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Abstract

Hash join algorithms suffer from extensive CPU cache stalls. This paper shows that the standard hash join algorithm
for disk-oriented databases (i.e. GRACE) spends over 73% of its user time stalled on CPU cache misses, and explores
the use of prefetching to improve its cache performance. Applying prefetching to hash joins is complicated by the data
dependencies, multiple code paths, and inherent randomness of hashing. We present two techniques, group prefetching
and software-pipelined prefetching, that overcome these complications. These schemes achieve 2.0–2.9X speedups
for the join phase and 1.4–2.6X speedups for the partition phase over GRACE and simple prefetching approaches.
Compared with previous cache-aware approaches (i.e. cache partitioning), the schemes are at least 50% faster on large
relations and do not require exclusive use of the CPU cache to be effective.
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Figure 1: Execution time breakdown for hash join.

1 Introduction
Hash join [10, 14, 16, 23, 27, 29] has been studied extensively over the past two decades, and it is commonly used
in today’s commercial database systems to implement equijoins efficiently. In its simplest form, the algorithm first
builds a hash table on the smaller (build) relation, and then probes this hash table using tuples of the larger (probe)
relation to find matches. However, the random access patterns inherent in the hashing operation have little spatial or
temporal locality. When the main memory available to a hash join is too small to hold the build relation and the hash
table, the simplistic algorithm suffers from excessive random disk accesses. To avoid this problem, the GRACE hash
join algorithm [14] begins by partitioning the two joining relations such that each build partition and its hash table can
fit within memory; pairs of build and probe partitions are then joined separately as in the simple algorithm. This I/O
partitioning technique limits the random accesses to objects that fit within main memory and results in nice sequential
I/Os for source relations and intermediate partitions. As a result, the I/O costs no longer dominate. For example, our
experiments on a quad-processor Pentium III show that a hash join of two several GB relations is already CPU-bound
with only 4 disks, and it becomes increasingly CPU bound with each additional disk (details in Section 7).

1.1 Hash Joins Suffer from CPU Cache Stalls
So where do hash joins spend most of their time? Previous studies have demonstrated that hash joins can suffer from
excessive CPU cache stalls [5, 19, 28]. The lack of spatial or temporal locality means the GRACE hash join algorithm
cannot take advantage of the multiple levels of CPU cache in modern processors, and hence it repeatedly suffers
from the full latency to main memory during building and probing. Figure 1 provides a breakdown of the simulated
user-level performance on a state-of-the-art machine (details in Section 7). The “partition” experiment divides a 1GB
relation into 800 partitions, while the “join” experiment joins a 50MB build partition with a 100MB probe partition.
Each bar is broken down into four categories: busy time, data cache stalls, TLB miss stalls, and other stalls. As we see
in Figure 1, both the partition and join phases spend a significant fraction of their time—82% and 73%, respectively—
stalled on data cache misses!

Given the success of I/O partitioning in avoiding random disk accesses, the obvious question is whether a similar
technique can be used to avoid random memory accesses. Cache partitioning, in which the two joining relations are
partitioned such that each build partition and its hash table can fit within the (largest) CPU cache, has been shown to be
effective in improving performance in memory-resident and main-memory database environments [5, 19, 28]. How-
ever, cache partitioning suffers from two important practical limitations. First, for traditional disk-oriented databases,
partitioning into cache-sized partitions while scanning from disk requires a large number of concurrently active parti-
tions. Experiences with the IBM DB2 have shown that storage managers can handle only hundreds of active partitions
per hash join [16]. Given a 1MB CPU cache and (optimistically) 1000 partitions, the maximum relation size that can
be handled is only 1 GB. Beyond that hard limit, any cache partitioning must be done using additional passes through
the data — as will be shown in Section 7, this results in at least a 50% slowdown compared to the techniques we
propose. Second, cache partitioning assumes exclusive use of the cache, but this assumption is unlikely to be valid in
an environment with multiple ongoing activities. Once the cache is too busy with other requests to effectively retain
its partition, the performance may degrade significantly (up to 67% in the experiments in Section 7). Hence, we would
like to explore an alternative technique that does not suffer from these limitations.
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1.2 Our Approach: Cache Prefetching
Rather than trying to avoid CPU cache misses by building tiny (cache-sized) hash tables, we instead propose to hide
the cache miss latency associated with accessing normal (memory-sized) hash tables, by overlapping these misses with
computation. Modern processors allow multiple cache misses to be in flight simultaneously in the memory hierarchy
(e.g., the Compaq ES40 [8] supports 32 in-flight loads, 32 in-flight stores, and 8 outstanding off-chip cache misses per
processor), and the trend has been toward supporting more and more simultaneous misses. To enable software to fully
exploit this parallelism, modern processors also provide explicit prefetch instructions for moving data into the cache
ahead of its use. Software-based prefetching has been successfully applied in the past to array-based programs [22],
pointer-based programs [17], and database B � -Trees [6, 7], but it has not been applied to hash joins.

Challenges in Applying Prefetching to Hash Join. A naive approach to prefetching for hash join might simply
try to hide the latency within the processing of a single tuple. For example, to improve hash table probing performance,
one might try to prefetch hash bucket headers, hash buckets, build tuples, etc. Unfortunately, such an approach would
have little benefit because later memory references often depend upon previous ones (via pointer dereferences). Ex-
isting techniques for overcoming this pointer-chasing problem [17] will not work because the randomness of hashing
makes it impossible to predict the memory locations to be prefetched.

The good news is that although there are many dependencies within the processing of a single tuple, dependencies
are less common across subsequent tuples due to the random nature of hashing. Hence our approach is to exploit
inter-tuple parallelism to overlap the cache misses of one tuple with the computation and cache misses associated with
other tuples.

A natural question is whether either the hardware or the compiler could accomplish this inter-tuple cache prefetch-
ing automatically; if so, we would not need to modify the hash join software. Unfortunately, the answer is no.
Hardware-based prefetching techniques [2] rely upon recognizing regular and predictable (e.g., strided) patterns in the
data address stream, but the inter-tuple hash table probes do not exhibit such behavior. In many modern processors,
the hardware also attempts to overlap cache misses by speculating ahead in the instruction stream; while this approach
is useful for hiding the latency of primary data cache misses that hit in the secondary cache, the amount of lookahead
buffering (in the reorder buffers) is far too small to fully hide the latency of cache misses to main memory [9] (e.g., 128
vs. 600 entries for the Compaq ES40 [8]), and is even smaller compared with the amount of processing required for
a single tuple. While our prefetching approaches (described below) are inspired by compiler-based scheduling tech-
niques, existing compiler techniques for scheduling prefetches [17, 22] cannot handle the ambigous data dependencies
present in the hash join code (as discussed in detail in Sections 4.4 and 5.3).

