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Abstract

Proof-carrying code (PCC) is a framework for ensuring that untrusted programs are safe to install and
execute. When using PCC, untrusted programs are required to contain a proof that allows the program
text to be checked efficiently for safe behavior. In this paper, we lay the foundation for a potential
engineering improvement to PCC. Specifically, we present a practical approach to using temporal logic
to specify security policies in such a way that a PCC system can enforce them.
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1 Introduction

Proof-carrying code [Nec97] (PCC) is a framework for ensuring that untrusted programs are safe to
install and execute. When using PCC, untrusted programs are required to contain a proof that allows
the program text to be checked efficiently for safe behavior. PCC can check optimized object code,
and a program checker is relatively easy to implement. These advantages, among others, make PCC an
attractive scheme for enabling a network of computers to distribute software safely. In this paper, we
lay the foundation for a potential engineering improvement to PCC. Specifically, we present a practical
approach to using temporal logic to specify security policies in such a way that a PCC system can enforce
them. The PCC system would furthermore be “universal,” in the sense of not needing to be modified
or extended for each new security policy, as long as each such policy can be specified in temporal logic.
This approach additionally enables us to replace a substantial portion of the program-checking software
with formal specifications, but at the cost of larger proofs.

A central component of a PCC program checker is the security policy, which defines the precise notion
of “safety” that the host system demands of all untrusted code. In the work cited above, a major portion
of the security policy is given by a verification-condition (VC) generator that in practice takes the form
of a manually constructed computer program (written, in this particular case, in the C programming
language). While this is an expedient approach that is also consistent with the desire to implement PCC
as an operating system service, it does not necessarily lead to a trustworthy checker, nor does it permit
easy adaptation of the checker to new security policies.

To motivate the problems addressed by this research, consider how we might design a PCC-based
personal digital assistant (PDA). The PDA can be enhanced by new programs, with the proviso that each
such program is checked by PCC before it is installed, thereby ensuring that the PDA (a code consumer)
will not cease to work because of faulty or malicious software. Untrusted extensions are provided by a
code producer; we will focus on two for the moment:

e The alarm clock runs continuously, but only for brief intervals. It updates the display once per
second and emits a special sound, when appropriate.

e The synchronizer runs only when the user “docks” the PDA. The synchronizer ensures that the
PDA is consistent with a desktop computer.

Figure 1 contains a diagram of this design. A trusted enforcement mechanism checks each program
against several distinct security policies before it is allowed to run. A memory-safety policy protects the
operating system and libraries from corruption. Additional resource-bound policies place limits on the
system resources that programs can consume. The memory-safety policy is common to all programs, but
the resource-bound policies are tailored to individual programs.

The alarm clock needs little memory to run, but runs continuously for an unlimited period of time; it
is usually waiting in between clock ticks. We thus assign to the alarm clock the wait-frequency policy that
limits it to a small number of instructions before invoking the wait system call. The small-heap-bound
policy constrains the alarm clock to only a small amount of dynamic memory. The instruction-bound
policy requires the synchronizer to terminate after executing a number of instructions proportional to
the size of the PDA’s address book. The large-heap-bound policy constrains the synchronizer to a large
amount of dynamic memory (also proportional to the address-book size); because the synchronizer will
terminate in a limited time frame, we know that its dynamic memory will be released soon.

A typical implementation of this design would require a separate enforcement mechanism for each
distinct security policy. Unfortunately, it is relatively difficult to tailor an enforcement mechanism to a
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Figure 1: Secure PDA

new security policy (in general), especially if we expect to change the policy over time or if we want to
vary it for different programs. On the one hand, we can try to incorporate all the security policies at
once into a single mechanism, but this leaves us with a complex mass of code that is difficult to reuse
in new situations. On the other hand, we can implement a separate mechanism for each security policy,
but this is potentially inefficient because each mechanism must examine the program and its proof.

We would prefer that security policies were instead parameters of a single universal enforcement
mechanism. We could then develop policy and mechanism independently, and reuse a single implemen-
tation for an unlimited number of applications. We first attempted to address this problem by extending
a standard enforcement mechanism with a security-policy interpreter [BLO1]—unfortunately, this ap-
proach entails considerable complexity. In this paper, we present an alternative approach that uses a
simpler enforcement mechanism, but at the expense of larger security proofs.

Until now, our PCC implementations have encoded security proofs in first-order logic, and the en-
forcement mechanism included a trusted VC generator that essentially encoded the security policy in a
C implementation (e.g., Necula [Nec97]). We will argue here that temporal logic [MP91, Eme90, CGP99]
has certain advantages over first-order logic for PCC. Using temporal logic, we can remake the VC
generator as an untrusted component and thereby allow the security policy to be separated from the
enforcement mechanism. This also provides the crucial advantage of reducing the amount of software in
the trusted computing base, though as we shall see, this advantage comes at the cost of larger proofs.
In this respect, our approach resembles foundational PCC [App01, AF00], although, unlike foundational
PCC, our code producer and consumer must agree on a shared notion of type safety.

A temporal logic is characterized by its temporal operators: they enable us to distinguish the different
times at which a proposition is true. In this paper, we will identify time with the CPU clock and regard
propositions as statements about machine states. For example, the proposition

pc =02 O(pc=1)

asserts that “if the program counter is 0 now, then it will be 1 in the next state.” We can also specify
security policies in temporal logic. For example, the proposition

O(pc > 0 A pc < 100)
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asserts that “the program counter is always between zero and 100,” but we can also interpret this as the
requirement “the program counter must always be between zero and 100”—a specification for a simple
form of control-flow safety [Koz98]. We will exploit this duality to reap a practical benefit.

For a PCC system based on first-order logic, the enforcement mechanism generates a proposition
from the program and the security policy together—the security proof is a proof of this proposition.
For temporal-logic PCC, the enforcement mechanism recognizes the program as a formal term, and the
operational semantics of the host machine is encoded as a set of trusted inference rules. We can then
encode the security policy directly—the security proof shows that the security policy is a consequence
of running the program from a set of initial conditions. Notice that the security policy is independent of
the enforcement mechanism, but we require no additional mechanism to interpret it.

We want to be confident that the security policy is correct: this confidence is difficult to obtain for
a security policy in C code. In contrast, temporal logic has a clear semantics, and security policies are
comparatively compact.

Temporal logic can express a wide variety of security policies [MP90], including type-safety, resource-
bound, and liveness policies. For example,

n=0A0O(Om) =n+1)) D O(n > 1000 D $,c = halt)

is an encoding of an instruction bound. Read this proposition as “for any n such that n is initially zero
and increases by one at each cycle,! we must halt by the time n reaches 1000.”

As we shall see, we can implement a simple enforcement mechanism for temporal-logic PCC at the
cost of increasing proof sizes. This can be a favorable trade-off, because we are shifting work from a
trusted component to an untrusted one. Initial experiments show that the size increase relative to a
first-order proof is a small multiple of the code size.

The body of this paper lays a theoretical foundation for temporal-logic PCC. Section 2 outlines a
first-order temporal logic that is suitable for PCC security proofs. Section 3 defines an abstract RISC
processor for which our framework is intended. Section 4 details how the machine semantics is encoded
and why it is sound. Section 5 shows we can systematically obtain efficient temporal type-safety proofs
from first-order type-safety proofs. Finally, in Section 6 we examine related work and suggest future
improvements.

2 Temporal Logic

We use a linear-time first-order temporal logic that resembles classical temporal logic [MP91]. However,
instead of developing an axiomatization of this logic we follow Davies [Dav96] and Simpson [Sim94] and
construct a natural-deduction system based on explicit times [BPWO01]. We use a natural-deduction
system to enable integration with other PCC systems, and because the orthogonal treatment of connec-
tives facilitates incremental extensions and restrictions. The extension of Davies’ system to additional
temporal operators is straightforward; the extension to first-order quantifiers requires more effort to
accommodate both rigid and flexible variables (see Section 2.1).

1Here we use () as an abbreviation for a more complex expression (see Section 4 for examples of incrementing
parameters).
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Figure 2: Abstract Syntax (Temporal Logic)

2.1 Syntax

The syntax of our logic (see Figure 2) is based on disjoint countably infinite sets of parameters and
variables; a parameter a is always free in a proposition, whereas a variable z is normally bound.? This
is a many-sorted logic, so each parameter or variable is annotated with an explicit type 7, of which
there are countably many; types have no internal structure. We often omit type annotations when they
can be inferred. Primitive functions and relations are named by a countable set of constants (f and R,
respectively). Constants are also annotated with types: 71 x --- x 7, — 7 is the annotation of a function
from k parameters to a value of type 7, whereas 73 X --- X 7, — 0 is the annotation of a relation on
k parameters. Constant values ¢” are nullary functions, whereas constant propositions (i.e., T, L) are
nullary relations. There is a binary equality relation for each type. This is a first-order logic, so functions
and relations appear only as constants.

Ezxpressions e” are constructed from parameters, variables, and applications of constant functions;
is the type of e. The simple type system for our logic is built into the syntax: ill-typed expressions are
not well formed.

Following Manna and Pnueli [MP91], some expressions are rigid: it is syntactically evident that a
rigid expression has the same value at all times. A flexible expression may (but need not) have different
values at different times. For example, the constant 5 is rigid, whereas the stack pointer register is
flexible. Variables also have rigidity: rigidities must match when a variable is instantiated. We declare
the rigidity p of a variable when the variable is bound: +, denotes a rigid variable, whereas —, denotes a
flexible variable. A rigid expression contains only rigid variables and parameters.

Propositions p include a selection of the usual connectives and quantifiers of first-order logic, plus the
following temporal operators:

e [p holds iff p holds at all future times.
e p holds iff p holds at some future time.
e (Op holds iff p holds at the next future time.

e p1 U ps holds iff py holds at some future time, and p; holds until then.

2The syntactic distinction between parameters and variables simplifies inference rules.
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e p; W ps holds iff p; holds until the first future time at which py holds, but p; need never hold.

A rigid proposition has only rigid parameters (bound variables may be flexible).

Some propositions are associated with a time expression t; we count time in unary notation: 0 denotes
the earliest possible time (e.g., the start of execution), and ¢ 4+ 1 denotes the time immediately following
time .

