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Abstract

We exploretheperformancef an M/GI/1 queueundervariousschedulingpoliciesfrom the perspectie of a new
metric: the slowdownexperiencedy largestjobs. We considerschedulingpoliciesthat biasagainstiarge jobs,
towardslarge jobs,andthosethatarefair, e.g.,ProcesseSharing.We prove thatasjob sizeincreaseso infinity,
all work conservingpoliciescorveme almostsurelywith respecto this metricto nomorethan1/(1 — p), wherep
denotedoad. We alsofind thatthe expectedslowdown underary work conservingpolicy canbe madearbitrarily

closeto thatunderProcesseBharingfor all job sizesthataresuficiently large.

1carnegieMellon University, ComputerScienceDepartmentEmail: harchol@cs.cmu.edu.
2ColumbiaUniversity, Departmenbf Industrial EngineeringandOperationsResearchEmail: sigman@ieacolumbia.edu
3CarnegieMellon University ComputerScienceDepartmentEmail: acw@cs.cmu.edu.

Thiswork wassupportedy NSF CareeiGrantCCR-013307andby Pittshurgh Digital Greenhous&rant01-1.



Keywords:schedulingservicediscipline;M/G/1; slowdown; largejobs; corvergencejimiting; work conserving;

SRPT shortestemainingprocessindime; PS;processosharing,LRPT, longestremainingprocessingime



1 Intr oduction

It is well-known that choosingthe right schedulingalgorithm can have a big impacton performancepoth in
theoryandin practice.For example,changingthe schedulingalgorithmin a CPU from ProcesseBharing(PS)
to aschedulingpolicy thatbiasedowardssmalljobs, suchasShortest-Remaining-ProcessingriE-First(SRPT),
or aschedulingpolicy thatbiasedowardsyoungjobs, suchasLeast-Attained-Servic@ AS), canimprove mean
responséime (a.k.a.sojourntime) dramatically

However, lesswell understoods the performancampactof differentschedulingpolicieson large jobs. For
example,how doesa policy thatbiasesowardssmall jobs, suchas SRPT, compareagainsta policy thatbiases
towardslarge jobs, suchasLongest-Remaining-Processing¥ie-First(LRPT), whenthe performancenetricis
theresponséime of thelargejobs?

In this papemwe limit our discussionto anM/GI/1 queue For theM/GI/1/PSqueuewith loadp, all jobs(large
or small)aresloveddown by the samefactor, ﬁ—p in expectation.Becauseheslowdown (responsdéime divided
by job size)is thesamefor all job sizesthe PS policy is oftenreferredto asthefair policy.

We will shav thatall work conservingschedulingpolicieshave the sameperformanceasPS with respecto
largejobs. In particular we shaw thattheslowdown asjob sizetendsto infinity underary work conservingpolicy
is at mostﬁ; evenfor policiesthatclearlybiasagainstargejobs. We alsoconsiderthe expectedslondown for
jobsthatarenottheverylargest.We shaw thatall “sufficiently-large” jobshave slowdown arbitrarily closeto that

of PS, wherethedefinitionof “sufficiently-large” depend®n p andincludesmostjobsprovidedp is nottoo high.

2 Previouswork

Ever sincethediscovery thatSRPT hasthelowestmeanresponséime of ary schedulingoolicy (for ary sequence
of arrival timesand job sizes)[18, 22, 19], the evaluationof variousschedulingpolicies hasintrigued system
designerandqueueingheorists.Thereexist over a hundredsuney paperdo dateon theanalysisof scheduling
policies,aswell asmary wonderfulbookssuchas[6, 11, 15, 5].

TheSRPT policy in particulathasrecevedmuchattention.SchrageindMiller firstderivedtheexpressiongor
theresponsdimesin an M/G/1/SRPT queud19]. Thiswasfurthergeneralizedby Pechinkinetal. to disciplines
wheretheremainingtimesaredividedinto intervals[13]. Thesteady-statappearancef theM/G/1/SRPT queue
wasobtainedby Schassbeler[17]. Rajaramaretal. shavedfurtherthatthe meanslovdovn underSRPT is at
mosttwice the optimalmeanslowdown for ary sequencef job arrivals[8].

