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Abstract
Previous HCI-studies have compared usability evaluation methods quantitatively without supplementing these
data with detailed qualitative data about how analysts actually learn and use methods. In contrast, we present
two diary-based case studies that describe the processes of two novice analysts who learned about and applied
the Cognitive Walkthrough (CW; Lewis, et al., 1990) to the specification of a multimedia authoring system.
Results show that the two analysts easily learned to use CW but also that they found the technique tedious to
use. Moreover, CW was neither reliable when comparing the two analysts’ processes and outcomes to each
other, nor accurate when comparing the analysts’ problem predictions to results from usability tests applied to a
running system. We examine these data in detail, searching for possible causes of the observed reliability and
accuracy. Based on these analyses, we suggest three changes to CW method to improve its accuracy and two
changes to improve its reliability. Further, we recommend developing a tool to reduce the tedium and integrate
our suggested improvements to CW.

This research was sponsored in part by the National Science Foundation Award #IRI-9457628. The views and
conclusions contained herein are those of the authors and should not be interpreted as representing the official
policies or endorsements, either expressed or implied, of the NSF or the U.S. Government.
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1 Introduction

In recent years there has been a growing interest in analytic usability evaluation methods (UEMs; e.g.,
Heuristic Evaluation, Nielsen & Molich, 1990; Cognitive Walkthrough, Lewis et al., 1990; and GOMS,
Card, Moran and Newell, 1980; John & Kieras, 1996) to complement empirical methods (e.g., think-
aloud usability tests or keystroke logs). Some have claimed that one advantage of analytic UEMs is that
they can be applied to specifications or paper prototypes; thus, able to identify usbaility problems well
before a running protoype could be implemented and empirical tests run. Several studies have
compared the predictions of analytic UEMs to problems observed in usability tests (e.g., Cuomo &
Bowen, 1994; Desurvire, 1994; Hammond et al., 1984; Jeffries, et al., 1991; John & Marks, 1997;
Karat, et al., 1992; Nielsen & Phillips, 1993). Though the validity and reliability of some of these
studies have been questioned (Gray & Salzman, 1998; Olson & Moran, 1998), the most serious
problem has been that they offer only summative quantitative data (e.g., number of problems found)
without supplementing these data with more detailed information about what analysts actually do when
they are evaluating an interface. We believe the field needs process data to understand how the UEM
itself leads the analyst to predict usability problems (as opposed to how the knowledge, experience, and
skills of the analyst contribute to making predictions), why study results may differ, what practitioners
can expect if they choose to use a specific UEM, and how UEM developers can improve their methods.
Our claim is that purely quantitative studies of UEMs are akin to usability studies of a system that only
provide numerical data about performance times or total number of errors; in this formative stage of
UEM development, we need instead the equivalent of a series of think-aloud usability studies for
assessing these methods.

To learn more about the process of using one UEM, this paper presents two diary-based case studies
(Yin, 1994) that describe the processes of two novice analysts who learned about and applied the
Cognitive Walkthrough (CW) technique to the specification of a multimedia authoring system. Using
data from two analysts, each of whom separately conducted a CW, we compare their predictions to one
another as well as to the results of usability tests on the running system. The latter enables us to assess
the predictive power of the analysts’ CWs (John & Marks, 1997). That is, can a CW accurately predict
the kinds of problems identified in usability tests with real users? Several observations and hypotheses
about the experiences and performance of the first analyst, A1, have been described elsewhere (John &
Mashyna, 1997; John & Packer, 1995). This work builds on that earlier work first by studying the
second analyst, A2, and then by using these new data to examine the generality of those earlier
observations, test one of the hypotheses, and develop further hypotheses.

The next section of this paper includes background information about the CW method and the results of
the first case study. We then describe the case-study situation, the usability-test conditions, and the
database used to track information. Section 4 presents the quantitative results of the CW analyses and
usability tests. Section 5 queries the database to answer many questions about how and why the two
analysts differed and what impact different stages of the CW had on the outcome of the evaluation.
Section 6 investigates why the results of the CW analyses diverged from usability test results. Section 7
concludes with hypotheses about the use of CW and a call for future work.
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2 Background

Cognitive Walkthrough (CW) is a usability inspection method based on the psychological theory called
CE+, a theory about what affects the ease with which a new interface can be learned (Polson & Lewis,
1990). Similar in rationale and execution to requirements or code walkthrough, the technique has been
evolving since its introduction in 1990 (Lewis et al., 1990). The most recent description of CW (Lewis
& Wharton, 1997) appeared in the Handbook of Human-Computer Interaction (Helander, Landauer &
Prabhu, 1997). Our study examines the latest CW version available when our data were collected
(Wharton et al., 1994).

CW consists of two phases: preparation and execution. In the preparation phase the analyst selects tasks
to be analyzed and specifies the knowledge, experience, and skills a user can be expected to bring to the
task. For each task the analyst specifies a correct action and the expected system feedback after each
action. In the execution phase the analyst closely examines each action in an action sequence and asks
the following four questions:

1. Will the user try to achieve the right effect?
2. Will the user notice that the correct action is available?
3. Will the user associate the correct action with the effect trying to be achieved?
4. If the correct action is performed, will the user see that progress is being made toward solution of the task? (Wharton et

al., 1994, p. 112)

If, for any question at a given action, the evaluator can answer “yes”, this answer should be
substantiated by a credible success story for that question. When all four questions for a given action
have been answered by credible success stories the user is expected to have no difficulty completing the
action. If, for any question at a given action, the evaluator can answer “no”, this answer should be
substantiated by a credible failure story for that question indicating that a usability problem has been
identified. In summary, for each question about a given action, the analyst should either identify a
success or a failure story. In all cases, the story should be credible (obviously, just answering the
question with “yes” or “no” is not sufficient).

The CW literature makes several other recommendations. During the execution phase, the analyst
should record any additional assumptions about user knowledge requirements, e.g. information about
what the user must know prior to performing the task and what the user should learn while performing
the task. Side issues (such as detection of spelling errors in menus) as well as design changes are also
recorded in the execution phase. An individual analyst or a group can perform the CW evaluation.
Although a CW evaluation can be completed on a running system, it is especially advocated as being
cost-efficient when applied to a description of a system, e.g., user-interface specification or storyboards.

John & Packer (1995) described an analyst’s (A1’s) process of learning and using the CW technique
applied to a specification for a multimedia authoring system. That analyst experienced the CW
technique as both learnable and usable for a computer designer with little psychology or HCI training.
Other more specific findings in the case study were that the technique by itself does not help in
selecting and setting up task scenarios. This is also known to be the case with other UEMs such as
usability tests, GOMS, and Claims Analyses. As is problematic with other inspection methods, the CW
technique by itself was not seen to give any guidance about frequency or severity of detected usability
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problems. Finally the case study showed that the actual walkthrough of the action sequences was
problematic as questions 1 and 3 were hard to use correctly.

John & Mashyna (1997) used John & Packer’s CW data and compared them to the outcome of usability
tests of a running version of the system built from the specification. Four users participated in think-
aloud usability tests with each session lasting 60 to 90 minutes. John & Mashyna found that of the 37
observed problems that could have been predicted by A1, only five percent of these were predicted
precisely, and another five percent were predicted vaguely. Consequently the analyst missed at least 90
percent of the observed problems. Moreover, 27 percent of the problems detected by A1 were found to
be false alarms. The lessons learned from this case were that (1) while the concepts and procedure of
CW were learnable in the abstract, actually applying the technique was more difficult, (2) CW is
sufficiently flexible to apply to a complex system like a multimedia authoring tool, (3) A1’s use of CW
was not particularly effective in predicting problems encountered in usability tests, and (4)
improvements in the CW method may come from experts’ tacit knowledge.

