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Abstract

Moativation: High-throughput structural proteomics requires fast robust algorithms for extracting
protein structure from sparse experimental data. Current approaches are too slow. Determining the
3D structure of an unknown protein may require 6—12 months, mainly for data interpretation.
Determining ligand inducedhanges in structure of a previously known protein may still require
weeks of effort. This second problem is of great interest to drug designers, and is our main focus in
this paper. A key step is thesonance assignment problem, in which observed NMR peaks must

be matched to a protein’s atoms.

Contributions: This paper describes two novel procedures, together catetMPRrPH, for in-

ferring structure and assigning resonances: (1) A method for extracting combinatorial protein sub-
structures directly from sparse NMR experiments; (2) A method for matching experimental to
known substructures by exploiting the orientational constraint of residual dipolar coupling (RDC).
PEPMORPH reverses the traditional approach, in which NMR resonances are assigned prior to
structure determination. As a resulte M ORPH increases the information available during as-
signment, speeding up the overall process.

Results:  We have tested BPM ORPH 0N a variety of real proteins deposited in the Protein Data
Base (PDB), using standard synthetic NMR data with a variety of noise levels, and on one protein
(Rho130) using reaPN NOESY data and synthetic RDC dataeA#M ORPH assigns a very high
fraction of the resonances correctly and flags those resonances that cannot be assigned uniquely
because of significant structural chang&P® ORPHruns inO(n?) time, wheren is the number

of amino acids in the protein, requiring minutes for moderately sized (20-35kDa) proteins on a
1GHz PC.

Keywords: Protein structure, NMR, residual dipolar coupling, resonance assignment, struc-
tural homology.



1 Introduction

The assignment problem pervades structural proteomics. The problem is to establish a
correspondence between experimentally observed data and known structural building blocks, in
our case between observed nuclear magnetic resonances and specific protons in one or more
proteins.

Of particular interest to us is the problem of studying conformational changes in known
protein structures. For example, in drug-design, the three-dimensional structure of at least one
conformation of a protein may be known. The drug designer has a suite of potential drugs,
possibly thousands. Each is allowed to bind to the protein, possibly causing a change in the
three-dimensional structure and thus the function of the protein. The designer wishes to probe
each sample and determine the structure of the resulting protein-drug complex quickly.

There are two basic methods for probing protein structures: Nuclear Magnetic Resonance
(NMR) and X-Ray Crystallography. The advantage of NMR is its ability to probe proteins in
solution. The advantage of X-ray crystallography is its high accuracy; the disadvantage is its
requirement for crystallized structures. These can be difficult to obtain, sometimes requiring
months of effort. X-ray is a useful tool for determining structures of wholly unknown proteins,
whereas NMR is an essential tool for determining conformational changes in proteins due to
protein-protein or protein-ligand interactions (Hajduk et al. 1997).

Our thesis is that proteins reveal much of their three-dimensional structure through two
very simple NMR experiments: (i) Measurements of amide-amide proximities from NOESY
experiments and (ii) measurements of peptide plane orientations from residual dipolar couplings
(RDCs). The NOESY experiment reveals both the interconnectivity of the amino acids and the
inherent local dimensionality of substructures of the protein. The RDC experiment provides
orientational hash values for distinguishing geometrically similar yet distinct substructures.

We next outline our basic methods and approach. We then review relevant NMR experiments

with this one. Finally, we describe our approach in detail, then conclude with results.

Our Approach

PEPMORPH models both the experimental NMR data and the known protein as graphs. The
graph vertices represent amide protons along with their peptide plane orientations; the graph
edges indicate spatial proximity.EPMORPHmMatches the two graphs, trying locally to maximize

the number of coincident edges while minimizing the orientational differences of the peptide
planes. In order to avoid full-blown subgraph isomorphismespNPORPH first extracts structural
information from each of the graphs. The structures reflect the natural local dimensionality of
the protein. Thus PPMORPHdecomposes the protein into linear, planar, and volumetric regions,
represented by combinatoradlytopes of graph vertices (see Figurg 1). Matching these polytopes

is relatively easy, given their geometric simplicity and the constraints imposed by the peptide plane
orientations.
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Figure 1: One-, two-, and three-dimensional polytopes. The solid spheres represent amide protons,
the edges indicate spatial proximity.

