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Abstract

This paper describes a scalable algorithm for the simultaneous mapping and localization
(SLAM) problem. SLAM is the problem of determining the location of environmental fea-
tures with a roving robot. Many of today’s popular techniques are based on extended Kalman
filters (EKFs), which require update time quadratic in the number of features in the map. This
paper develops the notion of sparse extended information filters (SEIFs), as a new method for
solving the SLAM problem. SEIFs exploit structure inherent in the SLAM problem, represent-
ing maps through local, Web-like networks of features. By doing so, updates can be performed
in constant time, irrespective of the number of features in the map. This paper presents sev-
eral original constant-time results of SEIFs, and provides simulation results that show the high
accuracy of the resulting maps in comparison to the computationally more cumbersome EKF
solution.
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1 Introduction

The simultaneous localization and mapping (SLAM) problem is the problem of acquiring a map
of an unknown environment with a moving robot, while simultaneously localizing the robot
relative to this map [6, 12]. The SLAM problem addresses situations where the robot lacks a
global positioning sensor, and instead has to rely on a sensor of incremental ego-motion for
robot position estimation (e.g., odometry, inertial navigation). Such sensors accumulate error
over time, making the problem of acquiring an accurate map a challenging one. Within mobile
robotics, the SLAM problem is often referred to as one of the most challenging ones [28].

In recent years, the SLAM problem has received considerable attention by the scientific
community, and a flurry of new algorithms and techniques has emerged, as attested, for exam-
ple, by a recent workshop on this topic [11]. Existing algorithms can be subdivided into batch
and online techniques. The former provide sophisticated techniques to cope with perceptual
ambiguities [2, 24, 30], but they can only generate maps after extensive batch processing. On-
line techniques are specifically suited to acquire maps as the robot navigates [6, 27], which is
of great practical importance in many navigation and exploration problems [25]. Today’s most
widely used online algorithms are based on extended Kalman filters (EKFs), based on a semi-
nal series of papers [17, 18, 27, 26]. EKFs calculate Gaussian posteriors over the locations of
environmental features and the robot itself.

A key bottleneck of EKFs—which has been subject to intense research—is their computa-
tional complexity. The standard EKF approach requires time quadratic in the number of features
in the map, for each incremental update. This computational burden restricts EKFs to relatively
sparse maps with no more than a few hundred features. Recently, several researchers have
developed hierarchical techniques that decompose maps into collections of smaller, more man-
ageable submaps [1, 8, 31]. While in principle, hierarchical techniques can solve this problem
in linear time, most of these techniques still require quadratic time per update. However, they
do so with a much reduced constant factor, enabling them to manage significantly more fea-
tures. One recent technique updates the estimate in constant time [13], but with a loss of global
consistency that is particularly troublesome when closeing loops in cyclic environments [9]. A
different line of research has relied on particle filters for efficient mapping [7]. The FastSLAM
algorithm [16] and related mapping algorithms [19] require time logarithmic in the number of
features in the map, but they depend linearly on a particle-filter specific parameter (the number
of particles), whose scaling with environmental size is still poorly understood. None of these
approaches, however, offer constant time updating while simultaneously maintaining global
consistency of the map.

This paper proposes a new SLAM algorithm whose updates require constant time, indepen-
dent of the number of features in the map. Our approach is based on the well-known information
form of the EKF, also known as the extended information filter (EIF) [22]. To achieve constant
time updating, we develop an approximate EIF which maintains a sparse representation of
environmental dependencies. Empirical simulation results provide evidence that the resulting
maps are comparable in accuracy to the computationally much more cumbersome EKF solution,
which is still at the core of most work in the field.



Our approach is best motivated by investigating the workings of the EKF. Figure 1 shows the
result of EKF mapping in an environment with 50 landmarks. The left panel shows a moving
robot, along with its Gaussian estimates of the location of all 50 point features. The central
information maintained by the EKF solution is a covariance matrix of these different estimates.
The normalized covariance, i.e., the correlation, is visualized in the center panel of this figure.
Each of the two axes lists the robot pose (z-y location and orientation) followed by the z-y-
locations of the 50 landmarks. Dark entries indicate strong correlations. It is known that in
the limit of SLAM, all x-coordinates and all y-coordinates become fully correlated [6]. The
checkerboard appearance of the correlation matrix illustrates this fact. Maintaining these cross-
correlations—of which there are quadratically many in the number of features in the map—are
essential to the SLAM problem. This observation has given rise to the (false) suspicion that
online SLAM is inherently quadratic in the number of features in the map.

The key insight that motivates our approach is shown in the right panel of Figure 1. Shown
there is the inverse covariance matrix (also known as information matrix [15, 22]), normalized
just like the correlation matrix. Elements in this normalized information matrix can be thought
of as constraints, or links, between the locations of different features: The darker an entry in
the display, the stronger the link. As this depiction suggests, the normalized information matrix
appears to be naturally sparse: it is dominated by a small number of strong links, and possesses a
large number of links whose values, when normalized, are near zero. Furthermore, link strength
is related to distance of features: Strong links are found only between geometrically nearby
features. The more distant two landmarks, the weaker their link. This observation suggest that
the EKF solution to SLAM possesses important structure that can be exploited for more efficient
solutions. While any two features are fully correlated in the limit, the correlation arises mainly
through a network of local links, which only connect nearby landmarks.