[e1/z] e is the usual substitution of expression e; for variable z in expression e. For substitution to be
well formed, e; must have the same type as z, and e; must be closed (i.e., it must not contain variables);
e need not be closed. [e/z]p is the usual extension, where e must be closed, but p need not be.

[e/z]a =a [e/z] R(e1,...,ex) = R([e/z]e1,...,[e/z]ek)
[e/x]x =e [e/z](p1 Ap2) = [e/z]p1 Ale/z]pe
[e/z] 1 =z ifz#z [e/z] (p1 V p2) = [e/z]p1 V [e/z] p2
e/x] f(e1, ... ex) = f(le/a] e, ..., [e/] ex) [e/x] (01 D p2)  =l[e/a]p1 D le/z]p2
[e/z]Vz. p =Vz.p
[e/z]Vz1. p =Vz;. [e/z]pif x # 21
[e/z]3x. p =3dz.p
[e/z] 3z1. p = 3zy. [e/z]pif x # 21
[e/=] Olp = Ole/«]p
[e/2] Op = Ole/a]p
[e/z] Op = Ole/]p
[e/z](pUp2) = [e/z]prUle/x]ps

[e/x] (p1 W p2) [e/x]pr Wle/z] p2
Substitution has the following properties:

Proposition 2.1 (Absence) [e1/z]e = e if x does not appear in e

Proposition 2.2 (Elimination) = does not appear in [e1/x]e

Proposition 2.3 (Exchange) [e1/z1][ex/z2] e = [ex/z2] [e1/x1] € if T1 # x4

Proofs by induction on the structure of e.

Proposition 2.4 (Idempotency) [e1/z][e2/z]e = [ea/z] e

Proof by Absence and Elimination.

Proposition 2.5 (Idempotency) [e1/z][e2/z]p = [e2/z]p

Proposition 2.6 (Exchange) [e1/z1][e2/22]p = [ea/x2] [e1/x1]p if 1 # T2

Proofs by induction on the structure of p.

2.2 Semantics

We define a formal model for our temporal logic. Each expression is assigned the infinite sequence of
values that the expression takes over time. A satisfaction relation determines whether a given proposition
holds at a given time. This model is similar to the usual models of temporal logic.
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2.2.1 Definitions

Val™ is the set of values v” of type 7. A sequence «" is mapping from natural numbers (representing
times) to values of type 7. An environment ¢ maps each parameter to a sequence of its type.

We assume an interpretation function J mapping each constant to its value, which may be a simple
value (nullary functions), a total function (other functions), or a set of tuples (relations). We assume
that J is defined as follows for the basic constants:

J(M) ={0}
J(L) =0
J(=") ={{v,v) |ve Val"}

2.2.2 Valuation

A wvaluation function V assigns values to expressions. Thus, V(t) is the value of time expression ¢ as a
natural number:

VO) =0
V(t+1) = V() +1

V, evaluates expressions to sequences of the same type in the environment ¢; e must be closed for V;(e)
to be well formed:

Vs(a) = ¢(a)
Vo(flers.-ser)) =3 = T(F)Vs(e) (), -- -, Voler)(5))

Let Seq™ be the set of all sequences of type 7. Valuation has the following properties:
Proposition 2.7 (Type Preservation) V;(e”) € Seq”
Proof by induction on the structure of e”.

Proposition 2.8 (Renaming) Vy[s,sx([a1/7] €) = Vyapsna)([az/z] €)
if a1 and ay do not appear in e and [a1/z]e is closed

Proposition 2.9 (Independence) V. ,(e) = Vs(e)
if a does not appear in e and e is closed

Proposition 2.10 (Past/Future Independence) Vy,.x)(€)(j) = Vg(e)(j)
if 7(j) = ¢(a)(j) and e is closed

Proposition 2.11 (Extraction) Vs([e1/z]e) = Vyjamsv,(er))([a/7] €)
if a does not appear in e and [e1/x] e is closed

Proofs by induction on the structure of e.
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2.2.3 Satisfaction

A proposition is local in a parameter if it is only sensitive to the current-time value of the parameter (e.g.,
we can vary the value of the parameter at any other time without affecting the state of the proposition).
A sequence is rigid if it has the same value at all times; the value of a rigid expression is always a rigid
sequence, but the converse does not always hold. We write 7 : p when 7 has rigidity p:

7 : p iff p =+, implies 7(j1) = 7(j2) for all ji, ja

A core judgment J encodes a property of an environment. The satisfaction relation F defines when
a core judgment holds for a particular environment (see Figure 3); the judgment must be closed for
satisfaction to be well formed. We informally describe each core judgment:

t1 > to holds when ¢; denotes the same time as ¢y or a later time than t,.

p:+ (a) holds when p is local in a.

e:p (a) holds when e denotes a sequence with rigidity p.

p:p (a) holds when p is a proposition with rigidity p.

pet holds when p is true at time t.
® palty,ta) (“pis true over ¢; to t2”) holds when p is true at all times in the half-open interval [t1,t2).
e palt,00) (“pis true from ¢”) holds when p is true at ¢ and all times later than ¢.

« is a list of parameters whose sequences are “shifted” to the current comparison time when rigidity
is considered; shifting parameters are introduced by quantifiers. For example, 3z:—,. = 5 is considered
to be a rigid proposition, even though z is a flexible variable. We often abbreviate e:p (-) as e: p and
p:p(-) as p:p.

Thus, ¢ E pat (“¢ satisfies p at time ¢”) holds if p is true of ¢ at time t. We say that a proposition
is walid at a given time if and only if it is satisfied by all environments at that time; a proposition is valid
(in general) if and only if it is valid at all times.

We use the following notation for shifting environments and sequences:

a)),. ifaea
Gote = a > (¢(a)x :
o(a) otherwise
Y I hhs
m(j + k) otherwise

Rigidity, shifting, and satisfaction have the following properties:
Proposition 2.12 (Equivalence) ¢ F e:p iff Vy(e) : p
Proof by definition of F.
Proposition 2.13 (Rigidity) my. :pifm:p

Proof by definition of ...
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PFt1 > to iff V(t1) > V(t2)
¢dEp:+i(a) i ¢F petimplies pla — 7] E pat for all w such that 7(V(¢)) = ¢#(a)(V(2))
pFep(a) iff p=+ implies Vy(e)(j1) = V¢(j1—j2)..|a(e)(j2) for all 51, j2
)

¢Ep:p(a) iff p=+ implies ¢ Fpaty implies ¢y, )—v(ts))..|a F Pats for all £y, 2,

¢ FE R(er,...,ex) ot iff (Vs(er)(V(2)),...,Ve(er)(V(t))) € T(R)

¢FEpL Aprat iff ¢oFpietand pFpoat

¢FEpPLVprat iff ¢oFpieatorgpFpret

¢ FEpL Dprat iff ¢F pjetimplies pF preat

PEVZ:p. pat iff ¢la” —» 77| E[a" /27| pat for some a” not appearing in p
and all 77 such that 77 : p

¢EILT:p. pet iff ¢la™ — 77| E[a" /27| pet for some a” not appearing in p
and some 77 such that 77 : p

o EOpret iff ¢ F p; ety for all t; such that ¢ Ft3 > ¢

o Eprat iff ¢ E piets for some t; such that ¢ F¢, >t

dEQpet iff ¢Epet+1

¢I=p1Up2@t iff d)hpQ@tQ for some tQ such thatqﬁlztgztandqﬁl:pl @[t,tQ)

PpFEPLIWprat iff  either ¢ F p; a[t, 00)
or ¢ F paaty for some ty such that ¢ F ¢ >t and ¢ F py o[t t2)

¢ E palty,ta) iff ¢Fpetforalltsuchthat pFt>t and pEta>t+1

¢ E pafty,00) iff ¢Epetforall t such that ¢ Et> ¢y

Figure 3: The Satisfaction Relation
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Proposition 2.14 (Cancellation) (7..)—r)..(5) =7(j) if j > k

Proof by definition of ...

Proposition 2.15 (Cancellation) (¢, |o)(—k)..|a(a)(j) = é(a)(j) ifj >k
Proof by Proposition 2.14 and definition of ¢y |4-

Proposition 2.16 (Renaming) ¢la; — 7] F [a1/z]pet iff ¢laz — 7] F [az/z]peat
if a1 and az do not appear in p and [a1/z]p is closed

Proposition 2.17 (Independence) ¢[a — 7] FE pet iff pEpet
if a does not appear in p and p is closed

Proposition 2.18 (Past Independence) ¢la — 7] F pat iff F pat
if m(5) = ¢(a)(j) for all § > V(t) and p is closed

Proposition 2.19 (Extraction) ¢ F [e/z]pet iff pla — Vs(e)] F [a/z]pet
if a does not appear in p and [e/x]p is closed

Proofs by induction on the structure of p.

2.3 Proof System

The provability relation - asserts that there is a proof that a particular core judgment holds. Note that
provability for locality and rigidity is efficiently decidable.

A context T is a collection of hypothetical judgments that weaken provability. For example, a:+, F
[a/z] p at asserts that it is provable that [a/z] p holds at time ¢, assuming that a is rigid. An environment
satisfies a context (¢ E ') when it satisfies each judgment in the context (the context must be closed).

Context satisfaction is defined as follows:

GF -
6ET,J iff ¢ETand ok J

It has the following property:

Proposition 2.20 (Independence) ¢la — 7| FT iff pFT
if a does not appear in T and T is closed

Proof by induction on the structure of T'.
We now present our proof system.

2.4 Inference Rules

The hypothesis rule lets us use a hypothesis as a conclusion in a derivation:

T, JT,rJ MP
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S iref ]_"I—tlth i Fl—tlzto I'kJ F,tZto,[t/to]Jl‘[t+1/t0]J> ‘
Tri>t =" Trt+1>6 = T [t'/to] J =€
Thti>ty Thty>ty 00 Thti>ts Thty>ti+1 pon
F}‘tlztg - 'rJ -

Lo>tsbJ Dita>ti+1bJ
TFJ =

Figure 4: Inference Rules (Time)

ix#P Riy

Tk p:+ (a) Tk R(ey,...,ex):+ (a)

Pkpii+i(a) TFpe:i+(a) Al PEpii+i(a) TFpe:+(a) vi PEpii+i(a) TFp2:it(a)
TFpi Aps:i+ (a) ! Tkp Vps:it (a) ! Tkpi Dpa:t(a)

Ok f@/alpin@ o CFl/epn@
T'FVz:p. p:+ (a) ! Tk 3z:p. pi+ (a) !