In addition to the quantitative results and possible explanations for those results, the case of A1
provided several hypotheses about learning and using CW more effectively. These included a
hypothesis about creating “macros” for answering the CW questions for repetitive tasks to decrease
evaluation time; a hypothesis that evaluators should set up and analyze error-recovery tasks as well as
the correct action sequence for every task; and a hypothesis that people wanting to learn CW read only
The Cognitive Walkthrough Method: A Practitioner’s Guide (Wharton et al., 1994) as the earlier, more
theoretical papers on CW were confusing to A1. In our second case, we follow this last suggestion to
examine whether a second analyst can perform better and with less confusion and doubt after reading
the Practitioner’s Guide.

3 The Case Study Situation

3.1 The Cognitive Walkthrough Analyses
Many software development companies do not have dedicated professional usability evaluation staff
(Dillon et al., 1993). A common practice for developers evaluating the usability of their system is to
select an assessment technique, identifying and locating literature that describes its use, learning the
technique from these materials, and applying the technique to the system design. In this study, we set up
two similar situations.

3.1.1 The analysts’ choice of HCI assessment technique

Five volunteer analysts were given a 30-minute lecture on HCI assessment techniques (by the second
author). This lecture contained the introductory UEM tutorial material given at the ACM CHI
conferences by the second author every year since 1992 (Butler, Jacob & John, 1992-1999). One week
after this lecture, each analyst was asked to choose one UEM they wished to apply to a multimedia
authoring system. Of the five analysts, A1 chose CW as his preferred technique. After A1 had read and
applied CW to an interface he wrote a report where he strongly recommended future CW analysts read
only one paper, namely The Cognitive Walkthrough Method: A Practitioner’s Guide (Wharton et al.,
1994). Based on this hypothesis a new volunteer analyst, A2, was later asked to do a cognitive
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walkthrough on the same interface as the one A1 evaluated, but using Wharton et al. (1994) as his only
source to learn the walkthrough technique. Thus, this second case study is testing whether A2 is able to
perform better and with less confusing with only Wharton et al. (1994) as his teaching material.

3.1.2 The system
The CW analysts evaluated a portion of a multimedia authoring system that was built in The Advanced
Computing for Science Education (ACSE) project to teach the skills of scientific reasoning (Pane &
Miller, 1993). The system, called the Builder, makes it possible for a user to create a running multi-
media volume that can be used by students to learn certain parts of a science domain. The Builder
resembles an advanced word processor insofar that the user can create volumes consisting of plain text,
still graphics, movies, animations, and simulation code.

The two CW analysts were given two paper documents with which to complete their analyses: a user
interface specification document on the Builder (Gallagher & Meter, 1993), and an example multi-
media document (a volume printed on paper). The specification document was a detailed description of
the user interface of the Builder. The specification document (consisting of 44 pages) was divided into
three parts: an introduction, a section on how end-users should navigate and use a volume, and an
explanation about how a teacher should create and modify volumes in the Builder. The specification
included 37 figures of screen items, which ranged from small pictures of specialized cursor icons, to
tool palettes, to full-page figures of the entire screen as seen in Figure 1.

The example multi-media document was a printed version of a volume made in the Builder. This 55-
page volume included 23 high-resolution images and figures, 3 movies, 7 simulations, 10 fragments of
simulation code, and 10 review questions. The multi-media example document was produced with an
earlier version of the Builder that did not include certain features described in the specification
document: a table of contents, a glossary, and hyperlinks. However, prior to the CW analyses the
second author of this paper modified the example multi-media document to include these features. The
table of contents and hyperlinks were identified in two lists included at the end of the printed volume.
Figure 2 shows an example of a page in the example multi-media document, a document that was
entitled “Gradients, Gene Expression, and Pattern Formation: The Early Development of Drosophila
Melongaster”.

3.1.3 The analysts
Analyst A1, a researcher in Carnegie Mellon University’s School of Computer Science, had taken over
a dozen courses in computer science. He considered himself fluent in two programming languages and
had worked professionally as a programmer before taking part in this case study. He had taken one
cognitive psychology course, but none in HCI. A1 received graduate-course credit for participating in
this study. A2 was a full-time computer facilities manager for a 100-person department and a part-time
student in Carnegie Mellon University’s Masters of Software Engineering program. A2 did not have
any formal experience in cognitive psychology, but had taken one course in HCI. A2 also received
graduate-course credit for participating in this study.
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Figure 1. An example of a full-page figure of the Builder interface taken from the specification document (Gallagher
& Meter, 1993, included here with permission of the authors). The Table of Contents pane and the Glossary pane
reside on the left side of the Builder interface. The tool palette resides on the top of the interface. The arrows on the
right side of the interface represent bookmarks. The remaining canvas is dedicated to the current volume that might
contain text frames, animations, drawing frames simulations, etc.
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Figure 2. An example of a page in the example multi-media document. This page
shows a picture frame, a frame associated to the picture (a caption), and another

frame explaining the figure above.

3.1.4 Procedure
The analysts worked primarily on their own: A1 for an elapsed time of 10 weeks and A2 for an elapsed
time of 6 weeks. They used two forms to record their work on an ongoing basis: A structured diary and
a problem description form (described below). Moreover, the analysts recorded their actual evaluation
in terms of task scenarios, correct action sequences, and success/failure stories in the walkthrough.
Each analyst produced both a verbal and a written report of their analysis. A questionnaire assessed the
analysts’ educational and professional background. All of these data contributed to the case reported in
this paper.

A diary form, adapted from Rieman (1993), allowed the analysts to record their activity for half-hour
intervals through the evaluation process. For each entry, each analyst provided a short text description
of the learning activity and categorized the activity into one of the following:

1. Literature search
2. Reading for “what it is”
3. Reading for “how to do it”
4. Reading/Analysis (when reading and analysis are so intertwined as to be inseparable)
5. Analysis (when the analysts know the technique well enough to analyze without references to the literature)
6. Unrelated

The diary form also included columns where different categories of information could be recorded:
difficulties using the technique, insights into the technique, usability problems in the system, solutions
to usability problems, and the catch-all category “other”. At any time, the analyst could write a note on
the form and write an extended explanation in their own words.

The problem description report (PDR), adapted from Jeffries et al. (1991), provided an area for
describing the detected usability problem, an estimate of the severity and frequency of the problem, and
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an assessment of whether these judgments came from the technique itself, as a side-effect of the
technique, or from some form of personal judgment. Each PDR had a reference number that also
appeared in a column of the diary so that every PDR could be related to the context in which it was
detected.

A1 met with the second author and four other analysts using other UEMs once a week, in a seminar
setting, to discuss the process of the evaluation (as opposed to discussing the content of the analyses).
That is, they discussed issues such as problems obtaining or understanding articles and problems
making the techniques applicable to the Builder, but they did not discuss specific usability problems in
the system. Since A2 completed his CW later, when no seminar was in session, he met once a week
with the second author alone to discuss the process of the evaluation. As with A1, they discussed only
the process of doing the CW, not the contents of PDRs.

Each analyst produced a written report that included a brief summary of the technique, an annotated
bibliography of the articles used to learn and apply the technique, and a description of modifications
made to the technique in the process of applying it to the interface. Also, areas of exceptional doubts or
confidence about using the technique, suggestions for improving the technique, and the three most
important problems to be fixed in the Builder were included in A1 and A2’s written reports.

3.2 The Usability Tests
We conducted a series of think-aloud usability tests to see if the problems predicted by the CW analysts
would show up in tests with real users. Note that we are not comparing the CW technique to the
usability testing technique; these techniques differ greatly in the development phase during which they
can be used and the resources necessary to use them. Our goal in running usability tests was to assess
what John & Marks (1997) called the predictive power of analytic UEMs. That is, if the problems
predicted from a specification weren’t fixed, would they be confirmed or refuted in usability tests of the
system built to that specification?

