularity of Equivalence). Four parts:

1. If Σ1; Σ2; Γ ` M1 ≈ζ M2 : A then Σi; Γ ` Mi : A

2. If Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C then Σi; Γ ` Ei ÷o C

3. If ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2) then ` Hi : Σi

4. If ` S1 ≈ζ S2 ÷o C then ` Si ÷o C

Proof. by induction on the derivations.

66

Lemma C.16 (Store Equivalence Coarsening). If ` (H1 : Σ1) ≈U ′

ζ (H2 :

Σ2) and U ⊆ U ′ then ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2)

Proof. 1. By Inversion, ` Hi : Σi for i = 1, 2, Σ1 � U ′ = Σ2 � U ′, for each
` ∈ U ′, Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`)

2. Evidently, Σ1 � U = Σ2 � U

3. Evidently, for each ` ∈ U , Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`)

4. By rule (58), ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2)

Lemma C.17 (Equivalent Values). If Σ1; Σ2; · ` M1 ≈ζ M2 : A then M1 is

a value if and only if M2 is a value.

Proof. by induction on the equivalence derivation. By cases on the last rule
used.

• Case:rules (39), (40), (42), (43), (45), (47), (48). Evidently both M1 and
M2 are values.

• Case:rule (41). Vacuous, Γ = ·.

• Case:rule (44), (46). Evidently both M1 and M2 are not values.

• Case:rule (49). By IH.

With the Equivalent Values lemma in hand, we can establish the Hexagon
Lemma for terms.

C.3 Term Hexagon lemma proof

Term Hexagon Lemma For all ζ, if Σ1; Σ2; · ` M1 ≈ζ M2 : A and M1 →
M ′

1 and M2 → M ′
2 and M ′

1 ↓ and M ′
2 ↓, then there exist M ′′

1 , M ′′
2 such that

M ′
1 →∗ M ′′

1 , M ′
2 →∗ M ′′

2 , Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

Proof. by induction on the given derivation. By cases on the last rule used.

• Cases rules (39), (40), (42), (43), (45), (47), (48). Vacuous, M1, M2 are
values, no applicable evaluation rules.

• Case rule (41). Vacuous, Γ = ·

• Case rule (49). By IH.

67

• Case rule (44):

Σ1; Σ2; · ` N1 ≈ζ N2 : bool Σ1; Σ2; · ` P11 ≈ζ P21 : A Σ1; Σ2; · ` P12 ≈ζ P22 : A

Σ1; Σ2; · ` if N1 then P11 else P12 ≈ζ if N2 then P21 else P22 : A
(44)

By pattern matching, Mi = if Ni then Pi1 else Pi2 for i = 1, 2

There are three possible evaluation rules for M1 → M ′
1

– Case If1: M ′
1 = if N ′

1 then P11 else P12, N1 → N ′
1

1. By Equivalent Values, N2 is not a value

2. The only applicable evaluation rule for M2 → M ′
2 is If1: M ′

2 =
if N ′

2 then P21 else P22, N2 → N ′
2

3. By Subterm Termination, N ′
1 ↓, N ′

2 ↓

4. By IH, there exist N ′′
1 , N ′′

2 such that N ′
i →

∗ N ′′
i for i = 1, 2, and

Σ1; Σ2; · ` N ′′
1 ≈ζ N ′′

2 : bool

5. By repeated application of If1, M ′
i →

∗ M ′′
i for i = 1, 2

6. By rule (44), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

– Case IfTrue: N1 = true, M ′
1 = P11

1. By Equivalent Values, N2 is a value

2. By Equivalent Term Inversion, there are two subcases:

∗ Either there exists a B such that ` B ≤ bool, ` B ↗ a,
a 6v ζ and Σi; · ` Ni : B
By subtyping inversion, B = bool. By Informativeness In-
version, a = ⊥, for a contradiction (since ⊥ v ζ)

∗ Or N2 = true

(a) There is a single applicable evaluation rule for M2 → M ′
2,

IfTrue: M ′
2 = P21.

(b) Let M ′′
i = M ′

i for i = 1, 2.

(c) Evidently, Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

– Case IfFalse: N1 = false, M ′
2 = P12

Similar to previous case.

• Case rule (46):

Σ1; Σ2; · ` N1 ≈ζ N2 : B → A Σ1; Σ2; · ` P1 ≈ζ P2 : B

Σ1; Σ2; · ` N1P1 ≈ζ N2P2 : A
(46)

By pattern matching, Mi = NiPi for i = 1, 2

There are three possible evaluation rules for M1 → M ′
1

– Case App1: M ′
1 = N ′

1P1, N1 → N ′
1

1. By Equivalent Values, N2 is not a value

68

2. The only applicable evaluation rule for M2 → M ′
2 is App1: M ′

2 =
N ′

2P2, N2 → N ′
2

3. By Subterm Termination, N1 ↓, N2 ↓

4. By IH, there exist N ′′
1 , N ′′

2 such that N ′
i →

∗ N ′′
i for i = 1, 2, and

Σ1; Σ2; · ` N ′′
1 ≈ζ N ′′

2 : B → A

5. Let M ′′
i = N ′′

i Pi for i = 1, 2

6. By repeated application of App1, M ′
i →

∗ M ′′
i for i = 1, 2

7. By rule (46), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

– Case App2: N1 value, M ′
1 = N1P

′
1, P1 → P ′

1

1. By Equivalent Values, N2 is a value

2. By Equivalent Values, P2 is not a value

3. The only applicable evaluation rule for M2 → M ′
2 is App2: M ′

2 =
N2P

′
2, P2 → P ′

2

4. By IH, there exist P ′′
1 , P ′′

2 , such that P ′
i →∗ P ′′

i for i = 1, 2, and
Σ1; Σ2; · ` P ′′

1 ≈ζ P ′′
2 : B

5. Let M ′′
i = NiP

′′
i for i = 1, 2

6. By repeated application of App2, M ′
i → M ′′

i for i = 1, 2

7. By rule (46), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

– Case App: N1 = λx : B1.M11, P1 value, M ′
1 = M11[P1/x]

1. Evidently, N1 is a value

2. By Equivalent Values, N2 is a value, P2 is a value

3. By Equivalent Term Inversion, there are two subcases:

∗ Either ` Q ≤ B → A and ` Q ↗ a and a 6v ζ and Σi; · `
Ni : D → C for i = 1, 2

(a) By Subtyping Inversion, Q = D → C, ` B ≤ D and
` C ≤ A

(b) By Canonical Forms, N2 = λx : B2.M21

(c) There is a single applicable evaluation rule for M2 → M ′
2,

App: M ′
2 = M21[P2/x]

(d) By Inversion, Σ1; x : Bi ` Mi1 : Ai and ` Bi → Ai ≤
D → C for i = 1, 2

(e) By Subtyping Inversion, ` D ≤ Bi and ` Ai ≤ C for
i = 1, 2

(f) By transitivity, ` B ≤ Bi for i = 1, 2

(g) By Regularity, Σi; · ` Pi : B for i = 1, 2

(h) By rule (28), Σi; · ` Pi : Bi for i = 1, 2

(i) By Substitution, Σi; · ` M ′
i : Ai for i = 1, 2

(j) By rule (28), Σi; · ` Mi : C for i = 1, 2

(k) Since M ′
i ↓, there is some Vi, such that M ′

i →∗ Vi for
i = 1, 2

(l) Let M ′′
i = Vi for i = 1, 2

69

(m) By Transitivity of Preservation, Σi; · ` Vi : C

(n) By Informativeness Inversion, ` C ↗ a

(o) By rule (39), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : C

(p) By rule (49), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

∗ Or N2 = λx : C.M21, Σ1; Σ2; x : C ` M11 ≈ζ M21 : D,
` C → D ≤ B → A

(a) There is a single applicable evaluation rule for M2 → M ′
2,

App: M ′
2 = M21[P2/x]

(b) Let M ′′
i = Mi

(c) By Subtyping Inversion, ` B ≤ C, ` D ≤ A

(d) By rule (49), Σ1; Σ2; · ` P1 ≈ζ P2 : C

(e) By Functionality, Σ1; Σ2; · ` M11[P1/x] ≈ζ M21[P2/x] : D

(f) By rule (49), Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : A

C.4 High Security Step proof

Single High Security Step If ` (H, Σ, E) ÷o A, o = (r, w) and w 6v ζ, and

(H, Σ, E) → (H ′, Σ′, E′) then ` (H : Σ) ≈
dom(Σ)∩↓(ζ)
ζ (H ′ : Σ′).