Overcoming these Challenges. To effectively hide the cache miss latencies in hash join, we propose and eval-
uate two new prefetching techniques: group prefetching and software-pipelined prefetching. For group prefetching,
we apply modified forms of compiler transformations called strip mining and loop distribution (illustrated later in
Section 4) to restructure the code such that hash probe accesses resulting from groups of � consecutive probe tuples
can be pipelined. � The potential drawback of group prefetching is that cache miss stalls can still occur during the
transition between groups. Hence our second prefetching scheme leverages a compiler scheduling technique called
software pipelining [15] to avoid these intermittent stalls.

A key challenge that required us to extend existing compiler-based techniques in both cases is that although we
expect dependencies across tuples to be unlikely, they are still possible, and we must take them into account to preserve
correctness. If we did this conservatively (as the compiler would), it would severely limit our potential performance
gain. Hence we optimistically schedule the code assuming that there are no inter-tuple dependencies, but we perform
some extra bookkeeping at runtime to check whether dependencies actually occur: if so, we temporarily stall the
consumer of the dependence until it can be safely resolved. Additional challenges arose from the multiple levels of
indirection and multiple code paths in hash table probing.

A surprising result in our study is that contrary to the conventional wisdom in the compiler optimization community
that software pipelining outperforms strip mining, group prefetching appears to be more attractive than software-
pipelined prefetching for hash joins. A key reason for this difference is that the code in the hash join loop is far more
complex than the typical loop body of a numeric application (where software pipelining is more commonly used [15]).�

In our experimental set-up in Section 7, ���
	�� is optimal.
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1.3 Contributions of This Paper
This paper makes the following contributions. First, to our knowledge, this is the first study to explore how prefetching
can be used to accelerate both the join and partition phases of hash join by exploiting inter-tuple parallelism. Second,
we propose two prefetching techniques, group prefetching and software-pipelined prefetching, and show how they can
be applied to significantly improve hash join performance. Overall, the techniques achieve 2.0–2.9X speedups for the
join phase and 1.4–2.6X speedups for the partition phase over GRACE and simple prefetching approaches. Moreover,
they are at least 50% faster than cache partitioning on large relations and do not require exclusive use of the cache to
be effective. Third, we make extensive comparisons between group prefetching and software-pipelined prefetching.
Finally, we develop generalized models to understand group and software-pipelined prefetching.

The paper is organized as follows. Section 2 discusses the related work in greater detail. Section 3 analyzes the
dependencies in the join phase, the more complicated of the two phases, while Sections 4 and 5 use group prefetching
and software-pipelined prefetching to improve the join phase performance. Section 6 discusses prefetching for the
partition phase. Experimental results appear in Section 7 and conclusions in Section 8.

2 Related Work
Since the GRACE hash join algorithm was first introduced [14], many refinements of this algorithm have been pro-
posed for the sake of avoiding I/O by keeping as many intermediate partitions in memory as possible [10, 16, 23,
27, 29]. All of these hash join algorithms, however, share two common building blocks: (1) partitioning and (2)
joining with in-memory hash tables. To cleanly separate these two phases, we use GRACE as our baseline algorithm
throughout this paper. We point out, however, that our techniques should be directly applicable to the other hash join
algorithms.

CPU cache performance has been identified as a major performance bottleneck for database systems [1, 3, 12]
and many recent studies have focused on improving the cache performance of core database algorithms [4, 5, 6, 7,
24, 25, 28]. Several papers have developed techniques to improve the cache performance of hash joins [5, 19, 28].
Shatdal et al. showed that cache partitioning achieved 6-10% improvement for joining memory-resident relations with
100B tuples [28]. Boncz, Manegold and Kersten proposed using multiple passes in cache partitioning to avoid cache
and TLB thrashing [5, 19]. They showed large performance improvements on real machines for joining vertically-
partitioned relations in the Monet main memory database, under exclusive use of the CPU caches. They considered
neither disk-oriented databases, more traditional physical layouts, multiple activities trashing the cache, nor the use
of prefetching. They also proposed a variety of code optimizations (e.g., using shift-based hash functions) to reduce
CPU time; these optimizations may be beneficial for our techniques as well.

As mentioned earlier, software prefetching has been used successfully in other scenarios [6, 7, 17, 22]. While
software pipelining has been used to schedule prefetches in array-based programs [22], we have extended that approach
to deal with more complex data structures, multiple code paths, and the read-write conflicts present in hash join.

Previous work demonstrated that TLB misses may degrade performance [5, 19], particularly when TLB misses are
handled by software. Since the vast majority of modern processors (including those from Intel) handle TLB misses in
hardware, we model hardware-based TLB miss handling in our simulations. In addition, our simulator supports TLB
prefetching [26] by treating TLB misses caused by prefetches as normal TLB misses. Hence, using our prefetching
techniques, the TLB misses are overlapped with computation, minimizing TLB stall time.

3 Dependencies in the Join Phase
In this section, we analyze the dependencies in a hash table visit in the join phase to show why a naive prefetching
algorithm would fail. We study a concrete implementation of the in-memory hash table, as shown in Figure 2. It
consists of an array of hash buckets, each composed of a header and (possibly) an array of hash cells pointed to by the
header. A hash cell represents a build tuple hashed to the bucket. It contains the tuple pointer and a fixed-length (e.g.
4-byte) hash code computed from the join key, which serves as a filter for the actual key comparisons. 
 A single hash
cell is put into the bucket header. When more tuples are hashed to the bucket, a hash cell array is allocated, the size of
which can be dynamically increased.�

Hash codes are usually good distinguishers of the join keys.
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Figure 2: An in-memory hash table structure

A naive prefetching algorithm would try to hide cache miss latencies within a single hash table visit by prefetching
for potential cache misses, including hash bucket headers, hash cell arrays, and/or build tuples. However, this approach
would fail because there are a lot of dependencies in a hash table visit. For example, the memory address of the bucket
header is determined by the hashing computation. The address of the hash cell array is stored in the bucket header.
The memory reference for a build tuple is dependent on the corresponding hash cell (in a probe). These dependencies
essentially form a critical path; a previous computation or memory reference generates the memory address of the
next reference, and must finish before the next one can start. Addresses would be generated too late for prefetching
to hide miss latencies. Moreover, the randomness of hashing makes it almost impossible to predict memory addresses
for hash table visits. These arguments are true for all hash-based structures. � Therefore, applying prefetching to the
join phase algorithm is not a straightforward task.

4 Group Prefetching
Although dependencies within a hash table visit prevent effective prefetching, the join phase algorithm processes
a large number of tuples and dependencies are less common across subsequent tuples due to the randomness of
hashing. Therefore, our approach is to exploit inter-tuple parallelism to overlap cache miss latencies of one tuple
with computations and miss latencies of other tuples. To ensure correctness, we must systematically intermix multiple
hash table visits, reorder their memory references, and schedule prefetch instructions early enough. In this section, we
propose group prefetching to achieve these objectives.

