Fully Reflexive Intensional Type Analysis in Type Erasure Semantics

Bratin Saha Valery Trifonov Zhong Shao
Department of Computer Science
Yale University

{saha,trifonov,shao}@cs.yale.edu

Abstract A necessary step in building a certifying compiler is to have
the compiler generate code that can be type-checked before exe-

Compilers for polymorphic languages must support runtime type cution. The type system ensures that the code accesses only the
analysis over arbitrary source language types for coding applica- _pr(_)wded resources, makes _Iegal function cqlls, etc. Therefore, it
tions like garbage collection, dynamic linking, picklirgtc On is important to support runtime type analysis (over types of ar-
the other hand, compilers are increasingly being geared to gen-bitrary source language terms) in a framework that can generate
erate type-safe object code. Therefore, it is important to support type-correct object code. Craey al. [3] proposed a framework
runtime type analysis in a framework that generates type correct that can propagate types through all phases of compilation. The
object code. In this paper we show how to integrate runtime type Main idea is to construct and pass terms representing types, in-
analysis over all types of a higher order typed source language, Stéad of the types themselves, at runtime. This allows the use of
including quantified types, into a system that can propagate type €Xisting term operations to process runtime type information. Se-

information through all compilation phases. mantically, singleton types are used to connect a type to its repre-
sentation. From an implementor’s point of view, this framework

(hereafter referred to as the CWM framework) seems to sim-
plify some phases in a type-preserving compiler; most notably,
1 Introduction typed closure conversion [9]. However, the framework proposed
in [3] supports only the analysis of types with no binding struc-
ture; specifically, it does not support the analysis of polymorphic
or recursive types. This limits the applicability of their system
since most type-analyzing applications must deal with recursive
objects or polymorphic code blocks.

Keywords: runtime type analysis, type-safe object code

Modern programming paradigms increasingly rely on applica-
tions requiring runtime type analysis, like dynamic linking,
garbage collection, and pickling. For example, Java adopts dy-
namic linking and garbage collection as central features. Dis-
tributed programming requires that code and data on one ma- In this paper, we extend the CWM framework and encode a
chine be pickled for transmission to a different machine. In a language supporting fully reflexive type analysis into this frame-
polymorphic language, the compiler must rely on runtime type Work. The language is based on our previous work [13]; accord-
information to implement these applications. Furthermore, these ingly, it introduces polymorphism at the kind level to handle the
applications may operate on arbitrary runtime values; therefore, analysis of quantified types. This requires a significant extension
the compiler must support the analysis of the types of arbitrary Of the CWM framework. Moreover, even with kind polymor-

source language terms, which we refer tdialy reflexive type ~ Phism, recursive types pose a problem, which requires constrain-
analysis ing the analysis of recursive types in the source language, and

introducing unconventiondbld andunfold constructs in the tar-

On the other hand, generation of certified code [11] is ap- get language
¢ .

pealing for a number of reasons. We no longer need to trus
the correctness of the compiler; instead, we can verify the cor- ~ The rest of the paper is organized as follows. We give an
rectness of the generated code. Checking the correctness of verview of intensional type analysis in Section 2. We present
compiler-generated proof (of a program property) is much easier the source language!"* in Section 3. Section 4 shows the tar-
than proving the correctness of the compiler. Moreover, since we get language\r; that extends the CWM framework. We offer a
can verify code before executing it, we are no longer restricted to translation fron\["* to Aj; in Section 5.

executing code generated only by trusted compilers.

*This research was sponsored in part by the Defense Advanced Research? |ntensional type analysis

Projects Agency ISO under the title “Scaling Proof-Carrying Code to Production

Compilers and Security Policies,” ARPA Order No. H559, issued under Con-

tract No. F30602-99-1-0519, and in part by NSF Grants CCR-9633390 and CCR- Harper and Morrisett [7] proposed intensional type analysis and
990h1011. -cli—hi vi?;vs anbd conclusior;s contained in thishdo%umelm allre thosehof the presented a type-theoretic framework for expressing computa-
authors and should not be interpreted as representing the official policies, either ex-

pressed or implied, of the Defense Advanced Research Projects Agency or the U.S.tlons that a”"’_"Yze types at r!‘”“me- They introduced two oper-
Government. ators for explicit type analysistypecase for the term level and

Typerec for the type level. For example, a polymorphic subscript
function for arrays might be written as the following pseudo-
code:
sub = Ac«. typecase «a of
int = intsub
real = realsub
B = boxedsub 5]

Heresub analyzes the type: of the array elements and returns
the appropriate subscript function. We assume that arrays of type
int and real have specialized representations, &ayrray and
realarray, and therefore have specialized subscript functions; all
other arrays use the default (boxed) representation.

Typing this subscript function is more interesting, because it
must have all of the typeiatarray — int — int, realarray —
int — real, andboxedarray (a©) — int — « for « other thannt
andreal. To assign a type to the subscript function, we need a
construct at the type level that parallels typecase analysis at
the term level. The subscript operation would then be typed as

sub : Va. Array (o) — int — «
where Array = Aa. Typecase « of
int = intarray
real = realarray
B8 = boxedarray 3

The Typecase construct in the above example is a special case of
the Typerec construct in [7], which supports primitive recursion
over types.

3 The source language /\f’+

To illustrate our ideas, we define tI;\é;”r calculus with syntax
shown in Figures 1 and 2. The static semantica0f uses the
following three environments:

sort environment & = ¢|&x
kind environment A == ¢ | A a:k
type environment I' == ¢ | [,z:7

It can be shown that the formation rules in Figure 3 enforce the
requirement that the environments are well-formed, and more-
over, all inferred types and kinds are also well-formed. Thus, in
the type formation rul€; A - 7 : k, we have thaf + A and

&€ F k. In the term formation rul€; A; T F e : 7, we have that
EF Aand&; A FT and&; A F 7 : Q. Reduction in the type
language is defined according to the rules in Figure 4. The re-
duction rules for the term level type analysis constyptcase

can be found in Figure 5.

The Ianguagéf* extends the language’ proposed in [13]
with recursive types, and some additional constructs for analyz-
ing recursive types. This section only gives an overview of the
language, the reader may refer to [13] for more details.

