
Proof Irrelevance and Strict De�nitions

in a Logical Framework
Jason Reed

June 2002

CMU-CS-02-153

School of Computer Science

Carnegie Mellon University

Pittsburgh, PA 15213

Submitted in partial ful�llment of the requirements of the senior thesis program.

Advisor

Frank Pfenning

Abstract

The addition of proof irrelevant types to LF permits more expressive encodings and a richer

(but still decidable) de�nitional equality. These types can also be used to maintain invariants

concerning the interchangeability of subproofs of large proofs, which can be useful for proof

compression for proof-carrying code. We investigate the metatheoretic properties of this

language extension and reconcile it with the notion of strictness, a property of notational

de�nitions which can improve implementation eÆciency of proofchecking.

This research was supported in part by the National Science Foundation under grant CCR-9988281

Keywords: proof irrelevance, type theory, LF, logical frameworks, dependent types,

strictness, proof compression

1 Introduction

The notion of proof irrelevance is considering any two proofs of a given proposition equal.

Although it can (for example, in [Bar98]) be of some use to deal with a system which is

`globally proof irrelevant' where all types have at most one inhabitant, we consider, following

Pfenning [Pfe01], the addition of a proof irrelevant modality to the logical framework of LF.

That is, individual functions can be marked as treating certain arguments as proof irrelevant,

and it can be mechanically checked that they ful�ll their promise not to care about the

structure of that argument.

This paper contributes two things: First, we present a variation of the inference rules

in [Pfe01] which satis�es a functionality lemma (Lemma 4.10). Second, we a generalize the

notion of strict de�nitions and the strictness-checking algorithm to the new type theory.

We have also created a prototype implementation of a version of Twelf which is able to

type-check and test for equality and strictness terms involving irrelevance.

The remainder of the paper is organized as follows: Section 2 sketches some background

ideas and techniques. Section 3 describes proof irrelevance at a high level and some applica-

tions of it. In Sections 4 and 5 we give in full the basic theory, and show that all judgments

are decidable. Finally, Section 6 contains the generalization of strictness to proof irrelevance

and proves its correctness.

1.1 Related Work

The NuPRL System [C+86] has a notion of squash types which erases computational content

in a manner similar to irrelevant types. However, the de�nitional equality of NuPRL is not

decidable; it similarly possible to de�ne in Twelf an equality function and add constructors

which simulate irrelevance, forcing the user to carry around proofs of equality. The advantage

of putting irrelevance into a language in such a way that retains a decidable equality is that

the implementation can easily check without a full theorem-prover whether terms involving

irrelevance are equal or well-typed.

Awodey and Bauer [AB01] propose a di�erent type-theoretic foundation of `erased' types,

which instead of having a distinct judgment � ` M � A has a type constructor [|], and

would instead type � ` M : [A]. While it allows certain function types the present system

does not (for instance, while their [A] ! B corresponds to �x � A:B here, their A ! [B]

appears to have no counterpart) it lacks certain properties desirable in a logical framework.

In particular, the elimination rule appears to require a commuting conversion rule which

makes a theory of canonical forms diÆcult.

1.2 Acknowledgements

I would like to thank Kaustuv Chaudhuri and Tom Murphy VII for helpful discussion and

comments, Carsten Sch�urmann and Kevin Watkins for advice and information about im-

plementation issues, and Frank Pfenning for introducing me to the subject and being an

excellent advisor throughout the year.

1

2 Preliminaries

2.1 Logic and Representation

There is a close relationship between type systems and logics known as the Curry-Howard

correspondence. In its most basic form, it comes very naturally from an (intuitionistic)

understanding of what it means to be a proof of a complex proposition. If we know what

counts as a proof of a proposition A, and what counts as a proof of B, then a proof of the

proposition A ^ B (\A and B") ought to be a sort of package containing evidence for A

on one side, and evidence for B on the other. Similarly, we might expect a proof of the

proposition A) B (\A implies B") to be a machine that somehow transforms a proof of A

into a proof of B. With this explanation of the meaning of these two connectives, we have

already touched some basic concepts of a programming language: organizing data into larger

chunks, and applying functions to arguments to obtain some result.

Given the above discussion, it may not seem unlikely that the rules of logic for ^ and

) might have something to do with programming with simple data and functions, but it

is somewhat surprising how exact a correspondence can be made. For this logic, and many

others, there exists a statically typed programming language corresponding to it such that

every type in the language corresponds to a proposition in the logic, and every well-typed

program corresponds to a derivation of the proposition that corresponds to its type, and

vice-versa. To summarize the correspondence so far:

Propositions , Types

Proofs , Programs

A ^B , A� B

A) B , A! B

In fact the language's notion of `well-typed' is essentially a de�nition of a valid proof. For

instance, a program which has type A ! B must faithfully produce some piece of data of

type B whenever it is given data of type A, just as a valid proof of A) B is obliged to

show that B holds given any proof of A.

2.2 Dependent Types

Armed with an understanding of how a propositional logic can be seen through programming-

language glasses, it is natural to try to add quanti�cation on the logic side and see what

new types appear. For a concrete example, suppose that K is the set of books, O(k) is the

proposition that k is an old book for any k 2 K, and L(k) is the proposition that k is in the

library, again for any k 2 K. The statement of \every book in the library is old" in symbols

is

8k 2 K:L(k)) O(k)

What counts as a proof of this proposition? It should be a program f which takes a book

k 2 K, a proof that L(k) holds, and produce a proof of O(k). In other words, a function

of two arguments, whose type we might try to write as K ! (L k ! O k). The obvious

2

problem with this de�nition, however, is that it doesn't explain where k comes from. The

trouble is that L k, the type of proofs that k is in the library, depends on the book chosen

from the type K. The correct typing of f therefore involves a new dependent type constructor

� to take the place of the 8.

f : �k:K:(L k ! O k)

The type �x:A:B is a generalization of the type A ! B where the argument is given

a name x that can be used somewhere in the result type B. If x does not appear in B at

all, then �x:A:B has the same meaning as A ! B, and because of this most theories of

dependent types include A! B only as a syntactic abbreviation of �x:A:B.

There remains the question of exactly what status the predicates O and L have in the

programming language. Clearly for any k:K we must have that O k and L k are types, since

they appear on the left and right side of an arrow. As is suggested by the notation chosen,

we might reasonably treat them as functions which take some element of K, and return a

type. One then speaks of O and L as type families indexed by the type K, which have the

kind1 K ! type. We can extend the table above as follows:

Propositions , Types

� � � , � � �

8x:A:B , �x:A:B

P (x) , P x

We can also extend the use of dependency to type families; The symbol � is typically

overloaded to also be the dependent kind constructor. We could express the proposition

that a certain book from the library is checked out by a type family C with the kind

�k:K:(L(k)! type). In more plain language, this kind says that given a book k, and given

a proof that k is in the library's collection, there is a type of proofs of the proposition that

k is checked out.

Dependent types are in fact very common `behind the scenes' in the de�nitions and

reasoning of ordinary mathematics. As a more realistic example, we treat the type of the

determinant operator in linear algebra. First we must establish what type a matrix has; we

know that for every positive integers m;n we can consider the m� n matrices, so we write

mat : (�m: int :�n: int :type)

to indicate the type family of matrices indexed by two integers m and n. We obtain a

particular type by applying mat to particular integers. For instance, mat 3 4 is the type of

3� 4 matrices.

Now the determinant only exists for a square matrix, which is to say, for every n there

is a determinant operator on n� n matrices. The type of det, then, is

det : (�n: int :�A: (mat n n): real)

1
Kinds are like types, except that they `classify type families.' In other words, a valid object has a type,

whereas a valid type family has a kind.

3

This type says that for each n which has type type, and each A which has type mat n n (which

depends on the choice made for n) the expression det n A has type real. One can also check

that the n� n identity matrix is

I : (�n: int :mat n n)

(\For every n an integer, I n is an n� n matrix") and matrix transposition can be typed as

transp : (�m: int :�n: int :�A: (mat m n):mat n m)

(\For every m;n integers and A an m� n matrix, transp m n A is an n�m matrix") and so

on.

2.3 The Twelf System

Twelf [PS99] is a logical framework, a system suitable for the formal description of program-

ming languages and logics, and the automatic veri�cation of properties of such descriptions.

It is based on the type theory of LF [HHP93], which is a �-calculus with dependent types

as described above. We use the word language by itself in what follows to mean either a

programming language or logic.

A language can be represented in LF by declaring a signature of type families and con-

stants which describe how the syntactic elements of the language are created and organized.

A signature is essentially a formalization of the sort of preliminary assumptions made in

each example above, e.g., \suppose K is a type, and O is a type family indexed by K."

There are powerful and elegant techniques for representing common structures in languages

in the presence such signatures. In particular, bound variables in programs and hypothetical

reasoning in logic can both be rendered by using higher-order function types | that is, by

declaring constants in the signature which take a function as an argument. Assertions about

a programming language as a whole | for example, that every well-typed expression evalu-

ates to a value | can be encoded as type families, and their validity can be automatically

checked by the Twelf system.

A ubiquitous example is the encoding of the untyped lambda calculus. If we declare a

signature of three constants, � =

tm : type

app : tm! (tm! tm)

lam : (tm! tm)! tm

then every LF object of type tm corresponds uniquely to a term of the untyped lambda

calculus, and in fact the variable binding of the object language (in this case the untyped

lambda calculus) is implemented by variable binding in the representation language (LF).

For instance, the lambda-calculus term �x:�y:y x is represented in this signature as

lam(�x: tm : lam(�y: tm : app y x))

4

This technique is known as higher-order abstract syntax [PE98].

It is worth noting that declaring a constant c : A (resp. constant type family a : K) in a

signature is very di�erent from observing, as we did with the examples from linear algebra,

that a certain already-de�ned function c (resp. type family a) has type A (resp. kind K).

A constant declaration creates a fresh object with the given type, and, much like freely

adjoining a variable to a ring to create a ring of polynomials, this new object `satis�es as

few equations as possible,' so that declared constants at a function type are automatically

injective in the usual mathematical sense. This issue comes up later in Section 6, when we

give a condition on de�ned functions which guarantees that they are injective.

3 Proof Irrelevance

3.1 Equality

The two kinds of judgments in the theory of LF de�ne typing of terms, and equality between

terms. As mentioned, one of the consequences of the equality rules is that for a declared

constant c : �1 ! � � � ! �n ! � of n arguments, c is injective, i.e. the terms c M1 � � �Mn

and c M 0

1
� � �M 0

n are equal if only if Mi = M 0

i for all 1 � i � n. There are times when

this is not the desired behavior; sometimes we would like to be able make certain arguments

to a declared function irrelevant when it comes to deciding equality. In particular, this

is a common situation when some arguments to a function are meant to be thought of as

witnesses of provability rather than objects whose internal structure is important. Generally,

suppose we use the following signature:

t; u : type

p : �x: t:type

c : �x: t:�y: (p x):u

a : t

b; b0 : p a:

Intuitively, we have an object a of type t, and some predicate p on objects of type t. The

function c takes two arguments: an argument x of type t, and an argument y of type p x

(which might be thought of as a proof that p holds of x) and returns an object of type u.

As the preceding discussion describes, c a b 6= c a b0 because not all of c's arguments are the

same on both sides of the equation | b and b0 di�er.

We would like to declare instead a d : �x: t:�y�(p x):u, where the � symbol is supposed

to be a promise that the argument y `doesn't matter' in the output of d. The next section

outlines the type theory in which this declaration makes sense, and has the desired behavior.

5

3.2 Proof Irrelevant Typing

The main typing judgment in LF has the form � `M : A, where � is a list of typed variables

x1 : A1; : : : ; xn : An, M is an object, and A is a type. It is read as \in the context �, M has

the type A." The modi�cations to typing to accommodate reasoning about irrelevance are

on the one hand extending contexts to allow also irrelevant variables x� A in contexts and

on the other de�ning an additional irrelevant typing judgment � `M �A. A variable x�A

can be thought of as the assumption that an object of type A exists, but whose structure

cannot be inspected. We de�ne an operation |� on contexts by

�� := �

(�; x : A)� := ��; x : A

(�; x� A)� := ��; x : A

which converts all such variables to normal variable declarations. The intuition behind this

de�nition is that �� is the world in which we can inspect all proofs, derived from the world �

where some proofs are hidden; with this intuition, we can reason that if we want to establish

in � that A is provable without making guarantees about the structure of our proof, then

we should be allowed to `live in ��' and inspect irrelevant assumptions freely. We therefore

have2 the inference rule
�� `M : A

� `M � A

The judgment � `M � A says that, in the context �, M is a proof that there exists a term

of type A.

3.3 Irrelevant Equality

The corresponding equality judgment in LF is also typed; in other words, we do not ask if

� ` M = N , but if � ` M = N : A | if M and N are equal objects at type A. We add a

new irrelevant equality judgment � `M = N � A, which is de�ned3 by the rule

� `M � A � ` N � A

� `M = N � A

We see immediately that, as desired, this means that equality at an irrelevant type is trivial:

any two objects at the same irrelevant type are equated. The consequences of this de�nition

become more clear when we consider the natural de�nition of the application equality rule.

2
In fact with one additional premise � ` A : type for technical reasons as explained in Section 4.5.

3
This rule captures the correct intuition, but the actual premises are of the form �

� `M =M : A rather

than � ` M � A to make certain lemmas easier to prove, and again also include � ` A : type for technical

reasons.