Our approach exploits this structure by maintaining a sparse information matrix, in which
only nearby features are linked through a non-zero element. The resulting network structure is
illustrated in the right panel of Figure 2, where disks corresponds to point features and dashed
arcs to links, as specified in the information matrix visualized on the left. Shown also is the
robot, which is linked to a small subset of all features only, called active features and drawn
in black. Storing a sparse information matrix requires linear space. More importantly, up-
dates can be performed in constant time, regardless of the number of features in the map. The
resulting filter is a sparse extended information filter, or SEIF. We show empirically that the
SEIFs tightly approximate conventional extended information filters, which previously applied
to SLAM problems in [20, 22] and which are functionally equivalent to the popular EKF solu-
tion.

Our technique is probably most closely related to work on SLAM filters that represent
relative distances, such as Newman’s geometric projection filter [23] and extensions [5], and
Csorba’s relative filter [4]. Neither of these alternative approaches permits constant time up-
dating in SLAM, though it appears that these techniques could be developed into constant time
algorithms, using approximations similar to the ones described here. Our work is also related
to the rich body of literature on topological mapping [3, 10, 14, 32], which typically does not
represent about dependencies and correlations in the representation of uncertainty.
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Figure 1. Typical snapshots of EKFsapplied to the SLAM problem: Shown hereisamap (left panel), acorrelation
(center panel), and a normalized information matrix (right panel). Notice that the normalized information matrix
isnaturally almost sparse, motivating our approach of using sparse information matricesin SLAM.
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Figure 2: Illustration of the network of landmarks generated by our approach. Shown on the left is a sparse
information matrix, and on the right a map in which entities are linked whose information matrix element is non-
zero. Asargued in the paper, the fact that not all landmarks are connected is akey structural element of the SLAM
problem, and at the heart of our constant time solution.

The remainder of this paper is organized as follows. Section 2 introduces the extended
information filter (EIF), which forms the basis of our approach. This approach is not new, al-
though the literature appears to lack a similarly compact derivation of EIFs. Building on this,
Section 3 introduces sparse SEIFs. First we provide three constant-time results in Section 3.1.
In particular, we show that all filter updates can be carried out in constant time if the informa-
tion matrix is sparse. This result is somewhat surprising, as a naive implementation of motion
updates in information filters require inversion of the entire information matrix, an O(N?) op-
eration. Section 3.2 describes an amortized constant-time algorithm for recovering EKF-style
state estimates, needed for the linearization of non-linear motion and measurement functions.
Finally, Section 3.3 describes our technique for enforcing sparseness in SEIFs. Experimental
results are provided in Section 4, we we specifically compare our new approach to the EKF
solution. These results suggest that the sparseness constraint introduces only very small errors
in the resulting maps, when compared to the computationally more cumbersome EKF solution.
However, these empirical results are limited in that they are based on simulated data only, and
they do not address data association problems that inherently arise in real-world SLAM.

2 Extended Information Filters

This section reviews the extended information filter (EIF), which forms the basis of our work.
EIFs are computationally equivalent to extended Kalman filters (EKFs), but they represent in-
formation differently: instead of maintaining a covariance matrix, the EIF maintains an inverse
covariance matrix, also known as information matrix. EIFs have previously been applied to
the SLAM problem, most notably by Nettleton and colleagues [20, 22], but they are much less
common than the EKF approach.

Most of the material in this section applies equally to linear and non-linear filters. We have



chosen to present all material in the extended, non-linear form, since robots are inherently non-
linear.

2.1 Information Form of the SLAM Problem

Let x; denote the pose of the robot at time ¢. For rigid mobile robots operating in a planar en-
vironment, the pose is given by its two Cartesian coordinates and the robot’s heading direction.
Let IV denote the number of features (e.g., landmarks) in the environment. The variable y,, with
1 < n < N denotes the pose of the n-th feature. For example, for point landmarks in the plane,
¥, may comprise the two-dimensional Cartesian coordinates of this landmark. In SLAM, it is
usually assumed that features do not change their pose (or location) over time.

The robot pose z; and the set of all feature locations Y together constitute the state of the
environment. It will be denoted by the vector

& = (xt Yy .- YN )T (1)

where superscript 7" refers to the transpose of a vector.

In the SLAM problem, it is impossible to sense the state &, directly—otherwise there would
be no mapping problem. Instead, the robot seeks to recover a probabilistic estimate of &,.
Written in a Bayesian form, our goal shall be to calculate a posterior distribution over the state
&;. This posterior

p(gt ’ Zt7ut) (2)

is conditioned on past sensor measurements z* = zi, ..., z; and past controls u! = wuy, ..., u;.
Sensor measurements z, might, for example, specify the approximate range and bearing to
nearby features. Controls u; specify the robot motion command asserted in the time interval
(t —1;t].

Following the rich EKF tradition in the SLAM literature, our approach represents the pos-
terior p(&; | 2*,u') by a multivariate Gaussian distribution over the state ;. The mean of this
distribution will be denoted 1;, and covariance matrix >;:

p& | 2 ut) oo exp{—5(& — ) TN & — )} ©)

The proportionality sign replaces a constant normalizer that is easily recovered from the covari-
ance X;. The representation of the posterior via the mean ;, and the covariance matrix ¥, is the
basis of the EKF solution to the SLAM problem (and to EKFs in general).

