Approximation Algorithms for Orienteering and
Discounted-Reward TSP

Avrim Blum! Shuchi Chawla! David R. Karger?
Terran Lane? Adam Meyerson® Maria Minkoff?

March 21, 2003
CMU-CS-03-121

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

In this paper, we give the first constant-factor approximation algorithm for the rooted Orienteering
problem, as well as a new problem that we call the Discounted-Reward TSP, motivated by robot
navigation. In both problems, we are given a graph with lengths on edges and prizes (rewards) on
nodes, and a start node s. In the Orienteering Problem, the goal is to find a path that maximizes the
reward collected, subject to a hard limit on the total length of the path. In the Discounted-Reward
TSP, instead of a length limit we are given a discount factor 7, and the goal is to maximize total
discounted reward collected, where reward for a node reached at time ¢ is discounted by ~?. This
is similar to the objective considered in Markov Decision Processes (MDPs) except we only receive
reward the first time a node is visited. We also consider several tree-variants on these problems
and provide approximations for those as well. Although the unrooted orienteering problem, where
there is no fixed start node s, has been known to be approximable using algorithms for related
problems such as k-TSP (in which the amount of reward to be collected is fixed and the total
length is approximately minimized), ours is the first to approximate the rooted question, solving
an open problem of [3, 1].

!Computer Science Department, Carnegie Mellon University. Research supported by CCR-0105488, I1S-0121678,
and CCR-0122581. email: {avrim,shuchi,adam}@cs.cmu.edu

*MIT Laboratory for Computer Science. email: {karger,mariam}@theory.lcs.mit.edu

3Department of Computer Science, University of New Mexico

Keywords: Approximation Algorithms, Traveling Salesman Problem, Prize Collecting TSP,
Orienteering, Robot Navigation, Markov Decision Processes

1 Introduction

Consider a robot with a map of its environment, that needs to visit a number of sites in order to
drop off packages, collect samples, search for a lost item, etc. One classic model of such a scenario
is the Traveling Salesman Problem, in which we ask for the tour that visits all the sites and whose
length is as short as possible. However, what if this robot cannot visit everything? For example,
it might have a limited supply of battery power. In that case, a natural question to ask is for the
tour that visits the maximum total reward of sites (where reward might correspond to the value
of a package being delivered or the probability that some lost item we are searching for is located
there), subject to a constraint that the total length is at most some given bound B. This is called
the (rooted) Orienteering Problem (“rooted”, because we are fixing the starting location of the
robot). Interestingly, while there have been a number of algorithms that given a desired reward
can approximately minimize the distance traveled (which yield approximations to the unrooted
orienteering problem), approximating the reward for the case of a fized starting location and fized
hard length limit has been an open problem.

Alternatively, suppose that battery power is not the limiting consideration, but we simply want
to give the robot a penalty for taking too long to visit high-value sites. For example, if we are
searching for a lost item, and at each time step there is some possibility the item will be taken (or,
if we are searching for a trapped individual in a dangerous environment, and at each time step there
is some probability the individual might die), then we would want to discount the reward for a site
reached at time t by ~¢, where 7 is a known discount factor. We call this the Discounted-Reward
TSP. This is similar to the classic setting of Markov Decision Processes [15, 14], except that we are
giving the robot a reward only for the first time it visits a site (and, we are assuming a deterministic
environment).

In this paper, we provide the first constant-factor approximations to both the (rooted) Orien-
teering and the Discounted-Reward TSP problems, and well as a number of variants that we discuss
below.

1.1 Motivation and Background

Robot navigation and path planning problems can be modeled in many ways. In the Theoretical
Computer Science and Optimization communities, these are typically modeled as kinds of Prize-
Collecting Traveling Salesman Problems [11, 4, 10, 3]. In the Artificial Intelligence community,
problems of this sort are often modeled as Markov Decision Processes [5, 6, 13, 14, 15]. Below we
give some background and motivation for our work from each perspective.