6

There is a rule in LF which can be used to show that two terms which are applications of a

function to an argument are equal:

� `M1 = M2 : �x : A:B � ` N1 = N2 : A

� `M1 N1 =M2 N2 : B[N1=x]

For functions which take an irrelevant argument we add the rule

� `M1 =M2 : �x� A:B � ` N1 = N2 � A

� `M1 ÆN1 =M2 ÆN2 : B[N1=x]

where Æ is the irrelevant application operator. We see in particular that if M : �x � A:B,

then M Æ N1 and M Æ N2 for any N1; N2 � A. This exactly captures the fact that M is

allowed to require an argument of type A, but cannot observe its structure, for the result of

applying M to an object is the same regardless of what object it is given.

3.4 Applications

3.4.1 Subset Types

As hinted at earlier, irrelevance can be used to adequately encode subset types. For example,

suppose we wish to encode the type of composite numbers as a subset of the natural numbers.

A standard representation of the naturals with addition and multiplication is

nat : type

z : nat

s : nat! nat

sum : nat! nat! nat! type

prod : nat! nat! nat! type

followed by declarations which de�ne logic programs for addition and multiplication such

that sumA B C is the type of proofs that A + B = C and prodA B C is the type of proofs

that A� B = C. Since a number x is composite if and only if there exist natural numbers

a; b � 2 such that ab = x (or equivalently, if there exist arbitrary natural numbers a; b such

that (a + 2)(b+ 2) = x) we might then try to de�ne a type

comp : type

of composites and provide a constructor

comp rule : �x : nat :�a � nat :�b � nat :

�p� prod (s s a) (s s b) x: comp

which takes a natural x, natural numbers a; b, and a proof p that (a + 2)(b + 2) = x,

and produces an object of type comp. By marking a; b; and p irrelevant we intend that

7

there is exactly one object of type comp for each composite number; we would hope that

rcomp rule 12 1 2 p1 and rcomp rule 12 0 4 p2 (where p1; p2 are proofs that 3 � 4 = 12 and

2 � 6 = 12, respectively) are simply di�erent ways of exhibiting the compositeness of the

number 12, and are therefore equated. Unfortunately, it is not the case that p1 = p2�A for

any type A, since p1 and p2 have di�erent types, since they are not merely di�erent proofs,

but proofs of di�erent facts. In fact the signature given is not well-typed: The expression

prod(s s a) (s s b) x is a type under the assumptions a; b : nat, but what we really have available

is merely a; b� nat. Both of these issues are related to the `technical premise' � ` A : type of

the irrelevant typing rule.

Thankfully the problem can be worked around, but it serves to illuminate the subtleties

inherent in mixing the apparently simple idea of ignoring the structure of proofs with rich

type systems. The solution is to declare a separate predicate of compositeness

is comp : nat! type

is comp rule : �x : nat :�a : nat :�b : nat :

�p : prod (s s a) (s s b) x:(is comp x)

and mark as irrelevant a proof of this predicate

comp rule : �x : nat :�p� is comp x: comp

Subset types can also appear more realistically in encodings of programming languages.

Suppose we want to represent a lambda calculus which has a binder ��1 which requires the

variable it binds to occur at least once. We could try doing this by beginning with the usual

untyped lambda calculus

tm : type

app : tm! (tm! tm)

lam : (tm! tm)! tm

de�ning a predicate

occurs : (tm! tm)! type

via the logic program

occurs var : occurs(�x:x)

occurs appl : occurs(�x: app M1 M2) occurs(�x:M1)

occurs appr : occurs(�x: app M1 M2) occurs(�x:M2)

occurs lam : occurs(�x: lam(M x)) (�y: tm : occurs(�x:M x y))

which captures the proposition that an open term uses its free variable, and declaring a

constant

olam : �t : (tm! tm): occurs t! tm

8

This encoding, however, is not adequate in the sense that there are generally multiple

LF terms which represent an object-language term. This is because there are potentially

many proofs that a variable occurs bound | in fact there is one proof per occurrence of

the variable. Therefore we want to equate all terms using olam that di�er only in which

occurrence proof they use. That is, we should declare instead

olam : �t� (tm! tm): occurs t! tm

and our encoding is adequate.

3.4.2 Subterm Omission in Proof-Carrying Code

In a language like Java, some measure of safety of running code is insured by running the code

`in a sandbox,' inside a trusted virtual machine. Proof-carrying code is another technique

which aims to achieve the same (if not greater) safety properties without sacri�cing runtime

eÆciency to emulating a virtual machine. The burden of a making a program safe falls

instead on the author of the program, the code producer. The recipient of a program, the

code consumer requires a proof that the program received satis�es some safety policy, and

so the code producer must send with the program a formal certi�cate of safety which can

be mechanically checked by the code consumer to actually prove that the program won't

violate the policy.

Unfortunately, these certi�cates can sometimes be large, even on the order of the size of

the size of the program being proved safe. Techniques for reducing proof size are desirable.

Although the problem of �nding a proof for a given proposition is typically undecidable, a

proof may have many subproofs which could be easily and eÆciently reconstructed by the

code consumer. For instance, as part of a large proof that shows that a program always

computes a certain mathematical function correctly, it might be necessary to show some

trivial fact, say 3 + 4 = 7. Now the formal correctness of this program depends on every

last detail of the proof being correct, but there is no need to send a proof of 3 + 4 = 7

across the network | there can simply be a blank spot in the proof with an instruction

saying, \please check that in fact 3+4=7." The trade-o� here is saving network bandwidth

by perhaps spending more time reconstructing proofs on the code consumer end.

In practice, proofs are frequently represented as terms in a type theory like LF, and

checked with a tool like Twelf. In this case, the idea of omitting subproofs really means

omitting subterms. The question to be addressed is, when can a subterm be safely omitted?

Twelf already has facilities for providing guarantees of termination of some predicates con-

sidered as logic programs. When we can show using these tools that searching for a proof

of P (which is what is meant by \running the logic program P") always terminates, and

we know a proof of P , then we can be sure that the code consumer can also �nd a proof of

P . What we do not know is that the code consumer will �nd the same proof. It may seem

like a desirable property of a type system that if we replace a subterm S of a term M with

a di�erent subterm S 0 of the same type, then M is still well-typed, but dependent types

systems do not necessarily have this property exactly because of the dependence of types on

9

terms. For example, in the signature

a; z : type

b : a! type

c : �x: a:(b x)

d : �x: a:(b x)! z

k1; k2 : a

we have the typing � ` (d k1)(c k1) : z but not � ` (d k1)(c k2) : z, even though we have only

changed one subterm of type a to another.

If we introduce proof irrelevance, however, then it can be shown that replacing one

subterm under an irrelevant application with another preserves the whole term being well-

typed. Therefore, it is safe to omit a subproof of a large proof if we can show that the

subproof can be decidably recovered (i.e. if the predicate can be shown to be terminating)

and occurs under an irrelevant application.

4 Type Theory

We begin by de�ning a type theory similar to a fragment of the theory in [Pfe01], which is in

turn based on LF. There are several important di�erences between this system and that of

[Pfe01]. For simplicity, we omit intensional typing entirely. The rules for deriving � `M�A

and � ` M = M 0 � A carry an extra type validity premise. Finally, we avoid de�ning the

judgment � ` A� type, and consequently the �rst premise of each of the the �-introduction

rules has : type in place of ? type.

4.1 Syntax

The syntax, as usual, is divided into objects, families, and kinds.

Kinds K ::= type j �x:A:K j �x�A:K

Families A ::= A M j A ÆM j �x:A:B j �x�A:B

Objects M ::= x j c j �x:A:M j �x�A:M jM1 M2 jM1 ÆM2

Signatures � ::= � j �; a : K j �; c : A

Contexts � ::= � j �; x : A j �; x� A

The symbols appearing here foreign to LF are Æ and �, whose intended meanings are

irrelevant application and irrelevant typing, respectively.

4.2 Judgments

The main judgments of the theory are as follows:

10

Valid Signatures ` � sig � is a valid signature.

Valid Contexts `� � ctx � is a valid context.

Object Typing � `� M : A In �, M has type A.

Proof Object Typing � `� M � A In �, M is a proof of A.

Type Validity � `� A : K In �, A has kind K.

Kind Validity � `� K : kind In �, K is a valid kind.

Object Equality � `� M1 =M2 : A In �, M1 = M2 at type

A.

Proof Equality � `� M1 =M2 � A In �,M1 = M2 as proofs

of A.

Family Equality � `� A1 = A2 : K In �, A1 = A2 at K.

Kind Equality � `� K1 = K2 : kind In �, K1 and K2 are

equal kinds.

4.3 Typing Rules

4.3.1 Signatures

Valid signatures are de�ned by
vs empty

` � sig

` � sig � `� A : type
vs cons

` �; c : A sig

` � sig � `� K : kind
vs fam

` �; a : K sig

4.3.2 Contexts

Valid contexts are de�ned by
vc empty

`� � ctx

`� � : ctx � `� A : type
vc var

`� �; x ? A ctx

In what follows, unless speci�ed otherwise, � `� J for some judgment J assumes that ` � sig

and `� � ctx, and we typically omit the subscript � for brevity.

4.3.3 Proofs

We de�ne recursively an operation |� (`context promotion') on contexts:

�� := �

(�; x : A)� := ��; x : A

(�; x� A)� := ��; x : A

11

The proof typing and equality rules are then

�� `M : A � ` A : type
pot

� `M � A

�� `M = M : A �� ` N = N : A � ` A : type
pe

� `M = N � A

An assumption x � A is weaker than x : A | it asserts that there exists a proof of A, but

does not reveal the proof's structure. The context promotion operator allows such weakened

assumptions to be recovered and used to derive a judgment of the formM�A, \M witnesses

the existence of a proof of A". When comparing two proofs for equality, the result is trivially

true as long as the proofs have the same type, and that type is again valid in �. Both rules

di�er from their analogues in [Pfe01] by additionally requiring that A is a valid type in the

unpromoted context �.

4.3.4 Object Typing

The typing rules for objects, families, and kinds are straightforward generalizations of those

in LF as presented in [HP01]. We write ? to mean either : or �, and � to mean either

juxtaposition (i.e. normal application) or Æ. When more than one ? and/or � appear in the

same rule, they are to be either all relevant, or all irrelevant.

c : A 2 �
ot const

� ` c : A

x : A 2 �
ot var

� ` x : A

� ` A : type �; x ? A `M : B
ot lam

� ` �x?A:M : �x?A:B

� `M1 : �x?A:B � `M2 ? A
ot app

� `M1 �M2 : [M2=x]B

� `M : A � ` A = B : type
ot conv

� `M : B

4.3.5 Family Validity

a : K 2 �
fv const

� ` a : K

� ` A : type �; x ? A ` B : type
fv pi

� ` �x?A:B : type

� ` A1 : �x?A2:K � `M ? A2

fv app
� ` A1 �M : [M=x]K

12

� ` A : K � ` K = L : kind
fv conv

� ` A : L

4.3.6 Kind Validity

kv type
� ` type : kind

� ` A : type �; x ? A ` K : kind
kv pi

� ` �x?A:K : kind

4.4 De�nitional Equality

We de�ne equality of terms based on parallel conversion and extensionality. Premises which

will later be shown to be redundant are enclosed in fbracesg.

4.4.1 Object Equality

Simultaneous Congruence

c : A 2 �
oe const

� ` c = c : A

x : A 2 �
oe var

� ` x = x : A

� ` A = A0 : type � ` A = A00 : type �; x ? A `M =M 0 : B
oe lam

� ` �x?A0:M = �x?A00:M 0 : �x?A:B

� `M1 = M 0

1
: �x?A:B � `M2 = M 0

2
? A

oe app
� `M1 �M2 = M 0

1
�M 0

2
: [M2=x]B

Extensionality

� ` A : type � `M;N : �x?A:B �; x ? A `M � x = N � x : B
oe ext

� `M = N : �x?A:B

Parallel Reduction

f� ` A : typeg �; x ? A `M2 = M 0

2
: B � `M1 =M 0

1
? A

oe red
� ` (�x?A:M2) �M1 = [M 0

1
=x]M 0

2
: [M1=x]B

Type Conversion

� `M = N : A � ` A = B : type
oe conv

� `M = N : B

Equivalence

13

� `M = N : A � ` N = O : A
oe trans

� `M = O : A

� `M = N : A
oe sym

� ` N = M : A

4.4.2 Family Equality

Simultaneous Congruence

a : K 2 �
fe const

� ` a = a : K

� ` A = A0 : type f� ` A : typeg �; x ? A ` B = B0 : type
fe pi

� ` �x?A:B = �x?A0:B0 : type

� ` A = A0 : �x?A:K � `M = M 0 ? A
fe app

� ` A �M = A0 �M 0 : [M=x]K

Kind Conversion

� ` A = B : K � ` K = L : kind
fe app

� ` A = B : L

Equivalence

� ` A = B : K � ` B = C : K
fe trans

� ` A = C : K

� ` A = B : K
fe sym

� ` B = A : K

4.4.3 Kind Equality

Simultaneous Congruence

ke type
� ` type = type : kind

� ` A = A0 : type f� ` A : typeg �; x ? A ` K = K 0 : kind
ke pi

� ` �x?A:K = �x?A0:K 0 : kind

Equivalence

� ` K = L : kind � ` L = L0 : kind
ke trans

� ` K = L0 : kind

� ` K = L : kind
ke sym

� ` L = K : kind

14

4.5 Elementary Properties

We can immediately establish several very basic lemmas concerning the judgments de�ned.

Lemma 4.1 (Weakening) If �;�0 ` J, then �; x ? A;�0 ` J.