Information filters represent the same posterior through a so-called information matrix H,
and an information vector b,—instead of 1; and X;. These are obtained by multiplying out the
exponent of (3):

= exp {1 6/ — 2T S + i 5 e )
= oxp {38/ 571G+ {516 — Sl B (@)



We now observe that the last term in the exponent, —% pI'S; 1, does not contain the free vari-
able & and hence can be subsumed into the constant normalizer. This gives us the form:

X eXP{—%@T&i& o+ B & )
::Ht =th

The information matrix H, and the information vector b, are now defined as indicated:

Ht = Et_l (6)
by = uH, @)

Using these notations, the desired posterior can now be represented in what is commonly known
as the information form of the Kalman filter:

p(& | 25 u') o exp {—%ftTHtft + btft} (8)

As the reader may easily notice, both representations of the multi-variate Gaussian posterior are
functionally equivalent (with the exception of certain degenerate cases): The EKF representa-
tion of the mean p; and covariance X;, and the EIF representation of the information vector b,
and the information matrix H;. In particular, the EKF representation can be ‘recovered’ from
the information form via the following algebra:

¥, = H! ©)
o= H7'W = B (10)

The advantage of the EIF over the EKF will become apparent further below, when the concept
of sparse EIFs will be introduced.

Of particular interest will be the geometry of the information matrix. This matrix is sym-
metric and positive-definite:

quxt meyl T HIBt»yN
Y1,T¢ Y1,U1 Y1,YN

H, = : : _ : (11)
HyN7$t HyN7y1 Hyzvyyzv

Each element in the information matrix constraints one (on the main diagonal) or two (off the
main diagonal) elements in the state vector. We will refer to the off-diagonal elements as links:
the matrices H,, ,, link together the robot pose estimate and the location estimate of a specific
feature, and the matrices H,, , , for n # n’ link together two feature locations y,, and y,.
Although rarely made explicit, the manipulation of these links is the very essence of Gaussian
solutions to the SLAM problem. It will be an analysis of these links that ultimately leads to a
constant-time solution to the SLAM problem.
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Figure 3: The effect of measurements on the information matrix and the associated network of features: (@)
Observing y; results in a modifi cation of the information matrix elements H,, ,,. (b) Similarly, observing y
affects H,, ,,,. Both updates can be carried out in constant time.

2.2 Measurement Updates

In SLAM, measurements z; carry spatial information on the relation of the robot’s pose and the
location of a feature. For example, z; might be the approximate range and bearing to a nearby
landmark. Without loss of generality, we will assume that each measurement z; corresponds to
exactly one feature in the map. Sightings of multiple features at the same time may easily be
processed one-after-another.

Figure 3 illustrates the effect of measurements on the information matrix H,. Suppose the
robot measures the approximate range and bearing to the feature y4, as illustrated in Figure 3a.
This observation links the robot pose x; to the location of y;. The strength of the link is given
by the level of noise in the measurement. Updating EIFs based on this measurement involves
the manipulation of the off-diagonal elements H, , and their symmetric counterparts H, ,,
that link together x, and y. Additionally, the on-diagonal elements H,, ,, and H,, ,, are also
updated. These updates are additive: Each observation of a feature y increases the strength of
the total link between the robot pose and this very feature, and with it the total information in
the filter. Figure 3b shows the incorporation of a second measurement of a different feature,
y». In response to this measurement, the EIF updates the links H,,,, = H . (and H,, ., and
H,,,,)- As this example suggests, measurements introduce links only between the robot pose
x; and observed features. Measurements never generate links between pairs of landmarks, or
between the robot and unobserved landmarks.

For a mathematical derivation of the update rule, we observe that Bayes rule enables us to
factor the desired posterior (2) into the following product:

p(& | 25 u') oo plze | &, 27 at) p(& | 27 )
= plz | &) p(& | 271 ) (12)

The second step of this derivation exploited common (and obvious) independences in SLAM
problems [29]. For the time being, we assume that p(¢, | 2*~1, u?) is represented by H, and
b,. Those will be discussed in the next section, where robot motion will be addressed. The key
question addressed in this section, thus, concerns the representation of the probability distribu-
tion p(z; | &) and the mechanics of carrying out the multiplication above. In the ‘extended’
family of filters, a common model of robot perception is one in which measurements are gov-



erned via a deterministic non-linear measurement function A with added Gaussian noise:
ze = h(&) +e (13)

Here ¢, is an independent noise variable with zero mean, whose covariance will be denoted ~.
Put into probabilistic terms, (13) specifies a Gaussian distribution over the measurement space
of the form

p(z | &) o exp{—§(z—h(&) 2 (z - h&))}
(14)

Following the rich literature of EKFs, EIFs approximate this Gaussian by linearizing the mea-
surement function k. More specifically, a Taylor series expansion of i gives us

h(&) =~ h(u) + Veh(u)[& — (15)

where V¢h(y) is the first derivative (Jacobian) of . with respect to the state variable £, taken
& = . For brevity, we will write 2, = h(yu,) to indicate that this is a prediction given our state
estimate 1. The transpose of the Jacobian matrix V¢A(s;) and will be denoted C;. With these
definitions, Equation (15) reads as follows:

M&) =~ 2+ CH (& — ) (16)
This approximation leads to the following Gaussian approximation of the measurement density
(14):
p(a | &) o exp{~L(z— 2 — CT&+Cl )" 27 (2 — 2 — CT& + C ) }
(17)
Multiplying out the exponent and regrouping the resulting terms gives us
= exp{—3&§ CZ7CTE + (m — 2+ CT )" 27 C (18)
—%(Zt — ét + C’tT,ut)TZ_l(zt — ét + CtT,U/t)}
As before, the final term in the exponent does not depend on the variable &; and hence can be
subsumed into the proportionality factor:
X €exp {—% tTCtZ_lctTft + (Zt —Z + CtTMt)TZ_lctTft} (19)

We are now in the position to state the measurement update equation, which implement the
probabilistic law (12).

p(& | Ztﬂtt)
X exp {—%@Tﬁtft + Btft}
cexp {36/ C1Z27'CT G + (2 — 5+ Cl )" 271 CT &}
= exp{—3& (H + C,Z'CN& + (b + (2 — 20+ Cl )" Z271Cl )&} (20)

Hy bt
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Figure 4. The effect of motion on the information matrix and the associated network of features: (a) before
motion, and (b) after motion. If motion is non-deterministic, motion updates introduce new links (or reinforce
existing links) between any two active features, while weakening the links between the robot and those features.
This step introduces links between pairs of landmarks.

Thus, the measurement update of the EIF is given by the following additive rule:

Ht - Ht + CtZ_IO;T (21)
by = b+ (z— 24 +Clu) "zl (22)

In the general case, these updates may modify the entire information matrix H, and vector b,,
respectively. A key observation of all SLAM problems is that the Jacobian C, is sparse. In
particular, C; is zero except for the elements that correspond to the robot pose x, and the feature
y; observed at time ¢.
T
C, = (@ 0...0 9on 0...0) (23)

Ox¢ oyt

This sparseness is due to the fact that measurements z, are only a function of the relative distance
and orientation of the robot to the observed feature. As a pleasing consequence, the update
C;Z7*CT to the information matrix in (21) is only non-zero in four places: the off-diagonal
elements that link the robot pose x; with the observed feature y;, and the main-diagonal elements
that correspond to z; and y;. Thus, the update equations (21) and (22) are well in tune with our
intuitive description given in the beginning of this section, where we argued that measurements
only strengthen the links between the robot pose and observed features, in the information
matrix.

To compare this to the EKF solution, we notice that even though the change of the informa-
tion matrix is local, the resulting covariance usually changes in non-local ways. put differently,
the difference between the old covariance ¥, = H, ' and the new covariance matrix ¥, = H,
is usually non-zero everywhere.

2.3 Motion Updates

The second important step of SLAM concerns the update of the filter in accordance to robot mo-
tion. In the standard SLAM problem, only the robot pose changes over time. The environment
is static.

The effect of robot motion on the information matrix H, are slightly more complicated than
that of measurements. Figure 4a illustrates an information matrix and the associated network



before the robot moves, in which the robot is linked to two (previously observed) landmarks.
If robot motion was free of noise, this link structure would not be affected by robot motion.
However, the noise in robot actuation weakens the link between the robot and all active features.
Hence H,, ,, and H,, ,, are decreased by a certain amount. This decrease reflects the fact that
the noise in motion induces a loss of information of the relative location of the features to the
robot. Not all of this information is lost, however. Some of it is shifted into between-landmark
links H,, ,,, as illustrated in Figure 4b. This reflects the fact that even though the motion
induced a loss of information of the robot relative to the features, no information was lost
between individual features. Robot motion, thus, has the effect that features that were indirectly
linked through the robot pose become linked directly.

To derive the update rule, we begin with a Bayesian description of robot motion. Updating

a filter based on robot motion motion involves the calculation of the following posterior:

p(& |2 = /p(ft | &on, 27t p(&n | 21U d& (24)

Exploiting the common SLAM independences [29] leads to

= /p(ft | &1y ug) p(&n | 271 0P dg, (25)

The term p(&,_; | 2t71, u!~1) is the posterior at time ¢ — 1, represented by H,_; and b,_;. Our
concern will therefore be with the remaining term p(&; | &1, u:), which characterizes robot
motion in probabilistic terms.

Similar to the measurement model above, it is common practice to model robot motion by
a non-linear function with added independent Gaussian noise:

& = Lo+ A with Ay = g(§1,ur) + Si0 (26)

Here g is the motion model, a vector-valued function which is non-zero only for the robot pose
coordinates, as feature locations are static in SLAM. The term labeled A, constitutes the state
change at time ¢. The stochastic part of this change is modeled by ¢,, a Gaussian random variable
with zero mean and covariance U;. This Gaussian variable is a low-dimensional variable defined
for the robot pose only. Here S, is a projection matrix of the form

S, = (10...0)" (27)

where I is an identity matrix of the same dimension as the robot pose vector x; and as of ;.
Each 0 in (27) refers to a null matrix, of which there are V in S,.. The product S,4,, hence, give
the following generalized noise variable, enlarged to the dimension of the full state vector &:

S0 = (6 0...0)" (28)
In EIFs, the function ¢ in (26) is approximated by its first degree Taylor series expansion:
9(&-1,u) =~ g1, u) + Veg(p—1, ue)[§—1 — pu—1]
= Ay+ A1 — Ay (29)
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Here A; = Veg(pi—1, us) is the derivative of g with respect to ¢ at ¢ = 1,1 and w;. The symbol
A, is short for the predicted motion effect, g(pe—1,u). Plugging this approximation into (26)
leads to an approximation of &;, the state at time ¢:

& o~ (T4 A&+ At — A1 + S0, (30)

Hence, under this approximation the random variable &, is again Gaussian distributed. 1ts mean
is obtained by replacing &; and ¢, in (30) by their respective means:

pe = I+ A+ A, — Agpti—1 + 5,0
= 1+ Ay (31)

The covariance of &; is simply obtained by scaled and adding the covariance of the Gaussian
variables on the right-hand side of (30):

Et == (I + At)2t71<1 + At)T + 0 - 0 + SmUtSE
= (I + At)zt_]_(j + At)T + SxUtSE (32)

Update equations (31) and (32) are in the EKF form, that is, they are defined over means and co-
variances. The information form is now easily recovered from the definition of the information
form in (6) and (7) and its inverse in (9) and (10). In particular, we have

H =S = [+ A0S+ A)" + 5087
-1
= [T+ A)H (T + A)" + S,U,ST |

(33)
and
_ T ~ T _
by = ju, Hy = {Nt—l‘i‘At} H,
~ T _
= [H A+ A B,
= | H + A A, (34)

These equations appear computationally involved, in that they require the inversion of large
matrices. In the general case, the complexity of the EIF is therefore cubic in the size of the state
space. In the next section, we provide the surprising result that both 4, and b, can be computed
in constant time if H,_; is sparse.

3 Sparse Extended Information Filters

The central, new algorithm presented in this paper is the Sparse Extended Information Filter,
or SEIF. SEIF differ from the extended information filter described in the previous section in
that is maintains a sparse information matrix. An information matrix H, is considered sparse if
the number of links to the robot and to each feature in the map is bounded by a constant that is
independent of the number of features in the map. The bound for the number of links between

11



the robot pose and other features in the map will be denoted 6,,; the bound on the number of
links for each feature (not counting the link to the robot) will be denoted 6,,. The motivation for
maintaining a sparse information matrix was already given above: In SLAM, the normalized
information matrix is already almost sparse. This suggests that by enforcing sparseness, the
induced approximation error is small.

3.1 Constant Time Results

We begin by proving three important constant time results, which form the backbone of SEIFs.
All proofs of these results can be found in the Appendix.

Lemma 1: The measurement update in Section (2.2) requires constant time, irrespective of
the number of features in the map.

This lemma ensures that measurements can be incorporated in constant time. Notice that
this lemma does not require sparseness of the information matrix; rather, it is a well-known
property of information filters in SLAM.

Less trivial is the following lemma:

Lemma 2: If the information matrix is sparseand A, = 0, the motion update in Section (2.2)
requires constant time. The constant-time update equations are given by:

Ly = SU '+ STH, S, )'StH,
H = H_,—H_L (35)
by = b1+ AtTHt—l — b Ly + A?Ht—lLt
This result addresses the important special case A, = 0, that is, the Jacobian of pose change
with respect to the absolute robot pose is zero. This is the case for robots with linear mechanics,
and with non-linear mechanics where there is no ‘cross-talk’ between absolute coordinates and
the additive change due to motion.

In general, A, # 0, since the x-y update depends on the robot orientation. This case is
addressed by the next lemma:

Lemma 3: If the information matrix is sparse, the motion update in Section (2.2) requires
constant time if the mean ., is available for the robot pose and all active landmarks. The
constant-time update equations are given by:

U, = I—S,(I+[SFAS,) st
H |, = Vg, v,
AH, = H;_ S, [U '+ STH/_ \S,]"'S'H|_,
H, = H, ,—AH,
by = bi—pul (AH,— H,_,+H_))+ATH, (36)
For A, # 0, a constant time update requires knowledge of the mean ., ; before the mo-
tion command, for the robot pose and all active landmarks (but not the passive features). This
information is not maintained by the standard information filter, and extracting it in the straight-

forward way (via Equation (10)) requires more than constant time. A constant-time solution to
this problem will now be presented.

12



3.2 Amortized Approximated Map Recovery

Before deriving an algorithm for recovering the state estimate p; from the information form,
let us briefly consider what parts of 1, are needed in SEIFs, and when. SEIFs need the state
estimate ;, of the robot pose and the active features in the map. These estimates are needed at
three different occasions: (1) the linearization of the non-linear measurement and motion model,
(2) the motion update according to Lemma 3, and (3) the sparsification technique described
further below. For linear systems, the means are only needed for the sparsification (third point
above). We also note that we only need constantly many of the values in ;, namely the estimate
of the robot pose and of the locations of active features.
As stated in (10), the mean vector . is a function of H, and b;:

e = H7'o = S0 (37)

Unfortunately, calculating (37) directly involves inverting a large matrix, which would requires
more than constant time.

The sparseness of the matrix H; allows us to recover the state incrementally. In particu-
lar, we can do so on-line, as the data is being gathered and the estimates b and H are being
constructed. To do so, it will prove convenient to pose (37) as an optimization problem:

Lemma4: The state 1., is the mode v, := argmax,, p(v;) of the Gaussian distribution, de-
fi ned over the variable i :

p(vy) = const.-exp {—%l/tTHtVt + thi/t} (38)

Here v, is a vector of the same form and dimensionality as ;. This lemma suggests that
recovering ., is equivalent to finding the mode of (38). Thus, it transforms a matrix inversion
problem into an optimization problem. For this optimization problem, we will now describe
an iterative hill climbing algorithm which, thanks to the sparseness of the information matrix,
requires only constant time per optimization update.