Problem Setup  Suppose the protein consistsromino acids (also calleasidues), numbered
1 = 1,...,n. The drug-designer allows the protein to bind to some target ligand, then probes
the resulting complex using two experiments: an amide-amide NOESY experiment and a residual

Resonance Data NMR spectra used by BPMORPH have a basis set ofi resonances,

Q = {wi,...,w,}, one for each amino acid in the protein. Generally these resonances are
multi-dimensional, indicating the involvement of multiple nuclei in the NMR spin transfer.
Experimentally, some resonances will be missing. For instance, prolines do not have amide protons
and thus do not show up in the NMR spectrum. Noise and degeneracy may also lead to missing
resonances. A fraction of amino acids may have more than one resonance due to the presence of
multiple conformations. Nonetheless, by adjoining special values to our basis set, we can model
these spectra as setsrofesonances.

NOESY Data The data returned by a NOESY experiment consists of a serasbpeak
distances D={d,,}, representing rough separations of those amide protons that lie within
approximately B of each other. Each crosspeak is indexed by two resonancesd vy in

Q, representing the two N-H pairs whose spins generate the crosspeak. Experimentally, some
crosspeaks may be missing.

RDC Data The dataR returned by the residual dipolar coupling experiment associates two
angles{“6,,,°6,,), with each resonancein (2. These are the angles that the I-&hd N-C(O) bond
vectors make with the magnetic field axis. Again, some angles may be missing experimentally.

We can now formulate

The Assignment Problem:

Computesl fromw;, fori =1, ...,n, given2, D, andR.

PEPM ORPH_creates an experimenfal gragh to represent the experimental data. The vertices
are the basis resonances, labeled with their RDC angles; the edges are the NOESY crosspeaks,
labeled with their distances EPM ORPHcreates an analogous gra@hfrom a known 3D structure
of the protein.

PEPMORPH matches the two graphs. and Gy, thereby creating a potential solution to the
Assignment Problem. BPM ORPH has three phases:

1Only the protein is made NMR-sensitive, not the ligand.
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1. \First, EPMORPH decomposes the two graplis and G, into polytopes. Polytopes are
transitive closures of 1D, 2D, and 3D simplices. Each simplex is purely combinatorial,
formed from theunlabeled graph edges. The closure relation is subface-connectivity.
Although combinatorial in nature, polytopes capture the local geometry of the protein, and
thus define a natural abstraction of the protein fold. This phase runs irCtimg wheren
is the number of amino acids in the protein. The reason for the linear time complexity is that
the number of crosspeaks per amino acid is bounded by a constant, due to steric constraints.

2. Next, FEPMORPH tries to infer the direction of the magnetic axis used during data
collectionas it would appear in the coordinate frame of the known proteinE#MORPH
accomplishes this by matching experimental to known polytopes. Because of the
combinatorial/geometric structure of polytopes, matching polytopes does not involve any
general subgraph isomorphisms. This phase runs in €éfae), arising from the need to
compare pairs of linear-sized polytopes. The output of this phase is an inferred magnetic

axis, along with a matching of many of the resonanigeg to their generating residu€s}.

techniques. One of these involves embedding the unknown protein into 3D. Another involves
performing small minimum cost bipartite graph matchings on subsets of the protein. The
time complexity of this phase i®(n?®), because of the embedding complexity and the
bipartite matching complexity.

high noise, the polytopes produced in Phase 1 may degenerate to single or double simplices of
varying dimensions. Nonetheless, the approach continues to infer magnetic axes well and solve
the assignment problem with graceful degradation as noise increases. For very high noise we have
implemented additional variations, that optimize assignments over a space of likely magnetic axes.

2 NMR Overview

There are dozens of different NMR experimentsifiAfich 1986, Cavanagh et al. 1996). At
their core these experiments report the proximity of (NMR-sensitive) atoms that are close to
each other, either atoms that are separated by specific bonds or atoms that are spatially close.
A classic through-bond experiment is the HNQAtorrelation which reports correlations (also
called crosspeaks) between the amide group of one amino acid and both its own alpha carbon
and the alpha carbon of the preceding amino acid. This experiment provides inter-residue
chemical shifts (resonances) useful for establishing structural connectivities along the backbone.
A classic through-space experiment is the NHHN Nuclear Overhauser Enhancement Spectroscopy
(NOESY), which reports correlations between pairs of protons, each attached to a backbone
nitrogen. For typical 600—750MHz spectrometers, this experiment is sensitive to protons within
5-6A of each other. For short-range correlations (protons less thak &art), the crosspeak
intensity provides a good estimate of the inter-proton distance. This estimate becomes increasingly
less accurate at greater separations.

