Minimization and Reliability Analyses of Attack Graphs

Somesh JHa Oleg Sheyner Jeannette M. Wing

February 2002
CMU-CS-02-109

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

Parts of this report will appear in our paper accepted by the IEEE Symposium on Security and Privacy,
Oakland, May 2002; and parts are in a paper sttbrhto the Computer Securityobiindations Workshop,
Nova Scotia, June 2002.

1Computer Sciences Department, University of Wisconsin, Madison, Wl 53706. E-mail: jha@cs.wisc.edu
2Computer Science Department, Carnegie Mellon University, Pittsburgh5PA3. E-mailsg{sheyner,wing@cs.cmu.edu
This research is sponsoredin part by the Defense Advanced Research Projects Agency and the Army Research Office
(ARO) under contract no. DAAD19-01-1-0485. The views and conclusions contained herein are those of the authors and
should not be interpreted as necessarily representing the official policies or endorsements, either expressed or implied, of
the DOD, ARO, or the U.S. Government.

Keywords: attack graph, model checking, minimization analysis, reliability analysis, Markov Decision Pro-
cesses, network vulnerability, security

Abstract

An attack graph is a succinct representation of all paths through a system that end in a state where an intruder
has successfully achieved his goal. Today Red Teams determine the vulnerability of networked systems
by drawing gigantic attack graphs by hand. Constructing attack graphs by hand is tedious, error-prone,
and impractical for large systems. By viewing an attack as a violation of a safety property, we can use
model checking to produce attack graphs automatically:caessful path from the intruder’s viewpoint is a
counterexample produced by the model checker. In this paper we present an algorithm for generating attack
graphs using model checking.

Security analysts use attack graphs for detection, defense, and forensics. In this paper we present a minimiza-
tion technique that allows analysts to decide which minimal set of security measures would guarantee the
safety of the system. We provide a formal characterization of this problem: we prove that it is polynomially
equivalent to the minimum hitting set problem and we present a greedy algorithm with provable bounds. We
also present a reliability technique that allows analysts to perform a simple cost-benefit analysis depending
on the likelihoods of attacks. By interpreting attack graphs as Markov Decision Processes we can use a stan-
dard MDP value iteration algorithm to compute the probabilities of intrudaress for each attack the graph.

We illustrate our work in the context of a small example that includes models of a firewall and an intrusion
detection system.

important to automate. When evaluating the security of a network, it is not enough to consider the presence
or absence of isolated vulnerabilities. A large network builds upon multiple platforms and diverse software
packages and supports several modes of connectivity. Inevitably, such a network will contain security holes
that have escaped notice of even the most diligent system administrator.

host vulnerability
scanning information
tools per host
Red Team [—= Attack Graph

7

network information
network

Figure 1: Vulnerability Analysis of a Network

To evaluate the vulnerability of a network of hosts, a security analyst must takacicdant the effects of
interactions of local vulnerabilities and find global vulnerabilities introduced by interconnections. A typical
process for vulnerability analysis of a network is shown in Figure 1. First, scanning tools determine vulnera-
bilities of individual hosts. Using this local vulnerability information along with other information about the
network, such as connectivity between hosts, the analyst produ@gtaak graph Each path in an attack
graph is a series of exploits, which we catbmic attacksthat leads to an undesirable state (e.g., a state
where an intruder has obtained administrative access itigathost).

1.1 Attack Graphs and Intrusion Detection

Attack graphs can serve as a basis for detection, defense, and forensic analysis. To motivate our study of the
generation and analysis of attack graphs, we discuss the potential applications of attack graphs to these areas
of security.

Detection

System administrators are increasingly deploying intrusion detections systems (IDSs) to detect and combat
attacks on their network. Such systems depend on software sensor modules that first detect suspicious events
and activity and then issue alerts. Setting up the sensors involves a trade-off between sensitivity to intrusions
and the rate of false alarms in the alert stream. When the sensors are set to report all suspicious events, the
sensors frequently issue alerts for benign background events. Frequent false alarms results in administrators
turning off the IDS entirely. On the other hand, decreasing sensor sensitivity reduces their ability to detect
real attacks.

To address this trade-off, many intrusion detection systems employ heuristic algorithms to correlate alerts
from a large pool of heterogeneous sensors. Valdes and Skinner [VS01] describe a probabilistic approach
to alert correlation. Successful correlation of multiple alerts increases the chance that the suspicious activity
indicated by the alerts is in fact malicious.

Attack graphs can enhance both heuristic and probabilistic correlation approaches. Given a graph de-
scribing all likely attacks (i.e., sequences of attacker actions), an IDS can match individual alerts to attack
edges in the graph. Matching successive alerts to individual paths in the attack graphs dramatically increases
the likelihood that the network is under attack. This on-line vigilance allows the IDS to predict attacker goals,
aggregate alarms to reduce the volume of alert information to be analyzed, and reduce the false alarm rates.
Knowledge of attacker goals and likely next steps helps guide defensive response.

our models are expressive enough to reflect the administrator’s choice of security policy for an IDS and his

choice of network configuration. Attack graphs enable an administrator to perform several kinds of analyses
to assess their security needs: marking the paths in the attack graph that an IDS will detect; determining
where to position new IDS components for best coverage; exploring trade-offs between different security

policies and between different software/hardware configurations; and identifying the worst-case scenarios
and prioritizing defense strategagcordingly.

Forensics

After a break-in, forensic analysis is used to find probable attacker actions and to assess damage. If legal ac-
tion is desired, analysts seek evidence that a sequence of sensor alerts comprises a coherent attack plan, and
is not merely a series of isolated, benign events. This task becomes even harder when the intruders obfuscate
attack steps by slowing down the pace of the attack and varying specific steps. We can construct a convincing
argument as to the malicious intent of intruder actions by matching data extracted from IDS logs to a formal
reference model based on attack graphs [Ste].

Given that attack graphs can be used to perform a variety of analysis, we can use them to answer the
following kinds of questions, of particular interest to system administrators:

Question 1: What successful attacks are undetected by the IDS?
Question 2: If all measures for protecting a network are deployed, does the system become safe?

Question 3: Given a set of measure¥®, what is the smallest subset of measul¢s whose deployment
makes the system safe?

Answers to these questions, can help a system or network administrator choose the best upgrade strategy.
We address these questions in Section 5.

When we are modeling a system operating in an unpredictable environment, certain transitions in the
model represent the system’s reaction to changes in the environment. We can think of such transitions as
being outside of the system’s control—they occur when triggered by the environment. When no empirical
information is available about the relative likelihood of such environment-driven transitions, we can model
them only as nondeterministic “choices” made by the environment. Moreover, for new vulnerabilities data
for estimating likelihoods might not be available. However, sometimes empirical data make it possible to
assign probabilities to environment-driven transitions. We would like to take advantage of such quantitative
information added appropriately to attack graphs. In this context, a system administrator might be interested
in answering the following question:

Question 4: The deployment of which security measure(s) will increase the likelihood of thwarting an at-
tacker?

The system administrator can use the answer to question 4 to perform a quantitative evaluation of various
security fixes. We address this question in Section 6.2.

1.2 Our Contributions

Constructing attack graphs is a crucial part of performing vulnerability analysis of a network of hosts. Cur-
rently, Red Teamgroduce attack graphs by hand, often drawing gigantic diagrams on floor-to-ceiling white-
boards. Doing this by hand is tedious, error-prone, and impractical for attack graphs larger than a hundred
nodes.

The main contributions of our work, some of which have appeared in an earlier paperq&Hde:

¢ We demonstrate how model checking can be applied to generate attack graphs automatically. We show
that the attack graphs produced by our methodeataustivei.e., covering all possible attacks, and
succinct i.e., containing only relevant states and transitions (see Section 3.2).

model represents the state of the system between atomic attacks. A typical transition fros state
to states, corresponds to an atomic attack whose preconditions are satisfiedaitd whose effects

hold in states,. An attackis a sequence of state transitions culminating in the intruder achieving his
goal. The entire attack graph is thus a representation of all the possible ways in which the intruder can
succeed.

¢ We prove that finding aninimumset of atomic attacks that must be removed to thwart an intruder is
N P-complete. Beyond the proof sketched in our earlier paper {82]] here we further explore the
complexity of this problem. Section 5.2.1 proves that the problem is polynomially equivalent to the
minimum hitting set problem where the collection of sets is represented as a labeled directed graph.
This reduction provided us with additional insight, enabling us to find a greedy algorithm with provable
bounds, which can be used to answer questions 1, 2, and 3.

¢ We present an algorithmto compute thkability—fined as the likelihood of an intruder notcaieeding—
of a networked system. An advantage of our algorithm is that it alioasmplete informationi.e.,
probabilities of all transitions need not be provided. To our knowledge, previous metrics in the area of
security require complete information. We can use this algorithm an answer question 4 precisely.