The first test, examining four users completing four tasks, was reported in John & Mashyna (1997).
After comparing these user tests to A1’s CW, we discovered that the tasks the users were asked to
complete did not match the tasks set up by the CW analysts to a satisfying degree. To fix this oversight,
we modified the assigned usability test tasks and ran four more users (see Table 1). All eight usability
test sessions were videotaped for later analysis.

In order to increase the reliability of the usability test results (Jacobsen et al., 1998) each of five
evaluators analyzed a subset of the eight tapes, with each evaluator analyzing at least four tapes. Two of
the evaluators were very experienced usability test evaluators, having analyzed more than 50 usability
test sessions previously. The three other evaluators had less experience, having analyzed between 2 and
6 usability test sessions previously.
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Task Usability
test no. 1
 (4 users)

Usability
test no. 2
(4 users)

Create a three-page document including text fragments, a picture, and a simulation, and add
entries into the glossary pane and the table of contents pane. Mark page two so that the user
of the volume can jump straight to it from anywhere in the volume using the bookmark
function.

x x

Modify document by switching pages two and three. x x
Delete the second page in the document. x
Add another page, enter a new glossary item and modify the definition of an existing entry. x x
Add another page with a code fragment, and make sure that students who use the volume will
not be able to edit this piece of code (using the lock function).

x

Save volume in two versions: an editable version for the professor and a not-editable version
for the student.

x

Table 1. Breakdown of the tasks presented to the users in the two usability tests.

Nine predefined problem criteria were used by usability test evaluators to label problems encountered
by the users:
1. the user articulates a goal and cannot succeed in attaining it within three minutes,
2. the user explicitly gives up,
3. the user articulates a goal and has to try three or more actions to find a solution,
4. the user produces a result different from the task given,
5. the user expresses surprise,
6. the user expresses some negative affect or says something is a problem,
7. the user makes a design suggestion,
8. the system crashes, or
9. the evaluator generalizes a group of previously detected problems into a new problem.

The evaluators were asked to report on three properties for each problem detected: (a) a free-form
problem description, (b) evidence for this problem consisting of the user’s action sequence and/or
verbal utterances, and (c) the criteria for identifying the problem.

Based on the individual evaluators’ problem lists two independent investigators matched all problems
with the aim of constructing a master list of unique problems identified by the usability test. They
agreed on 81% of the unique problems; disagreements were resolved through discussion and a
consensus was reached (see Jacobsen et al., 1998 for further discussion of this analysis).

3.3 The Case Study Database
Based on recommendations from Yin (1994), this case study was designed to provide several types of
data with which to explore the process of learning and doing a CW analysis. Materials include (1)
structured diary entries, (2) free-form diary notes, (3) Problem Description Reports (PDRs), (4) the
analysts’ CW materials, and (5) the analysts’ final reports. All of this information can be located along
a timeline of activity in which the analysts engaged. Hence, it is possible to see causal links between
different types of data, e.g., a link between a diary entry and a paper that an analyst read. On the
usability testing side, we have usability problem reports, produced by eight users and five evaluators,
against which to match to the CW analysts’ PDRs.
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Yin (1994) suggests that “every case study project should strive to develop a formal, presentable
database, so that, in principle, other investigators can review the evidence directly and not be limited to
the written reports” (p. 95). To this end, the information has been compiled and can be accessed
through the relational database described in Appendix A. This database contains 21 tables with 23
relational connections between tables (see Figure A1, page 56). The database contains more than 3,500
records consisting of more than 30,000 data entries. All results presented and discussed in this paper
have been extracted by querying this database.

Designing and filling in data in the database has been a protracted process due to the use of an iterative
systems development method and because case study hypotheses sometimes are generated while
analyzing data material rather than before conducting the study. We think that other researchers
interested in conducting case studies on UEMs can profit from our work and experiences, and we
therefore invite researchers to use the design and contents of our database.

4 Results
In this section we describe quantitative results from the case study. First we examine the process and
the outcome of the analysts’ work, i.e. the time spent on different activities during the evaluation and
the total number of problems detected. Second, we identify the number of problems detected in the
usability tests and discuss 1) which of these problems could have been predicted by the CW analysts, 2)
which were predicted correctly, and 3) which were overlooked in the CW evaluation. Based on these
quantitative results the discussion sections (5 and 6) reveal qualitative, in-depth analysis of how the
analysts worked, why they worked as they did, and the impact of their process in terms of the actual
outcomes of their evaluation.

4.1 The process and outcome of the CW analysts’ work
A1 spent a total of 45 hours on his evaluation. After starting his evaluation by searching literature and
reading about a number of different evaluation techniques, he then read about the CW technique in
depth. The total time spent searching the literature and reading accounted for 23 hours of his evaluation
time, while he analyzed the interface with the CW technique for 22 hours. A2, who had only been
asked to read Wharton et al. (1994), spent no time on a literature search and hence spent less time
reading. A2 spent 32 hours on the evaluation; of these 32 hours he spent 25 hours analyzing the
interface with the CW technique (see Table 2 and Figure 3 for the analysts’ activities).

Throughout the evaluation phase the analysts recorded insight and difficulty notes in their paper diary.
While A1 recorded 126 notes, A2 only recorded 42 notes (see Table 3). Compared to A2, A1 wrote
many more notes while searching and reading literature partly because he found and read many more
papers than A2. However, during the time spent searching and reading literature, A1 still wrote more
than twice as many notes as A2. Both analysts wrote comparable number of notes on the actual
evaluation process.
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A1 A2
Literature search and reading 23 7
Analysis and analysis/reading interleaved 22 25
Total hours spent on the evaluation 45 32

Table 2. Hours spent on different activities for the two analysts.

Number of notes written while searching
literature and reading for “how-it-is” and

“how-to-do”

Number of notes written while analyzing
and analyzing/reading interleaved

Total notes written

A1 84 (3.7 notes/hour) 42 (1.9 notes/hour) 126
A2 12 (1.7 notes/hour) 30 (1.2 notes/hour) 42

Table 3. Number of notes written by the two analysts distributed into two groups: literature search and reading, and
analyzing and analyzing/reading interleaved.

Literature
search

Reading for
’what-it-is’

Reading for
’how-to-do’

Analysis/
reading

Analysis

5 10 15 20 25 30 35 40 45

*    *****     **              *

 ***      *****  ** *   ******* ******             **

                   * ***              ****   **          *

    *                                                ****

                                          ***  ****       ********************************

                                       ¤¤¤¤¤¤¤¤¤¤¤   ¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤¤

                                                    ¤

                                    ¤¤¤           ¤¤

                         ¤¤¤¤¤¤¤¤¤¤¤

Activities

Hours

A1 decided to use CW
at this point, while A2 
was asked to use CW
from the very beginning

Figure 3. Through the semi-structured diary form recorded in the case study database it was possible to track the
analysts’ activities throughout their evaluation of the Builder. Each “*” represents one half-hour time slot for A1,
while each “¤” represents one half-hour time slot for A2. A2’s first time slot is adjusted to the point in A1’s
evaluation where he decided to use CW. Hence, A2 spent less time than A1 overall but their actual analysis times
(excluding literature search and reading) were comparable.
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The outcome of the CW evaluations was a number of PDRs identifying the problems that had been
detected in the interface. A1 recorded 42 PDRs, while A2 recorded 9 PDRs. Since some PDRs covered
more than one unique problem and others were duplicates, A1 detected 46 unique problems in total
while A2 detected 7 unique problems. Some problems were detected in the preparation phase; other
problems were detected in the actual walkthrough. Twenty-six of A1’s 46 problems and 4 of A2’s 7
problems were detected while walking through action sequences, i.e. they could be tracked back to a
specific failure story for a specific action in an action sequence. A1’s remaining 20 problems were
detected while analyzing a test task scenario with no recordings of a walkthrough (8 problems), reading
the specification document (6 problems), determining an action sequence (2 problems), filling out other
PDRs (1 problem), and doing other activities not related to the actual walkthrough (3 problems). Two
of A2’s remaining 3 PDRs were reported while reviewing his action sequences and the last problem
was reported while writing success or failure stories, though this specific PDR was not related to a
specific question/action in an action sequence.