Proof Straightforward induction.

Lemma 4.2 (Re
exivity)

1. If � `M ? A, then � `M = M ? A.

2. If � ` A : K, then � ` A = A : K.

3. If � ` K : kind, then � ` K = K : kind.

Proof Straightforward induction.

Lemma 4.3 (Substitution) Suppose ` �; x ? A;�0 : ctx. If � `M ?A and �; x ? A;�0 ` J,

then �; [M=x]�0 ` [M=x]J.

Proof Straightforward induction.

Our eventual goal is to prove validity, Lemma 4.12. In its proof, the inherent asymmetry

of rule oe app (we must arbitrarily choose one of M2 or M
0

2
to substitute for x in B in the

conclusion) requires functionality (Lemma 4.10) to be shown �rst. In fact the functionality

lemma does not hold for the system in [Pfe01]. A counterexample is as follows: let � be the

signature

o : type

a : o! type

b : �x:o:a x

c : �x�o:�y�(a x):o

k1; k2 : o

Observe that the present system would not admit this declaration of c; for the expression

�x�o:�y�(a x):o to be a valid type we would need to have not merely x � o `� a x � type

(which requires only (x � o)� `� a x : type, which does hold) but x � o `� a x : type, which

does not hold. In [Pfe01] we could form a derivation

c 2 �

z � o ` c : �x�o:�y�(a x):o

z : o ` z : o

z � o ` z � o

z � o ` c Æ z : �y�(a z):o

b 2 �

z : o ` b : �x:o:a x z : o ` z : o

z : o ` b z : a z

z � o ` b z � a z

z � o ` c Æ z Æ (b z) : o

15

The step from z : o ` b z : a z to z � o ` b z � a z is also prohibited by the present system.

The functionality lemma would allow us to conclude from ` k1 = k2 � o that

` c Æ k1 Æ (b k1) = c Æ k2 Æ (b k2) : o

By inversion, the only way this derivation could exist is if it were the case that ` b k1 =

b k2 � A for some type A. However, the terms b k1 and b k2 have distinct types a k1 and

a k2, so this cannot occur | they are proof terms for di�erent types, so they cannot even

be equal as (irrelevant) proofs.

To show our system satis�es functionality, we use a somewhat delicate induction argument

which depends on two auxilliary judgments:

Context Equality ` � = �0 : ctx � and �0 are equal con-

texts.

Context Ordering ` � � �0 : ctx � is weaker than �0.

They are de�ned as follows:
ce nil

` � = � : ctx

` � = �0 : ctx �0 ` A = A0 : type
ce var

` �; x ? A = �0; x ? A0 : ctx

co nil
� � �

� � �0

co eq
�; x ? A � �0; x ? A

� � �0

co lt
�; x � A � �0; x : A

The meaning of context equality is simply a corresponding equality of the typings of all

variables. The ordering � � �0 says that � contains the same assumptions as �0, except

perhaps some of them have been weakened from normal to irrelevant assumptions. We

proceed to establish some basic facts about these judgments. Some of the proofs are not

quite as trivial as might be expected, because of the asymmetry of ce var. As with function

application, there is an arbitrary choice in the statement of the rule, in this case the choice

of under which context (� or �0) we need to show A = A0 : type.

Lemma 4.4 (Context Equality Re
exivity) If ` � : ctx, then ` � = � : ctx.

Proof Straightforward induction using Lemma 4.2.

Lemma 4.5 (Judgment Lifting) If � ` J and � � �0, then �0 ` J.

Proof Straightforward induction on D :: � ` J . Some representative cases:

16

Case:

D =

D1

� ` A : type

D2

�; x ? A `M : B
ot lam

� ` �x?A:M : �x?A:B

We apply the induction hypothesis to D1 to get that �
0 ` A : type, and to D2 and the

fact that �; x ?A � �0; x ?A to obtain �0; x ?A `M : B, from which we conclude using

ot lam that �0 ` �x?A:M : �x?A:B.

Case:

D =

D1

�� `M : A

D2

� ` A : type
pot

� `M � A

It is easily seen that � � �0 implies that �0� is identical to ��, so D1 is also a derivation

of �0� `M : A. We know by the induction hypothesis applied to D2 that �
0 ` A : type,

so by pot we have �0 `M � A.

Corollary 4.6 If � ` J, then �� ` J.

Proof By inspection, � � ��.

Lemma 4.7 (Context Equality Promotion) If ` �1 = �2 : ctx, then we have ` ��1 =

��2 : ctx.

Proof By induction on D :: (` �1 = �2 : ctx).

Case:
ce nil

` � = � : ctx

Immediately we have ` �� = �� : ctx.

Case:
D1

` �1 = �2 : ctx

D2

�2 ` A = A0 : type
ce var

` �1; x ? A = �2; x ? A
0 : ctx

By the induction hypothesis on D1 we know ` �
�

1 = ��2 : ctx. Applying Corollary 4.6

to D2 provides �
�

2 ` A = A0 : type. So we can apply ce var to obtain ` ��1 ; x : A =

��2 ; x : A.

Lemma 4.8 (Context Conversion) Suppose ` � = �0 : ctx. If � ` J, then �0 ` J.

17

Proof By induction on D :: � ` J . Some important cases:

Case:
D1

�� `M : A

D2

� ` A : type
pot

� `M � A

By Lemma 4.7, ` �� = �0� : ctx so the induction hypothesis on D1;D2 gives �
0� `M :

A and �0 ` A : type, hence �0 `M � A.

Case:

D =
x : A 2 �

ot var
� ` x : A

Since ` � = �0 : ctx, we know by inversion on the context validity rules that �0 is of

the form �0
1
; x : A0;�0

2
such that �0

1
` A = A0 : type. By weakening, �0 ` A = A0 : type.

Therefore
x : A0 2 �0

ot var
�0 ` x : A0

�0 ` A = A0 : type
fe sym

�0 ` A0 = A : type
ot conv

�0 ` x : A

Case:

D =

D1

� ` A : type

D2

�; x ? A `M : B
ot lam

� ` �x?A:M : �x?A:B

Applying the induction hypothesis to D1 gives �0 ` A : type. Re
exivity implies

�0 ` A = A : type, hence ` �; x ? A = �0; x ? A using ce var. Therefore we can apply the

induction hypothesis to �; x ? A ` M : B to obtain �0; x ? A ` M : B, and conclude

using ot lam that �0 ` �x?A:M : �x?A:B.

Case: D =
D1

� ` A = A0 : type

D2

� ` A = A00 : type

D3

�; x ? A `M = M 0 : B
oe lam

� ` �x?A0:M = �x?A00:M 0 : �x?A:B

Applying the induction hypothesis to D1 provides a derivation D
0

1
:: �0 ` A = A0 : type,

which we can use to infer

` � = �0 : ctx

D0
1

�0 ` A = A0 : type

D0
1

�0 ` A = A0 : type
fe sym

�0 ` A0 = A : type
fe trans

�0 ` A = A : type
ce var

` �; x ? A = �0; x ? A : ctx

18

so that we can apply the induction hypothesis to D3 to obtain �
0; x ?A `M =M 0 : B.

Finally, we apply the induction hypothesis to D2 to obtain �0 ` A = A00 : type and

conclude that

�0 ` �x ? A0:M = �x ? A00:M : �x?A:B

using oe lam.

Case:

D =

D1

�� `M = M : A

D2

�� ` N = N : A

D3

� ` A : type
pe

� `M = N � A

By Lemma 4.7, we know ` �� = �0� : ctx, so the induction hypothesis on D1;D2 provides

�0� ` M = M : A and �0� ` N = N : A. The induction hypothesis applied to D3 gives

�0 ` A : type, so pe implies �0 `M = N � A.

Lemma 4.9 (Context Equality Symmetry) If ` � = �0 : ctx, then ` �0 = � : ctx.

Proof By induction on D :: (` � = �0 : ctx).

Case:

D = ce nil
` � = � : ctx

Immediate.

Case:
D1

` � = �0 : ctx

D2

�0 ` A = A0 : type
ce var

` �; x ? A = �0; x ? A0 : ctx

By the induction hypothesis applied to D1, we have ` �0 = � : ctx. By Lemma 4.8

this fact together with D2 implies that � ` A = A0 : type, and by fv sym we deduce

� ` A0 = A : type, so by ce var we have ` �0; x ? A0 = �; x ? A : ctx.

We are now prepared to show functionality. The statment of the lemma claims that substi-

tution of equal objects for a variable in a valid context (resp. object, family, kind) results in

equal contexts (resp. objects, families, kinds). It is important that we have already shown

that we can replace a context with an equal one in arbitrary judgments; proving functionality

without its part 1 does not appear to work. Another feature of the proof worth mentioning

is the lexicographic order involving the sum of the number of inference rules used to show

the context valid and those used to actually derive the relevant judgment. This allows the

induction hypothesis to be used during the case of, for instance, ot lam, even though the

context gets larger.

19

Lemma 4.10 (Functionality) Suppose

D :: (` �; y ? D;�0 ctx)

� ` N ? D � ` N 0 ? D

� ` N = N 0 ? D

then

1. ` �; [N=y]�0 = �; [N 0=y]�0 : ctx.

2. If E :: �; y ? D;�0 `M : A then �; [N=y]�0 ` [N=y]M = [N 0=y]M : [N=y]A.

3. If E :: �; y ? D;�0 ` A : K then �; [N=y]�0 ` [N=y]A = [N 0=y]A : [N=y]K.

4. If E :: �; y ? D;�0 ` K : kind then �; [N=y]�0 ` [N=y]K = [N 0=y]K : kind.

Proof By lexicographic induction on

� The number of inference rules in E (if any) plus the number of inference rules in D.

� The size of the subject expression in E , if any. (i.e. M in part 2, A in part 3, K in

part 4)

1. We proceed by cases on the structure of D.

Case:

D =

D1

` � : ctx

D2

� ` D : type
vc var

` �; y ? D : ctx

By re
exivity and D1 we have ` � = � : ctx, as required.

Case:

D =

D1

` �; y ? D;�00 : ctx

D2

�; y ? D;�00 ` A : type
vc var

` �; y ? D;�00; x ?0 A ctx

The induction hypothesis (part 1) applied to D1 gives

` �; [N=y]�00 = �; [N 0=y]�00 : ctx

The induction hypothesis (part 3) applied to D1;D2 (which together have one less

inference rule than D) gives

�; [N=y]�00 ` [N=y]A = [N 0=y]A : type

Lemma 4.8 then implies that

�; [N 0=y]�00 ` [N=y]A = [N 0=y]A : type

20

hence

` �; [N=y]�00 = �; [N 0=y]�00 : ctx

�; [N 0=y]�00 ` [N=y]A = [N 0=y]A : type
ce var

` �; [N=y]�00; x ?0 [N=y]A = �; [N 0=y]�00; x ?0 [N 0=y]A : ctx

2, 3, 4. We proceed by cases on the structure of E . Some representative cases:

Case:

E =
x : A 2 �; y ? D;�0

ot var
�; y ? D;�0 ` x : A

If x 6= y, then we must show that �; [N=y]�0 ` x = x : [N=y]A, which follows by

substitution and re
exivity. If x = y, then we know that in fact A is identical toD

and `?' is in this case `:'. By weakening on our assumption that � ` N = N 0 : D,

we obtain �; y : D;�0 ` N = N 0 : D. By substitution, and the fact that y does

not appear in N;N 0, we have �; [N=y]�0 ` N = N 0 : [N=y]D.

Case:

E =

E1

�; y ? D;�0 `M1 : �x�A:B

E2

�; y ? D;�0 `M2 � A
ot app

�; y ? D;�0 `M1 ÆM2 : [M2=x]B

By inversion,

E2 =

E 0
2

��; y : D;�0� `M2 : A

E 00
2

�; y ? D;�0 ` A : type
pot

�; y ? D;�0 `M2 � A

for some E 0
2
; E 00

2
. By substitution of N;N 0 into E2 and re
exivity, we have

�; [N=y]�0 ` [N=y]M2 = [N=y]M2 � [N=y]A ([)

and

�; [N 0=y]�0 ` [N 0=y]M2 = [N 0=y]M2 � [N 0=y]A (�)

By the induction hypothesis (part 3) on E 00
2
, we know

�; [N=y]�0 ` [N=y]A = [N 0=y]A : type (��)

Also by the induction hypothesis (part 1) we know that

` �; [N=y]�0 = �; [N 0=y]�0 : ctx

so by Lemma 4.9 we have

` �; [N 0=y]�0 = �; [N=y]�0 : ctx

21

hence we can use Lemma 4.8 to infer from (�) that

�; [N=y]�0 ` [N 0=y]M2 = [N 0=y]M2 � [N 0=y]A

and by inversion obtain a derivation of

(�; [N=y]�0)� ` [N 0=y]M2 = [N 0=y]M2 : [N
0=y]A

Corollary 4.6 and (��) together imply that

(�; [N=y]�0)� ` [N=y]A = [N 0=y]A : type

so we can use ot sym, ot conv to conclude

(�; [N=y]�0)� ` [N 0=y]M2 = [N 0=y]M2 : [N=y]A (]2)

Now by inversion on ([) we have a derivation

(�; [N=y]�0)� ` [N=y]M2 = [N=y]M2 : [N=y]A (]1)

and substitution on E 00
2
provides

�; [N=y]�0 ` [N=y]A : type (]3)

so we use pe on (]1), (]2), and (]3) to obtain

�; [N=y]�0 ` [N=y]M2 = [N 0=y]M2 � [N=y]A

Finally, we can apply the induction hypothesis (part 2) directly to E1 to see

�; [N=y]�0 ` [N=y]M1 = [N 0=y]M1 : [N=y]�x�A:B

and conclude using oe app that

�; [N=y]�0 ` [N=y](M1 ÆM2) = [N 0=y](M1 ÆM2) : [N=y][M2=x]B

Case:

E =

E1

�; y ? D;�0 ` A : type

E2

�; y ? D;�0; x� A `M : B
ot lam

�; y ? D;�0 ` �x�A:M : �x�A:B

The induction hypothesis (part 3) applied to E1 gives

�; [N=y]�0 ` [N=y]A = [N 0=y]A : type

We can also apply the induction hypothesis (part 2) to E2, but it requires showing

that E2 is strictly smaller than E in the ordering we have chosen. We can prove

�; y ? D;�0; x� A : ctx by

D0 =

D

�; y ? D;�0 : ctx

E1

�; y ? D;�0 ` A : type
vc var

` �; y ? D;�0; x� A : ctx

22

so that the number of inference rules in the two derivations jD0j + jE2j = (jDj +

jE1j+1)+ jE2j = jDj+(jE1j+ jE2j+1) = jDj+ jEj stays the same, but the subject

expression is smaller | it changes from �x� A:M to M . So we obtain

�; [N=y]�0; x� [N=y]A ` [N=y]M = [N 0=y]M : [N=y]B

We then can use substitution of N for y in E1 and re
exivity to derive

�; [N=y]�0 ` [N=y]A = [N=y]A : type

and use oe lam to conclude

�; [N=y]�0 ` [N=y](�x : A:M) = [N 0=y](�x : A:M) : [N=y]B

We can now proceed to show validity and the main lemmas which follow from it. Our

development closely follows [HP01].