In the impredicative calculus,, the polymorphic type¥a:
k.7 can be viewed as generated by an infinite set of type con-
structorsv,, of kind (v — Q) — Q, one for each kind. The
typeVa: k. 7 is then represented & (Aa: k. 7). The kinds of

(kinds) Kk u=Q | rs—r | x| Vx-k
types T o= Int | — ace
i Y|V |p|Pl
| | Ax.7 | da:k.T | 7[K] | 77
| Typerec T of (Tint; 7 Tv; Tut)
(values) v i| A+X.U | Aa:k.v | Az:T.e | fixz:T.v

fold[7] v

o

t /
vlzlels] |elr]|ee
fold[7] e | unfold[7] e
typecase[] 7 of (eint; €} ev; et ep)

(terms)

Figure 1: Syntax of thaf.j+ language

717 =((=)1)7

Va:k. T = (Y [K]) Aa:k.T)

V+x. T=V (Ax.7)

Figure 2: Syntactic sugar l‘drf”r types

constructors that can generate types of Kindiould then be

int Q

— Q—-0Q0—-0Q
Yo Q-9 —Q
VK (k—>Q)—Q

We can avoid the infinite number ®f, constructors by defining

a single constructo¥ of polymorphic kindvyx. (x — Q) — Q

and then instantiating it to a specific kind before forming poly-
morphic types. More importantly, this technique also removes
the negative occurrences ©f from the kind of the argument
of some constructor®.g. Vq; these occurrences makenon-
inductive, so that defining @yperec-like “iterator” overs2 would
break the crucial strong normalization property of the type lan-
guage. Hence in ou)&f.j+ calculus we extend,, with variable
and polymorphic kindsx andVy. x) and add a type constawt

of kind Vx. (x — Q) — to the type language. The polymor-
phic typeVa: . 7 is now represented &8[x] (Aa: k. 7).

While analyzing a polymorphic typé] 7, the kindx must
be held abstract to ensure termination of the analysis [13]. There-
fore, theTyperec operator needs a kind abstraction in the branch
corresponding to th¥ constructor. We provide kind abstraction
Ax. 7 and kind applicatiorr [] at the type level. The formation
rules for these constructs, excerpted from Figure 3, are

EAFT :
E;AF 7K

Vx. K E K
» w{K'/x}
Similarly, at the term level, theypecase operator must analyze

polymorphic types where the quantified type variable may be of
an arbitrary kind. To avoid the necessity of analyzing kinds, the

EFA Ex;AFT:
EAFAx.T : VXx. Kk

K

| Kind formation £ - /-c|
xXeEE EFk EFK & xFk
EFQ EFx EFk— K EFVx. K
| Kind environment formation £ - A|
EFA EFk
Ete EFA a:k
Type formation E&;AbF7T: K
EFA
E;AFint : Q
EAF(—) : Q-0 —-Q
EARY CVx-(x — Q) — Q
EARY L (W.Q) —Q
E;AFp (- Q)—Q
E;AFPlace: Q — Q
EFA a:kinA
ESAFa: kK
EFA ExAFT ik EAFT:Vx.k EFFK
E;AFAx.T i Vx.k EAFT[R] « wk{K'/x}
ENakbT K
EAF kT k— K
EAFT K =k EAFT K
EAFTT 1k
EAFT 1 Q
E;AF Tine @ Q

EAFTL : Q0 —-0Q0—-0—-0Q0—-Q
EAFT :V.(x—= Q)= (x—0Q) —Q
EAFT . (VX Q) — (VX Q) —Q

E; A= Typerec T of (Tin; T—; Tw; Tip) & €

Type environment formation &; A+ F‘

EFA
E:AFe

EAFTDT EAFT:Q
EAFT,x:T

Term formation &;A;Tke: T
ENTkFe: T EAFT~T 0 Q
ENT ke : 7
EART
E;A;THi:int

E,AFT z:7inD Ex; AT o1

ENThHx 7 S;A;FI—A+X.U:V+X.

EAN ok TFo o T

E;N;T,x:THe :

T

7_/

E;ATHFAa:kv s Vark.t EATEAx:T. €

E;ANTHe: V1 EFk
S;A;I‘}—e[nr 7 [K]

E;ANThRe VKT EART @k
E;NThelr] -7’

EATFe: T =1 &EATEE 7/
EATFee 1 1

ENTxiTho o T
+
T=VYV X1...Xn-VQ1:Kl...Qm Km.T1 — T2
n>0m>0

’
T — T

E;N;T Hfixx:Tov @ 7

EAFT Q-0 &EATFe:
E; N T Ffold[r] e : pr

7 (p7)

EAFT Q=0 &EATFe
E; AT F unfold[7] e :

DT
7 (p7)

EAFT Q= Q

EAFT 1 Q

E;A; T F eine ¢ Tint

EATHe : Va:Q.Va: Q.7 (a — o)
E;NTFey ZV+X.VOU)(4>Q.T(V[X}OL)
EATFep : Va:(Vx. Q).T(V+Oé)
E;ANT ey, : Va:l— Q.7 (pa)

E;A;T = typecase[r] 7" of (eint; e—; ev; e+ eu)

Figure 3: Formation rules of” "

/
L TT

Type reduction E;AFTI~ T2 1 K

EN ok Tk EAFT K
EAF Qaik' . 1) ~1{rt'Ja} : K
EAFT a ¢ ftu(r)

EAF k. Ta~ T ¢

/
K — K

K — K

&; A = Typerec int of (Tin; 7 Tv; Tip) @

Ex;AFT Kk EFFK
EAF (Ax.7) [r] ~ 7{x"/x} + k{x'/x}

EART VX .k x ¢ fhu(r)
EAFAx.TIX]~T: VXK

& A, a:rk' - Typerec (1 a) of (Tin; 73 v) > 71 0 Q

E; A+ Typerec int of (Tint; T—; Tv; Tt) ~> Tine &

\4

Tv+)’\f>7’1/ Y
Tv+)’\f>7’2/ : Q

E; A+ Typerec 11 of (Tint; T—; Tv;
E; A+ Typerec 12 of (Tint; T—; Tv;

E; A+ Typerec (V [5'] 7) of (Tint; 7—; Tv;

Tv+)
~ o1y [R] T (Aak. T 0 Q

E,x; A+ Typerec (7 [x]) of (Tint; 73 Tv; Tr) ~> 7' 2 Q

&; A+ Typerec ((—) 71 72) of (Tint; 75 Tv; Tt)
~ T TIT2 T Ty ¢ §)

&; A= Typerec (Place) of (Tin; T—; Tv; Tip) & Q2

E; A+ Typerec (V+T) of (Tint; T—; Tv;

T4) ~ T T (A7) 1 Q

E; A, a:Q F Typerec (7 (Place) of (Tint; 7—; 7v; 7o) ~ 7' 1 Q

&; Al Typerec (Place 7) of (Tint; 7—; Tv; Tt) ~ 7 1

E; A+ Typerec (p7) of (Tine; T—; Tv; 7o) ~ p(Aa: Q.77) + Q

Figure 4: Selectedlf”r type reduction rules

typecase must bind a kind variable to the kind of the quantified Sincery must be parametric in the kind (to ensure termination,
type variable. For that purpose we introduce kind abstraction there are no facilities for kind analysis in the language [13]), it
A'x.v and kind applicatiore [<] at the term level. To assign can only apply its second and third arguments to locally intro-
types to these new constructs at the term level, we need a typeduced type variables of variable kind, instantiatedstaluring

level construct\fx. 7 that binds the kind variablg in the type
7. The formation rules are shown below.