Our approach is an instantiation of coordinate descent. For simplicity, we state it here for a
single coordinate only; our implementation iterates a constant number K of such optimizations
after each measurement update step. The mode v, of (38) is attained at:

vy = argmax p(v)
vt
= argmax exp {—%VtTHtVt + thVt}
vt

= argmin %V?tht —bl'y, (39)

We note that the argument of the min-operator in (39) can be written in a form that makes the
individual coordinate variables v, , (for the i-th coordinate of 1) explicit:

%VtTHtVt — b?Vt = % Z Z Vz‘T,tHi,j,th,t — Z bg:tyi,t (40)
) %

where H, ;. is the element with coordinates (i, j) in H;, and b, if the i-th component of the
vector b;. Taking the derivative of this expression with respect to an arbitrary coordinate variable
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Figure 5: Sparsifi cation: A feature is deactivated by eliminating its link to the robot. To compensate for this
change in information state, links between active features and/or the robot are also updated. The entire operation
can be performed in constant time.

V; ¢ QiVes us

0

8y.t {; Z Z V;Iv;Hivjvtijt - Z bZ:tVi7t} = Z Hihj’tl/j’t - b;z:t (41)
g i i j

Setting this to zero leads to the optimum of the ¢-th coordinate variable v;, given all other

estimates v;

v = H [b{t - ZHi,j,ty[fﬂ] (42)
i

The same expression can conveniently be written in matrix notation, were S; is a projection

matrix for extracting the -th component from the matrix H,:

v = (STHS) ST b — Ht + H, 5T v (43)

All other estimates v, , with i" # ¢ remain unchanged in this update step, that is, ui[,’ft*” = uz[k]t

As is easily seen, the number of elements in the summation in (42), and hence the vector
multiplication in (43), is constant if H, is sparse. Hence, each update requires constant time. To
maintain the constant-time property of our SLAM algorithm, we can afford a constant number
of updates K per time step. This will generally not lead to convergence, but the relaxation
process takes place over multiple time steps, resulting in small errors in the overall estimate.

3.3 Sparsification

The final step in SEIFs concerns the sparsification of the information matrix H,. Sparsification
is necessarily an approximative step, since information matrices in SLAM are naturally not
sparse—even though normalized information matrices tend to be almost sparse. In the context
of SLAM, it suffices to remove links (deactivate) between the robot pose and individual features
in the map; if done correctly, this also limits the number of links between pairs of features.

To see, let us briefly consider the two circumstances under which a new link may be intro-
duced. First, observing a passive feature activates this feature, that is, introduces a new link
between the robot pose and the very feature. Thus, measurement updates potentially violate the
bound 6,. Second, motion introduces links between any two active features, and hence lead to
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violations of the bound 6,. This consideration suggests that controlling the number of active
features can avoid violation of both sparseness bounds.

Our sparsification technique is illustrated in Figure 5. Shown there is the situation before and
after sparsification. The removal of a link in the network corresponds to setting an element in
the information matrix to zero; however, this requires the manipulation of other links between
the robot and other active landmarks. The resulting network is only an approximation to the
original one, whose quality depends on the magnitude of the link before removal.

We will now present a constant-time sparsification technique. To do so, it will prove useful
to partition the set of all features into two subsets:

Y = YTwY'wy~ (44)

where Y is the set of all active features that shall remain active. Y° are one or more active
features that we seek to deactivate (remove the link to the robot). Finally, Y~ are all currently
passive features.

The sparsification is best derived from first principles. If Y w Y° contains all currently
active features, the posterior (2) can be factored as follows:

plr, Y| 25u') = plo, YO, YT Y™ | 24 uh)
plz | YO, YT, Y7 250" p(YO,YH, Y™ | 24 u)
= play | YOyt Yy = 0, 2%, u') p(YO,Y+,Y_ | 2%, uh) (45)

In the last step we exploited the fact that if we know the active features Y° and Y+, the variable
x; does not depend on the passive features Y~. We can hence set Y~ to an arbitrary value
without affecting the conditional posterior over z;, p(x; | Y°, YT, Y, 2! u'). Here we simply
chose Y~ = 0.

To sparsify the information matrix, the posterior is approximated by the following distribu-
tion, in which we simply drop the dependence on Y° in the first term. It is easily shown that
this distribution minimizes the KL divergence to the exact, non-sparse distribution:

P, Y| 25u') = plo | YT, Y =0,25u) p(YO, YT, Y™ | 24 )
plxy, YT | Y™ =0,z ut) 0 b e |t 2

= Y. YT Y 46

p(Y+ | Y_ 07Zt7ut) p( Y 7 | < 7u ) ( )

This posterior is calculated in constant time. In particular, we begin by calculating the informa-
tion matrix for the distribution p(z;, Y°, Y | Y~ = 0) of all variables but Y ~, and conditioned
on Y~ = 0. This is obtained by extracting the submatrix of all state variables but Y :