1.1.1 Markov Decision Process motivation

A Markov Decision Process (MDP) consists of a state space S, a set of actions A, a probabilistic
transition function 7', and a reward function R. An agent acting in an MDP, at any given time step
is located at a single state s € S, where he can choose an action a € A. An agent is subsequently
relocated to a new state s’ determined by the transition probability distribution T'(s'|s,a). The
probabilistic nature of the transition function allows one to model unreliability in the robot’s
behavior or external forces that might do something unpredictable to the robot’s state. At each
state s, an agent collects reward R(s). For example, a package-delivery robot might get a reward
every time it correctly delivers a package. Note that each action defines a probability distribution
of the next state; if actions were pre-determined, then we would get just a Markov chain.

In order to encourage the robot to perform the tasks that we want, and to do so in a timely
manner, a standard objective considered in MDPs is to maximize discounted reward. Specifically,
for a given discount factor v € (0,1), the value of reward collected at time ¢ is discounted by a
factor «*. Thus the total discounted reward, which we aim to maximize, is R = Y=o R(s)vt.
This guides the robot to get as much reward as possible as early as possible, and produces what in
practice turns out to be good behavior. One can also motivate exponential discounting by imagining
that at each time step, there is some fixed probability the game will end (the robot loses power,
a catastrophic failure occurs, the objectives change, etc.) Exponential discounting also has the
nice mathematical property that it is time-independent, meaning that an optimal strategy can be
described just by a policy, a mapping from states to actions. The goal of planning in an MDP is to
determine the optimal policy: the mapping of states to actions that maximizes expected discounted
reward E [Ryo].

There are well-known algorithms for solving MDPs in time polynomial in the state space [5,
14, 15]. However, one drawback of the MDP model is that if a state has a reward, then the robot
receives this reward every time that state is visited (or every time the robot performs that action
from that state if rewards are on state-action pairs). Thus, in order to model a package-delivery or
search-and-rescue robot, one would need a state not only for each location of the robot, but also for
its internal state of which locations have been visited so far and which are still to go. This could be
quite large if there are many locations. For this reason, we would like to be able to directly model
the case of rewards that are given only the first time a state is visited.

As a first step towards tackling this general problem, we abandon the stochastic element and
restrict to deterministic, reversible actions. This leads us to study the Discounted-Reward Travel-
ing Salesman Problem, in which we assume we have an undirected weighted graph (edge weights
represent the time to traverse a given edge), with a prize (reward) value 7, on each vertex v, and
our goal is to find a path visiting each vertex v at time ¢, so as to maximize 3 m,y'.

1.1.2 PC-TSP and Orienteering problems

A different way to model the goal of collecting as much reward as possible as early as possible is as
a Prize-Collecting Traveling Salesman (PC-TSP) or Orienteering Problem [4, 11, 10, 3, 1]. In the
PC-TSP, a salesman is required to collect at least some given amount of reward, while minimizing
the distance traveled (in a roughly equivalent problem, k-TSP, every node has a prize of one unit
and the salesman is required to visit at least k¥ nodes). In the Orienteering problem, one instead
fixes a deadline D (a maximum distance that can be traveled) and aims to mazimize total reward
collected by that time.

There are several approximations known for the PC-TSP and k-TSP problems [9, 2, 8, 7, 3],
the best being a 2-approximation due to Garg[9]. Most of these approximations are based on
a classic Primal-Dual algorithm for the Prize Collecting Steiner Tree problem, due to Goemans
and Williamson [10]. These algorithms for PC-TSP extend easily to the unrooted version of the
Orienteering problem in which we do not fix the starting location [12, 3]. In particular, given a path
of value II but whose length is ¢D for some ¢ > 1, we can just break the path into ¢ pieces of length
at most D, and then take the best one, whose total value will be at least IT/c. However, this doesn’t
work for the rooted problem because the “best piece” in the above reduction might be far from the
start. Arkin et. al [1] give a constant-factor approximation to the rooted Orienteering problem for
the special case of points in the plane. However, there is no previously known O(1) approximation
algorithm for the rooted Orienteering Problem or Discounted-Reward TSP in general graphs.

In this paper, we give constant factor approximation algorithms for both the above problems.

To do this, we devise a min-excess approximation algorithm for Prize Collecting TSP that approx-
imates to within a constant factor the optimum difference between the length of a prize-collecting
path and the length of the shortest path between its endpoints. Note that this is a strictly better
guarantee than what can be obtained by using an algorithm for k-TSP which would return a path
that has length at most a constant multiple times the total optimal length from s to t.

