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Abstract

The problem of task assignment in a distributed server system is considered, where short jobs are
separated from long jobs, but short jobs may be run in the long job partition if it is idle (cycle
stealing). Jobs are assumed to be non-preemptible. New techniques are presented for analyzing this
problem, both in the case of immediate dispatch of jobs to hosts and in the case of a central queue.
The analysis is approximate, but can be made as close to exact as desired. Analysis is validated via
simulation. Results of the analysis show that cycle stealing can reduce mean response time for short
jobs by orders of magnitude, while long jobs are only slightly penalized.
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1 Introduction

Distributed server model

In recent years, distributed servers have become increasingly common because they allow for in-
creased computing power while being cost-effective and easily scalable. In a distributed server
system, jobs (tasks) arrive and must each be dispatched to exactly one of several host machines for
processing. The rule for assigning jobs to host machines is known as the task assignment policy.
The choice of the task assignment policy has a significant effect on the performance perceived by
users. Designing a distributed server system thus often comes down to choosing the “best” possible
task assignment policy for the given model and user requirements. While devising up new task as-
signment policies is easy, analyzing even the simplest policies can prove to be very difficult: Many
of the long-standing open questions in queueing theory involve the performance analysis of task
assignment policies.

In this paper we consider the particular model of a distributed server system in which the exe-
cution of jobs is non-preemptive (run-to-completion), i.e., the execution of a job can’t be interrupted
and subsequently resumed. We consider both the case where jobs are dispatched immediately upon
arrival to one of the host machines for processing, and the case where jobs are held in a central
queue until requested by a host machine.

Related applications

The model assumptions above are consistent with those of validated stochastic models used to study
a wide range of high-volume Web sites [13, 25]. These papers analyze the performance of special
event Web sites (1998 Winter Olympics) governed by IBM’s Network Dispatcher product [12], a
high-speed router which immediately routes each incoming Web requests to one of several host
servers. Immediate dispatching of jobs is important in this setting for scalability and efficiency; the
router must not become a bottleneck.

Our model is also motivated by servers for high-performance parallel computing. For these
distributed servers, each host machine is usually a multi-processor machine (e.g., an eight-processor
Cray J90) with a single memory, and each job submitted is a parallel job, intended to run on a single
host. Typically, in the case of batch jobs, one job at a time (or a small number of jobs) occupies each
host machine. Jobs may be held in a central queue until a host is ready for the job, or the jobs might
be dispatched to hosts and queued at the hosts. In such settings it is typical for users to submit an
upper bound on their job’s CPU requirement in seconds; the job is Killed if it exceeds this estimate.
Examples of distributed server systems that fit our model are given in Table 1.

Our model has also been used for other applications requiring scalable systems, such as depart-
mental computers within an organization [22] or telecommunication systems with heterogeneous
servers [5]. It has also been studied simply as a purely theoretical model [24].

Previous work on Task Assignment

The analysis of task assignment policies has been the topic of many papers. Below we provide a
brief overview. We limit our discussion to task assignment in non-preemptive systems.

By far the most common task assignment policy used is Round- Robi n [13, 25, 7]. The
prevalence for this policy stems from RR-DNS, [6] whereby the task assignment at a Web site is



Name Location No. Hosts | Host Machine

Xolas [18] MIT Lab for Computer Science 8 8-processor Ultra HPC 5000 SMP
Pleiades [17] MIT Lab for Computer Science 7 4-processor Alpha 21164 machine
J90 distributed server NASA Ames Research Lab 4 8-processor Cray J90 machine
J90 distributed server [1] | Pittsburgh Supercomputing Center 2 8-processor Cray J90 machine
C90 distributed server [2] | NASA Ames Research Lab 2 16-processor Cray C90 machine

Table 1: Examples of distributed servers described by the architectural model of this paper. The schedulers
used are Load-Leveler, LSF, PBS, or NQS. These schedulers typically only support run-to-completion (non-
preemptive) for several reasons: First, the memory requirements of jobs tend to be huge, making it very
expensive to swap out a job’s memory [9]. Thus timesharing between jobs only makes sense if all the jobs
being timeshared fit within the memory of the host, which is unlikely. Also, many operating systems that
enable timesharing for single-processor jobs do not facilitate preemption among several processors in a
coordinated fashion [21].

done based on the IP addresses chosen by the Domain Name Server. The Round- Robi n policy is
simple, but it neither maximizes utilization of the hosts, nor minimizes response times.

In the case where the size of jobs are not known and we require immediate dispatch of jobs to
hosts, then the Shor t est - Queue task assignment policy — where incoming jobs are immediately
dispatched to the host with the fewest number of jobs — has been shown to be optimal when the job
size distribution is exponential and the arrival process is Poisson [28]. Here optimality is defined
as maximizing the discounted number of jobs that complete by some fixed time ¢. Ephremides,
Varaiya, and Walrand [8] showed that Shor t est - Queue also minimizes the expected total time
for the completion of all jobs arriving by some fixed time ¢, under an exponential job size distribution
and arbitrary arrival process.

When a centralized queue is allowed at the dispatcher, the M G k policy been proven to mini-
mize mean response time when job processing requirements come from an exponential distribution,
or one with Increasing Failure Rate [29]. (Note: throughout this paper we will use the terms pro-
cessing requirement, service demand, and size interchangeably.) The M G k policy holds all jobs at
the dispatcher unit in a single FCFS queue, and only when a host is free does it receive the next job.
This policy maximizes utilization of the host machines, thereby helping to minimize mean response
time. The M G k policy is provably identical to the Least - Wor k- Remai ni ng policy which
sends each job to the host with the least total remaining work [10].

While policies like M G k and Shor t est - Queue perform well under exponential job size
distributions, they perform poorly when the job size distribution has higher variability. In such cases,
it has been shown that the Dedi cat ed policy far outperforms all these other policies with respect
to minimizing mean response time. In the Dedi cat ed policy, for example, some hosts may be
designated as the “short hosts” and others as the “long hosts.” Short jobs are always sent to the short
hosts and long jobs to the long hosts. The superiority of the Dedi cat ed policy is demonstrated
analytically in [11], and shown empirically on several traces of supercomputing workloads in [23].
The Dedi cat ed policy is also popular in practice (e.g. Cornell Theory Center) where different
host machines have different duration limitations: 0-1/2 hour, 1/2 — 2 hours, 2 — 4 hours, 4 — 8 hours,
etc., and users must specify an estimated required service requirement for each job. The intuition
behind the Dedi cat ed policy is that for the case of high-variability job size distributions, it is
important to isolate short jobs from the long jobs, as waiting behind the long jobs is very costly.

Even when the job size is not known, it has been demonstrated that a policy very similar to



Dedi cat ed, known as the TAGS policy (Task Assignment by Guessing Size) works almost as well
when job sizes have high variability. Like Dedi cat ed, the TAGS policy significantly outperforms
other policies that do not segregate jobs by size [10].

Motivation for Cycle Stealing

While Dedi cat ed assignment may be preferable to the M G/ k and Shor t est - Queue policies
for highly variable job sizes, it is clearly not optimal. One problem is that Dedi cat ed leads to
situations where the servers are not fully utilized. For example, there may be five consecutive short
jobs, with no long job, resulting in an idle long host. This is especially likely in common computer
workloads, where there are many short jobs and just a few very long jobs, resulting in longer idle
periods between the arrivals of long jobs.