Proof. by induction on (H, Σ, E) → (H ′, Σ′, E′)
By inversion on ` (H, Σ, E) ÷o A, we have

• ` H : Σ

• Σ; · ` E ÷o A

Now consider cases on the evaluation rule used:

• Case Ret1: E = [M], H ′ = H , Σ′ = Σ, E′ = [N], M → N

By Reflexivity, ` (H : Σ) ≈U
ζ (H ′ : Σ′) where U = dom(Σ) ∩ ↓(ζ)

• Case Letval1: E = let val x = M in F , H ′ = H , Σ′ = Σ, E′ = let val x =
N in F , M → N

Identical to preceding case

• Case Ref1: E = refa (M : B), H ′ = H , Σ′ = Σ, E′ = refa (N : B),
M → N

Identical to Ret1 case

• Case Bang1: E =!M , H ′′ = H , Σ′ = Σ, E′ =!N , M → N

Identical to Ret1 case

• Case Assn1: E = M := N , H ′ = H , Σ′ = Σ, E′ = M ′ := N , M → M ′

Identical to Ret1 case

70

• Case Assn2: E = M := N , M value, H ′ = H , Σ′ = Σ, E′ = M := N ′,
N → N ′

Identical to Ret1 case

• Case Letvalval: E = let val x = val E1 in F , E′ = let val x =
val E2 in F , (H, Σ, E1) → (H ′, Σ′, E2)

1. By Inversion, for some o′ = (r′, w′), Σ; · ` val E1 : ©o′B, Σ; x :
B ` F ÷o′ C, ` C ≤ A, where either o′ � o or both ` C ↗ r′ and
(⊥, w′) � o

2. Either way, w v w′, so w′ 6v ζ

3. By Inversion, Σ; · ` E1 ÷o′′ B′ and ` ©o′′B′ ≤ ©o′B

4. By rule (38), ` (H, Σ, E1) ÷o′′ B′

5. By IH, ` (H : Σ) ≈U
ζ (H ′ : Σ′) where U = dom(Σ) ∩ ↓(ζ)

• Case Letval: E = let val x = val [V] in F , H ′ = H , Σ′ = Σ, E′ = F [V/x]

Identical to the Ret1 case

• Case Bang: E =!`, H ′ = H , Σ′ = Σ, E′ = H(`)

Identical to Ret1 case

• Case Ref: E = refa (V : B), H ′ = H{` 7→ V }, Σ′ = Σ{` : B}, E′ = `,
` 6∈ dom(H), Level(`) = a

1. By Inversion, Σ; · ` V : B, ` refa B ≤ A

2. By rule (37), ` H ′ : Σ′

3. Consider `′ ∈ U , by construction, H ′(`′) = H(`′) and Σ′(`′) = Σ(`′)

4. By rule (58) ` (H : Σ) ≈U
ζ (H ′ : Σ′)

• Case Assn: E = ` := V , H ′ = H{` 7→ V }, Σ′ = Σ, E′ = [∗]

1. By Inversion, Σ; · ` ` : refwa B, Σ; · ` V : B, (⊥, a) � o, ` 1 ≤ A

2. By Inversion, ` refLevel(`) Σ(`) ≤ refwa B

3. By Subtyping Inversion, ` B ≤ Σ(`), a v Level(`)

4. Since (⊥, a) � o, w v a v Level(`)

5. Since w 6v ζ, Level(`) 6v ζ, so ` 6∈ U where U = dom(Σ) ∩ ↓(ζ)

6. By rule (37), ` H ′ : Σ′

7. By rule (58), ` (H : Σ) ≈U
ζ (H ′ : Σ′)

We showed Equivalent Term Inversion in the body of the paper. Equivalent
Expression Inversion is proved below:

71

Lemma C.18 (Equivalent Expression Inversion). If Σ1; Σ2; Γ ` E1 ≈ζ

E2 ÷o A then

1. if E1 = [M1] then E2 = [M2] and Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

Proof. by induction on the given derivation. By cases on the last rule used.
The following cases are relevant:

• Case
Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

Σ1; Σ2; Γ ` [M1] ≈ζ [M2] ÷(⊥,>) A
(53)

Immediate.

• Case rules (50), (51): by IH.

• Case
Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o B ` B ≤ A

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o A
(52)

1. By IH, if E1 = [M1] then E2 = [M2] and Σ1; Σ2; Γ ` M1 ≈ζ M2 : B

2. By rule (49), Σ1; Σ2; Γ ` M1 ≈ζ M2 : A

Next we show that any equivalent terms (or expressions) are equivalent under
larger store types. This is a technical result necessary for later proofs.

Lemma C.19 (Simultaneous Store Weakening). If Σ′
1 ⊇ Σ1 and Σ′

2 ⊇ Σ2,

and if Σ′
1, Σ

′
2 are well-formed, then

• if Σ1; Σ2; Γ ` M1 ≈ζ M2 : A then Σ′
1; Σ

′
2; Γ ` M1 ≈ζ M2 : A

• if Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷o C then Σ′
1; Σ

′
2; Γ ` E1 ≈ζ E2 ÷o C

Proof. by induction on the given derivation, by cases on the last rule used. Most
cases are immediate by IH, since they do not pose any restrictions on Σi. The
following cases of the first part are interesting:

• Case
Σ1; Γ ` V1 : A Σ2; Γ ` V2 : A ` A ↗ a a 6v ζ

Σ1; Σ2; Γ ` V1 ≈ζ V2 : A
(39)

1. By Store Weakening, Σ′
i; Γ ` Vi : A for i = 1, 2

2. By rule (39), Σ′
1; Σ

′
2; Γ ` V1 ≈ζ V2 : A

• Case
Level(`) v ζ Σ1(`) = Σ2(`)

Σ1; Σ2; Γ ` ` ≈ζ ` : refLevel(`) Σ1(`)
(47)

72

1. Since Σ′
i is well-formed, and Σ′

i ⊇ Σi, Σ′
i(`) = Σi(`) for i = 1, 2

2. Consequently, Σ′
1(`) = Σ′

2(`)

3. By rule (47), Σ′
1; Σ

′
2; Γ ` ` ≈ζ ` : refLevel(`) Σ′

1(`)

C.5 Hexagon lemma proof

Hexagon Lemma For all ζ, if o = (r, w) with r v ζ, and if

• ` S1 ≈ζ S2 ÷o C

• S1 → S′
1, S2 → S′

2

• S′
1 ↓, S′

2 ↓

then there exist S′′
1 , S′′

2 such that

• S′
1 →∗ S′′

1 , S′
2 →∗ S′′

2

• · ` S′′
1 ≈ζ S′′

2 ÷o C

Proof. By Inversion on ` S1 ≈ζ S2 ÷o C,

• S1 = (H1, Σ1, E1), S2 = (H2, Σ2, E2)

• ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2) where U = dom(Σ1) ∩ dom(Σ2) ∩ ↓(ζ)

• Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C

We prove, by induction on the derivation of Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C the
following statement:

Given

• ` (H1 : Σ1) ≈
U
ζ (H2 : Σ2) where U = dom(Σ1)∩dom(Σ2)∩↓(ζ)

• (H1, Σ1, E1) → S′
1 and (H2, Σ2, E2) → S′

2

• S′
1 ↓, S′

2 ↓

there exist S′′
1 = (H ′′

1 , Σ′′
1 , E′′

1), S′′
2 = (H ′′

2 , Σ′′
2 , E′′

2) such that

1. S′
1 →∗ S′′

1 , S′
2 →∗ S′′

2

2. ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2)
where U ′ = dom(Σ′′

1) ∩ dom(Σ′′
2) ∩ ↓(ζ)

3. Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

Note that the conclusion of the induction hypothesis suffices to show the con-
clusion of the lemma, by rule (59).