Lemma 4.11 (Inversion of Products)

1. If � ` �x?A1:A2 : K then � ` A1 : type and �; x ? A1 ` A2 : type.

2. If � ` �x?A:K : kind then � ` A : type and �; x ? A ` K : kind.

Proof By induction and inversion, respectively.

Lemma 4.12 (Validity)

1. If � `M ? A, then � ` A : type.

2. If � `M = N ? A, then � `M ? A, � ` N ? A, and � ` A : type.

3. If � ` A : K, then � ` K : kind.

4. If � ` A = B : K, then � ` A : K, � ` B : K, and � ` K : kind.

5. If � ` K = L : kind, then � ` K : kind, and � ` L : kind.

Proof Straightforward induction. Some representative cases:

Case:

D =

D1

� `M1 = M 0

1
: �x?A:B

D2

� `M2 =M 0

2
? A

oe app
� `M1 �M2 =M 0

1
�M 0

2
: [M2=x]B

The induction hypotheses allow us to conclude

� `M1;M
0

1
: �x?A:B

23

� ` �x?A:B : type

� `M2;M
0

2
? A

� ` A : type

So � ` M1 �M2 : [M2=x]B follows immediately from ot app. By inversion of products,

�; x ? A ` B : type. By substitution, � ` [M2=x]B : type, and by functionality, � `

[M2=x]B = [M 0

2
=x]B : type. Therefore we can form a derivation

� `M 0

1
: �x?A:B

� `M 0

2
? A

ot app
� `M 0

1
�M 0

2
: [M 0

2
=x]B

� ` [M2=x]B = [M 0

2
=x]B : type

fv sym
� ` [M 0

2
=x]B = [M2=x]B : type

ot conv
� `M 0

1
�M 0

2
: [M2=x]B

Case:
D1

f� ` A : typeg

D2

�; x ? A `M2 =M 0

2
: B

D3

� `M1 = M 0

1
? A

oe red
� ` (�x?A:M2) �M1 = [M 0

1
=x]M 0

2
: [M1=x]B

By the induction hypothesis on D2 and D3 we have �; x ? A ` M2;M
0

2
: B, �; x ? A `

B : type, and � `M1;M
0

1
? A. Immediately we can show

D1

� ` A : type �; x ? A `M2 : B
ot lam

� ` �x?A:M2 : �x?A:B � `M1 ? A
ot app

� ` (�x?A:M2) �M1 : [M1=x]B

and apply substitution to see that � ` [M1=x]B : type. Substitution also provides

� ` [M 0

1
=x]M 0

2
: [M 0

1
=x]B, so we again use functionality, symmetry of type equality,

and type conversion to obtain � ` [M 0

1
=x]M 0

2
: [M1=x]B.

Case:

D =

D1

�� `M = M : A

D2

�� ` N = N : A

D3

� ` A : type
pe

� `M = N � A

The induction hypothesis gives D0
1
:: �� `M : A, D0

2
:: �� ` N : A. Therefore

D0
1

�� `M : A

D3

� ` A : type
pot

� `M � A

24

and
D0
2

�� ` N : A

D3

� ` A : type
pot

� ` N � A

and immediately � ` A : type.

Lemma 4.13 (Functionality for Equality) Suppose ` �; x ?A : ctx and � `M = N ?A.

Then

1. If �; x ? A ` O = P : B, then � ` [M=x]O = [N=x]P : [M=x]B.

2. If �; x ? A ` B = C : K, then � ` [M=x]B = [N=x]C : [M=x]K.

3. If �; x ? A ` K = L : kind, then � ` [M=x]K = [N=x]L : kind.

Proof Direct. We show the �rst part; the other two are similar.

�; x ? A ` O = P : B Assumption.

� `M = N ? A Assumption.

� `M ? A Validity.

� ` N ? A Validity.

� ` [M=x]O = [M=x]P : [M=x]B Substitution.

�; x ? A ` P : B Validity.

� ` [M=x]P = [N=x]P : [M=x]B Functionality.

� ` [M=x]O = [N=x]P : [M=x]B oe trans.

Lemma 4.14 (Typing Inversion) Suppose ` � : ctx. Then

1. If � ` x : A then x : B 2 � and � ` A = B : type for some B.

2. If � ` c : A then c : B 2 � and � ` A = B : type for some B.

3. If � `M1 �M2 : A then � `M1 : �x?A2:A1, � `M2 ?A2, and � ` [M2=x]A1 = A : type

for some A1 and A2.

4. If � ` �x?A:M : B, then � ` B = �x?A:A0 : type, � ` A : type, and �; x ? A `M : A0.

5. If � ` �x?A1:A2 : K, then � ` K = type : kind, � ` A1 : type, and �; x ? A1 ` A2 : type.

6. If � ` a : K, then a : L 2 � and � ` K = L : kind for some L.

7. If � ` A �M : K then � ` A : �x?A1:K2, � ` M ? A1, and � ` [M=x]K2 = K : kind

for some K1 and K2.

25

8. If � ` �x?A1:K : kind, then � ` A1 : type, and �; x ? A1 ` K : kind.

Proof Straightforward induction, using validity to be able to apply re
exivity.

Lemma 4.15 (Redundancy) The typing premises in rules oe red, fe pi, and ke pi enclosed

in fbracesg are redundant. That is, the rules without the braced premises are admissible.

Proof Straightforward from validity.

Lemma 4.16 (Equality Inversion)

1. If � ` A = �x?B1:B2 : type or � ` �x?B1:B2 = A : type, then A is of the form

�x?A1:A2 such that � ` A1 = B1 : type and �; x : A1 ` A2 = B2 : type.

2. If � ` K = type : kind or � ` type = K : kind, then K is type.

3. If � ` K = �x?B1:L2 : kind or � ` �x?B1:L2 = K : kind, then K is of the form

�x?A1:K2 such that � ` A1 = B1 : type and �; x : A1 ` K2 = L2 : type.

Proof By induction.

Lemma 4.17 (Injectivity of Products)

1. If � ` �x?A1:A2 = �x?B1:B2 : type then � ` A1 = B1 : type and �; x ? A1 ` A2 = B2 :

type.

2. If � ` �x?A:K = �x?B:L : kind then � ` A = B : type and �; x ? A ` K = L : kind.

Proof Immediate from Lemma 4.16.

5 Algorithmic Equality

We outline below an algorithm adapted directly from [Pfe01] and [HP01] for deciding equal-

ity of well-typed terms. It follows that the typing judgment and all other judgments are

decidable. The additional typing assumptions on rules pot and pe turn out to incur no extra

computational cost for deciding the derivability � ` M : A. Intuitively this is because the

only way a judgment of the form � ` N�A or � ` N1 = N2�A can have an observable e�ect

is under an irrelevant application. The typing rule for functions with an irrelevant argument,

however, already requires its argument's type to be valid in an unpromoted context.

To make proving transitivity of algorithmic equality feasible, we de�ne approximate types

which omit dependency information. Carrying only approximate types is suÆcient for the

type-directedness of the algorithm. For each constant family a, we posit a simple base type

a�, and use � to denote the simple base types.

Simple Kinds � ::= type� j � ! � j �
�

! �

Simple Types � ::= � j �1 ! �2 j �1
�

! �2
Simple Contexts � ::= � j �; x ? �

26

The symbol
?

! in what follows denotes either! or
�

!, in parallel with the earlier conventions

about ? and �. The erasure (|)� of a family (resp. kind, context) to a simple type (resp.

simple kind, simple context) is de�ned by

(a)� = a�

(A �M)� = A�

(�x?A1:A2) = A�

1

?

! A�

2

(�x?A:K) = A�
?

! K�

�� = �

(�; x ? A)� = ��; x ? A�

The erasure of a type or kind is invariant under equality and substitution.

Lemma 5.1 (Erasure Preservation)

1. If � ` A = B : K, then A� is identical to B�.

2. If � ` K = L : kind, then K� is identical to L�.

3. If �; x ? A ` B : K, then B� is identical to (B[M=x])�.

4. If �; x ? A ` K : kind, then K� is identical to (K[M=x])�.

Proof Straightforward induction.

5.1 Judgments

The equality algorithm is given by three judgments (and analogues at types and kinds):

Weak Head Reduction M1

whr
�!M2 � is a valid signature.

Algorithmic Equality M1 ()M2 : � M1 is algorithmically equal

to M2 at simple type �

Structural Equality M1 !M2 : � M1 is structurally equal to

M2 at simple type �

Algorithmically, weak head reduction takesM1 as input and returnsM2, algorithmic equality

takes �;M1;M2; � as input and succeeds or fails, and structural equality takes �;M1;M2 as

input and either succeeds returning an approximate type � , or fails.

5.1.1 Weak Head Reduction

whr beta
(�x?A1:M2) �M1

whr
�! [M1=x]M2

M1

whr
�!M 0

1

whr head
M1 �M2

whr
�!M 0

1
�M2

27

5.1.2 Algorithmic Object Equality

M
whr
�!M 0 � `M 0 () N : �

ae whrl
� `M () N : �

N
whr
�! N 0 � `M () N 0 : �

ae whrr
� `M () N : �

�; x ? �1 `M � x() N � x : �2
ae ext

� `M () N : �1
?

! �2

� `M ! N : �
ae str

� `M () N : �

5.1.3 Structural Object Equality

x : � 2 �
se var

� ` x = x : �
c : A 2 �

se const
� ` c = c : A�

� `M1 ! N1 : �2 ! �1 � `M2 () N2 : �2
se app

� `M1 M2 ! N1 N2 : �1

� `M1 ! N1 : �2
�

! �1
se iapp

� `M1 ÆM2 ! N1 ÆN2 : �1

5.1.4 Algorithmic Family Equality

�; x ? � ` A � x() B � x : �
afe ext

� ` A() B : �
?

! �

� ` A ! B : type�

afe str
� ` A() B : type�

� ` A1 () B1 : type
� �; x ? A1 ` A2 () B2 : type

�

afe pi
� ` �x?A1:A2 () �x?B1:B2 : type

�

5.1.5 Structural Family Equality

a : K 2 �
sfe const

� ` a = a : K�

� ` A ! B : � ! � � `M () N : �
sfe app

� ` A M ! B N : �

� ` A ! B : �
�

! �
sfe iapp

� ` A ÆM ! B ÆN : �

28

5.1.6 Algorithmic Kind Equality

ake type
� ` type() type : kind�

� ` A() B : type� �; x ? A ` K () L : type�

ake pi
� ` �x?A:K () �x?B:L : type�

5.2 Algorithmic Equality Lemmas

We state without proof some basic properties of the algorithm that are required to show

correctness. Most proofs are easy generalizations of those in [HP01].

Lemma 5.2 (Weakening) If �;�0 ` J then �; x : �;�0 ` J, for any algorithmic equality

judgment J.

Lemma 5.3 (Determinacy)

1. If M
whr
�!M 0 and M

whr
�!M 00, then M 0 is identical to M 00.

2. If � `M ! N : � , then there is no M 0 such that M
whr
�!M 0.

3. If � `M ! N : � , then there is no N 0 such that N
whr
�! N 0.

4. If � `M ! N : � and � `M ! N : � 0, then � is identical to � 0.

5. If � ` A ! B : � and � ` A ! B : �0, then � is identical to �0.

Lemma 5.4 (Symmetry) If � `M () N : � , then � ` N ()M : � , and similarly for

 ! and families and kinds.

Lemma 5.5 (Transitivity) If � ` M () N : � and � ` N () O : � then � ` M ()

O : � , and similarly for ! and families and kinds.

5.3 Completeness of Algorithmic Equality

Completeness is the statement that de�nitional equality implies algorithmic equality, in other

words

If � `M = N : A, then �� `M () N : A�

A direct induction proof fails at the application case, so we use a standard logical relations

argument. We de�ne Kripke logical relations � ` M = N 2 [[�]], � ` A = B 2 [[�]],

� ` � = � 2 [[�]] by recursion on �; �;� as follows:

1. � `M = N 2 [[�]] i� � `M () N : �.