I'kla/z]p:+i(a) The=¢€aot T'kle/z]pat
TFe/z]pat i

Figure 5: Inference Rules (Locality)

The inference rules in Figure 4 allow us to derive judgments on time; these rules are standard
properties of the natural numbers. The induction rule > e permits us to infer that a judgment holds at
an arbitrary future time if it holds now, and if it is preserved at each future time step. When a parameter
(or time variable) appears as a superscript of an inference-rule label, it should be understood to mean
that the parameter is “fresh” (i.e., it does not appear in the conclusion of the rule).

The inference rules in Figure 5 allow us to infer locality: any parameter that does not appear in the
scope of a temporal operator is local. The rule e declares that equality at the current time is sufficient
to perform substitutions into local positions.>

The inference rules in Figure 6 allow us to infer rigidity. The rule flexi, declares that all expressions
are flexible (e.g., rigid expressions are also flexible). The rule fi, declares that rigidity is preserved by
constant functions. The rule e, lets us “transport” rigid propositions through time.

The inference rules for connectives (see Figure 7) are straightforward adaptations of the standard
introduction and elimination rules. Note that the rule Ve does not require the time of the first premise
to match the time of the conclusion; the generalization of this rule to conclusions on interval judgments
can be derived from within the system. We can show that the introduction and elimination rules for these
connectives are locally sound and complete by adapting the standard reductions and expansions [Pfe99].

We can adapt the standard introduction and elimination rules for quantifiers by explicitly considering
the rigidity of the appropriate parameter (see Figure 7).

3Note that this rule is unsound if the logic is extended to include next-time expressions [MP91].
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. : I'e:p(a)
—rl p, weak,
T'ke:— (a) F'ka:p(a) Tke:p(ar,a,a)
Fke:ip(a) ... Theg:ip(a) .. Treip(a) ... Thep:p(a) B
Iy Iy
L' fler,...,ex):p(a) I'F R(e,...,ex):p (@)

Lkpiip(a) TEpip(a) A Fkpiip(a) TEprip(a) vi I'Fpiip(a) I‘sz:p(flt)D
F'FpiApe:p(a) ' F'FpiVpeip(a) ' T'FpiDprip(a)

LFla/z]p:p(a,a) ., TFla/a]p:p(e,a)
THYz:p' . pip(a) " TrF3z:p. pip(a)
Lrpp(e) . Trhppla) . TEpp(e)
THOp:p(e) " TEOpip(e) " THQOp:p(a)
I'kpiip(a) TEpaip(a) Ui I'Fpiip(a) TEpaip(a)
TFpUUps:p(a) ' CEpiWpaip(a)

I'ktp:+, Thpot o
T'kpat

e

Oir

Wi,

r

Figure 6: Inference Rules (Rigidity)

The introduction and elimination rules for temporal operators are based on Davies [Dav96] (see
Figure 7). The rule [Ji permits us to infer that a proposition is true at all future times if we can prove
it at any arbitrary future time.* The rules [Je and i follow directly from the definitions of [] and <,
respectively. The rule e resembles Je: given p; oty, we can derive peot if we can derive pot under
the assumption that p; holds at some arbitrary point in the future. The introduction and elimination
rules for the temporal operators are also locally sound and complete [BPWO1].

The standard equality rules are based on Necula [Nec98] (see Figure 9). The rule congr_ must be
weakened to account for the case in which p contains temporal operators: we must show that e and e’ are
equal at all times; this rule complements €. The rule some— allows us to introduce a parameter (usually
rigid) that is equal to the current value of an expression (usually flexible).

We can now show that our inference rules are sound with respect to the formal model of Section 2.2.
We presume that additional domain-specific axioms (e.g., the theory of natural numbers, machine oper-
ations) are valid.

Proposition 2.21 (Soundness) ¢F J if §FT and T+ J

Proof by induction on the derivation of T - J.

4We take a small liberty here by treating meta variables such as ¢ as time parameters—this treatment does not complicate
the LF encoding.
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F}_pl@t F"pz@t . F}_plf\p2@t F"pl/\p2@t
F}_pl/\pz@t Al F"pl@t he F"pz@t
I'Fpiat : I'Fprat . TEpiVprat I,prattpat’ T, prattpat Ve
TFpVpsoet " TFp Vpsat " TFpat
I,pietbpreat . I'Fpi Dprat T'Fprat
F'kFp Dpsat = 'Fpyat

T,a:pk[a/z]pat = TFVz:p.pat Tkep
Ia

€

I'FVz:p. pet T'kle/z]pat
Tke:p TFle/z]pet - T'F3z:p. pet T, a:p, [a/x]p@tl—p'@t'aa
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'k Dpl@t Fl_pl@tl
PFty>t Thpiaty o PFOprot Tot1>t pratyFpat e
TFOprat ' TFpat
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Figure 7: Inference Rules (Instants)
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F'kFe=eet; T'lke/z]pet
Tk le/z]pet

I'Na=¢cot;,a:ptpot

f= T'Fpet
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I'ey =exati Fpat T,e; #esat; Fpot case IT'kejp=esat; Thel #esaty c
T'Fpet - T'Fpoet

ontr—

Figure 9: Inference Rules (Equality)

3 Machine Model

We define an idealized RISC processor that will provide a foundation for the remainder of this paper.
This processor operates on “words” of some fixed size (e.g. 32-bit numbers). There are a small number of
general-purpose registers that each contain a single word, a word-sized program counter, and a memory
register that contains a mapping from words to words. The processor executes a program that is simply
a sequence of instructions. We assume that the program is in a separate memory and thereby protected
from modification: we do not address self-modifying code in this paper.

3.1 Instruction Set

A machine word i is a value of type wd; Val*® is an initial subrange of the natural numbers. imay is
the largest word. Words are inherently unsigned, but negative numbers can be simulated by signed
operators using a suitable convention (e.g., two’s complement). A register token r identifies a general-
purpose register; each register token r; is a value of type ureg. We designate a small, machine-dependent
subset of the total functions from pairs of words to words as executable operators eop (type eop). A
conditional operator cop (type cop) is a selected unary word relation. The exact set of operators is
unimportant, as long as it includes modular addition.
We use a small RISC instruction set®; programs are instruction sequences:

Instructions I =1y iy |71y ¢ 1o |71 < 7o €0py T3
| cond copy 71,71 | 1 < m(r2) | m(ry) < 7o
Programs  ®u=-|I; ®

An instruction I is a value of type inst, a program & is a value of type prog. For example, the following
program replaces register ro with its own factorial:

r1 1 // r1 is current counter

ry 1 // T2 is current product

r3 1 // rs is always one

T4 ¢ r1gtwro // r4 is nonzero iff r; > ro
condneqOwry,3  // skip 3 when r4 is nonzero
Ty < romulwr // accumulate product

r1 < r; addwrs // increment counter

cond truewrg,—5 // always skip back 5

To ¢ T2 // replace ro

halt

5The instruction set does not include procedure call instructions, but it is a simple matter to add an indirect jump
instruction that will support the usual RISC calling conventions; this does not complicate the enforcement mechanism.
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Our calling convention starts execution at the first instruction; halt is an abbreviation for
cond truewrg, —1
Program length (|®|) and subscript (®;) are defined in the obvious way:

-] =0 (I; @)0 =1
|I; '~I’| = |(§| +1 (I, @)H_l = (I’z

We model a general-purpose register file as a single value of type mapu, mapping from register tokens
to words. Memory is modeled by a total function from words to words (type mapw).

3.2 Syntax

We now specify how our machine model is incorporated into the logic.

The constants 074, 1"¢ ... denote words; n is an arbitrary word constant. selw"™P"*¥d=%d (apply
map) and updw"@PvXvdxvd=mapw (ypdate map) are function constants; for example, updw(m,3,4) denotes
the same map as m, except that address 3 is mapped to 4. The constants selu™P2Xureg=¥wd (gelact register)
and updumePuxuregxwd—=mapu (yndate register) operate on register files. There are no operations yielding
register tokens, just designated constants (c;).

We associate a constant ¢*°P with each executable operator, and likewise with each conditional op-
erator; addw®°® denotes addition. appe®°P*¥dxwd=wd j5 g function constant that applies an executable
operator, and appc®PX"4=° is a relation constant that applies a conditional operator; we ordinarily
elide these constants in the interest of readability and use infix notation for executable operators (e.g.,
e1 addw ey stands for appe(addw, e, e2)). compl®P P ig g function constant that complements a condi-
tional operator (e.g., compl(eqOw) = neqOw).

Identifiers for the special-purpose registers are chosen from parameters; the interpretation of these
parameters is constrained by the machine model. Reg is the set of all register parameters (note that
these are not register tokens). pc (the program counter) is a parameter of type wd, u (the contents of
the register file) is a parameter of type mapu, and m (the contents of memory) is a parameter of type
mapw. Propositions can express properties of machine states: for example, selu(u, ry) # 0" asserts that
general-purpose register rg is not zero.

Our logic encompasses instructions and programs by means of constant functions. For example,
imyUresXureg—inst congtrycts a move instruction from two register tokens, 1enP*™8 "¢ returns the length
of a program, and fetchPro8Xvd—=inst oxtracts a particular instruction from a program. The logic is
coupled to a particular untrusted program by means of the constant pmP™€: 7 (pm) is the program whose
first instruction is at address zero of the program memory.%

Intuitively, a value of type prog is “object code,” and an expression of type prog is “assembly code.”
Instruction expressions enable us to model the operational semantics of our abstract machine directly in
temporal logic (see Section 4) and are also useful for specifying security policies.

3.3 Semantics

Our operational semantics defines a set of executions for each program.

6Because the program code is presumably ready to be run by the code consumer, we use pm as a “stand in” to avoid
replicating the program inside the proof. Alternatively, the program code could be stored in the proof and extracted by
the code consumer after proof checking (i.e., “code-carrying proof”).
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A state s maps each register to a value of its type; a state is simply a snapshot of the machine at a
particular time. An execution o is an infinite sequence of states representing the trace of a computation.
Finite executions are represented by repeating the final state infinitely (this is the effect of the halt
instruction).