Thoughanalyticalformulasfor the M/G/1 queuewith variousschedulingpolicieshave beenknown for along
time, they aredifficult to evaluatenumerically dueto their complex form (mary nestedntegrals). Hence there
waslittle work on therelative comparisorof differentschedulingpolicies.

More recently papershave appearedn theliteraturethattry to compareheperformancef schedulingpoli-
cies. Thefollowing papershave comparedhe meanresponsdimesof variousschedulingpoliciesunderspecific
job size distributionsand specificloads, by plotting the known formulas: [14, 20, 19, 10, 16]. A 7-yearlong



studyatUniversityof AachenunderSchreibef14, 20] involvedextensie evaluationof SRPT for variousjob size
distributionsandloads. The surwey paperby Schreibef20] summarizeshe results. They showv that SRPT has
significantmeanresponsé¢ime improvementsomparedo otherpolicieslike FCFS, LFCS andPS.

The abore mentionedresultsareall plots for specificjob size distributionsandloads. Henceit is not clear
whetherthe conclusiondasedn theseplotshold for moregenerajob sizedistributionsandloads.Furthermore
theabove studiesexaminedmeanresponséime anddid not raisethe problemof possibleunfairnesdo longjobs.

It hasoftenbeencitedthatthe superiorperformanceof schedulingpoliciesthatbiastowardssmall jobs may
comeat thecostof starvinglargejobs[3, 23, 24, 21]. Usually, examplesof adwersarialarrival sequencewherea
particularjob stanesaregivento justify this. However, suchworstcaseexamplesdo not reflectthe behaior of
thesepoliciesin the averagecase.Theterm “stanation” is alsousedby peopleto indicateunfairness It is often
thoughtthatpoliciesthatfavor smalljobsshouldresultin worseexpectedperformancédor long jobsthanpolicies
thatare™fair,” like PS. Theargumentgivenis thatif a schedulingpolicy manageso reducetheresponsdime of
smalljobs,thentheresponsegimesfor thelarge jobswould have to increaseconsiderablyThis agumentis valid
for schedulingpoliciesthatdo not makeuseof size,seethefamousKleinrock ConserationLaw [11, Page197].

Very recently several papershave appearedhattry to evaluatethe problemof unfairnessanalytically and
thusconsiderthe behaior of schedulingpoliciesasa function of thejob size. Benderet al. considerthe metric
maxslowdownof a job asanindicationof unfairnesg3]. They shav, with anexample,that SRPT canhave an
arbitrarily large maxslowdown However, maxslowdownis not anappropriatenetricto measurainfairness A
large job mayhave anexceptionallylong respons¢ime in somecaseput it might do well mostof thetime.

BansalandHarchol-Balte{2] comparethe SRPT policy andthe PS policy analyticallyfor an M/G/1 queue
onaperjob-sizebasis.They prove thatif theloadp is lessthan % , thenevery job, includingthe very largestjobs,
have alower expectedresponsdime underSRPT thanunderPS, for every job sizedistribution. They alsoprove
thatfor arbitraryload p, the expectedresponseime of a job of sizexz underSRPT is no morethanc timesthat
underPS, wherec is a function of ﬁ—p. This resultnicely complementghe resultin this paper(Theorem5.3)
which stateghatfor all p, for every job sizedistribution, all suficiently large jobs have expectedresponsdime
(andslowdown) underSRPT whichis arbitrary closeto thatunderPS.

Therehasalso beenwork in the areaof proposingnen SRPT-like policies[4, 12] thattry to reducethe
problemof unfairnessyhile still favoringthe shortjobs. Theseusuallyprioritize basedn boththetime ajob has
waitedsofar, andits remainingsize. Thesepoliciesareusuallyanalyticallyintractableandhave beenevaluated
by simulationonly. However simulationsshav thatthey arepromising.

To the bestof our knowledge, no prior work hascomparedschedulingpolicies with respectto just their

performancen largejobs.