Ideally one would like a policy which combines the variance-cutting benefit of the Dedi cat ed
policy with the high-utilization property of M G k and Short est - Queue. We would like to
segregate jobs by size (short jobs go to short host, long jobs go to long host) so as to provide
isolation for short jobs. However during times when the long job host is free, we would like to steal
the long host’s idle cycles and use those to serve excess short jobs. This would make our system
more efficient not only by decreasing the mean response time of short jobs, but also by enlarging
the stability region of the overall system. Specifically, for highly unbalanced systems, where the
short host is more heavily loaded, granting the short jobs limited access to the long partition may be
the difference between an overloaded system and a well-behaved one. (We discuss this in greater
detail in Section 5.) Importantly, the short jobs should only use the long host when that host is free,
so that we don’t starve the long jobs, or cause them undue delay. Because jobs are not preemptible,
there will still be some penalty to the long jobs, because a long job may arrive to find a short job
serving at the long host, causing the long job to have to wait behind that short job.

Two cycle stealing algorithms

We propose two cycle stealing algorithms:

Cycle stealing with Immediate Dispatch (CS- | mredi at e- Di spat ch): In this algorithm, all
jobs are immediately dispatched to a host upon arrival. There is a designated short job host
and a designated long job host. An arriving long job is always dispatched to the long job
host. An arriving short job first checks to see if the long job host is idle. If so, the short job is
dispatched to the long job host. If, however, the long job host is not idle (either it’s working
on a long job or a short job), then the arriving short job is dispatched to the short job host.
Jobs at a host are serviced in FCFS order. The CS- | mredi at e- Di spat ch algorithm is
shown in Figure 1.

The CS- | mredi at e- Di spat ch algorithm is an improvement over Dedi cat ed, since
a fraction of the arrival stream of short jobs can be offloaded to the long host, while only
slightly penalizing long jobs. However, only those short jobs arriving after the long host has
entered an idle period can obtain this benefit. If a short job arrives just before the long host
enters an idle period, the short job is not eligible for running during the idle partition. This is
the motivation behind our next cycle stealing algorithm.



Cycle stealing with Central Queue (CS- Cent r al - Queue): In this algorithm, all jobs are held
in a central queue. Whenever the short job host becomes idle, it picks the first short job in the
central queue to run. Whenever the long job host becomes idle, it picks the first long job in the
central queue to run. However, if there is no long job, the long host picks the first short job in
the central queue. A minor point: Whereas in CS- | nmedi at e- Di spat ch, the short and
long hosts are designated in advance, in CS- Cent r al - Queue we allow renaming of hosts
—i.e., if the long host is working on a short job, and the short host is idle, then the long host is
renamed the short host and vice versa. Thus in CS- | nmedi at e- Di spat ch, there could
be one short in front of one long job in the system with an idle (short) server, while this could
not happen under CS- Cent r al - Queue. The CS- Cent r al - Queue algorithm is shown
in Figure 2.

Short server

Short jobs first check
_» iflong serverisidle.
If s0, go there.

Else, come here.

Long server
Long jobs always
™ dispatched here.

Figure 1: The CS- | rmedi at e- Di spat ch algorithm.

v
.

Short server

When free,
grab short job.

Long server

When free,
grab long job.
If no long,

grab short job.

Figure 2: The CS- Cent r al - Queue algorithm.

Removing the distinction between short and long

It is important to realize that the terms “short” and “long” are not meant to necessarily indicate
the length of the job. There is nothing in our analysis that requires that “short” jobs be shorter



than “long” jobs. These names are simply notational conveniences to indicate which jobs/host are
the “donors” (providers of idle cycles) and which jobs/host are the “benefactors” (beneficiaries of
the idle cycles). In fact, throughout we will consider three cases: shorts shorter than longs; shorts
indistinguishable from longs; and ( pathologically) shorts longer than longs. We will find that the
“shorts” benefit in all three cases. The “longs” suffer little, except in the pathological case where
they could get stuck waiting behind a “short” job that is not short at all. In this case the penalty to
the “long” jobs is more significant, but still is dominated by the benefits to the “short” jobs.

Difficulty of analysis and new analytic approaches

The above cycle stealing idea is certainly not new. Policies like CS- 1 nmedi at e- Di spat ch
and CS- Cent r al - Queue, as well as others of a similar flavor, have been suggested in countless
papers. However until now the analysis of such policies has eluded researchers. Observe that even
for simplest instance of our problem —where job arrivals are Poisson, short jobs are drawn i.i.d. from
one exponential distribution and long jobs are drawn i.i.d. from another exponential distribution —
the continuous-time Markov chain, while relatively easy to describe, is mathematically intractable.
This is due to the fact that the stochastic process grows infinitely in two dimensions and it contains
no structure that can be exploited in order to obtain an exact solution. While truncation of the
Markov chain is possible, the errors that are introduced by ignoring portions of the state space
(infinite in two dimensions) can be quite significant, especially at higher traffic intensities. Thus
truncation is neither sufficiently accurate nor robust for our purposes.

This paper provides the first analysis (to our knowledge) of the CS- | mmedi at e- Di spat ch
and CS- Cent r al - Queue policies. In both cases, the analysis is approximate, but can be made
as close to exact as desired. Our analysis assumes a Poisson arrival process for short and long jobs.
For both algorithms, the service requirements of the short and long jobs are assumed to be drawn
i.i.d. from any general phase-type distribution. Our approaches for analyzing CS- | rmedi at e-
Di spat chand CS- Cent r al - Queue are very different, but they do share one common element:
busy period approximation.

For CS- | nredi at e- Di spat ch, we decompose the stochastic process representing the sys-
tem into two processes, one corresponding to the short host and one corresponding to the long host.
We solve the stochastic process corresponding to the long host exactly. We then derive the impact
of the long host on the short host and use this to determine the appropriate stochastic process for
the short host, which we then solve. The only approximation lies in the impact of the long host’s
busy period on the short host process. This approximation can be made as precise as desired, since
the long host’s busy period can be estimated up to any number of moments. In this paper we match
three moments and verify via simulation that this is sufficient, in Section 6.

For CS- Cent r al - Queue, the above technique of decomposing stochastic processes and de-
riving the impact of one on the other does not work. Here we appear to need a Markov chain that
is infinite in two dimensions, since we must keep track of both the number of short jobs and the
number of long jobs in the system. In fact, even in the case where short and long jobs are in-
distinguishable, the CS- Cent r al - Queue policy becomes an M/G/2/FCFS policy, which is not
analytically tractable. Our solution is to instead use the transitions between states to keep track of
the relevant information concerning the delay of long jobs, making our Markov chain infinite in
only one dimension. This is done by modeling these transitions as certain types of busy periods, for
which we can derive any number of moments. We again match the first three moments of the busy



periods, and verify that this is sufficient via simulation (in Section 6.)
For both the above cycle stealing algorithms we also derive stability conditions in Section 5.

Outline

Section 2 presents preliminary notation. The analysis of CS- | rmedi at e- Di spat ch is given
in Section 3 and the analysis of CS- Cent r al - Queue is given in Section 4. Section 5 presents
stability criteria for both cycle stealing algorithms. Section 6 validates the analysis of both algo-
rithms against simulation and limiting cases. Finally Section 7 shows the results of the analysis,
assessing the improvement of cycle stealing over Dedi cat ed assignment, while also comparing
the two cycle stealing algorithms in terms of their benefit to short jobs and penalty to long jobs.