We can turn an environment into an execution (see Section 2.2) by sampling each register at each
time; @| ey is the execution for environment ¢:

@|Reg = 0 such that o; = a — ¢(a)(j) for all j and a € Reg

We call ¢|rey the erasure of ¢ (i.e., non-register parameters are “erased”). An execution o satisfies a
proposition p at time ¢ (o F pet) if all environments that erase to o satisfy p at ¢:

oFpetiff g F pet for all ¢ such that ¢|rey =0

The ezecution set X, of a proposition p is the set of executions that satisfy it at time zero (X, =
{o | 0 E pa0}). We can treat temporal logic as a formal security-property’ language [BLO1]: given a
security-property p, an execution o does not violate security if and only if o € ¥,,.

Now, the standard connectives of temporal logic allow us to combine security properties in a modular
way: for example, ¥, A, is the intersection of ¥, and X, (i.e., the program must simultaneously satisfy
both p; and p2). Disjunction can similarly be interpreted as the union of execution sets (i.e., the code
producer can choose which of two possible security properties to satisfy). Additionally, we can universally
quantify a flexible history parameter (such as n in the instruction bound example from Section 1) to
specify that the parameter is local to a given security property; this ensures that the parameter will not
be interpreted inconsistently when the security property is combined with other security properties. We
discuss security properties further in Section 4.

We now specify a transition relation between states for any given program: ® [> s — s’ asserts that
there is a valid transition from state s to state s’ when executing program ® (see Figure 10). i + iy
abbreviates J(addw)(iy,42) in this figure. The notation ¢[v; — v,] is the redefinition of the mapping 1
such that v; is mapped to wvs:

dom(¢[vy — v2]) = domyp U {v1 }

(%] if V1 = U3

(Y1 = v2])(v3) = {

1(v3) otherwise

The execution set of a program (i.e., its possible behavior) comprises all executions with valid tran-
sitions (¢ = {o | ® > 0; = 0,41 for all j > 0}).

A security property is a security policy that corresponds to an execution set [Sch99, AS86].
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| ®d>s5— s |
[ Ps(pc) s |

rL 01 s[pc — s(pc) + 1][u = s(u)[r1 — i1]]

r1 4 To s[pc — s(pc) + 1 ur s(u)ry = s(u)(r2)]]

r1 ¢ T2 eopy T3 | S[pc — s(pc) + 1][u — s(u)[r1 — eop; (s(u)(r2), s(u)(rs))]]

cond cop, 1. ix s[pe — s(pc )—|— 1+41] if s(u)(r1) € cop

1 s[pec — s(pc) 1] if s(u)(r1) ¢ cop
r1 < m(ra) s[pc > s(pc) + 1][u = s(u)[r1 = s(m)(s(u)(r2))]]
m(ry) « 79 s[pc > s(pc) + 1][m — s(m)[s(u)(r1) — s(u)(r2)]]

Figure 10: The Transition Relation

Finally, we give formal interpretations of the various constants associated with our machine model:

J") =0 J (len) =& — |P|
Jay =1 J(fetch) = (®,i) — P,
. j(lmvi) = (7'1,7:1) = (7‘1 — ’Ll)
j(imv) = (T1,T2) — (Tl <~ TQ)
J(selw) = (v,1) ~ v(i) ieo = (eop,r1,T2,T 1 T eop T
J(updw) = (v,i,4") = v[i = '] gglcoizl) = Ecoﬁ:ﬁ:il), :)) (':)OI(ld C(O_p 7'1,7:11; )
g Ez:(lig Ez’:)z) H(v[)r i T(iload) = (ry,rs) = (r1 ¢ m(rs))
j(addw) ( ) ) (“ 4 12) mod (Zmax + 1) l7(15‘[}01‘6) = (’I‘l,'l‘z) = (m(rl) <« rz)
J (appe) (eop,h,lz) — eop (i1, i2)
J(appe) = {(cop,i)|i € cop}
J (compl) = cop > Val*® \ cop

4 Enforcement

We now address the code consumer’s principal concern: how do I tell if my system is secure when I
execute an untrusted program?

Current PCC enforcement mechanisms are implemented in the C programming language and generate
a verification condition [Kin71] (VC) that is true only if the program does not violate the security policy;
an LF type checker establishes that the security proof is a correct proof of the VC. We argue in an earlier
report [BLO1] that the VC generator should interpret a security policy specification instead of “hard
coding” a security policy. However, temporal logic is expressive enough to encode security properties
directly; we therefore do not need a special language.

For temporal-logic PCC, we provide a proof of - ps, @ 0 instead of a proof of a VC. pg, is a security
property that must hold for the system to be secure. ps, is specified by the code consumer directly; the
definition of satisfaction can be used to verify that it has the intended meaning.

Contrast this approach with a first-order PCC system, in which the code producer proves a VC
derived from the security property by a trusted analysis. In our system, the code producer proves the
security property directly from a formal encoding of the abstract machine’s transition relation. To show
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that our enforcement mechanism is sound, we need only show that the encoded transition relation is
valid (see Section 4.2).

4.1 Encoding the Transition Relation

We provide one inference rule for each instruction type; Figure 11 specifies these rules.

In each rule, we identify the current-time values of the registers with the rigid variables xpc, xu,
and xm. Then, for any program that contains an instruction of the appropriate type at the current
program counter, we provide new values of the registers at the next time instant. Rigid variables name
the previous-time values of the registers inside the () operator. In the case of rule trans_mv (move
register), the program counter is incremented by one, and the general-purpose register r1 is assigned the
value of r2 in the register file. In the case of rule trans_cond (conditional branch), a branch is taken if a
conditional test succeeds; otherwise, the program counter is simply incremented; the other registers are
unchanged by this instruction.

Note that the transition relation does not check that the program has proper control flow, unlike
other implementations of PCC. We permit any control flow that has a valid security proof, but the
security property will ordinarily require that the program counter stay within the program.

Figure 12 contains rules for inferring properties of constant expressions, and Figure 13 contains rules
for the program memory. These rules have easily decidable side conditions that are verified by the
proof checker. For any simple value v, U is defined as the constant ¢ such that J(¢) = v. —cop is an
abbreviation for Val™® \ cop: this is the interpretation of compl.

4.2 Soundness

To show that our enforcement mechanism is sound, we first show that the encoded transition relation is
valid for any execution of the untrusted program:

Proposition 4.1 (Transition Soundness) ¢ F pyansg ot
for each I € {mvi, mv, eop, cond, load, store} if ¢|rey € X 7 (pm)

We provide detailed proofs for mv and cond; the other cases are similar.

PROOF:

(case mv)

let .7 = V(t)70 = ¢|Regas = 0]'75, =0j+1

0 € X 7(pm) Prem.
J(pm) > s — &' Def. Yo

let Qpcy Quy Qmy Gr1, Gr2 ¢ Dtrans_mv
for all Tpe @ +rs Ta * ey M & ey Trt * ey T2 +r
let ¢’ = ¢lape — Tpc][aw = Tu)[Gn = Tn)[Gr1 > Tr1][Gr2 > Tra)

¢ Eape =pcAay =uAa, =met Hyp.
¢ Fapc=pcat ¢ Fay=uet ¢ Fan=met Def. E
(Vo (apc)(5), Vg (Pe) (1)), (Vo (au) (5), Vo (@) (5)), (Ve (am) (4), Ver () (§)) € T (=) Def. F
Vo (ape) () = Vo (Pe) () Ve (au)(f) = Ve (0)(§) Ve (an)(§) = Ve (m) () Def. J
¢'(ape)(4) = ¢'(pc)(§)  ¢'(au)(J) = ¢'(W)(H) ¢'(an)(j) = ¢'(m)(4) Def. V

¢' E fetch(pm,pc) = imv(ar1,ar2) ot Hyp.
(Vg (fetch(pm, pc))(4), Vo (imv(ars, ar2))(4)) € T (=) Def. F
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Pirans.mvi = VXPC:+r. VXU 4. Vxm: 4. Vrlig,. Vil:iy,.
xpc =pcAxu=uAxm=mD fetch(pm, pc) = imvi(rl,il)
DO (pc = xpcaddw 1 Au = updu(xu,rl,il) Am = xm)

Prrans.mv = VXPC:+4,. VXU +,. Vxm:4,. Vel Vr2:4,.
xpc =pcAxu=uAxm=mD fetch(pm, pc) = imv(r1,r2)
DQ (pc = xpc addw 1 A u = updu(xu,ri, selu(xu,r2)) Am = xm)

PDtrans_eop = VXPCi+r. Vxu:+,. Vxm:+,. Veopl:+,. Vri:i4,. Vr2:4,. Vr3:4,.
xpc =pcAxu=uAxm=mD fetch(pm, pc) = ieop(eopl,rl,r2,r3)
DO (pc = xpc addw 1 A u = updu(xu, ri, selu(xu,r2) eopl selu(xu,r3)) Am = xm)

Ptrans.cond = VXPC:+,. VXU:4,. Vxm:+,. Vcopl:+,. Vri:4,. Vil:4,.
xpc = pc Axu=uAxm=mD fetch(pm, pc) = icond(copl,rl,il)
(copl(selu(xu,rl)) D pc = xpc addw 1 addw i1)
D0 | A((compl(copl))(selu(xu,rl)) D pc = xpc addw 1)
Au=3xuAm=xm

Prrans_load = VXPC:4,. VXU 4, Vxm:4,. Vri:4,. Vr2:+,.
xpc =pc Axu=uAxm=mD fetch(pm,pc) = iload(r1,r2)
D (pc = xpcaddw 1 A u = updu(xu, rl, selw(xm, selu(xu,r2))) Am = xm)

Prrans_store = VXPC:i+,. VXU 4. Vxm:4,. Vrli4,. Vr2:4,.
xpc =pc Axu=uAxm=mD fetch(pm,pc) = istore(rl,r2)
DO (pc = xpcaddw 1 A u = xu A m = updw(xm, selu(xu,r1), selu(xu,r2)))

=T trans_mvi - trans_.mv — trans_eop
I'F perans.mviat I'* Perans.mv ot I Dtrans_eop @ T

