A Comparison Study between the CUDD and
BuDDy OBDD Package Applied to Al-Planning
Problems

Rune M. Jensen

September 2002
CMU-CS-02-173

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Abstract

This report describes a comparison study between the CUDD and BuDDy OBDD package.
The performance of the two packages is evaluated on three sets of Al planning problems from
the AIPS-98 and AIPS-00 planning competition. Our experiments indicate that CUDD has
a slight implementation overhead compared to BuDDy. However, for some problems this
overhead is overcome by the fact that CUDD can perform negation in constant time.

This work was supported in part by the Danish Research Agency and the United States Air Force under
Grants Nos F30602-00-2-0549 and F30602-98-2-0135. The views and conclusions contained in this document
are those of the authors and should not be interpreted as necessarily representing the official policies or
endorsements, either expressed or implied, of the Defense Advanced Research Projects Agency (DARPA),
the Air Force, or the US Government.

Keywords: OBDD manipulation, Al planning

1 Introduction

Currently, no comparison studies exist between the CUDD and BuDDy OBDD package
[7, 4]. The object of the experiments described in this report is to provide such a study for a
particular class of problems. The problems considered are classical Al planning problems. A
planning problem is a graph search problem. Vertices of the graph denote world states and
edges denote deterministic state transitions. The input to a planning problem is the search
graph, an initial state, and a set of goal states. The output is a path leading from the initial
state to one of the goal states.

OBDDs [2] are applied in the usual way to perform symbolic search [6]. Thus, in each
iteration of a forward (backward) search algorithm, all next states (previous states) are com-
puted via the image (preimage) computation. In this study, we apply forward and backward
search for three planning problems: Gripper (AIPS-98), Logistics (AIPS-00 round 1), and
Blocks (AIPS-00 round 1) [5, 1]. Our implementation uses standard techniques to reduce the
complexity of the OBDD operations. In particular, we partition the transition relation into
a disjunctive partitioning according to an upper bound of the OBDD size of each partition.
This lowers the complexity of computing the transition relation and performing image and
preimage computations. In addition, we apply frontier set simplification. However, in this
study, Coudert, Berthet, and Madre’s minimization technique [3] of the frontier set has not
been applied.

— —
H-,/O |

—~
&
~—

Figure 1: (a) CUDD representation. (b) BuDDy representation.

The initial cache size and the initial number of allocated slots in the unique table of the
OBDD packages have been hand-tuned for best performance in each experiment. We also
adjusted the upper bound of the size of the OBDDs in the disjunctive partitioning for best
performance. All experiments were carried out on a Linux Redhat 7.1 PC with a 500 MHz
Pentium III CPU, 512 KB L2 cache and 512 MB RAM. The time limit (TIME) was 300
seconds and the memory limit (MEM) was 300 MB.

The most significant difference between the CUDD and BuDDy package is that only
CUDD applies complemented edges. A key result of the comparison experiment is therefore
to determine to what extend CUDD can benefit from this representation when applied to
planning problems. Our experiments indicates that CUDD has a slight implementation
overhead compared to BuDDy. However, for some problems this overhead is overcome by

the fact that negation can be done in constant time.

T

T, |

CUDD
T, |

T, |

/]

T

T,

BuDDy
| T |

T,

| ISl

0.17
0.36
0.61
1.41
1.76
2.50
3.57
5.34
7.20
9.53

0.05
0.12
0.22
0.39
0.56
0.83
1.28
1.76
2.37
3.12

0.04
0.17
0.31
0.64
1.09
1.52
2.11
3.43
4.68
6.22

0.03
0.08
0.19
0.34
0.65
0.87
1.16
2.01
2.68
3.52

103
253
470
755
1108
1528
2016
2571
3194
3884

0.17
0.30
0.40
1.25
1.55
1.98
2.45
3.15
3.99
4.90

0.05
0.10
0.17
0.28
0.39
0.55
0.73
0.95

1.2

1.5

0.03
0.12
0.13
0.32
0.48
0.75
1.03
1.53
2.09
2.67

0.01
0.03
0.06
0.11
0.22
0.35
0.53
0.77
1.10
1.50

103
253
470
755
1108
1528
2016
2571
3194
3884

Table 1: Gripper results for forward search.

T

T, |

CUDD
T, |

T, |

/]

T |

T,

BuDDy
| T |

7.

/]

—
O 00O NS

12
14
16
18
20

0.15
0.32
0.62
1.06
1.70
2.62
3.82
5.27
7.95
9.97

0.05
0.12
0.22
0.38
0.61
0.88
1.35
1.87
2.51
3.13

0.03
0.13
0.32
0.56
0.96
1.57
2.26
3.18
5.25
6.60

0.01
0.02
0.04
0.07
0.10
0.26
0.21
0.27
0.35
0.42

143

265

686
1107
1627
2245
2964
3782
4698
o714

0.18
0.28
0.55
1.53
2.02
2.68
3.47
4.64
2.95
8.57

0.05
0.10
0.19
0.30
0.42
0.59
0.78
1.01
1.27
1.60

0.04
0.09
0.26
0.55
0.89
1.37
1.94
2.88
3.94
6.19

0.00
0.01
0.02
0.05
0.08
0.12
0.16
0.23
0.31
0.39

143

365

686
1107
1627
2245
2964
3782
4698
o715

Table 2: Gripper results for backward search.

2 Experiments

For each problem, we perform experiments for forward and backward search. We conduct a
timing study that measures the total CPU time 7', the time used to produce the transition
relation 7., the search time 7}, the solution extraction time 7,, and the average size of the

OBDDs representing the search frontier |f|. All time measures are in seconds.

