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Abstract

We describe two robotic systems [6] for acquiring high-resolution volumetric
maps of underground mines. Our systems have been deployed in an operational
coal mine in Bruceton, Pennsylvania, where they have been used to generate
interactive 3-D maps. Our approach includes a novel sensor head, assembled
from multiple SICK laser range finders, and a real-time algorithm for scan match-
ing that generates accurate volumetric maps. The scan matching algorithm per-
forms horizontal and vertical simultaneous localization and mapping (SLAM).
Data from the horizontal scans is used to remove artifacts in the vertical scans,
and vice versa. The system can construct full 3-D volumetric maps hundreds of
meters in diameter, even when no odometry information is available.

Keywords: Robot mapping, mine mapping, mobile robotics, probabilistic
robotics



1 Introduction

Throughout the industrialized world, the lack of accurate maps of inactive, un-
derground mines poses a serious threat to public safety. According to a recent
article [1], “Tens of thousands, perhaps even hundreds of thousands, of aban-
doned mines exist today in the United States. Not even the U.S. Bureau of Mines
knows the exact number, because federal recording of mining claims was not re-
quired until 1976.”1 In July of 2002, nine miners were nearly killed in the Que-
Creek Mine in Somerset, Pennsylvania when they accidentally drilled into the
abondoned Saxmon Mine, releasing millions of gallons of water in the QueCreek
mine. This accident highlights the pressing need for accurate maps of abandoned
mines.

Hazardous operating conditions and difficult access routes suggest that robotic
exploration and mapping of abondoned mines may be necessary. Robotic mine
mapping has been pursued by various research groups around the world. Corke
and colleagues [3] have built vehicles that can acquire and utilize accurate 2-D
maps of flat mines. Similarly, Baily [14] reports 2-D mapping results of an un-
derground area using advanced mapping techniques. The mine mapping problem
is made challenging by the lack of global position information underground. As
a result, mine mapping must be approached as a simultaneous localization and
mapping, or SLAM, problem [4, 8, 13, 16]. The robot must construct a map of the
mine, while estimating its own position at the same time. The SLAM problem is
known to be particularly difficult when the environment possesses loops [5, 15].
Unfortunately, mines typically contain a large number of cycles, and we know of
no robotic system that could handle such maps. Moreover, none of the existing
robotic mine mapping systems produce accurate volumetric 3-D maps.

The systems described in this paper are capable of generating volumetric 3-D
models of mines. Our first system makes the common (but unrealistic) assump-
tion of a flat floor inside the mine. This system has been used to generate accurate
volumetric maps of relatively flat mines. The second, more elaborate system does
not rely on a flat world assumption. It uses multiple range finders to generate

1See the course page http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/ class/16861-f02/www/
for more information.
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accurate volumetric maps for mines that change elevation. At the core of both
systems are 2-D laser range finders, which are used for position referencing and
for the recovery of the volumetric structure of a mine. Our initial system used
two such sensors, one for each of the two functions described above. To accom-
modate uneven terrain, our second system uses four sensors, effectively extending
the mine mapping capabilities of our first system into a vertical dimension. We
present in this paper a new scan matching algorithm that exploits the overlapping
laser range scans, to correct for noise and alignment errors in the data. The result-
ing mine maps are highly accurate 3-D models that can be visualized interactively
by mining staff.

2 The Systems

Figures 1 and 2 show our two volumetric mine mapping systems. Our first proto-
type, shown in Figure 1, consists of a modified Pioneer AT robot. It is equipped
with two SICK laser range finders, one pointing forward parallel to the floor, and
one pointing upward perpendicular to the robot’s heading direction. In addition,
the robot is equipped with two wheel encoders to measure approximate robot mo-
tion. The forward-pointing laser scanner is used for simultaneous localization
and mapping (SLAM) in 2-D. Using this data, the robot acquires an accurate 2-D
map of the environment. The upward-pointing laser is used to reconstruct the 3-D
shape of the walls and the ceiling of the mine, registered in space according to
position estimates gathered from the 2-D map.

The limitations of the robotic system are immediately apparent. First and
foremost, the system is confined to flat surfaces, due to its inability to sense or
incorporate variations in elevation while performing SLAM. In this way, the sys-
tem bears close resemblance to existing work on volumetric mapping of indoor
environments [11, 7, 9], which principally lacks an extension into the third, verti-
cal dimension when performing SLAM. Additionally, the robot platform was not
rugged enough to handle the uneven, frequently wet terrain common in mines.
Most notably, the robot was not able to cross rail-road tracks used to transport ore
inside the mine.

To overcome these limitations, we developed the sensor cart assembly shown
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Figure 1: Mine mapping robot with two laser range finders.

in Figure 2. This system is equipped with four SICK laser range finders. Two of
these sensors point forward, but with a ninety degree offset in orientation. With
this configuration, SLAM can be performed horizontally and vertically, capturing
the missing dimension in the SLAM process. The other two lasers are mounted
perpendicular to the motion direction of the cart, one pointing up (as on our robot),
and one pointing down to map the texture of the floor and the lower portions of the
wall. The four lasers together can acquire a full 3-D map of the mine, even under
uneven terrain. Unfortunately, our cart is not equipped with odometry sensors.
Hence highly accurate scan matching is essential in order to acquire large mine
maps. The cart is pulled manually through a mine during mapping.