——— trans_cond = trans_load = trans_store
I' - Ptrans.cond @t I' - Ptranstoad ot I' - Prransstore @ t

Figure 11: Encoding the Transition Relation

— _ const_eop — const_cop
I'tiyeopis =i at if i’ = eop(i1,ia) T'tcop(i)et if i € cop

const_compl
T+ compl(cop) = cop' ot if cop’ = —cop

Figure 12: Rules for Constant Expressions
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—— pm_len
Tt len(pm) =iat if |7 (pm)| =
— — pm_mvi
'k fetch(pm,i) = imvi(77,41) ot if J(pm); = (r1 < 41)
_ pm_mv
[+ fetch(pm,i) = imv(71,72) ot if 7(pm); = (r1 < 12)
= pm_eop
I+ fetch(pm,i) = ieop(eopy,T1,72,73) @t if J(pm); = (r1 < 72 eop, r3)
= — pm_cond
T+ fetch(pm,i) = icond(copy,71,%1) et if 7(pm); = (cond cop, r1,%1)
= pm_load
I+ fetch(pm,i) = iload(F1,73) at if 7(pm); = (r1 < m(ra))
— pm_store
'k fetch(pm,i) = istore(F1,72) ot it J(pm); = (m(r1
Figure 13: Rules for the Program Memory
Vg (fetch(pm, pe))(j) = Vi (imv(ax, ara)) () Def. J
J (fetch)(Vy (pm) (j), Vo (pe) (7)) = T (imv) (Ve (ax1)(5), Vi (ax2) (7)) Def. V
J(fetch)(J (pm), ¢(pc)(j)) = T (imv)(mr1(j), me2(4)) Def. V
let T = 7Tr1(j),7‘2 = 7Tr2( )
j(Pm)¢(PC)(j) = (Tl — Tz) Def. J
T (Pm)s(pe) = (r1 ¢ 12) Def. ¢|reg
s' = s[pc = s(pc) + 1][u — s(u)[r1 — s(u)(r2)]] Def. 2> 5 — &'
Ve (pe)(j +1) = ¢'(pe) (j +1) Def. V
=¢(pc)(J + 1)
=s'(pc) Def. | ey
=s(pc)+1
= ¢(PC)( ) + 1 . Def. ¢|Reg
= ¢'(pe) () +1 = ¢'(apc) (j) +1 = mpe(j) + 1
—7Tpc(.7+1)+1_ Def. 7: +,
= ¢I(GPC)(j + 1) +.1 )
=V (ape)(§ + 1) + Vo (1)(5 + 1) Def. V
=V (apc addw 1)(j + 1) Def. V
Vg (0)(j + 1) = Vg (updu(au, ar1, selu(aq, ar2)))(j + 1) similar
Vo (m)(j +1) = Ve (an)(§ + 1) similar
¢ Fpc=ayaddwlat+1 Def. J,F
¢' Fu = updu(ay, ar1, selu(ay,ar)) et + 1 Def. J,E
¢ Fm=aget+1 Def. J,E
let p' = pc = apc addw 1 A u = updu(au, ar1, selu(ay, Gr2)) Al = Gn
¢'FOp at Def. F
¢ Fapc =pcAay =uAa, =mD fetch(pm,pc) = imv(ar1,a:2) D Op' ot Def. E
¢ F Drrans.mv @t Def. E
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PROOF:
(case cond)
let j =V(t),0 = @|reg; s = 05,8 =0j41
o€ EJ(pm)
J(pm) > s — s
let Gpcy Quy Amy Qeopl > Arl, At ¢ Dtrans_cond
for all Tpe @ +¢, Ta @ ey T & e, Teopt & +r, Mrt & +r, Wit © +r
let ¢I = d’[aPC — Wpc][au =4 Wu][am = Wm][acop1 = 7Tcop1][ar1 = 7Tr1][a11 = 7Ti1]
¢ Fape=pcAay=uAay, =mat
¢’ (apc)(§) = ¢'(pe)(J)  ¢'(aw)(G) = ¢ (W () ¢'(an)(4) = ¢' (@) (4)
fetch(pm,pc) = icond(@copt, Ar1,Ai1) @t
¢ E (P % ) ( pls > )
let cop; = Teop1(4), 1 = mr1(j), %1 = m11(J)
j(pm)s(pc) = (cond copy T17i1)
@' F Gcopt(selu(ay,ar1)) ot +1
<V¢>’ (ac0p1)(.7 +1), V¢/(Selu(au,ar1))(] +1
(Vg (acop1)(J + 1), T (selu) (Vg (aa) (4 + 1)
< c0p1(.7 + ) j(sel.u)(ﬂ'u(j + 1)7 rl(] +1
(copy, J (selu)(ma(j), 1)) € T (appe)
J ((S;(M))( ma(j),71) € copy
ma(7)(r1) € copy
(()2 )¢'(au)( J) =¢' (@) (j) = (w) ()
s(u € cop, o
s' = s[pc — s(pc) +1+1i4]
Vg (pc)(j + 1) = Vi (apc addw 1 addw as1)(j + 1)
¢' F pc = apc addw 1 addwajs ot + 1
@' F acopi(selu(au,ar1)) D pc = apc addw 1 addwasr ot + 1
¢' F (compl(@copt))(selu(au, ar1)) D pc = apc addwlet +1
¢ Eu=ayet+1
¢ Em=aget+1
let p' = (@copt(selu(ay,ar1)) D pc = apc addw 1 addw a;1)
A((compl(@cop1))(selu(ay; ar1)) D pc = apc addw 1)
ANu=a, Am=ay
¢'EQp ot
¢' F ape =pcAay =uAay =mD fetch(pm,pc) = icond(acopt, r1,ai1) D Op' ot
¢ E Ptrans_cond @t

)
)

) € J(appc)
Vi (ar1)(j +1))) € J (appe)
)) € J (appc)

20

Prem.
Def. Z<I>

Hyp.
see mv proof

Hyp.

see mv proof
Hyp.

Def. E

Def. V

Def. V

Def. 7 : +,
Def. J

Def. J

Def. ¢|Reg
Def. d1>5 — s

see mv proof
Def. J,E
Def. E
similar

see mv proof
see mv proof

Def. E
Def. E
Def. E

O

Now, let ps, be a security property. The following proposition establishes that the system is secure

with respect to any program that has a security proof:
Proposition 4.2 (Enforcement Soundness) ¥ 7n C Xp,, if F pspe0

ProoF:
forallo € X J (pm)
for all ¢ such that ¢|rey = 0

¢ E pspal Proposition 4.1 and Proposition 2.21
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0 F pspel Def. o Epet
o€, Def. %,
O

Let ® = J(pm). The code producer provides a derivation of - ps, @ 0 along with ®; we use a trusted
proof checker (e.g, Necula [Nec98]) to verify its correctness. From Proposition 4.2, we conclude X5 C X, :
no execution of ® violates pgp.

5 Certification

We now address the code producer’s principal concern: how do I generate a security proof for my program
such that it will satisfy the code consumer?

Of course, as a last resort, the code producer can always write proofs by hand, but this approach
is feasible only for small programs. Practical systems for PCC rely on a certifying compiler [Nec98] (a
certification mechanism) to produce a security proof in the normal course of compiling a program. We
would like to have temporal-logic certifying compilers.

Unfortunately, certification appears to be significantly harder than enforcement: existing certifying
compilers [CLN*00, Nec98, MWCG98] provide proofs of type safety only for relatively standard type
systems. In this section, we restrict our attention to programs without procedure calls and provide
an algorithm for transforming the output of a first-order PCC compiler into a temporal-logic proof
of type safety. This limits our choice of security policies, but note that type safety is an essential
starting point for any practical PCC system, and that type systems exist for many “expressive” security
policies [Wal00, CW00, CWM99].

Our certification mechanism generates derivations of judgments of the form

Fpc= O A ppre D psate @0

where pye and pese are assertions ; an assertion is a proposition that contains no temporal operators.
This class of security properties represents a slight generalization of the invariance properties [MP91],
and includes all type safety properties. Intuitively, an invariance property requires us to prove that
some assertion (i.e., psafe) holds at all times. We generalize this class by allowing the code producer to
assume that the program counter is zero and that a precondition assertion (i.e., ppre) holds at the start
of execution.

In addition to object code, existing certifying compilers for PCC produce a set of loop invariants
and a proof of a first-order VC. A loop invariant is an assertion that holds at the head of each loop; a
complete set of loop invariants ensures that the VC generator will terminate, even if the program does
not. For temporal-logic PCC, we pass the object code, loop invariants, and first-order proof to an ad hoc
proof generation algorithm that produces a temporal-logic security proof. The ad hoc proof generator
mimics the operation of the VC generator; both are untrusted components in our system.

In order to obtain efficient temporal-logic proofs, we factor fixed sequences of inferences into derived
rules that are introduced by the prelude of the proof. The prelude is identical for all programs compiled
by the same compiler, and is thus a constant overhead. We call the temporal-logic component of the
security proof a proof skeleton. The proof skeleton is constructed by the application of derived rules; the
derivations of the derived rules (in the prelude) are first checked by the proof checker. The “leaves” of
the original first-order proof are embedded in the temporal proof skeleton, after purely structural rules
are stripped away.
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5.1 VC Generation

We first adapt Necula’s VC generator [Nec97] to our machine model to fix the strategy of our proof
generator (see Figure 14) .
For certifying control-flow safety and memory safety, psafe iS

neq0(len(pm) gtu pc)
A(Vrl:4,. Vr2:4,. fetch(pm,pc) = iload(rl,r2) D saferd(m, selu(u,r2)))
A(Vrl:4,. Vr2:4,. fetch(pm,pc) = istore(rl,r2)
D safewr(m, selu(u,rl),selu(u,r2)))

We call this the essential safety policy [Koz98]. It allows the program counter to range over the entire
program. The constants saferd and safewr denote arbitrary relations that encode the memory safety
policy [Nec98]; the VC proves that these relations hold for each possible program state.

Let VCp,. z be the VC for program [J(pm), precondition pye, and loop invariants Z. The certifying
compiler produces Z along with a proof of - VO, 7 0.

7 is a partial function from words (addresses) to propositions: if i € domZ, then Z(7) is the loop
invariant for address ¢. Typically, i € domZ if there is any backward branch to i. The three registers
are replaced by the variables xpc, xu, and xm respectively in Z(¢) and pye in order to simplify the VC
generator.

