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Abstract

Meta-programming languages provide infrastructure to generate and execute object programs at run-time.
In a typed setting, they contain a modal type constructor which classifies object code. These code types
generally come in two flavors: closed and open. Closed code expressions can be invoked at run-time, but the
computations over them are more rigid, and typically produce less efficient residual object programs. Open
code provides better inlining and partial evaluation of object programs, but once constructed, expressions
of this type cannot be evaluated.

Recent work in this area has focused on combining the two notions into a sound system. We present a novel
way to achieve this. It is based on adding the notion of names from the work on Nominal Logic and FreshML
to the AB-calculus of proof terms for the necessity fragment of modal logic S4. The resulting language provides
a more fine-grained control over free variables of object programs when compared to the existing languages
for meta-programming. In addition, this approach lends itself well to addition of intensional code analysis,
i.e. capability of meta programs to inspect and destruct object programs at run-time in a type-safe manner,
which we also undertake.



Keywords: meta-programming, modal logic, nominal logic, intensional code analysis, staged computa-
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1 Introduction

Meta-programming is a paradigm referring to the ability to algorithmically compose programs of a certain
object language, through a program written in a meta-language. A particularly intriguing instance of this
concept, and the one we are interested in in this work, is when the meta and the object language are: (1)
the same, or the object language is a subset of the meta language; and (2) typed functional languages. A
language satisfying (1) adds the possibility to also invoke the generated programs at run-time. We refer to
this setup as homogeneous meta-programming.

Among some of the advantages of meta-programming and of its homogeneous and typed variant we
distinguish the following (and see [She(1] for a comprehensive analysis).

1. Efficiency. Rather than using one general procedure to solve many different instances of a problem,
a program can generate specialized (and hence more efficient) subroutines for each particular case. If
the language is capable of executing thus generated procedures, the program can choose dynamically,
depending on a run-time value of a certain variable or expression, which one is most suitable to invoke.
In particular, this is the idea behind the functional programming concept of staged computation, and

has been considered before in a typed setting (see [LL96], [WLP98], [WLPD98], [DP96]).

2. Maintainability. Instead of maintaining a number of specialized, but related, subprograms, it is easier
to maintain their generator. In a language capable of invoking the generated code, there is an added
bonus of being able to accentuate the relationship between the synthesized code and its producer; the
subroutines can be generated and bound to their respective identifiers in the initialization stage of
the program execution, rather then generated and saved into a separate file of the build tree for later
compilation and linking.

Languages in which programs can not only be composed and executed but also have their structure
inspected add further advantages. Efficiency benefits from various optimizations that can be performed
knowing the structure of the code. For example, Griewank reports in [Gri89], on a way to reuse common
subexpressions of a numerical function in order to compute its value at a certain point and the value of its
n-dimensional gradient, but in such a way that the complexity of both evaluations performed together does
not grow with n. Maintainability (and in general the whole program development process) benefits from the
presence of types on both the level of synthesized code, and on the level of program generators. Finally, there
are applications from various domains, which seem to call for the capability to execute a certain function
as well as recurse over its structure: see [Roz93] for examples in computer graphics and numerical analysis,
and [RP02] for an example in machine learning and probabilistic modeling.

Recent developments in type systems for meta-programming have been centered around two particular
modal lambda calculi: A and A©. The first is a language of proof terms for the modal logic S4, whose
necessity constructor O annotates valid propositions ([DP96], [PD01]). The second is the proof language
for discrete linear temporal logic, whose modal operator () annotates the time-level separation between
propositions [Dav96]. Both calculi provide a distinction between levels of terms, and this explains their use
in meta-programming. The lowest, level 0, is the meta language, which is used to manipulate the terms
on level 1 (terms of type OA in AP and (OA in A©). This first level is the meta language for the level 2
containing another stratum of boxed and circled types, etc. Functional programming interpretation of these
two constructors assigns type A to closed code i.e. to closed terms of type A, while (OA is the type of
postponed code, 1.e., it classifies terms of type A which are associated with the subsequent time moment.
Postponed code in A© may refer to outside context variables, as long as they are on the same temporal
level, and this has contributed to it frequently being associated with the notion of open code. For this exact
reason, the concept of code in A is obviously broader, allowing for more expressiveness and generation of
better and more optimized residual programs (as already observed in [Dav96]), but, unlike AY, it has no
language support for mixing of the code levels, and in particular, no language support for execution of the
generated code.

There have been several proposed systems which incorporate the advantages from both languages, most
notable being MetaML ([MTBS99], [Tah99b], [CMT00], [CMSO01]). MetaML starts with the postponed/open
code type of AO and strengthens the notion to introduce closed code as its refinement — as postponed code
which happens to contain no variables declared outside of it. The approach of our work is the opposite.



Rather than refining the notion of open code, we relax the notion of closed code. We start with the system
of AF, but provide the additional expressiveness by allowing the code to contain specified object variables
as free (and rudiments of this idea have already been considered in [NieQ1]). The fact that a given code
expression depends on a set of free variables will be reflected in its type. The object variables themselves
are represented by a separate semantic category of names (also called symbols or atoms), which admits
equality. The treatment of names is adopted, with certain modifications, from the work on Nominal Logic
and FreshML by Pitts and Gabbay ([GP01], [PGO00], [Pit01], [Gab00]). This design choice lends itself well to
the addition, in an orthogonal way, of intensional code analysis, which we also undertake for the simply-typed
fragment of the language. Thus, we can also treat our simply-typed code expressions as data; they can not
only be evaluated, but can also be compared for structural equality and destructed via pattern-matching,
much in the same way as one would work with any abstract syntax tree. The binding constructs are handled
through the name abstraction mechanism of the meta level, rather than through concrete representations
or through variable abstraction (i.e. higher-order abstract syntax; see [PE88]). Using a separate meta-level
binding construct to deal with bindings on the object level has been advocated in [She01], and a similar idea
has already been used in [Mil90].

The rest of the document is organized as follows: Section 2 is a brief exposition of the previous work on
AF A0, MetaML, and FreshML. Our type system is described in Section 3, while Section 4 contains the
theoretical development behind it. In Section 5, we present the operational semantics of the language and
prove the Type Preservation and Progress theorem. Intensional code analysis is introduced in Section 6.
Finally, we illustrate the type system with example programs, before outlining the future work in Section 7.

2 Background

In this section we review the previous work on languages for meta-programming. The motivation is to quickly
present the intuition behind the various calculi, not to give a detailed or rigorous treatise. For this reason, we
limit ourselves to only operational exposition, because it demands the least amount of background theoretical
machinery. Furthermore, we describe only the core part of a language, but in the presented examples we
often assume presence of certain types and term constructs, like integers, conditionals or recursion, which
are needed to illustrate the point. In any case, addition of these will never present any theoretical problems.

The example we will use throughout is the exponentiation function, presented below in a MinML-like
notation.

pow = fix pow:int->int->int.
Ax:int. An:int.
if n = 0 then 1 else x * pow x (n-1)

2.1 \H

The functional programming motivation behind the A" calculus is to ensure proper staging of programs. For
example, consider the following equivalent of our exponentiation function.

powboxl = fix pow:int->int->int.

An:int.
if n = 0 then Ax:int.1
else
let val u = pow (n - 1)
in

Ax:int. x * u(x)
end

One can argue that powbox1 is preferred to pow because it allows a partial evaluation of the function when
only n is known, but not z. Indeed, in such a situation, the expression powbox1l n produces a residual
function specialized to computing the n-th power of its argument z. In particular, this function will not
perform any operations or take decisions at run-time based on the value of n; in fact, it does not even depend
on n — all the computation steps dependent on n have been taken during the partial evaluation.



The type system of AP allows the programmer to specify the intended staging of operations by annotating
subterms of the program which are to be closed, i.e. independent of the variables from the surrounding code.
Then the type system can check whether the written code conforms to the staging specification, making
staging errors into type errors.

Types A 1= 1|4 - A |OA

Terms e := a|x|Ax:A. e|e es|box e]|let box u = e; In ey
Contexts AT ::= -|T,z:A

Values v ::= *|Az:A.e|boxe

To declare that a subterm e of type A is closed, AP provides the type constructor O and its introduction
term box, so that box e has type OA (consult the typing rules in Figure 1). It is in this sense that the type
constructor O is associated with closed code. In the spirit of this “run-time code generation” interpretation,
the operational semantics does not proscribe reductions under the box; boxed expressions are values.

The elimination form for O is let box u = e; in e5. Operationally, it evaluates e; to a boxed value,
then binds the unreduced expression under that box to u in e;. Notice that u is not an ordinary variable —
it stands for an unevaluated closed expression, rather than a value. This fact motivates having two variable
contexts in the typing judgment: I' for ordinary value variables, and A for closed expression variables. In
order to have proper staging, closed code expressions should not depend on value variables from I', but they
can depend on expression variables from A.

The staging of powbox1 can be made explicit in the following way.

powbox2 = fix pow:int -> O(int->int).

An:int.
if n = 0 then box (Ax:int. 1)
else
let box u = pow (n - 1)
in
box (Ax:int. x * u(x))
end

Application of powbox2 at argument 2 produces a boxed function for squaring.

- sqbox = powbox2 2;
val sqbox = box (Ax:int. x *
(Ay:int. y =
(Az:int. 1) y ) x ) : O(int -> int)

It can then be evaluated in order to be applied itself.

- sq = (let box u = sgbox in u);
val sq = [fn] : int -> int

- sq 3;

val it = 9 : int

2.2 )\O

The AU staging of powbox2 which was presented in the previous section, leaves a lot to be desired. In
particular, the residual programs that powbox2 produces, e.g. sqbox, contain variable-for-variable redices,
and hence are not as efficient as one would want. The reason, of course, is that boxed/code expressions
are values; they completely suspend the evaluation of the enclosed term. As witnessed by the example of
sqgbox, it may be advantageous to have a general programming mechanism® whereby one could specify that

2

certain reductions® in a code expression are to take place. Of course, AF already contains mechanisms to

I Thus we are interested in something more than just devising an operational semantics which scans boxed expressions and
actually reduces all variable-for-variable redices.
2 And here, reductions are understood in the broader sense of A-calculus, i.e. they can occur under a A-abstraction.
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Figure 1: Typing and Evaluation rules for A",
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Figure 2: Typing rules of AO.

encode substitutions of closed code, but there is no way to perform substitutions of open code which is
required in the sgbox example. The solution should be to extend the notion of code to include not only
closed expressions, but also expressions which may contain free variables. The AO-calculus [Dav96] provides
some of the required flexibility.

Types A = 1A -4 |04
Terms e ::= a|x|Ax:A. e|er ey | next e|preve
Contexts r = | T,z:A"
Values v = x| Az:A e |next v!
ot = k| AmAL T T o2t | next v t? | prev v? (n > 0)

The motivation behind AC is to ensure and maintain a temporal distinction between levels of computation,
for the purposes of partial evaluation. So, for example, the computation marked to be on level 0 should be
executed first in the scheme of partial evaluation; computation on level 1 is postponed and obtained as the
residual of the level 0 evaluation, etc. The type system of AC allows the programmer to decorate terms with
temporal annotations. Then the typechecking ensures that the program conforms to the level specifications,
turning staging errors into type errors, just as in A",

To mark that a certain term of type A is postponed, i.e. on the subsequent temporal code level, AO
provides the modal type constructor (), with its corresponding introduction term next. In contrast to A",
however, postponed terms in AC can contain free occurrences of variables from the the surrounding typing
context, so long as they are marked to be on the same code level (see Figure 2). It is this property of the
calculus that has associated the notion of open code with the type constructor (), in contrast to the closed
code of O in AF.

Operationally, a postponed expression (next e) is not generally a value, as (box ¢) would be in AD. The
AC calculus has separate evaluation relations for each code level; reductions may happen under next in
next e, albeit only at the subterms of e which are on lower code levels than e itself.

The elimination form for () is prev e, where e is of code type. Intuitively, prev is used to compose code
expressions, by splicing its argument into the surrounding term. More precisely, the operational behavior of
prev e starts by evaluating e on the previous time level. If the previous is level 0, the reduction is bound
to produce a postponed expression next e’; then prev and next cancel each other, and €’ is returned to be
spliced into the surrounding term, which is itself of level 1. In cases of higher code levels, the evaluation of
e may produce more general expressions, so no cancellation is prescribed by the operational semantics.

The exponentiation function in A© can be staged as the function powercirc2 below. We hoist the helper
function powcirc’ outside of the main code for better readability.
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Figure 3: Operational Semantics of A©.

powcirc’ =
fix pow’:(Dint->int->int.
Ae:(Oint. An:int.
if n = 0 then next 1

else
let val u = pow’ e (n - 1)
in
next (prev e * prev u)
end

powcirc2 : int -> (O(int->int) =
An:int.
next Ax:int. prev
powcirc’ (next x) n

Observe how the type of powcirc2 indicates the staging of the function. Partial application of powcirc2
to an integer n will produce a function for powering by n, of type int->int, but on the subsequent temporal
level.

- sqcirc = powcirc2 2;
val sqcirc = next (Ax:int. x * (x * 1)) : (O(int->int)

The function sqcirc does not contain unnecessary redices as did sqbox. However, AC does not permit
coercions of terms between different code levels,; so it is not possible to demote the function sqcirc to code
level 0 in order to evaluate it (the type system does not allow prev to occur on code level 0). This is
only a sound behavior — operational semantics of level 0 proscribes a usual evaluation of the term, and this
evaluation is defined only if the term in question is closed. Code values in AO may contain variables bound
outside of them, so the type system, conservatively, forbids their evaluation.

2.3 MetaML

MetaML combines the notions of code from the two previous systems, so that programs can be manipulated
in the style of AOQ, but can also be made transcend their code levels (like code expressions of AH) and in
particular be executed. To simplify the arguments here, we omit the MetaML features for coercing code
expressions into higher code levels, and present only the fragment relevant to their execution. We follow
[CMSO01] in the exposition.
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Figure 4: Selected typing rules of MetaML.

Types A = 1A - A | [4] | <A>
Closed types T = 1|A=T|[4]
Terms e = z|x|Az:d e|erer| <e>| e|rune|letc u = e in ey
Contexts r = | T, z:A"
Closed contexts A = | AuwT
Values W= k[ AmAe | <ol>

Pt = kA o o ol s | TR (> 0) |

run vt |letc u = vt in o2 1!

MetaML starts with the postponed/open code type of AQ, and introduces language constructs to refine
the typing of those code instances which happen to be closed. The typing and operational semantics of
MetaML are presented in Figures 4 and 5, respectively, and are similar to those of AO | which they extend
with the new term and type constructors.

The modal type constructor of MetaML is <A> with introduction form <e> and elimination form ~e,
corresponding to (A, next e and prev e in A©. However, MetaML adds a type refinement [A] which
classifies terms of type A with no free value variables. Note that it does not have corresponding term
constructors. The typing judgment introduces implicit coercion from [A] into A. The opposite coercion is
also possible if the type A is “closed”. Closed types are essentially those types whose values cannot refer to
outside variables from higher code levels (e.g. base types, []-annotated code types, or functions with closed
codomains). Expressions that can be assigned a code type which is closed in this sense, can be evaluated
using the language constructor run.

Similarly to AY, MetaML splits the typing context into two parts: I' for ordinary value variables, and
A for variables of closed types. The ordinary value context is cleared when checking a term against a []-
annotated type. A term constructor letc u = e; in ey serves to introduce variables into the closed type
context, so that they are not erased when typing closed code.

Our example with the exponentiation function can be coded in MetaML as shown below.
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Figure 5: Operational Semantics of (a selected fragment of) MetaML.

powmeta’ =
fix pow’:[<int> -> int -> <int>].
Ae:<int>. An:int.
if n = 0 then <1>

else
let val u = pow’ e (n - 1)
in
<"e * "u>
end

powmeta2 : int -> [<int->int>] =

An:int.
letcn=n
powmeta’ = powmeta’
in
<Ax:int. ~(powmeta’ <x> n)>
end

Notice how the variables n and powmeta’ in the body of the function powmeta2 are transferred into the closed
type context by letc, so that they are not erased when the code expression <Ax:int. ~(powmeta’ <x> n)>
is checked against the closed type [<int->int>].

Application of powmeta2 at argument 2 produces code containing a function for squaring.

- sqmeta = powmeta2 2;
val sqmeta = <Ax:int. x * (x * 1)> : [<int->int>]

It can then be “ran” and applied itself.