! T T
Ht — SI,Y+,YO S$7y+7y()Ht5$7y+7yosx7y+7yo (47)

With that, the onversion lemma leads to the following information matrices for the terms
p(z, YT | Y™ =02 u)and p(Y ™ | Y~ =0, 2%, u'), denoted H} and H?, respectively:

H} = H]— H,Sy,(Sy.H,Sy,) 'St H]
H? = H— HS,y (S, HiSoyy) STy, H, (48)
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Here the various S-matrices are projection matrices, analogous to the matrix S, defined above.
The final term in our approximation (46), p(Y°, Y™, Y~ | 2t u'), has the following information
matrix:

H} = H,— H.S,,(S. HS:,) 'S, H, (49)

Putting these expressions together according to Equation (46) yields the following information
matrix, in which the landmark Y° is now indeed deactivated:

H, = H!-H?+H}
= H,— H,Sy,(Sy,H,Sy,)"" Sy, H,
+H{ S0y, (St HiSevy) ™ Sy, Hy
—H,S,,(ST H,S,,)""ST H, (50)

The resulting information vector is now obtained by the following simple consideration:

by = ufﬁt
pi (Hy — Hy + H,)
= pf H+ pf (H, — Hy)
= b+ MtT(F[t — Hy) (51)

All equations can be computed in constant time. The effect of this approximation is the de-
activation of the features Y, while introducing only new links between active features. The
sparsification rule requires knowledge of the mean vector p, for all active features, which is
obtained via the approximation technique described in the previous section. From (51), it is
obvious that the sparsification does not affect the mean 4, that is, H; 'b7 = [H,]~"[b,]". Fur-
thermore, our approximation minimizes the KL dovergence to the correct posterior. These
property is essential for the consistency of our approximation.

The sparsification is executed whenever a measurement update of a motion update would
violate a sparseness constraint. Active features are chosen for deactivation in reverse order
of the magnitude of their link. This strategy tends to deactivate features whose last sighting
is furthest away in time. Empirically, it induces approximation errors that are negligble for
appropriately chosen sparseness constraints ¢, and 6,,.

4 Experimental Results

Our present experiments are preliminary: They only rely on simulated data, and they require
known data associations. Our primary goal was to compare SEIFs to the computationally more
cumbersome EKF solution that is currently in widespread use.

An example situation comparing EKFs with our new filter can be found in Figure 6. This
result is typical and was obtained using a sparse information matrix with 6, = 6, 6, = 10, and
a constant time implementation of coordinate descent that updates X = 10 random landmark
estimates in addition to the landmark estimates connected to the robot at any given time. The
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links: 946
links: 350

landnarks: 43
landnarks: 43

error: (,0331%
error: 0,0300%

iteration: 150
iteration: 150

Figure 6: Comparison of EKFswith SEIFs using asimulation with N' = 50 landmarks. In both diagrams, the left
panels show the fi na fi Iter result, which indicates higher certainties for our approach due to the approximations
involved in maintaining a sparse information matrix. The center panels show the links (red: between the robot and
landmarks; green: between landmarks). Theright panels show the resulting covariance and normalized information
matrices for both approaches. Notice the similarity!
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key observation is the apparent similarity between the EKF and the SEIF result. Both estimates
are almost indistinguishable, despite the fact that EKFs use quadratic update time whereas SEIF
require only constant time.

We also performed systematic comparisons of three algorithms: EKFs, SEIFs, and a variant
of SEIFs in which the exact state estimate ., is available. The latter was implemented using
matrix inversion (hence does not run in constant time). It allowed us to tease apart the error
introduced by the amortized mean recovery step, from the error induced through sparsification.
The following table depicts results for N = 50 landmarks, after 500 update cycles, at which
point all three approaches are near convergence.

# experiments fi nal error fi nal # of links computation
(sofar) (with 95% conf. interval) | (with 95% conf. interval) | (per update)
EKF 1,000 (5.54 +£0.67) - 103 1,275 O(N?)
SEIF with exact p¢ 1,000 (4.75+£0.67) - 1073 549 + 1.60 O(N?)
SEIF (constant time) 1,00 (6.35+0.67) - 1073 549 + 1.59 o(1)

As these results suggest, our approach approximates EKF very tightly. The residual map er-
ror of our approach is with 6.35 - 10~ approximately 14.6% higher than that of the extended
Kalman filter. This error appears to be largely caused by the coordinate descent procedure, and
is possibly inflated by the fact that X' = 10 is a small value given the size of the map. Enforcing
the sparseness constraint seems not to have any negative effect on the overall error of the result-
ing map, as the results for our sparse filter implementation suggest. However, these findings are
somewhat premature and are subject to an ongoing experimental verification using real-world
data.

5 Discussion

This paper proposed a constant time algorithm for the SLAM problem. Our approach adopted
the information form of the EKF to represent all estimates. Based on the empirical observation
that in the information form, most elements in the normalized information matrix are near-
zero, we developed a sparse extended information filter, or SEIF. This filter enforces a sparse
information matrix, which can be updated in constant time. In the linear SLAM case, all updates
can be performed in constant time; in the non-linear case, additional state estimates are needed
that are not part of the regular information form of the EKF. We proposed a amortized constant-
time coordinate descent algorithm for recovering these state estimates from the information
form.