VCy,.,z is derived by symbolically executing the program code on the variables xu and xm. The
symbolic evaluator reaches a loop invariant after executing some finite number of instructions; it checks
that this invariant holds with the new symbolic register values. The left conjunct of VC checks that we
get to state where a loop invariant holds if we start from a state satisfying the precondition. The right
conjunct of VC checks that each loop invariant leads to another loop invariant.

The function SE checks for a loop invariant at the current instruction and substitutes the current
symbolic state into the invariant, if one is found. The function SESafe checks that the current symbolic
state does not violate the safety policy and proceeds with the next instruction. The function SENext
iterates the current symbolic state according to the current instruction. We use SESafe instead of SE
in the right conjunct of VC to ensure that at least one instruction is checked before reaching a new loop
invariant.

5.2 Proof Generation

The proof generator extends first-order proofs to temporal invariance proofs by mimicking the operation
of the VC generator in temporal logic. In effect, the proof skeleton is a trace of a particular run of the
VC generator encoded in the language of temporal logic. The proof of control-flow safety is encoded in
the proof skeleton itself; other properties are demonstrated by the first-order proof. Our proof generator
is not a search algorithm: given a well-formed first-order proof, a temporal proof is always found in
time directly proportional to the size of the VC. Note that because our enforcement mechanism does not
depend on the VC generator, we are free to change VC generators at any time, even after the enforcement
mechanism has been widely deployed.

It should not be surprising that we can reduce temporal invariance proofs to first-order proofs, because
this is a well-known technique for verifying reactive systems [MP91]. However, instead of using the usual
general invariance rule [MP91], we instead show that some loop invariant always recurs after a finite
amount of time, and that the system is safe in the meantime: this is essentially the function of the VC
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VC ez = Vxu:+. Vxm:+,.  ([0/xpc] ppre O SE7(0, xu, xm))
A/\iedoml([z/xpc] Z(l) ) SESO’feI(i: Xu, Xm))

SEy (i, e 0) = {[E/xpc] [ea/x] [en/xm] Z(i) if i € domT

SESafer(i, ey, en) otherwise
| j(Pm)i | SEsafeI(iaeuaem)
0 SENextz(i,eu,en)
T < T

T1 < T9 €0pq( T3
cond cop; T1,%1

r1 < m(r3) saferd(ey, selu(ey,72)) A SENextz (i, ey, €n)
m(ry) < 7o safewr(ey, selu(e,, 1), selu(ey,72)) A SENextz (i, ey, €n)
| J (pm); | SENext1(i, eq, en) |
T 01 SEz(i+ 1,updu(eys,T1,41), €n)
T1 < T2 SEI(Z +1, updu(euaﬁa selu(eua E)); em)

Ty < T2 eop, r3 | SE7(i+ 1,updu(e,, 71, selu(e,,72) €op; selu(ey,73)), €n)
(copy (selu(ey, 1)) D SE7(i+1+11,eq,¢€n))

A(=copy (selu(ey, 7)) D SEz(i+ 1, ey, €n))

T £ m(r2) SEI (Z + ]-7 updu(em ﬁa Selw(ema selu(eu; E)))a em)

m(ry) ¢ 7o SEz(i+ 1, ey, updw(eq, selu(e,,71), selu(e,,72)))

cond cop; 1,1

Figure 14: VC Generation
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generator. This property can be encoded easily enough by appealing to the “until” operator:

[l (pI D Psafe N O(psafe Upz))

where pz is the disjunction of all loop invariants. If we combine this with a derivation of
pPC = 0 A Ppre D Dsafe Upz

we can derive ps, through a constant number of temporal inferences.

We now realize two benefits: our safety proofs are considerably smaller than the equivalent global
invariance proofs, and we obtain a correspondence with the VC generator that is close enough to embed
a first-order proof directly. The reduction in proof size is brought about by specifying an invariant only
for each loop head, rather than for each reachable instruction. Michael and Appel [MA00] achieve a
similar reduction by factoring invariants using predicate transformers.

By realizing this strategy as an algorithm, we obtain the following result:

Proposition 5.1 (Relative Completeness) There is an algorithm that derives
Fpc=0A [Reg] DPpre O [psate a 0
from B VC, .10, where psye is the essential safety policy

PRroor:

We provide an interdependent set of skeleton derivations that together refine a proof of a first-order
VC into a corresponding temporal security proof. A skeleton derivation (e.g., SkStart) is a derivation
of some conclusion from one or more premises, but is not a derived rule because the structure of the
derivation can depend on the premise(s) at which it is instantiated. These derivations constitute an
algorithm for deriving the temporal security proof. In Figure 15, we show the premise(s) and conclusion
of each skeleton derivation in diagrammatic form; in Section 5.2.1, we specify the inferences that make
up the derivations. The skeleton derivations are based on the application of derived rules, which are
specified in Figure 16 through Figure 19.

The result derivation is well formed by construction: we only need to show that we do not fail and we
do not loop forever. We cannot loop forever because the VC is finite and is always decreased by any cycle
in the algorithm. We can infer that the algorithm will not fail by examining which case checks could
fail: the only such failures occur when e, or e, is not rigid. But, e, and e, are both initially instantiated
to rigid parameters, and each successive instantiation contains no flexible expressions, so e, and e, are
always rigid. O

The remainder of this section is based on the following notational abbreviations:

Dpre;

[Reg] p = [pc/xpc] [u/xu] [m/xm] p

pI = Vicdomz PC = i A [Reg] Z(i)
| J (pm); | InuNext (i, ey, €n)
i pc=i+1Au=updu(e,,71,i1) Am= e,
r1 < T2 pc =i+ 1Au=updu(e,,71,selu(e,, 7)) Am= e,

71 < T3 e0p; T3 | pc = i+ 1 Au = updu(e,, 71, selu(e,,T2) €0p; selu(e,,73)) Am = e,

cond cop; 71,41 (pe z.__F__Hl Au=ey Am= ey A\ Cop(se u(e_uv 1))
V(pc=i+1Au=e, Am= ey A=cop;(selu(ey,77)))

r1 + m(r3) pc =i+ 1Au=updu(e,,7r, selu(e,, selu(e,,73))) Am= ey

m(ry) « 72 pc=i+1Au=e, Am= updw(en, selu(e,, 1), selu(e,,72))
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Locr (€, €n, €pc; €45 P) iff T F [a/xpc] [eq/xu] [en/xm] p:+ (a)
and ' - [e;C/xpc] [a/xu] [en/xm] p:+ (@)
and I' - [e;. /xpc] [ew /xu] [a/xm| p:+ (a)

Rigr(e1,...,€k,D1y---,ppr) iff I'kej:4rand ... and T'F e 14,
and 'k py:+,and ... and T'F pgr 4

IsMuvir t(epc, €y, ms €x1,€41) iff F'Fpc=eypAu=e,Am=eyat
and I' - fetch(pm, e,c) = imvi(ers,ei1) ot
and ' epc:+rand ... and I' - es1: 4,
IsMur 4(epc, €y, €m, €x1, €x2) iff FFpc=epAu=e, Am=egot

and I' - fetch(pm, epc) = imv(ers, €x2) ot
andI'Fepc:+rand ... and I'F exg: 4,

IsEopr (epc, €u, €n; €eopt, €rt, €r2, €r3)  iff F'Fpc=epAu=e,Am=eyat
and I' F fetch(pm, epc) = ieop(€eop1; €rt, €r2,€r3) ot
and 'Fepc:+rand ... and I' - ez3:+4,

IsCondr 4(epc, €, €ms €copt €xt; €i1) iff F'Fpc=eypAu=e,Am=eyat
and I' - fetch(pm, e,c) = icond(ecopt, €r1,€i1) @t
and ' epc:+rand ... and I' - ej1: 4,

IsLoadr t(€epc, €u, €m, €r1, €x2) iff FFpc=eAu=e, Am=egot
and I' - fetch(pm, epc) = iload(ers, erp) ot
and ' epc:+rand ... and I' - erg: 4,

IsStorer ¢(epc, €y, €ns €x1, €x2) iff F'Fpc=epANu=e,Am=eyat
and I' - fetch(pm, epc) = istore(ers,exn)at
and 'Fepc:+rand ... and I' - eg: 4,

SafePCr i(epc,€1en) iff T len(pm) = ejenat and T'F e1en gtue,e = lat

Note that Loc and Rig can be decided efficiently, and we can reduce proof sizes considerably by
eliding their derivations. Note also that because pye and each Z(3) are assertions with registers replaced
by variables, they are local on all variables, and are rigid whenever they are instantiated with rigid
variables.

5.2.1 Skeleton Derivations

In this section, we enumerate the inferences that comprise each skeleton derivation. The inferences
constitute a specification for a proof-generation algorithm. Context weakening steps are not shown,
because they are provided by our logical framework.

At the beginning of each derivation, we identify the premises with “Prem.”. “App.” is an abbre-
viation for “apply rule”, and “Def.” is an abbreviation for “by definition.” We arrange conjunction
and disjunction comprehensions into balanced trees so that conjunction eliminations and disjunction
introductions take a logarithmic number of inferences.