Case analyze the last rule used in the derivation.

73

• Case
Σ1; Σ2; · ` E2 ≈ζ E2 ÷o B ` B ≤ C

Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C
(52)

1. By IH, there exists S ′′
1 = (H ′′

1 , Σ′′
1 , E′′

1), S′′
2 = (H ′′

2 , Σ′′
2 , E′′

2) such that

– S′
1 →∗ S′′

1 and S′
2 → S′′

2

– ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2) where U ′ = dom(Σ′′
1) ∩ dom(Σ′′

2) ∩
↓(ζ)

– Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o B

2. By rule (52), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

• Case
Σ1; Σ2; · ` E1 ≈ζ E2 ÷o′ C o′ � o

Σ1; Σ2; · ` E1 ≈ζ E2 ÷o C
(50)

1. From o′ � o, r′ v r v ζ

2. By IH, there exist S ′′
1 = (H ′′

1 , Σ′′
1 , E′′

1), S′′
2 = (H ′′

2 , Σ′′
2 , E′′

2) such that

– S′
i →

∗ S′′
i for i = 1, 2

– ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2)
where U ′ = dom(E′′

1) ∩ dom(E′′
2) ∩ ↓(ζ)

– Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o′ C

3. By rule (50), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

• Case
Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(r′,w) C ` C ↗ r′

Σ1; Σ2; Γ ` E1 ≈ζ E2 ÷(⊥,w) C
(51)

By pattern matching, r = ⊥

Consider two subcases: either r′ v ζ or r′ 6v ζ

– If r′ v ζ

1. By IH, there exist S ′′
1 = (H ′′

1 , Σ′′
1 , E′′

1), S′′
2 = (H ′′

2 , Σ′′
2 , E′′

2) such
that

∗ S′
i →

∗ S′′
i for i = 1, 2

∗ ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2)
where U ′ = dom(Σ′′

1) ∩ dom(Σ′′
2) ∩ ↓(ζ)

∗ Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷(r′,w) C

2. By rule (51), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

– If r′ 6v ζ

1. Since r′ v w, then w 6v ζ

2. By Regularity of Equivalence, ` Hi : Σi, Σi; · ` Ei ÷(r′,w) C for
i = 1, 2

74

3. Since S′
i ↓, (Hi, Σi, Ei) →

+ (H ′′
i , Σ′′

i , [Vi]) for some S′′
i = (H ′′

i , Σ′′
i , [Vi])

for i = 1, 2

4. By HSS

∗ ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

∗ U = dom(H ′′
1) ∩ dom(H ′′

2) ∩ ↓(ζ)

5. By repeatedly applying Preservation, Σ′′
i ; · ` [Vi] ÷(r′,w) C for

i = 1, 2

6. By Inversion, Σ′′
i ; · ` Vi : C for i = 1, 2

7.

Σ′′
1 ; · ` V1 : C

Σ′′
2 ; · ` V2 : C

` C ↗ r′

r′ 6v ζ

Σ′′
1 ; Σ′′

2 ; · ` V1 ≈ζ V2 : C
(39)

Σ′′
1 ; Σ′′

2 ; · ` [V1] ≈ζ [V2] ÷(⊥,>) C
(53)

(⊥,>) � o

Σ′′
1 ; Σ′′

2 ; · ` [V1] ≈ζ [V2] ÷o C
(50)

• Case
Σ1; Σ2; · ` M1 ≈ζ M2 : C

Σ1; Σ2; · ` [M1] ≈ζ [M2] ÷(⊥,>) C
(53)

1. By pattern matching, Ei = [Mi], o = (r, w) = (⊥,>)

2. The only applicable evaluation rules are: for i = 1, 2

Mi → M ′
i

(Hi, Σi, [Mi]) → (Hi, Σi, [M
′
i])

Ret1

3. By Term Hexagon Lemma, there exist M ′′
1 , M ′′

2 such that M ′
1 →∗ M ′′

1

M ′
2 →∗ M ′′

2 Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : C

4. Let H ′′
i = Hi, E′′

i = [M ′′
i], Σ′′

i = Σi, U ′ = U

5. By repeated application of Ret1, (Hi, Σi, [M
′
i]) →

∗ (H ′′
i , Σ′′

i , E′′
i)

6. Evidently, ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2)

7. By (53), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

• Case

Σ1; Σ2; · ` M1 ≈ζ M2 : ©oA Σ1; Σ2; x : A ` F1 ≈ζ F2 ÷o C

Σ1; Σ2; · ` let val x = M1 in F1 ≈ζ let val x = M2 in F2 ÷o C
(54)

By pattern matching, Ei = let val x = Mi in Fi

Consider the evaluation rule for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1):

– Subcase Letval1: M1 → M ′
1, E′

1 = let val x = M ′
1 in F1, H ′

1 = H1,
Σ′

1 = Σ1

1. By Equivalent Values, M2 is not a value

75

2. The only applicable evaluation rule for (H2, Σ2, E2) is Letval1:
M2 → M ′

2, E′
2 = let val x = M ′

2 in F2, H ′
2 = H2, Σ′

2 = Σ2

3. By Term Hexagon Lemma, there exist M ′′
1 , M ′′

2 such that

∗ M ′
1 →∗ M ′′

1 , M ′
2 → M ′′

2

∗ Σ1; Σ2; · ` M ′′
1 ≈ζ M ′′

2 : ©oA

4. Let H ′′
i = Hi, Σ′′

i = Σi, E′′
i = let val x = M ′′

i in Fi, U ′ = U

5. By repeated application of Letval1, (H ′
i , Σ

′
i, E

′
i) →

∗ (H ′′
i , Σ′′

i , E′′
i)

6. Evidently, ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2)

7. By rule (54), Σ′′
1 ; Σ2; · ` E′′

1 ≈ζ E′′
2 ÷o C

– Subcase Letval: M1 = val [V1], E′
1 = F1[V1/x], H ′

1 = H1, Σ′
1 = Σ1

By Equivalent Values, M2 is a value.

Two applicable evaluation rules for (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2)

∗ Subcase Letvalval: Symmetric to a case below, omitted here.

∗ Subcase Letval: M2 = val [V2], E′
2 = F2[V2/x], H ′

2 = H2,
Σ′

2 = Σ2

By Equivalent Term Inversion, two subcases

? Σi; · ` val [Vi] : B and ` B ≤ ©oA and ` B ↗ a and a 6v ζ

1. By Subtyping Inversion, B = ©o′A′ and ` A′ ≤ A, o′ � o
where o′ = (r′, w′)

2. By Informativeness Inversion, a v w′ u b and ` A′ ↗ b

3. Since a 6v ζ, w′ 6v ζ, b 6v ζ

4. By Inversion, Σi; · ` [Vi] ÷oi
Bi, ` ©oi

Bi ≤ ©o′A′

5. By Inversion, Σi; · ` Vi : Bi

6. By Subtyping Inversion, ` Bi ≤ A′ and oi � o′

7.