Only three problems were detected by both analysts. A1 found all three problems while walking
through his action sequences, but he only credited the CW technique with helping him identify one of
these problems; the other two problems were judged by A1 as being a side-effect of using the CW
technique. A2 found only one problem while walking through the action sequences and he also credited
this problem detection to the CW technique. The other two problems A2 identified in common with
A1were found while setting up action sequences, though he gave the credit for these identifications to
the reading of the specification document.

The analysts were requested to report the three most important problems to be fixed in the Builder;
none of these were identical. A1 reported two general fixes, one regarded use of unambiguous labels
rather than icons in the tool palette, and the other regarded reorganization of the menu structure. A1
also reported a more specific problem as glossary and table of contents panes could not be resized in all
directions. A2 reported three concrete problems of which two were inconsistencies in the specification
document. One inconsistency regarded frame labeling (which was not problematic in the Builder, only
in the specification document), and another inconsistency regarded seemingly different ways of creating
a new volume. The last important fix regarded insertion of pages, which could only be done after the
user had selected a frame.

4.2 CW predictions and usability test observations
A total of 103 unique problems were observed in the usability tests, but not all of these problems could
have been predicted by the CW analysts. Similarly, not all of the problems detected by the CW analysts
could have been observed in the usability test. (In the following discussion, problems detected in the
CW will be denoted predicted problems, while problems detected using the usability tests will be
denoted observed problems). First we will analyze which of the problems predicted by the CW analysts
might have been observed in the usability tests. Then we will analyze which of the observed usability
test problems the CW analyst might have predicted. Finally we describe the predictive power of the
CW analyses.
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4.2.1 Problems predicted by CW that might have been observed
The cognitive walkthrough analyses were completed at an early stage of the development process when
there existed only a specification document and no running system. Also, as the development project
was a real-life process, certain functions were implemented differently than described in the
specification document, often due to new and improved design decisions discovered in the
implementation phase. Hence, some of the problems predicted could not have been observed as (1)
those functions had not yet been implemented, (2) related functions were changed from the
specification, or (3) the analysts misread the specification and therefore reported problems that actually
could not occur. The remaining problems detected by the two CW analysts might have been observed
inthe usability tests (those problems that were identified with features implemented as described). Table
4 shows the problems predicted by the CW analysts that could or could not be observed in the usability
tests.

A1 detected 14 problems and A2 detected 1 problem that had the possibility of being predicted in the
usability test. Before revealing how many of these predicted problems were actually observed, we will
analyze how many of the observed problems might have been predicted by the CW analysts.

Reasons A1 A2
Could not be observed Not yet implemented in running version 18 3

Changed in running version 13 2
Analyst misread the specification 1 1

Could be observed Existed in running version 14 1
Total 46 7

Table 4. The number of CW-predicted problems that could or could not be observed in the usability tests.

4.2.2 Problems observed in usability tests that might have been predicted
Some of the observed problems in the usability test could not be predicted because of factors we could
not control (see Table 5). Bugs and artifacts in the running system such as slow scrolling, slow saving,
and system crashes were considered to be observed problems that could not have been predicted.
Similarly, observed problems that had to do with aspects of features changed from the specification
could not have been predicted. Also, some observed problems were caused by the user’s inattention to
detail in doing the tasks they had been asked to solve, i.e. the user’s end product differed from the
target volume in the way the text was word-wrapped and the user made no attempt at all to try to get
them to match. The CW analysts could not have predicted a user’s inattention to detail.

Any written specification is typically incomplete or ambiguous. Hence, usability evaluation based on a
written specification is limited by its quality. Though we regard the specification document used in this
case study to be of high quality, it is not surprising that some problems observed were quite difficult to
predict, often due to an incomplete or ambiguous specification. We grouped these problems into one of
three categories: effect, limitation, and functionality. Effect problems were problems where the effect of
some function was not described or not fully described in the specification (e.g., when deleting a page,
the glossary entries from that page are not deleted automatically). Limitation problems referred to those
problems where some sort of undocumented limitation in the system led to a user problem (e.g., there
was an artificial limit of only having one Table of Contents item per page). And functionality problems
were those where a certain undocumented function (e.g., auto-save function) led to user problems.
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Problems observed in the usability tests relating to functions that were explicitly described in the
specification should have been predictable with a CW analysis. Other types of problems observed in the
usability test could also have been predicted. For example, if a user requested a function that was
neither described in the specification nor implemented in the running system then it could have been
predicted by the CW analysts. For example, some users mentioned that the system had no text search
capability – this function was not described in the written specification nor was it implemented in the
running system. However, the CW analysts could have set up a scenario where they tested for finding a
piece of text in a volume and might then have predicted that a search capability was necessary.

Table 5 categorizes all observed problems into two problem types: those that could not have been
predicted, and those that could actually have been predicted.

Reason for belonging to group Number of
problems

Total for the
group

Artifacts of the system 4
Bugs in running system 3
Changed from the specification 23

Could not be
controlled

User’s inattention to detail 7 37
Effect 5
Limitation 2

Could not have
been predicted

Incomplete
specification

Functionality 7 14
Explicitly described in specification 33Could have been

predicted Neither described in spec. nor implemented 19 52
Total problems observed 103

Table 5. The number of observed problems that could not have been predicted and that could have been predicted.
Each of these categories contains specific reasons for why a problem could have been or could not have been
predicted.

4.2.3 Summary of the match between predicted and observed problems
From Tables 4 and 5 we know that A1 and A2 predicted 14 and 1 usability problems respectively that
had the potential of being observed in the usability tests. We also know that a total of 52 of the usability
problems observed in the usability tests had the potential of being predicted by the CW analysts. We
studied the CW problems that might have been observed in order to match them with observed
problems. The first author initially matched problems by annotating each CW problem with a reason
why this problem could or could not be observed. Then both authors went through each problem and, if
the second author disagreed about the first author’s initial judgment, came to consensus.

Only three problems observed in the usability tests were precisely predicted by A1 (see Table 6). Three
other problems predicted by A1 were related to observed problems but they can not be considered to be
precise predictions1. A2 did not predict any problems observed in the usability tests.

                                                
1 The precisely and vaguely predicted problems differed in the sense that precisely predicted problems pointed to the same
item in the interface with an equivalent description of the problem. Vaguely predicted problems pointed to the same item in
the interface but were not precisely defined with respect to what constituted the problem. For example, the CW predicted
problem “User will be confused about what actions to find in the button palette and what in the (augmented) standard MAC
menu” was matched vaguely to the usability test problem description “More of the important commands should appear as
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Eight usability problems were predicted by A1 but were not observed in the usability tests; one such
problem was predicted by A2. Three of these problems were false alarms. We define a false alarm as a
problem predicted by a CW analyst but which, when confronted by the exact situation in the running
system, causes users no identifiable problems in performing their task.2 Having subtracted these false
alarms from the total number, six problems predicted by A1 remain. These were neither confirmed as
observed problems nor rejected as false alarms, as the users did not use the functions related to these
problems.

Of the 52 problems observed in the usability tests, A1 missed 45 (87%). All 52 observed problems were
missed by A2 (100%). The analysts predicted none of the observed problems concerning lack of
functions (as indicated by a user’s search for a function or capacity). Table 6 shows the correspondence
between the observed and the predicted problems as well as the misses3.