We present related work in Section 2. Section 3 describes our model and our algorithm to generate attack
graphs. We give details of an example networked system in Section 4 and use it throughout the paper for
illustrative purposes. In Section 5 we present a minimization analysis to help administrators decide what
measures to deploy to thwart attacks. In Section 6 we present a reliability analysjgavabilistic attack
graphsbased on the value iteration algorithm defined for Markov Decision Processes; this analysis can help
administrators determine how deployment of one measure can decrease the likelihood of certain attacks.
Finally, we present a brief summary and directions for future work in Section 7.

2 Related Work

Phillips and Swiler [PS98] propose a concept of attack graphs similar to the one we describe. However, they
model only attacks. Since we have a generic state machine model, we can simultaneously model not just
attacks, but also seemingly benign system events (e.g., link failures and user errors) and even system admin-
istrator recovery actions. Therefore, our attack graphs are more general than the one proposed by Phillips and
Swiler. They also built a tool for generating attack graphs [SPECO00]; it constructs the attack graph by for-
ward exploration starting from the initial state. In our work, we use a symbolic model checker (i.e., NuSMV)
that works backward from the goal state to construct the attack graph. A major advantage of the backward
algorithm is that vulnerabilities that are not relevant to the safety property (or the goal of the intruder) are
never explored; this technique can result in significant savings in space. In fact, &valgiSPECOQ] refer

to the advantages of the backward search in their paper. Finally, the post-facto analysis suggested by Phillips
and Swiler is also different from the ones we present in this paper. We plan to incorporate their analysis into
our tool suite.

Dacier [Dac94] proposes the concept of privilege graphs, wia&thnode represents a set of privileges
owned by the user and arcs represent vulnerabilities. Privilege graphs are then explored to construct attack
state graphs, which represent different ways in which an intruder can reach a certain goal, such as root access
on a host. Dacier proposes a metric, calledtfean effort to failureor METF, based on the attack state
graphs. Orlatcet al. [ODK99] describe an experimental evaluation of this framework. At the surface our
notion of attack graphs seems similar to Dacier’'s. However, as in the case with Phillips and Swiler, Dacier
takes an “attack-centric” view of the world; again, our attack graphs are more general. From the experiments
conducted by Orlatet al. it appears that even for small examples the space required to construct attack
state graphs becomes prohibitive. Model checking has made significant advances in representing large state
spaces. Therefore, by basing our algorithm on model checking we leverage off those advances and can
hope to represent large attack graphs. The analytical analysis proposed by Dacier can also be performed on

R R T S T T a T T T e e e

used the unmodified model checker SMV [SMV]. Therefore, they could only obtain one counter-example
or one attack corresponding to a intruder’s goal. In contrast, we modified the model checker NUSMV to
produce complete attack graphs, which represents all possible attacks. We also described analyses that can
be performed on these attack graphs. These analyses cannot be meaningfully performed on single attacks.

3 Generating Attack Graphs using Model Checking

First, we formally definattack graphsthe data structure used to represent all possible attacks on our net-
worked system. We restrict our attention to attack graphs representing violations of safety properties

Definition 1 Let AP be a set of atomic propositions. Aattack graphor AGis a tupleG = (S, 7, Sy, Ss, L),
wheres$ is a set of states; C .S x S is a transition relation$; C S is a set of initial statesy, C S is a set
of success states, arid: S — 247 is a labeling of states with a set of propositions true in that state.

Unless stated otherwise, we assume that the transition refatsaotal. We define aexecution fragment
as a finite sequence of states; ...s, such that(s;, s;;1) € 7 forall 0 < i < n. An execution fragment
with s; € Sy is anexecution and an execution whose final state isSinis anattack i.e., the execution
corresponds to a sequence of atomic attacks leading to the intruder’s goal state. Intuitividnotes all
states where the intruder has achieved his goal, e.g., obtaining root accessticaldnost.

Next we turn our attention to algorithms for automatic generation of attack graphs and properties that
we can guarantee of them. Starting with a description of a network middahd a security property, the
task is to construct an attack graph representing all executiohs thfat violatep—these are the successful
attacks. For the kinds of attack graph analyses suggested in Section 1, it is essential that the graphs produced
by the algorithms bexhaustiveandsuccinct An attack graph is exhaustive with respect to a madehnd
correctness propertyif it covers all possible attacks i leading to a violation op, and succinct if it only
contains those states and transitiongbthat lead to a state violating

3.1 Reachability Analysis

If we restrict ourselves to safety properties, an attack graph may be constructed by performing a simple state-
space search. Starting with the initial states of the madelve use a graph traversal procedure (e.g., depth
first search) to find all reachabsiccesstates where the safety propeptys violated. The attack graph is

the union of all paths from initial states tocaess states.

While this algorithm has the advantage of simplicity, it handles only safety properties and may run into
the state explosion problem for non-trivial models. Model checking has dealt with both of these issues with
some success, so we will consider algorithms based on that technology.

3.2 Model Checking Algorithm

Model checking is a technique for checking whether a formal madief a system satisfies a given property

p. In our work, we use the model checker NuSMV [NuS], for which the mddes a finite labeled transition
system ang is a property expressed {Domputation Tree Logi¢CTL). For now, we consider only safety
properties, which in CTL have the for&G f (i.e.,p = AGf, wheref is a formula in propositional logic).

If the modelM satisfies the property, NUSMV reports “true.” IfA/ does not satisfy, NuSMV produces a
counter-exampleA single counter-example shows an execution that leads to a violation of the property. In
this section, we explain how to construct attack graphs for safety properties using model checking.

1We say more on liveness properties in Section 7.

So C S — set of initial states
L : S — 24P —labeling of states with propositional formulas
p = AG(—unsafe) (a safety property)
Output:
attack graphtz, = (Sunsafe, RF, S, S?, L)
Algorithm: Generate AttackGraph(S, R, So, L, p)
(* Use model checking to find the set of statgs,,qs. that
violate the safety propertyG (—unsafe). *)
Sunsafe = modelCheck(S, R, So, L, p).
(* Restrict the transition relatioR to states in the sef,,.; s *)
P = RN (Sunsafe X Sunsafe)-
Sg = SO mSunsafe-
S? = {s|s € Sunsase A s |E= unsafe}.
return(Sunsafe, RE, S, S?, L).

Figure 2: Algorithm for Generating Attack Graphs

Attack graphs depict ways in which the system can reach an unsafe state (or, equivalently, a successful
state for the intruder). We can express the property that an unsafe state careauttessiras:

AG(—unsafe)

When this property is false, there are unsafe states that are reachable froitiah&t@te. The precise mean-

ing of unsafedepends on the application. For example, in the network security example given in Section 4,
the property given below is used to express that the privilege level of the intruder on the host witB index
should always be less than the root (administrative) privilege.

AG (network.adversary.privilege[2} network.priv.roof

We briefly describe the algorithm (see Figure 2) for constructing attack graphs for the prapértynsafe).
The first step is to determine the set of stafedhat are reachable from thetiial state. Next, the algorithm
computes the set of reachable staigs,.s. that have a path to an unsafe state. The set of stqigs;. is
computed using an iterative algorithm derived from a fix-point characterization afGheperator [CGPO0Q].
Let R be the transition relation of the model, i.és, s’) € R if and only if there is a transition from stase
to s’. By restricting the domain and range Bfto S.,.qs. We obtain a transition relatioR? that represents
the edges of the attack graph. Therefore, the attack grashisas. , 7, 55, 5%, L), WhereSy,sqze and R
represent the set of nodes and edges of the graph respectiely;Sy N Sunsqfe is the set of initial states;
andS? = {s|s € Sunsare A s = unsafe} is the set of success states.

In symbolic model checkers, such as NuSMV, the transition relation and sets of states are represented
using BDDs [Bry86], a compact representation for boolean functions. There are efficient BDD algorithms
for all operations used in the algorithm shown in Figure 2.

3.3 Attack Graph Properties

We can show that an attack graphgenerated by the algorithm in Figure 2eighaustivéLemma 1(a)) and
succinctwith respect to states and transitions (Lemmas 1(b) and 1(c)).

an attack in7 that contains.
(c) succinct-transition. A transitiont = (s, s2) of the input mode(S, R, Sy, L) is in the attack graphy if
and only if there is an attack ifi that includeg.

Proof:

(a) exhaustive (=) Lete = spty .. .t,-15, be a (finite) execution of the input model such thais an
unsafestate. To prove thatis an attack ir5, it is sufficient to show (1}, € S, (2) s, € S, and (3) for all
0<k<n,s; e Sandi, € RP.

Sinceunsafeholds ats,, and for allk there is a path fromy, to s,, in the input model, by definition every
sy alongel violatesAG (—unsafe). Therefore, by construction, evesy is in Sunsare and everyty is in RP.
(1) and (2), and (3) follow immediately.

(<) Suppose that = sgty .. .t,—15, IS an attack in the attack gragh By construction, all states and
transitions of: are also states and transitions in the input model. Sinsean attacks, € S, ands,, € 5.
Thereforesy € Sy ands,, € S. Soe is an execution of the input model, its first state is an initial state of the
model, and is false in its final state. It follows thatviolates the propertdG (—unsafe).