- s8q = run sqmeta;

val sq = [fn] : [int -> int]
- sq 3;

val it = 9 : int

2.4 FreshML

The FreshML language [PG00] has a slightly different flavor from the meta-languages presented before. It
is not intended to manipulate open and closed code. Rather, its defining feature is its unique handling
of representation and manipulation of abstract syntax trees of object languages with binding constructs.
The syntax of the object language is represented via a user-defined datatype, like in ML, but the binding
constructs of the object language are encoded modulo alpha-equivalence, using the concept of names and
name abstraction.®> Names (or symbols, atoms) are a separate semantic category which admits equality;
there is a countably infinite supply of names, so that we can always pick another, fresh one, to place in a
position of an object-level bound variable. Operation of name abstraction provides a mechanism to encode
all the a-variants of a term with respect to the abstracted name.

The syntax of FreshML is given by the following context-free grammar. In the rules below, K is a finite
set of names.

Types A = atm| A — Ay | [atm]A

Terms e := z|la|dz:A.e|eges|let val 2 = e; in ey |
newaginel|a.e|e@qa

Contexts T ::= |l z:A#K

Store S := a8

Values v 1:= al|AAela.v

Operationally, names can be though of as locations. They have their separate type atm, and are intro-
duced into the computation through the combinator new; each introduced name is fresh/unique, i.e. different
from all the previously introduced ones, and is bound in new. One can think of the expression

new a in e

as operationally analogous to ML’s
let val a = ref () in e

except that the type system of FreshML imposes restrictions on the occurrences of @ in e which are not
required of references. In particular, names are not allowed to freely leave the scope of the defining new. If
such a thing would happen, the escaped name will occur in the residual term, but the programmer will have
no handle on it, and thus no capability to manipulate it in any way. Consider for example the (ill-typed)
term

new a in {1+ 1,a)

This term is supposed to introduce a new name a into the run-time environment, then evaluate 1 4+ 1 — 2,
and return (2, a), which contains an occurrence of a about to escape the scope of its defining new. The way
FreshML deals with this problem is to require that the reduct (2, a), before returning, be coupled with a to
form a closure, or name abstraction. The responsibility to create name abstractions is on the programmer,
but the type system will check whether all the terms are appropriately closed when leaving a scope of new.
Name abstraction construct of FreshML is a. e, and it has a corresponding type constructor [atm](—).
Thus, the term new a in {1 4+ 1,a) is not well-typed in FreshML, but the terms new a in a¢. (1 + 1,a)
and new a in (1 4+ 1,a. a) both are, with types int x [atm]atm and [atm](int x atm) respectively. Note
that name abstraction is a binder, but the binding occurs only after the body of the abstraction has been
evaluated.

The operation opposite from abstraction is concretion. Its syntax is e @a and its operational semantics
is to separate the term in the closure e from its abstracted name by swapping that name with a throughout
the closure body (see the operational semantics in Figure 7). For example, if £ denotes the term F =

3The same can be done with DeBruijn indices, but they have their drawbacks.
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Figure 6: Typing rules for for FreshML. Consult [PG00] for an explanation of the lambda rule.
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Figure 7: Operational Semantics of FreshML. The operation (a a’)v’ swaps the names a and a’ in v'.

(a.b. {1+ 1,a)), then E@b evaluates to a. {1 + 1,b). In a sense, the operation of name swapping is a
simplification of the concept of alpha-renaming. When the name b is substituted for @ in E, then name
b in the second abstraction of E has to be renamed so as not to incur an accidental abstraction in the
subsequent subterm. Since abstraction is intended to hide the abstracted name, it does not matter exactly
which abstracting name is used (as long as it does not incur unintended abstractions), so FreshML might as
well use the already available a.

As illustrated above, the FreshML mechanism of names makes a distinction between the notions of name
introduction (construct new) and name abstraction (construct a. e), which is not the case in A-calculi,
where lambda expressions serve the role of both. The name introduction is an effectfull operation; every
evaluation of a given term with name introduction results with a different name. But notice that due to the
restrictions placed on the occurrences of names, these effects cannot be observed in the language itself, thus
making FreshML purely functional.

The relevant set of rules of the typechecking and evaluation judgments of FreshML is presented in Figures
6 and 7. The typechecking judgment not only associates types to term, but it also keeps track of names
occurring in the subterms and ensures that none of them leaves the scope of its defining new unguarded by
a name abstraction. The judgment has the form I' - e : A # K and reads: in context I', the term e has type
A, and the set of names K is fresh for e (i.e, no names from K will occur unguarded by name abstraction in
the value of e). Notice that the context I' contains not only typing, but also freshness annotations.
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As an illustration we present an example in FreshML with an object language of untyped lambda cal-
culus. The object language syntax is defined in ML-like datatype declaration, but it uses meta-level name
abstraction to represent object-level lambda construct. The function subst takes an abstracted lambda term
e, and another term ¢, and substitutes the term ¢ in for the occurrences of the abstraction variable in e.

datatype lam = Var of atm
| Lam of [atm]lam
| App of lam * lam

fun subst e t : [atm]lam -> lam —> lam =
new a in
case e@a of
Var a => t
| Var e’ => Var e’
| Lam u =>
new b in
Lam b.(subst (a.(u @ b)) t)
| App (el, e2) =>
(subst el t, subst e2 t)

The approach of FreshML towards representing binding constructs of the object languages is similar in
design and goals to that of higher order abstract syntaz, HOAS [PE88]. They both use a meta-level binding
construct (name abstraction in FreshML, and lambda abstraction in HOAS) to encode the a-equivalence
class of the object term. However, the notion of name abstraction in FreshML is weaker from HOAS in that
it does not hardwire into the representation the capability to substitute for bound variables — substitution
in FreshML has to be programmed by recursion on the structure of the object language terms. That way
FreshML achieves the adequacy of representation, which can be lost in HOAS in the presence of additional
term and type constructors (specifically, constructors for disjoint sums, as observed in [DPS97] in a logic
programmingsetup). But, remark that even if the two approaches may differ in their abstraction mechanisms,
they both will require some notion of names in order to recurse over the structure of the encoded term.

3 The Core Language

In this section we present the syntax and static semantics of our core language, deferring the exposition of
intensional code analysis for Section 6. Taken in itself, the core language contains constructs for unifying the
notions of closed and open code — a problem which motivated the earlier development behind the extension
of AC into MetaML. However, our notion of code differs from that of the last two calculi. Both AC and
MetaML allow code expressions to contain free variables, and in order to evaluate a code expression, MetaML
has to prove it closed. Here, we adopt an opposite approach: each code expression is allowed to contain
only those free variables which have been listed as dependencies in its type, and only the expressions with
no dependencies are executable.

As a first development, we decided to disassociate the notion of “variables bound in lambda abstractions”,
from the notion of “free variables of a code expression”, which are equated in A© and MetaML. The main
reason is the following: intensional code analysis ought to provide a test whether two free variables in a code
expression are different or equal. The result of this test is obviously not preserved under substitution, so it
looks questionable to tie the free code variables to outside lambda abstractions. This is not to say that it is
impossible to add intensional code analysis to AC or MetaML. Indeed, the distinction between code levels
on which the code comparison and the substitution occur gives some leeway to believe that this setup can be
given a sound operational semantics. Code analysis is a meta level operation, substitution of lambda bound
variables in code expressions is an object level operation. The first is immediately executable, the second
is postponed, so the two will never interfere. However, having them both tied to the same mechanism of
variable binding will almost certainly disturb the theory of the underlying core language (in particular, the
beta rule [Tah99a], but also the parametricity of A-abstraction may be in question).
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This argument motivates the addition of a second binding mechanism which will be used to create and
abstract free variables of code expressions. But, we want to compare our free variables for intensional equality,
and thus need to resort to names (see for example [Ode94]). Additionally, we opt to separate the operation
of name creation (hiding of a name), from the name abstraction (renameability), because that seems to
provide strictly more expressiveness in manipulation of code and names, than if the two are combined into
a single constructor. This is where we employ the mechanisms of Nominal Logic and FreshML, which were
designed with exactly that purpose in mind (see [Pit01] and [PG00]). We introduce a new semantic category
of names which are to stand for free variables in boxed expressions. Thus, boxed expression, as before in AP,
cannot contain free variables, but we allow them to contain names, under the provision that the occurring
free names are listed in the type of the expression. Correspondingly, the boxed types are now of the form
O(A[C]) where C stands for a finite set of names and name parameters (to be explained later) that the
boxed term may depend on. The syntax of our language is presented below.

Simple types P ::= 1|P—>P

Types A = 1A — A |OAIC)) | al'/lPA | Vp#K. A

Terms e := a|a|x|Ax:A. e|e;ex|boxe|let box u = €1 in e |
a.e|e@a|new a:Pine | Ap#K.e|e[C]|{a=¢€1} ea]
fix z:A. ¢

Vartable contexts I ::= |T,&:A |, t=A[C] | T, uA[C]

Name contexts S := -|SaP

Parameter contexts A ::= | A p#K

Before explaining the term constructors, let us first dispense with the conventions we will assume in the
rest of the text. Similarly to AP, our language makes a distinction between ordinary (value) variables and
expression variables. We further distinguish between expression variables and expressions that have empty
name dependencies, and those that may depend on some name; the first kind can be executed, and the
second cannot. In analogy with Kripke semantics for Modal Logic, we will also call the first kind reflexive
or reflectable, and the second kind nonreflerive or nonreflectable variables and expressions. Thus, a variable
context I' may contain three forms of variable typings: z:A4 for value variables, and u::A[C] and ¢=A[C] for,
respectively, reflexive and nonreflexive expression variables with name dependency C'. We call the type A
with a dependency C' an annotated type. Here, we use A, B and variants to vary over arbitrary types, P to
vary over simple types, a, b, ¢ and the variants to vary over names; z, y, z stand for ordinary variables and
u, v and ¢ for expression variables. Further, we use p and ¢ for unknown (i.e. parametric) sets of names, K,
M, L for finite sets of names, and C', D for name dependencies, i.e. for finite sets containing both names
and name-set parameters. The parameter context A associates parameters with disjointness annotations.
For example, p#K € A would mean that the parameter p stands for an unknown dependency set C' such
that: (1) C contains no names from the set K, and (2) if ¢ € C is a parameter, then ¢#K € A, too.
Enlarging an appropriate context by a new variable, name or parameter, is subject to Barendregt’s Variable
Convention: the new variables are assumed distinct, or are renamed in order not to clash with already
existing ones. Terms which differ only in names of their bound variables or parameters are considered equal.
But notice that types and terms with abstracted names are subject to more complicated rules, which will be
explained with the typing judgment. As usual, capture avoiding substitution is defined to rename variables,
parameters and names when descending into their scope. Free parameters of a type A are denoted by fp(A),
free variables of a term e by fv(e), and its free names are fn(e).

We are now ready to describe various new term and type constructors that our language introduces.
Similarly to FreshML, we have a term construct a. e for name abstraction and e @a for name concretion.
However, the type of name abstraction in our case has to be more general than the [atm]A of FreshML.
Since names take part as dependency annotations in types, the name abstraction type has to be a binder

VIPA, abstracting the occurrences of the name a in the type A. For example, assuming for a moment that
P

our language has a type constructor for pairs, the terms
new a:Pina.(l4+1,boxa) and mnew aP in (1+1,a.box a)

would both be well-typed with types int x I/IP O(P[a]) and I/IP(int x O(P[a])), respectively. The quantifier
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W has already been investigated in [Gab00] and [Pit01], but it has not been used explicitly in the definition
of FreshML.

Yet further difference between our names and FreshML is that we do not have a separate type of names,
but rather can assign them an arbitrary (simple) type P. As a consequence, names cannot be values in
the operational semantics we intended for the language, because it would not make sense to compute with
them. For example, if n is as a name of integer type, the operation n 4+ 1 cannot be evaluated unless n is
provided with a definition. Thus, while FreshML names can be thought of as references, our names are null
references, i.e. references without an extension. We must impose that the they not occur without definition
on the level 0 — they find their use only when placed in a code expression (i.e. under a box) to stand for some
piece of code, or as placeholders for free variables, where they can be used for intensional code analysis.

The limitation to simple types may be somewhat arbitrary. We felt compelled to first understand the
language better before we extend it and generalize, and the simply-typed fragment is the most obvious choice
for a first attempt at intensional code analysis. The unfortunate consequence (at least for now) is that it
becomes impossible for code expressions to contain free names of code types, and thus our language, at
least when open code expressions are concerned, is a two-level, rather than multi-level language like A© and
MetaML. However, even with this limitation the language has enough expressive power to encode many, if
not all, interesting examples from meta-programming practice.

Another feature we consider is explicit name polymorphism. A program may want to manipulate code
expressions no matter what their name dependencies are, or code expressions whose name dependencies are
unknown at compile time. A typical example would be any recursive function which scans over a boxed
term. When it encounters a lambda expression, it has to place a fresh name instead of the bound variable,
and recursively continue scanning the body of the lambda, which is itself a boxed expression, but depending
on this newly introduced name. For such uses, our language has a term construct Ap#K. e of type Vp# K. A
which is a polymorphic abstraction of an unknown set of name dependencies p disjoint from a set of names
K. When K is empty, we abbreviate the constructs into Ap. e and ¥p. A. The term e [C] is the polymorphic
instantiation, substituting a name dependency set C' for a bound parameter in e.

Finally, we have a term construct for name substitution {a = e;} es. It substitutes the value of e; for
name «a in all the occurrences of @ in e5 on the current code level. In particular, the substitution will not take
place under boxes. This is consistent with the notion of preservation of code levels; eventual free variables
from the environment of e; should not be permitted to creep under other boxes. This construct also gives us
a way to provide extensions, i.e. definitions for names, while still using names for the intensional information
of their identity.

Example 1

To illustrate our language constructs and motivate the further development, we present a version of the
staged exponentiation function that we could write in our system. In this example we assume that the
language is extended with the base type of integers.

pow’ =
fix pow’:VYp. O(int[pl)->int->0(int[p]l).
Ap. Xe:O(int[pl). An:int.
if n = 0 then box 1

else
let box el = pow’ [p] e (n - 1)
box e2 = e
in
box (el * e2)
end
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pow : int -> O(int -> int) =
An:int.
new a:int in
let box e = pow’ [a] (box a) n
in
box (Ax:int. {a = x} e)
end

- sqcode = pow 2;
val sqcode =
box (Ax:int. x * (x * 1)):0(int->int)

The function pow takes an integer n and generates an integer name a. Then it calls the helper function
pow’ to build the term e = box (a* ---* ax1) of type O(int[al). Finally, it substitutes the name a with

n
a newly introduced bound variable x, before returning. The helper function pow’ is name-polymorphic; its
name parameter p is instantiated with the relevant dependency set as part of the application.
Notice that the generated residual code for sqcode does not contain any unnecessary redices, in contrast

to the AU version of the program from Section 2.1.
[ |

3.1 Auxiliary judgments

In order to state the typechecking rules, we need a couple of auxiliary judgments. We start with the judgment
for disjointness (interchangeably referred to as freshness) of name dependencies. It has the form

AFC # K

where A is a context storing parameters with their freshness annotations, C' is a name dependency set, and
K is a set of names. The judgment is satisfied if none of the names from K appears in C, and if all the
parameters from C are declared fresh for K in the context A.

AFC # K a¢g K AFC # K p#MeA KCM
Ab.- # K Aba,C # K AFp,C # K

Figure 8: Disjointness judgment for name dependencies.

We extend the concept of disjointness for name dependencies to disjointness for types and annotated
types. We will use the same notation for all three of them, as the distinction will always be clear from the
context. The two new, mutually recursive judgments have the form

AFA# a and AFA[C] # a

where A is a context of parameters and their freshness annotations, A[C] is an annotated type, and a is a
name. The judgments are satisfied if @ does not appear free in the type A, nor in the parameters of type
A, and the name dependency C is disjoint from the name set {a}, as determined by the previously defined
judgment for disjointness of dependencies. Observe that the rule for disjointness of name abstraction types
requires that the bound name c is different from the name we test against. That can always be achieved by
alpha-renaming the bound name ¢ to some fresh name, as described by Barendregt’s Variable Convention.
The rule for universally quantified types inserts the parameter p into A, but with the freshness annotation

14



Type disjointness

AFA# a AFB # a AFAC]) # a
ALl # a AF(A—=B) # a AFDOAIC]) # a
AFA # a a#c A p#(K,a)F A # a ag K
AI—(I@)A)#& A (Vp#K. A) # a

Annotated Type disjointness

AFA# a AFC # a
A+ A[C] # a

Figure 9: Disjointness judgments for types and annotated types.