In addition to these backbone experiments, numerous other experiments measure correlations
within and across the sidechains projecting off the backbone. A full-blown structure determination
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might use J-correlated spectroscopy to assign backbone and sidechain atoms, then use NOESY
experiments to seed a distance geometry routine, refine the resulting structure, and repeat (Crippen
and Havel 1988, Guntert 1998, Zimmerman and Montelione 1995, Nilges et al. 1997, Mumenthaler
and Braun 1995, Mumenthaler et al. 1997). Automation of the assignment process is exemplified
by the programauTOASSIGN (Zimmerman et al. 1997) and PASTA (Leutner et al. 1998).

For large proteins, rapid proton-proton relaxation of the excited spins leads to broad
overlapping lines with poor NMR signal intensity. Consequently, programs susDTasASSIGN
and PASTA work well for smaller proteins (200 residues), but not beyond. For larger proteins,
one purposefully deuterates the protein’s aliphatic protons to decrease the relaxation rate of the
remaining amide protons, thus restoring their NMR-sensitivity (Torchia et al. 1988, Grzesiek
et al. 1995, Gardner et al. 1997). SincePR ORPHoOnNIy requires spectral information from amide
protons, it works equally well on large deuterated proteins.

Dipolar Coupling

Dipolar coupling arises because of the influence of one nuclear spin’s magnetic moment on another.
Dipolar coupling can be detected in two ways, depending on the state of alignment of the protein:

1. NOESY. In isotropic media, proteins tumble quickly and randomly, without preferred
orientation. Thus the dipolar coupling does not affect the nuclear resonance frequencies. Instead,
a rotation-induced fluctuation of the local magnetic field causes relaxation of the two spins. This
relaxation generates crosspeaks in a NOESY experiment, the intensities of which are proportional
to 1/d°, whered is the separation between the spins. One version, thEMIDIOESY, correlates

an amide backbone protdhl; and its!°N nitrogen with anothelH proton and its®N. Applied

to deuterated proteins, this experiment is nicely robust, with almost all crosséaks ) present

and resolvable. Using earlier terminology, the pair of nu€leiy,'® N) in amino acid: generate

a 2-dimensional resonancg. Two of these 2-dimensional resonances then index a NOESY
crosspeak.

2. Residual Dipolar Coupling. In partially aligned samples, obtained by placing orienting
media into solution with the protein, the dipolar coupling may be detected as an additional coupling
between the spins. Examples pioneering this approach include the addition of phospholipid
bicells (Tjandra and Bax 1997, Struppe and Vold 1998) or filamentous bacteriophage (Hansen
et al. 1998). The magnitude of the resultiregidual dipolar coupling, or RDC, depends on the
relative orientation of the bond that connects the two atantson their inter-atomic distance.
Specifically, the residual dipolar coupling of two interacting spmuclei is:

20 _
R:—O%%h <3cos 0 1)7 )

2m2d3 2
where~; and~, are the gyromagnetic ratios of the two nuclkijs Plank’s constant{ is the

separation of the two nucléd, is the angle between the magnetic field axis and the inter-nuclear
vector, and? is the extent of alignment of the protein molecules.



For nuclei with known separationd, residual dipolar couplings provide very accurate
measurements of inter-nuclear orientations since one can measure the RDC induced change in
NMR frequency with high precision. This approach can be used to measure the orientation of
key bond vectors in a protein, such as the N-H, N-@nd N-C(O) vectors in each amino acid’s
peptide-plane (except for proline)EPMoORPHuses the N-C and N-C(O) bond vectors. The N-H
vector lies in the plane of these two vectors; if noise is a significant issue this redundancy may be
used to reduce noise. Three comments:

1. RDC values are indexed by resonances, just as are NOESY crosspeaks.

2. The residual dipolar coupling may be used to infer an andglén the rang€0, 7/2]. Thus an
RDC value constrains the bond vector to a two-sided cone making @mgtle the magnetic
axis, and vice-versa.