2 Notation

Throughout we assume that short (respectively, long) jobs arrive according to a Poisson process
with rate Ag (respectively, Ar). The size, a.k.a. service requirement, of short jobs (respectively,
long jobs) is denoted by the random variable X g (respectively, Xz). The i** moment of the size
of a short (respectively, long) job is therefore E[X%] (respectively, E[X%]). For readability, we
will usually start out by showing the case where job sizes are exponentially distributed, and will
use ug (respectively pr) to denote the service rate of short (respectively, long) jobs, where ug =
1/E[Xs]and pr, = 1/E[X1]. We define ps (respectively, pz,) to be the load created by short jobs
(respectively, long jobs), where ps = Ag - E[Xg] and p;, = AL - E[X]. We assume that the
first three moments of the busy periods are finite, and the queues are stable. We discuss stability in
greater depth in Section 5.

The Laplace Transform L ¢(s) of a non-negative Lebesgue integrable function f(¢) (on the pos-
itive real axis) is defined as

o
Ly (s) de/o e L f(t)dt, s > 0.

The Laplace Transform of a continuous R.V. X, often denoted by X (s) refers to the Laplace trans-
form L(s), of its pdf f(z), in which case L;(s) = E[e *X].

3 Cycle Stealing under Immediate Dispatch

The CS- 1 mmedi at e- Di spat ch algorithm is shown in Figure 1. Under CS- | rmedi at e-
Di spat ch, all long jobs are immediately dispatched to the long host upon arrival. When a short
job arrives, it is dispatched to the long host if that host is idle. Otherwise, it is dispatched to the
short host.

Our analytic approach involves a three step process. The first step is to derive the mean response
times for the long jobs only. We do this in two different ways, first using Matrix Geometric methods
and then using virtual waiting time analysis. We confirm that both methods yield the same result.

Figure 3(a) depicts a Markov chain describing the long host, under the assumption that job
sizes are exponentially-distributed. Each state represents the number of long jobs and the number
of short jobs. Figure 3(b) is the same chain generalized to the case of phase-type job sizes (a two-
phase Coxian is shown). Observe that the number of short jobs at the long host is either 0 or 1. Long
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Figure 3: Markov chain for long host. (a) Shown where job sizes are exponentially-distributed. (b)
Shown where job sizes have a phase-type distribution (two-phase Coxian).

jobs arrive with rate Ay, at every state. Short jobs arrive only when the long host is idle. We solve
the chain in Figure 3(b) to obtain the steady-state mean number of long jobs exactly using Matrix
Geometric methods. We then apply Little’s Law [19] to obtain the mean response time of long jobs.

The Matrix Geometric method is due to Neuts [20] and described also in [16]. It is a compact
and fast method for solving QBD (quasi-birth-death) Markov chains which are infinite in only one
dimension, where the chain repeats itself after some point. The repeating portion is represented
as powers of a generator matrix which can be added, as one adds a geometric series, to produce
a single matrix. Every plot in this paper which used Matrix Geometric analysis (to solve multiple
instances with different parameter values) was produced within a couple of seconds using the Matlab
6 environment.

An alternative way to deduce the mean response time for the long jobs is to use virtual waiting
time analysis. We include this analysis in the Appendix. Below we simply state its result. 7'(%)
represents the response time of long jobs.

- - X __
() = ° +As = Xs(s)As 0 X(s),
S — AL + XL(S)/\L
B — _PL E[X}] ps  E[XE]

1— pr2EX;] | 1+ ps 2B[Xs]

+E[XL]5

where
1—-pL

1+ ps’
represents the fraction of time that the long host is idle.

T —



The second step is to derive all moments for the busy and idle periods of the long host, for use in
our analysis of the short host. The long host idle time is exponentially-distributed with rate A, + Ag.
To derive the length of the busy period for the long host, we need to distinguish between two types
of busy periods: (1) A busy period made up entirely of long jobs, the duration of which we represent
by the r.v. Br; and (2) A busy period started by one short job followed by zero or more long jobs,
the duration of which we represent by the r.v. Bgz,. We then have the following:

Br(s) = Xi(s+ Ao —ALBL(s));
Bsi(s) = Xs(s+ AL —ApBL(s)).

From these transforms we compute the first three moments of each type of busy period as fol-
lows:

E{BL} = —f{_XZL}; E{Bs }_E{X;)SL}
. E XL
BB} = (1EPL§
() = G U e ),
OBAE{XZ)?  E{X3)
B = Ta o A
_ AE{Xs}-3-(E{X7}) E{X}
BB} = T e
L IME{XE) +E{X3) + ME(Xs}E{X])
(1—PL)

To obtain the moments of a general busy period for the long host, observe that a busy period is of
type Bgy, with probability Ag/(As + Ar) and of type By, with probability Az /(As + Ar). Hence,
denoting by B the duration of a general busy period, we have

A pY
e{B'} = ASJFSA E{BgL}-l—)\S_I_LALE{Bf}.

We now construct a phase-type distribution to match as many moments of the long host’s busy
period as are of interest. Many methods exist for matching moments to phase-type distributions:
[14, 4, 15]. We find that simply fitting a two-phase Coxian distribution to the first three moments of
the long host’s busy period works sufficiently well for our purposes.

Our last step is to analyze the short host. The arrival rate at the short host is Ag only during
times when the long host is busy. When the long host is idle, the arrival rate at the short host is zero.
To represent the short host, we therefore need a way of representing the duration of a busy period
at the long host. Figure 4(a) is a simplified view of the Markov chain model of the short host. It
assumes that the job sizes are exponentially-distributed and shows the busy period duration for the
long host is shown as a bold transition marked B. Figure 4(b) is the Markov chain that we actually
solve for the short host. Here the job sizes are drawn from a two-phase Coxian, used to match the
first three moments of the respective job size distribution. Also the length of the busy period for the
long host is matched for the first three moments by a two-phase Coxian distribution.



Figure 4: MC for short host. (a) Where job sizes are exponentially-distributed. (b) Where job sizes
are Coxian.

We solve the Markov chain in Figure 4(b) for the number of short jobs at the short host using
Matrix Geometric methods. Then via Little’s Law, we obtain the mean response time of small jobs
which serve at the short host. Aggregating short jobs at both hosts, we then have by PASTA:

E[ Time for short jobs | =
Pr{Long host idle} - E[Xs] + Pr{Long host busy} - E[ Time at short host]

Observe that while the mean response time for long jobs is exact, the mean response time for short
jobs depends on the accuracy of the approximation of the busy period of the long host. We have
matched the first three moments of the busy period of the long host. Greater accuracy can be
achieved by matching more moments of the busy period, using a higher degree Coxian, until in
theory the results are arbitrarily close to the actual quantities.

4 Cycle Stealing under Central Queue

The CS- Cent r al - Queue algorithm is shown in Figure 2. Under CS- Cent r al - Queue, all
jobs are kept in a central queue in the order they arrive. When the short host is free, it grabs the next
short job and runs it. When the long host is free, it grabs the next long job and runs it. If there is no
long job, it grabs the next short job.

Observe that the technique we used for solving CS- | nredi at e- Di spat ch (where we split
the problem into two chains where one was a function of the other) will not work here. The reason



Notation | Definition

Br, Busy period consisting of only long jobs, and started by a single long job (of size Xp).
E exponential random variable with rate 2ug
Bg Busy period consisting of only long jobs, and started by a single job of size E.

Bryr Busy period consisting of only long jobs, and started by a job of size X, + E.

N = Ag | Number of long jobs which arrive during E

Bni1 Busy period consisting of only long jobs, and started by a job whose size is the sum of N + 1 long jobs.