E;AN;TFe: V+X.T Erk
S;A;Fl—e[mr s m{r/x}

Ex;ATRow o 7
+ +
ENTHAXx vV x.T

Furthermore, since our goal is fully reflexive type analysis, we
need to analyze kind-polymorphic types as well. As with poly-
morphic types, we can represent the twﬁg. T as the applica-
tion of a type constructo¥’ of kind (Vx. Q) — Q to the type
Ax.T.

The Typerec operator is used for type analysis at the type
level. In fact, it allows primitive recursion at the type level. It
operates on types of kin@ and returns a type of kin@ (Fig-

the analysis. We believe this restriction, which is crucial for pre-
serving strong normalization of the type language, is quite rea-
sonable in practice. For instanee can yield a quantified type
based on the result of the analysis.

The reduction rule for analyzing a kind-polymorphic type is
Typerec (V+X.) of (Tint; T3 Tw; Tup) ~
T+ (Ax. T) (Ax. Typerec T of (Tint; T—; Tv; Tt))

The ¥-branch of Typerec gets as arguments the body of the
quantified type and a kind function encapsulating the result of
the analysis on the body of the quantified type.

The treatment of recursive types is similar to that in the lan-
guage/\i@ of [13], but simplified. They are formed using tipe
constructor of kindQ — Q) — Q. Following ideas due to

ure 4). Depending on the head constructor of the type being an- Fegaras and Sheard [6], for the analysis of recursive types we in-

alyzed, Typerec chooses one of the branches. At thetype, it
returns ther,,: branch. At the function type — 7', it applies
ther_ branch to the componentsandr’, and to the results of
recursively processing andr’.
Typerec (1 — 7') of (Tint; T3 Tv; Tip) ~
7. 77" (Typerec 7 of (Tint; T—; Tv; Tt))
(Typerec 7" of (Tint; T—; Tv; Tt))

When analyzing a polymorphic type, the reduction rule is

Typerec (Yo &'. 7) of (Tine; T3 Tv; Tur) ~
7v [K'] Ak T) (Aa: k' Typerec 7 of (Tint; T—; Tv; o))

troduce a unary construct®ace of kind 2 — €, which is not
intended for use by the programmer; the term language provides
no constructors to create a non-variable object of tpece 7
foranyr.

The simpler kind language of™ (in comparison Withk?)
comes at the price of restricting the result of the analysis of re-
cursive types by dyperec to always be a recursive type. Thus
we avoid a problem arising when the analysis of a recursive type
yields a result unrelated to the analysis of its unfolding, described
further in Section 4.4.

Since the argument of the constructor has a negative oc-
currence of the kind?, this case must be handled differently.

typecase[7] int of (eint; e—; ev; et eu) ~ €int fix toString: Va: Q. o — string.

= Aa:Q.
typecase[7] (71 — 72) of (eint; e—; ev; er; en) ~ e [T1][T2] typecase[\y: 2.y — string] a of
" int = intToString

typecase[7] (V [x] 7') of (eint; e—; ev; er; en) ~ev (k] [1'] string = Az :string. ©

I X éAﬁliQ.AﬁQZQ.Ax:ﬂlXﬁz.
typecase[7] (V' 7') of (eint; e—; ev; es en) ~e [7] toString [41] (x.1) ~ toString [32] (x.2)
. " of . o . , — = AL AB Q. Az B — Ba. “function”
ypecase[r] (") of (eint; c—; ev; eyt €n) e r] v = A+X. AB:x — Q. Az:¥ [x] B. “polymorphic”
typecase[r] (Place 7’) of (eint; €—; ev; et eu)~ Vo= AB:Vx. Q.)\x:V+B. “kind polymorphic”’

typecase[7] (Place 7') of (eint; e—; ev; e +; ep) T = AB:Q — Q. Xx:pg.

toString [5 (p B)] (unfold[5] x)

Figure 5: Selected term reduction rules\gt™ he t
Figure 6: The function toString

Typerec does not act as an iterator for tipeconstructor. In-
stead, it analyzes the body of the type with thound variable
protected under thBlace constructor. Sinc®lace is the right
inverse of Typerec (Figure 4), the analysis terminates when it
reaches such a type variable.

matching syntax to define a type involvifigperec: Instead of

t = Aa: Q. Typerec a of (Tine; T—; Tw; Tut)
where 7., = Xa1:Q. Aoz Q. o) k. Aab k. T
v =Ax. da:x — Q. a1 x — k. Ty

— . /. /
Typerec (p7) of (Tint; T3 Tv; T) ~ b = Acv: (Vx-). Ao (V. £). 7

\4
p (Aa: Q. Typerec (7 (Place a)) of (Tint; 7—; 7v; TV+)) we write
In essence, we have made thesonstructor transparent to the t (int) = Tint
analysis. Operationally, the number of nestedonstructors in tlar — a2) = 75 {t(on),t(a2)/a}, a5}
the type analyzed by &yperec strictly decreases at every reduc- t(V[x]a) = mw{rai:x.t(aar)/a’}
gt)enpisnvolving p, ensuring termination after a finite number of t(V+a) = Té—%—{A)ﬁt(a [x])/'}

The term expressions are mostly standard. We use the stan-/n this syntax theeq type operator is defined as:

dardfold and unfold constructs to implement the isomorphism

between a recursive type and its unfolding. Type analysis at the Eg EIOT)X az) = E(: (a1) x Eq (az)
term level is performed using thgpecase operator. Since the Eq (a1 — as) = Void
term level includes a fixed-point operateypecase is not itera- Eq (¥ [x] o — Void
tive; it inspects a given type’ and passes its constituents to the + .
corresponding branch. The reduction rules tgsecase are in Eq (Vo) = Void
Figure 5. Eq (pa) = p(Aa1:Q.Eq (a (Place aq)))
Existential types can be handled similarly to polymorphic where the last line of the definition is not under programmer con-
types. We define a type constructdr of kind Vx.(x — trol.
Q) — Q. The existential typéla : k. 7 is then equivalent to As an example of the term level analysis)iﬁ*, consider
3 [x] (Aa: k. 7). Typerec andtypecase are augmented withs the functiontoString shown in Figure 6. This function uses the
and e5 branches respectively. The reduction rules are exactly type of a value to produce its string representation; we assume
analogous to those for the polymorphic type. having a nullary type constructatring in the language. The
To illustrate the type level analysis we will use thgperec primitive functionintToString converts an integer to its string
operator to define the class of types admitting equality com- representation, and use " to denote string concatenation.
parisons. We will extend the example in [7] to handle quan- The Ianguage\f* has the following properties, with proofs

tified types. The type operatdiq : & — €2, defined below, similar to those for the language” in [13].
maps function and polymorphic types to the typeid. (Here