A1 A2
Observed problems that were predicted precisely 3 (6%) 0 (0%)
Observed problems that were predicted vaguely 3 (6%) 0 (0%)
False alarms (predicted problems that could have been but were not observed) 2 1
Predicted problems related to functions that were not tested in the usability tests 6 0
Misses (Observed problems that could have been but were not observed) 45 (87%) 52 (100%)

Table 6. The results of matching problems predicted by the analysts and the problems observed in the usability tests.
A1 predicted six problems that were observed either precisely or vaguely. He predicted two problems that were false
alarms, and he missed 45 observed problems. A2 did not predict any problems that were observed, he predicted one
problem that turned out to be a false alarm, and he missed 52 problems.

5 Differences between the two analysts while learning and using
the CW technique

Studies have shown that other usability evaluation methods like heuristic evaluation and think-aloud
studies suffer from a substantial evaluator effect (Jacobsen et al., 1998; Molich & Nielsen, 1990). One
might therefore presume that there would be a similar evaluator effect among evaluators using the CW
technique. In this case, however, three factors might argue against such a presumption. First the
analysts in this case had similar backgrounds, they were both highly motivated, and they followed the
same procedure in applying the CW technique. Second, CW is more structured than heuristic
evaluation and also more structured than the process of analyzing think-aloud sessions. Third, CW is
not known to have an evaluator effect (see for example Lewis et al., 1990). Considering these

                                                                                                                                                                       
toolbar buttons”. In comparison the CW predicted problem “Creation of frames: After choosing the location (V.V. Spec
p.21, first paragraph) for a newly created frame (by clicking the mouse), the mouse button has to be kept pressed to be able
to size it. From Mac experience one would expect that there are 2 separate actions: 1. place frame -> pops up in standard
size with handle bars. 2. resize it by dragging on the handle bars” was matched precisely to the usability problem description
“User does not know that after clicking the frame button she has to click mouse button on the Volume canvas and hold it
down while moving to create a frame”.
2 The concept of a false alarm is a controversial issue in HCI. We will discuss it in more detail in section 6.2.
3 Logically the number of correctly predicted problems (3 vaguely and 3 precisely predicted for A1; 0 for A2) and the
number of misses (45 for A1 and 52 for A2) should add up to 52 problems. However, for A1 one of the predicted problems
vaguely matched two observed problems. Hence, A1’s total number of misses and matches consist of one less than would be
expected.
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arguments, we believe that the differences between the analysts in the total number of problems each
detected and the small number of problems identified by both are quite surprising.

How and why were the CW analysts so different in their detection of problems? In this section we will
elaborate on the analysts’ work. We will reveal how the analysts differed, we will try to explain why
they differed, and we will estimate the impact of these differences on the problems predicted. We
expect these analyses will generate hypotheses on how the cognitive walkthrough can be improved to
meet the demands of both utility and usability. In section 6 we will return to the usability test results to
explain how the CW analyses differed from those results.

5.1 The cognitive walkthrough phases
As mentioned in section 2, CW consists of two chronological phases, preparation and execution. Their
process included 6 stages—4 during preparation and 1 during execution. As seen in Figure 4 they first
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Figure 4. The stages in a cognitive walkthrough and the dependencies between
stages. The quality of the detection and recording of PDRs are directly and
indirectly dependent on all stages in the evaluation.
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read about the technique and the system (the two upper ovals), then they defined the user and chose task
scenarios (the oval second from the top). The last step in the preparation phase was to transform the
task scenarios into action sequences (the oval third from the top). In the execution phase they had to
walk through the action sequences and record problems (bottom circle).

The striking difference in the number of PDRs recorded by the two analysts might originate in any
phase in the their evaluation process. For instance, poor task choice may lead to low coverage of the
interface, with few detected problems as the most likely outcome. Alternatively, differences in
translating the same task scenarios into action sequences might lead to different PDRs. We have
organized sections 5.2 through 5.5 according to the stages in CW in order to trace the specific impact of
each phase on the outcomes of the CW analyses.

5.2 The reading process

5.2.1 What did the analysts read?
Reading the specification document and about the CW technique was essential preparation in order for
the analysts to properly evaluate the Builder. The case situation for A1 was to learn to use a self-
selected evaluation technique by searching, finding, and reading relevant literature on usability
evaluation methods so as to be able to conduct a system evaluation. The case situation for A2 was to
only read Wharton et al. (1994) as background for applying the CW technique to the Builder. Table 7
shows all papers read by either one or both analysts in the evaluation phase. Given the case of A1 it is
quite natural that he read several papers that had little to do with the CW technique. For example, A1
read some papers before he actually decided to use CW as his technique (e.g., about heuristic
evaluation). A1 also came across non-CW papers that he thought might be useful to evaluate the
Builder and read those. As noted by A1 in his diary, some papers gave him more insight and were more
relevant to him than others.

Given the different case set up for A2, A1 read many more papers than A2. After his evaluation A1
suggested that CW novices should only read Wharton et al. (1993). In the meantime the tech report
(Wharton et al., 1993) was included as a chapter in Nielsen & Mack (1994). Hence, A2 read this newer,
published version of the paper referred to as Wharton et al. (1994). As shown in Table 7, A2 only read
one other paper, the Builder specification.

5.2.2 The impact of reading the specification document

Both analysts recorded having read the specification for the Builder for several hours at a time. (Since
our diary form asked for reports of activities only every half-hour, it is likely that the analysts did not
record any quick skimming of the specification). A1 detected six problems while reading the
specification document and another two problems when setting up action sequences based on the
specification document. A2 on the other hand did not record any problems while only reading the
specification document, but he recorded two problems while setting up action sequences based on the
specification document. Hence, reading the specification document had an impact on the detection of
problems in the interface. Of the total problems detected by the analysts A1 found 17% and A2 found
29% while reading the specification or while setting up action sequences based on the specification
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document. The fact that simply reading the specification can lead to PDRs is consistent with other
research into UEMs (John & Marks, 1997).

5.2.3 The impact of reading papers other than the specification document
Besides the specification document A1 read several papers while A2 only read Wharton et al. (1994).
Here we want to determine whether these different reading strategies influenced their evaluation
outcomes.

A1 made 41 notes about papers that he read (excluding notes about the specification document), while
A2 only made four such notes. A1’s notes before the thirteenth hour explain his rationale for choosing
to learn CW over other UEMs. He did not consider himself an HCI expert, from which he concluded
that he should not use Heuristic Evaluation (Nielsen, 1993). (Note that we are not judging that his

A1:
hour

into the
process

A2:
hour

into the
process

Authors of paper
(see bibliography for

further details)

Paper about

1 Jeffries et al. (1991) A comparison between four usability evaluation methods including
CW, Heuristic Evaluation, Guidelines, and usability testing

2 Howes & Young (1991) Programmable User Model and Task Action Grammars
6-7, 29 4-5 Gallagher & Meter (1993) The specification document on the Builder

9 John et al. (1992) A strategic plan for creating a HCI Institute at Carnegie Mellon
University

10 Mack & Nielsen (1993) Report on a workshop held at CHI’92 on usability inspection
methods

11-12 Nielsen (1993)
(chapter 5 and chapter 8)

Chapter 5 is about Heuristic Evaluation and Chapter 8 is about
Interface Standards

11 Carroll & Rosson (1989) The use of task scenarios as design tools in software development
14, 18 Lewis et al. (1990) Description and evaluation of the CW technique applied to walk-up-

and-use systems
15-16 Wharton et al. (1992) Description and evaluation of the CW technique applied to more

complex interfaces
17, 18 Polson & Lewis (1990) The theory CE+ which is the foundation for CW

19 Rowley & Rhoades (1992) Describing a fast-paced version of CW called the Cognitive
Jogthrough

20 Bell et al. (1991) A description of the programming walkthrough
20-21,

23
Wharton et al. (1993) A practitioner’s guide to CW; the tech report that was a forerunner

of Wharton et al. (1994)
26 Wharton & Lewis (1993) The role of psychological theory in usability inspection methods; a

tech report that was a forerunner of Wharton & Lewis (1994)
1-4, 6-7,

13
Wharton et al. (1994) A practitioner’s guide to CW; in content very similar to the tech

report Wharton et al. (1993)

Table 7. The papers read by the analysts sorted chronologically according to A1’s reading process. Note that
Wharton et al. (1993) and Wharton et al. (1994) are two different versions of the same paper. The column “hour into
the process” gives an idea of when in the process the papers were read and approximately how long it took the
analysts to read a given paper.
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conclusion is correct in this regard, we are simply reporting his conclusion and the reason he gave).