Table 2: Notation necessary for analyzing CS- Cent r al - Queue

is that the decision of which job the long host takes depends on knowing the exact number of long
and short jobs in the system: There is no way to decompose the system into two chains. We will
instead look for a single Markov chain which represents this system and yet is infinite in only one
dimension.

There will be a lot of notation in this section. We will introduce it as we go along. For the
reader’s convenience, the notation is summarized in Table 2 below.

4.1 Formulatingthe Markov chain for CS- Cent r al - Queue

In Figure 5(a) we show a chain representing CS- Cent r al - Queue. The first entry of each state
denotes the number of small jobs, which ranges from zero to infinity. The second entry of each state
denotes the number of long jobs. This is either OL, 1L, or a special state denoted by (N + 1)L.
The third entry of each state, when present, denotes the type of job in service at the long host. The
service time for the long job is assumed to be generally-distributed. For simplicity in specifying
the Markov chain, the service time for the small job is assumed to be exponential, with rate ug,
although this is straightforward to generalize.

The logic behind the chain is as follows: Let’s start in region 1, and consider a long arrival.
This causes a transition to region 3, and that long arrival starts a long busy period, whose length is
denoted by By,. We will return to regions 1 or 2 only after time Bjy,. During this busy period, many
smalls can arrive. These will only be served at rate x5 since the long host is occupied by a long job.

Next consider a long arrival into region 2. This causes a transition into region 5. Before the
long arrival can run, it must first wait for one of the small jobs to finish, since the small jobs are
occupying both hosts. When one of the small jobs completes, the long job will move to occupy that
host (that host will be renamed the long host) and we move to region 4. Thus, we sit in region 5 for
time E ~ Exp(2us), waiting for one of the small jobs to complete. During time E, N new long
jobs arrive. At the moment one of the short jobs completes there are N + 1 long jobs in the system,
and a long starts service. We now enter a busy period consisting of long jobs, started by a job of
size Efi“{l Xg). The length of this busy period is denoted by By 1. At the end of this busy period,
we return to region 1 or 2. During our time in region 4, small jobs can of course arrive and depart.
Such small jobs are served with rate g since there is a long job occupying one host.

Observe that the only time that the small jobs are served at rate 2. is when there are zero long
jobs in the system, or when a long job finds that there are already 2 small jobs serving.

The chain in Figure 5(a) uses two types of busy period transitions, denoted by B, and By 1.
We can derive all the moments of these busy periods and represent the busy period transitions by a
Coxian distribution. Figure 5(b) is identical to Figure 5(a), except that the busy period transitions
have been replaced by two-phase Coxian distributions, which allows us to model the first three
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moments of each busy period. More moments could be modeled using a higher-degree Coxian,
however we will see that three moments provide sufficient accuracy.

There is still one problem: The chain in Figure 5 is not a strict Markov chain. The problem
is that E, the time required to transition from region 5 to region 4, is not independent of B 1,
the time required to transition from region 4 to region 1 or 2. This is because the number of long
arrivals during E, N, is correlated with E and with By . For Figure 5 to be a Markov chain, we
would need to have E and By be independent.

To address this problem, we define a new random variable, Bg. Bg is the length of a busy
period consisting of only long jobs, started by a job of size E. Next define Bg. 1, to be the length
of a busy period consisting of only long jobs, started by a job of size E + X . Observe that

Bgi1 =4ist B + B,

Observe also that By 1, represents the total time required to transition from region 5 to region 1 or
2, and that B 1, is exact — the dependencies between E and By 1 are inherent in it.

We could imagine creating a single transition from region 5 to region 1 or 2 of duration Bg 1.
This would not suit our needs, however: While it is not difficult to compute the moments of Bg. 1,
and create a Coxian random variable representing B, using a single transition from region 5 to
region 1 or 2 would not capture the fact that the rate at which small jobs are served is initially 2u g
but later yg.

Therefore we choose instead to express Br. 1, as a sum of two independent random variables £
and U where

Bpipr=E+U

Given the moments of Bg 1, and the moments of £, we will be able to then derive the moments
of U as follows:
We first write out the following equations, which assume E and U are independent:

Bpi = E+U,
E[Bgy1] = E[E]+ E[U],
E[B.1] = E[E’|+2E[E|E[U] + E[U?],
E[B}.;] = E|E® +3E[E*E[U]+ 3E[E|E[U% + E[U?].

Next we solve these equations for the moments of U as follows:

E[U] = E[BgyL] - E[E],
E[U*) = E[Bh..)— E[E®] - 2E[E]E[U,
E[U®] = E[B},.]—3E[E®|E[U] - 3E[E|E[U?] - E[E"].

We now find a two-phase Coxian which matches these first three moments of U. The resulting
Markov chain, shown in Figure 6, is almost identical to Figure 5, except that the Coxian By 41
random variable has been replaced by the random variable U where U is defined according to the
above equations and is independent of E ~ Exp(2ug). Thus we have a well-defined Markov
Chain. Note: Computationally, performance-wise the chain in Figure 5 is virtually identical to the
chain in Figure 6.
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(b)

Figure 5: (a) Chain corresponding to CS- Cent r al - Queue. The notation S, jL represents 4
short jobs and j long jobs. The third field in the state denotes whether a short job or a long job is
in service at the long host. Light arrows represent exponential rates. Bold arrows represent busy
periods. By, is a busy period consisting of only long jobs, and started by a single long job. By 1 is
a busy period consisting of only long jobs and started by N + 1 long jobs, where N is the number
of long arrivals during Exp(2us). (b) Expanded version of chain in (a) where busy periods have
been replaced by Coxian distributions.
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Region 1

Region 4

Figure 6: (a) Markov chain corresponding to CS- cent r al - queue. This is identical to the chain
in Figure 5(a), except that the transition By .1 has been replaced by U where U is independent
of E ~ Exp(2ug). (b) Same Markov chain as in (a), but bold transitions have been replaced by
two-phase Coxians matching the first three moments.
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4.2 Deriving the necessary busy periods for the chain

In order to specify the Markov chain, we need to compute the first three moments of By, and the
first three moments of By 1. These will in turn give us the first three moments of U. In this section
we complete these derivations:

By, simply represents a busy period made up of only long jobs. Its moments were computed in
Section 3 and are repeated below for reference:

__BIX7]

(1—pr)? (1-pL)®

Next we derive the moments of Bg where B represents the length of a busy period started by
a job of size E ~ Exp(2us), and consisting of only long jobs.

Be(s) = E(s+ Ay — ABr(s)).

Therefore

E[Bg] = E[E]+ ALE[BL]E[E],

E[B%] = E[E?|+ A\LE[E|E[B?]+ (\LE[B1])2E[E?] + 2\ E|BL)E[E?],
E[By] = E[E®|+ A\ E[E|E[B}] +3)\] E[E’|E[B}|E[Br] + (\LE[BL])*E[E’),

+3\LE[EYE[B%] + 3(\LE[BL))2E[E®] + 3\ E[BL)E[E?].

Finally, we compute the moments of Bg. 1:

Bgyr, = Bg+ Bg,

E[Bgt+1] = E[Bg]+ E[BL],
E((Bp+1)’] = E[BE]+2E[Bg|E[B] + E[B),
E((Bp+1)’] = E[Bp]+ 3E[BL|E[BL] + 3E[Bg)E[BL] + E[B}).