Void = Va: €. a'is a type with no values). To make the exam- pqhosition 3.1 (Strong Normalization) Reduction of - well-
ple more realistic, we extend the language with a product type t5rmed types is strongly normalizing.

constructor &) of the same kind as). The type analysis con-
structs operate on the& constructor in a manner similar to the

. Proposition 3.2 (Confluence)Reduction of well-formed types
— constructor. For ease of presentation we use ML-style pattern P () yp

is confluent.

Proposition 3.3 (Type Safety) If - e: 7, then eithek is a value,
or there exists a term’ such thate ~» ¢’ and¢: 7.

SN 1
3.1 Typeanalysisin A; (kinds) k=:=Q | T | k—r | x| Yx-K

In our previous Worl_< [13], we p_roposed th(_e Iangua(j’ewhlqh_ (types) =it | — | V| V+| PR
supports the analysis of recursive types without any restrictions. T | Ty | T | Tu | T | T
However, the resulting language gets complex and the translation - v v " pl R

|
al| Ax.m| T[] | Ak | TT

t
into a CWM framework is not clear. Therefore, type analysis in |
Tagrec T of (Tint; T—; Tv; Turs Tr)

)\f”’ is restricted in two ways. First, thByperec operator must

return a type of kind). Second, the result of analyzing a recur-
sive type is always a recursive type. We believe that these restric- (values) v =
tions do not reduce significantly the usefulness of the language

| Tin
|
|

| A+)(.v | Aaik.v | Ax:r.e | fixz:Tv
ld[r] v

8-.@

|
in practice. | Rine | R~ | R—[7] | R~ [7]v
The main purpose 6fyperec is to provide types toypecase | R[] [Tl | R~ [T]f [i ,
terms; every branch of th@yperec types the corresponding | R | BV [<]" | Ry[x] [r] | Ry [s] [r][']
branch of thetypecase. Since the type of a term is always of | Ry [k] [r][r]v
kind €2, the result of théTyperec must also be of kind. Thus, | Ryt | Rye[7] | Ry [T]w
in practice, alyperec will be employed to form types of kinfp. | Ry | Ru[7] | Ru[r]w
In some cases dalyperec is used to enforce typing | Ryt | Ryt [7] | Ry [7]w
| Re [R[] | Ry [r]w

constraints—for example, in the case of polymorphic equality
above, aTyperec was used to express the constraint that the set N ,
of equality types does not include function or polymorphic types. (terms) e z=v | z | e[s] | e[r] | ee

In these cases tHByperec merely verifies that an input type is | fold[r] e | unfold[r] e
well-formed, while preserving its structure. This means that the | repcase[r] e of (€int; e—; ev; €t; €R; eu; ept)
Typerec will map a recursive type into a recursive type.

Other applications of type analysis also follow this pattern. Figure 7: Syntax of the.;; language

Consider a copying garbage collector [14]. Its copying function
would use alyperec to express that data from a particular region
has been copied into a different region. Since the structure of the
data remains the same after being copied, a recursive type would4,1 The analyzable componentsin AL

still be mapped into a recursive type. The same holds true while

flattening tuples. Flattening involves traversing the input type In AL, the type calculus is split into types and tags: While types
tree, and converting every tuple into the corresponding flattened classify terms, tags are used for analysis. We extend the kind
type; therefore, the structure of the input type is preserved. language to distinguish between the two: Kiids assigned to

Our language allows the analysis of recursive types within tyPes, while kindT is assigned to tags. For every constructor
both the term language and the type language, but combining yielding a type of kindQ2 we have a corresponding constructor
them is subject to severe limitations. For instance, one can write that generates a tag of kingt for example,Ti. corresponds to
a polymorphic printer that analyses types at runtime, and one int andTﬁ_ correspond_s te~. The type analysis construct at the
can write a type operator, likEq, to enforce invariants at the type level isTagrec, which operates only on tags.
type level. However, it is not possible to write a polymorphic At the term level, we add representations for tags. The term
equality function that analyzes types at runtime and has the type level operator (now calledepcase) analyzes these representa-
Va:Q.Eqa — Eqa — bool. The reasonis that when the recur- tions. All the primitive tags have corresponding term level rep-
sive typeEq (p7) is unfolded, the result iEq (7 (Place (p7))). resentations; for exampl&;,.. is represented bRi.:. Given any
The equality function must now analyze the typéPlace (p7)), tag, the corresponding term representation can be constructed in-
which requires it to analyze Blace type. However, no useful ductively.
term can be provided in the corresponding branchypécase.

This problem does not affect thefree segment of the language))
and its translation. 4.2 Typing term representations

The type calculus in\% includes a unary type construct&r of
4 The target language X% kind T — Q to type the term level representations. Given a
tagr (of kind T), the term representation efhas the typeR 7.
Figure 7 shows the syntax of thd, language, the target of our ~ FOr €xampleRin: has the typeR Ti... Semantically,2 7 is in-
translation, which reflects type information at the term level in t€rpreted as a singleton type that is inhabited only by the term
preparation for type erasure. To make the presentation simpler, '€Presentation of [3].
we will describe many of the features »f, in the context of the The functionality ofR is generalized at higher kinds &y,
translation fromkf*. a type function of kinds — €2, such thatR,. 7 is the type of the
term representation for typeof kind . For instance, if the tag
is of a function kinds — «’, then the term representationofs

EFA EAFay : x— 0
EEAFRa=R:T—Q EEAFRy=ay : x—
EAFR. =7 |6 —Q EAFRy =7 : k| —=Q

EAF R, .. =dai|k — K |.VB:|kl. T8 — 7 (aB)

Cek— K= Q

E;Ayay:x = QF R =7 |k = Q

E;AF Ryy. w = Aa:|Vx. H|.V+X.VO¢X2X — Q.7 (ax] ay)
a polymorphic function from representations to representations: : Vx| — Q

Q=T |x—&'| = s — |~

Ix| = x Vx. k| = Vx. (x — Q) — |«]