4.1 Group Prefetching for a Simplified Probing Algorithm
We use a simplified probing algorithm to describe the idea of group prefetching. As shown in Figure 3(a), the algorithm
assumes that all hash buckets have hash cell arrays and every probe tuple matches exactly one build tuple. It performs
a probe per loop iteration.

As shown in Figure 3(b), the group prefetching algorithm combines multiple iterations of the original loop into a
single loop body, and rearranges the probe operations into stages � . Each stage performs one computation or memory
reference on the critical path for all the tuples in the group and then issues prefetch instructions for the memory
references of the next stage. For example, the first stage computes the hash bucket number for every tuple and issues
prefetch instructions for the hash bucket headers, which will be visited in the second stage. In this way, the cache
miss to read the hash bucket header of a probe will be overlapped with hashing computations and cache misses for
other probes. Prefetching is used similarly in the other stages except the last stage. Note that the dependent memory
operations of the same probe are still performed one after another as before. However, the memory operations of
different probes are now overlapped.

4.2 Understanding Group Prefetching
To better understand group prefetching, we generalize the previous algorithms of Figure 3(a) and (b) in Figure 3(c)
and (d). Suppose we need to process � independent elements. For each element � , we need to make � dependent�

The structure in Figure 2 improves upon chained bucket hashing, which uses a linked list of hash cells in a bucket. It avoids the pointer chasing
problem of linked lists [18, 6].�

Technically, what we do are modified forms of compiler transformations called strip-mining and loop distribution [13].
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foreach tuple in probe partition�
compute hash bucket number;
visit the hash bucket header;
visit the hash cell array;
visit the matching build tuple to

compare keys and produce output tuple;�

for i=0 to N-1 do�
code 0;
visit ( � �� ); code 1;
visit ( � �� ); code 2;�����������
visit ( ���� ); code k;�

(a) A simplified probing algorithm (c) Processing an element per iteration

foreach group of tuples in probe partition�
foreach tuple in the group �

compute hash bucket number;
prefetch the target bucket header;�

foreach tuple in the group �
visit the hash bucket header;
prefetch the hash cell array;�

foreach tuple in the group �
visit the hash cell array;
prefetch the matching build tuple;�

foreach tuple in the group �
visit the matching build tuple to

compare keys and produce output tuple;��

for j=0 to N-1 step G do�
for i=j to j+G-1 do �

code 0;
prefetch ( � �� );�

for i=j to j+G-1 do �
visit ( � �� ); code 1;
prefetch ( � �� );�

for i=j to j+G-1 do �
visit ( � �� ); code 2;
prefetch ( � �� );� ����� �����

for i=j to j+G-1 do �
visit ( � �� ); code k;��

(b) Group prefetching for simplified probing (d) General group prefetching algorithm

Figure 3: Group prefetching

memory references, !"�#%$ !&
#%$(')'('*$ !�+# . As shown in Figure 3(c), a straightforward algorithm processes an element per
loop iteration. The loop body is natually divided into ��,.- stages by the � memory references. Code 0 (if exists)
computes the first memory address !"�# . Code 1 uses the contents in !"�# to compute the second memory address !�
# .
Generally code / uses the contents in !�0# to compute the memory address ! 01�2�# , where /435- $(')')'*$ �768- . Finally,
code � performs some processing using the contents in !"+# . If every memory reference !&0# incurs a cache miss, the
algorithm will suffer from �9� expensive, fully exposed cache misses.

Since the elements are independent of each other, we can use group prefetching to overlap cache miss latencies
across multiple elements, as shown in Figure 3(d). The group prefetching algorithm combines the processing of �
elements into a single loop body. It processes code / for all the elements in the group before moving on to code /:,;- .
As soon as an address is computed, the algorithm issues a prefetch instruction for the memory location so that the
reference will be overlapped across the processing of other elements.

Now we determine the condition for fully hiding all cache miss latencies. Suppose the execution time of code /
is < 0 , the full latency of fetching a cache line from main memory is = , and the additional latency of fetching the
next cache line in parallel is =?>A@CB(D , which is the inverse of memory bandwidth. (Table 1 shows the terminology used
throughout the paper.) Assume every ! 0 # incurs a cache miss and there are no cache conflicts E . Then, the sufficient
condition for fully hiding all cache miss latencies is as follows:FHG �I6J-LK ' <NMPOJ=G �I6J-LK 'RQ�SUTWV < 0 $ = >A@CB(DYX OZ= $ /[3\- $�]9$(')')'W$ �

We will give the proof for the condition in the next subsection. For an intuitive explanation, let us focus on the^
We use these assumptions only to simplify the derivation of the conditions. Note that our experimental evaluations include all the possible

effects of locality and conflicts in hash joins.
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Table 1: Terminology used throughout this paper.
Name Definition_

# of dependent memory references for an element� group size in group prefetching`
prefetch distance in software-pipelined prefetchinga
full latency of a cache missa

next latency of an additional pipelined cache missbWc
execution time for code d , de�7fLgY	hgji�i�ikg _

first element in a group, element l . The prefetch for !
�m is overlapped with the processing of the remaining �n6o-
elements at code stage p . The first inequality ensures that the processing of the remaining �q6 - elements takes longer
time than a single memory reference so that the prefetched memory reference will complete before the visit operation
for !r�m in code stage 1. Similarly, the prefetch for ! 0s�2�m is overlapped with the processing of the remaining �n6o-
elements at code stage / . The second inequality ensures that the memory reference latency is fully hidden. Note that=*>A@CB(D corresponds to the memory bandwidth consumption of the visit operations of the remaining �t68- elements.
In the proof, we also show that memory references for other elements are fully hidden by simple combinations of the
inequalities.

We can always choose a � large enough to satisfy the second inequality since =u>A@CB(D is always greater than 0.
However, when code 0 is empty, !"�m can not be fully hidden. Fortunately, in the previous simplified probing algorithm,
code 0 computes the hash bucket number and is not empty. Therefore, we can choose a � to hide all the cache miss
penalties.

In the above, cache conflict misses are ignored for simplicity of analysis. However, we will show in Section 7 that
conflict miss is a problem when � is too large. Therefore, among all possible � ’s that satisfy the above inequalities,
we should choose the smallest to minimize the number of concurrent prefetches and conflict miss penalty.

4.3 Critical Path Analysis for Group Prefetching
In the following, we use critical path analysis to study the processing of a group, i.e. an iteration of the outer loop in
Figure 3(d). For simplicity of analysis, we assume that every !r0# incurs a cache miss and there are no cache conflicts
among the memory references in a group. Figure 4 shows the graph for critical path analysis. A vertex represents an
event. An edge from vertex A to B indicates that event B depends on event A and the weight of the edge is the minimal
delay. (For simplicity, zero weights are not shown in the graph.) The run time of a loop iteration corresponds to the
length of the critical path in the graph, i.e. the longest weighted path from the start to the end.