4.3 Deriving the performance of short and long jobs
Response time for short jobs

The expected response time for short jobs is easy to compute: Simply derive the limiting probabili-
ties for the chain shown in Figure 6. The chain is analyzable via Matrix-Analytic methods, since it
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is infinite in only one dimension and repeats in structure starting at the third column. Its generator
matrix has the form:

B00 BO1 — -
o—| B0 Bl A2 -
| - A1 A1 Ao

- - A2 Al

From the limiting probabilities we deduce the expected number of short jobs in the system.
Finally we divide by A, to get the mean response time for short jobs.

Response time for long jobs

For long jobs, computing the expected response time is a little more involved. From the long jobs’
perspective, they see an M/G/1 queue where, at times, the first job in a busy period must wait until
a short job finishes (as short jobs occupy both servers). More succinctly, assuming that short job
service requirements are exponentially-distributed with rate i g, the response time for long jobs is
the response time under an M/G/1 queue with setup time S where

pPr{Region 1}

0 with probability a; = Br{Region T of 23

Pr{Region 2}
pr{Region 1 or 2}"

E = Exp(2us) with probability as =

Observe that S is defined entirely by what the first job to start a busy period sees. The expected
waiting time for an M/G/1 queue with only long jobs and a setup time of S is known [26]:

E[W]M/G/l/SetupS _ 2E[S] + )‘LE[SQ] ALE[X%,] )
2(1+MpE[S])  2(1-pr1)
We thus have:

E[Time for long] = E[X ] + E[W|M/G/1/SetupS

5 Stability under CS-Immediate-Dispatch and CS-Central-Queue

For Dedi cat ed assignment it is required that p;, < 1 and ps < 1, where py, (respectively, ps)
denotes the load made up of long jobs (respectively, short jobs). For CS- | mredi at e- Di spat ch
we will see that the region of stability is much wider, and for CS- Cent r al - Queue wider still.
Let pp,1, (respectively, pps) denote the load at the long host (respectively, short host). Both these
quantities must clearly be < 1.
For CS- Cent r al - Queue stability conditions are trivial:

pr < 1,
ps < 2—pr.

Therefore the rest of this section will be devoted to analyzing the stability conditions for CS-
| mredi at e- Di spat ch.
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We can deduce pp, from the following equation:

prt = ps(1—ppr) +pr,
pPs + pL
= PhL 145

We therefore have the constraint that

ps +pL
1+ ps

justas in Dedi cat ed and CS- | nredi at e- Di spat ch. Next we deduce ppg:

<1 & pr <1,

Prs = ps-par <1,

or, equivalently,
PstpL

<1
1+ ps

This is in turn equivalent to:
1
pr < —+1—ps.
ps

So that ultimately it it is required that
. 1
pr, < min(l, — +1 — pg).
ps
The above constraint on py, is depicted graphically in Figure 7.

Stability condition on rhol
1 T

0.9F

08
o7
0.6

Sost
0.4
03
0.2

0.1r

0 02 04 06 08 1 12 14 16 18 2

Figure 7: Stability constraint on p;, for Dedi cat ed, CS- | medi at e- Di spat ch, and CS-
Central - Queue

We can also turn the above constraint into a constraint on pg as follows:

1—pr+ V(1 —pr)?+4
s < 9 .

The restriction on pg for each of the three task assignment policies is shown in Figure 8. Observe
the advantage of cycle stealing in extending the stability region. When p, is near zero, pg can be
as high as about 1.6 under CS- | nredi at e- Di spat ch and as high as 2 under CS- Cent r al -

Queue.
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Stability condition on rhos
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Figure 8: Stability constraint on pg for Dedi cat ed, CS- | mredi at e- Di spat ch, and CS-
Central - Queue.

6 Validation of Analysis

As we are proposing a new analytical scheme to arrive at near-exact calculations of waiting times, it
is of paramount importance that we demonstrate the correctness of our proposed method. In both the
analysis of CS- | mredi at e- Di spat chand CS- Cent r al - Queue, we approximate the length
of a busy period, consisting of long jobs or primarily long jobs, by its first three moments. In this
section, we validate the accuracy of our methods in two ways:

1. Validation against known limiting cases: We compare the output of our algorithm with
exact results from the literature when these exist. Due to the complexity of our system, this
is possible only in a limited number of special cases; specifically when the traffic intensity
of one of the customer classes approaches either zero or the saturation point of the system
(this saturation point may be strictly greater than one for the small jobs who have access to a
second server). Depending on the model, and whether the traffic intensity approaches zero or
saturation, the system approaches either an M/G/1 queue, an M/G/1/queue with initial setup
time, or an M/G/2 queue. The performance of the first two of these models for general service
times are known, while the third is only available in the literature only for exponential service
times. Given these known results, these comparisons may be carried out for any stable traffic
intensity.

2. Validation against simulation: Having evaluated our approximation methods for limiting
cases approaching saturation and approaching zero, we next use computer simulation to test
our analytical results over a broad range of loads. Simulations are limited only by the fact that
simulation accuracy decreases as the relative traffic intensities approach saturation [3, 27].

For both types of validation we consider three definitions of “short” and “long.”
e Shorts have mean size 1; Longs have mean size 1
e Shorts have mean size 1; Longs have mean size 10

e Shorts have mean size 10; Longs have mean size 1
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Although our cycle-stealing algorithms were designed with the second case above in mind (short
jobs shorter than long jobs), there is no reason why the analysis shouldn’t work as well for the first
and third cases above, and thus for completeness we validate under all cases.

6.1 Validation against known limiting cases

We have four limiting cases, described below, which we use to evaluate our analysis. In all cases
illustrated below we assume that short jobs are exponentially-distributed and that long jobs are
drawn from a Coxian distribution with C? = 8. Other distributions of job sizes and loads were also
evaluated, all showing similar limiting behavior.

Limiting Case 1: Fix pg, take p;, — 1. Under this case, for both CS- | rmedi at e- Di spat ch
and CS- Cent r al - Queue it becomes increasingly difficult for the short jobs to gain access
to the long server. Thus, the mean response time for short jobs under both cycle-stealing algo-
rithms should approach that of an M/G/1 queue with load pg. This is in fact the case, as shown
in Figure 9(row 1), where we fix pg = 0.9 and evaluate both cycle stealing algorithms with
respect to mean response time for short jobs as py, is set progressively closer to 1. Observe
that CS- | nredi at e- Di spat chiis a little faster to converge than CS- Cent r al - Queue.
This is because more short jobs sneak into the long server under CS- Cent r al - Queue.

Limiting Case 2: Fix py, take ps — 0. Under this case, for both CS- | rmedi at e- Di spat ch
and CS- Centr al - Queue it becomes increasingly unlikely that a long job will be ob-
structed by a short job. Thus the mean response time for long jobs under both cycle-stealing
algorithms should approach that of an M/G/1 queue with load pz. This is in fact the case,
as shown in Figure 9(row 2), where we fix pr, = 0.9 and evaluate both cycle stealing al-
gorithms with respect to mean response time for long jobs as pg is set progressively closer
to 0. Observe that this time CS- Cent r al - Queue is a little faster to converge than CS-
| medi at e- Di spat ch. To understand why, we need to consider how many short jobs in-
terfere with long jobs. Consider times when the long host is idle. Observe that as pg — 0, the
short host is usually idle. A new arrival under CS- Cent r al - Queue will go to either queue
and that will be named the short queue. However a new arrival under CS- | niredi at e-
Di spat ch will always try to go to the long host first (and there is no renaming). Thus
fewer short arrivals will interfere with a long job under CS- Cent r al - Queue, than under
CS- | mredi at e- Di spat ch.