(K, a), rather than just K. The idea is that a name a is disjoint/fresh from a type A if it does not occur in
A, and it is fresh for all the free parameters of A. To preserve this interpretation, new parameters must be
introduced into the context with extended freshness annotation.

We also require a judgment to decide if a given type A is well-formed in the name context S and parameter
context A, i.e. whether all the free names and parameters of A are declared in S or A, respectively. The
judgment reads

S;AFA wf

and its rules are defined below. Notice that only the names of particular symbols, and not their types of
freshness annotations are relevant for the judgment.

S;AFA wf S;AFB wf S,a:P;AFA wt
S;AF1 wf S;AFA— B wf S;Al—(I/IPA) wf
S;AF A wf C C dom(S) Udom(A) K C dom(S) S;Ap#KF A wf
S;AFO(AIC]) wt S;AFVp#K. A wf

Figure 10: Well-formedness judgment for types.

We also need to define weakening on types: if a type contains a certain set of name dependencies, we can
always pass it as a type with a superset of dependencies instead. As in the previous judgments, here too it
may be needed to alpha-rename the bound names when comparing two U-types. It can always be done by
choosing a fresh name c.

Finally, two types A and B are equivalent if A <: B and B <: A. In the future text, we will implicitly
equate types which are equivalent. It is justified by the fact that two types are equivalent iff they differ only
in the ordering of names and parameters in their name dependencies. But name dependencies are considered
sets, so this ordering should not matter.

The following lemmas lead to establishment of parametricity properties of the typing judgment. This, in
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Bl <1A1 A2 <132 ASB
1<1 Al—)Angl—)BQ V|PA< VlPB
A< B ccD A< B KCM
O(A[C]) <: O(B[D]) Vp# K. A < Vp#M. B

Figure 11: Subtyping judgment.

turn, would be instrumental in proving the progress and type preservation for name-polymorphic instantia-
tion and name concretion constructs of our language.

Lemma 1

1ifAFC # Mand K CM, then AFC # K.
2. AFCy # K and AF Cy # K ifand only if AF (CLUC,) # K.

Proof: In each case, by a straightforward induction on the cardinality of the appropriate dependency set.

[ |

Lemma 2 (Substitution and auxiliary judgments)

1 ifAJp#KFC # M and AF D # K, then A+ ([D/p]C) # M,

2. if A p#KF A[C] # aand AFD # K, then A+ ([D/p]A)[[D/pIC] # a,

3. if S; A p# K+ A wf, and D C dom(S) Udom(A), and A+ D # K, then S;A+ ([D/p]lA) wi,

4. if C; C Cy, then [D/p]Cy C [D/p]Cs,

5. if A <: B, then [D/p|A <: [D/p]B.
Proof: Straightforward induction on the derivation of the appropriate relation, using Lemma 1. ]

Lemma 3

IFA p#KF1p(A) # a and A+ D # K, then A+ {p([D/plA) # a.

Proof: We first show that fp ([D/p]4) C [D/p]fp(A). The case when p ¢ fp(A4) is trivial, so we assume
that p € fp(A). Then fp ([D/p]A) = (fp (A) \ {p}) Ufp (D) and [D/p|fp(A) = (fp(4) \ {p}) U D. But,
fp(D) C D, and thus fp ([D/p]4) C [D/p]tp(A4). Now, instantiating Lemma 2.1, with C' = fp (4) and
M = {a}, we obtain A+ ([D/p]fp(A)) # a. From here, using Lemma 1.2 and the just established inequal-
ity, we obtain the required A & fp ([D/p]A) # a. [ |

3.2 The Type System
The typing judgment of our language has the form

S;TFa e: A[C]

It reads: in the presence of name context S, variable context I' and parameter context A, the term e has
type A with name dependency C'. As customary, we presuppose that all involved contexts are well-formed.
In particular, all the variables, names and parameters are distinct, and all their types are well-formed. The
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Constants, variables and names

C C dom(S)Udom(A) zAeTl C C dom(S) Udom(A)
S;Tka*:1[C] S;Tkax: A[C]
uzA[CleT ccbh D C dom(S) Udom(A) a:Pes C C dom(S) Udom(A)
S;Tkau:A[D] S;Tkaa:Pla,C]

A-calculus and recursion

S;AF A wi S;T,2:AlFae: B[C] S;Tkaer: A= B[(C] S;Thkaes: AIC]
S;Tka Az:A.e: A— B[C] S;TFaerex: BIC]
S;AF A wf S;T,z:Abae: A[C)

S;Tkafix A e A[C]

Modality

S;TV Fae: A[C] D C dom(S) Udom(A)
S;T Fa box e : O(A[C)) [D]

S;Tka e :OA[]) [C] S;T,uAba es: B[C]
S;T Falet box u = €1 In €5 : B[C]

S;T Faer - O(A[D]) [C] S;T,t=A[D] Fa €3 : B[C] D#0
S;TFalet boxt = e in ey : B[C]

Figure 12: Typing rules of the core language (Part 1).

name dependency C' deserves further explanation, because it goes to the hart of our treatment of names.
As already hinted, we do not operationally treat names as values. If an expression contains an occurrence
of a name, it cannot be evaluated. Rather, names are employed as placeholders for free variables in code
expressions (i.e., under a box), where there will be no attempts to evaluate them, since evaluation of boxed
expressions is postponed. In this sense, one may say that a dependency annotation of some term is any set
of names such that the term can be safely evaluated once all of the listed names are provided with extensions.
Thus, if C' is a name dependency for a given term e in some context, any set D O C' which is well-formed
with respect to the context, is a valid name dependency for e as well. We will build this idea into the type
system by allowing weakening (i.e. enlarging) of name dependencies at specific typing rules.

Before proceeding further, we define an operation I'V on variable contexts. It erases the ordinary variables
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Names

S,a:P;T ka et A[C] A+fp(A) # a S,a:Pilka e (N A)[C] AFfp(4) # a
Saa3P;F'_Aa~€3(a|(|PA)[C] S,a:P;Tkp e@a: A[C]
S,a:P;T bagq e: A[C] Aftat AC] # a

S;TFanew a:Pine: A[C]

Name polymorphism

S;F l_A,p#K €. A[C]
S;Tka Ap#K. e :Vp# K. A[C]

S;Tkae:Vp#K. A[C] AFD # K D C dom(S) Udom(A)

S;Tka e [D] = ([D/p]A)[C]

Name substitutions

S,a:P;T kA ey : P[C] S,a:P;TtFa e5: Bla,C]
S,a:P;T'ka {a=e€1} es: BIC]

Subtyping

S;Tkae: A[C] AL B
S;TFae:B[C]

Figure 13: Typing rules of the core language (Part 2).

from I' and changes nonreflexive expression hypothesis ¢4 into reflexive ones ¢::A.

(7 = -

(T,z:A)Y = TV
(T, t=A[C])Y = T7,¢:A[C]
(T,uzA[C))Y = TV, u:A[C]

The typing rules of our language are presented in Figures 12 and 13. In the following text, we try to explain
some of the intricacies, decisions and interdependencies behind the design of the type system.

Consider first the rule for A-abstraction. Notice that it relies on one of the auxiliary judgments from the
previous section to check whether the type A of the bound variable is well-formed. That is because types
can mention names and parameters, and it has to ensure that the ones actually occurring in A have already
been declared in the name context S and the parameter context A, before the hypothesis z:A is placed into
the variable context. The synthesized type B does not have to be checked for well-formedness, because the

typing rules guarantee it, provided all the contexts are well-formed themselves.

18




Next consider the rule for box. Similarly to AP, it checks the boxed expression e against a variable context
I'V from which the value variables have been erased. In addition I'V changes the status of all the nonreflexive
expression variables into reflexive ones. This is because the free expression variables in e are already enclosed
by a box; their occurrences are not for purpose of evaluation/reflection, but rather for composing pieces
of code into a larger one. Since boxing suspends evaluation, the term can be assigned any well-formed
dependency set D.

Observe that we have two different typings for the let box expression: one handles reflexive expressions,
1.e. expressions with empty name dependencies, and the other is for the nonreflexive ones. Alternatively, we
could have introduced two syntactically different constructs.

The construct new generates a fresh name, and then checks, using the auxiliary disjointness judgment, if
the synthesized type and name dependency do not contain free occurrences of this new name. The operation
A#a extends with a the freshness annotation of every parameter in A. This is only sound, since a is a new
name. It is necessary in order to type possible abstractions with name a in the body of new. The operation
is defined recursively as:

(V#a =
(Ap#E)da = (Afta),p#(K,a)

As explained before, the name abstraction construct a . e creates a closure with a of the value of €, that way
abstracting the eventual occurrences of @ in it. Notice, however, that the side condition A - fp(A) # a in
the typing judgment is crucial. It ensures that the parameters occurring in e could not be substituted with
a set containing the name a. If that were possible, the new occurrence of @ would be abstracted on the level
of terms, but there would be no binding in the corresponding type, thus causing unsound behavior. The
reason for that is that the quantifier in a|~/1|> A is itself a binder, and two name abstraction types which differ

only in the names of bound atoms, are considered equal.
For example, consider the following term, ill-typed in the presence of the side-condition on the typing
rule for name abstraction.

new a:int in
let val F = Ap. Ax:0O(@int[pl). (a.x)
in
F [a] (box a)
end

The term assigned to I is typed as O(int[p]) — W . O(int[p]), but because the quantifier W is a binder, this
type is the same as O(int[p]) — U tD(int[p]), for some fresh name ¢ # a. The two types, however, even

though supposedly equal, behave differently under name-polymorphic instantiation. In the first case, the
term F' [a] receives the type O(int[a]) — W tl:l(int[a]), while in the second case, it is typed as O(int[a]) —
aitn

W tl:l(int[a]). Resorting for a moment to the still undefined operational semantics of our language, the
cuan

whole term F' [a]] (box a) is supposed to evaluate to a. (box a), and hence only the first, but not the
second typing above will be sound.

The side-condition A F fp(A) # a on the name abstraction and concretion rules is imposed exactly
to avoid this kind of problematic behavior. It prevents the parameter p in our previous example to be
instantiated with the name set {a}, so that the name abstraction on the level of terms will be reflected by
a sound W-abstraction on the level of types. A correctly typed equivalent of the above code would then be
the following.

new a:int in
let val F = Ap#a. Ax:0(int[p,al). (a.x)
in
F [a] (box a)
end
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As a yet another peculiarity of the typing rule for name abstraction, observe that that it does not change
in any way the name dependency C' of the involved term; in particular, it does not attempt to remove the
abstracted name from it. This is justified by the intended interpretation of name abstraction (a. €): it first
evaluates its body e before creating the closure with a. Thus, the set of names that need to be provided
with definitions in order to evaluate (a. €) is the same set required for the evaluation of e itself. In other
words, the two expressions have the same dependency set. Similar considerations motivate the typing rule
for concretion as well.

On a related note, the above example is also illustrative of some flexibilities of our language (compared
to FreshML) which result from having name dependencies be part of types, rather than just be part of the
typing judgment. Namely, in FreshML, the function Az. (a. ) must be typed as dependent on a (i.e. a
is not fresh for it), even though a is always fresh for its body (a. #). In other words, as already remarked
in [PGOQ], freshness is not a logical relation, and that forces a somewhat unjustified typing rule for lambda
abstractions (see Figure 6). Obviously, a system like ours, which incorporates name dependencies into types,
will remedy that, and will be able to give a more precise typing to Az. (a. z). For example (as already
shown) we can express that the result of applying this function will always be disjoint from a, independently
of the status with respect to a of the application argument.

Returning to the typing rules of our core language, the last rule we consider is that for subtyping. Due to
the nature of name dependencies which can be arbitrarily weakened, we need an explicit subtyping rule to
coerce types into types of same structure but larger name dependencies on various code levels.

4 Theory

This section explores the theoretical properties of our type system, which will be used to justify the opera-
tional semantics we ascribe to it, and ultimately prove the Progress and Type Preservation theorems of our
language. We begin with the basic:

Lemma 4 (Structural Properties of Contexts)
1. Exchange If S1, 'y, Ay, Cy are obtained by permuting the elements of Sy, I's, Ay, Cy respectively,
and S1;T Fa, e: B[C4] then Sy;Ts Fa, € : B[Cs].

2. Weakening If S1, I'1, A1, Cy are subsets or equal to Sa, ['a, Aq, Cy respectively, and S1;1'1 Fa, €:
B[C4] then Sy;Ts Fa, €: B[Cs].

3. Variable Contraction Let x stand for any of :, ::, or +: variable typings. Then S;T', zxA[D], yxA[D] Fa
e : B[C] implies S;T', 2 x A[D] Fa [2/yle : B[C].

4. Name for Variable Substitution If S;T',z:P s e : A[C] and a ¢ dom(S), then S,a:P;T Fa
[a/z]e: A[C,a]

Proof: By straightforward induction on the structure of the typing derivation, using similarly formulated
exchange, weakening and contraction properties of the auxiliary judgments. |

Next step is to define two new operations on contexts, I'® and I'2, which, together with the already
defined TV, will be important for stating the substitution principles for our language. I'® removes the
ordinary value variables from I', leaving only expression variables in it. I'* changes the reflexive expression
variables with nonempty name dependencies into nonreflexive ones.

(.)@ = . (F 1(432 i fA A
T et Nl
(T, uszA[C])° = T2, usA[C) (0w A[C])E = Db usA[C] i C£0

Before we formulate and prove the substitution principles, we need a couple of intermediate steps. The
next lemma states that a context with nonreflexive variables is weaker than a corresponding context in which

20



these variables are given typing. Every term that can be typed in the first context can also be typed in the
second.

Lemma 5

If S;TY, Ty kA e: A[C], then S;TY , Tyba e: A[C).

Proof: By induction on the typing derivation of e. We present only the case when e = box ¢’ and

A=0ACY).
1) By typing derivation, S;T7Y,T'Y Fa €' @ A [C].

2) Because ['PY = I'7Y®, we have S;[7Y® I ta e A'[C].

3) By induction hypothesis, S;TY¥,I'3 Fa €' : A [C'].

(1)
(2)
(3)
(4) Now by typing rule for box, S;T'V, T3 Fa box ¢ : O(A'[C"]) [C].

n

We also require another meta operation — that of name substitution {a/e}e’. It differs from the usual
variable substitution in the fact that it substitutes the name a by e only on the current code level in €’;
the occurrences of a on higher code levels (i.e., under boxes) will not be touched. This operation and its
corresponding substitution principles will be used to justify the operational semantics of the term construct
for name substitution {a = e} ¢’.* The operation is capture avoiding — all the variables, atoms and parameters
are renamed when descending into the scope of the term construct which created them.

Definition 6 (Name Substitution)
Given terms e and €' and a name a, the operation {e/a}e’ of substituting e for name a in €' is defined
recursively over the structure of ¢’ as follows.

{efa}x = =«

{efale = =z
{e/alu = u
{e/ata = e

{e/a}b

{e/at(Az:A. ey
{e/a}(fix x:A. e;
{e/a}(e1 e
{e/a}(box e;
{e/a}(let box u = e; in €3
{e/a}(b.ex

{e/a}t(e1 @b
{e/a}t(new b:Q in e;
{e/a}(Ap#K. e1
{e/a}(er [D]

b (a #b)
Az:A. {efa}e;
fix z:A. {e/a}e;
({e/a}er )({e/ates)
box ¢;
let box u = {e/a}e; in {e/a}es
b.{e/a}es (a may be equal to b)
({e/a}er) @b (a may be equal to b)
new b:Q) in {e/a}e; (a #b)
Ap# K. {e/ate;
({e/a}er) [D]
fe/a{a=e}es) = {a={e/afer} es
fe/ad({b=er} es) = {b=1c/ater} (efates)  (a#)
In the similar spirit, we define the set fng(e) of names occurring in the term e on the current code level.

This gives us a way to compute the minimal set of names which must appear as a name dependency when
typing the term e.