(b) succinct-state. (=) By construction of the algorithm in Figure 2, all states generated for the attack
graph are reachable from aritial state, and all of them viola&G (—unsafe). Therefore, for any such state
s in the input model, there is a path from an initial state to, and there is a patk, from s to anunsafe
state.

The concatenation of; ande is an executiore of the input model that violate8G (—unsafe). By
lemma lag is an attack inz. Sincee containss, the proof is complete.

(<) If there is an attack ik that containg, then triviallys is in G.

(c) succinct-transition. (=-) By lemma 1b, there is an attaek = qotg ... 51 .. .tm—14¢m that contains
states; and an attacks, = roug...ss...u,_17, that contains state;. So the following attack includes
both stateg; andss and the transition: e = qotg...s1ts5 .. . Up_175.

(<) If there is an attack i/ that containg, then triviallyt is in G.

4 A Simple Intrusion Detection Example

Consider the example network shown in Figure 3. There are two target hosemdip,, and a firewall
separating them from the rest of the Internet. As shown, each hastngg two of three possible services

(ftp, sshd, a database). An intrusion detection system (IDS) monitors the network traffic between the target
hosts and the outside world. There are four possible atomic attacks, identified numerically as follows: (0)
sshd buffer overflow, (1) ftp .rhosts, (2) remote login, and (3) local buffer overflow. If an atomic attack is
detectablethe intrusion detection system will trigger an alarm; if an attacktéslthy the IDS misses it.

The ftp .rhosts attack needs to find the target host with two vulnerabilities: a writable home directory and
an executable command shell assigned to the ftp user name. The local buffer overflow exploits a vulnerable
version of the xterm executable.

In this section, we construct a finite state model of the example network so that each statierirans
corresponds to a single atomic attack by the intruder. A state in the model represents the state of the system
between atomic attacks. A typical transition from stgteo states, corresponds to an atomic attack whose
preconditions are satisfied #n and whose effects hold in state.

The intruder launches his attack starting from a single compigtgrwhich lies outside the firewall. His
eventual goal is to disrupt the functioning of the database. For which, the intruder needs root access on the
database hogps.

DS b1 E;"ftp
adversary ﬁ sshd

¥ L &
ir} ~ jﬁ - _Q b @ conse

Figure 3: Example Network

4.1 States of the Finite State Machine Model
The Network

We model the network as a set of facts, each represented as a relational predicate. The state of the network
specifies services, host vulnerabilities, connectivity, and a remote login trust relationship between hosts.
There are six boolean variables feach host, specifying whether any of the three modeled services are
running and whether any vulnerabilities are present on that host.

variable || meaning |

ssh, ssh service is running on hadst

ftps ftp service is running on host

data, database is running on hast

wdiry, ftp home directory is writable on host

fshell, ftp user has executable shell on hbst

xterny, xterm executable is vulnerable to overflow on host

Connectivity is expressed as a ternary relatior Host x Host x Port, whereR(hy, ha, p) means that
hosth, is reachable from hogt; on portp. The constantsp andfp will refer to the specific ports for the
ssh and ftp services, respectively. Slightly abusing notation (by overlodtjinge write R(h1, h2) when
there is a network route froty to h2. We model trust as a binary relati®shTrustC Host x Host, where
RshTrusthy, ha) indicates that a user may log in from hastto host,; without authentication (i.e., host
“trusts” hosth,).

The Intruder

The functionplvl4: Hosts— {none, user, rogtgives the level of privilege that intruder has on each host.
There is a total order on the privilege levetgne< user< root.

Several state variables specify which attack the intruder will attempt next:

| variable || meaning |
attack attack type

source source host

target target host

strain stealthy/detectable attag

=~

detectable, it will trigger an alarm when executed on a host or network segment monitored by the IDS; if an
attack isstealthythe IDS does not detect it.

We specify the IDS with a functiomls: Hostx Host x Attack— {d, s, b}, whereids(hy, ho, a) = d if
attacka is detectable when executed with source Hosand target hosks; ids(h1, 22, a) = s if attacka is
stealthy when executed with source hastand target hosh,; andids(hy, ho, a) = b if attack « hasboth
detectable and stealthy strains, and success in detecting the attack depends on which strain is used. When
hy andh, refer to the same hostgs(hy, h2, a) specifies the intrusion detection system component (if any)
located on that host. When andh. refer to different hostdds(1, h2, @) specifies the intrusion detection
system component (if any) monitoring the network path betwgeand .. In addition, a global boolean
variable specifies whether the IDS alarm has been triggered by any previously executed atomic attack.

4.2 Initial States

Initially, there is no trust between any of the hosts; the trust relaioa empty. The connectivity relatioR

is shown in the following table. An entry in the table corresponds to a pair of fsts,). Each entry is a
triple of boolean values. The first value is 'y'/iff andh- are connected by a physical link, the second value
is‘y’if h; can connect té- on the ftp port, and the third value is 'y’ if; can connect té, on the sshd port.

R | ipa | ip1 | ip2]
ipa || Y:n.N | ViYY | VYN
ip1 || Ysn,n | VYY | Yy
ip2 || Y\n.N | VYY | VYN

We use the connectivity relation to reflect the firewall rule sets as well as the existence of physical links.
For the table above, the firewall is open and does not place any restrictions on the flow of network traffic.

Initially, the intruder hasoot privileges on his own maching, and no privileges on the other hosts.

The paths betweefip,, ip1) and betweerip,, ip2) are monitored by the single network-based IDS. The
path betweeltip,, ip2) is not monitored. There are no other host-based intrusion detection components. The
IDS detects the remote login attack and the detectable strains of the sshd buffer overflow attack.

4.3 Transitions

Our model has nondeterministic state transitions. If the current state of the network satisfirsctimeli-

tions of more than one atomic attack rule, the intruder nondeterministically “chooses” one of those attacks.
The state then changes according to ¢ffects clause of the chosen attack rule. The intruder repeats this
process until his goal is achieved.

We model four atomic attacks. Throughout the descriptiors, used to designate the source host @nd
the target host. Recall that(.S, 7', p) denotes that ho4t is reachable from host on portp.

Sshd Buffer Overflow

This remote-to-root attack immediately gives a remote user a root shell on the target machine.

intruder preconditions

plvla(S) > user
plvla (T') < root

network preconditions

sshy
R(S,T,sp
intruder effects
plvl, (T) = root
network effects
—sshy
end

Ftp .rhosts

User-level privileges on host
No root-level privileges on ho§t

Host T is running sshd
HostT' is reachable front on portsp

Root-level privileges on ho$t

Host T is not running sshd

Using an ftp vulnerability, the intruder creates an .rhosts file in the ftp home directory, creating a remote login
trust relationship between his machine and the target machine.

attack ftp-rhostss

intruder preconditions

plvla(S) > user

network preconditions

ftpr
R(S,T,fp)
wdirp
fshellp

AX.—RshTrustX, T)

intruder effects
none
network effects

VX .RshTrustX, T)

end

Remote Login

User-level privileges on host

Host T is running ftp

Host7" is reachable front' on portfp

Ftp directory writable on hosI’

Ftp user has been assigned a valid shell on Host
No rsh trust for some host and7

Rsh trust between all hosts afid

Using an existing remote login trust relationship between two machines, the intruder logs in from one machine
to another, getting a user shell without supplying a password. This operation is usually a legitimate action
performed by regular users, but from the intruder’s viewpoint, it is an atomic attack.

attack rsh-loginis

intruder preconditions

plvla(S) = user

plvla (T) = none
network preconditions

RshTrusts, T')
R(S,T)
intruder effects

User-level privileges on host
No privileges on host'

Rsh trust betweefs andT'
HostT is reachable fromt

end

Local Buffer Overflow

If the intruder has acquired a user shell on the target machine, the next step is to exploit a buffer overflow
vulnerability on asetuid root file to gain root access.

attack local-setuid-buffer-overflows
intruder preconditions
plvla (T) = user User-level privileges on ho§t
network preconditions
xtermp There is a vulnerable xterm executable
intruder effects
plvl, (T) = root Root-level privileges on ho§t
network effects
none
end

It is easy to see that each atomic attack strictly increases either the intruder’s privilege level on the target
host or remote login trust between hosts. This meangthieadttack graph has no cycles

From our finite model we can now automatically construct attack graphs that demonstrate how the intruder
can violate various security properties. Suppose we want to generate all attacks that demonstrate how the
intruder can gain root privilege on hogt; and remain undetected by the IDS. The following CTL formula
expresses the safety property ttreg intruder on hostp, always has privilege level below rootis detected

AG (network.adversary.privilege[2} network.priv.root] network.detected)

Figure 4 shows the attack graph produced by our tool for this property. Each node is labeled by an attack
id number, which corresponds to the atomic attexke attempted next flag S/D indicates whether the
attack is stealthy or detectable by the intrusion detection system; and the numbers of the source and target
hosts (p, corresponds to host number 0).