Σ′′
i ; · ` Vi : Bi ` Bi ≤ A′

Σi; · ` Vi : A′
(28)

for i = 1, 2
` A′ ↗ b
b 6v ζ

Σ1; Σ2; · ` V1 ≈ζ V2 : A′
(39)

8. By rule (49), Σ1; Σ2; · ` V1 ≈ζ V2 : A

9. By Functionality, Σ1; Σ2; · ` F1[V1/x] ≈ζ F2[V2/x] ÷o C

10. Let H ′′
i = H ′

i = Hi, Σ′′
i = Σ′

i = Σi, E′′
i = E′

i, U ′ = U for
i = 1, 2.

? Σ1; Σ2; · ` [V1] ≈ζ [V2] ÷o′ B, ` ©o′B ≤ ©oA

1. By Equivalent Expression Inversion, Σ1; Σ2; · ` V1 ≈ζ V2 :
B

2. By Subtyping Inversion, ` B ≤ A and o′ � o

3. By (49), Σ1; Σ2; · ` V1 ≈ζ V2 : A

4. By Functionality, Σ1; Σ2; · ` F1[V1/x] ≈ζ F2[V2/x] ÷o C

5. Let H ′′
i = H ′

i = Hi, Σ′′
i = Σ′

i = Σi, U ′ = U , E′′
i = E′

i

76

– Subcase Letvalval: M1 = val E11, E′
1 = let val x = val E ′

11 in F1,
(H1, Σ1, E11) → (H ′

1, Σ
′
1, E

′
11)

By Equivalent Values, M2 is a value

There are two applicable evaluation rules for (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2)

∗ Subcase Letvalval: M2 = val E21, E′
2 = let val x = val E ′

21 in F2,
(H2, Σ2, E21) → (H ′

2, Σ
′
2, E

′
21)

By Equivalent Term Inversion on Σ1; Σ2; · ` M1 ≈ζ M2 : ©oA,
there are two possibilities:

? Σ1; Σ2; · ` E11 ≈ζ E21 ÷o′ B, ` ©o′B ≤ ©oA

1. By IH, there exist H ′′
1 , H ′′

2 , Σ′′
1 , Σ′′

2 , E′′
11, E

′′
21 such that

(H ′
i , Σ

′
i, E

′
i1) →

∗ (H ′′
i , Σ′′

i , E′′
i1) for i = 1, 2

` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2) where U ′ = dom(Σ′′
1)∩dom(Σ′′

2)∩↓(ζ)

Σ′′
1 ; Σ′′

2 ; · ` E′′
11 ≈ζ E′′

21 ÷o′ B

2. Let E′′
i = let val x = val E ′′

i1 in Fi, S′′
i = (H ′′

i , Σ′′
i , E′′

i) for
i = 1, 2

3. By repeated application of Letvalval, S ′
i →

∗ S′′
i

4. By Store Size, Σ′′
i ⊇ Σi, for i = 1, 2

5. By Simultaneous Store Weakening, Σ′′
1 ; Σ′′

2 ; x : A ` F1 ≈ζ

F2 ÷o C

6.

Σ′′
1 ; Σ′′

2 ; · ` E′′
11 ≈ζ E′′

21 ÷o′ B

Σ′′
1 ; Σ′′

2 ; · ` val E′′
11 ≈ζ val E′′

21 : ©o′B
(48)

` ©o′B ≤ ©oA

Σ′′
1 ; Σ′′

2 ; · ` val E′′
11 ≈ζ val E′′

21 : ©oA
(49)

7. By rule (54), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

? Σ; Γ ` Mi : B, and ` B ≤ ©oA (where Mi = val Ei1, for
i = 1, 2) and ` B ↗ a with a 6v ζ

1. By Subtyping Inversion, B = ©o′A′ and ` A′ ≤ A and
o′ � o where o′ = (r′, w′)

2. By Informativeness Inversion, a v w′ u b and ` A′ ↗ b

3. Evidently, w′ 6v ζ, b 6v ζ

4. By Subterm Termination, (Hi, Σ1, Ei1) →
+ (H ′′

i , Σ′′
i , [Vi])

5. By HSS,
` (H ′′

1 : Σ′′
1) ≈U

ζ (H ′′
2 : Σ′′

2)

U = dom(H ′′
1) ∩ dom(H ′′

2) ∩ ↓(ζ)

6. By repeated application of Letvalval,
S′

i →
∗ (H ′′

i , Σ′′
i , let val x = val [Vi] in Fi) for i = 1, 2

7. And by an application of Letval, (H ′′
i , Σ′′

i , let val x =
val [Vi] in Fi) → (H ′′

i , Σ′′
i , Fi[Vi/x]) for i = 1, 2

77

8. Let E′′
i = Fi[Vi/x] for i = 1, 2

9. By repeatedly applying Preservation, Σ′′
i ; · ` [Vi] ÷o A′

10. By Inversion, Σ′′
i ; · ` Vi : A′

11. By rule (39), Σ′′
1 ; Σ′′

2 ; · ` V1 ≈ζ V2 : A′

12. By rule (49), Σ′′
1 ; Σ′′

2 ; · ` V1 ≈ζ V2 : A

13. By Store Size, Σ′′
i ⊇ Σi for i = 1, 2

14. By Simultaneous Store Weakening, Σ′′
1 ; Σ′′

2 ; x : A ` F1 ≈ζ

F2 ÷o C

15. By Functionality, Σ′′
1 ; Σ′′

2 ;` E′′
1 ≈ζ E′′

2 ÷o C

∗ Subcase Letval: M2 = val [V2], E′
2 = F2[V2/x], H ′

2 = H2,
Σ′

2 = Σ2

By Equivalent Term Inversion, there are two possibilities

? Σ1; Σ2; · ` E11 ≈ζ [V2] ÷o′ B and ` ©o′B ≤ ©oA

1. By Symmetry and Equivalent Expression Inversion, it fol-
lows that E11 = [M11] and Σ2; Σ1; · ` V2 ≈ζ M11 : B

2. Recall that (H1, Σ1, let val x = val E11 in F1) → (H ′
1, Σ

′
1, let val x =

val E′
11 in F1), by Letvalval, that is (H1, Σ1, E11) →

(H ′
1, Σ

′
1, E

′
11)

3. M11 → M ′
11, since the only applicable evaluation rule for

(H1, Σ1, [M11]) is Ret1

4. By Equivalent Values, M11 is a value

5. But this is a contradiction, since values do not evaluate

? Σ1; · ` val E11 : B, Σ2; · ` val [V2] : B, and ` B ≤ ©oA,
` B ↗ a and a 6v ζ

1. By Subtyping Inversion, B = ©o′A′ and ` A′ ≤ A, o′ � o
where o′ = (r′, w′)

2. By Inversion, Σ1; · ` E11 ÷o′ A′ and Σ2; · ` [V2] ÷o′ A′

3. By Informativeness Inversion, a v w′ u b and ` A′ ↗ b

4. Evidently w′ 6v ζ and b 6v ζ

5. By Subterm Termination, since S ′
1 ↓, (H1, Σ1, E11) →+

(H ′′
1 , Σ′′

1 , [V1])

6. Let H ′′
2 = H ′

2 = H2, Σ′′
2 = H ′

2 = Σ2

7. Trivially, (H2, Σ2, [V2]) →
0 (H ′′

2 , Σ′′
2 , [V2])

8. By HSS,
` (H ′′

1 : Σ′′
1) ≈U

ζ (H ′′
2 : Σ′′

2)

U = dom(Σ′′
1) ∩ dom(Σ′′

2) ∩ ↓(ζ)

9. By repeated application of Letvalval,
S′

1 →∗ (H ′′
1 , Σ′′

1 , let val x = val [V1] in F1)