The graph is constructed as follows. We use three kinds of vertices:v P vertex: the execution of a prefetch instructionv C vertex: the start of code 0v VC vertex: the start of a visit and code / ( /[3.- $�]w$)'(')'*$ � )
Vertex subscripts indicate the elements being processed. Their superscripts correspond to the memory addresses in the
program for P vertices, and to the code stage for C and VC vertices. In Figure 4, a row of vertices corresponds to an
inner loop that executes a code stage for all the elements in a group. We use three kinds of edges:v Instruction flow edges: They go from left to right in every row and from top to bottom across rows. For example,

code p for element j (vertex < Mm ) and the prefetch for !"�m (vertex xy�m ) are executed before code p for element j+1
(vertex < Mm �2� ) and prefetch for !"�m �2� (vertex xy�m �2� ). The second inner loop (the second row) starts after the first
inner loop finishes. We assume that code / takes a fixed amount of time < 0 to execute, which is shown as weights of
outgoing edges from C and VC vertices. The instruction overhead of the visit and the following prefetch instruction
is also included in it. So the other instruction flow edges have zero weights.v Latency edges: an edge from a P vertex to the corresponding VC vertex represents the prefetched memory refer-
ence with full latency = as its weight.v Bandwidth edges: an edge between VC vertices represents memory bandwidth. Usually an additional (indepen-
dent) cache miss can not be fully overlapped with the previous one. It takes =2>k@CB)D more time to finish, which is the
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Figure 4: Critical path analysis for an iteration of the outer loop body in Figure 3(d)

inverse of memory bandwidth. z
Now we consider the critical path of the graph. If we ignore for a moment all latency edges, the graph becomes

clear and simple: all paths go from left to right in a row and from top to bottom from the start to the end; alternative
paths are all local between instruction flow edges and bandwidth edges. Since the critical path is the longest path, we
can ignore an edge if there is a longer path connecting the same vertices. Intuitively, we can choose a large � so that
latency edges are shorter than the paths along rows and they can be ignored. In this situation, the critical path of the
graph is the longest path along the rows.

We would like to derive the condition to fully hide all cache miss latencies. If all cache miss latencies are hidden,
all latency edges will not be on the critical path, vice versa. Therefore, it is equivalent to derive the condition to ensure
that all latency edges are shorter than paths along rows. We have the following theorem.

Theorem 1. The following condition is sufficient for fully hiding all cache miss latencies in the general group prefetch-
ing algorithm: F G �I6J-LK ' < M OJ=G �I6J-LK 'RQ�SUTWV < 0 $ = >A@CB(DYX OZ= $ /[3\- $�]9$(')')'W$ �
Proof. The first inequality ensures that the first latency edge from row 0, i.e. the edge from vertex x{�m to vertex |P<P�m
in the graph, is shorter than the path along row 0. The second inequality ensures that the first latency edge from row/ in the graph, i.e. the edge from vertex x 01�u�m to vertex |P< 01�2�m , is shorter than the corresponding path along row / ,
where /?3\- $�]9$)'(')'W$ �}6J- . Note that the inequality when /[3o� is used only in the proof below.

For the other latency edges, we can prove they are shorter than the paths along rows with a simple combination of
the two inequalities. For the xth latency edge from row 0, i.e. the edge from vertex x��m � BA~ � to vertex |}<P�m � BA~ � , the
length of the path along the row is as follows:

Path Length 3 G �I6 ��K ' < M , G ��6Z-�K ')Q�SUT�V < � $ =*>A@CB(D X3t� G �86 ��K ' G �I6J-LK ' < M , G �{6Z-�K ' G �86J-LK '(Q�SUT�V < � $ =W>k@CB)D X(���
G �86Z-�KO�� G �86 ��K ' =�, G ��6J-LK ' = ��� G ��6J-LK3o=

For the xth latency edge from row / , i.e. the edge from vertex x 0s�2�m � BA~ � to vertex |y< 0s�2�m � BA~ � , where /?3\- $�]9$)'(')'W$ �y6�- ,�
The bandwidth edges are not between the P vertices because prefetch instructions only put requests into a buffer and it is the actual memory

visits that wait for the operations to finish.
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Figure 5: Dealing with multiple code paths.

the length of the path along the row is as follows:

Path Length 3 G �I6 ��K 'RQ�S%T�V < 0 $ = >k@CB)D�X ,
G �{6J-LK 'RQ�SUTWV < 01�2� $ = >A@CB(D�X3\� G �I6 ��K ' G �I6Z-�K 'RQ�SUTWV < 0 $ = >A@CB(DYX ,

G ��6Z-�K ' G �I6J-LK '(Q�S%T�V < 01�2� $ = >A@CB(D�X(���
G �86�-LKOI� G �I6 ��K ' =�, G ��6Z-�K ' = ��� G ��6J-LK3;=

Therefore, when the two inequalities are satisfied, all latency edges are shorter than the corresponding paths along
rows and all cache miss latencies are fully hidden.

4.4 Dealing with Complexities
Previous research showed how to prefetch for two dependent memory references for array-based codes [21]. Our
group prefetching algorithm solves the problem of prefetching for an arbitrary fixed number � of dependent memory
references.

We have implemented group prefetching for both hash table building and probing. In contrast to the simplified
probing algorithm, the actual probing algorithm contains multiple code paths: there could be zero or multiple matches,
hash buckets could be empty, and there may not be a hash cell array in a bucket. To cope with this complexity, we keep
state information for the � tuples of a group. We divide each possible code path into code pieces on the boundaries of
dependent memory references. Then we combine the code pieces at the same position of different code paths into a
single stage using conditional tests on the tuple states. Figure 5 shows the idea of this process. Note that the common
starting point of all code paths is in code 0. The first code piece including a branch sets the state of an element. Then
subsequent code stages test the state and execute the code pieces for the corresponding code paths. The total number
of group prefetching stages ( ��,o- ) is the largest number of code pieces along any original code path.

When multiple independent cache lines are visited at a stage (e.g., to visit multiple build tuples), our algorithm
issues multiple independent prefetches in the previous stage.

The group prefetching algorithm must also cope with read-write conflicts. Though quite unlikely, it is possible
that two build tuples in a group may be hashed into the same bucket. However, in our algorithm, hash table visits are
interleaved and no longer atomic. Therefore, a race condition could arise; the second tuple might see an inconsistent
hash bucket being changed by the first one. Note that this complexity occurs because of the read-write nature of hash
table building. To cope with this problem, we set a busy flag in a hash bucket header before inserting a tuple. If a tuple
is to be inserted into a busy bucket, we delay its processing until the end of the group prefetching loop body. At this
natural group boundary, the previous access to the busy hash bucket must have finished. Interestingly, the previous
access has also warmed up the cache for the bucket header and hash cell array, so we insert the delayed tuple without
prefetching. The algorithm can deal with any number of delayed tuples (to tolerate skews in the key distribution).