Figure 8: Translation oh”™" kinds toA%;, kinds

Ry T=VBik.Re B — Ry (T 5) Figure 9: Types of representations at higher kinds

However a problem arisesifis of a variable kindy. The only
way of knowing the type of its representatidi), is to construct
it when x is instantiated. Hence programs translated ikfo
must be such that for every kind variablein the program, a
corresponding type variabte, , representing the type of the term))
representation for a tag of king is also available. Proof By induction over the structure of. =

In comparison, the source language of CWM [3] does not in- The formation rulis for tags are displayed in Figure 10. Since
clude kind polymorphism, which means that the types of all rep- the translation mapa;™* type constructors to these tags, a type
resentations are known statically. We need to extend the frame- constructor of kinds is mapped to a corresponding tag of kind
work with types of representations of variable kinds. |S’;‘- T%Js,hw?le thé}j’; typ'? clgni;ructor haé the kind. £|2< -
Consider for instance the ty¥[x] 7 in A7 . TheV branch T) — (. theTy tag has the kit (x — @) — (x = T) —
of atypecase construct must reduce to an abstracﬂﬁ?x. Aac:

x — Q. e. After translation to\L, in order to compute the type
of the representation af in e, we need to know the type of the
representations of types of kind Therefore this type must be
passed as an extra argument to Yhéranch, which means it
must be “packed” together with and using the translated
constructor. Thus, if mapped to a constructor for kidh A%,
its kind would beVx. (x —) — (x — Q) — , adding a 4.3 Taganalysisin AL
parameter of kindg — 2 associated with the kind variabje A

similar situation arises with’, only this time with an unpleasant ~ We now consider the tag analysis constructs in more detail.

Lemma 4.2 (RN){|/€,|, 1‘2,4/)(,7 ax’} = Rn{n’/x’}

Figure 10 also shows the type of the term representation
of the primitive type constructors. These types agree with the
definition of the functionR,; for example, the type oR_, is
Ro—a—a (T-). The term formation rules in Figure 10 use a
tag interpretation functioft that is explained in Section 4.4.

twist: The kind of the translated constructor must(bg. (x — The term level analysis is done by thepcase construct. Fig-
Q) — Q) — Q, in which there is a double-negative occurrence Ures 10 and 11 show its static and dynamic semantics respec-
of ©2, making€2 non-inductive. tively. The expression being analyzed must be of tipe there-

fore, repcase always analyzes term representation of tags. Oper-
ationally, it selects a branch according to the top constructor of
the representation, and passes the components of the representa-

To preserve the inductive structure of the kinds, we split the
type calculus into types and tags. The new construétor is
of kind (Vx.(x —) — T) — T, which does not suffer

: Lo X . tion to it.
from negative occurrences sin€eis defined independently of o
T. Type analysis is restricted to tags since they carry the infor- _ Type level analysis is performed by thiagrec construct.
mation needed to reconstruct the types of representations. The language must be fully reflexive, Sagrec includes an ad-

. . . . ditional branch for the new type constructBy. Since only the
+ P

This It_aads us to the klni;j“l}rgnslatlgn fraky’ tgf‘R_(F'g' kind of T}, contains the kindT in a doubly-negative position
ure 8). Since the analysis iR is on kindT, the A; ™ kind ©2 (Figure 10), we can defin€agrec as an iterator over the kind
is mapped toT. The polymorphic kln_dvx. S translated to T, and treafl}, specially (like theu constructor in\F).
vx. (x — ©) — |x|. Note that every kind variablg must now ¢

have a corresponding type variablg of kind x — €2, providing
the type of term representations for types of kind

Figure 12 shows the reduction rules for fhegrec, which are
similar to the reduction rules for the source langudgeerec:
given a tag, it recurses on the components of the tag and then

Lemma 4.1 |r{r'/x} = [c[{|x"]/x} passes the result of the recursive calls, along with the original
components, to the corresponding branch. Recursive tags are
Proof By induction over the structure of. O handled in a manner similar to recursive types\ji". The re-

sult is constrained to be a recursive tag. The analysis proceeds
directly to the body of the tag function, with the bound variable
protected under @&, tag, which is the right inverse afagrec.

Figure 9 shows the functioR,.. Supposer is a\’ ™ type of
kind and|7| is its translation into\;. The functionR,. gives
the type of the term representation|ef. Since this function is

used by the translation frokf* to AL, itis defined by induction The reduction rules also include a rule for fPleconstructor.
on AP+ kinds ThePI constructor is used to handle recursive tags irFthenc-

Type formation &;AF 7T : &k

EFA

EEAFR T—Q

E;AEPI 1 Q—T

EAFTm - T

EAFT. . T—-T—->T

EAFTy :Vx.(x— Y —-(x—T)—T
EAFTH: (VX (x—=) —T)—>T
EART, - (T>T)—=T

EAFT, : T—T

EAFT, :T—T

EAFT T

EAF Tine 0 T

EAFT, T>T—-T—>T—>T

EAFT V(=9 — (=T = (=T =T
EAF T (X~ D =T = (= Q) —T) =T
EAFT, :T—>T—->T

E; A+ Tagrec 7 of (Tint; T—; Tv; Tt Te): T

Term formation &;A;T ke : T|

EART
E;A;T'F Rine : RTint
EATHRS : Ro—o—o (T-)
5; A; 'k Rv : RVX. (x—Q)—Q (Tv)
EA TRy Ryy.ay—a (Ty)
E;NTHFR, @ Raoma (Ty)
(‘:; A; '+ RM : R(Q*)Q)*)Q (TH)
E;NTFRy @ Rosa (Tp)

EAFT:ToT EAT e F(r(TuT))
E;N;T Ffold[r]e : F(T,T)

EAFT : T—T E;ATHe: F(TuT)
E; AT Funfold[r] e : F(7(Tu1))

EAFT T —Q
EATFe : RT
E;ATF €Cine 7 Tine
EATHen : Var:T.Ra1 > Vaz: T.Raz — 7 (T- a1 az)
E;ANT Fey :V+X.Vax:x—>(2.