3 The slowdown metric, the fair nessmetric, and someinitial notation

We will throughoube consideringa stableM/Gl/1 queue.Theaveragearrival ratewill be . A job’ssize(service
requirementill be denotedby therandomvariableX andwill be choseni.i.d. from a continuoudistribution
with finite meanandfinite variance The probability densityfunction (pdf) of the job sizedistributionis f(x),
andthe cumulative distribution function(cdf) is F(z) = P(X < z), ¢ > 0. Wewill denotethetail, 1 — F(z),
by F(x). We assumehat f(z) > 0, = > 0; servicetimescanbe arbitrarily large. Throughoutwe distinguish
betweerthe “size of ajob” andthe “remainingsizeof ajob.” Theformerdenoteghe servicerequirementpon
time of arrival (original sizechoserfrom £'). Thelatterdenoteghe leftover (remaining)servicetime atthetime

in question.Theload(utilization), p, of thesener is
def e
p = AE[X] = /\/ zf(z)de.
0

We alwayswill assuméhatp < 1; thequeuds stable. Theloadmadeup by the jobsof sizelessthanor equalto
z, p(x),Is
def \ [*
plz) = /\/ tf(t)dt.
0
We will useT to denotethe steady-stateesponseime (a.k.a. sojourntime) and7'(z) to denotethe steady-
stateresponsé¢ime for ajob of sizex; a customeiarriving in steady-statéringinga servicetime of lengthz has

aresponséime T'(z). By definition,T" hasthe samedistribution as7'(X'), and

el = [ " BT (e))f(x)da

where X is chosenindependenof 7" throughouthis paper Notethat {7'(z) : z > 0} is a stochastigrocess.
Formally, attime¢ = 0 weinitially startthesystemin steady-stategndthenfor eachz, we constructeachT(z)

usingthesameinitial stateandfuture serviceandinterarrival times(alongeachsamplepath).

Definition 3.1 For anygivenpolicy, theslowdown,S, is definedasresponsgimedividedby job size,namely




Our primary metric of interestin this paperis slowdown Meanslowdown is often usedasa measureof
systemperformanceas opposedo the more traditionalmeanresponsdime for two reasong7, 1, 9]. First, it
is desirablethata job’s responséime be correlatedwith its size (processingequirement) We'd like smalljobs
to have small responsdimesandbig jobsto have big responsdimes. By bringingdown meanresponsdime,
Markov’sinequalitytells usthatwe’re alsodroppingthefraction of jobswith really high slowdowns.

A secondeasorwhy we careaboutmeanslowdown is thatit is morerepresentate of the performancef a
largefractionof jobs. Obsere thatmearnresponséime tendsto berepresentatke of the performancef justafew
jobs—thebiggerones- sincethey countthe mostin themeanbecaus¢heirresponséimestendto behighest.An
improvementin meanresponségime couldjustindicatethatthe performancef a few big jobshasimproved. By
contrastmeanslowdown canonly beimprovedsignificantlyif you affect the slowdown of alargerfractionof all
jobs. Thusto improve meanslowdown, you have to touchthatlarge setof smalljobs.

It is well known thatfor anM/GI/1/PSqueue,

1
E[S(x)]"™ = - 1)
This saysthatfor ary givenloadp < 1, underPS schedulingall jobs have the sameexpectedslowdown; hence
PSis “fair” .

In this paperwe will considerpoliciesthat significantlyimprove uponPS with respecto meanslowdowvn
by giving priority to shortjobs, or to youngjobs. We will askwhetherthe large jobs suffer asa consequence.
Specifically we will beinterestedn the slowdown for largejobs.

Definition 3.2 For anygivensdedulingpolicy, the slowdowrfor largejobsis definedwhenit exists)by
Jim 5(2)
wheebythe corvegenceis almostsure (a.s.) convergence by which we meanwith probability 1. Theexpected

slowdowrfor largejobsis definedwhenit exists)by:

lim E[S(z)]

r—00

4 Brief review of commonschedulingpolicies

In this sectionwe defineseveral commonschedulingpolicies and summarizeknown resultsfor thesepolicies

underanM/GI/1 queuewith respecto themeanresponsgime for ajob of sizez.