NN NI NI N N NI NI N

4Notice the difference in the notation.
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Definition 7
Given a term e, the set fng(e) is defined recursively by the equations below. We refer to fng(e) as the set of
free names of the term e.
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fng(e)
fng(e)
fno (61) U fno (62)

Il
-
=
o
)
-
C
.y
=
o
N
)
3V
<

.
=
o
—
jon
o
» anl
(9
N e S N N N N N N N N N N S S
=

[l
== == =
BB B B B B
—~ A A A A A
Qe l s
—
—
Q
—

Notice that the free names of a name abstraction a . € do not exclude a. The reason is closely related to the
already stated property that name abstraction abstracts only after the body of the abstraction e is evaluated.
Thus, if the name a occurs on the present code level in e, we need to provide an extension for a before e
is ran, and hence e depends on a. Similar comment applies to name concretion and to name-polymorphic
instantiation.

The following definition is adopted from Nominal Logic and FreshML [PGO00].

Definition 8 (Name Transposition)
The operation of interchanging all the occurrences of names a and b in the argument name dependency /con-
text/type/expression, Is called name transposition or name swapping, and is denoted by (a b)(—).

Name transposition is different from name substitution: the former swaps two names throughout the given
term or type, no matter the code level on which any of the names occur, while the later only works on the
current code level.

Lemma 9 (Strengthening)
1. if S;T,2:Ata e: B[C] and = & fv(e), then S;T Fa e: B[C]

If ST, uA[D]) ba e : B[C] and u € fv(e), then S;T Fa e : B[C]

2
3. if S;T,t2A[D]Fa e : B[C] and t € fv(e), then S;T Fa e: B[C]
4. if S;T* Fae: A[C,a] and a & fng(e) then S;T% Fa e: A[C]

5

LI S;TA Fae: A[C,p] then S;T% Fa e: A[C]

Proof: In each case, by a straightforward induction on the first typing derivation. |

Lemma 10 (Substitution Principles)
1. if S;Tta e : A[C] and S;T,2:Abna €3 : B[C], then S;T Fa [e1/x]es : B[C].

2. if S;T{ ta ey : A[D] and S; T2, u:A[D] ba ez : B[C], then S;T'1,T5 Fa [e1/u]es : B[C].
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3. if S;TY Fa e : A[D] and S; Ty, t=A[D] Fa e : B[C], then S;T'1,Ts Fa [e1/t]es : B[C].
4. if S;a:P;T1 Fa €1 : P[C] and S, a:P;T5 Fa €2 : Bla,C], then S,a:P;T'1,T5 ba {e1/a}es : B[C].

The premises in the formulation of the substitution principles deserve further elaboration. Principle 10.2
requires that the substituted term e; is typable in a context I'{, i.e. that it does not contain any free value
variables. The intuition behind this is that e; substitutes an expression variable u. Expression variables may
occur on multiple code levels, so the substitution will copy e; to multiple code levels too. But the ordinary
value variables are anchored by the type system to only the current code level, and thus e; must contain
none of them.

Principle 10.3 requires that the substituting term e; be typed in a context 'Y, which contains no value
variables, and in which all the nonreflexive expression variables are turned into reflexive ones. The reasons
for the first requirement is analogous to the one in the previous principle. The second requirement is actually
a weakening of the context, since turning a nonreflexive variable into a reflexive one allows more terms to
be typed (because now the variable can be used on the current code level as well). It is justified because
e1 substitutes a nonreflexive expression variable t. The variable ¢ only occurs guarded by a box, i.e. on
code levels strictly higher than the current one. Thus any typing of e; in the term [e1 /t]es will happen in a
context in which the nonreflexive expression variables relevant for e; have already been turned into reflexive
ones by the typing rule for box (see Figure 12).

Finally, Principle 10.4 requires that the context in both the second premise and in the conclusion be of
special form T'}, i.e. that its reflexive variables only have empty name dependency. Note that the principle
describes a way to reduce the name dependency of a term es; by substituting away the name a. But, the
way the operation of name substitution is defined, it may not necessarily change the expression es itself. For
example, consider the case when es = u in the context T' = u::A[a]. The substitution {a/e; }u produces a
term u itself, but there is no typing S;T Fa u : A[]. That is why we require that the involved reflexive
variables have no dependencies. In retrospect, the need to distinguish between expression variables with and
without dependencies, which arises from this principle, was the main reason why we introduced nonreflexive
variables into the design of the type system at all, instead of staying with only the reflexive variables of AF.

Another observation of crucial importance is that the local variables of a boxed expression form a context
', which is exactly of the form the name substitution principle 10.4 requires, i.e. I' = I'*. This can easily be
seen, as all the reflexive variables which will be put into the context have empty name dependencies (see the
typing rules for let box in Figure 12. This would allow us to use the meta operation of name substitution
{e1/a}es to define the operational semantics of the language construct for name substitution {e; = a} es.
The idea is to use this construct to perform substitutions within box-annotated expression, and the principle
10.4 ensures that these substitutions can be carried out without the postponement of evaluation which is
the usual operational semantics associated with boxed expressions in AU.

Proof: All the substitution principles are proved by induction on the typing derivation for e;. We present
below some of the more interesting cases. The complete proof can be found in the Appendix.

Principle 2. if S;TT Fa ey : A[D] and S; T, u:A[D] Fa es : B[C], then S;T1,Ts Fa [e1/u]es : B[C].
case ez = box e, where B = O(B'[C"]).

By typing derivation, S; Ty, u::A[D] ba e : B [C].

Because I'Y = I'?®, we have S;TT° Fa e : A[D].

From (1), (2) and the induction hypothesis, S;T7, T3 Fa [e1/z]e : B'[C].
By Lemma 5, S;T'7,TY Fa [e1/z]e: B'[C],

and finally, we can reassemble S;T'1,Ts Fa box ([e1/z]e) : O(B'[C']) [C],

Ot = W N =

Principle 3. if S;T7 Fa €1 : A[D] and S; s, t=A[D] Fa €3 : B[C], then S;T'1,Ts Fa [e1/t]e2 : B[C].

case ez = box €', where B = O(B'[C"]).
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1. By typing derivation, S; 'Y t::A[D]Fa €' : B'[C].

2. Because I'{ = Ffe, by the previously proved substitution principle (Lemma 10.2), S;TY, T Fa
[e1/t]e' : B'[C].
3. Now assemble back into S;T'1, s Fa box ([e1/t]e’) : O(B'[C']) [C].

Principle 4. if S,a:P;T1 Fa €1 : P[Cland S,a:P;T4 Fa es: Bla,C], then S,a:P;T1,T5 Fa {e1/a}es : B[C].

case €3 = U.

By the definition of I'4, it is only possible that the variable u € dom(T'4) if its name annotation is

empty, i. e. if u::B[f] € T4. Thus, by name dependency weakening, S,a:P;T4 Fa u : B[C]. Now, by

hypothesis weakening, and because u = {e1/a}u, we get the required S, a:P; 1,4 Fa {e1/a}u: B[C].
case ez = box €', and B = O(B'[C]).

In this case, the typing box €’ : B[a, C] is obtained by weakening inherent in the box rule. Thus, we
can also derive S, a:P; T4 Fa box ¢ : O(B'[C’]) [C]. Considering that {e1/a}box ¢’ = box €', weaken
the hypothesis context to get S,a:P;T'1,T'5 Fa {e1/a}box ¢ : O(B'[C]) [C].

Lemma 11 (Parametricity)
1. if S;T Fapuk € : A[C] and D is a well-formed dependency set, i.e. D C dom(S) U dom(A), and is
fresh for K, i.e. A+ D # K, then

S;[D/pIL Fa [D/ple - ([D/p]A) [[D/pIC]
2. if ;T ka e: A[C], and a, b:P are names (not necessarily in S), then
(a b)S;(a b)l' k4 pya (a b)e : (a b)A[(a b)C]

Proof: First notice that the transposition property (property 2) is trivial to prove by induction on the
typing derivation for e. Namely, all the typing rules, as well as the rules for auxiliary judgments are are
obviously insensitive to swapping the names throughout, in all the contexts, types, terms and dependencies.
Thus the judgment itself must be insensitive to swapping names.

The proof of the first property is somewhat less trivial, but still rather straightforward by induction on
the typing derivation of e. We present here only the cases for name abstraction and name-polymorphic
instantiation, and leave the rest for the Appendix.

case e —a.e¢e', where A = I/IPA’ and a:P € S.

Assume a € D to ensure capture avoiding. This can always be achieved by alpha-renaming a into some
other fresh name.

1. By typing derivation, S;I' Fa pux € : A'[C] and A, p#K - fp(4A') # a.
2. By induction hypothesis, S; [D/p]l Fa ([D/p]A") [[D/p]C].

3. By Lemma 3, A F fp([D/p]4’) # a.

4. Assemble back into S;[D/p]l' Fa (a. [D/ple’) : ( VIP([D/p]A’)) [[D/p]C].

a:
case e = ¢' [D'].

1. By typing derivation, S;T bFa,ux € @ (Vg#M. A’) [C] where A,p#K + D" # M and D' C
dom(S) Udom(A, p#K), and A= [D'/q]A".

2. By induction hypothesis, S;[D/pll' ba [D/ple’ : (Vg#M. [D/plA") [[D/p]C].
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3. By Lemma 2.1, A+ ([D/p]D') # M.
4. Next, obviously, ([D/p]D’) C dom(S) U dom(A).
5. Thus conclude, S;[D/p]l' Fa ([D/ple’) [[D/p]D'] - ([D/p]A) [[D/pIC].

5 Operational Semantics

In this section we define the structured operational semantics for our core language, and prove the appropriate
Progress and Type Preservation theorem. We start by introducing the notion of contraction, which will be
instrumental in defining the wvalues of our language. The idea is that we do not consider, like in AP, that
all boxed expressions are values. Rather, in order to be values, boxed expressions have to be “contracted”,
i.e. not reduced completely, but only freed of (some) name substitution they may contain. The name
substitutions that are carried out (i.e. contracted) under a box in a given expression satisfy two properties:
(1) They occur on the current code level. This is in accord with the previously made observation about the
substitution principle 10.4 that the variable context I' of variables encountered when traversing the current
code level of a boxed term, and not descending into further and further boxes, is always of a form I' = T'2.
Thus, the said substitution principle is applicable, and the encountered name substitutions can actually be
carried out without postponing. (2) The substituted name should be created outside of the boxed term,
rather than being local to it.
The judgment for contraction is defined in Figure 14. It has the form

S
e —w

and means: if the name substitutions in the expression e of names other than those in S are carried out, we
obtain w. The “protected” set S carries the locally defined names of e (see the contraction rule for new),
and is introduced in order to comply with the requirement (2) from above. An expression e is S-contracted

if e = e. It is contracted if it is f-contracted. We use the letter w to range over S-contracted expressions.

Lemma 12 (Contraction Termination and Type Preservation
IfS1,S5; T2 kA e : A[C] then there exists unique term w, such that e == w. Furthermore, w is Ss-contracted
and S1,S59;T2 Fa w: A[C].

Proof: By induction on the derivation S1,Sy;T® Fa e : A[C]. The full proof is in the Appendix.
case € = let box u = €' in ¢”.

1. By typing derivation, Sy, Sa; 2 F ¢’ : O(A'[C"]) [C], and,

2. either Sy, So; 4, uA’ F e’ : O(A[C']) [C], or S1,S2; T8, u=A"[C'] F €' : O(A'[C"]) [C], depending
whether C' = 0 or C’ # 0.

3. Also notice that (I'2 u::A’) = ([,u::A’)%, and if C7 # 0, then (I'*, u=A'[C']) = (T, u=A[C'])2.

4. Then, by induction hypothesis, we have w’ and w” satisfying the prescribed properties. Combine
them into w = let box v = w' in w”.

case e = {a = ¢'} ¢’ where a:P € Sy, 55.

1. By typing derivation, S1,S2; T2 Fa € : P[C], and S1,So; T2 Fa €’ : Ala, C].

2. By induction hypothesis, there are unique w’ and w’’ such that e’ 22 and e 22 w' | plus
they are contracted and preserve the types.

3. Now, distinguish two cases: (1) a € dom(Ss), and (2) ¢ ¢ dom(S>).

4. In the first case, pick w = {a = w'} w". It is contracted and has the correct typing.
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S s s s
r—zx u—u a—a * — %
S S S S
e —w €1 — Wy €2 — W3 e —w
s s s
Az.e — Az, w €1 €9 — Wi W fixz.e >fixz w
S S
€1 — W1 €9 —r W2

s
. s .
box ¢ — box ¢ let box u = €1 In e5 — let box u = wy In wo

S S S,a:P
e —w e > w e —>w
a.e 2 a.w e@a > waa new a:P in ¢ > new a:P in w
s s
e — w e — w
Ap#K. e S5 Ap#K. w e [C] S w [c1
s s s s
€1 — wi €9 — Wy a € dom(S) €1 — wi €9 — Wo a ¢ dom(S)
. s . . S
{a=e1} ea S {a=w} w {a=e1} ea = {wy/a}wsy

Figure 14: Contraction rules for expressions.

5. In the second case, pick w = {w'/a}w”. By the contraction rules, e NS By Lemma 13.1, it is
contracted. By substitution principle (Lemma 10.4), it also has the correct typing Si, Sa;T% Fa
{w'/a}w" : A[C].

Lemma 13 (Substitution and Transposition of Contracted Expressions)
1. If wy and ws are S-contracted, then {wy/a}ws is S-contracted.

2. If w is S-contracted and a,b ¢ S, then (a b)w is S-contracted.
Proof:

1. By induction on the derivation ws N wy. Base cases are ws = z, U, a, ¥, box e and they clearly satisfy
the requirements of the lemma. The rest of the induction cases are also easy. The most interesting is
when wy = {a = wi} wh. In that case, w} and w) are S-contracted and ¢ € dom(S). By induction
hypothesis, {w;/a}w] is also S-contracted, and so {w;/a}ws = {a = {w1/a}w]} wh must be too.

2. By a straightforward induction on the derivation w 2y w. In case w = new c:P in v’ (we assume
by Barendregt’s Variable Convention that ¢ # a,b), then w' is (S, ¢:P)-contracted. By induction
hypothesis, so is (@ b)w’, and the conclusion follows.

|
We can now define our syntactic category of values.

v 1:= #|Az.e|a.v|Ap#K.e|box w (w contracted)
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! ! ! !
M€l € My €2 > [, €y

pi (1 e2) — p', (€] e2) py (v1 e2) — i, (v1 €3)
i (Az:A. e) v) — p, [v/x]e wfix 2 A e — p, [fix 2:A. e/x]e
e —w e not contracted e — €y
p,box e — pu,box w i, (let box u = €3 in e3) — p, (let box u = €] in e3)
i, (let box u = box w in e3) — p, [w/ules i, (new a:P in €) — (p,a), e
pye— p'ye pye— p's €
p,(a.e)—p (a.€) u,(e@a) — p', (' @a) W, (b.v)@a— p, (a b)v

poe—s p' e
p (e [C]) — ', (€ [CT) p, (Ap# K. €') [Cl) — p, [C/ple’

/]
M€l €

p({a= e} ea) — p,({a = €l } €2) p; ({a = v} e2) — p, {v/ales

Figure 15: Structured operational semantics of the core language.

Lemma 14 (Name Transposition Preserves Values)
If an expression v is syntactically a value, as defined by the above grammar, in the name context S containing
names a,b:P € S, then (a b)v is also a value.

Proof: By induction on the structure of v. The only interesting case is when v = box w. Then
(a b)v = box (a b)w. But, by Lemma 13.2, (¢ b)w is contracted, and hence box (a b)w is a value. |

At last, we are in position to define a small-step operational semantics (see Figure 15), and prove the Type
Preservation and Progress theorem for the core part of the language. We use p and variants to denote a store
of names created during the evaluation. A store of names corresponding to a name context S will be denoted
by ps. Note that the theorem requires empty variable and parameter contexts and name dependency.

Theorem 15 (Progress and Type Preservation)
IfS;-Fe: A[], then either

1. e is a value, or
2. there exists S’ D S such that ps,e — psi,e'; furthermore ¢’ is unique and S’;-F ¢’ : A[].

Proof: By induction on the derivation S;- + e : A[]. We present the more important cases below. The
rest can be found in the Appendix.

case ¢ = let box u = ¢; 1In es.
Assume that e; is a value (otherwise trivial). In that case e; = box wi, where w; is contracted, and
ps, e ps, [wi/ules.
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1. By typing derivation, S;- F w; : A’ [C'], and,
2. either S;uiA’Fes: A[], or S;u=A'[C'] F ey : A[], depending whether C' = () or C” # 0.
3. Conclude, using either Lemma 10.2, or Lemma 10.3, that S;- F [wy/ules : A[].
case € = ¢ @a, where a:P € S.
Assume that ¢’ is a value (otherwise, trivial).
1. By typing derivation, S;-F €' : ( le A)[], and - F fp(A) # a (because fp(A4) = 0).
Then ¢/ = b.v', where b:P € S, and S;-F o' : (a H)A[].