3. Experimentally, in order to obtathfrom Equation (1) it is necessary to determifie This
scaling factor is the same for all bond-vector types. One can therefor&lrifem the entire
distribution of RDCs in a protein (Clore et al. 1998).

Recently, several research groups have begun to extract structural information from residual
dipolar couplings. Some researchers have used residual dipolar couplings to determine the relative
orientation of two domains in a protein (Losonczi et al. 1999), others to build small protein
structuregde novo (Hus et al. 2001), yet others to constrain protein fold predictions (Moltke and
Grzesiek 1999, Wedemeyer et al. 2002, Rohl and Baker 2001) or to recognize homologous protein
folds (Annila et al. 1999). Several of these approaches rely on residual dipolar couplings of bond
vectors outside the peptide plane. Others use alignments with multiple media to obtain constraints
from several orientation estimates (Al-Hashimi et al. 2000).

The approaches above generally assume that the assignment problaneddysbeen solved.

Their programs expect matchings between measured resonances (and RDCs) and their generating
nuclei. Our goal is to solve this prior problem.

3 Closely Related Work

Kraulis (1994) demonstrated the feasibility of solving the assignment problem for small proteins
using a dense network of inter-proton distances coupled with molecular mechanics calculations.
Kaptein’s group (van Geerestein-Ujah et al. 1995) used graph theory to identify prescribed NOE
connectivity pattern§,then sequentially connect residues. Donald recently reported a similar
technique to compute assignments (Bailey-Kellogg et al. 2000). Both methods have origins in
Wand’s mainchain assignment strategy (Nelson et al. 1991). Kapt&RENDIPITY, Donald’s
JigsAw, and our BEPMORPHshare the goal of extracting secondary structure directly from sparse
NMR data. One difference is thaeEPM orRPHdoes not rely on preconceived notions of secondary
structure; it simply searches for simplicial clusters of NOEs.

Hus et al. (2002) have reported a method for solving the assignment problem for a known
protein structure based on experimental RDCs and chemical shifts. They employed a minimum-
cost bipartite graph matching algorithm whose cost function measured the squared difference

2“NOE” is often used as shorthand for “NOESY crosspeak”.
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between observed and known values. They assigned rodghblyof the residues in ubiquitin
using only RDCs, and roughl90% using both RDCs and a limited number of inter-residue J-
connectivities. They concluded that residual dipolar coupling alone is not sufficient to solve the
assignment problem.

Extending this reasoning, for larger proteins it is likely that chemical shifts will provide less and
less constraint, due to degeneracy. The thesis of our work is that a combination of local structural
information from NOESY experiments and global orientational information from RDCs provides
a basic foundation for solving the assignment problem that scales robustly to larger proteins.

4 Graph Representations and Problem Formulations

PEPM ORPHcreates two undirected graphs, each representing the amide protons of the protein, one
capturing the experimental information, the other capturing the known structural information.

The experimental graph G. is a labeled graph of the for&, = (Q2,D,0,d). The graph
vertices are the resonanc@s the graph edges are the observed crossp@&aksThe function
6 : Q — [0,7/2]* assigns to each vertex the pair of angle$“6,,,°6.,) measured by the RDC
experiment. (We can indicate missing values by adjoining special symbols to the range spaces.)
The functiond : D — R assigns to each edge the distance estimaténferred from the NOESY
crosspeak intensity.

The known graphG,, is also a labeled graph, of the fory, = (V, E, 0, D), with slightly
different semantics. The graph vertices are the protein’s amino acids, thatis{1,...,n}.
The graph edges consist of all pairs of amino acids whose associated amide protons lieAvithin 5
of each other, that isly = {(i,5) € V | || HY — HY || < 5.0A}. The edge labeling function
D : E — % assigns these separations to the edges. The vertex labeling fuéctslightly
more complex than before. Ideally this function should report the angles between the known
structure’s N-G and N-C(O) bond vectors and the magnetic axis. The questibWisat is the
magnetic axis?” The magnetic axis used to collect data on the protein-ligand complex bears no
obvious relationship to the coordinates of the known structure. InsteerM &RPH must infer
the orientation of the magnetic axis relative to the known structure. Consequently, the vertex
labeling function inG, is an indexed function. Specifically, iif is a unit vector ink?, we define
Op : V — [0,7/2]2 by O(i) = (*0n:,°0si), Where*dy,; is the angle that the bond vector N;@t
residue #in the known structure makes with thi@e defined byb, and®6,,; is the angle that the
bond vector N-C(O) makes with that line. The labeling funcidis the collection of all possible

{On}.