It should be noted that CUDD and BuDDy measure the size of an OBDD slightly dif-
ferent. For BuDDy, the size equals the number of internal nodes of the OBDD, while it for
CUDD equals the sum of the number of internal and terminal nodes of the OBDD. Figure 1
shows the CUDD and BuDDy representation of an identical Boolean function. The CUDD

size is 4, while it for BuDDy is 5.

2.1 Gripper

This problem scales well when using an OBDD approach. Solution paths are long, but the
frontier OBDDs only grow moderately. The results are shown in Table 1 and Table 2.

2.2 Logistics

The logistics domain is hard for OBDD-based blind search due to a high growth rate of
frontier OBDDs. The results are shown in Table 3 and Table 4.

CUDD BuDDy

T| T,| T| T.| I|f T| T,| T, T.| |fl
0.41 | 0.09 | 0.21 | 0.08 656 0.34 1 0.09 | 0.15 | 0.02 656
0.56 | 0.10 | 0.35 | 0.11 720 0.43 | 0.08 | 0.24 | 0.03 720
0.47 | 0.10 | 0.28 | 0.09 697 0.44 1 0.09 | 0.25 | 0.02 697
50.44 | 0.39 | 48.04 | 0.43 | 23910 || 73.11 | 0.37 | 69.84 | 0.12 | 23911
34.73 1 0.39 | 32.78 | 0.35 | 19767 || 42.60 | 0.35 | 39.36 | 0.11 | 19767
49.2 | 0.39 | 46.86 | 0.44 | 24864 || 71.24 | 0.35 | 68.00 | 0.11 | 24854
TIME TIME

S © 00~ O U

—_

Table 3: Logistics results for forward search.

CUDD BuDDy
p T| T| T,| T.| |f T| .| T, T.| |f
4 0.36 | 0.09 0.14 | 0.03 300 0.42 | 0.09 0.19 | 0.02 300
5 0.55 | 0.09 0.33 | 0.03 571 1.11 | 0.09 0.45 | 0.03 571
6 0.75 | 0.09 0.49 | 0.03 | 1314 1.18 | 0.09 0.55 | 0.02 | 1315
7 179.39 | 0.39 | 177.28 | 0.15 | 46906 | 272.20 | 0.35 | 267.93 | 0.06 | 46906
8 || TIME TIME
Table 4: Logistics results for backward search.
2.3 Blocks

Similar to the Logisitics domain, frontier OBDDs in the Blocks domain tend to grow fast.
The results are shown in Table 5 and Table 6.
3 Conclusion

The most striking result of these experiments is that the size of the OBDDs with comple-
mented edges used by CUDD is almost identical with the size of the ordinary OBDDs used

CUDD BuDDy

p T| T, T, T.| |fl T| .| T, T.| |f
4 0.17 | 0.04 0.01 | 0.00 103 0.18 | 0.04 0.01 | 0.01 102
3 0.26 | 0.07 0.08 | 0.02 281 0.25 | 0.07 0.04 | 0.00 280
6 0.45 | 0.12 0.22 | 0.04 859 0.40 | 0.12 0.15 | 0.01 858
7 2.74 |1 0.25 2.26 | 0.11 | 4042 2.89 | 0.23 2.12 | 0.04 | 4040
8 27931037 | 26.47|0.17 | 30436 || 24.01 | 0.34 | 20.82 | 0.05 | 30435
9 || 258.52 | 0.55 | 256.01 | 0.63 | 97135 | 220.38 | 0.49 | 216.01 | 0.11 | 97134
10 | TIME TIME

Table 5: Blocks results for forward search.

CUDD BuDDy
p| Tl n|n|l | Al T[]] T|
4 0.15]0.04 | 0.02 | 0.00 1771 0.17 | 0.04 | 0.01 | 0.00 176
5 1.02 | 0.07 | 0.81 | 0.02 | 2342 1.53 1 0.08 | 0.91 | 0.01 | 2341
6| 9.64|0.12|9.03 | 0.04 | 19159 || 11.64 | 0.14 | 8.66 | 0.00 | 19158
7 || Time Time

Table 6: Blocks results for backward search.

by BuDDy!. However, complemented edges makes it possible for CUDD to perform nega-
tion in constant time. For search problems, an efficient negation operation may improve the
complexity of pruning the search frontier from previously reached states, since a potentially
large OBDD representing the previously reached states must be negated and conjoined with
the OBDD representing the frontier. This seems to be an advantage for some problems. For
instance, in the Logistics domain, CUDD is about twice as fast as BuDDy on the harder
problems.

However, in the Blocks domain, BuDDy is slightly faster than CUDD even for hard
problems. Together with the results in the Gripper domain, this seems to indicate that
CUDD is implemented with a slight overhead compared to BuDDy, but that efficient negation
may overcome this overhead for certain problems.

References

[1] F. Bacchus. AIPS’00 planning competition : The fifth international conference on arti-
ficial intelligence planning and scheduling systems. AI Magazine, 22(3):47-56, 2001.

[2] R. E. Bryant. Graph-based algorithms for boolean function manipulation. IEEE Trans-
actions on Computers, 8:677-691, 1986.

(3] O. Coudert, C. Berthet, and J. Madre. Verification of sequential machines using symbolic
execution. Automatic Verification Methods for Finite State Machines, pages 365373,
1989.

'When inspecting the frontier OBDDs at most a size difference of one is observed

4

[4] J. Lind-Nielsen. BuDDy - A Binary Decision Diagram Package. Technical Report IT-TR:
1999-028, Institute of Information Technology, Technical University of Denmark, 1999.
http://cs.it.dtu.dk/buddy.

[5] D. Long. The AIPS-98 planning competition. AI Magazine, 21(2):13-34, 2000.
6] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publ., 1993.

[7] F. Somenzi. CUDD: Colorado university decision diagram package.
ftp://vlsi.colorado.edu/pub/, 1996.