2. � ` M = N 2 [[�1 ! �2]] i� for all �0 extending � and for all M 0; N 0 such that

�0 `M 0 = N 0 2 [[�1]] we have �
0 `M M 0 = N N 0 2 [[�2]].

29

3. � ` M = N 2 [[�1
�

! �2]] i� for all �0 extending � and for all M 0; N 0 we have

�0 `M ÆM 0 = N ÆN 0 2 [[�2]].

4. � ` A = B 2 [[type�]] i� � ` A() B : type�.

5. � ` A = B 2 [[� ! �]] i� for all �0 extending � and for all M 0; N 0 such that

�0 `M 0 = N 0 2 [[�]] we have �0 ` A M 0 = B N 0 2 [[�]].

6. � ` A = B 2 [[�
�

! �]] i� for all �0 extending � and for all M 0; N 0 we have �0 `

A ÆM 0 = B ÆN 0 2 [[�]].

7. � ` � = � 2 [[�]] i� � = � and � = �.

8. � ` � = � 2 [[�; x : �]] i� � = (�0;M=x) and � = (�0; N=x) such that � ` �0 = �0 2 [[�]]

and � `M = N 2 [[�]].

9. � ` � = � 2 [[�; x��]] i� � = (�0;M=x) and � = (�0; N=x) such that � ` �0 = �0 2 [[�]].

and thereby reduce completeness to showing

1. If � `M = N : A, then �� `M = N 2 [[A�]].

2. If � `M = N 2 [[�]], then � `M () N : � .

5.3.1 Related Terms are Algorithmically Equal

The only structural lemma we need concerning the logical relation is Weakening:

Lemma 5.6 (Weakening) For all logical relations R, if �;�0 ` R, then �; x ? �;�0 ` R.

Proof Straightforward induction.

Lemma 5.7 (Related Terms are Algorithmically Equal)

1. If � `M = N 2 [[�]], then � `M () N : �

2. If � ` A = B 2 [[�]], then � ` A() B : �

3. If � `M ! N : � , then � `M = N 2 [[�]].

4. If � ` A ! B : �, then � ` A = B 2 [[�]].

Proof By induction on �; �. We show only the cases that di�er from [HP01].

Case: � = �1
�

! �2, part 1. By assumption, � ` M = N 2 [[�1
�

! �2]]. By de�nition of

[[�1
�

! �2]], we have �; x � �1 ` M Æ x = N Æ x 2 [[�2]]. By the induction hypothesis

(part 1) on �2 we know �; x � �1 ` M Æ x () N Æ x : �2. By ae ext we conclude

� `M () N : �1
�

! �2.

30

Case: � = �
�

! �0, part 2. By assumption, � ` A = B 2 [[�
�

! �0]]. By de�nition of [[�
�

! �0]],

we have �; x� � ` AÆx = B Æx 2 [[�0]]. By the induction hypothesis (part 2) on �0 we

know �; x� � ` A Æ x() B Æ x : �0. By afe ext we conclude � ` A() B : �
�

! �0.

Case: � = �1
�

! �2, part 3. By assumption, � ` M ! N : �1
�

! �2. Suppose �0

extends � and let M 0; N 0 be given. By se iapp we have � ` M ÆM 0 ! N Æ N 0 : �2,

and weakening of the logical relation gives �0 ` M ÆM 0 ! N Æ N 0 : �2. By the

induction hypothesis (part 3) on �2, we conclude �
0 `M ÆM 0 = N ÆN 0 2 [[�2]], and so

� `M = N 2 [[�1
�

! �2]].

Case: � = �
�

! �0, part 4. By assumption, � ` A ! B : �
�

! �0. Suppose �0 extends �

and letM 0; N 0 be given. By sfe iapp we have � ` AÆM 0 ! BÆN 0 : �0, and weakening

of the logical relation gives �0 ` A ÆM 0 ! B ÆN 0 : �0. By the induction hypothesis

(part 4) on �0, we conclude �0 ` AÆM 0 = BÆN 0 2 [[�0]], and so � ` A = B 2 [[�
�

! �0]].

5.3.2 De�nitionally Equal Terms are Related

Several more lemmas concerning the logical relation are required. We then show that de�-

nitionally equal terms under equal substitutions are in the logical relation, and the desired

result follows from the identity substitution being equal to itself.

Lemma 5.8 (Closure under Head Expansion)

1. If M
whr
�!M 0 and � `M 0 = N 2 [[�]], then � `M = N 2 [[�]].

2. If N
whr
�! N 0 and � `M = N 0 2 [[�]], then � `M = N 2 [[�]].

Proof By induction on � . We show the only new case for part 1. Part 2 is symmetric.

Case: � = �1
�

! �2. By assumption, M
whr
�! M 0 and � ` M 0 = N 2 [[�1

�

! �2]]. Suppose �
0

extends � and let M1; N1 be given. By de�nition of �1
�

! �2, we know �0 `M 0 ÆM1 =

N ÆN1 2 [[�2]]. By whr head, we have M ÆM1

whr
�!M 0 ÆM1, so the induction hypothesis

on �2 gives �0 ` M Æ M1 = N Æ N1 2 [[�2]]. By de�nition of �1
�

! �2 we conclude

� `M = N 2 [[�1
�

! �2]].

Lemma 5.9 (Symmetry)

1. If � `M = N 2 [[�]], then � ` N =M 2 [[�]].

2. If � ` A = B 2 [[�]], then � ` B = A 2 [[�]].

3. If � ` � = � 2 [[�]], then � ` � = � 2 [[�]].

Proof Straightforward induction on �; �;�, using symmetry of algorithmic equality at sim-

ple base types.

31

Lemma 5.10 (Transitivity)

1. If � `M = N 2 [[�]] and � ` N = O 2 [[�]], then � `M = O 2 [[�]].

2. If � ` A = B 2 [[�]] and � ` B = C 2 [[�]], then � ` A = C 2 [[�]].

3. If � ` � = � 2 [[�]] and � ` � = Æ 2 [[�]], then � ` � = Æ 2 [[�]].

Proof Straightforward induction on �; �;�, using transitivity of algorithmic equality at

simple base types. We show the new case for part 1.

Case: � = �1
�

! �2. By assumption, � ` M = N 2 [[�1
�

! �2]] and � ` N = O 2 [[�1
�

! �2]].

Suppose �0 extends � and let M1; O1 be given. By de�nition of [[�1
�

! �2]], we know

�0 ` M ÆM1 = N ÆM1 2 [[�2]] and �0 ` N ÆM1 = O Æ O1 2 [[�2]]. The induction

hypothesis (part 1) applied to �2 gives �
0 `M ÆM1 = O ÆO1 2 [[�2]]. By de�nition of

[[�1
�

! �2]], we have shown � `M = O 2 [[�1
�

! �2]].

Lemma 5.11 (De�nitionally Equal Terms are Related under Related Substitu-

tions)

1. If � `M = N : A and � ` � = � 2 [[��]], then � `M [�] = N [�] 2 [[A�]].

2. If � ` A = B : K and � ` � = � 2 [[��]], then � ` A[�] = B[�] 2 [[K�]].

Proof By induction on the equality derivation D. We show only the object-level cases that

are di�erent from [HP01].

Case:

D =

D1

� `M1 = M 0

1
: �x�A:B

D2

� `M2 =M 0

2
� A

oe app
� `M1 ÆM2 =M 0

1
ÆM 0

2
: [M2=x]B

By the induction hypothesis on D1 we know � ` M1[�] = M 0

1
[�] 2 [[A�

�

! B�]]. By

de�nition of [[A�
�

! B�]] we have � `M1[�] ÆM2[�] = M 0

1
[�] ÆM 0

2
[�] 2 [[B�]]. Erasure

preservation (using validity inversion of products to get the required �; x�A ` B : type)

and properties of substitution imply � ` (M1 ÆM2)[�] = (M 0

1
ÆM 0

2
)[�] 2 [[([M2=x]B)

�]],

Case: D =
D1

� ` A = A0 : type

D2

� ` A = A00 : type

D3

�; x� A `M = M 0 : B
oe lam

� ` �x�A0:M = �x�A00:M 0 : �x�A:B

Towards showing that � ` (�x�A0:M)[�] = (�x�A00:M)[�] 2 [[A�
�

! B�]], suppose

that �0 extends � and let N;N 0 be given. By de�nition of [[��]] and weakening, we

32

know �0 ` (�;N=x) = (�;N 0=x) 2 [[(�; x � A0)�]]. By the induction hypothesis on D3

we obtain �0 ` M [�;N=x] = N [�;N 0=x] 2 [[B�]]. Using closure of the logical relation

under head expansion twice we see �0 ` ((�x�A0:M)[�])ÆN = ((�x�A00:M)[�])ÆN 0 2

[[B�]]. The de�nition of [[A�
�

! B�]] implies � ` (�x�A0:M)[�] = (�x�A00:M)[�] 2

[[A�
�

! B�]].

Case: D =

D1

� ` A : type

D2

� `M;N : �x�A:B

D3

�; x� A `M Æ x = N Æ x : B
oe ext

� `M = N : �x�A:B

Towards showing that � ` M [�] = N [�] 2 [[A�
�

! B�]], suppose that �0 extends

� and let M 0; N 0 be given. By de�nition of [[��]] and weakening, we know �0 `

(�;M 0=x) = (�;N 0=x) 2 [[(�; x � A0)�]]. By the induction hypothesis on D3 we obtain

�0 ` (M Æ x)[�;M 0=x] = (N Æ x)[�;N 0=x] 2 [[B�]]. In other words, �0 ` M [�] ÆM 0 =

N [�] Æ N 0 2 [[B�]]. The de�nition of [[A�
�

! B�]] implies � ` M [�] = N [�] 2 [[A�
�

!

B�]].

Case:

D =

D1

�; x� A `M2 = M 0

2
: B

D2

� `M1 =M 0

1
� A

oe red
� ` (�x�A:M2) ÆM1 = [M 0

1
=x]M 0

2
: [M1=x]B

By de�nition of [[��]] we have � ` (�;M1[�]=x) = (�;M 0

1
[�]=x) 2 [[(�; x�A)�]]. By the

induction hypothesis on D1, we infer � `M2[�;M1[�]=x] =M 0

2
[�;M 0

1
[�]=x] 2 [[B�]]. By

properties of substitution, this means that � ` (M1[�]=x)(M2[�]) = M 0

2
[�;M 0

1
[�]=x] 2

[[B�]]. Closure of the logical relation under head expansion implies that we have � `

(�x�A[�]:M2[�]) Æ (M1[�]) = M 0

2
[�;M 0

1
[�]=x] 2 [[B�]]. And applying properties of

substitution again, we see � ` ((�x�A:M2)ÆM1)[�] = ([M 0

1
=x]M 0

2
)[�] 2 [[B�]]. Validity

applied to �; x�A `M2 = M 0

2
: B gives �; x�A ` B : type, and so erasure preservation

implies � ` ((�x�A:M2) ÆM1)[�] = ([M 0

1
=x]M 0

2
)[�] 2 [[([M1=x]B)

�]], as required.

Lemma 5.12 (Identity Substitutions are Related) For any context � we have �� `

id� = id� 2 [[��]].

Proof By induction using part 3 of Lemma 5.7 to infer ��; x : A� ` x = x 2 [[A�]] from

�; x : A ` x ! x : A.

Lemma 5.13 (De�nitionally Equal Terms are Related)

1. If � `M = N : A, then � `M = N 2 [[A�]].

33

2. If � ` A = B : K, then � ` A = B 2 [[K�]].

Proof By Lemmas 5.11 and 5.12.

Theorem 5.14 (Completeness of Algorithmic Equality)

1. If � `M = N : A, then � `M () N : [[A�]].

2. If � ` A = B : K, then � ` A() B : [[K�]].

Proof By Lemmas 5.7 and 5.13.

5.4 Soundness of Algorithmic Equality

Given the lemmas of section 4.5 and subject reduction, soundness admits a direct induction

proof.

Lemma 5.15 (Subject Reduction) If M
whr
�! M 0 and � ` M : A, then � ` M 0 : A and

� `M =M 0 : A.

Proof By induction on D :: M
whr
�! M 0. There are two new cases (the irrelevant version of

each rule de�ning weak head normalization) but their proof is a straightforward generaliza-

tion of the cases already in [HP01]. The only possible diÆculty comes when we need to show

something of the form � ` M1 = M1 � A instead of � ` M1 = M1 : A. Fortunately in both

cases the fact that � ` A : type is easily obtained from the application of existing inversion

and validity lemmas to the typing assumptions. We can therefore use Corollary 4.6 to see

�� `M1 =M1 : A and derive

�� `M1 = M1 : A �� `M1 =M1 : A � ` A : type
poe

� `M1 =M1 � A

Theorem 5.16 (Soundness of Algorithmic Equality)

1. If � `M;N : A and �� `M () N : A�, then � `M = N : A.

2. If � ` M : A, � ` N : B and �� ` M ! N : � , then � ` M = N : A,

� ` A = B : type, and �; A�; B� are identical.

3. If � ` A;B : K and �� ` A() B : K�, then � ` A = B : K.

4. If � ` A : K, � ` B : L and �� ` A ! B : �, then � ` A = B : K, � ` K = L : type,

and �;K�; L� are identical.