Any path in the graph from the root node to a leaf node shows a sequence of atomic attacks that the
intruder can employ to achieve his goal while remaining undetected. For instance, the path highlighted by
dashed-boxed nodes consists of the following sequence of four atomic attacks: overflow sshd buffer on host
1, overwrite .rhosts file on host 2 to establish rsh trust between hosts 1 and 2, log in using rsh from host 1 to
host 2, and finally, overflow a local buffer on host 2 to obtain root privileges.

We have also expanded the example described above by adding two additional hosts, four additional
atomic attacks, several new vulnerabilities, and flexible firewall configurations. For this larger example the
attack graph has948 nodes an@8364 edges.

5 Minimization Analysis

Once we have an attack graph generated for a specific network with respect to a given safety property, we
can utilize it for further analysis. A system administrator has available to him a seea$uressuch as
deploying additional intrusion detection tools, adding firewalls, upgrading software, deletinacasents,

lato, s, atl, s atl,s
lo->1 0->2 0->1

o< NN

atl, S| 'atl,s, [at0, S| [atlS] jatl S| [at0,S] jatL S| [atLs
1->2 |0->2I 0->1 1->1 0->1 0->1 0->1 0->2
" at 2,_D| at1,S| Jatl,S| [atd s>‘§:1,s ato, S
/1-” ‘<‘ 0>1| [1->2 ‘M/ 0->1
at1,S| [at3 S| at3 D, [atl S| |atlS]| [at2D
0->1 252 :_2->2J 1->1 251 1->2
\ a3 S| |at3 D
2->2 2->2

Figure 4: Attack Graph

5

[1
S ?%!r oﬁp’{‘ -
=

Figure 5: Attack Graph Analysis

set of atomic attacks they thwart. It helps us answer questions sucteaand3 posed in Section 1.1. Let
us look at each question in turn since theggest different solution approaches.

5.1 Minimal Subsets of Atomic Attacks to Thwart

Suppose we want to find a minimal set, of atomic attacks that must be prevented to guarantee the adver-
sary cannot achieve his goal. A system analyst can use this information in deciding to choose one measure
mq, which eliminates this minimal set of attacks over another measuyeperhaps cheaper than;, but
ineffective with respect tal.

A naive solution is as follows:

1. Make only a subset of the atomic attacks available to the intruder.
2. Run the model checking algorithm to determine if the adversary can succeed.

3. Do Steps 1 and 2 for all possible non-empty subsets of atomic attacks.

Clearly this solution is exponential in the number of atomic attacks. For our example, however, the
number is small, and we can easily determine this minimal set. As a by-product of determining this set, we
can easily answer the first question posed in Section 1.

Question 1: What successful attacks are undetected by the IDS?

Answer: To answer this question, we modify the model slightly. For simplicity, we nondeterministically
decide which subset to consider initially, before any attack begins; once the choice is made, the subset of
available atomic attacks remains constant during any given attack. We ran the model checker on the modified
model with the invariant property that says the intruder never obtains root privilege oipftost

AG (network.adversary.privilege[2} network.priv.roof

The post-processor marked the states where the intruder has been detected by the IDS. The result is shown
in Figure 5. The white rectangles indicate states where the attacker had not yet been detected by the intrusion
detection system. The black rectangles are states where the intrusion detection system has sounded an alarm.
Thus, white leaf nodes are desirable for the attaclesrabse his objective is achieved hadtt detection.

Black leaf nodes are less desirable—the attacker achieves his objective, but the alarm goes off.

The resolution of which atomic attacks are available to the intruder happens in the circular nodes near the
root of the graph. The first transition out of the root (initial) state picks the subset of attacks that the intruder
will use. Each child of the root node is itself the root of a disjoint subgraph where the subset of atomic
attacks chosen for that child is used. Note that the number of such subgraphs descending from the root node
corresponds to the number of subsets of atomic attacks with which the intruder carcégsul—the model
checker determines that for any other possible subset, there is no possible successful sequence of atomic
attacks.

The root of the graph in Figure 5 has two subgraphs, corresponding to the two subsets of atomic attacks
that will allow the intruder to succeed. In the lefttggraph the sshd buffer overflow attack is not available
to the intruder; it can be readily seen that the intruder can stiltesed, but canot do so while remaining
undetected by the IDS. In the right subgraph, all attacks are available. Thus, the entire attack graph implies
that all atomic attacks other than the sshd attack are indispensable: the intruder caced svibout them.
That is, for no other subset of atomic attacks can the intruder succeed in achieving his goal. The analyst can
use this information to guide decisions on which network defenses can be profitably upgraded.

The white cluster in the middle of the figure is isomorphic to the attack graph presented in Figure 4; it
shows attacks in which the intruder can achieve his objective without detection (i.e., all paths by which the
intruder reaches a white leaf in the graph).

AG (—unsafe)

Let.A be the set of atomic attacks, a6d= (S, F, sg, s5, L) be the attack graph, whefgis the set of states,
E C S x Sisthe set of edges; € S is the initial states; € S is the success state for the intruder, and
L : F — AU{e} is alabeling function wheré(e) = « if an edgee = (s — s’) corresponds to an atomic
attacka, otherwiseL(e) = e. Edges labeled witl represent system transitions that do not correspond
to an atomic attack. Moreover, as demonstrated below additioadbes can be also introduced by our
construction. Without loss of generality we can assume that there is a single initial coe$sistate. For
example, consider an attack graph with multiple initial stafes- -, s} and success state, - - -, s¥. We
can add a new initial state and a new success statewith e-labeled edges$sg, s7*) (1 < m < j) and
(ss,50) (1 <t <).

Suppose we are also given a finite set of measiifes {m;, - - -, m; } and a functiorovers : M — 24,
An atomic attacks € covers(m;) if adopting measurer; removes the atomic attaek

We are now ready to address the question of what measures a system administrator should deploy to
ensure the system is safe. Again, there is a naive solution, that is, to try all possible subsets of measures
M’ C M and determine which of those make the system safe. We discuss this approach in the context of
guestion 2:

Question 2: If all measures for protecting a network are deployed, does the system become safe?

Answer: A network administrator wants to find out whether adopting measures fromMd'set A will
make the network safe. This question can be answered in linear time using the attaak grésh, we define
covers(M') aSUmEM’ covers(m). Next, we remove all edgesfrom G such that’.(e) € covers(M'). The
network is safe iff the success stateis not reachable from theitial states,. This simple reachality
guestion can be answered in time that is linear in the size of the graph.

As the set of measures grows (and as the set of atomic attacks grows), we really would like to have the
system administrator choose the smallest subset of measures that would guarantee the networked system is
safe. We address this decision in the context of question 3:

Question 3: Given a set of measure¥®, what is the smallest subset of measul¢s whose deployment
makes the system safe?

Answer: A network administrator wishes to find a subdét C M of smallest size, such that adopting the
measures in the sétf’ will make the network safe. Unfortunately, this problemhig’-complete, but we
develop good approximation algorithms. We gged in two steps:

Step 1: Finding a small set of atomic attacks.
In this step, we find a set of atomic attacks whose removal makes the network safe. As described in the
previous section, checking every possible subset of attacks is exponential in the number of attacks. In
an earlier conference paper [SHIP], we show that finding theninimumset of atomic attacks which
must be removed to thwart an intruder is in fAl®-complete. We repeat part of the proof below (see
Lemma 2). We also demonstrated homamimalset can be found in polynomial-tinteln this paper,
we further explore the complexity of this problem. Section 5.2.1 proves that the problem of finding
a minimum set of attacks is polynomially equivalent to the minimum hitting set problem, where the
collection of sets is represented as labeled directed graph. This reduction provided us with additional
insight. This additional insight enabled us to find a greedy algorithm with provable bounds.

2In the conference paper we showed the reduction terinémum coveproblem [GJ79, Page 222]; here we show it torttigimum
hitting setproblem.

is a function, whereovers(m;) represents the set of atomic attacks that are removed by adopting the
measuren;. With each attack in the setd’, we associate a set of measufiéga) which is{m; | a €
covers(m;)}+. The set of attacksl’ defines a collectior®’s: of subsets ofi/. We wish to find the
smallest subse¥d’ C M such that for alk € A’ there exists am; € M’ such that € covers(m;),

or equivalentlyd’ N M(a) # @. This is known as the minimum hitting set problem, which\ig’-
complete, but good approximation algorithms exist to solve this problem (see Section 5.2.2)

5.2.1 The Minimum Critical Attack Sets
and the Minimum Hitting Set Problem

This section addresses the first step in the answer to question 3. Assume that we are given an attack graph
G = (S, E,so,s5, L), whereS is the set of stated; C S x S is the set of edges, € S is the initial state,
ss € Sis the success state for the intruder, dndZ — A U {¢} is a labeling function.