Using an approximation of agc for the min-cost cycle (k-TSP) problem as a subroutine, we get
an agp = 3acc + 1 approximation for minimizing the min-excess (s, t)-path problem, a 1+ [agp]
approximation for Orienteering, and a roughly e(agp + 1) approximation for Discounted-Reward
TSP. Garg [9] has announced an algorithm with acc = 2, so using this we get constants of 4, 5,
and 12.21 for these problems respectively. Using a 2 + € approximation of Arora and Karakostas
[2], these factors will increase slightly.

The rest of this paper is organized as follows. We begin with some definitions in section 2.
Then we give an algorithm for min-excess path in section 3, followed by algorithms for Discounted
PC-TSP and Orienteering in sections 4 and 5 respectively. In section 6 we extend some of the
algorithms to MST versions of the problems. We conclude in section 7.

2 Notation and Definitions

Let G = (V,E) be a weighted undirected graph, with a distance function on edges, d : E — R,
and a prize or reward function on nodes, m: V — R*. Let m, = 7(v) be the reward on node v. Let
s € V denote a special node called the start or root.

For a path P visiting u before v, let d” (u, v) denote the length along P from u to v. Let d(u,v)
denote the length of the shortest path from node u to node v. For ease of notation, let d, = d(s,v)
and d” (v) = d¥(s,v). For a set of nodes V! C V, let II(V') = 3", -1 my. For a set of edges E' C E,
let d(E') =3, cpr d(e).

Our problems aim to construct a certain subgraph—a path, tree, or cycle, possibly with addi-
tional constraints. Most of the problems attempt a trade-off between two objective functions: the
cost of the path (or tree, or cycle), and total prize spanned by it. From the point of view of exact
algorithms, we need simply specify the cost we are willing to tolerate and the prize we wish to span.
Most variants of this problem, however, are NP-hard, so we focus on approximation algorithms.
We must then specify our willingness to approximate the two distinct objectives. We refer to a
min-cost problem when our goal is to approzimately minimize the cost of our objective subject to a
fixed lower bound on prize (thus, prize is a feasibility constraint while our approximated objective
is cost). Conversely, we refer to a maz-prize problem when our goal is to approzimately maximize
the prize collected subject to a fixed upper bound on cost (thus, cost is a feasibility constraint
while our approximated objective is prize). For example, the min-cost tree problem is the tradi-
tional k-MST: it requires spanning k prize and aims to minimize the cost of doing so. Both the
rooted and unrooted min-cost tree problems have constant-factor approximations. The max-prize
path problem, which aims to find a path of length at most D from the start node s that visits a
maximum amount of prize, has been referred to as the orienteering problem.

The main subroutine in our algorithms requires also introducing a variation on approximate cost.
Define the ezcess of a path P from s to ¢ to be d¥(s,t) —d(s,t), that is, the difference between that
path’s length and the distance between s and ¢ in the graph. Obviously, the minimum-excess path
of total prize II is also the minimum-cost path of total prize II; however, a path of a constant factor
times minimum cost need not have only a constant-factor times the minimum excess. We therefore
consider separately the minimum ezcess path problem. Note that an (s,t) path approximating
the optimum excess € by a factor a will have length d(s,t) + ae < a(d(s,t) + €) and therefore

approximates the minimum cost path by a factor a as well. Achieving a good approximation to
this min-excess path problem will turn out to be a key ingredient in our approximation algorithms.

Finally, as discussed earlier, we consider a different means of combining length and cost moti-
vated by applications of Markov decision processes. We introduce a discount factor v < 1. Given
a path P rooted at s, let the discounted reward collected at node v by path P be defined as
pl = m,'ydp(s’”). That is, the prize gets discounted exponentially by the amount of time it takes
for the path to reach node v. The maz-discounted-reward problem is to find a path P rooted at s,
that maximizes p*’ = Y, _p pf'. We call this the discounted-reward TSP. Note that the length of
the path is not specifically bounded in this problem, though of course shorter paths produce less
discounting.

2.1 Results

We present a constant-factor approximation algorithm for the max-prize path (rooted Orienteering)
problem, solving an open problem of [3, 1], as well as the discounted-reward TSP. Central to our
results is a constant-factor approximation for the min-ezxcess path problem defined above, which uses
an algorithm for the min-cost cycle (k-TSP) problem as a subroutine. We also give constant-factor
approximations to several related problems, including the max-prize tree problem—the “dual” to
the k-MST (min-cost tree) problem—and max-prize cycle. Specific constants are given in Figure 1.