5. If � ` K;L : kind and �� ` K () L : kind�, then � ` K = L : kind.

34

Proof By induction on the equality derivation. We show only the new object-level cases.

Case:

D =

D1

� `M1 ! N1 : �2
�

! �1
se iapp

� `M1 ÆM2 ! N1 ÆN2 : �1

By assumption � `M1 ÆM2 : A and � ` N1 ÆN2 : B Inversion implies the existence of

A1; A2; B1; B2 such that

� `M1 : �x?A2:A1 (�M)

� `M2 � A2

� ` [M2=x]A1 = A : type

and

� ` N1 : �x?B2:B1 (�N)

� ` N2 � B2

� ` [N2=x]B1 = B : type

By applying validity and inversion to (�M) and (�N) we get

� ` �x?A2:A1 : type

�; x ? A2 ` A1 : type

� ` �x?B2:B1 : type

�; x ? B2 ` B1 : type

By the induction hypothesis on D1, there is � such that

� `M1 = N1 : �x?A2:A1

� ` �x?A2:A1 = �x?B2:B1 : type

(�x?A2:A1)
�; (�x?B2:B1)

�; � identical.

so clearly � must be of the form �2
�

! �1. Injectivity of products and Corollary 4.6

imply that �� ` A2 = B2 : type, so we can apply inversion to � ` N � B2 to see that

�� ` N : B2 and derive

�� ` N : B2

�� ` A2 = B2 : type
fe sym

�� ` B2 = A2 : type
ot conv

�� ` N : A2

35

Now by inversion also �� ` M2 : A2 and � ` A2 : type, so by poe we know � ` M2 =

N2 � A2. We can now derive

� ` [M2=x]A1 = A : type

� `M1 = N1 : �x� A2:A1

� `M2 = N2 � A2

oe app
� `M1 ÆM2 = N1 ÆN2 : [M2=x]A1

oe conv
� `M1 ÆM2 = N1 ÆN2 : A

By injectivity of products and functionality we have

� ` [M2=x]A1 = [N2=x]B1 : type

and all of A�; A�

1 ; B
�

1 ; B
�; �1 are identical by erasure preservation.

Case:

D =

D1

�; x� �1 `M Æ x() N Æ x : �2
ae ext

� `M () N : �1
�

! �2

Since A� is �1
�

! �2, we know A is of the form �x � A1:A2. Therefore � ` M;N :

�x � A1:A2. By inversion, � ` A1 : type, so using weakening we can derive

�; x� A1 `M : �x � A1:A2

ot var
��; x : A1 ` x : A1 � ` A1 : type

pot
� ` x � A1

ot app
�; x� A1 `M Æ x : A2

and similarly �; x�A1 ` N Æ x : A2. Therefore we can apply the induction hypothesis

to D1 and obtain �; x�A1 `M Æx = N Æx : A2. By oe ext, we conclude � `M = N : A.

5.5 Decidability

Algorithmic equality is a decision procedure on normalizing terms, that is, those terms which

are algorithmically equal to something.

Lemma 5.17 (Decidiability of Equality for Normalizing Terms)

1. If � ` M0 () M1 : � and � ` N0 () N1 : � , then it is decidable whether � `

M0 () N0 : � .

2. If � ` M0 ! M1 : �1 and � ` N0 ! N1 : �2, then it is decidable whether there

exists �3 such that � `M0 ! N0 : �3.

36

3. If � ` A0 () A1 : � and � ` B0 () B1 : �, then it is decidable whether � ` A0 ()

B0 : �.

4. If � ` A0 ! A1 : �1 and � ` B0 ! B1 : �2, then it is decidable whether there

exists �3 such that � ` A0 ! B0 : �3.

5. If � ` K0 () K1 : kind� and � ` L0 () L1 : kind�, then it is decidable whether

� ` K0 () L0 : kind
�.

Proof By induction on the structure of the given derivations. The determinacy lemma is

used in several places, as well as the fact that symmetry and transitivity of algorithmic

equality imply that showing � `M0 () N0 : � is equivalent to showing � `Mi () Nj : �

for any particular i; j.

Theorem 5.18 (Decidability of Algorithmic Equality)

1. If � `M;N : A then it is decidable whether �� `M () N : A�.

2. If � ` A;B : K then it is decidable whether �� ` A() B : K�.

3. If � ` K;L : kind then it is decidable whether �� ` K () L : kind�.

Proof By re
exivity of de�nitional equality and completeness of algorithmic equality, M;N

(resp. A;B, K;L) are normalizing. Therefore it is decidable if they are algorithmically

equal.

Corollary 5.19 (Decidability of De�nitional Equality)

1. If � `M;N : A then it is decidable whether � `M = N : A.

2. If � ` A;B : K then it is decidable whether � ` A = B : K.

3. If � ` K;L : kind then it is decidable whether � ` K = L : kind.

Proof By soundness and completeness of algorithmic equality.

This result allows us to de�ne and prove correct an algorithm for type-checking as follows:

Objects

c : A 2 �
aot const

� ` c) A

x : A 2 �
aot var

� ` x) A

� ` A) type �; x ? A `M) B
aot lam

� ` �x?A:M) �x?A:B

37

� `M1) �x:A0:B � `M2) A �� ` A() A0 : type�

aot app
� `M1 M2) [M2=x]B

� `M1) �x�A0:B �� `M2) A �� ` A() A0 : type�

aot iapp
� `M1 ÆM2) [M2=x]B

Families

a : K 2 �
afv const

� ` a) K

� ` A) type �; x ? A ` B) type
afv pi

� ` �x?A:B) type

� ` A1) �x:A0

2
:K � `M) A2 �� ` A2 () A0

2
: type�

afv app
� ` A1 M) [M=x]K

� ` A1) �x�A0

2
:K �� `M) A2 �� ` A2 () A0

2
: type�

afv iapp
� ` A1 ÆM) [M=x]K

Kinds

akv type
� ` type) kind

� ` A) type �; x ? A ` K) kind
akv pi

� ` �x?A:K) kind

Lemma 5.20 (Algorithmic Equality Lifting)

1. If � `M 0 : A and (��)� `M ()M 0 : A� then �� `M ()M 0 : A�.

2. If � `M 0 : A and (��)� `M !M 0 : A� then �� `M !M 0 : A�.

Proof By induction. The case of weak head-reducing the right side for part 1 holds by

subject reduction, and the variable case for part 2 follows because by inversion � ` x : A

implies that x : A0 2 �, for A0 such that � ` A = A0 : type so �� ` x ! x : A� by erasure

preservation.

Lemma 5.21 (Correctness of Algorithmic Type-Checking)

1. If � `M) A, then � `M : A.

2. If � `M : A, then there is an A0 such that � `M) A0 and � ` A = A0 : kind.

3. If � ` A) K, then � ` A : K.

4. If � ` A : K, then there is an K 0 such that � ` A) K 0 and � ` K = K 0 : type.

38

5. If � ` K) kind, then � ` K : kind.

6. If � ` K : kind, then � ` K) kind.

Proof By induction using established lemmas. We show the irrelevant application cases at

the object level.

Case: Part 1, D =

D1

� `M1) �x�A0:B

D2

�� `M2) A

D3

� ` A() A0 : type�

aot iapp
� `M1 ÆM2) [M2=x]B

By the induction hypothesis on D1;D2 we know

� `M1 : �x�A
0:B

�� `M2 : A

By inversion of products, � ` A0 : type from which follows �� ` A0 : type by Corol-

lary 4.6. We also have �� ` A : type by validity. Now �� ` A () A0 : type� can

be weakened to (��)� ` A () A0 : type� and soundness of algorithmic typing yields

�� ` A = A0 : type and we can derive

� `M1 : �x�A
0:B

� ` A0 : type

�� `M2 : A �� ` A = A0 : type
ot conv

�� `M2 : A
0

pot
� `M2 � A0

ot app
� `M1 ÆM2 : [M2=x]B

Case: Part 2, D =
D1

� `M1 : �x�A:B

D2

� `M2 � A
ot app

� `M1 ÆM2 : [M2=x]B

By inversion,

D2 =

D0
2

�� `M2 : A

D00
2

� ` A : type
pot

� `M2 � A

By the induction hypothesis on D1;D
0

2
, we can �nd C;A0 such that � ` M1) C,

�� ` M2) A0, � ` C = �x�A:B : type, and �� ` A = A0 : type. By Lemma 4.16,

C must be of the form �x�A00:B00 such that � ` A = A00 : type and �; x�A00 ` B =

B00 : type. By Corollary 4.6 and symmetry and transitivity of de�nitional equality, we

get �� ` A0 = A00 : type. Completeness of algorithmic equality implies (��)� ` A0 ()

39

A00 : type�. By validity applied to � ` A = A00 : type, we have � ` A0 : type, so by

Lemma 5.20 we have �� ` A0 = A00 : type�. Therefore we can derive

� `M1) �x�A00:B00 �� `M2) A0 �� ` A0 () A00 : type�

aot iapp
� `M1 ÆM2) [M2=x]B

00

Now we know from � ` A = A00 : type that ` �; x�A00 = �; x�A : ctx by symmetry and

ce var, so Lemma 4.8 allows us to infer that �; x � A ` B = B00 : type. By substitution

of � `M2 � A, we conclude � ` [M2=x]B = [M2=x]B
00 : type.

Theorem 5.22 (Decidability of Type-Checking)

1. It is decidable whether ` � : ctx.

2. Suppose ` � : ctx and � ` A : type. Given M , it is decidable whether � `M : A.

3. Suppose ` � : ctx and � ` K : kind. Given A, it is decidable whether � ` A : K.

4. Suppose ` � : ctx. Given K, it is decidable whether � ` K : kind.

Proof Since algorithmic equality is decidable and the algorithmic typing judgment is syntax-

directed, it is decidable whether there exists A0 such that � `M) A0, and this A0 is unique

if it exists. By correctness of algorithmic typing, we have � ` A0 : type, and so � `M : A i�

� ` A0 = A : type, and this equality is decidable by Corollary 5.19. The argument is similar

for the other cases.

The algorithms for typing and equality admit direct proofs of strengthening. Their

correctness allows us to lift these properties to the original typing and equality judgments.

Lemma 5.23 (Strengthening of Algorithmic Equality)

1. Suppose M
whr
�!M 0. If x appears free in M 0, x appears free in M .

2. If �; x ? � 0;�0 ` M () N : � and x does not appear free in M;N , then �;�0 `

M () N : � .

3. If �; x ? � 0;�0 ` M ! N : � and x does not appear free in M;N , then �;�0 `

M ! N : � .

Proof Straightforward induction.

Lemma 5.24 (Strengthening of Algorithmic Typing)

1. If �; x ? B;�0 `M) A and x does not appear free in �0;M , then �;�0 `M) A and

x does not appear free in A.

40

2. If �; x ? B;�0 ` A) K and x does not appear free in �0; A, then �;�0 ` A) K and

x does not appear free in K.

3. If �; x ? B;�0 ` K) kind and x does not appear free in �0; K, then �;�0 ` K) kind.

Proof Straightforward induction, using Lemma 5.23 at the application case.

Corollary 5.25 If �; x ? A;�0 ` J and x does not appear free in �0; J, then �;�0 ` J.

Proof By induction on the structure of the derivation, using Lemmas 5.23 and 5.24, and

the correctness of algorithmic equality and typing.

6 Strict De�nitions

Abbreviations and de�nitions are important tools in informal as well as formal mathematics

for making large proofs understandable. However, it can be ineÆcient for proof-checking

software to expand the meaning of every de�nition it encounters. One technique for reducing

the number of de�nition expansions required applies to de�ned functions which are injective

in the usual mathematical sense. If a de�ned function can be shown to be injective | if it

has a di�erent output for every input | then we need not expand its de�nition if we want

to know if there are any solutions to an equation of the form

d M1 � � �Mn = d M 0

1
� � �M 0

n

If d is known to be injective, then this equation holds only if Mi = M 0

i for all 1 � i � n.

This optimization can make uni�cation of terms using de�ned functions much more eÆcient.

Unfortunately, it is undecidable whether a given de�ned function is injective, but there is

a decidable property, strictness, introduced by Pfenning and Sch�urmann [PS98], that implies

injectivity. Experience suggests that in practice many de�nitions are already strict, and in

fact the present work has the potential to make an even larger class of de�nitions easy to

modify cleanly so as to be strict. Appel's Twelf Tutorial [App00] describes several ad-hoc

techniques for `cutting in' trivial uses of arguments to make them have strict occurrences.

His lemma57 (in a standard encoding of natural deduction) can be changed from

lemma57: pf A -> pf B -> pf (A imp B) =

[p1: pf A]

[p2: pf B]

imp_i [p3: pf A]

p2.

to

lemma57: pf A -> pf B -> pf (A imp B) =

[p1: pf A]

[p2: pf B]

41

cut p1 [p5: pf A]

imp_i [p3: pf A]

p2.

for a de�ned cut : pf A -> pf (A -> B) -> pf B to `cut in' a fake use of the argument

of type pf A. With irrelevance, however we can simply mark that argument as unused by

writing

lemma57: pf A -i> pf B -> pf (A imp B) =

[p1 / pf A]

[p2: pf B]

imp_i [p3: pf A]

p2.

(where -i> and / are concrete syntax for
�

! and �, respectively) and our prototype im-

plementation veri�es this as strict. It is injective because If lemma57 Æ M1 M2 M3 =

lemma57 Æ M 0

1
M 0

2
M 0

3
, then we are guaranteed M1 = M 0

1
� pf A even though the �rst

argument to lemma57 is never used, exactly because equality at irrelevant types is trivial.