PS: ProcessofSharing

Underthe PS policy the processois sharedairly amongall jobs currentlyin the systenm[25]:




SRPT: Shortest-Remaining-Ppcessing-Tme-First

Underthe SRPT policy, at every momentof time, the sener is processinghat job with the shortestremaining
processingime. The SRPT policy is well-known to be optimal for minimizing meanresponsdime [19]. The

meanresponsgime for ajob of sizez, E[T(z)]*#FT, canbe decomposethto asum:
BI@IST = B @) + B[R

where E[W (z)]5EFT is the expectedwaiting time for the job (the expectedtime for a job of sizex from when
it first arrivesto whenit recevesservicefor thefirsttime) and E[R(z)]* 7 is the expectedresidencdime (the

timeit takesfor ajob of sizex to completeserviceonceit beginsexecution)[19].

_NTSRPT  _ %fowtzf(t)dt"i'%ﬁf(’:)
BW ()57 = e @

E[R@)SFPT = Ax a @3)

P-LCFS: Preemptive-Last-Come-First-Served

UnderP- LCFS, when&er anew arrival enterghesystemijt immediatelypreemptghejob in service.Only when
thatarrival completesloesthe preemptedob getto resumeservice.Thispolicy is easyto understanginceanew
arrival canbe thoughtof asstartingits own busy period,wherethe new arrival cant leave until this busy period
completes.Letting B denotethelengthof a busyperiod,and X denotea servicerequirementsusual,we have
[11]:

BI@)FErs = BB = = (4)
plr) = 1o ©)

LAS: Least-Attained-Service

UnderLAS, the job with the leastattainedservicegetsthe processoto itself. If several jobsall have the least
attainedservice they time-sharghe processowia PS. This is a very practicalpolicy, sincea job’s age(attained
service)is alwaysknown, althoughit’ s sizemay not be known. This policy improvesuponPS with respecto
meanresponsegime andmeanslowdown whenthejob sizedistributionhasdecreasindailure rate.

Both E[T'(x)] andthe Laplacetransformof 7'(z) underLAS areknown [11]. We needsomepreliminary
notation.

Forz > 0, let

X, = min{z, X}.



Then

E[X,] = /Ox yf(y)dy + zF(z)

ﬂXﬂzlffﬂw@+rﬁ%ﬂ

Obsenrethat X, is similarto theR.V. X, exceptthatall job sizeshave beencappedata maximumof z.

Giventhe above definitions,we have:

LAS _ z(1 = pa) + 5 B[X2]

6
(I_Px)z ©

E[T(2)]

where
pr = AE[X,].

LRPT: Longest-Remaining-Pocessing-Tme

Underthe LRPT policy, at every momentof time, the sener is processinghe job with the longestremaining
processingime. If multiple jobsin the systemhave the sameremainingprocessingime, they time-sharehe
processovia PS. Sincethe LRPT policy biasegowardsthelongestobs,it is of little practicalvalue.

We couldnt locateananalysisof this policy for the M/GI/1 queuearywhere,althoughanalyzingL RPT isn’t

difficult, andwe do solaterin the paper

SJF: Shortest-Jb-First
SJF is thenon-preemptievariantof SRPT. UnderSJF, whenthesener is freeit choosedo runtheshortesjob
[6]:

2N5IF — 5 PE[XZ], 1
PIERT =24 92w 0wy

Other policiesnot mentionedabove

Therearemary otherschedulingpoliciesthatwe havent mentioned.

All non-preemptie policiesthatdon’t makeuseof ajob’ssize,for example FCFS (First-Come-First-Seed),
LCFS (non-preemptie Last ComeFirst Sened), or RANDOM (random)will have the samemeanresponséime,
E[T], andthusfor all suchpolicies,

AE[X?
2(1=p)
where X is the servicetime. Sincethesehave the sameperformancewith respecto E[T'(z)], we will discuss

E[T(2)] = B[T] - B[X] + 2 = tz

themasagroup.



5 Convergenceof schedulingpoliciesin expectation

In this section,we evaluatethe expectedslowdownfor the largestjobs underdifferentschedulingpolicies. In
Section5.1we consider5 particularschedulingpoliciesandshow thatthey have the sameexpectedslovdown as
PS for thelargestjob. In Section5.2andSections.3we generalizéheseresultsto all work conservingscheduling
policies.Finally, in Section5.4we considetthe broademproblemof expectedslowdown asa functionof job size,
for all job sizes.We find thatfor ary work conservingpolicy, for sufficiently large jobs, the expectedslondown
canbeshowvn to bearbitrarily closeto thatof PS, whereour definition of sufficiently largewill typically include

mostjobs.