By reduction rules, ps, e — g, (a b)v'.

By Lemma 11.2, (a 8)S;-F (a b)v' : (a b)(a b)A[ ].

Now, both a,b € dom(S), so (a b)S = S.

By idempotency of swapping, S;-F (a b)v' : A[], and the typing is preserved.

S Ot = W N

case ¢ = ¢’ [D].
Assume €’ is a value (otherwise trivial).
By typing derivation, S; -+ ¢’ : Vp#K. A’, where F D # K, and A = [D/p]A’.
Since €’ is a value, it is of the form ¢’ = Ap# M. e"”, where M C K and thus - D # M.
By typing rules, S;-bFpunr e’ A'[].
By Lemma 11.1, S;- F [D/ple” : ([D/plA) [ ],
Since ps, e — ps, [D/ple”, we have just shown that the typing is preserved.

Ot = W N =

case € = {a = e} €3, where a:P € S.

Assume both e; is a value (otherwise trivial).

1. By typing derivation, S;-Fe; : P[], and S;-F es : Ala].
2. By Lemma 10.4, S; -+ {e1/ates : A[].

3. By reduction rules, us, e — ps,{e1/a}es, so the statement is proved.

6 Intensional Code Analysis

This section presents the definition and theory of pattern-matching on code expressions, which is used to
inspect the structure of an object program and destruct it into its component parts. For the purposes of this
work, we limit ourselves to intensional analysis of only the simply typed A-calculus fragment of our language.
Thus, admittedly, our current results are far from complete, but nevertheless, we present them here as a first
step towards a stronger and more robust system.

Patterns w ::= [Eay--a5]|@|a]|*|Ax:P. 7| (m) (72:P) | fix 2:P. 7 | m:P[C]

The pattern [E z; - - -] declares a pattern variable £ which matches a code expression subject to condition
that the expression’s free variables are among z1,...,z,. We will denote pattern variables with capital
and its variants. Patterns Az:P. m and fix z:P. 7, match respectively a lambda expression and a fixpoint
expression of domain type P. They declare a variable x which is local to the pattern, and demand that
the body of the matched expression conforms to the pattern m. Bound variables, like  above, are to be
distinguished from pattern variables, like [E @1 ---2,]. The later provides a placeholder for the matching
process; upon execution of a successful matching, it will be bound to a certain expression. The former is just
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zi:PeTl C C dom(S) Udom(A)

S;TIka [F 21...2,]: P[C]l= E: l./lp |/|P O(P[C,ay,...,an])
S;Tlka m: P[Dl—T DcCC

S;Ulka (m:P[D]): P[Cl=T11

C C dom(S) Udom(A) C C dom(S)Udom(A) C C dom(S) Udom(A)
S;T,z:Plkp z: P[C]=- S,a:P;Tlkp a: Pla,C] = S;T A #: 1[C]=-
S;T,z:Pylka 7m: P [C]l—T; S;T,z:Plka m: P[C]=T"
SiTlka Az:Py.7m: P — P [Cl—=T; S;Tlkp fix z:P.7m: P[C] =T
S;Tlkam : Po > P[Cl=1T, S;T kA m: P2 [C]l=T>

S,F 1N (71'1) (71'2 : PQ) : P[C]:>I‘1,F2

Figure 16: Typing rules for patterns.

a syntactic constant, which is introduced by a pattern for lambda expressions, and can match only itself.
Pattern a matches a name a from the global name context. Pattern (m1)(m2:P) matches an application; in
order to avoid polymorphic types in patterns, we require that the this pattern proscribes the exact type of
the argument in the application. The pattern 7: P[C] serves to specifically limit the allowed dependencies of
the matched expression to only C'.

The judgment for typechecking patterns has the form

S;Tlka m: P[C]—=T,

and reads: in the context of global names S, global parameters A, and a context of locally declared variables
I, the pattern 7 has the type P, name dependency C' and produces a residual context I'; of pattern variables
and their typings. This residual context is to be passed to subsequent computations. The rules of this
judgment are presented in Figure 16. Note that, because we are limited to only simply-typed fragment, the
local variables that the typing rules deposit in I' will always be ordinary value variables, and always simply
typed. On the other hand, we do allow a bit more generality in the case of pattern variables [E z1 - - z,];
they still can match only terms of simple types, but these terms can have subterms of more general typing.

In order to incorporate pattern matching into the core language, we enlarge the syntax with a new term
constructor.

Terms e ::= ...|case ¢y of box m = ¢; else e

The intended operational interpretation of case is to evaluate the argument ey to obtain a boxed expression
box w, then match w to the pattern 7. If the matching is successful, it creates an environment with bindings
for the pattern variables, and then evaluates e; in this environment. If the matching fails, the branch es is
taken. The typing rule for case is:

S;T Fa e : O(P[D]) [C] S; lkam: P[Dl=T S;T,T1 Fa e : B[C] S;T Fa eq: B[C]

S;T Fa case ¢g of box ™ = ¢ else es : B[(]

Observe that the second premise of case requires an empty variable context, so that patterns cannot contain
outside value or expression variables.
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The meta operations of name substitution and name transposition, as well as the fng function on terms,
readily extend.

{e/a}(case ey of box m = €; else e2) = (case {e¢/a}eq of box m = {e/a}e; else {e/a}eq)
fng(case ¢y of box m = ;1 else e3) = fng(eg) Ufng(er) Utng(ez)
Example 2

To illustrate intensional code analysis, the following examples presents a generalization of our old expo-
nentiation function. Instead of powering only integers, we can power functions too, i.e. have a functional
computing f — Az. (fa)”. The functional is passed the code for f, and an integer n, and returns the code
for Aw. (fz)™. The idea is to have this residual code be as optimized as possible, while still computing the
extensionally same result.

For comparison, we first present a A version of the function-powering functional.

fpowbox : O(int->int) -> int -> O(int->int) =
Af:O(int->int). An:int.
let box F = £
box P = powbox2 n
in
box (Av:int. (P (F v)))
end

- fpowbox (box Aw:int. w + 1) 2;
val it = box (Av:int. (Ax.x*(Ay.y*(Az.1D)y)x) ((Aw.w+1)v)) : O(int->int)

Observe that the residual program contains a lot of unnecessary redices. As could be expected, AO (and for
that matter, MetaML as well), provides a better way to stage the code.

fpowcircl : (O(int->int) -> int -> (O(int->int) =
Af:O(int->int). An:int.
let val P = powcirc2 n
in
next (Av:int. (prev P) ((prev £) v))
end

- fpowcircl (next Aw:int. w + 1) 2;
val it = next (Av:int. (Ax.x*(x*1)) ((Aw.w+1) v)) : O(int->int)

In fact, there is at least one other way to program this functional in A©: we can eliminate the outer beta-redex
from the residual code, at the price of duplicating the inner one.

fpowcirc2 : (O(int->int) -> int -> (O(int->int) =
Af:O(int->int). An:int.
next (Av:int.
prev (let val b = next ((prev £) v)
in
powcirc’ b n
end))

- fpowcirc2 (next (Aw:int. w + 1)) 2;
val it = next (Av:int. ((Aw.w+1l) v) * ((Aw.w+1) v) * 1) : O(int->int)

All three of the above programs can be encoded in the new language as well. The first program fpowbox is
simply copied line-for-line. The AQ version fpowcirc1 and fpowcirc2 will require translations fpow1 and
fpow2, which we show below.
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fpowl : O(int->int) -> int -> O(int->int) =
Af:O(int->int). An:int.
let box p = pow n
box g = £
in
box (Av:int. p (g v))
end

-fpowl (box Aw:int. w + 1) 2;
val it = box (Av:int. (Ax.x*(x*1)) ((Aw.w+1) v)) : O(int->int)

fpow2 : O(int->int) -> int -> O(int->int) =
Af:0(int->int). An:int.
new a:int in

let box f’ = £
box e = pow’ [a] (box (£’ a)) n

in
box (Av:int. {a = v} e)

end

- fpow2 (box (Aw:int. w + 1)) 2;
val it = box (Av:int. ((Aw.w+1) v) * ((Aw.w+1) v) * 1) : O(int->int)

However, neither of the above implementations is quite satisfactory, since, evidently, the residual code in
all the cases contains unnecessary redices. The reason is that we do not utilize the intensional information
that the passed argument is actually a boxed lambda abstraction, rather than a more general expression of
a functional type. In a language with intensional code analysis, we can do a bit better. We can test the
argument at run-time and output a more optimized result if the argument is a lambda expression. This way
we can obtain the most simplified, if not the most efficient residual code.

fpow : O(int->int) -> int -> O(int->int) =
Af:0(int->int). An:int.
case f of
box (Aw:int. [E w]) =>
new a:int in
let box F = pow’ [a] (E @ a) n
in
box (Aw:int. {a = w} F)
end
else fpowl £ n

- fpow (box Aw:int. w + 1) 2;
val it = box(Aw:int.(w + 1) * (w + 1) * 1): O(int->int)

[ |
Lemma 16
If S;T Ika m: P[C]=>Ty, then I'y = T'}.
Proof: Trivial. [ |
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fv(w) C{z1,...,2n}

ww> [E ey azn] = (p,a1,...,a0), [E— (a1...an . box [a1,...,an/21,..., 25]w)]

pwp>rT=pu,0 fng(w) C D

p,w> mP[D) =y’ 0

x> =y, poa>a=pu,- [,k D> k= -

pow> =0 pyw> =", 0
Az Pows Ae:P.r=p',0 p,fix x:P.w>fix o:P.n=p', 0
ILL,’LU1I>71'1:>/11,@1 ﬂl,w2|>7r2:>/12,®2

B, (w1 wa) > (1) (m2:P2) = pa, (©1 0 O1)

Figure 17: Operational semantics for pattern matching.

Lemma 17 (Parametricity of Pattern Matching)
1. if S;T IFapux m: P[C]=T1, and D is well-formed dependency set, i.,e. D C dom(S)Udom(A),
and is fresh for K, 1.e. A+ D # K, then

S;[D/p]L Ika m: P[[D/p]Cl={D/p]I
2. if S;T lka m: P[C]=T; then
(a b)S;(a b)L Ik pya (a b)m : P(a b)C]=(a b)I'y

Proof: By a straightforward induction on the structure of . |

Using the previous two lemmas, we can augment the theory of the core language with pattern matching
and the new construct case. In particular, the Substitution Principles (Lemma 10), and the Parametricity
Properties (Lemma 11), are easily extended with the additional inductive cases resulting from this addition.
We present the completed proofs of these lemmas in the Appendix.

The operational semantics for patterns is given through the new judgment

powem=u,0

which reads: in a global store of names u, the matching of contracted expression w to the pattern = extends
the global store to u’ and generates a substitution © for the pattern-variables of w. The rules for this
judgment are given in Figure 17. Notice that, by the nature of pattern matching, the substitution © is of a
very simple structure. In particular, the terms from its range never contain variables from its domain.

As already explained, the pattern variable [E z; - - -2,] should match an expression w provided that w
depends only on variables z1,...,2,. Thus, the rule for pattern variables explicitly provides the required
check. Similarly, the pattern 7:P[C] has to ensure that all the free names of a matched expression w are in
the dependency set C, and the corresponding rule reflects that. That this checks are sound with respect to
the type system is the motivation for the following definition and lemma.

Definition 18 (Types for Substitutions)
The judgment S A © : ' denotes that © is a substitution for the variables in I', and that the substituting
terms allow occurrences of only the names in S. In other words S Fa © : I if for every pattern-variable

E:A€T we have S;-Fa O(E) : A[].
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Lemma 19 (Type Preservation for pattern-matching)
IfS;T Ik m: P[C]=T3y and S;I'} Fa w: P[C] and ps,w > 7= p’, O, then there exists S’ D S such
that ' = pg: and S" Fa O : ['s.

Proof: By induction on the structure of the pattern 7. We present the interesting cases.
case T = [E z1---2,].

1. By assumption,
S;IY kA [E 21 2,] s P[C]l= E: N O(Pla;,C))
In other words, I'y = £ |/le O(Plai, C)).
2. Also by assumption, S;T% Fa w: P[C].

3. By (2) and name-for-variable substitution (Lemma 4.4),
S,a;: Py P\ {zi: P} ba [ai/zi]w: Pla;, C)
4. By operational semantics of pattern-matching,
W >w=—(p,a1,...,a,),[E— (a1...an.box [a1,...,an/21,...,25]W)]
In other words, the residual substitution © is in this case defined as
©O=[Ew—(a1...a5.box [a1,...,an/21,...,25]w)]

for some fresh names a;: P;.
5. By the same rule for evaluation of patterns, fv(w) C {z1 ..., z,}.
6. By (5) and context strengthening (Lemma 9.1), S, a;:F;; - Fa [ai/z;]w : P [a;, C],
7. Then (6) implies, by typing rules

S,ai:Pi;-Fa (a1...an . box [a1,... ,ap/z1, ..., &p]w): W O(P[a;, C)

a;:P;
8. Hence, taking S’ = S, a;:P; satisfies S’ Fao © : '3, which was required.
case m = (n':P[D]) where D C C.

1. By assumption, S;T{ Fa w: P[C].
2. By operational semantics for patterns, fng(w) C D.

3. From (1) and (2), by strengthening (Lemmas 9.4 and 9.5), we know that
S;T% Fa w: P[D]
4. The result follows from (3) by induction hypothesis.

The last piece to be added is the operational semantics for the case statement. First we extend the
judgment for contraction.

S S S
€g — Wy €1 — W1 €9 — W2

s
(case eg of box ™ = e; else e3) — (case wg of box ™ = w; else ws)
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The additional cases which arise in the lemmas 12, 13 and 14 are easy to prove. We also extend the small-

step semantics (see the rules below). Notice that the premise of last rule makes use of the fact that the
operational semantics for patterns is decidable, i.e. it is always possible to to find out, for given p, w and 7
which unique g’/ and ©, if any, satisfy the relation u, w > 7= p', ©.

[
My €0 > [, €

U, (case ey of box m = e; else e2) — p, (case e of box m = ¢; else e3)

powem=p',0

U, (case box w of box ™ = e; else e3) — u’,O(e1)

W, 0. pw>r=u,0

i, (case box w of box m = e; else e3) — p, e

Finally, using the lemmas established in this section, it is possible to augment the proof of the Progress
and Type Preservation theorem (Theorem 15) to handle the extended language. The complete proof is
presented in the Appendix.

Example 3

In this example we encode a function that beta-reduces the expressions passed to it as an argument. At
present, we do not have parametric type polymorphism in our language, so we restrict this function to only
expressions of type real, but we do allow arbitrary number of names in them.

fix breduce:Vp. O(reallpl)->0(reallpl).
Ap. Ae:0O(reallpl).
case e of

box((Ax. [E1 x]) [E2]:real) => (% E1: W 1D(real[a]), E2:0 real *)
rea
new a:real in ’

let box el = breduce [p, a] (E1 @ a)
box e2 = breduce [p, a] (E2)

in
box ({a = e2} el)

end

else e

Example 4
This example is a (segment) of the meta function for symbolic differentiation. The function takes a name
abstraction as an argument: the body of the abstraction is a boxed term encoding the expression to be
differentiated; the abstracted name represents the variable with respect to which the differentiation takes
place. When the boxed expression is a sum of two subexpressions, the function just recurses over them.
When the boxed expression is a beta-redex (of a limited form), it first reduces it before recursing. Other
names and constants are matched in the default case, which thus returns the derivative 0.

Notice that the present lack of polymorphic patterns prevents us from recognizing, let alone reducing all
the beta redices that could possibly occur in the argument; although, admittedly, it is wrong, we currently
let them pass through the default case.
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diff : Vp. (Ma:real.Orealla, p]) -> (MNa:real.Orealla, pl) =
fix diff.
Ap. de:(MNa:real.Orealla, pl).
new a:real (* the differentiating name *)
in
case (e @ a) of
box a => a.(box 1)
| box ([E1] + [E2]) =>
let box el = (diff [p] (a.E1)) @ a
box e2 = (diff [p] (a.E2)) @ a
in
a.box (el + e2)
end
| box ((Ax:real. [E1l x]) [E2]:real) =>
new b:real in
let box el = E1 @ b
box e2 = E2
in
diff [p] (a.box ({b = e2} el))
end
else a.(box 0)

7 Future Work

There are numerous directions in which the system we presented here can be extended. We list some of the
more important ones:

1. Arbitrary, not just simple types for names. With the limitation that names can only be simply-
typed, our language can encode only object programs with simply-typed free variables. This makes
it a two-level, rather than a multi-level language like A© and MetaML. It would be interesting to
investigate how generalizing the typing for names, if possible at all, will influence the rest of the
language, in particular the operations of name abstraction and concretion. One can imagine retaining
the simple typing for the bound name in the W quantifier, for the predicative variant, or allowing
arbitrary names for impredicative Nl-quantification.