5 Software-Pipelined Prefetching
In this section, we describe our technique of exploiting software pipelining to schedule prefetches for hash joins. We
then compare our two prefetching schemes.
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Figure 6: Intuitive pictures of the prefetching schemes

prologue;
for j=0 to N-3D-1 do�

tuple j+3D:
compute hash bucket number;
prefetch the target bucket header;

tuple j+2D:
visit the hash bucket header;
prefetch the hash cell array;

tuple j+D:
visit the hash cell array;
prefetch the matching build tuple;

tuple j:
visit the matching build tuple to

compare keys and produce output tuple;�
epilogue;

prologue;
for j=0 to N-kD-1 do�

i=j+kD;
code 0 for element i;
prefetch ( � �� );
i=j+(k-1)D;
visit ( � �� ); code 1 for element i;
prefetch ( � �� );
i=j+(k-2)D;
visit ( � �� ); code 2 for element i;
prefetch ( � �� );
���������h�
i=j;
visit ( � �� ); code k for element i;�

epilogue;

(a) Software-pipelined prefetching for simplified probing (b) General software-pipelined prefetching

Figure 7: Software-pipelined prefetching

Figure 6 shows the difference between group prefetching and software-pipelined prefetching intuitively. Group
prefetching hides cache miss latencies within a group of elements and there is no overlapping memory operation
between groups. In contrast, software-pipelined prefetching combines different code stages of different elements into
an iteration and hides latencies across iterations. It keeps running without gaps and therefore may potentially achieve
better performance.

5.1 Understanding Software-pipelined Prefetching
Figure 7(a) shows the software-pipelined prefetching for the simplified probing algorithm. The subsequent stages for
a particular tuple are processed � iterations away. ( � is called the prefetch distance [21].) Figure 6(b) depicts the
intuitive picture when ��3�- . Suppose the left-most line in the dotted rectangle corresponds to tuple l . Then, an
iteration combines the processing of stage 0 for tuple l�,Z�k� , stage 1 for tuple l�, ] � , stage 2 for tuple l�,J� , and
stage 3 for tuple l .

Figure 7(b) shows the generalized algorithm for software-pipelined prefetching. In the steady state, the pipeline
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Figure 8: Critical path analysis for software-pipelined prefetching (steady state)

has �P,�- stages. The loop body processes a different element for every stage. The subsequent stages for a particular
element are processed � iterations away. Intuitively, if we make the intervals between code stages for the same
element sufficiently large, we will be able to hide cache miss latencies. Under the same assumption as in Section 4.2,
the sufficient condition for hiding all cache miss latencies in the steady state is as follows. (We will derive this
condition in the next subsection.)

� ' G !��e� V <NM�,q< + $ = >A@CB(DYX ,
+ ~ ��
01�2�
Q�SUTWV < 0 $ = >k@CB)D�X K�Oq=

We can always choose a � sufficiently large to satisfy this condition. In our experiments in Section 7, we will show
that conflict miss is a problem when � is too large. Therefore, similar to group prefetching, we should choose the
smallest � to minimize the number of concurrent prefetches.

5.2 Critical Path Analysis for Software-pipelined Prefetching
We perform critical path analysis using Figure 8. The graph is constructed in the same way as Figure 4, though a row
here corresponds to a single loop iteration in the general software-pipelined prefetching algorithm. Instruction flow
edges are still from left to right in a row and from top to bottom across rows. Focusing on the latency edges, we can
see the processing of the subsequent stages of an element. Two subsequent stages of the same element are processed
in two separate rows � iterations away.

If the paths along the rows are longer, the latency edges can be ignored and the cache miss latencies are fully hidden.
The sufficient condition for hiding all cache miss latencies is given in the following theorem.

Theorem 2. The following condition is sufficient for fully hiding all cache miss latencies in the general software-
pipelined prefetching algorithm:

� ' G !��e� V < M ,q< + $ =*>A@CB(D X ,
+ ~ ��
01�2�
Q�SUTWV < 0 $ =W>k@CB)D X K�Oq=

Proof. The left-hand side of the inequality is the total path length of � rows in Figure 8. Clearly, when this length
is greater than or equal to the weight of a latency edge, latency edges can be ignored in critical path analysis and all
cache miss latencies are fully hidden.

5.3 Dealing with Complexities
We have implemented software-pipelined prefetching by modifying our group prefetching algorithm. The code stages
are kept almost unchanged. To apply the general model in Figure 7(b), we use a circular array for state information;
the index l in the general model is implemented as the array index. We choose the array size to be a power of 2 and
use bit mask operation for modular index computation to reduce overhead. Moreover, since code 0 and code k of the
same element is processed �9� iterations away, we ensure the array size is at least �w�.,o- .
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The read-write conflict problem in hash table building is solved in a more sophisticated way. Since there is no
place (like the end of a group in group prefetching) to conveniently process all the conflicts, we have to deal with the
conflicts in the pipeline stages themselves. We build a waiting queue for each busy hash bucket. The hash bucket
header contains the array index of the tuple updating the bucket. The state information of a tuple contains a pointer
to the next tuple waiting for the same bucket. When a tuple is to be inserted into a busy bucket, it is appended to the
waiting queue. When we finish hashing a tuple, we check its waiting queue. If the queue is not empty, we record the
array index of the first waiting tuple in the bucket header, and perform the previous code stages for it. When this tuple
gets to the last stage, it will handle the next tuple in the waiting queue if it exists.

5.4 Group vs. Software-pipelined Prefetching
Both prefetching schemes try to increase the interval between a prefetch and the corresponding visit, in order to hide
cache miss latency. According to the sufficient conditions, software-pipelined prefetching can always hide all miss
latencies, while group prefetching achieves this only when code 0 is not empty (as is the case of the join phase).
When code 0 is empty, the first cache miss cannot be hidden. However, with a large group of elements, the amortized
performance impact can be small.

In practice, group prefetching is easier to implement. The natural group boundary provides a place to do any nec-
essary “clean-up” processing (e.g., for read-write conflicts). Moreover, the join phase can pause at group boundaries
and send outputs to the parent operator to support pipelined query processing. Although a software pipeline may also
be paused, the restart costs will diminish its performance advantage. Furthermore, software-pipelined prefetching has
larger bookkeeping overhead because of its use of modular index operations and its larger maintained state (such as
the waiting queue for read-write conflicts).

6 Prefetching for the Partition Phase
Having studied how to prefetch for the join phase of the hash join algorithm, in this section, we discuss prefetching
for the partition phase. In the partition phase, an input relation is divided into multiple output partitions by hashing on
the join keys. Typically an output buffer per partition and an input buffer are allocated in main memory. Disk pages
from the input relation are streamed through the input buffer. Every input tuple is examined. Its partition number is
computed from the join key. The relevant columns of the input tuple are then extracted (projected) and copied to the
target output buffer. When an output buffer is full, it is written out.