The approach has been fully implemented and compared to the EKF solution. Overall, we
found that SEIFs produce results that differ only marginally from that of the EKFs. Given
the computational advantages of SEIFs over EKFs, we believe that SEIFs should be a viable
alternative to EKF solutions when building high-dimensional maps.

Our approach puts a new perspective on the rich literature on hierarchical mapping, briefly
outlined in the introduction to this paper. Like SEIF, these techniques focus updates on a subset
of all features, to gain computational efficiency. SEIFs, however, composes submaps dynam-
ically, whereas past work relied on the definition of static submaps. We conjecture that our
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sparse network structures capture the natural dependencies in SLAM problems much better
than static submap decompositions, and in turn lead to more accurate results. They also avoid
problems that frequently occur at the boundary of submaps, where the estimation can become
unstable. However, the verification of these claims will be subject to future research. A related
paper discusses the application of constant time techniques to information exchange problems
in multi-robot SLAM [21].
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Appendix: Proofs

Proof of Lemma 1: Measurement updates are realized via (21) and (22), restated here for the
reader’s convenience:

Ht — ﬁt + CtZ_lc;T (52)
by = b+ (z—2+Chu)Tz7tCt (53)

From the estimate of the robot pose and the location of the observed feature, the prediction Z,
and all non-zero elements of the Jacobian C; can be calculated in constant time, for any of the
commonly used measurement models g. The constant time property follows now directly from
the sparseness of the matrix C;, discussed already in Section 2.2. This sparseness implies that
only finitely many values have to be changed when transitioning from H, to H,, and from b, to
b;. Q.E.D.

Proof of Lemma 2: For A, = 0, Equation (34) gives us the following updating equation for
the information matrix:

H, = [H' +S,US"™"! (54)

Applying the matrix inversion lemma ! leads to the following form:

Hy = Hy1—Hy 1S U +S8TH, 1S,)7'STH,
:ZLt
= Hy 11— Hi 1Ly (56)

The update of the information matrix, H;_;L;, is a matrix that is non-zero only for elements
that correspond to the robot pose and the active features. To see, we note that the term inside
the inversion in L; is a low-dimensional matrix which is of the same dimension as the motion
noise U;. The inflation via the matrices S, and S7 leads to a matrix that is zero except for
elements that correspond to the robot pose. The key insight now is that the sparseness of the
matrix H;_; implies that only finitely many elements of H;_; L, may be non-zero, namely those
corresponding to the robot pose and active features. They are easily calculated in constant time.
For the information vector, we obtain from (34) and (56):

by = [ H7Y +ATH,
= (b HZy + A (Heoy — Hia Ly)
= b1 +ATH, | — b L+ ATH, L,
(57)
As above, the sparseness of H,_; and of the vector A, ensures that the update of the information

vector is zero except for entries corresponding to the robot pose and the active features. Those
can also be calculated in constant time. Q.E.D.

1 The inversion lemma, as used throughout this paper, is stated as follows:

1

(H' +SBS")" H—-HS(B'+5"HS) " STH (55)
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Proof of Lemma 3: The update of H, requires the definition of the auxiliary variable ¥, :=
(I + A;)~!. The non-trivial components of this matrix can essentially be calculated in constant
time by virtue of:

U, = (148,574,858~
I —18,(S IS+ [STAS,| ) 'siT
= I—8,(I+[STAS,] ") tst (58)

Notice that W, differs from the identity matrix I only at elements that correspond to the robot
pose, as is easily seen from the fact that the inversion in (58) involves a low-dimensional matrix.

The definition of W, allows us to derive a constant-time expression for updating the infor-
mation matrix H:

Hy = [(I+A)H T+ A)T + S.U ST
= [(YTH, )t +S,U,8T)71
~——

=H;_,;
= [(H_) '+ 808071
= H/_,—H,_S,[U '+ STH]_S,)7'STH|_,

=:AH;

= H ,— AH, (59)

The matrix H, , = WI H, ¥, is easily obtained in constant time, and by the same reasoning
as above, the entire update requires constant time. The information vector b, is now obtained as
follows:

by = [ H7Y + ATH,
= b H '\ H +ATH,
= b HN(H +Hy - Hoo+H_, — H_)) + AlH,

=0 =0
= b HN(He + H - H)  —H,_y + H_,) + AT H,
—AH

= b H7Y(H_y — AH, — H,_,+ H, )+ ATH,
bi—1 — bt—lHt__l1(AHt —Hy oy +H{_ )+ AtTHt
= by —pl \H, H7\(AH,— H,_, + H, )+ AT'H,
= by —pul ((AH,— H, ., + H,_))+ ATH, (60)
The update AH,; is non-zero only for elements that correspond to the robot pose or active
features. Similarly, the difference H; , — H,_, is non-zero only for constantly many elements.
Therefore, only those mean estimates in j;_; are necessary to calculate the product p” | AH;.

Q.E.D.
Proof of Lemma 4: The mode v, of (38) is given by

vy = argmax p(1)
Vg
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= argmax exp {—%VtTHtVt + thut}

Vi

= argmin %V?tht — thVt (61)

The gradient of the expression inside the minimum in (61) with respect to v; is given by

8% {%V?Htl/t — thl/t} = Hu — bf (62)
whose minimum v is attained when the derivative (62) is 0, that is,

v, = H7'b (63)
From this and Equation (37) it follows that 7, = ;. Q.E.D.
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