3 Software

Our approach is based on previous work on building large-scale 2-D maps of
cyclic environments [17]. As such, it builds on a large body of literature on scan
matching [5, 10] and probabilistic SLAM [4, 16]. However, the use of our new
sensor assembly makes it possible to combine two processes of scan matching—
one in the vertical dimension and one in the horizontal dimension—which is a
key capability necessary to build maps of the scale and accuracy presented in
this paper. All software described in this section (with the exception of the off-
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Figure 2: Mine mapping cart with four laser range finders, for our new 4x2-D volumetric mapping
approach.

the-shelf VRML viewer) is incremental and is executed in real-time, on laptop
computers.

3.1 2-D SLAM

The robotic system shown in Figure 1 uses an improved version of the scan match-
ing algorithm described in [17] for performing simultaneous localization and map-
ping (SLAM) in two dimensions. In essence, the problem is one of determining
the shape of the environment from local sensors and (in the case of our robot)
odometry data, while the same some maintaining an estimate of the robot’s rela-
tive location and orientation in its ever-growing map. Our approach relies on scan
matching as the basic mechanism for aligning scans. In doing so, it can eliminate
the odometric error between subsequent scans almost entirely. Error that remains
is due to multiple factors, such as the effect of uneven flooring and the noise in
the sensor measurements.

Our approach deviates from our previous work in [17] in the way we perform
the scan matching. Instead of matching scan points directly, our approach gener-
ates a local map out of a set of recent scans. Such maps are usually quite accurate,
because they are constructed using scans that were nearly aligned already. To cope
with errors and discontinuities in the maps stemming from residual errors in the
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Figure 3: Two-dimensional scan alignment. Map created out of the most recent scans (left image),
range scan measurement (center image), and resulting alignment (right image).

range registration process and discretization errors, we convolve this map with a
Gaussian kernel. One advantage of this technique is that the every incoming scan
is compared to a consistent local map, which reduces potential errors introduced
by occluded portions of the environment or areas which have not been scanned
due to the limited angular resolution of the scanner. The standard point-matching
approach can diverge in cases where there is no odometry present (as is the case
for our cart): in such situations, the match successively increases the distance be-
tween these scans, as an artifact of the exact spacing of the points in the scan.
Second, the results of our approach are an order of magnitude more accurate. The
scan alignment makes it possible to traverse hundreds of meters while maintain-
ing an overall error in the centimeter range. Such accuracies were impossible to
achieve using our previous software, and they are a direct result of our improved
scan matching representation. Figure 3 shows a typical application of the range
registration. The left image depicts the reference map constructed from 50 scans.
The center image contains the scan that is aligned with this map. The right image
shows the final position of the scan after applying the range registration procedure.

3.2 2x2-D SLAM

The key innovation of this paper is the use of two forward-pointed laser scanners,
for performing SLAM simultaneously in both the horizontal and the vertical di-
rection. At first glance, one might be tempted to simply run two such processes in
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Figure 4: Surface visualization using past scan matching techniques (top), compared to a mine
view using our present scan matching process (bottom). In 3-D, the difference of improved scan
matching is much more apparent than in 2-D.

parallel, resulting in accurate 2-D cross-sectional maps of the mine that together
allow for a recovery of the 3-D structure (under the obvious assumption that over-
all, the floor of the mine is not slanted sidewards). However, such a methodology
is prone to fail in real mines.

The reason for such failure lies in the effect that variations in one dimension
have on the measurements in the other. Consider, for example, a dip in the floor
of the mine. This is clearly a vertical feature, and the vertical SLAM process
can easily measure and map such a relief feature. However, as the cart is being
moved through the mine, its horizontal sensor may see the ground, creating a
‘phantom’ obstacle in front of the robot. Phantom obstacles are usually fatal to
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Figure 5: A 2-D map of the mine, acquired by our first system under a flat surface assumption.
This 2D map is used for scan registration to localize the robot during mapping.

scan matching-based SLAM algorithms, a detection of the ground plane with the
horizontal sensor appears as a massive obstacle in front of the robot. If these
readings are used in the scan matching process, the robot will suffer unrecoverable
errors in its longitudinal motion estimates. By symmetry, the same effect will
corrupt the measurements of the vertical sensor. When the robot turns a corner,
the vertical sensor will measure phantom objects that cannot be explained by a
vertical view of the world alone; rather, these readings correspond to side walls
that are being mapped by the horizontal sensor.