Our approximation algorithms reflect a series of reductions from one approximation problem
to another. Improvements in the approximations for various problems will propagate through. We
state approximation factors in the form axy where XY denotes the problem being approximated;
the first letter denotes the objective (cost, prize, excess, or discounted prize denoted by C, P, E,
and D respectively), and the second the structure (path, cycle, or tree denoted by P, C, or T
respectively).

Problem Current approx. | Source/Reduction
min-cost tree (acr) 2+¢€ 2]

min-cost cycle (acc) 2 [9]

min-cost s-t path (acp) 3 1+ ace

min-excess path (agp) 4 3(acp) — 3

max discounted path (app) | 3125/256 ~ 12.21 | (1 + agp)(1 + 1/agp)*=?
max-prize path (app) 5 1+ [agp]

max-prize tree (apr) 10 2app

max-prize cycle (apc) 10 2app

Figure 1: Approximation factors and reductions for our problems.

2.2 Preliminaries

To support dynamic programming in the max-prize variants, we begin by scaling all prizes to
polynomially bounded integers (in the number of vertices n). We can do this by guessing the value
IT of the optimum solution via binary search! and multiplying all prizes by n?/II, yielding a graph

with optimal prize value n?. If we now round every prize down to the nearest integer, we lose

!Technically we will be finding the highest value II such that our algorithm comes within its claimed approximation
ratio.

at most n units of prize, which is a negligible multiplicative factor. Likewise, for the min-cost or
min-excess variants, we can assume that the given prize value II is polynomially bounded.

This negligible factor does mean that an approximation algorithm with guarantee ¢ on polyno-
mially bounded inputs has (weaker) guarantee “arbitrarily close to ¢” on arbitrary inputs.

Let nodes in V' be ordered from v; = s through v, in order of their distance from s. (Note
that ¢ is not necessarily the last vertex in this order). Let d; = d(s,v;), so dy < dy < - < d,. For
convenience in the analysis, we assume all d; are distinct (in the algorithm we can handle equal
distances by breaking ties lexicographically).

3 Min-Excess Path

Let P* be the shortest path from s to ¢ with II(P*) > k. Let e(P*) = d(P*) —d(s,t). Our algorithm
returns a path P of length d(P) = d(s,t) + agpe(P*) with II(P) > k, where agp = 3acc + 1.
Thus we obtain a 4-approximation to min-excess path using an algorithm of Garg for k-TSP with
acc = 2.

We will use as a subroutine an algorithm for the easier min-cost path problem, in which the
goal is just to approximate the total path length; that is, we want a path from s to ¢ that collects
prize at least k and has total length at most acpd(P*). We can achieve this with acp = acc +1
by the following algorithm that we will call MCP. MCP begins by merging s and t to a vertex
r, and solving k-TSP with root . The original path solution has become a (feasible) cycle, so
the optimum cycle length is at most d(P*), meaning we find an approximate solution of length
accd(P*). On the original graph, this solution may be a path from s to ¢, in which case we are
done. Alternately, it is either a cycle ending at s, or two disjoint cycles: one at s and one at t.
In these latter cases, we simply add a shortest s-t path (which is clearly no longer than d(P*)),
increasing the approximation ratio by at most 1.

Now we return to the harder Min-Excess Path (MEP) problem. The idea for our algorithm is
as follows. Suppose that the optimum solution path encounters all its vertices in increasing order
of distance from s. We call such a path monotonic. We can find this optimum monotonic path via
a simple dynamic program: for each possible prize value p and for each vertex ¢ in increasing order
of distance from s, we compute the minimum excess path that starts at vertex s, ends at 7, and
collects prize at least p.

We will solve the general case by breaking the optimum path into continuous segments that
are either monotonic (so can be found optimally as just described) or “wiggly” (generating a large
amount of excess). We will show that the total length of the wiggly portions is comparable to the
excess of the optimum path; our solution uses the optimum monotonic paths and approximates the
length of the wiggly portions by a constant factor, yielding an overall increase proportional to the
excess.