2. Modal type of names. In the present version of the system, names used in abstraction and concretion
must always be constants, in order to account for them in the dependency annotations. In other words,
we cannot compute with names; they can be passed around as part of boxed/code expressions, but once
unboxed, they cannot be used for abstraction and concretion. For this purpose, it may be beneficial
to add a separate type modality, say A(A[C]), to classify names of type A listed in the dependency C.
The new modal type should be a subtype of O(A[C]).

3. Type polymorphism and type-polymorphic recursion. In a meta-programming language, the
typing of object programs is made part of the typing of the meta programs. Consequently, such a
language has a lot of types to care of and thus needs strong notions of type polymorphism. This was
already evident from our example programs for beta reduction and symbolic differentiation in Section 6.

4. Existential name and type abstraction. The motivation for this comes from automatic code
generation. Say that we have a datatype absyn, representing the abstract syntax of the language,
and that we have synthesized an abstract syntax tree for a certain object program. We would like to
invoke that program in run-time, i.e. transform it into its boxed code representation and then evaluate
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it. A program that performs this transformation is often referred to as a “visible compiler”. In a
meta-programming language we ought be able to implement a function vcomp representing a visible
compiler, but the question is what its type should be. Obviously, the types of boxed expressions
that vcomp is supposed to produce will depend on the abstract syntax tree supplied as an argu-
ment, and thus the range type of the function will have to be existentially quantified; something like
vecomp : absyn -> Jp.JA.0O(A[p]). Intensional code analysis should incorporate a certain form of
intensional type analysis as well, and that would enable the object programs resulting from the visible
compiler to be used in non-trivial ways in the rest of the program.

Generalized forms of recursion. In all the meta-programming languages considered in this work,
fixpoint variables have been treated as ordinary value variables. In such a setup, a a function can make
a recursive call to itself only on the current code level; the call can never be “postponed”, i.e. be on a
higher code level (under a box or next). It would be interesting to investigate if it is possible to have
fixpoint ezpression variables.

Ot

6. Adding references. While it should be relatively straightforward to add references to our language,
it may be possible to give them a much stronger role in the modal setup. For example, a reference
can be used as a name with a definition — carrying both the extensional information of its referent, as
well as the intensional information of its name. Much like names, it should be sound with respect to
intensional analysis to endow the references with cross-stage persistence, i.e. allow them to cross the
code-level boundaries.

Related to problem (5) above, we would also like to investigate recursive references. These would be
references whose extension can refer to the reference name itself, but perhaps in postponed positions
(i.e. under a box).

7. Enriching the language of patterns. Is it possible to extend the pattern-matching mechanism to
analyze and destruct expressions under more than one layers of boxes? How to match against binding
constructs like let val and let box?

8. Model theory of the language. Last, but probably most important, we should build models for
our type system and put it on a sound logical footing. Interaction between names and modal logic has
been of interest to philosophical investigations for quite some time (see [Kri80] and [FM99]). We hope
to draw on this work for the future developments.

8 Conclusions

In this paper we presented a typed functional language for meta-programming, employing a novel way to
define a modal type of code. We formulated its static and dynamic semantics and proved the corresponding
Progress and Type Preservation theorem. The system is based on adding the notion of names, as developed
by Pitts and Gabbay in [PG00], [GP01], [Pit01] and [Gab00], to the AD-calculus of proof terms for the
necessitation fragment of modal logic S4 [PD01]. The motivation for combining the two systems comes from
the long-recognized need of meta-programming to handle code expressions containing free variables ([Dav96],
[Tah99b], [MTBS99]). In our language, the free variables of a code expression are represented by names.
Names can be operationally thought of as references, except that the type system puts certain limitations
on their occurrence. First, a term can be evaluated only if it contains no names on the lowest code level —
this is in sharp distinction with the semantics of names in FreshML [PG00]. Second, names cannot escape
the scope of their creating new unguarded by an appropriate construct for name abstraction.

The set of names on which a term depends is reflected in its typing. We hope that this design would
allow a more fine-grained control over the occurrence of free variables, and thus make the language more
expressive, easier to program in, and more amenable to future extensions.

On a related note, it may be of interest here to draw a parallel with with a related phenomenon which
occurs in the extension of MetaML with references [CMS01]. A reference in MetaML must not be assigned a
postponed/code value which contains variables bound on the outside of the code constructor. Indeed, if such
a thing occured, than the “free” variable may escape the scope of the outside A-construct which introduced
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it. For technical reasons, however, this actually cannot be prohibited, so the authors resort to a hygienic
handling of scope extrusion by annotating a term with the list of free variables it contains. Obviously, this
very much reminds of the operation of name abstraction. In particular, one can imagine that a similar
scenario would happen if we tried to extend our language with references, too. We would need to require
that the type of an expression assigned to a reference does not contain any unbound names, in order to
avoid scope extrusion. In such a setup, the operation of name abstraction would correspond exactly to the
mentioned MetaML annotations.

That aside, we also considered constructs for polymorphism in names and for intensional code analysis.
The former provides for writing programs which are parametric in their name dependencies. The later is a
pattern-matching mechanism to compare, inspect and destruct code values at run-time, which we currently
restricted to the simply typed fragment of the language. Taken together, they allow recursing over a source of
(a simply-typed) object program — a feature that we hope will find its use in programming code optimizations
in a setup of scientific and symbolic computation.
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A Proofs

Lemma 10 (Substitution Principles)
1. if S;TFa e : A[C] and S;T,2:Aba es: B[C], then S;T Fa [e1/2]es : B[C].
2. if S, F? Faer: A[D] and S;Ta,u:A[D] Fa €3 : B[C], then S;T1,Ts Fa [e1/u]es : B[C].
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3. if S;TY Fa e1: A[D] and S; Ty, t=A[D] ba e3 : B[C], then S;T1,Ts ba [e1/t]es : B[C].
4. if S;a:P;T1 Fa ey : P[C] and S,a:P;T4 Fa ea : Bla,C], then S,a:P;T1,T% Fa {e1/a}es : B[C].
Proof: All the proofs are by induction on the structure of the typing derivation for e;.
Principle 1. if S;T Fa €1 : A[C] and S;T,z:AbFa €2 : B[C], then S;T Fa [e1/x]es : B[C].
case €3 = %, €3 = Y, €3 = U O €3 = Q.
These are trivial, since the substitution is [e; /z]es is vacuous.
case e = .
Reduces to one of the assumptions.
case e3 = Ay:Bj. e, and B = By — Bs.
1. By typing derivation, S;T', z:A4,y:B; Fa e : B2 [C].
2. By induction hypothesis, S;T,y:B; Fa [e1/z]e : B2 [C].
3. This leads to the required S;T' Fa Ay:B;. [e1/x]e : By — By [C].
case eq = ¢’ €.

From the typing derivations for ¢’ and e”, by using the induction hypothesis, S;T Fa [e1/z]e’ :
B’ — B[C] and S;T Fa [e1/z]e” : B [C]. Thus follows the result.

case ey = fix y:B. e.
1. By typing derivation, S;T',z:A,y:B Fa e : B[C].
2. By induction hypothesis, S;T,y:B Fa [e1/z]e : B[C].
3. This leads to the required S;T Fa fix y:B. [e1/z]e : B[C].

case ez = (box e).
Trivial because z does not occur in e, and so the substitution [e;/2z]box e is vacuous.
case ez = (let box v = ¢’ in €").

1. From typing derivation, by induction hypothesis, S;T Fa [e1/z]e’ : O(B'[C']) [C].
2. Also notice that, S; T, u::B’ ] Fa [e1/z]e” : B[C] or S;T,u=B'[C'] Fa [e1/z]e’ : B[C], depend-

ing on whether C’ = §§ or not.

3. In either case, we have the required S;T' Fa (let box v = [e1/z]e’ in [e1/z]e”) : B[C].
case e3 = a. e, where B = le B"and a:P € S.

1. By typing derivation, S;T,2:AFa e : B'[C] and A+ fp(B') # a.

2. By induction hypothesis, S;T Fa [e1/z]e : B'[C],

3. so we just reassemble S;T Fa a. [e1/z]e: ( l./lp B [C].
case ey = e @qa, where a:P € S.

1. By typing derivation, S;T,2:A Fa e : ( le B)[C] and AF fp(B) # a.

2. By induction hypothesis, S;T Fa [e1/z]e : ( I/IP B) [C],

3. so just reassemble S;T Fa ([e1/z]e)@a : B[C].

case es = new a:P in e.
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1. By typing derivation, S,a:P;T,z:A Fagq € : B[C] and A#tat B[C] # a.
2. By induction hypothesis, S, a:P;T Fag, [e1/z]e : B[C],
3. so assemble back into S;T Fa new a:P in [e1/z]e : B[C],
case es = Ap#K. e, where B =Vp# K. B'.
1. By typing derivation, S;I',2:A Fa pux € B'[C].
2. By induction hypothesis, S;I Fa p2x [e1/2]e: B' [C],
3. so we derive the required S;T Fa Ap#K. [e1/z]e: (Yp#K. B') [C].
case ey = ¢ [D] where B = [D/p]B’.
1. By typing derivation, S;T,2:AFa e : (Vp#K. B')[C],AF D # K, and D C dom(S)Udom(A).
2. By induction hypothesis, S;T Fa [e1/z]e : (Vp#K. B') [C],
3. and follows the required S;T Fa [e1/2z]e [D] : ([D/p]B') [C].
case €3 = {a = €'} €, where a:P € S.
1. By typing derivation, S;I',z:AFa € : P[C] and S;T,z:AFa e : Bla,C].
2. By induction hypothesis, S;T Fa [e1/z]e¢’ : P[C] and S;T Fa [e1/2z]e” : Bla,C],
3. so follows the needed result S;T Fa {a = ([ex/z]e")} ([e1/x]e").
case subtyping from B’ <: B.
1. By typing derivation, S;T',z:A Fa €2 : B'[C].
2. By induction hypothesis, S;T Fa [e1/z]es : B'[C].
3. Use subtyping to conclude, S;T Fa [e1/2]e2 : B[C].

case €3 = (case ey of box ™ = ¢ else €).

1. By typing derivation, S;T Fa eg : O(P[D]) [C], and S;- Ika 7 : P[D]=T; and S;T,T1 Fa € :
BI[C], and S;T Fa ¢’ : B[C].

2. By induction hypothesis, S;T' Fa [e1/z]eo : O(P[D]) [C], and S;T,T1 Fa [e1/z]e’ : B[C], and
S;T Fa [e1/z]e” - B[C].

3. Now just assemble back into the required result, using the typing rule for case.
Principle 2. if S;I'? Fa ey : A[D] and S;T'y, u:A[D] ba e : B[C], then S;T'y,T's Fa [e1/u]es : B[C].

case ey = %, €3 =&, es = u', or e3 = a.

Trivial, since the substitution [e; /u]es is vacuous.

case ey = u, where B= A and D C C.

1. By hypothesis weakening, S;I'{ ta €1 : A[D] implies S;T1 Fa €1 : A[D]
2. and then S;T'1,T's Fa €1 : A[C], using both hypothesis and dependency weakening.

case es = Ay:B;. e, where B = By — Bs.

1. By typing derivation, S; 'y, u::A[D],y:B1 Fa e : B2 [C].
2. By induction hypothesis, S;T1,Ts,y:B1 Fa [e1/u]e : B2 [C].
3. Now assemble back S;T1,Ts Fa Ay:By. [e1/u]e : By — Bs [C].
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case ey = ¢ €".

1. By typing derivation, S;Ta, uA[D] Fa €¢/'B’ = B[C] and S;Ts, u:A[D] Fa "B [C].
2. By induction hypothesis, S;T1,TsFa [e1/ule’ : B'— B[C]land S;T1,T2 Fa [e1/ule” : B'[C].
3. We now just assemble back S;T'1, T2 Fa [e1/ule’ [ex/ule” [B][C].

case ey = fix y:B. e.

1. By typing derivation, S; 'y, u::A[D],y:B Fa e : B[C].
2. By induction hypothesis, S;T1,Ty,y:B Fa [e1/ule : B[C].
3. Now assemble back S;T'1, T2 Fa Ay:B. [e1/ule : B[C].

case ez = box e, where B = O(B'[C"]).

1. By typing derivation, S; Ty, u::A[D] Fa e : B [C].

2. Because I'Y = I'?® we have S;I'T° Fa ey : A[D].

. From (1), (2) and the induction hypothesis, S;T'7,TY Fa [e1/z]e : B’ [C].
4. By Lemma 5, S;I'},['J Fa [e1/z]e : B [C'],

5. and finally, we can reassemble S;T'1, T3 Fa box ([e1/z]e) : O(B'[C']) [C],

(U]

case e3 = let box v = ¢’ in ¢’

1. By typing derivation, S; T2, u::A[D] Fa € : O(B'[C']) [C]

2. Also by typing derivation, either S; Ty, u::A[D],v::B' ba €’ : B[C] or S;T'y, u::A[D], v=:B'[C'] Fa
e’ . B[C], depending whether C'= ) or C # 0.

3. By (1) and induction hypothesis, S;T'1,T3 Fa [e1/u]e’ : O(B' [C']) [C]

1)
4. By (2) and induction hypothesis, S;T'1,T2,v::B’ Fa [e1/ule” : B[C] or S;T1,T2,v=2B'[C'] Fa
[e1/u]e” : B[C].
5. Either way, just assemble back S;T'1,T'3 Fa let box v = [e1/ule’ in [e1/ule” : B[C].

case es = a. €', where B = VIPB’ and a:P € S.
a:
1. By typing derivation, S; [y, u:A[D] Fa €' : B'[C] and A fp(B’) # a.

2. By induction hypothesis, S;T'1,'s Fa [e1/u]e’ : B[C].
3. Thus, reassemble, S;T'1,Ta Fa a. ([er/ule’) : B[C].
case €3 = ¢/ @a, where a:P € S.
1. By typing derivation, S; Ty, u::A[D] Fa e : (al/IP B)[C], and A+ {p(B) # a.
2. By induction hypothesis, S; T,y Fa [e1/u]e : (a|'/|P B) [C],
3. so follows the required S;T'1, T2 Fa ([e1/ule)@a : B[C].

case €3 = new a:P in €.

1. By typing derivation, S, a:P; Ty, ut:A[D] Fag, € : B[C], and A#at B[C] # a.
2. By induction hypothesis, S,a:P;T1,Ts Faga [e1/ule’ : B[C],
3. and then the required S;T'1,T'2 Fa new a:P in [e1/ule’ : B[C].

case e3 = Ap#K. €', where B = Vp#K. B'.
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case

case

case

case

1. By typing derivation, S; s, ut:A[D] Fa pxk € : B [C].
2. By induction hypothesis, S;I'1, 'y ba p2x [e1/ule’ : B’ [C],
3. and then the required, S;T1, Ty Fa Ap#K. [e1/ule’ - (Vp#K. B') [C].
es = €' [D'], where B = [D'/p]|B’.
1. By typing derivation, S;Ts,uzA[D] Fa € : (Vp# K. B')[C], AF D' # K and D' C dom(S) U
dom(A).
2. By induction hypothesis, S;T'1,T's Fa [e1/ule’ : (Vp# K. B') [C],
3. so assemble back into S;T'y, 'y Fa [e1/ule’ [D'] : ([D'/p]B') [C].

ea ={a=¢'} €, where a:P € S.

1. By typing derivation, S; 'y, u::A[D] Fa €' : P[C] and S; Ty, u::A[D] Fa €” : Bla,C].
2. By induction hypothesis, S;T1,Ts Fa [e1/ule’ : P[C], and S;T1,T2 Fa [e1/ule” : Bla,C].
3. Assemble back into the required S;T1,T2 Fa {a = [e1/ule'} [e1/ule” : B[C].

subtyping from B’ <: B.