5.1 Convergenceof 5 schedulingpoliciesin expectation

This sectionwill prove thefollowing theorem:

Theorem5.1 Asz — oo, expectedslowdowrfor SRPTP-LCFS,LAS,andLRPTis thesameasfor PS:

lim B[S()]5"T = lim B[S(2)]P~2CFS = lim B[S()]*4S = lim B[S(2)]“RFT = ——

T—00 T—00 T—00 T—00 T 1= p'

Thatis, the expectedslowdown for the largestjob is the sameunderpoliciesthat bias towardsshortjobs,

policiesthatbiastowardslong jobs,andpoliciesthattreatall jobsfairly.

Proof for SRPT

We startby looking atthewaiting time componenbf SRPT:

2 [F 2 f()dt + 327F (2)
(1—p(x))?

A [Tt E(t)dt

(1—p(z))?

- opsrer _ Ao tF()dt
Jm B[W ()] = T

W (@))SFFT =

wherefinitenesdollows sincethe servicetime distribution I is assumedo have finite secondnomentt

Thuswe have
. E[W(x)]SRPT
hIIl e

T —00 xr

=0

Next considettheresidencdime componenbf SRPT:

2

1Recal|f0°° yF (y)dy = fooo Y f;o f(z)dzdy = fooo f(=x) foz ydyde = fooo f(z) 5 dr = %E[XQ]



»\1SRPT il
fim ZR@T L / ot
T—00 z e—oo x o 1 —p(t)
= lim ——— (by L'Hopital)
a0 1 — p(x)
_ 1
= 1

Combiningwaitingtime andresidencdime, we have:

lim E[S(z)] = lim =

T — 00 T —00 xr

Proof for LAS

We startwith alemmashawing thatfor all job sizesz andfor all load,the performancef LAS is worsethanor
equalto thatof SRPT:

Lemma5.1 In anM/G/1,for all z andfor all p,
B[T()]**T < BIT(x))"4°

Proof: Theproofis simplyalgebraic:

2(1 = po) + IABLX, )

E[T(I)]LAS = (1 — Px)2

xR )dy + 27 F(2))
N 1- Pz (1 - pl‘)2

z IN(fy v f(y)dy + «"F(x))
2 T " (1— p(2))?
oz DTy + 3T ()
1= p(x) (1—p(z))?
> E[T(x)]"T

Thelimiting slowdown of large jobs,however, is the sameunderL AS andSRPT asshavn below:

A [ usds 4 aaT@) = A [ Ty

lim p, =
Tr—00

A/OOO Fy)dy = AE[X] = p



r 5y v fWdy + 2?F(z))

E[T(2)]*4% = +
(7()] s 0 )
_ z + )‘fox F(y)dy
L= pa (1 - Px)2
EIT(: LAS ) 1 by xF d 1
lim BS@)HAS = fim ZEE e L Mo Py 1
T—00 T—00 x =0l —py x w90 (1 _ px)2 z
1 A [ F(y)yd
_ LA Fvdy 1
1-— pP (1 — p)2 r—o00 I

Again, by thefinitenesof the secondnomentof /', we have:

lim E[S(2)]b4S = ——

Tr—00 1—p

Proof for LRPT

We will usethefollowing notationin this sectionandthroughoutherestof thepaper:B will denotethelengthof
abusyperiod. B(z) will denotethelengthof abusyperiodstartedby ajob of sizex (anexceptionalfirst service
busyperiod). B(z) | will denotethelengthof abusyperiodstartedoy ajob of sizex wherethearrival rateis X'.

We begin by noticingthatajob of sizex enterseitherabusyor anidle systemIf thejob entersanidle system,
T(x) = B(z), sinceLRPT hasthepropertythatall jobsfinish attheendof the busy periodthey arrive into under
LRPT.