Consider the optimal path P* from s to . We divide it into segments in the following manner.
For any real d, define f(d) as the number of edges on P* with one endpoint at distance < d from s
and the other endpoint at distance > d from s. Note that f(d) > 1 for all 0 < ¢ < d; (it may also be
nonzero for some d > d;). Note also that f is piecewise constant, changing only at distances equal
to vertex distances. We break the real line into intervals according to f: the type one intervals
are the maximal intervals on which f(d) = 1; the type 2 intervals are the maximal intervals on
which f(d) > 2. These intervals partition the real line (out to the maximum distance reached by
the optimum solution) and alternate between types 1 and 2. Let the interval boundaries be labeled
0 =by < by--- by, where by, is the maximum distance of any vertex on the path, so that the i**
interval is (b;,bi+1). Note that each b; is the distance label for some vertex. Let V; be the set of

type 1 type 2 type 1 type 2 type 1 type 2

Figure 2: Segment partition of a path in graph G

vertices whose distance from s falls in the i*” interval. Note that the optimum path traverses each
set V; exactly once—once it leaves some V; it does not return. One of any two adjacent intervals
is of type 1; if the path left this interval and returned to it then f(d) would exceed 1 within the
interval. Thus, the vertices of P* in set V; forms a contiguous segment of the optimum path which
we label as S§; = P* NV;.

A segment partition is shown in Figure 2.

Note that for each i, there may be (at most) 1 edge crossing from V; to V1. To simplify the
next two lemmas, let us split that edge into two with a vertex at distance b; from s, so that every
edge is completely contained in one of the segments (this can be done since one endpoint of the
edge has distance exceeding b; and the other endpoint has distance less than b;). Placing a vertex
at each interval boundary ensures that the length of a segment is equal to the integral of f(d) over
its interval.

Lemma 3.1. A segment S; of type 1 has length at least bj11 — b;. A segment S; of type 2 has
length at least 3(bi+1 — b;), unless it is the segment containing t in which case it has length at least
3(de — bi).

Proof. The length of segment S; is lower bounded by the integral of f(d) over the ** interval. In
a type 1 interval the result is immediate. For a type 2 interval, note that f(d) > 1 actually implies
that f(d) > 3 by a parity argument—if the path crosses distance d twice only, it must end up at
distance less than d. O

Corollary 3.2. The total length of type-2 segments is at most 3¢/2.

Proof. Let £; denote the length of segment i. We know that the length of P* is d;y + e =) /¢;. At
the same time, we can write

dtSbm

m—1

:Z(bi+1_bi)
< Z 4+ Z ¢i/3

i type 1 i type 2

It follows that

e:ZEi—dt
> > 24/3

i type 2
Multiplying both sides by 3/2 completes the proof. U

Having completed this analysis, we note that the corollary remains true even if we do not
introduce extra vertices on edges crossing interval boundaries. The crossing edges are no longer
counted as parts of segments, but this only decreases the total length of type 2 segments.

3.1 A Dynamic Program

Our algorithm computes, for each interval that might be an interval of the optimum solution, a
segment corresponding to the optimum solution in that interval. It then uses a dynamic program
to paste these fragments together using (and paying for) edges that cross between segments. The
segments we compute are defined by 4 vertices: the closest-to-s and farthest-from-s vertices, ¢ and
f, in the interval (which define the start- and end-points of the interval: our computation is limited
to vertices within that interval), and the first and last vertices, and y, on the segment within
that interval. They are also defined by the amount p of prize we are required to collect within the
segment. There are therefore O(IIn*) distinct segment to compute, where II is the total prize in
the graph. For each segment we find an optimum solution for a type 1 and a type 2 interval. For
a type-1 interval the optimum path is monotonic; we can therefore compute (in linear time) an
optimum (shortest) monotonic path from x to y that collects prize p. If the interval is of type 2,
the optimum path need not be monotonic. Instead, we approximate to within a constant factor
the minimum length of a path that starts at z, finishes at y, stays within the boundaries of the
interval defined by ¢ and f, and collects prize at least p.