Given these definitions, one possible reformulation of the Assignment Problem is:

NMR Graph Matching Problem: Find a magnetic axib and a one-to-one assignment function
a : €2 — V that optimizes the cost function:

A D ldw, ) = Dla(w),a()P + p Y || 6w) = Op(aw)) |I*.

w,YEN we

Here the functiond and D have been extended to all potential graph edges)d, are weighting
factors (if A\ = 0 this is an optimization over a family of min-cost bipartite graph matchings).



One difficulty with this formulation is that the NOESY distance functibrs very noisy at
distances above approximate]y')A. We thus prefer to ignore exact distances and instead focus
primarily on the presence or absence of crosspeaks. We therefore reformulate the Assignment
Problem further as the following optimization:

Assignment Optimization:

min D 116(w) = Bp(a(w)) |, )

beSacA 5

whereb is a unit vector as before, and is someadmissible collection of (possibly partial)
assignment functions : Q — V, perhaps all assignments that are maximal subgraph
isomorphisms of7, andGy, or all geometrically feasible assignments, etc.

PEPMORPH solves this optimization for embeddable subgraphsGefand G, namely
combinatorial polytopes. The set of admissible assignmdritssmall for polytopes, permitting
quick optimization. Once BPMORPH has found assignments for subgraphs, the program then
patches these together to create an overall assignménttofG,.

5 Phasel: Computing Polytopes

Given an undirected graph with verticésand edgeg’, a combinatoriak-simplex is a set ofc+1
verticesuy, . .. vi41, all in V, such that each pafp;, v,) is an edge irE. k is thedimension of the
simplex; the simplex embeds naturally if®5. PEPMoRrPHfinds all the 0-, 1-, 2- and 3-simplices

of the two graphg~. andG. For each graph the function also identifiesiallimplices that are

not contained in anyk+1)-simplex, fork = 0, 1, 2. For example, O-simplices i@ that are not
contained in any 1-simplex correspond to resonances for which there are no NOESY crosspeaks.

Two simplices of dimensiok are said to bedjacent if they share a simplex of dimension
k—1. Adjacency defines a symmetric relation whose transitive closure is an equivalence relation.
Imagine partitioning a collection df-simplices into equivalence classes by adjacency. Each class
defines ak-dimensional polytope. Intuitively, if one embedded all the simplices in®f, the
polytopes would be maximal volumes of full dimensionality.

PEPMORPH finds all the 1-, 2-, and 3-dimensional polytopes of the graghsand Gy,
considering only those simplices that are not contained within higher-dimensional simplices. It
is a remarkable property of proteins tlzatmbinatorial polytopes constructed using thA Butoff
of NMR experiments mirror the natural dimensionality of proteins. Specifically:

1. Loops in a protein tend to generate 1D polytopes (which wecoedls).
2. [3-sheets tend to generate 2D polytopes (which westathces).
3. a-helices tend to generate 3D polytopes (which we a@limes).

To the best of our knowledge this simplicial nature of proteins has not been reported before.

PEPM orPHfurther infers helices from volumes by looking for sequences of at least four strong
NOESY crosspeaks. With high probability such sequences form the backbones of helices (see
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Type | Traditional Residues Extracted Residues

Sheet | 7-9, 123-127, 1011086, 124-127, 100-106,
42-48, 68-74 44-50, 69-74

Sheet | 208-212, 182-188, 155-160,| 208-212, 180-188, 154-163,
224-230, 262-265, 281-283 224-229, 262—-265

Helix | 17-32 17-33

Helix | 53-66 53-68

Helix | 89-99 88-99

Helix | 111-119 110-120

Helix | 135-149 136-151

Helix | 167-179 167-179

Helix | 196-205 198-207

Helix | 215-220 215-219

Helix | (classified as two loops) 238-242

Helix | 251-256 251-257

Helix | 275-279 276-280

Helix | 285-304 284-305

(a) (b)

Figure 2: Polytopes of NOE connectivities, defined purely combinatorially without knowledge
of the 3D structure, capture the natural local dimensionality of a protein. Thick linBand
(a) indicate amide-protons within%of each other in the 5-strand sheet of 5AAL Panel (b)

secondary structures in 5ATA.