Va:x — T. Ry—a (a) = 7 (Tv [x] ay @)
EATFeq : VarVx.(x = Q) = T. Rux.a (o) = 7 (T4 @)
E;ANTFe, :Va:T.Ra— 1T, @)
E;AThe, : Va:T - T.Romo(a) > 7(Tha)
E;AThey : Va:T.Ra— 7 (Tp)

E;A;T | repcase[r] e of (eint; e—; ev; er; €r; ey epr) © 7T

Figure 10: Formation rules for the new constructs fp

repcase[7] Rint of (€int; €—; ev; et; er; eu; ept) ~ €int

repcase[T] R— [11] (e1) [m2] (e2) of
(eints €3 ev; euts er; eus ept) ~ e— [11] (e1) [72] (e2)

repcase[T] Ry [n]+ (7] [7'] (€) of N
(€int; €—; ev; eyts ers eu; ept) ~ ev [K] [7i] [7] (€)

repcase[7] R+ [7'] (¢/) of (eint; e—; ev; e t; er; eu; ept) ~
et [T (€")

repcase[7] R, [7'] (€') of (eint; e—; ev; et er; eu; ept) ~
eg [T'](¢')

repcase[7] Ry, [7'] € of (eint; €—; ev; €yti €R; €pu; ept) ~
eu[T'] (¢

repcase[7] Ry [7'] (¢') of (eint; e—; ev; er; €r; eu; epr) ~
ept [7'] (¢

Figure 11: Selected term reduction rules\df

tion (Section 4.4). This constructor is again an implementation
artifact in A%, and has no counterpart in the source language. Its

reduction rule will never be used in a program translated from
AP

4.4 The tag interpretation function

Programs in\L, pass tags at runtime since only tags can be ana-
lyzed. However, abstractions and the fixpoint operator must still

carry type information for type checking. Therefore, these anno-
tations must be defined using a function mapping tags to types.
Since these annotations are always of Kihdhis function must

be of kindT — €. We can use an iterator over tags to define the

function as follows:

F (The) = int

F(T-mm) = F(n)— F(m2)
F(Tv[x]oyT) = Va:x.aya — F(1a)
F(T 1) = Vx.Vay:x — Q. F (7 [x] ax)
F(T.7) = p(Aa: Q. F (7 (Pla)))

F (PIT) =7

F (T, 7) = int

F(Tpl T) = int

The functionF takes a type of kind” and converts it to the cor-
responding type of kin€l. The branches for th€,, and theT},;
tags are bogus but of the correct kind. The langusfés only
intended as a target for translation froxi *—the only inter-
esting programs in\L are the ones translated frohf*; there-
fore, theT’, branch ofF will remain unused. Similarly, since the
source language hides tRéce constructor completely from the
programmer, it does not appear)uf]”r programs; hence tHg,,
branch off will also remain unused.

The type interpretation function has the following properties.

Lemma 4.3 (F (7)){7'/a} = F (r{7'/a})

E; A+ Tagrec Tint of (Tint; T—; Tv; Tt Tp) o T

E; A+ Tagrec Tine of (Tint; T—; Tv; Tbs TR) ™~ Tint © T

E; A+ Tagrec 11 of (Tint; T—; Tv; b Te)~>T T
E; At Tagrec 72 of (Tint; T—; Tv; T Tr) ~ T

E; A+ Tagrec (T— 11 72) of (Tint; T—; Tv;
T

Tyti Tr) ™~

s
T T1T2T1 T

E A a:
T/

k' Tagrec (12 @) of (Tint; T—; Tv; Tt Tr) ~
: T
E; A+ Tagrec (T [K'] 71 T2) of (Tine; T3 T Trs 7o) ~
v [k]2 Ak’ 7)) 0 T
Ex; A oy ix — QF
Tagrec (7 [x] ay) of (Tint; T Tv; Tups Tr) ~ T
E; At Tagrec (T 7) of (Tint; T—; Tv;

v
T4 T (Ax Aoy :ix = Q7)) 0 T

T

Tyt Tr) ™~

E; A+ Tagrec 7 of (Tint; T—; Tv; Tk TR)~T 0 T

E; A Tagrec (T 7) of (Tint; T} Tv; Tup; Tp) ~
TeTT o T
E:AN a:TH

Tagrec (7 (Tpi @) of (Tint; 75 Tv; Tts Tp) ~> 7' 0 T

E; A+ Tagrec (T, 1) of (Tint; T—; Tv; Tt Th) ~
T, Aa:T.7") = T

E; A F Tagrec (Tpi 7) of (Tine; T—; Tv; Tk TR) T

E; A+ Tagrec (Tp; 7) of (Tint; T—; Tv; Tt Te)~>T T

E; A+ Tagrec (PI7) of (Tine; 7—; 7v; Tts Te) o T

E; A+ Tagrec (PI7) of (Tint; 7—; 7v; Tts Tp)~PlT = T

Figure 12: Reduction rules fork, Typerec

Follows from the fact that none of the branche$ dfas
|

Proof
free type variables.

Lemma 4.4 (F (1)){x/x} = F (t{x/x})

Follows from the fact that none of the branche$ dfas
|

Proof
free kind variables.

The language\% has the following properties.

Proposition 4.5 (Type Reduction) Reduction of well formed
types is strongly normalizing and confluent.

Proposition 4.6 (Type Safety)If - e: 7, then eithek is a value,
or there exists a term’ such thate ~ e’ andF e’ : 7.

Note that the rules fofold andunfold in Figure 10 unfold a
recursive type (of kindl') under the tag interpretation function.
If we allowed aTyperec, and therefore &agrec, to have user-
defined result for the analysis of recursive types, this would have

la] = o

[int| = Tint |[Ax. 7| =Ax. Ay i x — Q. 7|
|—|=T- |7 [s]| = I7| [|5]] R«

V| =Ty [Aa:k. 7| =Aa: K. |T]

V] =T 7' =17l 17

|lu| =T, |Place| =T

| Typerec 7 of (Tint; 7—; 7v; Tv+)| =
Tagrec || of (|7inels [T |5 |7v[s [7yrl; Ac: T AL T | 7ine)

Figure 13: Translation ok types to\}; tags

allowed one to write type functions like
T =MAa:T.Tagrecaof (...; Ty = Tint)

with the property thak (7 (7, 7)) = int, butF (T, 7) = p (Aa:
Q. a), breaking the type safety theorem.

5 Translation from A" to AL

In this section, we show a translation frosi ™ to A%,. The lan-
guages differ mainly in two ways. First, the type calculus\fp

is splitinto tags and types, with types used solely for type check-
ing and tags used for analysis. Therefore, type passidcf in

will get converted into tag passing k. Second, theypecase
operator in/\f+ must be converted into @pcase operating on
term representation of tags.

Figure 13 shows the translation &f * types intoA% tags.
The primitive type constructors get translated into the corre-
sponding tag constructors. Tfgperec gets converted into a
Tagrec. The translation inserts an arbitrarily chosen well-kinded
result into the branch for th&,, tag since the source contains no
such branch.