Given a state € 5, a set of attacké’ is critical with respect te if and only if the intruder cannoeach
his goal froms when the attacks in' are removed from his arsenal. Equivalendlyis critical with respect
to s if and only if every path frons to the success statg has at least one edge labeled with an attaekC'.

A critical set corresponding to a statés minimum(denotedV/ (s)) if there is no critical sefi/’(s) such
that|M’(s)| < |M(s)|. In general, there can be multiple minimum sets corresponding to ass@feourse,
all minimum critical sets must be of the same size.

A critical set of an attack grapy = (S, F, so, s5, L) is defined as a critical set corresponding to the
initial statesy. Therefore, théinimum Critical Set of Attacks (MCSA) problésthe problem of finding a
minimum critical set of attacka/ (sy). The decision version of the problem is defined as follows: given an
attack graph = (S, E, s, s, L) and a positive integek, is there a critical set of attacks C .4 such that
|A] < K?

Lemma 2 Assume that we are given an attack grépk: (S, £, sq, L) and an integet. The MCSA problem
of determining whether there is a critical $&tsy) such thaiC'(sq)| < k is NP-complete.

Proof: First, we prove that the problem is WP. Guess a set’ C .4 with size< k. We need to check that
(' is a critical set of attacks. This can be accomplished in polynomial time using the reachability algorithm
described before (see answer to question 2). Therefore, the problemdis in

Next, we prove that the problem P-hard. The reduction is from theinimum hitting setproblem,
details as given in the remainder of this section.

Assume that we are given an attack grapk: (S, £, sg, s5, L). A pathr is sequence of states, - - -, ¢,,
such thay; € S and(q¢;, ¢;+1) € E. A complete patlstarts from the initial state, and ends in the success
states,. The label of a pathr = ¢4, - - -, ¢,, (Abusing notation, we will denote it also &ér)) is a subset of a
set of attacks4 .

U AL, ai40)} \ e}

i=1
L(x) represents the set of atomic attacks used on therpaghset of attacksd C A is calledrealizablein
the attack grapld- iff there exists a complete pathin G such thatZ.(x) = A. In other words, an intruder
can use the set of attackisto start from the initial state an@ach the success state. The set of all realizable
sets in an attack graph is denoted byRe/((). The following lemma is easy to prove and follows straight
from the definitions.

Lemma 3 Assume that we are give an attack grdphk- (S, F, sg, ss, L). A set of attacksA is critical iff
VA € Rel(G).ANA#D.

In other words, all realizable sets have a non-empty intersection with a critic&l set

inC?

Lemma 3 proves that the problem of finding whether the attack grapas a critical set of size€ K is
thehitting set problem withC' = Rel(G), S = A, andK..

Next suppose we have an instari¢é S, K') of the hitting set problem. We will construct an attack graph

G'= (9, s, 85, L"), wherel’ : ' — S U {e}, i.e., the set of attacks used in the attack gréphs

S. Moreover, the set of realizable se&ks!((’) of the graph(:’ is the collectionC'. A critical set of size

< K of the attack grapld’ is a hitting set for the collectiofi’. Next, we describe the constructionGf.

Let C = {C4,---,C,,} be the collection of sets anfl = {s;,---,s,} be the set. We make: copies
St...,5™ of the setS. The set of elements ifi’ will be denoted by{s¢, - - -, st }. The set of states’ in

the attack grapli’ is

{sh,ssyuStU-..uS™ .

The initial state iss;, and the final state ig,. The set of edge&” and the labeling functioi’ are defined as
follows:

o There is an edge fron{, to every state in the s¢t1, 5%, - - -, s7'}, and label of the edges), s}) is s1
if s, € C}, otherwise it is.

e Foralll <i<wmandl <j<n—1,thereisanedgg, s},), and the label of edge’ , s ,) is
sjy1if s;41 € C;, otherwise itis.

e There is an edge from every state in the &€t,s2 - - -, s} to the states’, and labels of all these
edges is.

The sizes of the sets’ and £’ in the attack grapld”’ aremn + 2 and2m + mn respectively. It is easy to
see thatRel((’) is equal toC’, and S’ C S is a critical set of the attack graph! iff .S’ is a hitting set for
the collectionC'. Since the size of/’ is polynomial in the size of the instance of the hitting set problem and
the hitting set problem i& P-complete, the MCSA problem i¥ P-hard. Lemma 2 proves that MCSA is in
N P. Therefore, MCSA isV P-complete. The next example illustrates our construction.

Note: The discussion above also proves that the problem of finding a minimum set of measures whose
adoption will make the network safe is aldaP-complete. One can simply take the set of measie® be
the set of attacksl.

Example 1 We give a short example to illustrate the reduction. Consider & set{s;, s», s3}. Suppose
that the collectiorC' consists of the following subsets:

C1 = {s1,s2}
Cy = {s2,s3}
03 = {82}

The attack grapld?’ corresponding to this problem is shown in Figure 6. The set of attacks js», s3}.
The set of realizable sefRe!(G") is exactly the collectio’. The set of attackés, s, } is critical because
every path froms; to the success staté uses at least one edge with the label in the{sets, }. Moreover,
{s1, s2} is a hitting set for the collectio&' = {C, Cs, Cs}.

The above discussion proves that the problem of finding critical sets in attack grpplymomially
equivalento finding hitting sets for a collection, with one caveat—the collection ofSétepresented as an
attack graphAn attack graph can be an exponentially succinct representation of a collection ofgpise 7
shows an attack graph of linear size whose set of realizable sets is the powefset of, s,, }. Therefore,
the minimum critical set problem is polynomially equivalent to the hitting set problem where the collection
of setsC' is represented as a labeled directed graph.

S1
S1N\E

%Cn\ .4

Figure 6: Attack graph corresponding to the collection

52

Figure 7: Attack graph representing an exponential number of realizable sets.

(C, 5, K) be an instance of the hitting set problem. I$€tandC"’ be initially the empty set. The greedy
algorithm executes the following step urdil = C.

¢ Pick an element out of the sef5'\ S’ that covers the maximum number of sets in the colleafiorC”.
An elements is said to cover a seft; C S iff s € 5.

¢ Let s be the element picked in the previous step &ffd) be the collection of sets i@ covered bys.
UpdatesS’ andC” as follows:
S+ S"U{s}
C'+— C"UC(s)

Let H,; be thed-th harmonic numbeEf:1 1. LetC'(s) be the number of sets in the collectiofthat are
covered by the element

Lemma 4 GREEDY-HITTING-SEIE a polynomial-times(n)-approximation algorithm, wheggn) = H (max,es{|C(s)|}).

The proof of the lemma follows from the equivalence between the minimum hitting set and the minimum
cover problem [ADP80] and the proof of the approximation fagtor) for the greedy algorithm for the
minimum cover problem [CLR85]. Using the equivalence between the problems of finding a minimum
critical set and a minimum hitting set, we can construct a greedy procedure @G&EBDY-CRITICAL-SBT
for finding a critical set for the attack graph. Assume that we are given an attack@rap(t, ¥, so, ss, L),
wheres is the set of statedy C S x S is the set of edges, € S is the initial states; € S is the success
state for the intruder, anl : F — A U {¢} is a labeling function. Moreover, assume that we can compute in
polynomial time the functiop : A — X, wheregu(a) is the number of realizable sets in the attack graph
(i that contain the attack. Formally,u(a) is equal to

[{A'|a € A’ and A’ € Rel(G)}] .

Initially, let A’ be the empty set an@ = (. The greedy algorithfBREEDY-CRITICAL-SE&xecutes the
following step untilG’ is empty.

¢ Pick and element from the setd \ A’ that maximizeg:q:(a).
¢ Leta be the element picked in the previous step. UpditandG’ as follows:

A A UA{a}
Remove all edges labeled withfrom G’

Lemma5 GREEDY-CRITICAL-SET a polynomial-timep(n)-approximation algorithm, wherg(n) =
H(maxeeaipa(a)}).

Next, we explore conditions when the functiog can be computed in polynomial time. Assume that
the attack grapli7 is a DAG. An argument for this was given in Section 4.3. Moreover, assume that each
atomic attack isused only oncen a path from the initial state, to the success statg. This is not a
unreasonable assumption because the attack graph edges are labeled with instantiations of attack templates
shown in Section 4.3, e.g., a local-setuid-buffer-overflow attacks on two different hosts are distinct in the
attack graph. Such attack graphs are calleg-oncdDAGs. The following lemma is easy to prove.

Lemma 6 For an attack graph that is a use-once DAG, the fungiiglan be computed in time that is linear
in size of the attack graph.

of t'h'warting an attack? If we have probabilities available to us, we can annotate attack graphs to help system
administrators answer such questions.

In our work, we do not require that all transitions be given probabilities; in general, our annotated attack
graphs can have a mix of probabilistic and nondeterministic state transitions. We pursue the implications of
this general kind of attack graph in this section.