The proof skeleton maintains the current machine state as a set of equalities between registers and
rigid expressions (e.g., pc = epc Au = €, Am = ey). These equalities permit us to discharge implications
in and extract conclusions from the proof of the first-order VC.
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FVC,,.ze0

Ppre;

. SkStart
F pc =0 A [Reg] Ppre D [psate @0

Lk Verpe =iA[Reg] (i) at Tk Vxu:t,. Vxm:+.. Ao ([i/xpc] Z(i) D SESafes(i,xu, xm)) a0

. SkSplitStart
I'F psage A O(psafe Z/{pz) et

T+ InuNext(i, ey, en) ot '+ SENextz(i,ey,en) o0

: SkSplit
I'F pareUUpret

F'kFpc=iAu=e,Am=¢egat [+ SEz(i,ey,en)al

: SkNext
Tk pateUU prot

F'Fpc=iAu=e, Am=eyat
: SkTrans
T+ InuNext(i, ey, €n)at + 1

FT'Fpc=iAu=e,Am=eyat I+ SESafe;(i,eqn,€n)al

: SkSafe
'k psase ot

'+ SESafe;(i,en,en) ot
: SkSkip
T+ SENextz(i,eu,en) ot

Figure 15: Skeleton-Derivation Diagrams
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I'EpiUpraty T,t>t0, prattprt AQPLUP2)at tanan
TFpoD Lprats sk_safe

where TV = (T, pg aty, Gy = Waty, Gy:+r, Gy = Maty, Gy :+y)

I'Fpret T'EprUpret+1 .
sk_first®%
FEpr AO@iUDp:)at

where T = (T, ay = uot, Gy:+r, Gn =Mat, Qy:+y)

I'pc=eycApaet I'teg=uet I'Fey=mat L
'pc=ecAu=e; Am=cepat sk-init

I'Fpc=ep A[Reglpat The,=uot I'kFey=met Locr(u,m,ep,ey,p) "
T [epe/XDC] [€n/x1] [en/xm] pat sk-Inst

FFpc=ecANu=e,Am=enat ['Fp'ety Rigp(p') Locr(ey,en,pc,u,p) Cl
sk_loo
'k pc=ep A[Reglpat P

where p' = [epc/xpc] [en/xu] [en/xm| p

Figure 16: Derived Rules for Managing Invariants

IsMvir t(epc, €u; €n, €r1,€i1) I'Fepcaddwl = e;m et+1

sk_mvi
'k pc= e;C Au = updu(ey,er1,€51) Am=egat+1

IsMur t(epc, €u,€ms €r1,€r2) I'F epcaddwl = e;c at+1

sk
['F pc = ey Au = updu(ey, er1, selu(ey, er2)) Am=egat +1 mv

— !
IsEopr ;(€pc, €u; €m; Ceopt, €r1; €ra, €r3) ['Fepcaddwl =e, ot +1

sk_eo
I'tpc= e;C Au = updu(ey, €r1, selu(ey, €ra) Ceopt s€lu(ey,er3)) Am=egat+1 P

IsCondr t(€pc, €us €ms €copts €r1,€11) T'Fpheot+1 Thpleat+1 TEpl et+1

sk_cond
a (Pc = epc AU =€, A = eq A €copt(selu(ey, er1))) et 4l
V(pc = epc AU = ey A = eq A €¢opi(selu(ey, er1)))
where p;c = epc addw 1 addw es; = e;C
and py. = epcaddw 1 = ep,
and plcopl = Compl(eCOPi) = ei:opl
IsLoadr ¢ (€pc, €u, €, €r1,€r2) I'Fepcaddul = e;,c ot+1

k|
['F pc = ey Au=updu(ey, er1, selw(en, selu(ey, er2))) Am=egat+1 sk-load

IsStorer t(epc, €y, €n, €x1,€r2) T'F epcaddwl = e{,c at+1

k_store
T'kpc= e;m Au = e, Am = updw(ey, selu(ey, er1), selu(ey,ers)) et + 1 s d

Figure 17: Derived Rules for Evaluating Instructions
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IsMvir t(€pc, €, €n, €r1, €11)  SafePCr (€pc, €1en)
I'F pate ot

sk_safe_mvi

IsMur t(€pc, €u, €n, €r1, €ra)  SafePCr ;(€pc, €1en)
'k Dsafe @ t

sk_safe_mv

ISEOPF,t(epw €u; €m; €eopl; €r1, €12, er3) SafePCnt(epc, elen)
I'F pate ot

sk_safe_eop

IsCondr i(€pc, €n, €n, €copt, €1, €i1)  SafePCr ;(€pc, €1en)
' psate o't

sk_safe_cond

ISLoadF,t(epc; €u; €m, €r1, er2) Sa/fePCI"t (epc; elen) F }_ Psaferd @ tO F }_ Psaferd : +r
['F psateat

sk_safe_load
where psasera = saferd(en, selu(ey, era))

ISStOT'GF,t (epc, €y, €n, €11, er2) SafePCr"t(epc; elen) 'k Psafeur @ tO 'k Dsafewr - +r
I'F psate at

sk_safe_store

where psarerr = safewr(en, selu(ey, €r1), selu(ey, era))

Figure 18: Derived Rules for Instruction Safety

Tk la/z]p:+1(a) THe =eat T'Fle/z]pet
Tk le/z]pet

el_sym®

T'Fpret F'kFpret THEpilUpreat+1

— U_NoOwW
TF pilipsat TFprlpsat u-next

Figure 19: Generic Derived Rules

28



5 CERTIFICATION

29

Note that in our implementation, we have special cases for unconditional branches (e.g., truew) that
do not consider the case that never holds. We do not show these special cases here in the interest of

simplifying the presentation.

The proof rule AndEL is equivalent to applying Ael, except in the case where the last inference of the
target derivation is Ai, in which case we perform a local reduction and simply use the left premise of the
Ai rule. AndER, ImpFE, and AllE are similar, except that we must substitute a derivation or expression
in the latter two cases. Some care must be taken when substituting derivations to avoid duplicating large
parts of the proof tree. In practice, we use an embedded “cut” rule to ensure that any derivation that

might be substituted is always a variable.
SkStart =

FVCyp,.z20

let I' = (-, pc = 0 A [Reg] Ppre @0, @y = ue0, Gyi+r, Gn =mea0, Gn:tr)
F'Fpc=0A[Reg]ppree0 I'Fa,=uel T'Fa,=me0
I'Fpc=0Au=a,Am=a,a0

Locr (u,m, 0, ay, ppre)

T F [0/xpc] [ay/xu] [an/xm] ppre @ 0

Rigr(ay, an)

'+ SEz(0,ay, an) «0

' pareU p2 <0

lett¢ I,V = (-, t> 0, prat)

I'prat

I - Vxu:t,. Vem: . A\;cqom 2 ([i/%p€] Z(i) D SESafes (i, xu,xm)) a 0
It psate A O(psafe Upz) at

F pc =0 A [Reg] ppre O psate @0

SkSplitStart =
TFV;erpe =iA[Reg] Z(i)at
I b Vxu:+,. Vam:+,. A;c;([i/xpc] Z(i) D SESafe(i,xu,xm)) « 0
case: I =10
T psate A Q(Psate U pz) 0t
case: I = {i}
let ay,an ¢ T, TV = (T, ay =uat, Gy:+r, Gy =Mat, ay:+,)
IMFa, =uat I"Fa, =mat
INFpc=iAu=a,Am=agat
Locr+ (u,m, 4, ay, Z(3))
I + [i/xpc] [au/xY] [an/xm] Z(i) o t
Rigr: (au, an, [i/xpc] [au/xu] [an/xn] Z(3))
I+ SESafe(i,au, an) @0
I'"F pateat
I + InuNext(i, ay,an) ot + 1
I+ SENextz(i, ay, an) o0
I'F pareUpret+1
['F peate A O(psafe UPI) at
case: I =1 Ul
let 'y = (I, Ve, Pc = i A [Reg] Z(i) o t)

App. sk_safe

Prem.

App. hyp
App. sk_init
Def. ppre
App. sk_inst

AlE x 2, AndEL, ImpE

SkNext

App. hyp

AUE x 2, AndER, App. Vi x 2

SkSplitStart

t,Qu,0n

Prem.
Prem.

App. Lle

App. hyp

App. sk.init
Def. T

App. sk_inst
Def. 7

AllE x 2, ImpE
SkSafe
SkTrans
SkSkip

SkSplit

App. sk first®=
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L1+ Vier,pe = iA[Reg]Z(i)at App. hyp
Ty b Vxu: 4. Vxm:+,. A;ep, ([i/xpe] Z(i) D SESafer (i, xu,xm)) a0 AllE x 2, AndEL, App. Vix 2
[y F psate A O(Dsate UPI)_@ t SkSplitStart
let Ty = (I, Ve, Pc = i A [Reg] Z(i) o t)
Iy - Vie12 pc =i A[Reg]|Z(i)at App. hyp
Ty b Vxu:+,. Vxm:+.. A;cp ([i/xpc] Z(i) D SESafe (i, xu,xm)) a0 AllE x 2, AndER, App. Vi x 2
[y b psate A O(psate U pz) ot SkSplitStart
[ F psate A O (psate U pz) o t App. Ve
SkSplit =
T+ InuNext(i,en,en) ot I'F SENextz(i, ey, €n) a0 Prem.

case: J(pm); = (cond cop, r1,11)
case: Rigp(ey)

let Ty = (T, pc=i+1+i1 Au=e, Am = e, A Copy(selu(e,, 1)) o t)

I Fpc=i+1+4i Au=e, Am= e, ACop;(selu(e,,71))at App. hyp
IiFpc=it+l4+iiAu=e, Am=eqat App. Ael
Ty - copy(selu(ey,71)) et App. Aer
Rige, (cop, (selu(ea, 1))
Ty + cop;(selu(e,,71)) 0 App. e
Ty - SE7(i+1+i1, eq, en) a0 AndEL, ImpE
I F psateUd prat SkNext
let To = (T, pc=i+1Au=e, Am= ey, A=cop;(selu(ey,71)) at)
Tobpc=i+1Au=e, Am= e, A=cop;(selu(ey,71))at App. hyp
lobFpc=i+lAu=e,Am=¢egat App. Ael
Ty - =cop; (selu(e,,71)) at App. Aer
Rigr, (Scopy(selu(ea, 77)))
T + =cop;(selu(ey,71)) a0 App. &
Ty b SEz(i 41, eq, €n) a0 AndER, ImpE
Fg F Psafe upz et SkNext
Ik pareUlUprot App. Ve
case: not Rigp(ey)
fail
case: J (pm); # (cond copy 71,41)
Fkpc=i+lAu=eAm=c¢lat Def. InvNext
T'FSEz(i+1,€,e)al Def. SENext
T'F psate U pr ot SkNext
SkNext =
FTFpc=iAu=e,Am=enat I+ SEz(i,ey,€n)a0 Prem.

case: i € dom7Z
case: Rigr(eu,€n)

Rigr([¢/xpc] [en/xu] [én/xm] Z(7)) Def. T
Locr(ey, én, pc,u, Z(1)) Def. 7



5 CERTIFICATION

T+ pc=iA[Reg)Z(i)at
rk Pz et
Tk psaeU pr ot
case: not Rigr(ey,en)
fail
case: i ¢ domZ
'k psate ot
'+ InvNext(i, ey, en) ot + 1
'+ SENextz (i, ey, en) o0
L'k patelU pret +1
I'F pateU pr ot