Limiting Case 3: Fix pz, and let pg — stability-condition under CS-Central-Queue. The mean
response time for long jobs should approach an M/G/1 queue where the first job in a busy pe-
riod experiences a setup cost S, where S = min(Ezcess(Xs), Excess(Xg)). The reason is
that an arriving long job which sees no other long jobs, will likely see both servers occupied
by short jobs. If the short job at the long host finishes first, the long host will go there. If
the short job at the short host finishes first, the long job will go there and the short host will
be renamed to be the long host. In the case where X g is exponential, as we have assumed,
Ezxcess(Xg) = Xg and thus we should have simply: S = min(Xgs, Xg). This is in fact the
case, as shown in Figure 9(row 3), where we hold py, fixed arbitrarily at p;, = .6 and set pg
progressively closer to 2 — p;, = 1.4, the stability condition for CS- Cent r al - Queue.
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Limiting Case 4: Let pr, — 0 under CS-Central-Queue. Under CS- Cent r al - Queue,as pr, —
0, the mean response time for short jobs should approach an M/M/2 queue. This is in fact the
case, as shown in Figure 9(row 4), where we hold pg fixed at 1.89, and set pr, progressively
closer to zero.

Having validated cases with traffic intensity approaching zero or saturation, we next consider
intermediate values of traffic intensity. These are evaluated via simulation.

6.2 Validation against simulation

We performed event-driven simulations of our cycle stealing algorithm in C on a 700MHz Pentium
111 processor with 256 MB RAM. We experimented with a range of loads (ps, pr), various defini-
tions of short and long, and different job size distributions (exponential and Coxian with C? = 8).
Each experiment consisted of measuring mean response time over 108 arrivals with a warmup pe-
riod of 50,000 arrivals. Each experiment was then replicated thirty times (using different seeds) and
the average of the thirty replications was compared with the analytically-predicted value from our
algorithm.

In Figure 10 we show just a small subset of our experiments, restricted to exponential job sizes,
where pg is held fixed at 0.9 and py, is allowed to range over all stable values. Almost all of
our simulation results were within 1-2 percent of predicted analysis; in some cases the simulation
numbers were a little higher than analysis and in some cases a little lower. Simulation replications
were quite consistent at low loads, but exhibited high variability at higher loads, even under an
exponential job size distribution. When the job size distribution was Coxian (with C? = 8), the
variation within the simulation results increased further. We do not show the Coxian plots, but we
do include those results in our discussion below.

Over all our simulation experiments, we found that with respect to mean response time of long
jobs, there is no visible discrepancy between analysis and simulation under either cycle stealing
algorithm. To understand why this is the case for CS- | nmedi at e- Di spat ch, recall that under
CS- | mredi at e- Di spat ch there are two Markov chains, one for the long host and one for the
short. The Markov chain representing the state at the long host is exact (it involves no busy period
approximations). Thus it is understandable that there is no discrepancy for the long jobs. Under CS-
Cent r al - Queue there is a single Markov chain, which does involve busy period approximations.
The busy periods are up-down arrows in this chain. Nonetheless, recall that the performance of
the long jobs, as described in Section 4.3 depends only on the parameters a1 and as, which are
the probabilities of being in Region 1 versus Region 2. These stationary probabilities are averages,
which are likely less sensitive to the very high moments in the lengths of the busy periods.

With respect to mean response time of short jobs, there was more discrepancy between analysis
and simulation. This discrepancy was limited to the case of high load and was more prevalent in the
case where long jobs were very long. It is easy to see why short jobs are more greatly impacted by
the long busy period approximations under both cycle stealing algorithms: The length of the busy
period of the long jobs affects the left/right motion of the chain which represents the number of small
jobs. Since we only match the length of the busy period to three moments, we may be creating error
in the number of short jobs. Furthermore, observe that since these busy periods consist primarily of
long jobs, the variability in the length of these busy periods becomes more pronounced when long
jobs are very long and loads are very high. To fully capture the effect of these busy periods, we
will need to match more moments. Using more sophisticated simulation techniques to ameliorate
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Figure 9: Validation of analysis against four limiting cases. Inrow 1 pg = 0.9. As p;, — 1, response
times for short jobs under both cycle stealing alggfithms converge to an M/M/1 with load p . In row
2 pr = 0.9. As ps — 0, response times for long jobs under both cycle stealing algorithms converge
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response times of long jobs converge to an M/G/1 with setup S ~ Ezp(2ug). Inrow 4 pg = 1.89.
As pr, — 0, under CS- Cent r al - Queue, short jobs converge to an M/M/2.



the variability in simulation results caused by the high traffic intensity will likely help as well. One
should note that over all the simulation experiments that we ran, the difference between analysis and
simulation was never more than 10%, and that difference occurred rarely and only at high traffic
intensity.

It is worth pointing out that for each graph in Figure 10, the simulation portion required close
to an hour to generate, whereas the analysis portion required less than a second to compute.

7 Resultsof Analysis

Recall that the motivation behind cycle-stealing algorithms is to improve the performance of “short”
jobs without inflicting too much penalty on “long” jobs. Some penalty to long jobs is inevitable, of
course, since our model is non-preemptive, meaning that a long arrival can’t interrupt a short job
running at its server.

In this section we will study the results of our analysis of the two cycle-stealing algorithms,
CS- I mredi at e- Di spat chand CS- Cent r al - Queue. All figures will be organized into two
parts, where the first part will show the benefit to short jobs and the second part will show the
penalty to long jobs. In order to evaluate these benefits/penalties we compare with the Dedi cat ed
algorithm which involves no cycle stealing.

In Figure 11 and 12, we hold p;, (the load at the long server) fixed at two representative values
and consider the full range of ps. Recall from Section 5, for Dedi cat ed we can never have pg >
1. However for CS- Cent r al - Queue, pg is allowed as high as 2 — p;,. For CS- | mredi at e-
Di spat ch, pg is allowed as high as some intermediate value shown in Figure 8, which is not as
high as 2 — py, and yet is higher than Dedi cat ed.

Figure 11 shows analytical results in the case where both shorts and longs come from an expo-
nential distribution. In row 1 and row 2 we fix p;, = 0.5 and vary pg over all stable values. In row
3 and row 4 we fix py, = 0.8 and vary pg over all stable values.

Looking at Figure 11 row 1, column (a) (where shorts and longs have mean size 1 and we fix
o = 0.5), we see that the short jobs benefit tremendously from cycle stealing. For pg > 0.8,
the mean improvement of cycle stealing algorithms over Dedi cat ed servers is over an order of
magnitude. As ps — 1, the mean response time under Dedi cat ed goes to infinity, whereas it
is only around 4 under CS- | rmedi at e- Di spat ch and only around 3 under CS- Cent r al -
Queue. (Graphs have been truncated so as to fit on the page). This shows the huge benefit that
short jobs obtain by being able to steal idle cycles from the long host.

Again looking at Figure 11 row 1, column (a) we see that the improvement of CS- Cent r al -
Queue over CS- | mredi at e- Di spat chis also vast. As ps — 1.3, the mean response time un-
der CS- | mredi at e- Di spat chgoes to infinity whereas it is only around 7 under CS- Cent r al -
Queue. This makes sense since under CS- | mredi at e- Di spat ch only new short arrivals can
benefit from idle cycles, whereas under CS- Cent r al - Queue the long host, when seeing no long
jobs, can take on short jobs already waiting.

Looking at Figure 11 row 1, columns (b) and (c), we see that trends are similar to column (a),
with only the absolute magnitude of the numbers growing.