In general, we also do not require probabilities to be numeric; they can be symbolic, e.g., “high,
“medium,” or “low,” and even partially ordered. In an earlier paper [JWO01], we discuss an analysis that
uses symbolic probabilities; in this paper, however, we restrict ourselves to numeric values.

6.1 Probabilistic Attack Graphs

Suppose that the graph has a statégth only two outgoing transitions. In a regular attack graph, the choice

of which transition to take when the system is in staie nondeterministic. However, we may have some
empirical data that enables us to estimate that whenever the system is i) stataerage it will take one of

the transitions four times out of ten and the other transition six remaining times. We can place probabilities
0.4 and0.6 on the corresponding edges in the attack graph. Intuitively, the probability of the transitios
represents the likelihood that the atomic attack corresponding to the transitionaeidlesi We call a state

with known probabilities for outgoing transitiopgobabilistic When we have assigned all known proba-
bilities in this way, we are left with an attack graph that has some probabilistic and some nondeterministic
states in it. We call such mixed attack gragngbabilistic attack graphsWe use probabilistic attack graphs

to evaluate the reliability of a network. Note that probabilities of all the transitions might not be available
because of lack of data, e.g., a new type of atomic attack.

Since the attack graph includes only those states and transitions that can lead to success states, it excludes
some transitions that exist in the complete matlel These excluded transitions can have non-zero proba-
bility, so that the sum of probabilities of transitions from a probabilistic state will be lessithém address
this problem, we must model the restif in some way. We add a “catch-akscapestates. to the attack
graph. A probabilistic state in the attack graph will have a transition ¢p if and only if in M there is a
transition froms to some stateotin the attack graph. The probability of going fronto s. will be 1 minus
the sum of the probabilities of going to other states. There are no transitions suer€ept a self-loop
(which preserves the totality of the transition relatign

In an attack graph containing the escape statgtacks are allowed to terminatedn We will call them
escape attack®r attacks that were pre-empted by the intruder before he reached his goal.

6.1.1 Definition of PAGs

Definition 3 A probabilistic attack graptor PAG is a tuples = (S, Sy, se, S, 7, T, S0, Ss, L), wheresS,, is

a set of nondeterministic states, is a set of probabilistic states, € 5 ,, is a nondeterministic escape state
(s &€ 5:), S =5, U9, is the set of all states; C S x S is a transition relationg : S, — S — R are
transition probabilitiess, C S is a set of initial statesS, C S is a set of success states, and S — 247

is a labeling of states with a set of propositions true in that state.

A probabilistic attack graph distinguishes between nondeterministic stateés jsetd probabilistic states
(set.S;). Moreover, the sets of nondeterministic and probabilistic states are disjointi(S, = 0). The
function = specifies probabilities of transitions from probabilistic states, so that for all transitiors
sy € T such thats; € S;, we haveP(s1 — s2) = 7(s1)(s2) > 0. Thus, w(s) can be viewed as a
probability distribution on next states. Intuitively, when the system is in a nondeterministicsstatee
have no information about the relative probabilities of the possible next transitions. When the system isin a
probabilistic state,, it will choose the next stataccording to probahty distribution (s,).

LetG = (5,7, 50,5, L) be the attack graph anf a tunction that assigns probabllities to transitions. The
probabilities can be loosely interpreted as the probability of the atomic attack corresponding to the transition
succeeding. We are interested in finding the rdliigbof the attack graph, i.e., the probability that the
intruder will not succeed. We can vie@ as a Markov chain witty as its state space arft(s; — s2) as
its transition probability. Let/ : S — Rt be the steady state probability of the Markov chain (see [Dur95]
for definitions and technical conditions). In this case, the reliability of the attack grajshgiven by the
following expression:

1= U(s)

SES,

In other words, the reliability is the probability that in the “long run” the Markov chain will not be in a state
in the setsS;.

In general, however, we do not have probabilities assigned to all transitions; thus in Section 6.2 we show
how to perform similar reliability analysis on probabilistic attack graphs in the presence of nondeterministic
states. The justification of our approach relies on converting a probabilistic attack graph (PAG) into an
alternating probabilistic attack graph (APAG) and then interpreting the result as a Markov Decision Process;
we give this construction and interpretation in Section 6.3; we give the proof of correctness of the MDP value
iteration algorithm applied to PAGs in Section 6.4. Sections 6.3 and 6.4 can be skipped upon a first reading.

6.2 Reliability Analysis of PAGs

Assume that we are given a PAG= (S, Sg, s¢, S, 7, 7, So, S5, L). Intuitively, we are interested in finding

out the probability that the intruder wilkach a success state starting from one of thiaistates. As shown

above, in the absence of nondeterministic states we can compute this metric by using the steady state prob-
abilities of the Markov chain. In the presence of nondeterministic states the intruder will choose transitions
in order to maximize his probability of sueeding. For example, if an intruder reache®adeterministic

states with transitions tcsy, - - -, s, he will choose to transition to state(1 < ¢ < n) which will maximize

his probability of raching a success state. This idea can be “formalized” using concepts from the theory of
Markov Decision Processes [Alt99, Put94].

6.2.1 Value lteration for PAGs

Given a state, the set of successors ois denoted byucc(s). Formally,suce(s) is equal tofs’|(s, s') € }.
First, we define aalue functiort” : S — R*. For alls € S;, V(s) = 1.0. For all states € S'\ S the value
function is iterated according to the following equations until convergence.

v Max,s e suce(s) V() if s €5, \ 5
) =\ Sevneeis) Pls =)V () ifs €5\ 8,

Let V> be the value function after convergence. Intuitively, . V*(s) is the probability for the
intruder to reach a success state if he “breakstitradeterminism to maximize the probability otseeding.
Therefore, the worst case reliability of the networkis- > o V*(s). This algorithm is known asalue
iteration. The justification of the value iteration algorithm as applied to PAGs is presented in Section 6.4.

6.2.2 Example Revisited

We implemented the value iteration algorithm in our attack graph post-processor and ran it on a slightly
modified version of the intrusion detection example from Section 4. In the modified example, each attack
has both detectable and stealthy variants. The intruder chooses which atomic attack to try next, and he has
a certain probability of picking a stealthy or a detectable variant. We assigned imaginary probabilities of
picking a stealthy attack variant as follows: 0.2 for sshd buffer overflow, 0.5 for ftp .rhosts, 0.05 for the

In this setup, the computed probability of intrudecsess is 0.2, and his best strategy is to attempt sshd
buffer overflow on hostp,, and then conduct the rest of the attack from that host. The only possibility of
detection is the sshd buffer overflow attack itself, since the IDS does not see the activity betweép,hosts
andip-.

Given this context, a system administrator can answer the following question:

Question 4: The deployment of which security measure(s) will increase the likelihood of thwarting an at-
tacker?

Answer: Installing an additional IDS component to monitor the network traffic between byosendip,
reduces the probability of the intruder remaining undetected to 0.025; installing a host-based IDSipn host
reduces the probability to 0.16. Other things being equal, this is an indication that the former remedy is more
effective.

6.3 Alternating Probabilistic Attack Graphs and Markov Decision Processes

In this section we show that probabilistic attack graphs can be reduced to Markov Decision Processes (without
the reward function). We then demonstrate how we can assign a reward function to attack graphs such that
standard MDP algorithms can be used to compute reliability metric of the network being modeled.

Definition 4 [Alt99, Put94]A Markov Decision Process is a tupl¥, A, P, ¢) where

¢ X is afinite state space. Generic notation for MDP states wil he z.

¢ Ais a finite set of actions.A(z) C A denotes the actions that are available at statSet =
(z,a) : z € X, a € A(z) is the set of state-action pairs. A generic notation for an action wiil. be

e P : X x A x X are the transition probabilities; thuB(zay) (also written asP..,,) is the probability
of moving from stater to y if actiona« is chosen.

e 7 : K — N is an immediate reward. Cost may be equivalently viewed as a negative reward. We will
freely use the term cost to mean negative reward, and vice versa.

An execution fragmen(also known as history in the traditional MDP literature) of an MDP is a sequence
roay a1 ... anx, Of alternating states and actions such that the sequence begins and ends with a state, and
forall 0 < k < n, ap € A(xg—1) and0 < P(zp_1, a5, 2;) < 1. Given an execution fragment =

zoai1y .. .anty, the probability of the execution fragment (denoted Bie)) is given by the following
expression:

n
Hp(ﬂb‘k—l,ak,l‘k)
k=1

It is possible to convert a probabilistic attack graph into an MDP such that the behaviors of the PAG and
the MDP are identical. To explain the conversion procedure, we define a restricted kind of probabilistic attack
graph.

Definition 5 An alternating probabilistic attack grapbr APAGis a tupleGG = (S,, Sy, se, S, T, Tg, T, So,
Ss, L), whereS,, is a set of nondeterministic states, is a set of probabilistic states, € S, is a nonde-
terministic escape stat®, = 5, U 9, is the set of all states;, C 5, x .5, is a set of nondeterministic
transitionsy, C S, x S, is a set of probabilistic transitions,: S, — .5, — 3 are transition probabilities,
Sy C S is a set of initial statesS, C S is a set of success states, ahd S — 247 is a labeling of states
with a set of propositions true in that state.