With only a specification document at hand a think-aloud study could not be arranged, and without
access to the source code of the Builder he could not use Programmable User Model (Howes & Young,
1991) as his evaluation technique. Guidelines (Smith & Mosier, 1986) was a viable option, but he
found it too difficult, as too much reading would have been necessary to acquire the expertise to apply
guidelines to the specification document. Because of these constraints, he thought CW the most
appropriate choice.

A1’s later notes focused more explicitly on the CW technique itself. We were able to directly link 36 of
A1’s notes to a specific phrase in a specific paper (either because the note included an explicit reference
or because a note was taken from or directed to a section of a paper). Ten of these notes were insights
or difficulties regarding the theory CE+, on which CW was based. While reading Lewis et al. (1990)
A1 wondered if he had to extend the CW technique with a memory load model, because CW initially
was created for walk-up-and-use systems and he considered the Builder to be a more complex interface.

Later in the process but still reading Lewis et al. (1990) he was concerned that he lacked sufficient
knowledge about the theory, as Lewis et al. state “successful execution of the walkthrough methodology
would require deep knowledge of the theory” (p. 241). It was therefore not surprising that A1 found and
read the initial paper on CE+ (Polson & Lewis, 1990); he simply did not consider himself ready to do a
CW without a better understanding of the theory behind CW. Reading Polson & Lewis (1990) did
eliminate his fear about using the technique. However, the last note A1 wrote while reading this paper
led back to an earlier question: is the Builder a walk-up-and-use system? A1 decided, or at least noted,
that he wanted to check whether the basic assumptions of CE+ would apply to a more complex
interface. Later in his reading process he felt confident about applying CW to the Builder, as he noted
“’ The underlying assumption is that the user's selection of actions is largely guided by the interface’
[Wharton et al., 1993]. This assumption holds for the [Builder], I think!”.

The theory behind CW was not the only concept that A1 attended to while reading papers on the CW
technique. He was also concerned about practical problems and pitfalls when using the technique.
While reading Wharton et al. (1992) he noted that “Filling out the forms at each step interferes with the
thread of thought when performing a task ‘naturally’”. Reading the same paper he also noted, “Because
of the focus on individual user action there is the danger of overlooking interface problems concerning
the task as a whole”.

In contrast to A1’s extensive reading, A2 read Wharton et al. (1994) and he had only four comments
that could be connected directly to a phrase in this paper. One of the difficulty notes, “p. 110: What do
they mean by ‘how the user is expected to view the task…’” referred to the quote from Wharton et al.
(1994), page 110: “What is the correct action sequence for each task and how it is described? For each
task, there must be a description of how the user is expected to view the task before learning the
interface. […]”. The three other notes, and some notes not connected to a specific page in the paper,
merely summarized important aspects of the technique. Overall, it seems that A2 had no serious
difficulties reading and understanding Wharton et al. (1994). He wrote no notes that identified major
difficulties.

As would be expected neither of the analysts detected problems while reading CW papers. In general
A1 was very informed about possible obstacles when using CW. Many insights and difficulties were
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recorded over an extended period of time from multiple sources, and when A1 felt insecure about a
certain aspect of the technique, he located more literature that could help him better understand these
aspects. A2, on the other hand, read only one paper (as requested) and wrote down only a little
information about his learning process and the use of the CW technique. Though the number of papers
A1 read and the number of notes he wrote strongly suggest that A1 was more introspective than A2
with respect to using the CW, this does not necessarily explain the large difference in the number of
problems detected by the two analysts. By more closely analyzing the actual CW evaluation process, we
can determine which aspects account for these differences.

5.3 Defining the user and choosing task scenarios
Defining the user and choosing task scenarios were complex tasks that seem to have affected end
outcomes. In the first sub-section we will address how the analysts defined their fictive user, why they
defined them as they did, and what impact this user definition might have had on the outcome of the
evaluation. In the second sub-section we will describe the analysts’ strategies for choosing task
scenarios. Then we will discuss why they had different strategies. Finally we will suggest what impact
user definition and task selection might have on the outcome of the evaluation.

5.3.1 How did the analysts define users, why, and what was the impact?
Wharton et al. (1994) offer two ways in which the user can be described as a part of the preparation
phase – either in a general description like “people who use existing ATM machines” or more
specifically like “Macintosh users who have worked with MacPaint” (p. 109). In his final report A1
made specific assumptions about users and context of use: “[…] we assumed that the users are
experienced Macintosh users, but don’t have prior experience with the [Builder]”.

Ten hours into the evaluation process A2 wrote an e-mail to the second author containing the following
phrase: “Identification of users: Faculty, lecturers with knowledge of the Macintosh interface”. Four
hours later he wrote the following insight note while preparing his first walkthrough: “I’m not going to
catalog information about user classes unless something comes up. I think that there is one class of
user identified and that’s enough”.

It is quite clear that neither of the analysts spent much time defining the user. A1 was concerned with
the fictive user in relation to creating the task scenarios but he wrote nothing about defining or
identifying users in his paper diary. A2 made one note about defining a user, and in his final report he
mentioned user definition as one of several inputs to the walkthrough, but without amplifying this in
relation to the Builder. Overall, there were no surprises in the quite general way that the analysts
defined their fictive users, as both analysts followed the suggestions and examples from Wharton et al.
(1993, 1994), keeping the user definitions short and general.

The necessity of identifying the user in preparation for completing a CW is closely related to the
walkthrough process. For each action in an action sequence four questions are asked and answered
based on the definition of the fictive user. That is, if our two analysts had identified different fictive
users as the basis for their evaluations, the outcomes would certainly have differed. This is similar to
when a think-aloud study with a novice user provides results unlike those that would result from a
think-aloud study conducted with an expert user. This, however, does not imply that two evaluators
defining the same fictive user will end up with the same problem list.
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The dilemma, we believe, lies partly in the nature of the identification of the fictive user. If the
description of the fictive user is both short and general, the use of this as input to the walkthrough
dramatically amplifies the evaluator effect for at least two reasons: lack of guidance in answering the
four questions reliably and anchoring the answers to the evaluator’s own experience. This anchoring
hypothesis is also suggested as one reason for the individual differences among CW novice evaluators
in Hertzum & Jacobsen (1999). In discussing the walkthrough process (see section 5.5.3) we will reveal
evidence from the database concerning the guidance and anchoring hypotheses to investigate if
evaluators’ outcomes were affected either by degree of guidance or self-anchoring.

In the next three sub-sections we will focus on another input to a CW, namely the selection of task
scenarios, the method and rationale for selecting task scenarios, and the impact of this stage of the CW
on the problems predicted.

5.3.2 How did the analysts choose task scenarios?
The example multi-media document given to the analysts contained the content of a sample volume: the
text, graphics, table of contents, glossary items, and hyperlinks that would be found in such a volume.
This document was A1’s main source for generating task scenarios, although he was also inspired by
the function descriptions in the specification document. He created three scenarios in an iterative
manner. First he constructed a short scenario that created three pages of the example multi-media
document (which included text, figures, and animations as well as adding several glossary items). After
setting up correct action sequences and walking through this scenario and feeling confident of this
method of choosing a scenario, he constructed a second scenario – this time covering 12 pages of the
example multi-media document. The second task scenario purposely included actions that were not
required in the action sequence to simply create the 12 pages of the example multi-media document. He
chose to resize the glossary pane, edit a glossary item, cancel a sequence where he began setting up a
cross reference, resize and move a frame, change the hierarchy of Table of Contents items, and find
pages through a bookmark function. The 12 pages of the example multi-media document could have
been duplicated without including these actions but A1, guided by the specification document, included
them. After the second scenario was transformed into a correct action sequence and was walked
through, he constructed yet another scenario where he included recovery-from-error and undo
situations, noting that: “Since, during walkthrough, the evaluator always ‘stays on track’ as guided by
the correct sequence of actions, there is no way to evaluate how much an error-recovery is supported
through the interface”. Thus, the third scenario was a method to get around one of CW’s deficits, as
CW does not prescribe ways to investigate recovery from error situations.