If the job entersa busy system thenwe canagaintakeadvantageof the abore propertyto seethat7'(z) =
B(z + V|busy), whereV is theamountof work in thesystenseerby anarbitraryarrival andV [busy is thework

in thesystemseerby anarrival which findsthesystembusy Now, sinceL RPT is work conservingywe know that:

_ - _AB[X?
xr FCFS
E[V|busy] = —E[W( p)]

whereX is theservicetime andW (z) ¢ is thewaitingtime in a FCFSqueue.
It is well knowvnthat E[B(Y)] = ?[Typ] for ary exceptionalffirst servicetime Y. Thus,it holdsfor Y = z and
Y = z + (V|busy). Usingthis we obtain:

E[B(z + V|busy E[B(z
E[S(I)]LRPT = p [ ( . | )] +(1_P) [x( )]

1+ 1 281X |

z 2p(1-p)
= A S 1— R
T, (L=p) 1 P
Thus,
Jim FS@T = @



Proof for P-LCFS

For the P- LCFS policy it trivially followsfrom (4) that:

ElT(x P—LCFS 1
T—00 x 1-— p

5.2 Convergenceof all work conservingschedulingpoliciesin expectation

This sectionextendsthe analysisof the previous section. The goal is to to boundcornvergencein expectationof

slowdown underanywork conservingpolicy. We prove thefollowing theorem:

Theorem 5.2 For anywork conservingsthedulingpolicy

lim B[S(2)] € .

T—00 1—p

If thepolicyis alsonon-preemptivethenE[S(z)] — 1 asz — co.

Proof:

Theproofof the ﬁ boundstemsrom theobsenationthatL RPT providesanupperboundon7'(z)¥ for ary
work conservingpolicy P. Thatis, underLRPT, every job finishesthe momentthe busy periodthe job arrived
into ends,which is the last possiblecompletionmomentfor ary work conservingpolicy. So,the resultfollows

from Equation?. For ary work conservingpolicy P:

lim B[S(2))” < lim B[S(2)]XFFT = b

5o l—p
This provesthefirst half of thetheorem.
Now we limit our discussiorio non-preemptie work conservingpolicies.For ajob of sizex arriving into the
system:
T(z)=W(z)+=
whereWV (z) is thewaiting time for a job of sizex. Let V' denotethe amountof work in the systemwhenjob z
arrives.Obsere thatW (z) is lessthanthelengthof a busyperiodstartedby ajob of sizeequalto V. Thatis, for

all samplepaths,
W(z) < B(V) (8)
whereB(y) denoteshelengthof a busyperiodstartedby ajob of sizey. So,
ElV]

EW(z)] < T—,

10



Thus,letting X betheservicetime distribution,we have

pisy = P PWE) .
S V1,
1—p =z
AE[X?]
_ 20-p 1
T 1—p z +1

5.3 Followup remarkson corvergencein expectation

A few followup obsenationsarein orderregardingTheorenb. 2.

Remark 5.1 Theoem5.2 doesnot extendto policiesthat are notwork conserving In fact, for everyz € [1, )

there is a nonwork conservingoolicy sud thatlim; _, o, E[S(z)] = .

To seethis, considerthe policy thatmakeseachjob wait (= — 1)z time beforeit is allowedto enterthequeue

of anon-preemptie,work conservingsystem.

Remark 5.2 Theﬁ boundin Theoem5.2is tight. In fact, For everyz € [1, ﬁ—p] there is a work conserving

policy sud that E[S(z)] — 2z, asz — oo.

Proof: Consideralinearcombinatiorof the FCFS andP- LCFS policies.More specifically consideithe follow-
ing schedulingoolicy, P: with probabilityq anarriving job preemptghejob beingserviced andwith probability
1 — ¢ anarriving job is placedat the backof a FCFS queueto await service.

We can quickly analyzethis policy to find E[S(z)]¥. Consideran arrival that getsplacedat the front of
the queue. This arrival can only be botheredby otherjobs that are allowed to preempt. Thus, for this job
T(z) = B(z)|x, whereX = g for ¢ € [0, 1]. Thatis, T'(z) is thelengthof a busy periodstartedby ajob of size
z wherethearrival rateis \'.