(@) (b)

nondeterministic hidden probabilistic state hidden

state probabilistic state nondeterministic
state

Figure 8: Converting PAG to APAG

An alternating probabilistic attack graph (APA@Jes not have any transitions between two nondeterministic
or between two probabilistic stategn other words, a nondeterministic state has transitions to probabilistic
states only, and vice versa. An execution of an APAG will always have strictly alternating nondeterministic
and probabilistic states.

Next we describe an algorithm that converts a RBG= (S, Sy, se, S, 7,7, S 0, 55, L) into an APAG
G = (S2, 824, 5., 5, mt 72 w4, 5o, Ss, L) that has equivalent behaviors. The algorithm works by adding

hiddenstates and transitions to the graph such that every execution becomes strictly alternating, yet does not
change itobservablgnon-hidden) components.

We start withS2 = S,,, S = 5, 72 .= 0, 7* == 0, #* := 0.0, andL* = L. Next,

1. Whenever has a transition from probabilistic stateto nondeterministic state,, we add the transi-
tionto* and its probability tor*.

2. Whenever- has a transition from nondeterministic stateio probabilistic state,, we add the transi-
tiontor2.

3. Wheneverr has a transition between two nondeterministic stategnds,, we add a hidden proba-
bilistic states, to S, an observable transition — s;, to 7', and a hidden transition, — s, to 72,
assigning the latter probability0 in 74 (Figure 8a). We also sét* (s,) = L(s1).

4. Wheneverr has a transition between two probabilistic statesand s;, we add a hidden nondeter-
ministic states, to 52, a hidden transition, — s, to 7!, and an observable transitien — s;, to
7-1;:, assigning the latter the original probabilityof going froms; to s, (Figure 8(b)). We also set
LA(sp) = L(s1).

LetG, be a PAG an(d?;,“ be the corresponding APAG. An execution fragment sgs; - - - s, iN G;,“ is called
properif the start and end statesy(ands,,) are observable states. Lebe a proper execution fragment of
G;,“. We define°** by removing hidden states and hidden transitions fegie., restricting the execution
to observable states and transition. Consider an execution fragmesgs; - - - s,. Let Sp(e) be the set of
probabilistic states in the s¢t, - - -, s,—1}. Define the probability of an execution fragmer({denoted by

(a) (b)

O O []

probabilistic state nondeterministic escape state
state

Figure 9: Converting an APAG to a MDP

P(e)) as
H P(SZ' — 5i+1) .
s:€5p(e)
In other words, the probability of an execution fragment is the product the probabilities of the probabilistic
transitions in it. The following lemma follows straight from the construction.

Lemma? Let G, be a PAG and?;j‘ be the corresponding APAG. Letbe a proper execution fragment of
G;j‘. The following three statements are true:

1. ¢°** is an execution fragment @F,,.

2. P(e) = P(e*), where the first probability is interpreted @it and the second probability is inter-
preted in(7,.

3. For all execution fragments of (7, there exists proper execution fragmeit G;,“ such that = eg®*.

Lemma 7 clearly shows that there is a one-to-one correspondence (givén)tetween proper execution
fragments of a APAG and corresponding execution fragments of a PAG. Moreover, this correspondence
preserves probabilities. We have shown that APAGs have the same expressive power as PAGS, so hereafter
we consider them interchangeable.

ANAPAG G = (S,, 5, s, S, Tn, Tq, T, S0, Ss, L), has adirect interpretationas an MDR; = (X, A, P, ¢),
whereX = S,, A = 7,. That is, each action in the MDP represents a itemsfrom a nondeterministic to
a probabilistic state. Further, lety € X anda € A(x), so thata represents a transition fromto some
probabilistic state, in the APAG. Then we hav® (z, a, y) = 7(sq)(y).

Itis preferable to have all APAG success states representedidyiscMDP states, so that we can reason
about attacks in the MDP context. For this reason, we add a hidden nondeterministic state (and a transition
thereto) to every probabilistic saess state in the APAG. We omit proofs of equivalence of an APAG before
and after this modification.

Figure 9(a) shows an example APAG, with the corresponding MDP shown in Figure 9(b). The nonde-
terministic transitions from the root node in the APAG are represented by the MDP aationandc. The
leftmost leaf in the APAG is a probabilisticetess state; in the MDP it is represented by the appended hidden
nondeterministic state.

the reward functiom depending on the questions we are trying to answer.

Lete = spshsh? - -s"71sPs? be an execution fragment of the APAG, Wheresk and sk represent
nondeterministic and probabilistic states respectively.rhép(e) = e™%® = snt7st ... s7, wheret? is the
action that corresponds to the transitidn, — s?. Notice that inmdp(e) probabilistic states do not occur.
The proof of the following lemma follows straight from the construction.

Lemma 8 Let G be a APAG andV/ be the corresponding MDP. Letbe an execution fragment ¢f and
mdp(e) be the corresponding execution fragment in the MBP. The following statements are true.

1. mdp(e) is an execution fragment of the MDH ..
2. P(e) = P(mdp(e)), whereP(e) and P(mdp(e)) are interpreted idr and M respectively.

3. For all execution fragments,, in the MDP M, there exists an execution fragmenin ¢ such that
mdp(e) = enm.

6.4 Correctness of the Value Iteration Algorithm for Attack Graphs

Let G = (Sn, S, 8¢, 9,7, 7, 5,5, L) be a PAG, andi* = (57,52, 5., §4, 74, 7t 74, S0, Ss, L*) be

the corresponding APAG. dall that the APAGG4 is obtained from the PAG; by adding hidden states
whenever there is a transition between two nondeterministic or probabilistic states (see Section 6.3). An
APAG G = (Sn, Sq, 8¢, S, Tn, T, ™, S0, S5, L) has a direct interpretation as an MDP; = (X, 4, P, r),
whereX = S,,, A = 7,. That is, each action in the MDP represents a itemmsfrom a nondeterministic to

a probabilistic state. Further, lety € X anda € A(z), so thata represents a transition fromto some
probabilistic state, in the APAG. Then we hav® (z, a, y) = 7(s,)(y). We first demonstrate that thalue
iteration algorithm(or VI for short) on the APAG=4 is simply a transformed version of the value iteration
algorithm on the corresponding MDH ¢ with an appropriate reward function After that, we prove that

the value iteration algorithm on the PAG and the corresponding APAG converge to the same value. The
advantage of this approach is that all the technical results in the context of value iteration in MDPs can be
directly applied to value iteration in PAGs [Put94, Chapter 9].

6.4.1 Correspondence Between Value Iteration in MDPs and APAGS

Consider a MDPM = (X, A, P,r). A value functioris positive real valued functioli : X — R*. The
value iteration algorithm uses the following equation to update the funttion

Vie) = maxIr(z,a)+ ;(P(x’ a,y)V ()]

Technical conditions that guarantee the convergence of the value iteration algorithm can be found in [Put94,
Chapter 9].

Let G4 be a APAG and\/ be the corresponding MDP&Rall that we assumed that all success states in
G4 are nondeterministic states so that they are explicitly represented in the\ll¢DBefore we proceed, we
need to slightly modify the MDR/. We add a new statg,.,, and action,,.,, to the MDP M. The only
action allowed froms ey IS tnew (A(Snew) = {@new}) ANA P (Spew, Gnew, Snew) = 1.0 (SO by definition
P(Snew, new, s) = 0.01f s # spew). MoOreover, we add the actian,.,, to the action set corresponding to the
success state$; and for alls € Sy we haveP (s, dnew, Snew) = 1.0 (S0 by definitionP (s, anew, s”) = 0.0
if s # snew). We have the following reward function

r(s,a

. 1.0 ifse Ss ande = Anew
) = 0.0 otherwise

states,, ., and1.0 to a state in the sef;. For states that are not in the get,.., } U S, the value functiori”
changes according to the following equation:

V(z) = max Plx,a,y)V(y
) = 2 P V)

= ax P(sqy = y)V
qEI?uccx ;{ 4 y) (y)

The second equation follows from the construction of the MR from the APAGG“. Recall that actions
in the MDP correspond to the transitions from nondeterministic to probabilistic states. Next we extend the
value functionV” to probabilistic states,, by definingl’(s) (for all s € S;) as

Y Ps=y)V(y) .

yeXx

Notice that in an APAG only successors of a probabilistic statee nondeterministic state, $4y) is well
defined. Using this definition the value iteration algorithm can be re-written as:

Vis) — { MaXsesuce(s) V(s') if s €5, \ 5
(8) B s'€suce(s) P(S - S/)V(S/) if s € Sq \ SS
The value iteration (V1) equation given above was obtained by transforming the VI equation for the corre-
sponding MDP. Moreover, the equation we obtain is exactly the VI equation for an APAG that was provided
earlier (see Section 6.2).