A2, with a very different perspective on creating task scenarios, based his construction of scenarios
solely on the user interface specification document – a typical document describing the Builder function
by function. This decision was captured in an e-mail to the second author 10 hours into the evaluation
process: “I used the Volume View Specification doc to generate a list of actions that it says a user will
want to perform while using the Builder. They say (Wharton et al., 1994, p. 110) that task selection can
be made based on requirements analysis as one source. I think the UI design doc can be used to extract
requirements as it stands”. Hence, A2 created 11 sample tasks (see Table 8), each covering a specific
feature or a special aspect of a feature in the system that could be tracked to a single section in the
Builder specification.



Jacobsen & John                                                                                                                                                                p. 21

A2’s task scenario title Portion of the Builder specification corresponding to A2’s task scenarios
Heading Page

Page through an existing volume Buttons 20
Create a new volume Creating a New Volume 22
Create a new page Adding and Removing Volume Pages 26
Add a text frame to a page Creating and Editing Text Frames 26
Reposition a frame Moving a Frame 26
Add a glossary entry to a text Adding Glossary Entries 24
Add a cross reference to a text Setting Up a Cross Reference 31
Delete a cross reference Deleting a Cross Reference 26
Add a Table of Contents entry Adding Table of Contents Entries 36
Lock a frame Locking a Frame 36
Unlock a frame Unlocking a Frame 36

Table 8. A2’s task scenario titles and the corresponding portion of the Builder specification.

Two aspects of constructing task scenarios differ between the analysts. They chose two different
documents as the basis for constructing their task scenarios and they described their task scenarios
differently both in terms of grain size and system coverage. The difference in grain size of task
scenarios (e.g. A1’s “Create p. 24-35 in multi-media example document” and A2’s “Lock a frame”) is
quite obvious. The former scenario describes an extensive work process, which later in the evaluation
was transformed into 119 actions, while the latter scenario can be performed with three mouse clicks.
As the grain size of the task scenarios was so different the number of task scenarios for the two analysts
cannot be directly compared. Instead we categorized the coverage of the task scenarios by annotating
any given action with a feature and an aspect of feature (see Table 9).

A feature is a limited part of the Builder: an aspect of a feature is a way of making use of that particular
feature. For example, the glossary feature has the following feature aspects: add glossary, delete
glossary, edit glossary definition, scroll through glossary pane, find glossary item through text frame,
change size of glossary pane. A total of 19 features and 74 aspects of features were identified through
the specification document (see Table 9).

Analyzing the coverage of the task scenarios through our categorization we found that A1 touched on
16 different features (i.e. covered at least one aspect of that feature) and A2 touched on 9 different
features. Similar results are found when aspects of features are compared, as A1 covered 41, while A2
only covered 17 feature aspects. Thus, A1 covered more than half of the feature aspects that could be
covered in the interface, while A2 covered less than one quarter of the feature aspects of the interface.

5.3.3 Why the analysts choose task scenarios as they did
While A1 was aware of the importance of creating appropriate task scenarios as part of the CW
evaluation, A2 did not seem to worry much about this issue. In fact A2 did not write a single note about
task scenarios, while A1 wrote 14 notes about them (as shown Table 10). In those notes A1 mentioned
some important aspects of creating task scenarios. He wanted to talk to end users, students and
instructors to investigate which scenarios to evaluate. Although he had assumed he might find explicit
guidelines about how to construct scenarios by reading Human-Computer Interaction Scenarios as a
Design Representation (Carrol & Rosson, 1989), he did not. Moreover, he worried that he had no
access to an expert in walkthrough techniques who could help him set up an appropriate task scenario
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Feature Aspect of feature A1 A2 Feature Aspect of feature A1 A2
table of contents add TOC

delete TOC
change location laterally
renaming TOC
change size of TOC pane

x

x

x general frame create frame
delete frame
select frame
move frame
resize frame

x

x
x
x

x

x
x

simple navigation page up button
page down button
go back button
go to page
tab through volume
scroll bar action
to other parts of system
to other application

x
x
x
x

x
x
x

x
x

x

text frame select text frame
select text in frame
enter in text
cut text
copy text
paste text
format text

x
x
x
x

x
x

x

glossary add new glossary item
add second instance of glossary item
delete glossary item
edit glossary definition
scroll through glossary pane
find glossary item through text frame
change size of glossary pane

x
x
x

x

x code frame select code frame
select code in frame
enter in code
cut code
copy code
paste code

x
x

bookmark add bookmark
delete bookmark
use bookmark to navigate

x

x

picture frames select pict frame
copy pict
paste pict

x
x
x

save simple save
save as
save a copy in

x movie frames select movie frame
copy movie
paste movie x

cross reference add X-ref
delete X-ref
change X-ref destination
navigate via X-ref

x
x
x

x
x

other frames use drawing frame
use call stack frame
use runtime controls
use I/O frame

x

volume page add page
delete page
customizing page size

x
x

x runtime controls create control
delete control
select control
change frame type of control

x

help use balloon help
use help system

lock/unlock lock a frame
unlock a frame

x
x

undo undo x printing print volume
volume create volume

open volume
close volume

x
x
x

x

Table 9. To measure the coverage of the analysts’ task scenarios we identified 19 features and 74 feature aspects
based on the specification document. A1 touched on 16 features and covered 41 feature aspects, while A2 touched on
9 features and covered 17 feature aspects.

as described in Wharton et al. (1992). From reading this paper he was aware of the drawback that
realistic task scenarios often produces long action sequences. Before initiating the preparation phase
(i.e. defining user and selecting task scenarios) he concluded that one of his main problems was likely
to be setting up appropriate task scenarios.

Another reflection documented in the notes is A1’s awareness of the many functions not tested even
when duplicating 15 pages from the example multi-media document. Thirty hours into the process he
noted: “Even in this largely augmented version of a task scenario, there are no bookmarks, animations,
slide/radio buttons => have to be artificially introduced into the task scenario for the walkthrough?”.
As noted earlier A1 actually decided to introduce these functions into his second task scenario.
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Hours
into the
process

Note type Note Activity Reading

4 insight Realized difference between usability inspection (Heuristic Evaluation) and
Walkthrough methods are the problem scenarios

meeting Nothing

5 difficulty Realize that to set up good scenarios for a walkthrough technique I need to be able to
talk to both end-users, students and instructors; best those who have used the system
previously

reading for
’what-it-is’

Gallagher & Meter
(1993)

10 insight Cognitive walkthrough: usability heuristics (criteria) embodied in some cognitive
theory; task scenario; step through task scenario and apply criteria/heuristics

reading for
’what-it-is’

Mack & Nielsen
(1993)

10 difficulty How to come up with realistic task scenarios for a cognitive walkthrough. -> must talk
to users of the Volume View, students and instructors

reading for
’how-to-do’

Mack & Nielsen
(1993)

11 unmarked Seems to be promising - but turns out that the main idea is to use scenarios instead of
usability heuristics. I expected some methodology on how to design good scenarios

reading for
’what-it-is’

Carroll & Rosson
(1989)