Now considelajob thatgetsplacedn thebackof thequeue.lf thesystenisidle whenthejob arrives,weagain
seethatT'(z) = B(x)|x. However, if the systemis busyatthetime of thearrival 7'(z) = B(z + V|busy))|x,
whereV is theamountof work in systemseenby anarbitraryarrival, andV |busy is thework seernby anarrival
whichfindsthesystembusy As in theanalysisof LRPT, we know that
EIW (2)FCFS] _ AE[X?]

E[V|busy] = = )
[Vbusy] p 2p(1 = p)
Letp = %’ Then,puttingthesethreepiecesogetherwe seethatasz — oo:
E[B(x)]|x E[B(z)]|x E[B(z + V|bus ]
pser = ZBE oy [p Bl , ) PLBG + Vibusy)l ]
[X?]
1 1 I+ %2)\;51—,0) 1

11



Non work conserving:
E[S(X)] ——> [1, infinity)

Work conserving
Preemptive:
E[S(X)] ——>[1, 1/(1 )]

Work conserving
Non-preemptive:
E[S(X)]—>1

Figurel: Taxonomyof schedulingpoliciesdefinedoy the metriclim, oo £[S(2)].

Noticethatsincey’ is anarbitrarynumberin [0, p], we canmakel_#p, ary numberin [1, ﬁ—p]. |
The abore remarksshav thatthe metriclim, _, o, £[S(z)] definesa taxonomyon all schedulingpolicies,as
shawvn in Figurel. Nonwork conservingpolicieshave a valuein [1, o0) underthis metric. Preemptre work
conservingolicieshave avaluein [1, ﬁ] underthis metric. Non-preemptie work conservingpoliciesall have
avalueof 1 underthis metric. Eachclassis completein thatfor eachvaluein therange thereexistsapolicy with

thatvalue.

5.4 Bounding all work conservingpoliciesfor sufficiently-large job sizes

Until now we have concentratednthelimiting behaior asthejob sizez — co. We now shaw thatwe caneasily

prove anupperboundof (1 + ¢) ﬁ—p for the expectedslowdown of all “sufficiently large” jobs underall work
conservingschedulingpoliciesfor ary ¢ > 0.
Let VV be the amountof work in the systemwhena job arrives. Recallthatthis is the sameunderall work

conservingpoliciesandfor jobsof ary size.In fact, E[V] = E[W (z)]F'¢¥5.

Theorem 5.3 Fix £ > 0. Thenunderanywork conservingschedulingpolicy P, if 2 > %E[V], then

1
1—p°

E[S@))” < (1+e)E[S@)]™ = (1 +¢)

If thepolicyis alsonon-peemptiveandz > E(f—_mE[V], then

E[S(@)]" <1+¢

12



Beforewe statethe proof, obsere that provided p is nottoo high, the above theoremsaysthatin fact most
jobsaresuficiently large,since E[W (z)]¥' S will below.
Proof:

Recallthat LRPT providesan upperboundon S(z)¥ for ary work conservingpolicy P. Thatis, every job
finishesat the last possiblemomentunderLRPT, andsothe slowdown of ary otherpolicy mustbe boundedby
thatof LRPT . Thus,we needsimply shaw thatfor suficiently largez, E[S(z)]FBFT < }_i‘;

Observingthat7'(z)“##7 hasthe samedistribution (hencemean)as B(z + V'), we have

BS@)HT = SB[(e)

z+ E(V)
(1-p)
E[V] 1

_|_
e(l—p) 1-p

s N

Lettingz > 1 E[V] givesus

BIS(@)]” < BIS@)T <

Further we canobtaina similar boundon convergencefor non-preemptie, work conservingpolicies.