1. By typing derivation, S; 'y, u::A[D] Fa €2 : B [C].
2. By induction hypothesis, S;T1,Ts Fa [e1/u]es : B'[C].
3. Use subtyping to conclude, S;T'1,T' Fa [e1/ules : B[C].

ez = (case eg of box ™ = ¢’ else €).
1. By derivation, S;Ta, u:A[D] Fa eo : O(P[D']) [C], and S; - Ika 7 : P[D']=T" and
S;Ty,utA[D], T Fa €' : B[C], and S;Ta,us:A[D] Fa €’ : B[C].

2. By induction hypothesis, S;I'T,T's Fa [e1/uleq : O(P[D'])[C], and S;TT T, T Fa [e1/ue :
B[C], and S;I'¥,T's Fa [e1/u]e” : B[C].

3. By typing rule for case, S;T'{, T3 Fa [e1/u](case eg of box m = ¢’ else ¢”) : B[C].

Principle 3. if S;I'7 Fa €1 : A[D] and S; [, t=A[D] Fa e : B[C], then S;T1,Ts Fa [e1/t]ea : B[C].

case

case

case

case

€2 = %, €3 = X, €2 = U Or €3 = Q.

Trivial since the substitution [e;/t]es is vacuous.
€9 = Ay:B1. e, where B = By — Bs.

1. By typing derivation, S; 'y, t=A[D],y:B1 Fa e : B2 [C].
2. By induction hypothesis, S;T1,Ts,y:B1 Fa [e1/tle : B2 [C],
3. and thus S;T,Ty Fa Ay:By. [e1/t]e : By — Bs [C].

eq =€ e”.

1. By typing derivation, S; 'y, t=A[D] Fa € : B' — B[C] and S;Ta,t=A[D] Fa €” : B'[C].
2. By induction hypothesis, S;T'1, Ty Fa [e1/tle’ : B' = B[C] and S;T'1,Ta Fa [e1/t]e’ : B'[C].
3. Thus follows the result S;T'1, Ty Fa ([e1/t]e’) ([ex/t]e”) : B[C].

eq = fix y:B. e.

1. By typing derivation, S; 'y, t=A[D],y:B Fa e : B[C].
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2. By induction hypothesis, S;T1,s,y:B Fa [e1/t]le : B[C],
3. and thus S;T1,T2 Fa Ay:B. [e1/t]le : B[C].

case es = box ¢/, where B = O(B'[C]).

1. By typing derivation, S; T3 t::A[D] Fa €' : B'[C].

2. Because I'Y = I‘fe, by the previously proved substitution principle (Lemma 10.2), S;TY,TY Fa
[e1/t]e’ : B' [C].
3. Now assemble back into S;T'1,T's Fa box ([e1/t]e’) : O(B'[C]) [C].

case e3 = let box v = ¢’ in €’

1. By typing derivation, S; T, t=A[D] Fa €' : O(B'[C']) [C]

2. By typing derivation, either S; s, t=A[D],vi:B' Fa €” : B[C] or S;T's,t=A[D], v=B'[C'] Fa € :
B[C], depending whether C' = (§ or C" # 0,

3. By (1) and induction hypothesis, S;I'1, '3 Fa [e1/t]e’ : O(B' [C']) [C]

4. By (2) and induction hypothesis, S;I'1,T2,v::B' Fa [e1/tle” : B[C] or S;T'1, T, v=B'[C'] Fa
[er/t]e" : B[C].
5. In either case, we get the required S;I'1, Tz F let box v = [e1/t]e’ in [e1/t]e” : B[C].

case es = a.¢e', where B = |/|PB’ and a:P € S.
1. By typing derivation, S;Ta,t=A[D] Fa €' : B'[C] and A - fp(B’) # a.

2. By induction hypothesis, S;T1,Ty Fa [e1/t]e’ : B'[C].
3. Reassemble into, S;T'1, Ty tba a. [e1/t]e’ : ( I/IP B [C].

case e3 = €/ @a, where a:P € S.

1. By typing derivation, S;Ta, t=A[D] Fa €' : ( l./lp B)[C] and A+ 1p(B) # a.
2. By induction hypothesis, S;T1,Ts Fa [e1/t]e’ : ( le B) [C]
3. and then S;T'1, s Fa ([e1/tle') @a : B[C].
case €3 = new a:P in ¢'.
1. By typing derivation, S, a:P; Ty, t2A[D] Fag, € : B[C] and A#a - B[C] # a.
2. By induction hypothesis, S, a:P;T1,'2 Fagaq [e1/t]e’ : B[C].
3. Conclude S;T1,T'2 Fa new a:P in [e1/t]e’ : B[C].
case ey = Ap#K. €', where B = Vp#K. B'.
1. By typing derivation, S;I'y,tA[D] ba p2x € : B [C].
2. By induction hypothesis, S;T'1, Ty ba pux [e1/t]e’ : B [C].
3. Conclude S;I'y,'y Fa Ap#K. [e1/tle' : (Vp# K. B') [C].
case ey = ¢’ [D'], where B = [D'/p]B’.
1. By typing derivation, S;Tq,t=A[D] Fa € @ (Yp#K. B')[C], A+ D' # K, and D' C dom(S) U
dom(A).
2. By induction hypothesis, S;T1,Ts Fa [e1/t]e’ : (Yp#K. B') [C].
3. From here, we can reassemble, S;T'1, Ty Fa ([e1/t]le’) [D'] : ([D'/p]B') [C].
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case e = {a = ¢’} ¢, where a:P € S.

1. By typing derivation, S; 'y, t=A[D] Fa €' : P[C] and S;T's,t=A[D] Fa €” : Bla, C].
2. By induction hypothesis, S;T1, s Fa [e1/t]e’ : P[C], and S;T1,T2 bFa [e1/t]e” : Bla,C].
3. Assemble back into S;T'1,Ta Fa {a = ([e1/t]e’)} ([er/t]e”) : B[C]

case subtyping from B’ <: B.

1. By typing derivation, S; 'y, t=A[D] Fa e : B'[C].
2. By induction hypothesis, S; 1,y Fa [e1/t]es : B [C].
3. Use subtyping to conclude, S;T'1,T'y Fa [e1/t]es : B[C].

case ez = (case eg of box ™ = ¢ else €).

1. By derivation, S; T, t=A[D] Fa €0 : O(P[D']) [C], and S;-Ika 7 : P[D'] =T’ and
S;Ty,t=2A[D], T Fa € : B[C], and S; T2, t=A[D] Fa €’ : B[C].

2. By induction hypothesis, S; 'Y, I's Fa [e1/t]leo : O(P[D']) [C],and S; I, L2, 1" Fa [e1/t]e' : B[C],
and S;I'7, Ty Fa [e1/t]e” : B[C].

3. By the typing rule for case, S; 7,2 Fa [e1/t](case g of box m = ¢ else ¢”) : B[C].

Principle 4. if S,a:P;T; Fa €1 : P[C] and S,a:P;T5 Fa €5 : Bla,C], then S,a:P;T1,T5 Fa {e1/a}es :
B[C].
case €3 = %, €3 = I.
Trivial since the name substitution {e;/a}es is vacuous, and the typing es : B [a, C] must have been
derived by weakening from ey : B[], and thus we can also weaken it into the typing es : B [C].
case €z = a.

Trivially obtained by weakening the hypothesis with '} in the premise S, a:P;T1 F ey : A[C].

case €5 = b.
Also trivial since the substitution is vacuous, b € C' and the typing B[a, C] must have been obtained
by weakening from b:B[b], and can thus be weakened into b:B[C] as well.

case €3 = u.

By the definition of I'2, it is only possible that the variable v € dom(I'4) if its name annotation is
empty, i. e. if u::B[f] € I'5. Thus, by name dependency weakening, S,a:P;I'5 Fa u : B[C]. Now, by
hypothesis weakening, and because u = {e1/a}u, we get the required S, a:P; 1,14 Fa {e1/a}u: B[C].

case ey = A\y:B;.¢', where B = By — Bs.

1. By typing derivation, S,a:P;T5,y:B; Fa € : Bs[a, C].

2. By induction hypothesis, and because I'§,y:B; = (I'2,y:B1)%, we have S,a:P;T'1,T'5,y:B1 Fa
{er/ate’ - B2 [C],
3. and from here, the required, S, a:P;T'1,T5 Fa Ay:B;. {e1/a}e’ : By — By : C.

case ey = ¢’ €.

1. By typing derivation, S,a:P;T5 Fa ¢’ : B' — Bla,C] and S,a:P;T4 Fa € : B'[a,C].

2. By induction hypothesis, S,a:P;T1,I['% Fa {e1/a}te’ : B'— B[C] and also S,a:P;T'1,T4 Fa
{e1/a}e” : B'[C].

3. Now just assemble back into S,a:P;T'1,T5 Fa ({e1/a}e’) ({e1r/a}e”) : B[C].
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case ey = fix y:B. ¢/,

1. By typing derivation, S, a:P;T5,y:B ta €' : Bla,C].
2. Because I'4,y:B = (I's,y:B)*, by induction hypothesis, S, a:P; 1,15, y:B Fa {e1/a}e’ : B[C],
3. and from here, the required, S,a:P;T'1, T4 Fa Ay:B. {e1/a}e’ : B: C.

case ez = box €', and B = O(B'[C]).
In this case, the typing box ¢’ : B[a, C] is obtained by weakening inherent in the box rule. Thus, we
can also derive S, a:P; 4 Fa box ¢ : O(B’[C"]) [C]. Considering that {e1/a}box ¢’ = box €', weaken
the hypothesis context to get S,a:P;I'1,T'5 Fa {e1/a}box ¢ : O(B'[C]) [C].

case e; = let box v = €' in €”.

1. By typing derivation, S,a:P;I'5 Fa ¢ : O(B'[C"]) [a, C],

2. By typing derivation, either S,a:P;T%,v::B’ ba €’ : Bla,C] or S,a:P;T5, v=:B'[C'] Fa €' :
B a, C], depending whether C' = §§ or C" # 0.

3. By induction hypothesis, S,a:P; 1,5 Fa {e1/a}e’ : O(B'[C']) [C].

4. Also notice that I'§,v::B’ = (g, v::B’)%, and if C' # 0, T4, v=B'[C'] = (I'2, v=B'[C'])%.

5. From these two equations and induction hypothesis, S,a:P;T1,T5,v::B' Fa {e1/a}e” : B[C] or
S,a:P;T, T8, v=B' [C'] Fa {e1/a}e” : B[C].

6. Now, just assemble back into the required S,a:P;I'1,T'5 Fa let box v = {e1/a}e’ in {e1/a}e” :
BIC].

case €3 = b. €', where b:QQ € S and B :b%Bl'
1. By typing derivation, S,a:P;T5 Fa ¢ : B [a,C], and A+ fp(B’) # b.
2. By induction hypothesis, S,a:P;T1,T5 Fa {e1/a}e’ : B'[C],
3. and thus S,a:P;T1,T% Fa b. ({e1/a}e): (bI/IQ B [C].
case ey = €/ @b, where b:Q) € S.
1. By typing derivation, S, a:P;T5 Fa € : (bVq!? B)[a,C] and AF fp(B) # a.
2. By induction hypothesis, S,a:P;T1,T5 Fa {e1/a}e’ : (bV!g B) [C].
3. Conclude S,a:P;I'1,I'5 Fa ({e1/a}e’) @b : B[C].
case e; = new b:Q) in ¢’.

1. By typing derivation, S, a:P,b:Q; T4 Fags € : Bla, C].

2. Also, A#btF Bla,C] # b, and thus A#bt B[C] # b.

3. By induction hypothesis, S, a:P,b:Q;T'1,T5 Fags {e1/a}te’ : B[C],

4. leading to the required S,a:P;I'1,T'5 Fa new b:Q in {ei/a}e’ : B[C].

case €3 = Ap#K. €', where B = Vp#K. B'.

1. By typing derivation, S, a:P;I'4 Fa 2k € : B’ [a,C].
2. By induction hypothesis, S, a:P;T1, '8 Fa 2k {e1/a}e’ : B'[C].
3. Thus follows, S,a:P;T1, T4 Fa Ap#K. {e1/a}e’ : (Yp#K. B')[C].

case ep = €' [D], where B = [D/p]B’.
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1. By typing derivation, S,a:P;T5 ba €' : (Vp#K. B')[a,C], A+ D # K, and D C dom(S) U
dom(A).

2. By induction hypothesis, S,a:P; 1,5 Fa {e1/a}e’ : (Vp#K. B')[C].
3. Conclude, S,a:P;T1,T5 Fa ({e1/a}e’) [D] : ([P/p]B’) [C].

case ey = {a=¢'} €.

1. By typing derivation, S,a:P;T5 Fa €' : Pla,C] and S,a:P;T% ka €” : Bla,a,C].
2. By induction hypothesis, S,a:P;T'1,T'5 Fa {e1/a}e’ : P[C],
3. and so S,a:P;['1, T4 Fa {a = {e1/a}e'} " : B[C].

case €3 = {b=¢'} €”, where b:Q € S.

1. By typing derivation, S,a:P;T4 Fa € : Q[a,C], and S,a:P;T5 Fa €’ : Bla,b,C].

2. By induction hypothesis, S,a:P;T'1,T% Fa {e1/a}e’ : Q[C], and S,a:P;T1,T5 Fa {e1/a}e” :
B1b,C].

3. Assemble back into the required S, a:P;T'1,T'5 Fa {b = {ei/a}e’} ({e1/a}e”) : B[|C].
case subtyping from B’ <: B.

1. By typing derivation, S, a:P;T5 Fa es : B'[C].
2. By induction hypothesis, S,a:P;T1,T4 Fa {e1/a}es : B'[C].
3. Use subtyping to conclude, S, a:P;T'1,I'5 Fa {e1/a}es : B[C].

case ez = (case ep of box ™ = ¢ else €).

1. By derivation, S,a:P;T'5 F eq : O(P[D]) [a,C], and S,a:P; ka7 : P[D]=1" and
S,a:P;T5 T"ka € : Bla,C],and S,a:P;T5 Fa € : Bla,C].
. By induction hypothesis, S, a:P;'1,I'4 F {e1/a}eq : O(P[D]) [C], and
S,a:P;T1,T5 F {ei/a}e” : B[C].
. By Lemma 16, [ = I''2.
. By (1) and (3), S,a:P; (T, ") Fa €' : Bla,C].
. By (4) and induction hypothesis, and then (3) again, S,a:P;T'1,T5,I" Fa {e1/a}e’ : B[C].
. Finally, by (2) and (5), and the typing rule for case,
S,a:P;T1,T% Fa {e1/a}(case ey of box 7 = ¢’ else ") : B[C].

]

S Ot = W

Lemma 11 (Parametricity)

1. if S;T bapur e A[C] and D is a well-formed dependency set, i.e. D C dom(S) U dom(A), and is
fresh for K, i.e. A+ D # K, then

S;[D/pIl Fa [D/ple : ([D/plA) [[D/p]C]
2. if ;T Fae: A[C], and a,b:P are names (not necessarily in S), then

(a b)S;(a b)T Fa vya (a b)e : (a b)Al(a b)C]
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Proof: First notice that the transposition (the second) property is trivial to prove by induction on the
typing derivation for e. Namely, all the typing rules, as well as the rules for auxiliary judgments are
obviously insensitive to swapping the names throughout, in all the contexts, types, terms and dependencies.
Thus the judgment itself must be insensitive to swapping names. This remains true even when the language
is extended with the construct case for pattern-matching, as shown in Lemma 17.2.

The proof of the first property is somewhat less trivial, but still rather straightforward by induction on
the typing derivation of e.

case € =%, €==,€=uUOre=ada.

Substitution is vacuous on these terms, but it still may change the types. However, the given derivations
are obtained using a hypothesis or a constant rule, and the substitution will change the types in the
contexts as well as in the judgment.

case e = \x:A’. ¢/, where A = A" — A”.

1. By typing derivation, S;T', 2:A" ba pux € : A”[C]. and S; A, p#K F A" wi.

2. By induction hypothesis, S;[D/p]lU, z:[D/p]A’ ba [D/ple’ : [D/p]A" [[D/p]C],

3. By Lemma 2.3, S; A F ([D/p]A’) wf.

4. Combining (2) and (3), S;[D/p]l Fa (Az:([D/p]&’). [D/ple’) : ([D/p]A” — [D/p|A") [[D/p]C].

case € = €1 €s.