Next we look at Figure 11 row 2, column (a) (where shorts and longs have mean size 1 and we
fix p; = 0.5) and find that the penalty imposed on long jobs by cycle stealing is relatively small. The
penalty increases with pg, but even when pg = 1, the penalty to long jobs is only 20% under CS-
Cent r al - Queue and 50% under CS- | nredi at e- Di spat ch (compared with the unbounded
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Figure 10: Validation of Analysis against simulation. Row 1 shows performance of short jobs under
CS- | medi at e- Di spat ch where we fix ps = 0.9 and py, varies. Row 2 shows performance of

2

long jobs under CS- | mredi at e- Di spat ch where we fix ps = 0.9 and p, varies. Row 3 shows
performance of short jobs under CS- Cent r al - Queue where ps = 0.9 and pr, varies. Row 4
shows performance of long jobs under CS- Cent r al - Queue where ps = 0.9 and py, varies.
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Figure 12: Results of analysis, in the case where longs are drawn from Coxian distribution with
appropriate mean and C? = 8. Response times %"f shown as a function of pg.
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Figure 13: Results of analysis, in the case where longs are drawn from Coxian distribution with
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improvement for the shorts). For the case of column (b), where shorts are shorter than longs,
this penalty drops to only 2% under CS- Cent r al - Queue and 5% under CS- | rmedi at e-
Di spat ch. For the case of column (c), where shorts are longer than longs, the penalty is greater.
This is to be expected since jobs are not preemptible and a long job may now get stuck waiting
behind a short job ten times its size. It’s important to observe, however, that for all values of p g, the
penalty to long jobs is low compared with the tremendous performance improvement available to
short jobs.

One interesting observation is that the penalty to long jobs appears lower under CS- Cent r al -
Queue than under CS- | nredi at e- Di spat ch. At first this seems quite contrary, since under
CS- Cent r al - Queue it seems that more idle time is given to short jobs, thus the long jobs should
suffer more. The reason this is not true is that under CS- Cent r al - Queue the servers are renam-
able. This means that a long job arriving to find both servers serving short jobs need only wait for
the first of the two servers to free up under CS- Cent r al - Queue.

Considering Figure 11 rows 3 and 4, where we now fix p;, = 0.8, we see that results are largely
similar to the case pr, = 0.5, except that the benefits to short jobs are not quite as great and the
penalty to long jobs is also not as high. This is to be expected since now there are fewer idle cycles
to steal. Still the performance improvement of cycle stealing over Dedi cat ed servers is orders
of magnitude for higher pg.

Figure 12 is the counterpart to Figure 11, where now long jobs are drawn from a Coxian dis-
tribution with the appropriate mean and C? = 8, representing higher variability in the long jobs
(short jobs are still drawn from an exponential distribution). Increasing the variability of the long
job service time does not seem to have much effect on the mean benefit that cycle stealing offers
to short jobs. With respect to the impact on long jobs, the long jobs end up with higher overall
response times due to their higher variability, but similar absolute increase. The impact of cycle
stealing on the long jobs is therefore considerably lessened when the variability in long job service
times is increased. In fact, even for pg = 1, under the case where shorts are shorter than longs (case
(b)), the penalty to long jobs is less than 1% under both cycle stealing algorithms. For the case
where shorts are indistinguishable from longs (case (a)), the penalty to longs is still under 10% for
CS- I mredi at e- Di spat ch and under 5% for CS- Cent r al - Queue.

Until now we have not considered the case where py,,, the load at the long host, is close to 1. It
is interesting to ask what the penalty of cycle stealing to long jobs looks like as pp, gets closer to
1. To investigate this question, we again consider the setup in Figure 12, except that this time we
look at response time as a function of p,, where we fix ps = 1.2 and later pg = 1.5 and consider
the full range of pr, as shown in Figure 13.

To understand these plots, it helps to first recall that Figure 7 limits the range of p;, under which
CS- I mredi at e- Di spat chand CS- Cent r al - Queue are stable. Specifically, Figure 7 shows
that when pg = 1.2, CS- | rmedi at e- Di spat ch is only stable for p;, < .65 (approximately)
and CS- Cent r al - Queueis only stable for p;, < 0.8 (approximately). For ps = 1.5, the stability
criteria on py, are even more stringent, particularly for CS- | mredi at e- Di spat ch. Figure 13
row 1 shows the mean response time for the short jobs under the two cycle stealing algorithms as
a function of pr, when we fix pg = 1.2. Observe that as each algorithm nears its stability asymp-
tote with respect to pr,, the response time shoots up to infinity (all graphs have been truncated).
Thus, because CS- Cent r al - Queue has a bigger stability region, its performance also appears
far superior to CS- | nredi at e- Di spat ch. Observe that we couldn’t show the performance of
Dedi cat ed because it is unstable over the entire region.
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Figure 13 row 2 considers the performance of the long jobs as a function of p;, where we again
fix pg = 1.2. Observe that the prior stability criterion on p;, was only based on keeping the short
host stable. The long host, on the other hand, is stable for all values of p;, under Dedi cat ed and
under both cycle stealing algorithms. Figure 13 row 2 shows that cycle stealing does not penalize
the long jobs, except in the case where the short jobs are much longer than the long jobs. In this
case, cycle stealing penalizes the long jobs for lower loads; this penalty goes away for higher loads,
since the short jobs can’t get in to steal. Results for pg = 1.5 are similar in trend.

In summary, we have seen that short jobs are tremendously helped by cycle stealing, and
that CS- Cent r al - Queue offers greater improvements to short jobs over CS- | mmedi at e-
Di spat ch. We have also seen that, provided that short jobs are no longer than long jobs, the impact
of cycle stealing to long jobs is negligible. Even when the short jobs are actually longer than the long
jobs, the penalty to the long jobs is less, proportionally, than the benefit to the shorts. Furthermore,
this impact is greater under CS- | mredi at e- Di spat ch than under CS- Cent r al - Queue.
Thus CS- Cent r al - Queue is always a better strategy than CS- | mmedi at e- Di spat ch, and
both are far better than Dedi cat ed.

8 Conclusion

The purpose of this paper is to analytically derive the benefit of cycle stealing where jobs normally
destined for one machine may steal the idle cycles of another machine (the “donor” machine, a.k.a.
“long” host). The motivation is that the jobs doing the stealing (the “beneficiaries, a.k.a. “short”
jobs) will benefit immensely, while the donor jobs experience very little penalty, since (primarily)
only their idle cycles are stolen. The paper considers two algorithms for cycle stealing: Immediate-
Dispatch — where only newly arriving jobs can steal idle cycles — and Central-Queue — where the
beneficiaries include both newly arriving jobs and already queued jobs.

At the onset of the paper we assumed that arriving jobs had been designated as being either
“short” or “long”, where “short” jobs were the ones permitted to do the stealing. However through-
out the paper we also evaluate the case where “short” and “long” jobs are indistinguishable — a
perhaps more applicable case — as well as the pathological case where “shorts” are longer than
“longs.”

Our results show that the beneficiaries (the shorts) can benefit by an order of magnitude under
both cycle stealing algorithms. The donors (the longs) are penalized only by a small percentage, so
long as shorts aren’t longer than longs on average. Even when the short jobs are actually longer than
the long jobs, the short jobs benefit more than the long jobs are penalized. Our results also show
that CS- Cent r al - Queue is a superior strategy to CS- | rmedi at e- Di spat ch both from the
perspective of the benefit to short jobs and from the perspective of the impact on long jobs.