10. By an application of Letval,
(H ′′

i , Σ′′
i , let val x = val [Vi] in Fi) → (H ′′

i , Σ′′
i , Fi[Vi/x]) for

i = 1, 2

78

11. Let E′′
i = Fi[Vi/x] for i = 1, 2

12. By repeatedly applying Preservation, Σ′′
i ; · ` [Vi]÷o′ A′ for

i = 1, 2

13. By Inversion, Σ′′
i ; · ` Vi : A′

14. By rule (39), Σ′′
1 ; Σ′′

2 ; · ` V1 ≈ζ V2 : A′

15. By rule (49), Σ′′
1 ; Σ′′

2 ; · ` V1 ≈ζ V2 : A

16. By Store Size, Σ′′
i ⊇ Σi, for i = 1, 2

17. By Simultaneous Store Weakening, Σ′′
1 ; Σ′′

2 ; x : A ` F1 ≈ζ

F2 ÷o C

18. By Functionality, Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

• Case

Σ1; Σ2; · ` M1 ≈ζ M2 : A

Σ1; Σ2; · ` refa (M1 : A) ≈ζ refa (M2 : A) ÷(⊥,>) refa A
(55)

By pattern matching, Ei = refa (Mi : A), o = (⊥,>), C = refa A

There are two possible evaluation rules for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1)

– Subcase Ref1: H ′
1 = H1, Σ′

1 = Σ1, E′
1 = refa (M ′

1 : A) M1 → M ′
1

1. By Equivalent Values, M2 is not a value.

2. There is a single applicable rule, Ref1, for (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2):

H ′
2 = H2, Σ′

2 = Σ2, E′
2 = refa (M ′

2 : A), M2 → M ′
2.

3. By Term Hexagon Lemma, there exist M ′′
1 , M ′′

2 such that M ′
i →

M ′′
i and Σ1; Σ2; · ` M ′′

1 ≈ζ M ′′
2 : A

4. Let H ′′
i = H ′

i = Hi, Σ′′
i = Σ′

i = Σi, U ′ = U , E′′
i = refa (M ′′

i : A)
for i = 1, 2,

5. Evidently ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2)

6. By repeated application of Ref1, (H ′
i , Σ

′
i, E

′
i) →

∗ (H ′′
i , Σ′′

i , E′′
i)

for i = 1, 2

7. By rule (55), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

– Subcase Ref: M1 value, H ′
1 = H1{`1 7→ M1}, Σ′

1 = Σ1{`1 : A},
E′

1 = [`1], where `1 6∈ dom(H1), Level(`1) = a

1. By Equivalent Values, M2 is a value

2. Only Ref rule is applicable to (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2):

H ′
2 = H2{`2 7→ M2}, Σ′

2 = Σ2{`2 : A}, E′
2 = [`2], where

`2 6∈ dom(H2), Level(`2) = a

3. Consider two subcases now, either a v ζ or a 6v ζ:

∗ Subcase a v ζ

(a) WLOG, we may α-vary S ′
1, S

′
2 such that `1 = `2 = `

(b) Then Level(`) = a, ` 6∈ dom(H1) ∪ dom(H2)

(c) Let H ′′
i = H ′

i , Σ′′
i = Σ′

i, E′′
i = E′

i = [`]

79

(d)
Level(`) = a v ζ Σ′′

1 (`) = Σ′′
2 (`) = A

Σ′′
1 ; Σ′′

2 ; · ` ` ≈ζ ` : refa A
(47)

Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C
(55)

(e)

U ′ = dom(Σ′′
1) ∩ dom(Σ′′

2) ∩ ↓(ζ)

= (dom(Σ′
1) ∪ {`}) ∩ (dom(Σ′

2) ∪ {`}) ∩ ↓(ζ)

= ((dom(Σ′
1) ∩ dom(Σ′

2)) ∪ {`}) ∩ ↓(ζ)

= U ∪ {`}

(f) Evidently, Σ′′
1 � U ′ = Σ′′

2 � U ′

(g) By Simultaneous Store Weakening, Σ′′
1 ; Σ′′

2 ; · ` M1 ≈ζ M2 :
A

(h) By Simultaneous Store Weakening, Σ′′
1 ; Σ′′

2 ; · ` H ′′
1 (`′) ≈ζ

H ′′
2 (`′) : Σ1(`

′) for `′ ∈ U

(i) By Regularity of Equivalence, Store Weakening, and rule
(37), ` H ′′

i : Σ′′
i for i = 1, 2

(j) By rule (58), ` (H ′′
1 : Σ′′

1) ≈U ′′

ζ (H ′′
2 : Σ′′

2)

∗ Subcase a 6v ζ

(a) Let H ′′
i = H ′

i , Σ′′
i = Σ′

i, E′′
i = E′

i = [`i] for i = 1, 2

(b) By Regularity of Equivalence, ` Hi : Σi for i = 1, 2

(c) By Store Weakening, Σ′′
i ; · ` `i : A for i = 1, 2

(d) By rule (37), ` H ′′
i : Σ′′

i for i = 1, 2

(e) Evidently dom(Σ′′
1) ∩ dom(Σ′′

2) ∩ ↓(ζ) = U , since `i 6∈ ↓(ζ)
for i = 1, 2

(f) So Σ′′
i � U = Σi � U for i = 1, 2

(g) By Store Weakening, for all ` ∈ U , Σ′′
1 ; Σ′′

2 ; · ` H ′′
1 (`) ≈ζ

H ′′
2 (`) : Σ′′

1(`)

(h)

` H ′′
1 : Σ′′

1

` H ′′
2 : Σ′′

2

Σ′′
1 � U = Σ′′

2 � U
Σ′′

1 ; Σ′′
2 ; · ` H ′′

1 (`) ≈ζ H ′′
2 (`) : Σ′′

1(`) for all ` ∈ U

` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

(58)

(i)

Σ′′
1 ; · ` `1 : refa A

Σ′′
2 ; · ` `2 : refa A

` refa A ↗ a
(5)

a 6v ζ

Σ′′
1 ; Σ′′

2 ; · ` `1 ≈ζ `2 : refa A
(39)

Σ′′
1 ; Σ′′

2 ; · ` [`1] ≈ζ [`2] ÷o refa A
(53)

80

• Case
Σ1; Σ2; · ` M1 ≈ζ M2 : refra C

Σ1; Σ2; · `!M1 ≈ζ !M2 ÷(a,>) C
(56)

By pattern matching, Ei =!Mi, o = (r, w) = (a,>). Recall that a = r v ζ

There are two applicable rules for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1)

– Subcase Bang1: H ′
1 = H1, Σ′

1 = Σ1, E′
1 =!M ′

1, where M1 → M ′
1

1. By Equivalent Values, M2 is not a value

2. There is only a single applicable rule for S2 → S′
2, Bang1: H ′

2 =
H2, Σ′

2 = Σ2, E′
2 =!M ′

2, M2 → M ′
2

3. By the Term Hexagon Lemma, there exist M ′′
1 , M ′′

2 such that
M ′

1 →∗ M ′′
1 and M ′

2 →∗ M ′′
2 with Σ1; Σ2; · ` M ′′

1 ≈ζ M ′′
2 : refra C

4. Let S′′
i = (H ′′

i , Σ′′
i , E′′

i), H ′′
i = H ′

i , Σ′′
i = Σ′

i, E′′
i =!M ′′

i for
i = 1, 2

5. By repeated application of Bang1, S ′
i →

∗ S′′
i for i = 1, 2

6. Evidently, ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

7. By rule (56), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

– Subcase Bang: M1 = `1, H ′
1 = H1, Σ′

1 = Σ1, E′
1 = [H1(`1)]

1. By Equivalent Values, M2 is a value

2. The single applicable evaluation rule for (H2, Σ2, E2) → (H ′
2, Σ

′
2, E

′
2)

is Bang: M2 = `2, H ′
2 = H2, Σ′

2 = Σ2, E′
2 = [H2(`2)]

3. Let H ′′
i = H ′

i = Hi, Σ′′
i = Σ′

i = Σi, U ′′ = U , E′′
i = E′

i for i = 1, 2

4. Evidently, ` (H ′′
1 : Σ′′

1) ≈U ′′

ζ (H ′′
2 : Σ′′

2)