6.4.2 Correspondence Between Value Iteration in MDPs and PAGs

Let G = (Sn, S5, 8¢, 9,7, 7, 50,5, L) be a PAG, andi* = (57,52, 5., 54, 74, 7t 74, S0, S, L*) be

the corresponding APAG. &Rall thatG“4 is obtained from by adding hidden states whenever there is a
transition between two nondeterministic or probabilistic states (see Figure 8). Suppose there is a transition
between two nondeterministic statesands, in G. In G4, we add a new probabilistic statg and add
transitionss; — s, ands; — s2, where the probability of the transitiey — s» is 1.0. Consider the-th

iteration of the VI algorithm ir7. In this case, the valu€ (s») in the (i — 1)-the iteration is used to update

the value of the state;. Now consider the value iteration algorithmd#. The valueV/ (s;,) of the hidden

states;, in the (i — 1)-th iteration is used to update the valuelofs,) in thei-th iteration. It is easy to see

thatV (s,) inthe(i — 1)-th iteration isV (s2) in the (7 — 2)-th iteration. Therefore, hidden staidd a delay

of 1 in the value iteration algorithmThe case for transition between two probabilistic states is analogous.

Consider a PAGG = (S5, 5y, 5., S, 7,7, 50,5, L). The equation for the value iteration algorithm
without delay is:

1.0 ifsesS
Vi(s) = max,esuce(s) V' L (s') ' if s€.5,\ 5
Zs’Esucc(s) P(S — S/)Vl_l(sl) if s € Sq \ SS

We have added the iteration indéxo the VI algorithm so that we can refer to it in the proof. The value
iteration algorithm with the delay is:

1.0 ' ' if se S
Vi(s) = max{Max,’esuce(s)n S, Vi3 (s"), max, €suce(s)nS, Vitl(s)} ' if s €.5,\ 5
Zs’Esucc(s)ﬂSq P(S — S)Vll 2() + Zs 'e€succ(s)NSy P(S — S/)Vll_l(sl) if s € Sq \ SS

Initially, both sequences start with the value functiﬁrﬁ)sanom0 that assigr.0 to states ir5; and0.0 to all
other states. Notice that in the value iteration algorithrifbthere is delay ol added (thd€i — 2)-th value

se Sandi > 2 ' ' '
Vi(s) > Vi(s) = VI72(s)

The equation given above directly follows from the monotonicity property and the equations that define value
iteration.

Supposé/ converges td/, pointwise, i.e., for alls € S, V(s) — V,(s). Next we prove that for all
s € 9, if Vi(s) — Vi(s), thenVj(s) — Vi(s). This proves that; also converges t&,. By definition of
convergence, for al > 0, there exists a positive integaf(¢) such that for alk > N (¢) we have

[Vi(s) — Vi(5)| < €.

Assume that we are given@> 0. It is easy to see that the limiit,(s) > V?(s) for all i (this follows from
the fact that’*(s) is a monotonic sequence). Therefore, we have the following inequality

Vils) = Vi)l < IVals) = VIT2(s)]

The equation given above follows from the inequality(s) > V=2(s) for all s. SinceV'(s) — Vi(s),
there exists atv () such that ifi > N (3), then

Vils) = Vi(s)] < 8.

By the argument given abov#’(s) — V/'(s)| < @ fori > N(g) + 2. This proves that’j (s) — Vi(s).
Conversely assume thit converges td@’/. Using the inequality given below it is easy to prove thats) —
Vi(s).

Vi(s) = Vi)l < [Vi(s) = Vi(s)]

Therefore, we prove that the value iteration algorithm with and without delay converge to the same value.
The VI algorithm with delay is essentially the VI algorithm on the AP&@, which was derived from the VI
algorithm on the corresponding MDP. Therefore, the correctness of the VI algorithm on thé RABws.

7 Summary of Contributions and Future Work

Our foremost contribution is the automatic generation of attack graphs. Our key insight is that an attack is
equivalent to a counterexample produced by off-the-shelf model checkers; the attack/counterexample is a
witness to a violation of a safety property. By a small, but critical enhancement to an existing model checker,
i.e., NuSMV, we can easily produce attack graphs automatically; moreover, these graphs are succinct and
exhaustive. A by-product of this part of our work is showing, by example, what level of abstraction is
appropriate for modeling attacks. We use simple state machine specifications to model not just intruder
behavior (by a set of atomic attacks), but also normal system behavior, system administrator recovery actions,
and connectivity (communication) between subsystems.

Our second most important contribution is support for a range of formal analyses of attack graphs. Se-
curity analysts use attack graphs informally for attack detection, defense, and forensics. In this paper, we
explain how they can now use our minimization analysis technique on attack graphs to more precisely an-
swer questions like “Which security measure should | deploy in order to thwart this set of attacks?” and
“Which set of security measures should | deploy to guarantee the safety of my system?” To do reliability
analysis, we annotate attack graphs with probabilities and then interpret them as Markov Decision Processes
(MDP). Then, by using MDP algorithms such as value iteration, security analysts can more precisely answer
guestions like “Will deploying this intrusion detection system increase or decrease the likelihood of thwarting
this type of attack?”

On the theoretical front, we have so far restricted our work to only safety (invariant) properties. To exploit
the full power of model checking, we need a method of generating attack graphs for more general classes

AG (server.user.request — AF (server.user.acesss))

This property would not be true if the server can be disabled using a denial-of-service attack. Another such
liveness property is that a legitimate user’s transaction will finish despite intruder interference. We plan to
explore generation of attack graphs for universally quantified fragments of Computational Tree Logic and
Linear Temporal Logic.

On the practical front, we plan to conduct larger case studies to illustrate the usefulness of automatically
generating attack graphs. To make our tool suite more usable by security experts and system administrators,
we see the value of building a library of specifications of atomic attacks. Our hope is that increasing this
arsenal of specifications outpaces the growth in the arsenal of known attacks; we can potentially discover
new, unexpected attacks, and hence identify new network vulnerabilities. Finally, we also intend to build a
tool that merges our work on attack graphs with existing intrusion detection technologies. The toolis intended
help security analysts evaluate and enhance the security of a network.

References

[ADP80] G. Ausiello, A. D’Atri, and M. Protasi. Structure preserving reductions among convex optimiza-
tion problems.Journal of Computational System Scien@k136-153, 1980.

[Alt99] Eitan Altman. Constrained Markov Decision Process&hapman & Hall/CRC, 1999.

[Bry86] R.E. Bryant. Graph-based algorithms for boolean function manipulaliefiE Transactions on
ComputersC-35(8):677-691, August 1986.

[CGPO0] E.M. Clarke, O. Grumberg, and D. Pelétbdel CheckingMIT Press, 2000.
[CLR85] T.H. Cormen, C.E. Leiserson, and R.L. Rivdsitroduction to AlgorithmsMIT Press, 1985.

[Dac94] M. Dacier.Towards Quantitative Evaluation of Computer SecurfyD thesis, Institut National
Polytechnique de Toulouse, Decemt6©4.

[Dur95] Richard DurrettProbability: Theory and Example®uxbury Press, 1995. 2nd edition.

[GJ79] M.R. Garey and D.S. Johnsoi€omputers and Intractability: A Guide to the Theory of NP-
Completenes3N.H. Freeman and Company, San Francisco, 1979.

[JWO01] Somesh Jha and Jeannette M. Wing. Survivability analysis of networked systdPnscdadings
of the International Conference on Software Engineerivigy 2001.

[NuS] NuSMV. Nusmv: a new symbolic model checker.
http://afrodite.itc.it:1024/ nusmv/

[ODK99] R. Ortalo, Y. Dewarte, and M. Kaaniche. Experimenting with quantitative evaluation tools for
monitoring operational securitylEEE Transactions on Software Engineerjirgh(5):633—-650,
September/October 1999.

[PS98] C.A. Phillips and L.P. Swiler. A graph-based system for network vulnerability analysiewn
Security Paradigms Workshppages 71-79, 1998.

[Put94] M. PutermanMarkov Decision Processedohn Wiley & Sons, New York, NY, 1994.

[RAO01] R.W. Ritchey and P. Ammann. Using model checking to analyze network vulnerabilities. In
Proceedings of IEEE Symposium on Security and Privaages 156—165, May 2001.

|oMV] SMV. smV. a SymbdoliC model CheCckentip:.// www.Cs.Cmu.eau/ maodeiCneck/

[SPECO0O0] L.P. Swiler, C. Phillips, D. Ellis, and S. Chakerian. Computer-attack graph generation tool. In
Proceedings of the DARPA Information Surviilip Conference and Expositipdune 2000.

[Ste] Peter Stephenson. Using formal methods for forensic analysis of intrusion events - a preliminary
examination. White Paper, available at http://www.imfgroup.com/Document Library.html.

[VS01] Alfonso Valdes and Keith Skinner. Probabilistic alert detectionPrioceedings of Recent Ad-
vances in Intrusion Detection (RAIP3001.