Recallfrom the proof of Theorenb.2 thatfor any non-preemptie, work conservingpolicy P, we have

S < 211

—+1
1—px+

Thus,letting z > E(f—_mE[V] givesus

E[S(@)]" <1+¢

6 Almost sure convergenceof schedulingpolicies

In this section we extendthe analysisof Theorenb.2in orderto shav thatunderary work conservingpolicy the

performancef thelargestjobswill beat mostthatof PS almostsurely Recallthat:

Definition 6.1 The sequencef randomvariables{Y,,,n = 1,2,...} is said to convelge almostsurly to a
randomvariableY, writtenY,, 3 Y asn — oo, if
P(limY,=Y)=1.

n—0o0

We equivalentlysaythatY;, corvelgesto Y with probability 1 (w.p.1.).
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Theorem 6.1 Underwork conservingschedulingpoliciesit holdsa.s. (assuminghelimit exists)that

lim S(z) < L

T—00 1—p

If the policy is alsonon-peemptivethenthe limit doesexistsand S(z) 3 1 asz — co.
Proof: Theprooffor non-pieemptivework conservingpoliciesis quick: Startwith the obsenationthat

P(S(z)Y >1) =1 Va,V policiesP

This follows simply by definition of slowdown. Thusby takinglimits, a.s.it holdsthat

liminf S(z)” > 1,V policiesP

Tr—00
Now, recallfrom Equation(8) thatwe have a.s.that

B(V)

x

S < 1+

Yz, Ywork conservingnon-preemptie policiesP
Takinglimits we have a.s.that:

limsup S(z)* < 1, Ywork conservingnon-preemptie policiesP

Tr—00

It followsthatfor all work conservingnon-preemptie policiesP thelimit doesexistsand
S(z) 2 lasz — .

Theremainderof the proofwill concentrat®nwork conservingpoliciesthatmayallow for preemption
We know thata.s.
T(z) < Bz + V),

whereB(y) is usedto denotethelengthof a busyperiodstartedby ajob of sizey.

Thus
lim T(2)/2 < lim 2E+Y)

r—00 T rox xr

We will completethe proofby shaving that

lim Bz+V) _ 1 ©)

a.s.
T—00 x 1-— pP

If welet {B; : i > 1} denoteani.i.d. sequencef regularbusy periods(non-eceptional) then B(z) canbe
expresseds

B(z) =z + ZBi
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where{N(z) : # > 1} is a Poissonprocessof rate A independenbf {B; : ¢ > 1}. We concludethat this
versionof { B(z) : > 0} isacompoundPoissorprocesavith alinearz termaddedon, soit hasstationaryand

independenincrementsThus,almostsurely

lim 2@ _ E[B(1)] (byS.LLN)

T—> 00 xr
1

L—p

Noticethatreplacingz by z + V' doesnotchangehis limit.

7 Conclusion

In this paperwe considerthe performancemetric “slowdown for the largestjob” andwe shav that underthis
metricthe performancef all work conservingschedulingpoliciesis boundedy ﬁ almostsurely

This metric is alsointerestingfor anotherreason;it allows us to cateorize all schedulingpoliciesinto 3
classesWe find thatfor nonwork conservingolicies the expectedslowdown of thelargestjob canrangefrom 1
to infinity (andin fact every valuein betweeris achieved by somenonwork conservingoolicy). For preemptive
workconservingolicies the expectedslowdown of thelargestjob canrangefrom 1 to ﬁ (andagaineachvalue
in betweernis achieved by somepreemptve work conservingpolicy). Lastly, for non-preemptie work conserving
policies,the expectedslowdown of thelargestjob is always1.

This paperalsoraisesthe questionof how schedulingpolicies comparewith respectto slowdown on job
sizesotherthanthevery largest.We find thatfor all “sufficiently large” jobs,theexpectedslowdown of thesgobs
underary work conservingpolicy canbemadearbitrarily closeto ﬁ , Wherethedefinitionof “sufficiently large”
depend®n the degreeof closenessindon the systemload. Whenthe systemload is not too high, “sufficiently
large” endsup including mostjobs. The behaior of schedulingpolicieson jobs otherthanthe largestjob is an
interestinggquestionwhich will surelygeneratdurtherresearch.

Theproofsin thispaperarevaried,but all surprisinglysimple which shouldhelpothersn extendingthiswork.
Theproofsrely onafew key obserationsaboutsubdiiding busyperiodsandon somealternatve formulationsof
schedulingormulas.Perhapshe mostusefulobsenrationis thattheLongest-Remaining-Processingyie policy

canbeusedto boundall otherwork conservingpolicies,andthatit suficesto thereforeio concentrat®nthisone

policy.
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