5. By Equivalent Term Inversion, there are two possibilities:

∗ Either Σi; · ` `i : B and ` B ≤ refra C and ` B ↗ b and
b 6v ζ

(a) By Subtyping Inversion, either B = refrb′ B′ or B = refb′ B′

and in either case ` B′ ≤ C, b′ v a

(b) In either case, by Informativeness Inversion, ` B′ ↗ c and
b′ v a t c

(c) Since a v ζ, but b′ 6v ζ, then c 6v ζ

(d) By Inversion, ` refLevel(`i) Σi(`i) ≤ B

(e) By Subtyping Inversion, Level(`i) v b′ and ` Σi(`i) ≤ B′

(f) By Regularity of Equivalence , and store typing Σ′′
i ; · `

Hi(`i) : Σ′′
i (`i)

(g) By rule (28), Σ′′
i ; · ` Hi(`i) : B′

(h) By rule (39), Σ′′
1 ; Σ′′

2 ; · ` H1(`1) ≈ζ H2(`2) : B′

(i) By rule (49), σ′′
1 ; Σ′′

2 ; · ` H1(`1) ≈ζ H2(`2) : C

∗ Or `1 = `2 = ` where Level(`) = b v ζ,
and ` refb Σ1(`) ≤ refra C and Σ1(`) = Σ2(`)

81

(a) ` ∈ U

(b) By Subtyping Inversion, b v a and ` Σ1(`) ≤ C

(c) From equivalent store typing,
Σ1; Σ2; · ` H1(`) ≈ζ H2(`) : Σ1(`)

(d)

Σ′′
1 ; Σ′′

2 ; · ` H1(`) ≈ζ H2(`) : Σ1(`) ` Σ1(`) ≤ C

Σ′′
1 ; Σ′′

2 ; · ` H1(`) ≈ζ H2(`) : C
(49)

6.

Σ′′
1 ; Σ′′

2 ; · ` H1(`1) ≈ζ H2(`2) : C

Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷(⊥,>) C
(53)

(⊥,>) � o

Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C
(50)

• Case

Σ1; Σ2; · ` M1 ≈ζ M2 : refwa A Σ1; Σ2; · ` N1 ≈ζ N2 : A

Σ1; Σ2; · ` M1 := N1 ≈ζ M2 := N2 ÷(⊥,a) 1
(57)

By pattern matching, Ei = Mi := Ni, o = (r, w) = (⊥, a), C = 1

There are three applicable rules for (H1, Σ1, E1) → (H ′
1, Σ

′
1, E

′
1)

– Subcase Assn1: H ′
1 = H1, Σ′

1 = Σ1, E′
1 = M ′

1 := N1, M1 → M ′
1

1. By Equivalent Values, M2 is not a value

2. There is a single applicable evaluation rule for (H2, Σ2, E2) →
(H ′

2, Σ
′
2, E

′
2), Assn1: H ′

2 = H2, Σ′
2 = Σ2, E′

2 = M ′
2 := N2,

M2 → M ′
2

3. By the Term Hexagon Lemma, there exist M ′′
1 , M ′′

2 such that
M ′

1 →∗ M ′′
1 and M ′

2 →∗ M ′′
2 and Σ1; Σ2; · ` M ′′

1 ≈ζ M ′′
2 : refwa A

4. Let S′′
i = (H ′′

i , Σ′′
i , E′′

i), H ′′
i = H ′

i , Σ′′
i = Σ′

i, E′′
i = M ′′

i := Ni for
i = 1, 2

5. By repeated application of Assn1, S ′
i →

∗ S′′
i for i = 1, 2

6. Evidently, ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

7. By rule (57), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

– Subcase Assn2: M1 value, H ′
1 = H1, Σ′

1 = Σ1, E′
1 = M1 := N ′

1

N1 → N ′
1

1. By Equivalent Values, M2 is a value

2. By Equivalent Values, N2 is not a value

3. There is a single applicable evaluation rule for (H2, Σ2, E2) →
(H ′

2, Σ
′
2, E

′
2), Assn2: H ′

2 = H2, Σ′
2 = Σ2, E′

2 = M2 := N ′
2,

N2 → N ′
2

4. By the Term Hexagon Lemma, there exist N ′′
1 , N ′′

2 such that
N ′

1 →∗ N ′′
1 and N ′

2 →∗ N ′′
2 , and Σ1; Σ2; · ` N ′′

1 ≈ζ N ′′
2 : A

82

5. Let S′′
i = (H ′′

i , Σ′′
i , E′′

i), H ′′
i = H ′

i , Σ′′
i = Σ′

i, E′′
i = Mi := N ′′

i for
i = 1, 2

6. By repeated application of Assn1, S ′
i →

∗ S′′
i for i = 1, 2

7. Evidently, ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

8. By rule (57), Σ′′
1 ; Σ′′

2 ; · ` E′′
1 ≈ζ E′′

2 ÷o C

– Subcase Assn: M1 = `1, N1 value, H ′
1 = H1{`1 7→ N1}, Σ′

1 = Σ1,
E′

1 = [∗]

1. By Equivalent Values, M2 is a value

2. By Equivalent Values, N2 is a value

3. There is a single applicable evaluation rule for (H2, Σ2, E2) →
(H ′

2, Σ
′
2, E

′
2), Assn: M2 = `2, H ′

2 = H2{`2 7→ N2}, Σ′
2 = Σ2,

E′
2 = [∗]

4. Let H ′′
i = H ′

i , Σ′′
i = Σ′

i = Σi, E′′
i = E′

i = [∗]

5.

Σ′′
1 ; Σ′′

2 ; · ` ∗ ≈ζ ∗ : 1
(40)

Σ′′
1 ; Σ′′

2 ; · ` [∗] ≈ζ [∗] ÷(⊥,>) 1
(53)

(⊥,>) � o

Σ′′
1 ; Σ′′

2 ; · ` [∗] ≈ζ [∗] ÷o 1
(50)

6. By Equivalent Term Inversion, there are two possibilities:

∗ Either Σi; · ` `i : B and ` B ≤ refwa A, ` B ↗ b and b 6v ζ
By Regularity of Equivalence, Σi; · ` `i : B
By Inversion, ` refLevel(`i) Σi(`i) ≤ B for i = 1, 2
By Subtyping Inversion, either B = refwb′ B′ or B = refb′ B′

and in either case ` A ≤ B′ and a v b′

? If B = refwb′ B′

(a) By Subtyping Inversion, ` B′ ≤ Σi(`i) and b′ v Level(`i)
for i = 1, 2

(b) By Informativeness Inversion, if B = refwb′ B′ then b v
b′

(c) By Regularity of Equivalence, Σi; · ` Ni : A for i = 1, 2

(d) By rule (28), Σi; · ` Ni : Σi(`i) for i = 1, 2

(e) By Store Update, ` Hi`i 7→ Ni : Σi for i = 1, 2

(f) Since b v Level(`i) and b 6v ζ, then Level(`i) 6v ζ so
`i 6∈ U

(g) Therefore, for all ` ∈ U ,
Σ′′

1 ; Σ′′
2 ; · ` H ′′

1 (`) ≈ζ H ′′
2 (`) : Σ′′

1(`)

(h) So by rule (58), ` (H ′′
1 : Σ′′

i) ≈U
ζ (H ′′

2 : Σ′′
2)

? If B = refb′ B′

(a) By Subtyping Inversion, B′ = Σi(`i) and b′ = Level(`i)
for i = 1, 2

(b) By Informativeness Inversion, b v b′ t c and ` B′ ↗ c

83

(c) Since b 6v ζ, either b′ 6v ζ or c 6v ζ

(d) If b′ 6v ζ, we can use the same argument as the previous
subcase: B = refwb′ B′. So suppose instead c 6v ζ

(e) Note that we can further suppose that b′ v ζ (if not,
same argument as previous subcase)