Clearly, we should employ different prefetching techniques depending on the number of partitions generated. If
the number of partitions is small enough so that all the buffers and relevant data structures fit in cache, we only need
to prefetch for the input page to bring the input data into cache faster after every disk page read. This constitutes our
simple prefetching scheme for the partition phase.

When the number of partitions is large, however, there could be cache thrashing during the partition phase; ev-
ery output buffer visit may incur a cache miss. Similar to the join phase, the processing of a tuple needs to make
several dependent memory references, whereas the processings of subsequent tuples are mostly independent due to
the randomness of hashing. Therefore, we employ group prefetching and software-pipelined prefetching under this
situation.

Note that there are read-write conficts in visiting the output buffers. Imagine that two tuples are hashed to the same
partition. When processing the second tuple, the algorithm may find that the output buffer has no space and needs
to be written out. However, it is possible that the data from the first tuple has not been copied into the output buffer
yet because of the reorganization of processing. To solve this problem, in group prefetching, we wait until the end of
the loop body to write out the buffer and process the second tuple. In software-pipelined prefetching, we use waiting
queues similar to those for hash table building in the join phase.

7 Experimental Results
In this section, we show that hash join is CPU bound through real-machine experiments. We then evaluate the CPU
cache performance of our prefetching techniques by simulation.

11



7.1 Experiment Setup
Implementation Details. We have implemented our own hash join engine. For real machine experiments, we
implemented a buffer manager that stripes pages across multiple disks and performs I/O prefetching with background
worker threads. For CPU performance simulation studies, we store relations and intermediate partitions as disk files
for simplicity. We employ slotted page structure and support fixed length and variable length attributes in tuples.
Schemas and statistics are kept in separate description files for simplicity, the latter of which are used by the hash join
algorithms to compute numbers of partitions and hash table sizes.

Our baseline algorithm is the GRACE hash join algorithm [27]. The in-memory hash table structure follows Fig-
ure 2 in Section 3. A simple XOR and shift based hash function is used to convert join keys of any length to 4-byte
hash codes. Typically the same hash codes are used in both the partition and the join phase. Partition numbers in the
partition phase are the hash codes modulo the total number of partitions. Hash bucket numbers in the join phase are
the hash codes modulo the hash table size. Our algorithms ensure that the hash table size is a relative prime to the
number of partitions. Since the same hash codes are used in both phases, computing them twice could be expensive in
computational overhead and in memory access overhead to read join keys. Therefore, we made a simple optimization:
storing hash codes in the page slot area in the intermediate partitions and reusing them in the join phase. Note that
changing the page structure of intermediate partitions is relatively easy since the partitions are only used in hash joins.

We implemented three prefetching schemes for both the partition phase and the join phase algorithm: simple
prefetching, group prefetching, and software-pipelined prefetching. As suggested by the name, simple prefetching tries
straightforward ways to employ prefetching, such as prefetching an entire input page after a disk read. We use simple
prefetching as an enhanced baseline and show how much more benefit we can achieve by using more sophiscated
prefetching schemes. Prefetch instructions are inserted into C++ source codes with gcc inline ASM macros.

Cache Partitioning. Cache partitioning generates cache-sized build partitions so that every build partition and its
hash table can fit in cache and cache misses in the join phase can be greatly reduced. It has been shown to be effective
in main-memory and memory-resident database environments [5, 28].

We have implemented two cache partitioning algorithms for disk-oriented databases, which will be compared with
our prefetching techniques in Section 7.5. First, we can increase the number of partitions and generate cache-sized
partitions directly in the I/O partition phase. Second, we partition twice: the I/O partition phase generates memory-
sized partitions, and then they are partitioned again in memory as a preprocessing step for the join phase. We call the
first scheme “direct cache” and the second “two-step cache”.

Experiment Design. In all our experiments (except for Figure 14(a)), we assume the available memory size for
the join phase is 50MB � . The partition phase produces partitions to fully utilize the available memory. That is, in
the baseline and our prefetching schemes, a build partition and its hash table fit tightly in the memory. In the cache
partitioning schemes, the partition sizes are also computed to satisfy the algorithm constraints and best utilize available
memory.

Build relations and probe relations have the same schemas: a tuple consists of a 4-byte join key and a fixed-length
payload. We believe that selection and projection are orthogonal issues to our study and we do not perform these
operations in our experiments. An output tuple contains all the fields of the matching build and probe tuples. The join
keys are randomly generated. A build tuple may match zero or more probe tuples and a probe tuple may match zero
or one build tuple. In our experiments, we vary the tuple size, the number of probe tuples matching a build tuple, and
the percentage of tuples that have matches to show the benefits of our solutions in various situations.

Measurement Methodology. We first measure GRACE hash join performance on a real machine with multiple
disks to show that hash join is CPU-bound with reasonable I/O bandwidth. Therefore, it is important to study hash
join cache performance.

We then evaluate the CPU cache performance (of user mode executions) of all the schemes through simulation in
order to get good prefetching support. We generate fully-functional executables with gcc and run the programs with
detailed cycle-by-cycle simulations. The simulator models a dynamically-scheduled, superscalar processor running at
a clock rate of 1 GHz. The memory hierarchy is based on the Compaq ES40 [8]. Since Alpha processor only supports
software-simulated integer divide, we use integer divide latency from the Intel Pentium4 [11]. The simulator does not
drop prefetches when miss handlers are all busy. Moreover, the simulator supports TLB prefetching [26] by treating�

This is the memory allocated for joining a pair of build and probe partitions. The memory size is limited by the simulation environment.
However, the memory to cache size ratio is set to be 50:1, which is reasonable for hash joins on a modern computer system. Therefore, we expect
the experiments to reflect real-world hash join cache behaviors.
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Table 2: Simulation parameters

Processor pipeline parameters
Clock Rate 1 GHz
Issue Width 4 insts/cycle
Functional Units 2 Integer, 1 integer divide,

2 Memory, 1 Branch, 2 FP
Reorder Buffer Size 128 insts
Integer Multiply/Divide 15/56 cycles
All Other Integer 1 cycle
Branch Prediction Scheme gshare [20]

Memory parameters
Line Size 64 bytes
Primary Instruction Cache 64 KB, 2-way set-assoc.
Primary Data Cache 64 KB, 4-way set-assoc.
Miss Handlers 32 for data, 2 for inst.
DTLB 64 entries, fully-assoc.
DTLB Miss Handlers 1
Page Size 8 KB
Unified Secondary Cache 1 MB, 4-way set-assoc.
Primary-to-Secondary 15 cycles (plus any delays
Miss Latency caused by contention)
DTLB Miss Latency 20 cycles
Primary-to-Memory 150 cycles (plus any delays
Miss Latency caused by contention)
Main Memory Bandwidth 1 access per 10 cycles
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Figure 9: Hash join is CPU-bound with reasonable I/O bandwidth

TLB misses caused by prefetches as normal TLB misses. Therefore, our prefetching schemes can overlap TLB miss
latencies with computations and cache misses. Important simulator parameters are shown in Table 2.