Intuitively, a de�ned function is strict if it uses all its arguments `substantially'. If every

argument has a substantial use, then changing any argument must change the result, and so

the function is injective. Since the concepts of strictness and irrelevance are both in some

sense about whether arguments to functions matter (even though they make opposite claims

| a strict function de�nitely does use its argument and an irrelevant function de�nitely

doesn't) we would expect they would nontrivially interact. We present a generalization of

the de�nition of strictness that applies to terms in the above type theory that retains the

important properties of that in [PS98].

6.1 Spines

An important element in the de�nition of strictness is the use of spines [CP97]. The spine

calculus can itself be used to improve implementation eÆciency of algorithms which traverse

terms `from the head down'. Instead of a nested application ((� � � ((c (M1 (M2 � � �)))) � � �))

which would need to be `unwound' all the way down to the head, the spine calculus rep-

resents it as c � (M1;M2; � � � ; nil), a head followed by a list of arguments. Thus the head of

an application can be found in constant time, and uni�cation can frequently discover, for

instance, constant clashes more quickly. The chief role of spines in strictness is in the fact

that an argument to a de�ned function is said to have a strict occurrence if it appears in

a rigid position (under application of a constant) applied to a spine of distinct bound (i.e.

other than the arguments to the de�ned function) variables.

For the sake of avoiding introducing another entire variation of LF, we depart from the

approach of [PS98], which has spines as �rst-class citizens in the type theory (and in fact

every term involves a spine), and treat spines as a purely notational tool. We de�ne spines

syntactically by

Spines S ::= nil j (M ;S) j (M ;�S)

42

and de�ne head-spine application recursively as follows:

M 0 � nil = M 0

M 0 � (M ;S) = (M 0 M) � S

M 0 � (M ;�S) = (M 0 ÆM) � S

For our purposes, a spine is a list of terms, each followed by a marker ; or ;� depending

on whether that term is to be under a relevant or irrelevant application, respectively. To

emphasize the syntactic intent of these de�nitions, when we write a head M applied to

a spine, say, (M1;M2;�M3;�nil) as M � (M1;M2;�M3;�nil) we simply mean the actual term

M M1 ÆM2 ÆM3. In no sense does the former reduce to the latter in the theory, nor are they

merely equal at some type | the former is simply an abbreviation for the latter.

We will �nd it useful to de�ne several auxiliary judgments on spines. The spine typing

judgment � ` S : A > C means that if we had a headM of type A, thenM �S would have type

C. Equality (resp. algorithmic equality) of spines at A > C is a straightforward requirement

that every two corresponding terms in a pair of spines are equal (resp. algorithmically equal)

at the appropriate type.

6.1.1 Spine Typing

st nil
� ` nil : A > A

� `M : A � ` S : [M=x]B > C
st cons

� ` (M ;S) : �x:A:B > C

� `M � A � ` S : [M=x]B > C
st icons

� ` (M ;�S) : �x�A:B > C

� ` S : A > B � ` B = B0 : type
st conv

� ` S : A > B0

6.1.2 Spine Equality

se nil
� ` nil = nil : A > A

� `M1 =M2 : A � ` S1 = S2 : [M1=x]B > C
se cons

� ` (M1;S1) = (M2;S2) : �x:A:B > C

� `M1 = M2 � A � ` S1 = S2 : [M1=x]B > C
se icons

� ` (M1 ;�S1) = (M2 ;�S2) : �x�A:B > C

43

6.1.3 Algorithmic Spine Equality

ase nil
� ` nil() nil : � > �

� `M1 ()M2 : � � ` S1 = S2 : � > �
ase cons

� ` (M1;S1)() (M2;S2) : � ! � > �

� ` S1 () S2 : � > �
ase icons

� ` (M1 ;�S1)() (M2 ;�S2) : �
�

! � > �

6.2 Strictness

The de�nition of strictness consists of six judgments:

Pattern Spine � ` S pat In �, S is a pattern spine.

Local Strict Occurrences �;� `̀x M x occurs locally strict in

M

�;� `̀x A x occurs locally strict in

A

�;� `̀x S x occurs locally strict in

S

Strict Occurrences � `̀x M x occurs strict in M

Strictness � `̀ M M is strict

6.2.1 Pattern Spines

In [PS98], a spine S is pattern in �, written � ` S pat, if it consists of distinct bound variables

from �. We can generalize this by allowing any term at all at an irrelevant position in a

spine, and requiring that all terms at relevant positions are distinct bound variables. We

in fact de�ne a judgment � ` S � S 0 pat which intends to mean that S and S 0 are similar

pattern spines in the sense that they are syntactically identical except possibly di�er at

irrelevant positions, and write � ` S pat as an abbreviation for � ` S � S pat.

pat nil
� ` nil � nil pat

�0;�00 ` S 0 � S 00 pat x 62 �0;�00

pat cons
�0; x : �;�00 ` (x;S 0) � (x;S 00) pat

� ` S 0 � S 00 pat
pat icons

� ` (M ;�S 0) � (M 0 ;�S 00) pat

This de�nition forms the base case of the de�nition of strictness. The importance of pattern

spines is that application of a pattern spine to a term is injective, in the sense that M1 �S =

M2 � S implies that M1 = M2 for pattern S. Carefully proving this fact requires some

auxiliary de�nitions and several lemmas.

44

6.2.2 Approximate Typing

We de�ne an approximate typing judgment � `M : � in the evident way.

c : A 2 �
appot const

� ` c : A�

x : � 2 �
appot var

� ` x : �

�; x ? A� `M : �
appot lam

� ` �x?A:M : A�
?

! �

� `M1 : � ! � � `M2 : �
appot app

� `M1 M2 : �

� `M1 : �
�

! �
appot iapp

� `M1 ÆM2 : �

This judgment satis�es some typical properties. All proofs are by straightforward induction.

Lemma 6.1 (Approximate Type Substitution) If �; x ? � ` M : � and � ` N ? �,

then � ` [N=x]M : � .

Lemma 6.2 (Approximate Type Subject Reduction) If M
whr
�! M 0 and � ` M : � ,

then � `M 0 : � .

Lemma 6.3 (Approximate Validity)

1. If � `M1 ()M2 : � , then � `M1 : � and � `M2 : � .

2. If � `M1 !M2 : � , then � `M1 : � and � `M2 : � .

6.2.3 Similarity

We also de�ne a relation � ` M � M 0 (pronounced M similar to M 0) on terms which

requires M and M 0 to be syntactically identical and use only relevant variables from �,

except that both requirements are relaxed under irrelevant application.

� `M �M 0 � ` N � N 0

sim app
� `M N �M 0 N 0

� `M �M 0

sim iapp
� `M ÆN �M 0 ÆN 0

�; x ? A� `M �M 0

sim lam
� ` �x?A:M � �x?A:M 0

45

c : A 2 �
sim const

� ` c � c

x : � 2 �
sim var

� ` x � x

This judgment satis�es a functionality property for substitution of similar terms into a

relevant variable, and any two terms can be substituted for an irrelevant variable and preserve

similarity.

Lemma 6.4 (Similarity Functionality)

1. If � ` N � N 0 and �; x : �;�0 `M �M 0, then �;�0 ` [N=x]M � [N 0=x]M 0.

2. If �; x � �;�0 `M � M 0, then �;�0 ` [N=x]M � [N 0=x]M 0.

Proof By induction on D :: �; x ? � `M �M 0, using inversion on the approximate typing

rules to be able to apply the induction hypothesis, and using � ` N � N 0 when D is sim var.

The key property of similarity is that weak head-reduction and algorithmic and structural

equality can be `pushed' across two pairs of similar terms. For instance, the case for algo-

rithmic equality, in a diagram, is

If

M1(====)M2

M 0

1

�

?

M 0

2

�

?

; then

M1(====)M2

M 0

1

�

?

(====)M 0

2

�

?

Lemma 6.5 (Equality Preservation)

1. If � ` M1 � M 0

1
and M1

whr
�! M2, then there exists M 0

2
such that � ` M2 � M 0

2
and

M 0

1

whr
�!M 0

2
.

2. If � ` M1 � M 0

1
and M 0

1

whr
�! M 0

2
, then there exists M2 such that � ` M2 � M 0

2
and

M1

whr
�!M2.

3. If � `Mi �M 0

i and � `M1 ()M2 : � , then � `M 0

1
()M 0

2
: � .

4. If � `Mi �M 0

i and � `M 0

1
()M 0

2
: � , then � `M1 ()M2 : � .

5. If � `Mi �M 0

i and � `M1 !M2 : � , then � `M 0

1
 !M 0

2
: � .

6. If � `Mi �M 0

i and � `M 0

1
 !M 0

2
: � , then � `M1 !M2 : � .

Proof By induction on D :: M
whr
�!M 0 (parts 1 and 2) or D :: � `M1 ()M2 : � (parts 3

and 4) or D :: � `M1 !M2 : � (parts 5 and 6). We show a few representative cases.

46

Case: Part 1, D =
whr beta

(�x:A1:M2)M3

whr
�! [M3=x]M2

By inversion on the derivation of � ` (�x:A1:M2)M3 � M 0

1
we know M 0

1
is of the form

(�x:A1:M
0

2
)M 0

3
such that �; x : A�

1 ` M2 � M 0

2
and � ` M3 � M 0

3
. By whr beta we

know M 0

1

whr
�! [M 0

3
=x]M 0

2
. By Lemma 6.4 part 1 we conclude [M3=x]M2 � [M 0

3
=x]M 0

2
.

Case: Part 1, D =
whr beta

(�x�A1:M2) ÆM3

whr
�! [M3=x]M2

By inversion on the derivation of � ` (�x�A1:M2) Æ M3 � M 0

1
we know M 0

1
is of

the form (�x�A1:M
0

2
) ÆM 0

3
such that �; x � A�

1 ` M2 � M 0

2
. By whr beta we know

M 0

1

whr
�! [M 0

3
=x]M 0

2
. By Lemma 6.4 part 2 we conclude [M3=x]M2 � [M 0

3
=x]M 0

2
.

Case: Part 3, D =

M1

whr
�! N � ` N ()M2 : �

ae whrl
� `M1 ()M2 : �

By the induction hypothesis (part 1) there isN 0 such thatM 0

1

whr
�! N 0 and � ` N � N 0.

By the induction hypothesis (part 3) on the fact that � ` N ()M2 : �, � ` N � N 0

and � ` M2 � M 0

2
, we know that � ` N 0 () M 0

2
: �. By ae whrl we can conclude

� `M 0

1
()M 0

2
: �.

Case: Part 3, D =
�; x : �1 `M1 x()M2 x : �2

ae ext
� `M1 ()M2 : �1 ! �2

We can easily derive �; x : �1 ` Mi x � M 0

i x from assumptions, so the induction

hypothesis gives �; x : �1 ` M
0

1
x () M 0

2
x : �2. By ae ext, we conclude � ` M 0

1
()

M 0

2
: �1 ! �2.

Case: Part 5, D =
D1

� `M1 !M2 : �2
�

! �1
se iapp

� `M1 ÆN1 !M2 ÆN2 : �1

Suppose � ` M1 Æ N1 � M 0

1
Æ N 0

1
and � ` M2 Æ N2 � M 0

2
Æ N 0

2
. By inversion on

the rules de�ning �, we have � ` M1 � M 0

1
and � ` M2 � M 0

2
. By the induction

hypothesis on D1, we see � `M
0

1
 ! M 0

2
: �2

�

! �1. Therefore by se iapp we conclude

� `M 0

1
ÆN 0

1
 !M 0

2
ÆN 0

2
: �1.

We will also need that approximately well-typed terms are similar to themselves, i.e.

don't use irrelevant variables except under irrelevant application.

47

Lemma 6.6 (Similarity Re
exivity) If � `M : � , then � `M � M .

Proof Straightforward induction.

Finally, we require several inversion principles concerning spines.

Lemma 6.7 (Spine Inversion)

1. If � ` (M ;S) : A0 > C, then there exist A;B such that A is of the form �x:A:B,

� `M : A, and � ` S : [M=x]B > C.

2. If � ` (M ;�S) : A0 > C, then there exist A;B such that A is of the form �x�A:B,

� `M � A, and � ` S : [M=x]B > C.

3. If � ` S : �x:A:B > C and C is a base type, then S is of the form (M ;S 0) such that

� `M : A and � ` S 0 : [M=x]B > C.

4. If � ` S : �x�A:B > C and C is a base type, then S is of the form (M ;�S 0) such that

� `M � A and � ` S 0 : [M=x]B > C.

5. If � ` nil : A > B, then � ` A = B : type.

Proof By induction on the spine typing rules.

Lemma 6.8 (Spine Head Inversion) If � ` S : A > C and �� ` M � S : C�, then

�� `M : A�.

Proof By induction on D :: � ` S : A > C.

We are now ready to show that application of a pattern spine is injective.

Lemma 6.9 (Pattern Spine Injectivity) Suppose for i 2 f1; 2g that 	 ` Si : A > C. If

�;� are disjoint subsets of 	 (We only use ��;�� so we can use exchange without being

concerned with dependencies), and

1. �� ` S1 � S2 pat,

2. FV (M1); FV (M2) � �,

3. ��;�� `M1 � S1 ()M2 � S2 : C
�, and

then �� `M1 ()M2 : A
�.

Proof By induction on D :: �� ` S pat.

Case:

D = pat nil
�� ` nil � nil pat

By inversion on the spine typing rules, � ` A = C : type. By erasure preservation, A�

is the same as C�. By strengthening of algorithmic equality, �� `M1 ()M2 : A
�.