(f) Consider `1 (the argument for `2 is symmetric)

(g) Evidently Level(`1) = b′ v ζ, so suppose `1 ∈ U (if not,
same argument as previous subcase)

(h) If `1 = `2 then note that we’re in the next subcase (`1 =
`2 = `, ...) below; so suppose `1 differs from `2

(i) So `1 ∈ dom(Σ2) = dom(H2)

(j) By heap typing inversion, Σ2; · ` H2(`1) : Σ2(`1)

(k) Since `1 ∈ U , Σ2(`1) = Σ1(`1) = B′

(l) By rule (39), Σ1; Σ2; · ` N1 ≈ζ H2(`1) : Σ1(`1)

(m) Therefore for all ` ∈ U , Σ′′
1 ; Σ′′

2 ; · ` H ′′
1 (`) ≈ζ H ′′

2 (`) :
Σ′′

1 (`)

(n) So by rule (58), ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

∗ Or `1 = `2 = ` and Level(`) v ζ and Σ1(`) = Σ2(`), and
` refLevel(`) Σ1(`) ≤ refwa A

(a) By Subtyping Inversion, ` A ≤ Σ1(`), and a v Level(`)

(b) Evidently ` ∈ U

(c) By rule (49), Σ′′
1 ; Σ′′

2 ; · ` N1 ≈ζ N2 : Σ1(`)

(d) By Regularity, Σ′′
i ; · ` Ni : Σi(`) for i = 1, 2

(e) By Store Update, ` Hi`i 7→ Ni : Σ′′
i for i = 1, 2

(f) By rule (58), ` (H ′′
1 : Σ′′

1) ≈U
ζ (H ′′

2 : Σ′′
2)

Given ` (H ′′
1 : Σ′′

1) ≈U ′

ζ (H ′′
2 : Σ′′

2) where U ′ = dom(Σ′′
1) ∩ dom(Σ′′

2) ∩ ↓(ζ)
and Σ′′

1 ; Σ′′
2 ; · ` E′′

1 ≈ζ E′′
2 ÷o C, by rule (59), ` S′′

1 ≈ζ S′′
2 ÷o C which proves

the lemma.

D The SLam Calculus

D.1 Operational semantics

e → e′

e1 → e′1
if e1 then e2 else e3 → if e′1 then e2 else e3

if truea then e2 else e3 → e2

if falsea then e2 else e3 → e3

84

e1 → e′1
e1 e2 → e′1 e2

e2 → e′2
v e2 → v e′2

(λx : s.e)a v → e[v/x]

D.2 Typing rules

s ≤ s′

s1 ≤ s2 s2 ≤ s3

s1 ≤ s3

a v a′

(1, a) ≤ (1, a′)

a v a′

(bool, a) ≤ (bool, a′)

s′1 ≤ s1 s2 ≤ s′2 a v a′

(s1 → s2, a) ≤ (s′1 → s′2, a
′)

Γ ` e : s
We use the notation (t, a) t a

′ for (t, a t a
′), in the typing rules, below.

Γ ` x : Γ(x)

Γ ` ∗a : (1, a)

Γ ` truea : (bool, a) Γ ` falsea : (bool, a)

Γ ` e1 : (bool, a) Γ ` e2 : s Γ ` e3 : s

Γ ` if e1 then e2 else e3 : s t a

Γ, x : s1 ` e : s2

Γ ` (λx : s1.e)a ` (s1 → s2, a)

Γ ` e1 : (s1 → s, a) Γ ` e2 : s1

Γ ` e1 e2 : s t a

Γ ` e : s
Γ ` protectae : s t a

Γ ` e : s s ≤ s′

Γ ` e : s′

85

D.3 Type-correct translation proof

Type Correct Translation If Γ ` e : s ⇒ E then {}; Γ ` E ÷(⊥,>) s

Proof. by induction on the given derivation. By cases on the last rule used.

• Case
Γ ` e : s ⇒ E

Γ ` protectae : s t a ⇒ E

1. By pattern matching, s = (t, a′), so s t a = (t, a′ t a)

2. By IH, {}; Γ ` E ÷(⊥,>) refra′ t

3. By rule (17), ` refra t ≤ refra′ta t

4. By rule (36), {}; Γ ` E ÷(⊥,>) s t a

• Case
Γ ` e1 : (s → s′, a) ⇒ E1 Γ ` e2 : s ⇒ E2

Γ ` e1e2 : s′ t a ⇒

let val y1 = val E1 in

let val y2 = val !y1 in

let val y3 = val E2 in

let val y4 = y2y3 in [y4]

1. By pattern matching, E = . . .

2. By IH, {}; Γ ` E1 ÷(⊥,>) refra
(

s → ©(⊥,>)s′
)

3. By IH, {}; Γ ` E2 ÷(⊥,>) s

4. By rule (27), {}; Γ ` val E1 : ©(⊥,>)refra
(

s → ©(⊥,>)s′
)

5. Let Γ1 = Γ, y1 : refra
(

s → ©(⊥,>)s′
)

6.

{}; Γ1 ` y1 : refra s → ©(⊥,>)s′
(20)

{}; Γ1 `!y1÷(a,>)s→©(⊥,>)s
′

(32)

{}; Γ1 ` val !y1 : ©(a,>)s → ©(⊥,>)s′
(27)

7. Let Γ2 = Γ1, y2 : s → ©(⊥,>)s′

8. By Context Weakening, {}; Γ2 ` E2 ÷(⊥,>) s

9.
{}; Γ2 ` E2 ÷(⊥,>) s

{}; Γ2 ` E2 ÷(a,>) s
(34)

{}; Γ2 ` val E2 : ©(a,>)s
(27)

10. Let Γ3 = Γ2, y3 : s

11. By rule (26), {}; Γ3 ` y2y3 : ©(⊥,>)s′

12. By rule (28), {}; Γ3 ` y2y3 : ©(a,>)s′

13. Let Γ4 = Γ3, y4 : s′

86

14. By repeated rule (30), {}; Γ ` E ÷(a,>) s′

15. By pattern matching, s′ = (t′, a′) and s′ = refra′ t′

16. By rule (17), ` refra′ t′ ≤ refra′ta t′

17. Note that s′ t a = (t′, a′ t a) = refra′ta t′

18.

` refra′ta t′ ↗ a′ t a
(8)

a v a′ t a

` refra′ta t′ ↗ a
(10)

19. By rule (36), {}; Γ ` E ÷(a,>) s′ t a

20. By rule (35), {}; Γ ` E ÷(⊥,>) s′ t a

• Other cases similarly.

E λ
REF
SEC well-typed translation proof

Well-typed Translation

1. If Σ; Γ ` bv : t ⇒ M then Σ; Γ ` M : t

2. If Σ; Γ[pc] ` e : s ⇒ E then Σ; Γ ` E ÷(⊥,pc) s

Proof. both parts simultaneously, by induction on the given derivations. By
cases on the last rule used.

Part (1)

• The cases for unit and boolean values, and store locations are immediate.

• Case
Σ; Γ, x : s1[pc] ` e : s2 ⇒ E

Σ; Γ ` λ[pc]x : s1.e : s1
pc
−→ s2 ⇒ λx : s1.val E

1. By IH,
Σ; Γ, x : s1 ` E ÷(⊥,pc) s2

2.
Σ; Γ, x : s1 ` E ÷(⊥,pc) s2

Σ; Γ, x : s1 ` val E : ©(⊥,pc)s2

Σ; Γ ` λx : s1.val E : s1
pc
−→ s2

• The case for subsumption follows by well-typed type translation

Part (2)

87

• Case

Σ; Γ[pc] ` e1 : (bool, a) ⇒ E1 Σ; Γ[pc t a] ` e2 : s ⇒ E2 Σ; Γ[pc t a] ` e3 : s ⇒ E3

Σ; Γ[pc] ` if e1 then e2 else e3 : s ⇒

let y = E1 in

let y′ = !y in

run if y′

then val E2

else val E3

1. By IH, Σ; Γ ` E1 ÷(⊥,pc) refra bool, and Σ; Γ ` Ei ÷(⊥,pcta) s for
i = 2, 3

2. Let Γ1 = Γ, y : refra bool

3. By rule (32), Σ; Γ1 `!y ÷(a,>) bool

4. Let Γ2 = Γ1, y
′ : bool

5.