(Wuthrich 1986) for related comments). Panel (a) of Figure 2 depicts the backbone atoms of the
5-strand@-sheet found in the taut form of chain A of aspartate carbamoyltransferase (ATC) (pdb
code: 5AT1). The thick lines connect amide protons that lie withnob each other. One can

see numerous triangles (2-simplices). When connected these triangles form a large 2D polytope
that covers nearly the entire sheet. Panel (b) compares all the surfaces and volumes extracted by
PEPM ORPHwWiIth the sheets and helices of 5AAL

6 Phasell: InferringtheMagnetic Axis

PEPMORPH infers the orientation of the experimental magnetic axis as it would appear relative
to the known structure by matching simplices, polytopes, and/or inferred secondary structures
between the experimental and known graplseNPORPHWiIll use whatever structures it is able to
build, and thus its performance degrades gracefully with increased noise and degeneracy. Ideally,
the drug designer will perform an HNCA experiment, revealing sequential backbone segments. At
worst, degeneracy may reduce the size of polytopes to just one or two simplices eakto®PH
solves the optimization problem; (2) for whatever substructures are available.

An important feature of optimization;(2) is the set of admissible assignrménthe specifics
of A depend on the structures being matched:

¢ When comparing two 2-simplices| consists of the six possible pairings of the underlying
vertices.
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Figure 3: Inferring the magnetic axis by comparing structuieanel (a) depicts the RMSD of

the cost function:(2) for all possible surface-surface assignments. Tiny dots indicate RMSDs for
all assignments; larger filled-in circles indicate RMSDs of correct assignmeats (b) shows

all helix-helix assignmentsPanel (c) depicts ther-y projection of all candidate magnetic axes
(those whose RMSDs are among the best 5%). Axes corresponding to correct assignments are
represented by larger filled-in circles; there is large cluster in the southwest corner.

e When comparing two 3-simplicesd consists of the twenty-four possible pairings of the
underlying vertices.

e When comparing (short) coralg, consists of all possible linear alignments of subcorals.

e When comparing two simple surfaesA consists of all possible assignments that
combinatorially align the surfaces. These assignments are computed by considering all
possible triangle-triangle pairings. The assignment function implied by a given triangle-
triangle pairing is computed by expanding outward from that pairing, combinatorially
aligning adjacent neighbor triangles, then aligning their neighbors and so forth. — THe set
thus defined is significantly smaller than the set of all possible assignnignty,vs.O(n!),
yet provides a basis for determining the structurally sound surface matchings.

e The definition ofA for volumes is analogous to that for surfaces.

e When comparing inferred backbone segments (as when comparing helices or the results of
an HNCA experiment)A consists of all possible linear alignments of those segments, along
with directional ambiguity as appropriate.

For each assignment function j, PEPMORPHcomputes an optimal magnetic akisusing
numerical optimization. The result is a set of magnetic axes, one for each possible assignment
function, computed irfO(n?) time. Figure'3 shows the results of comparing all surfaces (a) and
helices (b) of 5AT 1A with all surfaces and helices of 8AT& (the relaxed conformation of ATC).

3A surface issmple if each edge bounds at most two triangles. The protein surfaces we have encountered thus far
have nearly all been simple EPMoRPHhandles nonsimple surfaces by matching triangles of similar area.
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Figure '3 indicates that correct assignment functions do indeed yield low costs, but not
necessariljthe lowest cost. FEPMORPH therefore clusters the resulting magnetic axes. Panel
(c) of Figure:3 depicts all the magnetic axes produced by the polytope-level optimizations whose
RMSDs are among the best 5%. There is a significant cluster of axes in the southwest corner.
PEPMORPH computes the centroid of this cluster as its inferred magneticlaxids intended,
this axis is very near the correct magnetic axis. We note in passing g#l ®rPH deals with
significant noise and degeneracy by retaining as needed all clusters of reasonable size.