The term translation is shown in Figure 14. The translation
must maintain two invariants. First, for every kind variaklén
scope, it adds a corresponding type variable this variable
gives the type of the term representation for a tag of kind
At every kind application, the translation uses the functi®yn
(Figure 9) to compute this type. Thus, the translations of kind
abstractions and kind applications are

+ + + +
A X vl = A xAay:x — Qv Jels] | = el [[s] [R]

Second, for every type variabtein scope, a term variable, is
introduced, providing the corresponding term representation of
a. At every type application, the translation uses the function
R(7) (Figure 15) to construct this representation. Furthermore,
type application gets replaced by an application to a tag, and to
the term representation of the tag. Thus the translations for type
abstractions and type applications are

[Aa:k.v] = Aa:|k|. Aza: Re ac |v| |e[7T]] = le| [|T]] R(7)

As pointed out before, the translations of abstraction and the
fixpoint operator use the tag interpretation functioto map tags
to types.

|i| =4
|z| =
|A+X. v| = A+X. Aay i x — Q. v

le[]'| = le] [|x]]" [Rx]
[Aa: k. v| = Aact |K|. Aza: Ri a V]
le[7]] = le] [IT]] R(r)

[Az:T.e| = Az:F|7|. |e]
lee’] = le] |e/]
[fixz:7T.v| = fixz:F|7|. |v]
[fold[7] e| = fold[|T]] |e]
|unfold[7] e| = unfold[|7|] |e|
|typecase[7] 7" of (eint; e—; ev; er; ep)]
= repcase[Aa: T.F (|7])] R(7') of
Rint :>|eint|
R_ = |e—]
Ry :>|ev|
Ry = AB:T.Az:RpB.fixx:F(|7| (T, B)).x
R, = el
Rpt = AB:T. dz: Rp.fixx:F(|7| (T B)).x

Figure 14: Translation ok " terms to\}; terms

We show the term representation of types in Figure 15. The
primitive type constructors get translated to the corresponding
term representation. The representations of type and kind func-
tions are similar to the term translation of type and kind abstrac-
tions. The only involved case is the term representation of a
Typerec. SinceTyperec is recursive, we use a combination of
arepcase and afix. We will illustrate only one case here; the
other cases can be reasoned about similarly.

Consider the reduction ofy (7' — 7'), whereTy r stands
for Typerec 7 of (Tin; 7—; 7w; 7+). This type reduces to
T 7' 7" (Ty (7)) (Ty (")) . Therefore, in the translation, the
term representation of_, must be applied to the term repre-
sentations of~’, 7", and the result of the recursive calls to the
Typerec. The representations of andr’ are bound to the vari-
ablesz, andzgs; by assumption the representations for the re-
sults of the recursive calls are obtained from the recursive calls
to the functionf.

In the following propositions the originalf.j+ kind environ-
mentA is extended with a kind environment(&) which binds
a type variablex, of kind x — for eachy € £. Similarly
the term-level translations extend the type environniémtith
I'(A), binding a variabler, of type R, « for each type variable
a bound inA with kind «.

Propositon 5.1 If £&;A + 7 & holds in A, then
IE|;|A, A(E) F|7| ¢ |k| holds inAL.

Proof Follows directly by induction over the structure-of O
Proposition 5.2 If ;A + 7 : kand&; A F T hold in AZ*,
then|&|; |A], A(E); T, T(A) - R(7r) : Ry |7| holds inAj.

10

%(int) = Rint
R(—) =Aa:T. dza:Ra. AB:T. Azg: RS.
R 0] (z0) (3] (25)
RV) =A x. Aay:x = Q. Aa:x = T.Azq: Ry—a (@).
Rl o] [o] ()
RV) =Aa: (Vx. (x = Q) = T). Aza: Ruy. o (a).
R[] (za)

R(p) =Aa: T — T. Aae: Ra—a (). Ry [o] (za)
R(Place) = Aa: T. Azo: Ra. Ry [@] (za)
R(a) = za
R(Ax.7) = Ay Aoy :x — Q. R(7)
R(r [1]) = R(r) (5] (7]
R(Aa:k.7) = Aa: |K|. Az R o R(T)
R(r ') =R(7) I7'l] (R(="))

R(Typerec 7 of (Tint; 75 Tv; Tt)) =
(fixf:Va:T.Ra — R (7").
Aa:T. Azo:Ra.
repcase[Aa: T. R (7% &)] z of
Rint = %(ﬂnt)
R =Aa:T. Azo:Ra. AG:T. Axg: R[5.
R(7) [o] (za) [8] (x5)
. el (flo]za) (77 6] (F[8))
Rv = A x.Aay:x = Q. Aa:x — T. Aza: Ry—q (a).

R(rv) b [ax] [o] (za) MBix. 7 (@ B)]
(AB:x. Azproy B.flaf] (za [B] 25))
Ryt = A (Vx. (x = Q) = T). Aza: Ryy. 0 ().
R [a] (v0) [Ax- Ay — G.7° (0 D)
(A x-Aay:x — Qfla[x] ox] (za [X] [ax]))
Rp = Aa:T. Axa: Ra. R(Tint)
R, = Aa:T — T.Aza: Ro—o (a).
Ry [AB:T.7" (o (Tpi B))]
(AB:T.Xzg:RS.
flo (T B)] (za [Tp Bl (Rt [B] (z5))))
Ryt = Aa:T. Az Ra. zq)
(1]
R(T)
where
7" = |Aa: Q. Typerec o of (Tint; T3 Tv; T

Figure 15: Representation af * types as\}; terms

Proof By induction over the structure af. The only inter-
esting case is that of a kind application which uses Lemma 4.2.
O

Proposition 5.3 If £;A;T + e 7 holds in AP, then
IEl; 1AL, A(E); T, T'(A) - |e] : F|r| holds inAE.

Proof
Lemmas 4.3 and 4.4.

This is proved by induction over the structurecofising
|

(values) v =1 | Az.e | fixz.w | fold v
| Rt | R | R41 | RS 1w

| Ro1vl | Ro1vld

| Ry | Ryl | Ry11l | Ry111
‘ vallv
|

|

|

|

Rv+ | Rwl | Rv+1’U
R. | R.1|R,1v

Ryl | Ryl | Rpilv
R, | Ry1|Ry1v

(terms) e u=wv | x| e’ | folde | unfold e
| repcase e of (eint; e—; ev; er; €R; €u; epl)

Figure 16: Syntax of the untyped languaxg’

Z =1 RVO = RV
(AXU) = A_v° (Rv[r)o—va
(Aa:r.v)® = A0® (R[] [r])” = Ry11
(f(MTe;o_;\” (v[fi] [T][T]) =Ry111
(fold[r] &)° = fold e> (R A1 7] [TF]{ e)’ - Ev 111¢°
(unfold[7] e): = unfold e° R, [va)o _ R:i 1
([]+) = 6 1 (Rer [T] 6)0 _ RV+ 160
(e[r])” =e’1 R.°—R.
(ee1)° =e®er® Ry [7])° = Ry 1
R = R (Rulr] o) = Ry 1
R TR Rpi® = Ryl
(R*) [T])o =R_1 (Rpl [7_)o _ Rpl 1
(R_[r]e)® =R 1¢° Ry [7]€)° = Ry 1¢°
(Ro [rle[r])° =R 1e°1 R,° =R,
(Relletre) = (Ry [r)° =Ry 1
Rﬁleolelo (R[T]) —RRleo

(repcase[7] e of (eint; e—; ev; eurs er; eu; ept))” =
o o e} o o o o o
repcase e of (ein”; e—°; ev®; et er’; eu’; ep”)

Figure 17: Translation ok5 to AL°

Proposition 6.1 If e ~™ e1, thene® ~™ e1°.