1. By typing derivation, S;I' Fa pux €1 : A1 = A[C], and S;T Fa puk €2 : A1 [C].

2. By induction hypothesis, S; [D/p|T Fa [D/pler : ([D/plA1 — [D/plA) [[D/p]C],and S; [D/p]T Fa
[D/ples - ([D/pl A1) [[D/pIC]-

3. Conclude, S; [D/p]I' Fa ([D/pler) ([D/ples) : ([D/p]A) [[D/p]C].

case ¢ = fix z:A. €.

1. By typing derivation, S;T', z:A Fa pur € : A[C]. and S; A, p#K = A wi.

2. By induction hypothesis, S;[D/p]l', z:[D/p]A Fa [D/ple’ : ([D/p)A) [[D/p]C],

3. and by Lemma 2.3, S; A+ ([D/p]A) wi.

4. Combining the two, conclude S;[D/p|l Fa (fix z:([D/p]4). [D/ple’) : ([D/p]A) [[D/p]C].

case € = box ¢', where A = O(A'[C"]).

1. By typing derivation, S;IV Fa ,zx € @ A" [C].
2. By induction hypothesis, S;[D/p](I'V) Fa [D/ple’ : ([D/plA") [[D/p]C"].
3. Since [D/p](I'7) = ([D/p]L')", we get S; [D/p]l' Fa box [D/ple’ : O([D/p](A'[C'])) [D/p]C].

case ¢ = let box u = ¢e; 1In es.

1. By typing derivation, S;I' Fa pxx €1 : O(A'[C']) [C], and,

2. either ST, utA" Fa,ur €2 1 A[C], or S;T uzA'[C'] Fa sk €2 @ A[C], depending whether
C'=0or C"#£0.

3. By (1) and induction hypothesis, S; [D/p|T Fa [D/ples : [D/p]O(A’[C') [[D/p]C]

4. By (2) and induction hypothesis, S;[D/p|l',u::[D/p]A" ta [D/ples : ([D/p]A) [[D/p]C], or
S; [D/pIL, u([D/pl(A'[C"])) Fa [D/plez : ([D/p]A) [[D/p]C].

5. Reassemble into S;[D/p]T Fa let box v = [D/ple; in [D/ples : ([D/p)A) [[D/p]C].
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case e = a.¢', where A = I/IPA’ and a:P € S.

Assume a € D to ensure capture avoiding. This can always be achieved by alpha-renaming a into some
other fresh name.

1. By typing derivation, S;I' Fa pux € : A'[C] and A, p#K + fp(4A') # a.
2. By induction hypothesis, S;[D/p]l Fa ([D/p]A") [[D/p]C].

3. By Lemma 3, A fp([D/p]4’) # a.

4. Assemble back into S;[D/p]l Fa (a. [D/ple’) : ( VIP([D/p]A’)) [[D/p]C].

a:

case € = ¢ @a, where a:P € S.

Assume, as before, that a € D, to ensure capture avoiding.
1. By typing derivation, S;I' Fa pux € : ( I/IP A)[C]. and A, p#K F1p(A4) # a.
2. By induction hypothesis, S; [D/p]l' ba [D/ple’ : [D/p]( l./lp A)[[D/p]C].

3. By Lemma 3, A+ fp([D/plA) # a.

4. Also, [D/p](amp A) = a:P([D/P]A):

5. and we can assemble back S;[D/p]|l' Fa ([D/ple')@a : ([D/p]A)[[D/p]C].

case ¢ = new a:P in ¢’

To avoid capture, assume that @ is a fresh name, not occurring in any of the variable, name, or
parameter contexts.

By typing derivation, S, a:P;I Fa pux € 1 A[C], and A#a, p#(K,a) - (A[C]) # a.
By induction hypothesis, S,a:P;[D/p]T' Fa [D/ple’ : ([D/p]A) [[D/p]C].

From assumption A F D # K and the fact that a is fresh, we get A#at D # (K, a).
By Lemma 2.2, A#at ([D/p](A[C])) # a, so follows the required

S:[D/pIT Fa new a:P in [D/gle’ : ((D/p]4) [[D/pIC].

Ot = W N =

case € = Aq#K'. ¢/, where A =Vq#K'. A’
To avoid capture, assume ¢ is fresh.
1. By typing derivation, S;I' Fa pur qux: € + A'[C].
2. By induction hypothesis, S;[D/p]l Fa qzx [D/ple’ : ([D/p)A’) [[D/p]C].
3. Thus, S [D/pIl Fa Ag#K'. [D/ple’ - (Vg#K'. [D/p) ') [[D/pIC].
case e = ¢’ [D'], where A = [D'/q]A’ (¢ will be introduced later).
1. By typing derivation, S;T bFapux € @ (Vg#M. A') [C] where A,p#K + D' # M and D' C
dom(S) Udom(A, p#K).
2. By induction hypothesis, S;[D/pll' ba [D/ple’ : (Vg#M. [D/plA") [[D/p]C].
3. By Lemma 2.1, A+ ([D/p]D') # M.
4. Next, obviously, ([D/p]D’) C dom(S) U dom(A).
5. Thus conclude, S;[D/pIT Fa ([D/ple') [[D/p] D] : ([D/p]A) [[D/p]C].

case € = {a = e} ey, where a:P € S.

1. By typing derivation, S;I' Fa pxx €1 : P[C], and S;T Fa pux €2 Ala,C).
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2. By induction hypothesis, S;[D/pIl Fa [D/pler : ([D/p]P)[[D/p]C], and S;[D/pIT Fa [D/ples :
([D/plA) [a, [D/p]C].
3. Since P = [D/p]P, reassemble into S;[D/p]l Fa {a = [D/ple1} ([D/ple2) : ([D/plA) [[D/p]C].

case subtyping from A’ <: A.

1. By typing derivation, S;T Fa pux € A [C].

2. By induction hypothesis, S;[D/p]l Fa [D/ple : ([D/p]A’) [[D/p]C].
3. By Lemma 2.5, [D/p]A’ <: [D/p]A,

4. so by subtyping, : [D/]T Fa [D/ple : ((D/5]4) [D/51C].

case e = (case ey of box m = ¢’ else ¢").

1. By derivation, S;T' Fa p2x €0 : O(P[D'])[C], and S;- kA pgx m: P[D']=T; and
S;T,T1 Fappx ¢ : B[C],and S;T bapux € : B[C].

2. By induction hypothesis, S;[D/p]l' Fa [D/pleo : O(P[[D/p]D]) [[D/p]C], and S; [D/p](T,T'1) Fa
[D/ple’ - ([D/p]B) [[D/p]C], and S; [D/p]l Fa [D/ple” - ([D/p]B) [[D/p]C].

3. By Lemma 17, S;- Ika 7 : P [[D/p|D'] = [D/p]T';.

4. By typing rule for case, just assemble back into the required
S;[D/pI Fa case ([D/pleo) of box m = ([D/ple') else ([D/ple”) - ([D/p]B) [D/p]C].

Lemma 12 (Contraction Termination and Type Preservation)

IfS1,S59; T2 kA e : A[C] then there exists unique term w, such that e LN Furthermore, w is So-contracted
and S1,S52;T2 Fa w: A[C].
Proof: By induction on the derivation S1,Sy; T2 Fe: A[C].

case € =%, €=2,€=uUOre=ada.

For each of these cases ¢ —2% e, and they are all already contracted. So we have existence, uniqueness,
contractedness, and the types are preserved.

case e = Ax:A’. ¢’ and A = A" — A",
1. By typing derivation, Sy, So; T2, z:A" Fa €' : A" [C].

2. Since T4, z:A" = (T, z:A’)%, by induction hypothesis there exists unique w’ such that ¢’ LN w’,
and this w’ is contracted and Sy, Sa; (T, 2:A")2 Fa w' @ A" [C].

3. Then the term w = Az:A’. w’ satisfies all the requirements of the lemma.
case e = ¢ €',

1. By typing derivation, S1,So; T2 Fa € : A" — A[C], and S;,S2; T2 Fa e’ : A [C].
2. By induction hypothesis, there are w’ and w” with the requested properties, and the term w is
w=w w".

case e = fix z:A. €.

1. By typing derivation, Sy, So; T4, 2:A Fa €'+ A[C].

2. Since I'*,z:A = (I, z:A)%, by induction hypothesis there exists unique w’ such that ¢’ SN

and this v’ is contracted and S, Ss; (T, 2:4)% Fa w' : A[C].

bl
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3. Then the term w = fix z:A. w’ satisfies all the requirements of the lemma.

case € = box ¢’, where A = O(A'[C"]).

This is actually one of the base cases (together with hypotheses and constants) — boxed expressions
contract to themselves.

case ¢ =let box u = ¢ in €”.

1. By typing derivation, Sy, Sa; 2 F ¢’ : O(A’[C"]) [C], and,
2. either Sy, So; %, unA’ F e’ : O(A[C']) [C], or S1,S2; T8, u=A"[C'] F € : O(A'[C"]) [C], depending
whether C' = 0 or C' # 0.

3. Also notice that (T4, u:A’) = (T, u::A’)?, and if C’ # 0, then (T4, u=A'[C"]) = (T, u=A'[C"])".

4. Then, by induction hypothesis, we have w' and w" satisfying the prescribed properties. Combine
them into w = let box v = w' in w”.

case e = a. ¢, where A = I/IPA’, and a:P € 51, 55.

1. By typing derivation, Sy, S2; % Fa €' : A'[C], and A F fp(4') # a.

2. By induction hypothesis, there is unique w’ such that e’ 22, ' and w' is contracted and of the
same type A’

3. Now, pick w=a.w'.
case € = ¢ @a, where a:P € S1,5,.

1. By typing derivation, Sy, Sa; T2 Fa € : ( le A [C], and A F1p(A) # a.

a:
2. By induction hypothesis, there is unique w’ such that e’ 22, w' and w' is contracted and of the
same type (1 A").
a:P

3. Now, pick w = v’ @a.

case € = new a:P in €.

1. By typing derivation, S1, (Sa,a:P);Tat €' : A[C], and A#at A[C] # a.

2. By induction hypothesis, there is unique w’ such that ¢’ 2@ P This w' is also contracted
and of type A.

3. Pick w = new a:P in v, and it has the required properties.
case e = Ap#K. e and e = ¢’ [D].
Just as the previous cases, these two also go easily.
case € = {a =¢€'} €', where a:P € 51, Ss.
1. By typing derivation, S1,S2; T2 Fa € : P[C], and S1,S; T2 Fa €’ : Ala, C].

2. By induction hypothesis, there are unique w’ and w’ such that e’ 22 and e 22 w' | plus
they are contracted and preserve the types.
3. Now, distinguish two cases: (1) a € dom(Ss), and (2) a ¢ dom(S>).

4. In the first case, pick w = {a = w'} w". It is contracted and has the correct typing.

5. In the second case, pick w = {w'/a}w”. By the contraction rules, e LN By Lemma 13.1, it is
contracted. By substitution principle (Lemma 10.4), it also has the correct typing Si, Sa; T2 Fa
{w'/a}w" : A[C].
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case subtyping from A’ <: A.

1. By typing derivation, Sy, S2; T2 Fa e : A’ [C].

2. By induction hypothesis, there exists w with the required properties. In particular, w’ has the
same type, i. e. S1,59; T2 Fa w: A" [C],

3. so use subtyping to conclude, S1, S2; T2 Fa w: A[C].

Theorem 15 (Progress and Type Preservation)
If S;-Fe: A[], then either

1. € is a value, or
2. there exists S' O S such that pg,e — pgi,€'; furthermore €' is unique and S’;-F ¢’ : A[].
Proof: By induction on the typing derivation S;-Fe: A[].

case € =X, €=uUO0Orec=a.

These are not applicable, because both the hypothesis context and the name annotations in the above
typing derivation are empty.

case e =% or e = Az. €’
Both terms are already values.
case € = €] €3.
Assume both e; and es are values (otherwise trivial).
1. By typing derivation, S;-Fe; : A" — A[],and S;-Feq : A'[].
2. Then e; = Az. ¢/, and pg,e — ps, [ea/z]e’.
3. By substitution principle 10.1, the reduct has the same typing.
case e = fix z:A. €.
1. By typing derivation, S;z:AF e : A[],
2. and so, by substitution principle 10.1, S;F [e/z]e’ : A[].
3. Thus, S’ = S satisfies the requirements of the theorem.
case € = box ¢', where A = O(A'[C"]).
Assume that ¢’ is not contracted (otherwise e is a value).
1. By typing derivation, S; -+ ¢’ : A’ [C'].
2. By Lemma 12, there exists unique w’ such that ¢/ — w’, which in addition has the typing
S;-Fw  AT[CY).
3. By reduction rules, box ¢’ reduces exactly to box w', and so the typing is preserved.
case ¢ = let box u = ¢e; 1In es.
Assume that e; is a value (otherwise trivial). In that case e; = box wj, where w; is contracted, and
ps, e — ps, [wi/ules.
1. By typing derivation, S;- F w; : A’ [C'], and,
2. either S;uiA’F ey A[], or S;u=A'[C'] F ey : A[], depending whether C' = @} or C” # 0.
3. Conclude, using either Lemma 10.2, or Lemma 10.3, that S; - F [wy/ulex : A[].
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case e =a.¢e', where A = ( I/IPA’) and a:P € S.
Assume that ¢’ is not a value (otherwise e is a value itself).
1. By typing derivation, S;-F ¢’ : A'[], and - F fp(A’) # a (because fp(A’) = §).
2. By induction hypothesis, there exists S’ O S such that pg, e’ — psr, e’ and S';-F e’ A'[].
3. By reduction rules, pus,a.e’ — ps/,a.e”, and
4. since S’;-Fa.ée’: I/IP A'[ ], the typing is preserved.

case € = ¢’ @a, where a:P € S.

Assume that ¢’ is a value (otherwise, trivial).
1. By typing derivation, S;-F ¢’ : ( l./lp A)[], and - F fp(A) # a (because fp(A4) = 0).

Then ¢/ = b.v', where b:P € S, and S;-F ¢ : (a H)A[].

By reduction rules, ps, e — g, (a b)v'.

By Lemma 11.2, (a b)S;-F (a b)v' : (a b)(a b)A[].

Now, both a,b € dom(S), so (a b)S = S.

By idempotency of swapping, S;-F (a b)v' : A[], and the typing is preserved.

S Ot = W

case € = new a:P in ¢’ where a:P & S.

1. By typing derivation, S,a:P;-F ¢’ : A[].
2. By reduction rules, ug,e — (s, a), €', so indeed, S' = (S, a: P) satisfies the requirements.
case e = Ap#K. €.
Trivial; e is already a value.
case e = ¢’ [D].
Assume ¢’ is a value (otherwise trivial).
By typing derivation, S; -+ ¢’ : Vp#K. A’, where F D # K, and A = [D/p]A’.
Since €’ is a value, it is of the form ¢’ = Ap# M. e"”, where M C K and thus - D # M.
By typing rules, S;-bFpunr €’ 0 A'[].
By Lemma 11.1, S;- F [D/ple” : ([D/p]lA) [ ],
Since ps, e — ps,[D/ple”, we have just shown that the typing is preserved.

Ot = W N =

case € = {a =e€;1} ey, where a:P € S.
Assume both e; is a value (otherwise trivial).
1. By typing derivation, S;-Fe; : P[], and S;-F es : Aa].
2. By Lemma 10.4, S; -+ {e1/ates : A[].

3. By reduction rules, us, e — ps,{e1/a}es, so the statement is proved.

case subtyping from A’ <: A.

1. By induction hypothesis, there exists S’ D S such that pg,e — psi, e’ and S';- e’ A'[].
2. By subsumption, we also have S’;- ¢’ : A[], i. e. the types are preserved.

case ¢ = (case ¢y of box m = €1 else e3).

If € is not a value, the case is trivial. So assume that eg is a value, i.e. is of the form ¢y = box w for
some reduced w.
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. By typing derivation, S;-IF 71=T4, and S;T1 Fe; : A[]and S;-Fes: A[].
. If there exists p/ and © such that pg,w > 7= p', O, then ¢’ = O(ey).

. In such a case, by type preservation for pattern-matching (Lemmal9), there exists S’ D S such
that g/ = pg: and S’ A © : T'y.

. From (1) and (3), by substitution principle for value variables (Lemma 10.1), S";- Fa O(e1) : A[].
Here the substitution principle is applied once for every variable in the domain of ©.

5. If no ' and O exist, then €’ = es.

6. From (1) by name-context weakening, S’; - Fa ea : A[].

. In any case, from (4) and (6), we have S;-Fa e’ : A[].
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