7.2 Is Hash Join I/O-Bound or CPU-Bound?
Figure 9 shows the performance of GRACE hash join on a machine running Linux 2.4.18 with four 550MHz Pen-
tiumIII processors and 512MB RAM. Our experiments use 6 Seagate Cheetah X15 36LP SCSI disks, each with a
maximum transfer rate of 68 MBytes/sec. We imitate raw disk partitions by allocating a large file on each disk and
managing the mapping from page IDs to file offsets ourselves. To get good I/O performance, we stripe a relation
across all the disks with 256KB units. Our buffer manager has a dedicated worker thread for each of the disks, which
performs I/O operations on behalf of the main hash join thread. The buffer manager implements I/O prefetching and
background writing so that I/O operations can be overlapped with computations as much as possible. We measure total
elapsed times with gettimeofday() system call and I/O stall times with processor cycle counter and PAPI package. All
the reported points are the average of 10 measurements with standard deviations less than 10% of the averages or less
than 1 second.

The experiments join a 1.5GB build relation with a 3GB probe relation by producing 31 intermediate partitions for
both relations. Tuples are all 100 bytes long with 4 byte join keys. Figure 9(a) shows the partition phase performance
for the build relation, and Figure 9(b) shows the join phase performance of joining all the build and probe partitions.

The figures vary the number of disks used and report the total elapsed time for the operations, the maximum I/O
stall time of all the background worker threads, and the stall time of the main thread waiting for workers. The worker
I/O stall time shows the time to finish all the I/Os in background, which decreases dramatically as the number of
disks increases. With four or more disks, hash join is clearly CPU-bound; the total elapsed time becomes flat, and the
main thread spends less than 10% of the total time waiting for worker threads. Since there are typically 10 disks per
processor on a balanced DB server, we expect that hash join is CPU-bound in a large number of real-world systems.
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Moreover, the gap between the top and the middle curves leaves large room for reducing the total time by improving
CPU performance, for example, room for 3-fold potential improvement when there are 6 disks.
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Figure 10: Join phase performance

7.3 Join Phase Performance
Figure 10 shows the join phase performance of the baseline and the prefetching schemes while varying the tuple size,
the number of probe tuples matching a build tuple, and the percentage of tuples that have matches. The experiments
model the processing of a pair of partitions in the join phase. In all experiments, the build partition fits tightly in the
50MB memory. The three sets of experiments share a pivot point: tuples are 100B long and every build tuple matches
two probe tuples. As shown in the figure, group prefetching and software pipelined prefetching achieve 2.4-2.9X and
2.1-2.7X speedups over the baseline algorithm, respectively. Since the central part of the join phase algorithm is hash
table visit, simple prefetching only obtains marginal benefit, a 1.1-1.2X speedup over the baseline. By exploring the
inter-tuple parallelism, group and software-pipelined prefetching achieve additional 2.3-2.5X and 2.0-2.3X speedups
over the simple prefetching scheme, respectively.

In Figure 10(a), as we increase the tuple size, the number of tuples processed decreases, leading to the decreasing
trend of the curves. In Figure 10(b) and (c), the total number of matches increases as we increase the number of
matches per build tuple or the percentage of tuples having matches. This explains the upward trends. Moreover, the
probe partition size also increases in Figure 10(b), contributing to the much steeper curves than those in Figure 10(c).

Figure 11 shows the execution time breakdowns for Figure 10(a) when tuples are 100B long. The baseline case
is shown as the “join” bar in Figure 1. Group prefetching and software pipelined prefetching indeed successfully
hide most of the data cache miss latencies. The simulator outputs confirm that the remaining cache misses are mostly
L1 cache misses (but L2 hits) due to conflicts. The (transformation, book keeping, and prefetching) overheads of the
techniques lead to larger portions of busy times. Software-pipelined prefetching is more costly than group prefetching.
Interestingly, other stalls also increase. A possible reason is that some secondary causes of stalls show up when the
data cache stalls are reduced.

Figure 12 shows the relationship between the cache performance and the parameters of the prefetching algorithms.
We perform the same experiment as in Figure 10(a) when tuple size is 20B. We only show the tuning results for the
probing loop here but the curves for the building loop have similar shapes. The experiments in Figure 10 all use the
optimal parameters: �.3.-(� and ��3\- for probing.

The top curves in Figure 12 show the performance when the memory latency = is set to 1000 cycles in the simulator.
The optimal points shift right; larger group size and prefetch distance are needed to hide the increased latencies, as
expected by our models. Interestingly, software-pipelined prefetching becomes better than group prefetching. More
importantly, software-pipelined prefetching achieves similar performance when we change = from 150 to 1000 cycles.
This means that the prefetching algorithm will still keep up when the processor/memory speed gap increases even more
(6 times in our experiments) as expected to happen in the future by the technology trend.

The curves all have concave shapes; performance becomes worse when the parameters are too small or too large.
According to our models, the group size and the prefetch distance must be large enough to hide cache miss latencies.
This explains the poor performance when the parameters are small. To verify this and to understand the performance
with large parameters, we analyze the breakdowns of cache misses in Figure 13. The bars correspond to the optimal
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Figure 11: Execution time breakdown for join phase performance (Figure 10(a), 100B tuples)

1 5 10 15 20 25 3032
0

500

1000

1500

2000

2500

3000

3500

probe group size

ex
ec

ut
io

n 
tim

e 
fo

r p
ro

bi
ng

 (M
 c

yc
le

s)

T = 1000 cycles
T =  150 cycles

1 2 3 4 5 6 7
0

500

1000

1500

2000

2500

3000

3500

probe prefetch distance

ex
ec

ut
io

n 
tim

e 
fo

r p
ro

bi
ng

 (M
 c

yc
le

s)

T = 1000 cycles
T =  150 cycles

(a) group prefetching (b) software-pipelined prefetching

Figure 12: Tuning parameters of group prefetching and software pipelined prefetching for join phase
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Figure 13: Breakdowns of cache misses to understand the tuning curves of join phase

points, too-small points, and too-large points from the =;3\-L Ap curves in Figure 12.
The bars are normalized to the number of cache misses in the baseline GRACE case (100 in the figure). The total

heights of the bars correspond to the number of cache misses when we apply the code transformations but without
inserting any prefetches. When we insert the prefetches, a lot of cache misses disappear, which are captured by the
bottom part of the bars. The other categories are i) “pf too late”, i.e. prefetching is too late to hide all the latency; ii)
“pf replaced”, i.e. prefetching is too early and the prefetched cache line has already been replaced from the cache by
other memory references or prefetches; iii) “not prefetched”.