7 Related work and conclusions

Our work closely follows the framework proposed in Craaty

al. [3]. They consider a language with analyzes over types with
no binding structure. Extending the analysis to arbitrary types
makes the translation much more complicated. The splitting of
the type calculus into types and tags, and defining an interpre-
tation function to map between the two, is related to the ideas
proposed by Crary and Weirich for the language LX [2], which
provides a powerful kind calculus and a construct for primitive
recursion over types. This allows the user to define new kinds
and recursive operations over types of these kinds.

This framework also resembles the dictionary passing style in
Haskell [12]. The term representation of a type may be viewed
as corresponding to the dictionary for that type (for some class).
However, the authors consider dictionary passing in an untyped
calculus; moreover, they do not consider the intensional analysis
of types. Duboiset al.[4] also pass explicit type representations
in their extensional polymorphism scheme. However, they do
not provide a mechanism for connecting a type to its represen-
tation. Minamide’s [8] type-lifting procedure is also related to
our work. His procedure maintains interrelated constraints be-
tween type parameters; however, his language does not support
intensional type analysis.

Duggan [5] proposes another framework for intensional type
analysis. His system allows for the analysis of types at the term
level only. It adds a facility for defining type classes and al-
lows type analysis to be restricted to members of such classes.
Yang [15] presents some approaches to enable type-safe pro-
gramming of type-indexed values in ML which is similar to term
level analysis of types. Aspinall [1] studied a typgdtalculus
with subtypes and singleton types.

Necula [11] proposed the idea of a certifying compiler and
showed the construction of a certifying compiler for a type-safe
subset ofC'. Morrisettet al. [10] showed that a fully type pre-
serving compiler generating type safe assembly code is a practi-
cal basis for a certifying compiler.

We have presented a framework that supports the analysis

of arbitrary source language types; while the handling of poly-
morphic and existential types appears adequate, problems remain
open in the treatment of recursive types in our source language.
The framework does not rely on explicit type passing; instead,
term level representations of types are passed at runtime. This
allows the use of term level constructs to handle type informa-
tion at runtime.

Acknowledgements

We are grateful to the anonymous referees for their insightful

The translation replaces type and kind applications (abstrac- comments and suggestions on improving the presentation.
tions) by a dummy application (abstraction), instead of erasing
them. In the typed language, a type or a kind can be applied to
a fixpoint. This results in an unfolding of the fixpoint. There-
fore, the translation inserts dummy applications to preserve this
unfolding.

6 The untyped language

This section shows that iN% types are not necessary for com-
putation. Figure 16 shows an untyped languagé. We show a
translation from\%, to A% ° in Figure 17. The expressidnis the
integer constant one.

References

[1] D. Aspinall. Subtyping with singleton types. Froc. 1994 CSL
Springer Lecture Notes in Computer Science, 1995.
The untyped language has the following property which

shows that term reduction ix§;° parallels term reduction iA%.

11

(2]

(3]

(4]

(5]

6]

(7]

(8]

El

[10]

[11]

(12]

(13]

(14]

(15]

K. Crary and S. Weirich. Flexible type analysis.Rmoc. 1999 ACM
SIGPLAN International Conference on Functional Programming
pages 233-248. ACM Press, Sept. 1999.

K. Crary, S. Weirich, and G. Morrisett. Intensional polymorphism
in type-erasure semantics. Rroc. 1998 ACM SIGPLAN Inter-
national Conference on Functional Programmjmgges 301-312.
ACM Press, Sept. 1998.

C. Dubois, F. Rouaix, and P. Weis. Extensional polymorphism.
In Proc. 22nd Annual ACM Symp. on Principles of Programming
Languagespages 118-129. ACM Press, 1995.

D. Duggan. A type-based semantics for user-defined marshalling
in polymorphic languages. In X. Leroy and A. Ohori, editd®syc.
1998 International Workshop on Types in Compilatialume
1473 ofLNCS pages 273-298, Kyoto, Japan, Mar. 1998. Springer-
Verlag.

L. Fegaras and T. Sheard. Revisiting catamorphism over datatypes
with embedded functions. [23rd Annual ACM Symp. on Princi-
ples of Programming Languagegsages 284—294. ACM Press, Jan.
1996.

R. Harper and G. Morrisett. Compiling polymorphism using inten-
sional type analysis. IRroc. 22nd Annual ACM Symp. on Princi-

ples of Programming Languaggsages 130-141. ACM Press, Jan.
1995.

Y. Minamide. Full lifting of type parameters. Technical report,
RIMS, Kyoto University, 1997.

Y. Minamide, G. Morrisett, and R. Harper. Typed closure conver-
sion. InProc. 23rd Annual ACM Symp. on Principles of Program-
ming Languagespages 271-283. ACM Press, 1996.

G. Morrisett, D. Walker, K. Crary, and N. Glew. From System F
to typed assembly language. Broc. 25th Annual ACM Symp. on
Principles of Programming Languagepages 85-97. ACM Press,
Jan. 1998.

G. C. Necula.Compiling with Proofs PhD thesis, School of Com-
puter Science, Carnegie Mellon University, Pittsburgh, PA, Sept.
1998.

J. Peterson and M. Jones. Implementing type classesPrda.
ACM SIGPLAN Conf. on Programming Language Design and Im-
plementationpages 227-236. ACM Press, June 1993.

V. Trifonov, B. Saha, and Z. Shao. Fully reflexive intensional type
analysis. InProc. 2000 ACM SIGPLAN International Conference
on Functional ProgrammingACM Press, 2000.

D. Wang and A. Appel. Safe garbage collection = regions + inten-
sional type analysis. Technical report, Dept. of Computer Science,
Princeton University, July 1999.

Z.Yang. Encoding types in ML-like languages.Rroc. 1998 ACM
SIGPLAN International Conference on Functional Programming
pages 289-300. ACM Press, 1998.

12