Given the optimum type 1 and near-optimum type-2 segment determined for each set of 4
vertices and prize value, we can find the optimal way to paste some subset of them together
monotonically using a dynamic program. Note that the segments corresponding to the optimum
path are considered in this dynamic program, so our solution will be at least as good as the one we
get by using the segments corresponding to the ones on the optimum path (i.e., using the optimum
type-1 segments and using the approximately optimum type-2 segments). We need only show that
this solution is good.

We focus on the segments corresponding to the optimum path P*. Consider the segments S; of
length £; on the optimum path. If S; is of type 1, our algorithm will find a (monotonic) segment
with the same endpoints collecting the same amount of prize of no greater length. If S; is of type
2, our algorithm (through its use of subroutine MCP) will find a path with the same endpoints
collecting the same prize over length at most acpf;. Let L1 denote the total length of the optimum
type 1 segments, together with the lengths of the edges used to connect between segments. Let Lo
denote the total length of the optimum type 2 segments. Recall that L; + Lo = d; + € and that (by
Corollary 3.2) Ly < 3¢/2. By concatenating the optimum type-1 segments and the approximately
optimum type-2 segments, the dynamic program can (and therefore will) find a path collecting the

same total prize as P* of total length
Ly +acpLly = L1 + Ly + (acp — 1) Ly
S dt +e+ (Otcp — 1)(36/2)
3 1
= dt + (EOéCP — 5) €.

In other words, we approximate the minimum excess to within a factor of %ac pP— %

4 Maximum Discounted-Prize Path

Recall that we aim to optimize p(P) = S 4% 7,. Assume without loss of generality that the

discount factor is 7 = 1/2—we simply rescale each length £ to # such that 7 = (%)el, ie. 0=

£logy(1/7).

We first establish a property of an optimal solution that we make use of in our algorithm. Define
the scaled prize 7' of a node v to be the (discounted) reward that a path gets at node v if it follows
a shortest path from the root to v. That is,), = m,y%. Let II'(P) = 3, . p 5. Note that for any
path P, the discounted reward obtained by P is at most IT'(P).

Now consider an optimal solution P*. Fix a parameter € that we will set later. Let ¢ be the last
node on the path P* for which df’ " —d; < e—i.e., the excess of path P* at ¢ is at most e. Consider
the portion of P* from root s to ¢. Call this path P}.

Lemma 4.1. Let P} be the part of P* from s to t. Then, p(P}) > p(P*)(1 — 2%)

Proof. Assume otherwise. Suppose we shortcut P* by taking a shortest path from s to the next
node visited by P* after ¢. This new path collects (discounted) rewards from the vertices of P*— P;',
which form at least 2% of the total by assumption. The shortcutting procedure decreases the distance
on each of these vertices by at least €, meaning these rewards are “undiscounted” by a factor of
at least 2¢ over what they would be in path P*. Thus, the total reward on this path exceeds the
optimum, a contradiction. O

It follows that we can approximate p(P*) by approximating p(P;*). Based on the above obser-
vation, we give the algorithm of Figure 3 for finding an approximately optimal solution. Note that
“guess t” and “guess k” are implemented by exhausting all polynomially many possibilities.

Our analysis below proceeds in terms of & = agp, the approximation factor for our min-excess
path algorithm.

Lemma 4.2. Qur approzimation algorithm finds a path P that collects discounted reward p(P) >
Ir'(P)/2%c.

Proof. The prefix P} of the optimum path shows that it is possible to collect scaled prize k = II'(P})
on a path with excess e. Thus, our approximation algorithm finds a path collecting the same scaled
prize with excess at most ae. In particular, the excess of any vertex v in P is at most ae. Thus,
the discounted reward collected at v is at least

1 dy+ae
pv) > , (5)

() (2)

Algorithm for Discounted PC-TSP

1. Re-scale all edge lengths so that v = 1/2.

2. Replace the prize value of each node with the prize discounted by the shortest path to that
node: 7! = y%m,. Call this modified graph G'.

3. Guess t—the last node on optimal path P* with excess less than e.
4. Guess k—the value of IT'(P}).

5. Apply our min-excess path approximation algorithm to find a path P collecting scaled prize
k with small excess.

6. Return this path as the solution.

Figure 3: Approximation for Maximum Discounted-Prize Path

Summing over all v € P completes the proof. O
Combining Lemma 4.2 and Lemma 4.1, we get the following:

Theorem 4.3. The solution returned by the above algorithm has p(P) > (1 — o) p(P*) /2.