7 Phaselll: Computing the Assignments

The output of BPMORPHS Phase Il is a magnetic axis that repeatedly appears as the optimum
choice when matching substructures. Depending on the level of noise in the experimental data this
magnetic axis may be unique or one of a small number of such axes. In PhasePMORPH
repeats the matchings of Phase II, but now holds the magnetic axis fixed at its inferred direction.
Generally for large structures this means that an alignment with the lowest RMSD will actually
be the correct alignment. ThuEPMORPH can rapidly assign a large number of the atoms in the
secondary structures of the protein. In cases were noise and degeneracy arepiybRPHmMay

only be able to match structures consisting of one or two simplices. In this case there often are
many incorrect assignments with low RMSD. Nonetheless, the correct assignments tend to cluster.
PEPMORPHI0OKs for large connected sets of mutually consistent assignments. Having found such
large connected setseEPMORPHthen extends the assignments further by looking at unassigned
neighbors of assigned atoms, locally optimizing the assignment RMSD in these neighborhoods.

At this stage BPM ORPHhas usually matched 50% to 75% of the resonances to their generating
nuclei. The unassigned resonances and atoms cluster into small distinct components in the graphs
G. andG). PEPMORPH pairs up these components by considering neighboring already assigned
atoms. REPMORPH then focuses on each of the paired components. OneeeMPRPHS
strategies is to embed the unknown protein into 3D by using the known structure and the existing
assignments as a scaffold, then using distance geometry on the remaining unassigned atoms.
Another strategy is to perform local bipartite graph matching. Sometimes this process fully assigns
a pair of components. Often however these final steps are not precise enough to produce unique
assignments, merely likely assignments. There is usually a good reason for this, either significant
noise in the data or significant structural differences. In order to deal with degeneracy, noise, and
unassignable structural differencegPRORPHactually returns a set-valued assignment function,
meaning that resonances may be assigned to zero, one, or more amino acids.

Some of our trial results are reported in Figure 4. The NOESY data for Rho130 was based on
a 3D experiment previously performed in the Rule Lab. Other examples are based on the PDB. In
many cases, we injected synthetic noise. We used a quadratic error model for NOESY distances, as
suggested by the results of (Briercheck and Rule 1998). We randomly deleted crosspeaks, usually
on the order of 5%. For RDC data we injected noise either by (i) pertuthiagdomly+5 degrees
or by (ii) perturbing the measured dipolar couplings randotly% (representing angular errors
of 4-15 degrees), as suggested in (Hus et al. 2002). This form of synthetic noise allowed us to
explore a wide range of scenarios, ranging from graphs with full secondary structures to graphs
whose polytopes consisted of one or two simplices.

10



240 loop

Unknown— Known AS | Noise | |H| |Assign Good Unique Bad Ab %

1lubg— lubqg - cmap | 72 72 72 72 0| 0° 100 correct

1ubg— 1ubq - synth | 72 72 72 68 0

Rho130— Rho130 - exper | 118 | 111 111 111 0

Rho0130— Rho130 - both | 118 | 109 109 109 0
batlA — 8atcA  2.2A | cmap | 298 | 293 286 231 7| 6° 96

12

38

6

() 5atLA — 8atcA  2.2A | synth | 298 | 287 275 224 40 92 P
s s D

-0 -
3° 100  (light gray) \ \}__l 7
?" gg 2[“ "';:?f unassigned (white)

g

5atlA — 8atcA  2.2A | high | 298 | 244 206 196 L &

1fpk A — 1fpk B 0.8A cmap | 297 | 275 269 253 2° 91 P g ambiguous
1fpk A — 1fpk. B 0.88 | synth | 297 | 273 248 244 25/ 2° 84 310 ]§I W (dark gray)
1ki4 A — 1ki7ZA  0.4A | cmap | 277 | 259 259 258 0| 7° 94 L

1ki4A — 1kiTA  0.4A | synth | 277 | 270 265 264 5| 5° 96

4ctsA — 4ctsB 05A | cmap | 414 | 386 373 325 13 4° 90 , (S &
4ctsA —4ctsB 058 | synth | 414 | 321 278 280 43| 3° 67 incorrect (black)
@ (b)

Figure 4:Results of assignment trialfanel (a): |H| is the number of amide protons in the proteissign

is the number of amide protons assigned lep ORPH (either uniquely or with multiple targets{good is

the number assigned correctly (meaning a target is cortgoife is the number assigned to a unique target
(correctly or incorrectly)Bad is the number assigned incorrectlyb is the angular difference between the
inferred and correct magnetic axés;is the ratioGood/|H| as a percentage. In thidoise column,cmap
stands forcontact map, meaning that BPM ORPH used rough separations (not exact distances) to compute
polytopes, and used accurate RDC dasguer means experimentally obtained NOESY data and accurate
RDC datassynth means standard synthetic errors in both NOESY and RDC daté (see pageth@yeans
experimental NOEs and synthetic RDGsgh means synthetic errors high enough to destroy almost all
secondary structure information in the experimental gri@phAS is thestructural difference between the
proteins being compared, as measured by the RMS difference between the 3D coordinates of corresponding
amide protons.