48

Case:

D =

D1

(�0)�; (�00)� ` S 0
1
� S 0

2
pat x 62 �0;�00

pat cons
(�0)�; x : �; (�00)� ` (x;S 0

1
) � (x;S 0

2
) pat

In this case, Si is (x;S
0

i) and � is �0; x : A0;�
00 such that A�

0 is � . By Lemma 6.7, we

know A is of the form �y:A0:B such that 	 ` x : A0 and 	 ` S 0i : [x=y]B > C. By

Lemma 4.14 and the fact that x : A0 2 	, we have 	 ` A0 = A0 : type. so by erasure

preservation (A0)� and A�

0 are both � . The de�nition of head-spine application says

��;�� ` (M1 x) � S
0

1
() (M2 x) � S

0

2
: C�

So by the induction hypothesis (with �; x : A0 and �0;�00) we know ��; x : � `

M1 x()M2 x : B�. By ae ext, we conclude �� `M1 ()M2 : � ! B�.

Case:

D =

D1

�� ` S 0
1
� S 0

2
pat

pat icons
� ` (M 0

1
;�S 0

1
) � (M 0

2
;�S 0

2
) pat

In this case, Si is (Mi;�S
0

i). By Lemma 6.7, we know A is of the form �y�A0:B such

that 	 ` S 0i : [M=y]B > C. The de�nition of head-spine application says

��;�� ` (M1 ÆM
0

1
) � S 0 () (M2 ÆM

0

2
) � S 0 : C�

Since M1;M2 are approximately well-typed by Lemmas 6.3 and 6.8, they are similar

to themselves by Lemma 6.6. Therefore for some new variable y we can derive ��; y�

(A0)�;�� ` Mi Æ M
0

i � Mi Æ y. Also S 0 is well-typed, so it is easy to show that

��; y � (A0)�;�� ` (Mi ÆM
0

i) � S
0 � (Mi Æ y) � S

0. Lemma 6.5 gives us

��; y � (A0)�;�� ` (M1 Æ y) � S
0 () (M2 Æ y) � S

0 : C�

So by the induction hypothesis (with �; y � A0 and �) we know ��; y � (A0)� `

M1 Æ y ()M2 Æ y : B
�. By ae ext, we conclude �� `M1 ()M2 : (A

0)�
�

! B�.

We now de�ne the remaining �ve judgments. At the highest level, � `̀ M asserts that

M is a strict de�ned function, and is therefore injective. The judgment � `̀x M means

that x has a strict occurrence in M , intuitively, x is guaranteed to be used by M . Finally,

�;� `̀x M means that x has a strict occurrence in M assuming that � contains bound

variables.

49

6.2.4 Local Strict Occurrences

�� ` S pat � ` S : B > C
ls pat

�;� `̀x x � S

�;� `̀x M
ls hd

�;� `̀x (M ;S)

�;� `̀x S
ls sp

�;� `̀x (M ;S)

�;� `̀x S
ls isp

�;� `̀x (M ;�S)

y : A 2 � �;� `̀x S
ls var

�;� `̀x y � S

�;� `̀x S
ls a

�;� `̀x a � S

�;� `̀x S
ls c

�;� `̀x c � S

d = M : A 2 � � `̀ M �;� `̀x S
ls d

�;� `̀x d � S

M
whr
�!M 0 �;� `̀x M

0

ls red
�;� `̀x M

�;� `̀x A
ls ld

�;� `̀x �y?A:M

�;�; y ? A `̀x M
ls lb

�;� `̀x �y?A:M

�;� `̀x A1

ls pd
�;� `̀x �y?A1:A2

�;�; y ? A1 `̀x A2

ls pb
�;� `̀x �y?A1:A2

6.2.5 Strict Occurrences

M
whr
�!M 0 � `̀x M

0

rs red
� `̀x M

d =M : A 2 � � `̀ M �; � `̀x S
rs d

� `̀x d � S

�; � `̀x S
rs c

� `̀x c � S

�; y ? A `̀x M
rs lam

� `̀x �y ? A:M

50

6.2.6 Global Strictness

M
whr
�!M 0 � `̀ M 0

gs red
� `̀ M

d = M : A 2 � � `̀ M � `̀ M � S
gs d

� `̀ d � S

gs c
� `̀ c � S

�; x : A `̀x M �; x : A `̀ M
gs lam

� `̀ �x:A:M

�; x� A `̀ M
gs ilam

� `̀ �x�A:M

Showing that strict functions | M such that � `̀ M | are injective by direct induction

fails, so we generalize over substitutions.

Lemma 6.10 (Completeness of Strictness) Let �1; �2 be substitutions such that �
0; �0 `

�1; �2 : �;�. That is, �1; �2 map variables in � to objects with variables in �0, and are the

identity on � except for types | �i maps y : A 2 � to y : (A[�i]) 2 �0. Assume also that C

is a base type, i.e. not of the form �x ? A:K.

1. If x : A 2 �, �;� `̀x M , �;� ` M : B, and (�0)�; (�0)� ` M [�1] () M [�2] : B
�,

then (�0)� ` �1(x)() �2(x) : A
�.

2. If x : A 2 �, �;� `̀x B, �;� ` B : type, and (�0)�; (�0)� ` B[�1] = B[�2] : type
�, then

(�0)� ` �1(x)() �2(x) : A
�.

3. If x : A 2 �, �;� `̀x S, �;� ` S : B > C, and �0;�0 ` S[�1] () S[�2] : B
� > C�,

then (�0)� ` �1(x)() �2(x) : A
�.

4. If x : A 2 �, � `̀x M , �;� `M : B, �0;�0 ` S : B[�1] > C, and (�0)� `M [�1]�S ()

M [�2] � S : C�, then (�0)� ` �1(x)() �2(x) : A
�.

5. If � `̀ M , � `M : B, �0 ` S1 : B[�1] > C, �0 ` S2 : B[�2] > C, and �0 `M [�1] � S1 =

M [�2] � S2 : C , then (�0)� ` S1 () S2 : B
� > C�.

Proof Simultaneous induction over the rules de�ning the `̀ judgments. We show some

representative cases.

Case: Part 1,
�� ` S pat � ` S : D > C

ls pat
�;� `̀x x � S

Observe that M [�1] is �1(x) � S[�1] and M [�2] is �2(x) � S[�2]. By a simple induction

using the fact that �1; �2 are the identity on �, we have �� ` S[�1] � S[�2] pat, so by

Lemma 6.9, (�0)� ` �1(x)() �2(x) : D
�. Because �1; �2 are valid substitutions, D�

and A� are identical.

51

Case: Part 3,

D =

D1

�;� `̀x M
ls hd

�;� `̀x (M ;S)

If (�0)� ` (M ;S)[�1]() (M ;S)[�2] : B
� ! C�, then by inversion (�0)� `M [�1]()

M [�2] : D
� for some D�, and the induction hypothesis (part 1) on D1 gives (�

0)� `

�1(x)() �2(x) : A
�.

Case: Part 4,

D =

D1

�; � `̀x S
0

rs c
� `̀x c � S

0

If (�0)� ` (c � S 0[�1]) � S () (c � S 0[�2]) � S : C�, then since C is a base type and both

terms are weak head-normal, we can apply inversion to the algorithmic equality rules

to see that (�0)� ` (c � S 0[�1]) � S ! (c � S 0[�2]) � S : C�. By inversion principles and

an easy induction, we have (�0)� ` S 0[�1]() S 0[�2] : D
� > B� for some D such that

� ` S 0 : D > B and c : D 2 �. By the induction hypothesis (part 3) on D1 we have

(�0)� ` �1(x)() �2(x) : A
�.

Case: Part 5,

D =

D1

�; x : A `̀x M

D2

�; x : A `̀ M 0

gs lam
� `̀ �x:A:M 0

By Lemma 4.14, we know from � ` �x:A:M 0 : B that � ` B = �x:A:A0 : type

and �; x:A ` M 0 : A0. By Lemma 4.16, B must be of the form �x:B00:B0 such that

� ` B00 = A : type and �; x:B00 ` B0 = A0 : type. Since for each i 2 f1; 2g we have

�0 ` Si : �x:B
00[�i]:B

0[�i] > C, Lemma 6.7 tells us that Si is of the form (M 0

i ;S
0

i) such

that �0 ` S 0i : B
0[�i;M

0

i=x] > C and �0 ` M 0

i : B
00[�i]. Using what we know about the

structure of M;S1; S2, we see that the equation �0 `M [�1] �S1 =M [�2] �S2 : C in fact

says that

�0 `M 0[�1;M
0

1
=x] � S 0

1
=M 0[�2;M

0

2
=x] � S 0

2
: C

It is only a matter of converting equal types to see that �i;M
0

i=x are valid substitutions

and �; x:B00 ` M 0 : B0. By the induction hypothesis, (�0)� ` S 0
1
= S 0

2
: (B0)� > C�.

Now it can be shown by completeness of algorithmic equality and a simple induction

that (�0)� `M 0[�1;M
0

1
=x] �S 0

1
()M 0[�1;M

0

2
=x] �S 0

1
: C�. By the induction hypothesis

(part 4) on D1 we infer (�
0)� `M 0

1
()M 0

2
: (B00)�. Therefore by ase cons we conclude

(�0)� ` (M 0

1
;S 0

1
)() (M 0

2
;S 0

2
) : (B00)� ! (B0)� > C�

52

Case: Part 5,

D =

D1

�; x� A `̀ M 0

gs ilam
� `̀ �x�A:M 0

By Lemma 4.14, we know from � ` �x�A:M 0 : B that � ` B = �x�A:A0 : type

and �; x�A ` M 0 : A0. By Lemma 4.16, B must be of the form �x�B00:B0 such that

� ` B00 = A : type and �; x�B00 ` B0 = A0 : type. Since for each i 2 f1; 2g we have

�0 ` Si : �x�B
00[�i]:B

0[�i] > C, Lemma 6.7 tells us that Si is of the form (M 0

i ;�S
0

i) such

that �0 ` S 0i : B
0[�i;M

0

i=x] > C and �0 ` M 0

i : B
00[�i]. Using what we know about the

structure of M;S1; S2, we see that the equation �0 `M [�1] �S1 =M [�2] �S2 : C in fact

says that

�0 `M 0[�1;M
0

1
=x] � S 0

1
=M 0[�2;M

0

2
=x] � S 0

2
: C

It is only a matter of converting equal types to see that �i;M
0

i=x are valid substitutions

and �; x�B00 ` M 0 : B0. By the induction hypothesis, (�0)� ` S 0
1
= S 0

2
: (B0)� > C�,

so we can derive

(�0)� ` S 0
1
() S 0

2
: (B0)� > C�

ase icons
(�0)� ` (M 0

1
;�S 0

1
)() (M 0

2
;�S 0

2
) : (B00)�

�

! (B0)� > C�

Theorem 6.11 (Injectivity) If d : A = M is strict, i.e. � `̀ M , then d is injective. That

is, if � ` S1; S2 : A > C, then � ` d � S1 = d � S2 : C implies � ` S1 = S2 : A > C.

Proof Follows from soundness and Lemma 6.10 (part 5), with �1; �2 both the identity

substitution.

References

[AB01] Steve Awodey and Andrej Bauer. Propositions as [Types]. Technical report, Insti-

tut Mittag-Le�er, 2001.

[App00] Andrew Appel. Hints on proving theorems in Twelf. Web page.

URL: http://www.cs.princeton.edu/�appel/twelf-tutorial/, 2000.

[Bar98] G. Barthe. The relevance of proof-irrelevance. In S. Skyum K. Larsen and

G. Winskel, editors, Proceedings of ICALP'98, LNCS, 1998.

[C+86] Robert L. Constable et al. Implementing Mathematics with the Nuprl Proof De-

velopment System. Prentice-Hall, Englewood Cli�s, New Jersey, 1986.

[CP97] Iliano Cervesato and Frank Pfenning. A linear spine calculus. Technical Report

CMU-CS-97-125, Department of Computer Science, Carnegie Mellon University,

April 1997.

53

[HHP93] Robert Harper, Furio Honsell, and Gordon Plotkin. A framework for de�ning logics.

Journal of the Association for Computing Machinery, 40(1):143{184, January 1993.

[HP01] Robert Harper and Frank Pfenning. On the equivalence and canonical forms in

the LF type theory. Technical report, Carnegie Mellon University, 2001.

[PE98] Frank Pfenning and Conal Elliott. Higher-order abstract syntax. In Proceedings

of the ACM SIGPLAN '88 Symposium on Language Design and Implementation,

pages 199{208, Atlanta, Georgia, June 1998.

[Pfe01] Frank Pfenning. Intensionality, extensionality and proof irrelevance in modal type

theory. In Proceedings of the 16th Annual Symposium on Logic in Computer Science

(LICS'01), 2001.

[PS98] Frank Pfenning and Carsten Sch�urmann. Algorithms for equality and uni�cation

in the presence of notational de�nitions. In T. Altenkirch, W. Naraschewski, and

B. Reus, editors, Types for Proofs and Programs, pages 179{193, Kloster Irsee,

Germany, March 1998. Springer-Verlag LNCS 1657.

[PS99] Frank Pfenning and Carsten Sch�urmann. System description: Twelf | a meta-

logical framework for deductive systems. In H. Ganzinger, editor, Proceedings

of the 16th International Conference on Automated Deduction (CADE-16), pages

202{206, Trento, Italy, July 1999. Springer-Verlag LNAI 1632.

54