Σ; Γ2 ` y′ : bool
(20)

Σ; Γ2 ` val Ei : ©(⊥,pcta)s
(27)

for i = 2, 3

Σ; Γ2 ` if y′ then val E2 else val E3 : ©(⊥,pcta)s
(23)

Σ; Γ2 ` run if y′ then val E2 else val E3 ÷(⊥,pcta) s

6. We can promote the operation levels of !y and run . . . to (a, pc t a),
such that

Σ; Γ1 ` let y′ = !y in run . . . ÷(a,pcta) s

7. Let (t, b) = s, and note that s = refrb t.

8. By lemma 6.4, a v b. Hence ` s ↗ a.

9. Therefore,

Σ; Γ1 ` let y′ = !y in run . . . ÷(a,pcta) s ` s ↗ a

Σ; Γ1 ` let y′ = !y in run . . . ÷(⊥,pcta) s
(35)

Σ; Γ1 ` let y′ = !y in run . . . ÷(⊥,pc) s
(34)

10. Therefore,

Σ; Γ ` let y = E1 in let y′ = !y in run . . . ÷(⊥,pc) s

• Case

Σ; Γ[pc] ` e1 : (s′
pc′

−−→ s, a) ⇒ E1 Σ; Γ[pc] ` e2 : s′ ⇒ E2 pc t a v pc′

Σ; Γ[pc] ` e1e2 : s t a ⇒

let y1 = E1 in

let y2 = E2 in

let y′
1 = !y1 in

run (y′
1y2)

88

1. By IH,
Σ; Γ ` E1 ÷(⊥,pc) refra s′ → ©(⊥,pc′)s

2. By IH,
Σ; Γ ` E2 ÷(⊥,pc) s′

3. Let Γ1 = Γ, y1 : refra s′ → ©(⊥,pc′)s, y2 : s′

4. Let (t, b) = s. Then s t a = (t, a t b) and s t a = refratb t.

5. Since ` s ≤ s t a, ` s′ → ©(⊥,pc′)s ≤ s′ → ©(⊥,pc′)s t a

6.
Σ; Γ1 ` y1 : refra s′ → ©(⊥,pc′)s t a

Σ; Γ1 `!y1 ÷(a,>) s′ → ©(⊥,pc′)s t a
(32)

7. Let Γ2 = Γ1, y
′
1 : s′ → ©(⊥,pc′)s t a

8. Since a v pc′, a v (a t b) u pc′, so

` refratb t ↗ a t b

` ©(⊥,pc′)s t a ↗ (a t b) u pc′

` ©(⊥,pc′)s t a ↗ a a v (a t b) u pc′

` s′ → ©(⊥,pc′)s t a ↗ a

9. Therefore,
Σ; Γ1 `!y1 ÷(⊥,>) s′ → ©(⊥,pc′)s t a

10. So

Σ; Γ2 `!y1 ÷(⊥,pc′) s′ → ©(⊥,pc′)s t a

Σ; Γ2 ` run (y′
1y2) ÷(⊥,pc′) s

Σ; Γ2 ` y′
1y2 : ©(⊥,pc′)s

Σ; Γ1 ` let y′
1 = !y1 in run (y′

1y2) ÷(⊥,pc′) refratb t

11. Since pc v pc′,

Σ; Γ ` let y1 = E1 in let y2 = E2 in let y′
1 = !y1 in run (y′

1y2)÷(⊥,pc)s t a

• Case
Σ; Γ[pc] ` e1 : (ref s, a) ⇒ E1

Σ; Γ[pc] `!e1 : s t a ⇒ let y = E1 in let y′ = !y in !y′

1. Let (t, b) = s. Note s t a = (t, a t b), ref s = refb s

2. By IH, Σ; Γ ` E1 ÷(⊥,pc) refra refb s

3. Let Γ1 = Γ, y : refra refb s

4. By rule (32),
Σ; Γ1 `!y ÷(a,>) refb s

89

5.
Σ; Γ1 `!y ÷(a,>) refb s
(a,>) � (a t b,>)

Σ; Γ1 `!y÷(atb,>)

Σ; Γ1, y
′ : refb s `!y′ ÷(b,>) s

(b,>) � (a t b,>)

Σ; Γ1, y
′ : refb s `!y′ ÷(atb,>) s

Σ; Γ1 ` let y′ = !y in !y′ ÷(atb,>) s

6. Since s = (t, b) = refrb t,

Σ; Γ1 ` let y′ = !y in !y′ ÷(atb,>) s ` s ≤ refratb t

Σ; Γ1 ` let y′ = !y in !y′ ÷(atb,>) refratb t ` refratb t ↗ a t b

Σ; Γ1 ` let y′ = !y in !y′ ÷(⊥,>) refratb t

7.

Σ; Γ ` E1 ÷(⊥,pc) refra refb s

Σ; Γ1 ` let y′ = !y in !y′ ÷(⊥,>) refratb t
(⊥,>) � (⊥, pc)

Σ; Γ1 ` let y′ = !y in !y′ ÷(⊥,pc) refratb t

Σ; Γ ` let y = E1 in let y′ = !y in y′ ÷(⊥,pc) refratb t

•

Σ; Γ[pc] ` e1 : (ref (t, b), a) ⇒ E1 Σ; Γ[pc] ` e2 : (t, b) ⇒ E2 a v b

Σ; Γ[pc] ` e1 := e2 : (1, pc) ⇒

let y1 = E1 in

let y2 = E2 in

let y′
1 = !y1 in

let = y′
1 := y2 in

refpc (∗ : 1)

1. By IH,
Σ; Γ ` E1 ÷(⊥,pc) refra refb refrb t

and
Σ; Γ ` E2 ÷(⊥,pc) refrb t

2. By Lemma 6.4, pc v b

3. Let Γ1 = Γ, y1 : refra refb refrb t, y2 : refrb t

4.
Σ; Γ1 `!y1 ÷(a,>) refb refrb t (a,>) � (a, b)

Σ; Γ1 `!y1 ÷(a,b) refb refrb t

Note that (a, b) is a well-formed operation level since a v b

5. Let Γ2 = Γ1, y
′
1 : refb refrb t

Σ; Γ2 ` y′
1 := y2 ÷(⊥,b) 1 Σ; Γ2 ` refpc (∗ : 1) ÷(⊥,>) refrpc 1

Σ; Γ2 ` let = y′
1 := y2 in refpc (∗ : 1) ÷(⊥,b) refrpc 1 (⊥, b) � (a, b)

Σ; Γ2 ` let = y′
1 := y2 in refpc (∗ : 1) ÷(a,b) refrpc 1

90

6.

Σ; Γ1 `!y1 ÷(a,b) refb refrb t
Σ; Γ2 ` let = y′

1 := y2 in refpc (∗ : 1) ÷(a,b) refrpc 1

Σ; Γ1 `
let y′

1 = !y1 in

let = y′
1 := y2 in refpc (∗ : 1) ÷(a,b) refrpc 1

` 1 ↗ a

` refrpc 1 ↗ a

Σ; Γ1 `
let y′

1 = !y1 in

let = y′
1 := y2 in refpc (∗ : 1) ÷(⊥,b) refrpc 1

7. Since pc v b,

Σ; Γ ` let y1 = E1 in let y2 = E2 in let y′
1 = !y1 in ... ÷(⊥,pc) refrpc 1

• Other cases are similar.

91