Proof.
p(P) >1'(P) /2% by Lemma 4.2
> IT'(Pf) /2% by choice of P
> p(Py) /2% by definition of 7’
> (1 - —) p(P*)/2%¢ by Lemma 4.1

O

We can now set € as we like. Writing £ = 27¢ we optimize our approximation factor by
maximizing (1 — z)z®2? to deduce z = a/(a+1). Plugging in this z yields an approximation ratio
of (1 + OtEp)(l + 1/04Ep)aEP.

5 Orienteering

We would like to compute the maximum-prize path of length at most D, starting at s. We will use
the algorithm for min-excess path given in section 3 as a subroutine. Our algorithm is in Figure 4.
As can be seen from our algorithm, we solve Max-Prize Path by directly invoking our Min-
Excess Path algorithm. Our analysis consists of showing that any optimum orienteering solution
contains a low-excess path which, in turn, is an approximately optimum orienteering solution.
More precisely, we prove that for some vertex v, there exists a path from s to v with excess at
most 2= i” which collects prize at least -=— anp (here agp is the approximation ratio for min-excess
path, app is the desired approximation ratio for Max-Prize Path, and 7* is the prize of the optimum
Max-Prize Path). Assuming this path exists, our min-excess path computation on this vertex v

Algorithm for Maz-Prize Path (Orienteering)

1. Perform a binary search over values k.
2. For each vertex v, compute min-excess path from s to v collecting prize k.

3. Find the maximum k such that there exists a v where the min-excess path returned has length
at most D; return this value of k£ and the corresponding path .

Figure 4: Algorithm for Max-Prize Path (Orienteering)

will find a path with total length at most d, + agp2=% an d” = D and prize at least [— = providing an
app-approximation for orienteering.

We first consider the case where the optimum orienteering path travels from s to ¢, and where
t is further from s than any other point on the optimum path.

Lemma 5.1. If there is a path from s to t of length at most D which collects prize w, such that t
1s the furthest point from s along this path, then there is a path from s to some node v with excess
at most % and prize at least 7 (for any integer r > 1).

Proof. For each point a along the original path P, let €(a) = d) — d; in other words, ¢(a) is the
excess in the length of the path to a over the shortest-path distance. We have €(t) < D—d;. Consider
mapping the points on the path to a line from 0 to €(t) according to their excess (we observe that
excess only increases as we traverse path P). Divide this line into r intervals with length e(r—t) Some
such interval must contain at least T prize, since otherwise the entire interval from 0 to €(t) would
not be able to collect prize w. Suppose such an interval starts with node a and ends with node v. We
consider a path from s to v that takes the shortest s-a path, then follows path P from a to v. This
path collects the prize of the interval from a to v in the original path, which is a prize of at least T
as desired. The total length of this path is dy +d” (a,v) = do+dFf —dl = dy+e(v) —e(a) < dy+ f(t)

«t) _ Dodi < Dt 'O

The excess of this path is

Of course, in general the optimum orienteering path might have some intermediate node which
is further from s than the terminal node t. We will generalize the above lemma to account for this
case.

Lemma 5.2. If there is a path from s to t of length at most D which collects prize w, then there
is a path from s to some node v with ezcess at most 2= d” and prize at least 25 (for any integer
r>1).

Proof. Let f be the furthest point from s along the given path P. We are interested in the case
where f # t. We can break path P into two pieces; first a path from s to f and then a path from
f to t. Using the symmetry of our metric, we can produce a second path from s to f by using the
shortest path from s to ¢ and then following the portion of our original path from f to ¢ in reverse.
We now have two paths from s to f, each of which has length at most D. The total length of these
paths is bounded by D + d;. We will call our paths A and B, and let their lengths be d; + 4 and
dy + ép respectively. We now map path A to the interval from 0 to d4 according to the excess at
each point, much as in lemma 5.1. We consider dividing this interval into pieces of length @
(the last sub-interval may have shorter length if §4 does not divide evenly). We perform the same

10

process on path B. We have created a total of r 4+ 1 intervals (this relies on the assumption that r

is integral, allowing us to bound the sum of the ceilings of the number of intervals for each path).