From Figure 13, the too-small case shows a large “pf too late” portion. This confirms the above analysis. In the
too-large cases, a lot of prefetches have been replaced, meaning that the poor performance is caused by cache conflicts.
The larger the parameters, the more prefetches and other memory references are executed between a prefetch and its
visit instruction, and therefore the larger chance that a prefetch is replaced from cache.

7.4 Partition Phase Performance
Figure 14(a) shows the partition phase performance varying the number of partitions from 25 to 800. The source
relation has 10 million 100-byte tuples. The figure is divided into two different regions. When partition number
is 25, 50, and 100, simple prefetching achieves the best performance. However, when the number of partitions be-
comes larger, the performance of simple prefetching deteriorates dramatically, while group prefetching and software-

15



0

1000

2000

3000

4000

5000

6000

7000

number of partitions

ex
ec

ut
io

n 
tim

e 
(M

 c
yc

le
s)

Baseline   
Simple Pref
Group Pref 
SP Pref    

25 50 100 200 400 800 10 20 30 40 50 60
0

5

10

15

20

25

30

number of tuples (million)

ex
ec

ut
io

n 
tim

e 
(G

 c
yc

le
s)

Baseline   
Simple Pref
Group Pref 
SP Pref    

(a) varing number of partitions (b) varying relation size

Figure 14: Partition phase performance
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Figure 15: Execution time breakdown for partition phase performance (Figure 14(a), 800 partitions)
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Figure 16: Tuning parameters of group prefetching and software pipelined prefetching for partition phase
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Figure 17: Breakdowns of cache misses to understand the tuning curves of partition phase

pipelined prefetching win. Since 1MB L2 cache can hold 128 pages of 8KB each, the output buffers (and other
miscelleous data structures) fit in L2 cache in the left region, in which more sophisticated prefetchings with larger
overhead are not necessary. However, when the output buffers can not fit in cache as in the right region, simple
prefetching suffers from excessive cache misses. Group prefetching and software-pipelined prefetching exploit inter-
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Figure 18: Impact of cache flushing on the different techniques.
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Figure 19: Comparisons with cache partitioning when it applies

tuple parallelism to successfully hide most of the cache miss latencies.
Figure 14(b) varies the number of 100B tuples in the input relation while keeping the partition size the same (to fit

tightly in 50MB memory). Hence the number of partitions also increases; 26, 51, 76, 102, 127, and 152 partitions are
generated, respectively. Essentially the graph shows the same tradeoff as Figure 14(a) but in a more natural setting.

To get the best of both situations, we choose the prefetching algorithm based on the cache size and the number of
partitions. Overall, this combined prefetching achieves 1.9-2.6X speedups over the baseline.

Figure 15 shows the execution time breakdown for Figure 14(a) where 800 partitions are generated. Group prefetch-
ing and software pipelined prefetching successfully hide most of the data cache miss latencies. Figure 16 shows the
relationships between parameters and the cache performance of group prefetching and software-pipelined prefetching.
Figure 17 analyzes the reasons for the poor performance when parameters are too small or too large. We see similar
curve shapes and trends as in the join phase.

7.5 Comparison with Cache Partitioning
Problems with Large Relations. The number of I/O partitions is upper bounded by the available memory of the
partition phase and by the requirements of the storage manager. Experiences with the IBM DB2 have shown that
storage managers can handle only hundreds of active partitions per hash join [16]. Given a 1 MB CPU cache and
(optimistically) 1000 partitions, the maximum relation size for “direct cache” is only 1 GB. “Two-step cache” solves
this problem by introducing an additional partition pass. However, this additional copying cost results in 50-150%
slowdown compared to our prefetching schemes.

Robustness. Cache partitioning assumes exclusive use of the cache, which is unlikely to be valid in a dynamic
environment with multiple concurrent activities. Although a smaller “effective” cache size can be used, cache conflicts
may still be a big problem and cause poor performance. Figure 18 shows the performance degradation of all the
schemes when the cache is periodically flushed, which is the worst case interference. We vary the period to flush
cache from 10ms to 2ms in our simulator. “100” corresponds to the join phase execution time when there is no cache
flush. Direct cache and 2-step cache suffer from 15-67% and 8-38% performance degradation, respectively. The
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reason that 2-step cache suffers from less degradation is that cache flushes may occur during in-memory partition
operations and be less harmful. Although the figure shows the worst-case cache interference, it certainly reflects the
robustness problem of cache partitioning. In contrast, our prefetching schemes do not assume hash tables and build
partitions in cache. As shown in the figure, they are very robust against even cache flushes.

Experiments when “direct cache” also applies. Figure 19 compares our prefetching schemes with cache par-
titioning. Note that the I/O partition phases of all schemes use the combined prefetching scheme discussed above;
the major differences of the curves are the different numbers of I/O partitions generated. The second partition step in
“two-step cache” is shown as part of the join phase performance. Moreover, we employ prefetching in the join phase
to enhance the cache partitioning schemes wherever possible.

Figure 19(a)-(c) show experiments joining a 200MB build relation with a 400MB probe relation. Every build tuple
matches two probe tuples. We increase the tuple size, which results in decreasing number of tuples in the relations and
the downward trends of the curves. “Direct cache” achieves the best performance in the join phase by avoiding most
cache misses. However, it suffers from larger overheads in the partition phase for generating much more partitions.
“Two-step cache” suffers from the overhead of the additional partition step and is 50-150% worse than the prefetching
schemes. Overall, our prefetching schemes are the best (slightly better than “direct cache”). In Figure 19(d), we keep
the tuple size to be 100B and vary the percentage of tuples that have matches. Again, we see similar trends as in
Figure 19(c). In Figure 19, our prefetching techniques achieve 1.4-2.5X speedups for the partition phase, 2.1-2.9X
speedups for the join phase, and 1.9-2.7X speedups overall compared to the baseline algorithm. ¡

8 Conclusions
While prefetching is a promising technique for improving CPU cache performance, applying it to the hash join al-
gorithm is not straightforward due to the dependencies within the processing of a single tuple and the randomness
of hashing. In this paper, we have explored the potential for exploiting inter-tuple parallelism to schedule prefetches
effectively. Our prefetching techniques—group prefetching and software-pipelined prefetching—systematically re-
order the memory references of hash joins and schedule prefetches so that cache miss latencies in the processing of
a tuple can be overlapped with computation and miss latencies of other tuples. We developed generalized models to
better understand these techniques and successfully overcame the complexities involved with prefetching the hash join
algorithm.

Our results demonstrated that hash join cache performance can be improved dramatically through prefetching.
More interestingly, the techniques will still be effective even when the speed gap between processors and memory
increases significantly in the future (e.g., by a factor of six). Moreover, we believe that our techniques can improve
other hash-based algorithms such as hash-based group-by and aggregation algorithms, and other algorithms that have
inter-element parallelism.
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