This paper presents the first analysis of cycle stealing. The analysis is an approximation, since it
depends on approximating a busy period by a finite number of moments. The analysis can be made
as precise as desired by using more moments — in this paper we use three. Still, even with just three
moments, the analysis agrees well with simulation results. Furthermore, whereas generating a plot
of simulation results requires an hour, generating a plot of analytical results requires only a couple
seconds.

In this paper we make the assumption that jobs are not preemptible. It is interesting to com-
pare our task assignment policy with other non-preemptive policies. A natural non-preemptive
policy which comes to mind is M G 2/ SJF. Here it is assumed that there is a central queue where
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jobs are held at the dispatcher, and short jobs are always given preference over long jobs at both
hosts. It turns out that from the perspective of both the short and long jobs, the M G 2/ SJF pol-
icy sometimes outperforms our cycle stealing algorithms and sometimes does worse, depending on
conditions like pg, pr, and the job size distributions. On the plus side, M G 2/ SJF offers the
short jobs two servers, where both servers prioritize in favor of shorts. On the negative size, be-
cause M G 2/ SJF does not offer a dedicated short server, the short jobs sometimes end up getting
stuck behind two long jobs, one at each host. With respect to the long jobs, on the negative side,
M G 2/ SJF penalizes long jobs at both servers, but on the positive side, long jobs may benefit in
situations where pg is low and two long jobs end up capturing both hosts.

A natural followup problem to this paper is the situation of two hosts, both of which help each
other. That is, both hosts are donors and beneficiaries. This problem is open as of the time of this

paper.
9 Appendix

This section includes the virtual waiting time analysis used to derive the Laplace transform of the
waiting time for long jobs under CS- | nredi at e- Di spat ch, denoted by TC(QL). The response
time for long jobs 7'(X) is defined as

T® =18 + X3

Summary of Results

. -X
TS(s) = o1 As — Xs(s)As 0,
s— AL + XL(S))\L
(L) pr_ E[X}] ps  E[XE]
EI|T = + ,
[ Q ] 1—pr 2E[XL] 1+ ps 2E[X5]
gy = _Pr BIXE | ps BIXY | EIXG ( pu_ E[X} | _po BIX}
Q 1—pr3E[Xy] 1+ ps3E[Xs] 1-pr E[Xz] \1-pr2E[XL] 1-pr2E[Xs]
where
T = 1= pe
0 1+ s )

represents the fraction of time that the long host is idle.

Analysis of Long Host

Let W (t) be the virtual waiting time at time ¢. That is, a job arrival at time ¢ would wait W (¢) before we start
processing the job. We follow the following steps to obtain the moments of W = lim;_, o, W (%):

1. Set up the differential equation for W (t, s).

2. Lett — oc; then, % =0 (W (s) is expressed by 7).

3. Evaluate T (s = 0) to obtain 7.
4. Differentiate TV (s) to obtain moments of .
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Figure 14: Virtual waiting time: relationship between W (¢) and W (¢ + At)

We first set up a differential equation. For this purpose, we carefully examine the relationship between
W (t) and W (t + At).
If W (t) > At,

) — At with probability 1 — Ap At,

)+ X — At with probability Ap At.

W(t+ Af) = { %8

If0 <W(t) < At,

0 with probability 1 — A At — AgeAt,
W(t+ At) =< W(t) + X — e1 At with probability A At,
Xg — e At with probability AgeAt.

Note that €; and e are random variables with 0 < e1,€e2 < 1.

W(t+ At, s)
E[e—sW(t—i-At)]

- [T Ele=*WEA W (4) = z]dPr(W (t) < z),

z=0

- / (e—s<w—At>(1 “ALAY) + E[e—s<w—At+XL>]ALAt) dPr(W (t) < z)
T=At

At
n / ((1 — ALAE — AgeAt) + Ele @FXn—adt]y Ap 4 E[e*“XSﬂAt)]ASeAt) dPr(W (1) < )
z=01
+ ((1 — AL At — A\sAt) + E[e~s(@HXe—a]\ Ap 4 E[e—S<XS—€2At>],\5At) Pr(W(t) = 0),

_ / - (14 (s = g+ AL ()AL +0(A1)) e dPr(W (1) < )
z=0

At
+/ {1— (AL + As€)At + Ele *%e **r (1 + O(At))]AL At + Ele **5(1 + O(At))|AseAt
z=0%
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- (1 +(s— A1+ A Xp(s)) At + O(At)) e_”} dPr(W (1) < x)
+{(1 = AL At — AsAt) + E[e™**2 (1 + O(At))|] A\ At + E[e™**5 (1 + O(At))]As At

- (1 + (5= Ap + AL XL(s))At + o(At))} (W (t) = 0),
= (1 +(s=Ap + )\LXL(S))At) Wi(t,s) + /At O(At)dPr(W(t) < x)

=0+

+ (—AS + Xs(s)hs — s) AtPE(W (t) = 0) + o(At).

B B At
= (5= + M Ku() Wit,s) + / 0Q)dPr(W (#) < z)

z=0%t

W(t + At,s) — W(t, s)
At

+ <—/\s + Xs(s)As — s) Pr(W(t) = 0) +

Letting At — 0 in the above formula,

dW (t, s)

2 = (5= A+ AXL(9) Wit ) + (<As + Ks(9)As — s) Pr(W () = 0).

dW(t s)

Lett — oo. Then, — 0.

(s L+ XL(S)AL) W (s) (s + s — XS(S)AS) Pr(W(t) = 0),

W(s) _ 3+)\5—)fs(8))\5ﬂ_0’
s— AL +XL(S)/\L

where my = Pr(W (t) = 0) and lim;_,, W (t,s) = W (s). Next, we will obtain 7o by evaluating W (s) at
s =0:

1 = W),
1— dX;s(s) AS

= = o,
1+ dXdLs(S) )\L s=0
1+ E[Xs]As .
T OI-EX A
The second equality is by L’Hopital’s rule.

1-ALE[XL]

T = T—~—oro -
1+ A\sE[X5]

We will differentiate T/ (s) and evaluate at s = 0 to obtain the moments of W, which is the time in queue
T(ff) for the large jobs. Let

h(s) = s+Xs—AsXs(s).
g(s) = 8—/\L+/\LXL(8).
O]
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Then,

h(0)=g(0) = 0.
Since
' R"(0) — f(0)g"(0)
1) o
wy . '(0) = 3f'(0)g"(0) — f(0)g"(0)
and
h(s) = s+Ais—AsXs(s),
W(s) = 1-AsXb(s),
W'(s) = -AsXi(s),
"(s) = —XsXa(s),
g(s) = s—)\L—f-)\LXL(s),
g(s) = 1+A1X7(s),
g'(s) = M),
9"(s) = ALX'(s),
h‘l(o) = 1+PS>
W'0) = —XsE[X3],
R"(0) = MsE[X3],
gI(O) = 1_PLn
g"(0) = AB[X]]
g"(0) = -\ E[X]],
we have
, -AsE[XE] - ,%OALE[X%]
For = (—p)
) NsE[xg) - 3P PGy i) 4 20, B[]
for = 30— 1) |
B[] = —f'(0)m,
_ _pL BIXF] ps  E[XE]
1—pr QE[XL] 1+ ps QE[Xs],
BE(TS))?] = f"(0)mo,
_ p EIX} . ps EIXYH g E[X%]( oo EIX3 . o E[Xz])
1—pL SE[XL] 1+p5 3E[X5] ].—pL E[XL] ].—pL 2E[XL] ].—pL 2E[X5] )
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