To accommodate for this interplay of horizontal and vertical structure, our
system uses the vertical sensor to filter out phantom measurements in the horizon-
tal sensor, and vice versa. In particular, we rely on the vertical sensor to detect
when the horizontal sensor is close to detecting the ground plane. Our system
uses the horizontal sensor to detect phantom objects in the vertical scans, which
occur when the system turns or the mine is not straight, and the laser hits a side
wall. This procedure automatically removes artifacts from the sensor measure-
ments that result from the fact that the system is operating in an environment with
non-trivial horizontal and vertical structure. Empirically, we found this approach
to be necessary for the success of both SLAM components in mines with uneven
surface properties. Since at the core, SLAM is still performed at a 2-D level (and
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Figure 6: Sequence of 3-D visualizations of the planar surface volumetric mine map, acquired
with the mobile robot. Shown in red are the sensor measurements used for generating the mine
map.

not the full 3-D level due to the lack of full range cameras), we call the resulting
approach 2x2-D SLAM.

3.3 3D Reconstruction

The 3-D volumetric reconstruction is achieved by using the remaining sensors,
pointed upwards and (in the case of the cart) downwards in a direction perpendic-
ular to the robot’s heading direction. The reconstruction relies completely on the
accuracy of localization during SLAM: Here our improved scan matching algo-
rithm has a tremendous effect on the visual accuracy and integrity of the resulting
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maps when compared to our previous work. In particular, Figure 4 shows a cross-
section of the raw 3-D data obtained by straightforward interpolation between
adjacent sensor scans, and compares it with previous results obtained with our
older scan matching approach [17]. This improved visual accuracy is partially a
function of our improved scan matching.

In addition to that, we employ a local smoothing operator that further smooths
the surface. Similar smoothing techniques were applied in [17].

4 Results

All results have been obtained in two different setions of an experimental coal
mine in Bruceton, Pennsylvania. This mine is operated as a research mine by the
U.S. Bureau of Mines, enabling us to operate robotic equipment without the need
for explosion-proof certification. A partial map of the mine is shown in Figure 7
(bottom panel).

Figure 5 shows the result of 2-D mapping using our robotic system, of a small
fraction of the mine with a sufficiently flat floor. This section of the mine had a
concrete floor, facilitating its use as a research mine. However, concrete flooring
is clearly unrepresentative of existing, and abandoned mines. As argued above,
the flatness of the floor is essential for the success of our initial robotic system,
which only performs SLAM in the horizontal direction.

3-D volumetric maps obtained using this system are shown in Figure 6. This
visualization shows only the upper fraction of the mine. The map is incomplete
due to the use of a single sensor for volumetric mapping on our robot. Neverthe-
less, these results illustrate that under idealized conditions, our initial system is
indeed capable of acquiring accurate mine maps. However, our system failed in
more realistic setting, where uneven floors and other artifacts (tracks, mud, water)
made it impossible to acquire accurate maps.

These limitations were overcome with our mapping cart. Figure 7 shows a
2-D projection of the horizontal SLAM process, using 2x2-D SLAM as described
above. Also shown in this figure is a blue-print of the mine map for comparison.
It is important to notice that the 2-D SLAM map has been constructed without
the use of odometry: The position estimate is solely the result of our 2x2-D scan
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Figure 7: 2-D projection of the 3-D volumetric mine map, acquired by our mine mapping cart
without odometry. A comparison with the manually constructed 2-D map illustrate the accuracy
of our automatically acquired mine map.

matching approach. The largest loop in this map is several hundred meters in
circumference, making this one of the largest loops in a confined environment ever
mapped by probabilistic scan matching techniques. The lack of completeness of
the map is due to closed doors and other massive obstacles that rendered many of
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the corridors in the mine inaccessible.
The resulting 3-D map is visualized in Figure 8. This map is represented in

VRML format, allowing for an interactive visualization and exploration of the
mapped mine. As these screen shots illustrate, the resulting map captures the full
3-D structure of the parts of the mines accessible to the cart. The resulting map
captures both the horizontal and the vertical structure of the mine. The visualiza-
tion tool enables mine personnel to inspect the mine from views that cannot be
physically attained, such as the outside visualization shown in the bottom panel
of that figure.

5 Conclusion

We have presented two implemented systems for acquiring volumetric maps of
mines. Our first system relied on a robotic platform, equipped with two laser
scanners. Our second, more versatile system used four range sensors, and was
mounted on a cart. To achieve accurate mine mapping, we have developed a new
scan matching algorithm that fuses information from a horizontal and a vertical
sensor while performing SLAM in 2D. The volumetric map is then reconstructed
from measurements acquired by additional laser sensors. As the results in this
paper illustrate, our new scan matching approach enables us to obtain consistent
volumetric maps of mines with significant vertical and horizontal structure. The
fact that our final results were obtained in the absence of any odometry data illus-
trates the robustness of our approach.

We believe that the volumetric mine maps are unprecedented in the robotics
literature in their scale, resolution, and by virtue of the fact that they are volumet-
ric, and not just two-dimensional. The 2x2-D system is presently been extended to
a rugged ATRV platform capable of traversing the type terrain found in mines, in
a self-propelled mode. We anticipate that this will provide us with an automated
robotic system for acquiring large maps of mines. We also believe that existing
techniques for mobile robot exploration [2, 12, 18] can be adapted for the purpose
of autonomously exploring mines.
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Figure 8: Sequence of 3-D visualizations of the full 3-D volumetric mine map. This map has
been built using our new sensor cart and using our 2x2-D scan matching algorithm, without any
odometry information.
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