Panel (b) depicts assignments from row (*), using shading to indicate correctidbge = unassigned
(includes proline)Light Gray = unique and correct assignmeitark Gray = assignment with multiple
targets, including the correct orélack = incorrect assignment.

Chain A of ATC is a fairly large protein, yetEPM ORPH assigns the central cores of both its domains
very well. To the best of our knowledgeEPM ORPH s the first program able to assign proteins this large

beyond approximately 200 residues. Programs basespanse NMR data and RDCs have so far been
tested primarily on ubiquitin (Lubq), a very small protein.
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In the comparisons of Rho130 to itself, due to prolines and missing NMR data the @raph
actually contains 10 components, 7 of which are isolated resonances. The largest of the remaining
components contains 98 resonancesPNPORPHassigns all 98 resonances directly. It then assigns
the remaining 13 resonances using focused bipartite graph matching.

The taut and relaxed forms of ATC are structurally different; in switching between
conformations the two domains of chain A rotate about a hinge point. Despite significant motion
PEPMORPHis able to assign nearly all the atoms of 5AR1to 8ATC_A. Two loops (ca. residues
75-85 and 230-245) cause some difficulty. In fact it turns out that the motion of at least one of these
loops, the so-calle@40 loop is a key biochemical change in ATC'’s catalytic function. It makes
no sense to assign the atoms of these loops based solely on NOESY and RDCee¢dtaRPH
matches the loops correctly to each other, but does not assign individual atoms.

The 1FPK example compares the two halves of the dimer fructose-1,6-bisphosphatase to each
other. The kinase example (1KI4 vs 1KI7) compares complexes of the thymidine kinase from
herpes simplex with two different ligands. This would be a typical situation faced by a drug
designer while screening potential drug compounds.

The first and last pairs of comparisons in Figure 4(a) provide a good conceptual bracket
for the current competence ofEPMoORPH Ubiquitin (1UBQ) is a very small protein with
distinct helix and sheet features.EMIORPH works well on ubiquitin, as one would expect.
Citrate Synthase (4CTS) is a large (ca. 45kDa) highly helical protein, giving rise to numerous
substructures whose local connectivities and peptide orientations are effectively indistinguishable
from one another. BPMORPH performs quite well in comparing the two chains of 4CTS as
high-resolution structures, then degrades gracefully but clearly in the presence of noise. This last
example succinctly illustrates the current research frontier in automated interpretation of NMR.

8 Conclusions

This research seeks to understand the roles local structure and global orientation play in solving the
assignment problem. We have exhibited a prototype progra&ryIPRPH, that uses sparse NMR

data in the form of backbone amide-amide NOESY crosspeaks and peptide plane RDCs to perform
assignments. We have testeglFfR1 ORPHoON several proteins, using a variety of data sources (PDB,
experimental, synthetic). Under reasonable noise conditior@yVIBRPH can assign upwards of

85% of the amide protons in a protein. Under perfect conditioe®MORPH will assign nearly

100% of the atoms, under extreme noise conditions it will still assign in excess of 50%.

PEPMORPH has direct applications in drug discovery. It can assist a drug designer in rapidly
evaluating the structural changes of potential drug complexes.

A broader impact of this work may be on general protein structure determination. As the
PDB is populated with proteins of known structure, structural homology provides the potential for
mapping experimental data directly to structures by comparisonalligoroteins in the PDB. To
date, such approaches have not been very successful at predicting wholly new proteins. Wanting
is a compact representation of proteins that is easily probed by NMR or X-ray. The results of our
research, as well as research surveyed in this paper, suggest that structural backbone connectivity
coupled with peptide orientation constraints may be the basis for such a representation.
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