We conclude that some such interval has prize at least H_Ll We suppose without loss of generality

that this interval spans a portion of path A from a to v. We now consider a path which travels

from s to a via the shortest path and then from a to 'Z following path A. The length of this path
—af

is bounded by d, + @ for an excess of at most DT < D%‘i” as desired. O

Making use of lemma, 5.2, we can prove that our algorithm for orienteering obtains a constant
approximation. Making use of Garg’s approximation for k-MST[9] along with our result on min-
excess path from section 3, we have a 5-approximation for Orienteering.

Theorem 5.3. There is an ([agp|+1)-approzimation for the maz-prize path (orienteering) prob-
lem, where agp is the approximation factor for min-excess path.

Proof. Lemma 5.2 implies that there exists a path from s to some v with excess %‘zj’ obtaining
prize [a#fh-l' Such a path has length d, + % ;‘i”, implying that the approximation algorithm for

min-excess will find a path from s to v with length at most d, + (D — d,) = D and at least the
same prize. The algorithm described will eventually try the proper values of £ and v and finds
such a path in polynomial time (actually the approximation factor will be [agp]| + 1 + € and the
running time will depend logarithmically on % and the ratio of maximum to minimum feasible k&
values because of the binary search step; note that this running time is still polynomial in the size
of the input). O

6 Extensions: Budget Prize Collecting Steiner Tree

In this section, we consider the tree variant of the Orienteering problem, called Max-Prize Tree in
our notation. Namely, given a graph G with root r, prize function 7 and lengths d, we are required
to output a tree 7 rooted at r with d(7) < D and maximum possible reward II(7). This problem
is also called the Budget Prize-Collecting Steiner Tree problem [12].

Let the optimal solution for this problem be a tree 7*. Double the edges of this tree to obtain
an Euler tour of length at most 2D. Now, divide this tour into two paths, each starting from the
root r and having length at most D. Among them, let P’ be the path that has greater reward. Now
consider the Max-Prize Path problem on the same graph with distance limit D. Clearly the optimal
solution P* to this problem has II(P*) > II(P') > @ Thus, we can use the app-approximation
for Orienteering to get a 2app-approximation to 7.

7 Conclusions

References

[1] E. M. Arkin, J. S. B. Mitchell, and G. Narasimhan. Resource-constrained geometric network
optimization. In Symposium on Computational Geometry, pages 307-316, 1998.

[2] S. Arora and G. Karakostas. A 2 + e approximation algorithm for the k -MST problem. In
Symposium on Discrete Algorithms, pages 754759, 2000.

[3] B. Awerbuch, Y. Azar, A. Blum, and S. Vempala. Improved approximation guarantees for
minimum-weight k-trees and prize-collecting salesmen. Siam J. Computing, 28(1):254-262,
1999.

11

[4]
[5]
[6]
[7]

[11]

[12]

[13]

[14]
[15]

E. Balas. The prize collecting traveling salesman problem. Networks, 19:621-636, 1989.
D. P. Bertsekas. Dynamic Programming and Optimal Control. Athena Scientific, 1995.
D. P. Bertsekas and J. N. Tsitsiklis. Neural Dynamic Programming. Athena Scientific, 1996.

A. Blum, R. Ravi, and S. Vempala. A constant-factor approximation algorithm for the k-MST
problem. JCSS, 58:101-108, 1999.

N. Garg. A 3-approximation for the minimum tree spanning k vertices. In Proceedings of the
37th Annual Symposium on Foundations of Computer Science, pages 302-309, October 1996.

N. Garg. Personal communication. September, 1999.

M. Goemans and D. Williamson. A general approximation technique for constrained forest
problems. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 307-315, 1992.

B.L. Golden, L. Levy, and R. Vohra. The orienteering problem. Nawval Research Logistics,
34:307-318, 1987.

D. Johnson, M. Minkoff, and S. Phillips. The prize collecting steiner tree problem: Theory and
practice. In Proceedings of the 11th Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 760-769, 2000.

L. P. Kaelbling, M. L. Littman, and A. W. Moore. Reinforcement learning: A survey. Journal
of Artificial Intelligence Research, 4, 1996.

M. L. Puterman. Markov Decision Processes. Wiley, 1994.

R. S. Sutton and A. G. Barto. Reinforcement Learning: An Introduction. MIT Press, 1998.

12