SkTrans —

FFpc=iAu=e,Am=c¢qpat
case: Rigr(ey,en)
case: J(pm); = (_r1 —i1) -
'+ fetch(pm, i) = imvi(71,41) et
FFiaddwl=44+1at+1
'+ InuNext(i, ey, en) ot + 1
case: J(pm); = (r1 ¢ r2)
[+ fetch(pm,i) = imv(F,73) ot
F'Fiaddwl=44+1at+1
'+ InuNext(i, ey, €n) ot + 1
case: J(pm); = (11 <= 72 €op, 13)
'+ fetch(pm,i) = ieop(eopy,T1,72,73) at
Fhiaddwl=1i+1let+1
T+ InvNext(i,en,en) ot + 1
case: J(pm); = (cond cop; T1,%1)
[ I fetch(pm,i) = icond(¢op;,71,i1) at
Fhiaddwl=i+1lat+1
Phit+laddwi; =i+14ijat+1
F'Fiaddwladdwi; =i+1+i1et+1
I'F compl(cop;) = =cop; et + 1
'+ InuNext(i, ey, en) ot + 1
case: J(pm); = (r1 < m(r2))
T+ fetch(pm,i) = iload(F1,73) et
FhFiaddwl=1i+1at+1
'+ InuNext(i, ey, en) ot + 1
case: J(pm); = (m(r1) < 72)
'k fetch(pm,i) = istore(7(,73) et
Fhiaddwl=i+1lat+1
T+ InvNext(i,en,en) ot +1
case: not Rigp(eu,en)
fail

31

App. sk_loop

App. Vi x [log, |domZ|]

App. u_now

SkSafe
SkTrans
SkSkip
SkSplit
App. u_next

Prem.

App. pm_mvi
App. const_eop
App. sk-mvi

App. pm_mv
App. const_eop
App. sk-mv

App. pm_eop
App. const_eop
App. sk_eop

App. pm_cond
App. const_eop
App. const_eop

App. el_sym

App. const_compl

App. sk_cond

App. pm_load

App. const_eop
App. sk_load

App. pm_store

App. const_eop
App. sk_store
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SkSafe =

FTFpc=iAu=e,Am=eyat I+ SESafe;(i,e,,en)a0 Prem.
Tt len(pm) = |J(pm)| ot App. pm_len
I'H|J(pm)| gtui =1at App. const_eop

case: Rigr(ey,en)
case: J(pm); = (r1 + 41)

[+ fetch(pm, i) = imvi(71,41) ot App. pm_mvi
['F psateat App. sk_safe_mvi
case: J(pm); = (r1 ¢ r2)
[+ fetch(pm,i) = imv(F,73) ot App. pm_mv
I'F psafe ot App. sk_safe_mv
case: J(pm); = (r1 <= 72 eop, 13)
T+ fetch(pm,i) = ieop(eop;,71,72,73) at App. pm_eop
I'F psafeat App. sk_safe_eop
case: J(pm); = (cond cop;y 71,41)
[ I fetch(pm,i) = icond(cop;,71,i1) ot App. pm_cond
T'F psafe ot App. sk_safe_cond
case: J(pm); = (r1 < m(r2))
T+ fetch(pm, i) = iload(F1,73) et App. pm_load
[+ saferd(ey, selu(ey,72)) @0 AndEL
I'F psafeat App. sk_safe_load
case: J(pm); = (m(r1) < 72)
[+ fetch(pm,i) = istore(T1,732) ot App. pm_store
I b safewr(ey, selu(e,, 1), selu(ey,73)) a0 AndFEL
T'F pesfeat App. sk_safe_store
case: not Rigr(ey,en)
fail
SkSkip =
T+ SESafe;(i,ey,€n) at Prem.

case: J(pm); = (11  41)
case: J(pm); = (11 + 72)
case: J(pm); = (11 < 72 €op, 13)
case: J(pm); = (cond cop, r1,11)
'+ SENextz (i, ey, €n) ot Def. SESafe
case: J(pm); = (r1 ¢ m(rz))
case: J(pm); = (m(r1) < r2)
T+ SENextz(i,en, en) ot AndER

5.2.2 Implementation

We have implemented a prototype proof generator for the x86 processor (as well as the abstract RISC
processor) as logic programs in the Twelf [PS99] meta-logical framework, along with a simulator for the
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enforcement mechanism. Qur x86 proof generator is compatible with the SpecialJ certifying compiler for
Java [CLN100]. The SpecialJ compiler produces certified x86 executable code from Java class files; our
new framework generates temporal-logic proofs from this certified code.

The x86 proof generator is considerably more complicated than the system presented here, though
both are based on the same proof-generation strategy. We plan to publish a future paper in which details
of the x86 infrastructure will be provided.

To enable compact certificates, we additionally attach a decoding to each temporal-logic proof that
specifies a binary-to-LF translation. This enables the binary encoding of the proof to be customized to
the certification strategy. Initial experiments indicate that the total certificate size is between four and
seven times the program size. Though such proofs are relatively large by current standards [NRO1], the
experiments suggest that our approach is practical.

6 Conclusion

The contributions of this research are threefold:
e A temporal-logic framework for PCC that is parameterized by formal security properties
e An enforcement mechanism for security properties that is simple to implement and easy to verify

e A certification mechanism for type safety that adapts existing certifying compilers to temporal
logic

Our contributions are practical applications of proven techniques for program verification: our challenge
lies principally in engineering efficient security proofs and in minimizing the complexity of the trusted
enforcement mechanism.

Our approach offers these benefits:

e Temporal logic is a suitable language for specifying security policies, including “expressive” [Wal00,
Sch99] safety properties and liveness properties. Thus, we can specify security policies directly
without a special interpreter, and without having to write any C code.

e Enforcement is simple—we minimize the amount of trusted code by moving the VC generator out
of the code consumer. Soundness of the enforcement mechanism is a direct consequence of the
abstract machine semantics.

e Enforcement is also flexible—the enforcement mechanism adapts to different VC generators as a
matter of course. Additionally, it does not anticipate and thereby restrict control flow; an indirect
jump, for example, can branch to any address that is proven safe.

These advantages come at a cost, however, because our security proofs require a temporal proof
skeleton in addition to first-order security proofs; in practice, we expect the proof skeleton to grow
linearly with the size of the program.

We should acknowledge that temporal logic is not a fundamental requirement of our approach: for
example, temporal logic can be translated into first-order logic with explicit time parameters, and state
transition relations can mimic temporal operators by transitive closure.® However, the choice of notation

8We conjecture, however, that an explicit representation of a state transition is needed to make the VC generator into
an untrusted component.
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for PCC has practical consequences, because formalisms that are equivalent in a foundational sense may
not enable equally compact security proofs. Temporal logic is well established as a specification language,
but only further experiments will reveal whether it is a good notation for a PCC implementation.

6.1 Future Work

Our machine model does not have a procedure mechanism: we might adapt the procedure mechanism
from Necula [Nec98], but at the cost of additional trusted code and restrictions on control flow. Instead,
we have developed an untrusted mechanism based on new certification techniques, and thus we can
continue to use the same simple enforcement mechanism we have presented here. Our current x86
implementation can certify nonrecursive procedures using the standard calling convention. In order to
prove the specification of a recursive procedure using our current technique, we must be able to assume
provisionally that the specification holds—we are currently investigating how such a proof rule might be
incorporated into our current framework.

We plan to adapt instrumentation techniques for security automata [Sch99] to the certification prob-
lem. Security automata can specify all safety properties, and program transformations exist [ES00,
Wal00] that will guarantee in many cases that such properties hold. A security automaton that has been
threaded through a program by instrumentation is known is an inline reference monitor (IRM). Adding
an IRM transformation to our certification mechanism would considerably broaden the class of security
properties that we can automatically certify.

Our enforcement mechanism can be extended to check self-modifying code by encoding the proces-
sor’s instruction decoder as a formal relation. This is not fundamentally difficult, though it requires a
substantial effort (see Appel and Felty [AF00], for example). PCC certification for self-modifying code,
however, is still largely unexplored, and we would be incurring a significant cost for standard programs
by requiring additional proofs of instruction decodings.

6.2 Related Work

We touch here only on work related to security policies for untrusted software. For a more comprehensive
PCC bibliography, we refer the reader to Necula [Nec98].

Necula and Lee [NL98] pioneered the use of PCC for resource bounds. Appel and Felty [AFO00]
argue that we should rely upon an encoding of the machine semantics in higher-order logic and derive
an untrusted type system from it; the proof checker should be the only trusted component. Interesting
safety properties can be specified by extending the machine model. In some respects, our work represents
a less radical step in a similar direction: the enforcement mechanism disassembles the program, but does
not to analyze its control flow or generate a VC.

The enforcement mechanism for typed assembly language (TAL) [MWCG9S8] is a type checker that
does not accept unsafe programs; type annotations accompany program instructions. A TAL compiler
translates a well-typed source program into a well-typed object program. Walker [Wal00] developed a
TAL based on security automata; this version of TAL is novel because, like our system, the security policy
is separate from the enforcement mechanism. Additionally, Walker provides an IRM transformation for
ensuring that the security policy is always satisfied. Crary and Weirich [CW00] developed a TAL that
enforces resource bounds. Crary, Walker, and Morrisett [CWM99] developed a TAL to enforce security
policies based on a capability calculus; this calculus can ensure the safety of explicit deallocation.

Software fault isolation (SFI) [WLAG93, ALLW96] instruments a program so that it cannot violate
a built-in memory safety policy. Security automata SFI implementation (SASI) is an SFI-based tool
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developed by Erlingsson and Schneider [ES00, ES99] for enforcing security policies encoded in a security-
automata language.

The security policy of the Java Development Kit (JDK) 1.2 Security Model [GMPS97] is partially
specified through configuration files. A policy file specifies which permissions a program receives based
on predefined attributes (e.g., its origin or digital signature). Other researchers (e.g., POET [ES00],
J-Kernel [HCC*97], Naccio [ET99]) have developed extensions for more expressive security policies.
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