12 other Although we are supposed to focus on the Volume View as a tool for the
builder/explorer, the cognitive walkthrough may require a scenario, which includes the
Volume View document or both, may not be separable in the scenario

meeting Nothing

14 insight Authors claim that the walkthrough takes just 1 hour/ task/ interface - this number can
definitely include neither learning the technique nor the time to set up the scenarios
nor the time to become familiar with the interface

reading for
’what-it-is’

Lewis et al. (1990)

14 difficulty The task (scenarios) were selected by someone who was expert in walkthroughs - how
should I get access to someone like that?

reading for
’what-it-is’

Wharton et al. (1992)

14 difficulty Task selection stated as crucial - with complex interface a tradeoff between realistic
task scenario and length of walkthrough is admitted.

reading for
’what-it-is’

Wharton et al. (1992)

14 difficulty My main problems will be: appropriate task selection reading for
’what-it-is’

Wharton et al. (1992)

19 insight The "doctrine" is what I need to extract from the Volume View design documents. The
task I need to construct from the Drosophilia screen dumps. Overall, a poor paper, too!

reading for
’what-it-is’

Bell et al. (1991)

30 difficulty Even in this largely augmented version of a task scenario, there are no bookmarks,
animations, slide/radio buttons => have to be artificially introduced into the task
scenario for the walkthrough?

analysis Nothing

33 difficulty Question whether I should augment our task scenario by the missing functionality of
the interface

meeting Nothing

33 insight I need to be aware of a couple of important areas in determining future task scenarios
a) different type of frames (PICT, text, code, movie adopts appropriate type
automatically, but drawing, call stacks, input/output, runtime controls not) b) explore
redesigning and recovery in some task scenarios, too c) what happens if certain limits
are violated, e.g. # PICT / drawing/ io frames on one page -> dialog box pops?

meeting Nothing

Table 10. A1’s notes about task scenarios in chronological order. The notes were made throughout the process with
the first note made four hours after he began the process, and the last note made 14 hours before he finished his
evaluation.

Why did the analysts differ so significantly in their creation of task scenarios? The difference in reading
process seems to be one major explanatory factor. Many of A1’s insights and difficulty notes relating to
task scenarios were based on several papers he had read in the initial phase of the process (see Table
10). Both analysts read Wharton et al. (1993, 1994)4, but neither recorded any diary notes about task
scenarios while reading this paper. This evidence suggests that A1 paid great attention to task scenarios
since he read papers other than Wharton et al. (1993). A2, on the other hand, only read Wharton et al.
(1994) and thus could not have seen the importance of this aspect of the CW technique. Not only did
the analysts have different levels of awareness about the creation of task scenarios, but also their
reading processes gave the analysts different potential sources from which to create those scenarios. A1
did not explicitly note why he used the multimedia document as the primary source from which to
construct task scenarios, but two of three task scenarios were taken directly from this document. A2,

                                                
4 The explanation of how to choose task scenarios was identical in both versions of this paper.
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however, was explicitly guided by one of the suggestions from Wharton et al. (1994) in that he based
his evaluation on parts of the specification document.

The suggestion from A1 about only reading Wharton et al. (1994) rather than reading more papers with
a variety of perspectives seems to have had at least two drawbacks in relation to the creation of task
scenarios. Wharton et al. (1993, 1994) address task scenarios as one of the inputs to a CW, and though
much general advice is given in this short section they fail to clarify for novice analysts the importance
of task scenario selection. A1 can easily recognize the importance of task scenarios after reading more
papers. A2 however had difficulty prioritizing the suggestions in Wharton et al. (1994), which led to
A2’s failure to adequately focus on task scenarios. The other drawback to reading only Wharton et al.
(1994) for information about creating task scenarios was that A2 focused on tasks rather than task
scenarios and found it reasonable to use the specification document as the only source from which to
construct his task scenarios5.

5.3.4 What is the impact on task scenario selection?
Are there any connections between the numbers of problems detected by the two analysts and the
number of features and feature aspects covered by their task scenarios? Given a rather crude,
quantitative measure for their task scenario coverage we know that A1 covered 41 out of 74 aspects of
features described in the specification document, while A2 only covered 17 out of 74 aspects of
features. A1 detected 26 problems based on the task scenarios (i.e. while walking through action
sequences) for a rate of 0.63 problems detected per aspect of feature covered. A2 only detected 4
problems while walking through action sequences for a rate of 0.24 problems detected per aspect of
feature covered. Extrapolating, if both analysts had covered all features described in the specification
document, A1 would have detected 45 problems and A2 would have detected 17 problems. Hence, the
choice of task was not the only determinant of number of problems detected.

We can look at this another way by examining the problems detected in those aspects of features the
analysts had in common. In the 14 aspects of features that both analysts covered, A1 detected 8
problems, while A2 detected 4 problems. Surprisingly, only one of these problems was detected by both
analysts, even though both analysts set up task scenarios covering precisely the same 14 aspects of
features (these differences in problem detection for the same feature aspects will be further discussed in
section 5.4.3 and section 5.5.3). In other words, if we only consider those problems detected in the
actual walkthroughs A1 would not have had the potential to detect A2’s problems by extending his task
scenario list, since the 4 problems detected by A2 were related to feature aspects already covered by
A1. On the other hand, if A2 had extended his task scenarios to cover all feature aspects evaluated by
A1, A2 might have detected the remaining 18 problems found by A1.

In summary, the differences in task scenarios between the two analysts explains only some of the
differences in the outcome of the evaluation. We have to more closely examine the development of
both sets of action sequences and walkthroughs to further explain outcome differences, particularly for
those feature aspects both analysts evaluated.

                                                
5 In the latest guide to CW Lewis & Wharton (1997) have devoted a short section (28 lines) to clarifying the importance of
choosing realistic task scenarios (p. 721).
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5.4 Transforming a task scenario to an action sequence
After defining the user and setting up appropriate task scenarios the preparation phase is concluded by
transforming the high-level task scenario to a concrete action sequence annotated with expected system
feedback for each action. In the following we will analyze how the two analysts transformed their task
scenarios into action sequences, why they did this as they did, and what impact this process had on their
evaluation outcomes.

5.4.1 How did the analysts transform scenarios to action sequences?
A1 expanded his three task scenarios into three action sequences consisting of 46 actions, 119 actions,
and 25 actions respectively. A2 expanded his 11 tasks to a total of 49 actions with between 3 and 9
actions for each task. According to Wharton et al. (1993, 1994), “These actions may be simple
movements, such as ‘Press the RETURN key’ or ‘Move cursor to File menu’. Or, they may be
sequences of several simple actions that a typical user could execute as a block such as, ‘login to the
system’ for experienced UNIX user, or ‘Select Save from File menu’ for experienced Macintosh users”.
We counted the number of movements in A1’s and A2’s actions, defining a movement for example as
one mouse cursor move, one down click on the mouse, one up click on the mouse, one chunk of short
text entered in by keyboard, etc. Hence, copying into the clipboard an item already selected on a
Macintosh system comprised 4 simple movements: move mouse cursor to File menu, down click File
menu, move mouse cursor to Copy item in pull down menu, and release mouse button. Table 11 shows
that A1 generally made use of actions comprising more simple movements (an average of 4.5 simple
movements per action) than A2 (an average of 2.4 simple movements per action).

A1 A2
Less than 5 simple movements per action 42% 100%
Between 5 and 9 simple movements per action 56% 0%
10 or more simple movements per action 2% 0%
Total 100% 100%

Table 11. A count of simple movements for all actions revealed that A1 generally defined actions at a higher level of
abstraction than did A2. While A1 typically defined a menu selection as one action A2 typically divided a menu
selection into two actions (e.g. (a) click File menu and hold down mouse button (b) select Copy and release mouse
button).

To avoid reiterations during the construction of action sequences and the later walkthrough A1 created
two macros for small sequences of repeated actions. The first macro was created and executed in the
first task scenario; the other macro was created and executed in the second task scenario. The first
macro covered three actions that were sufficient for adding a glossary item to a glossary pane and
writing a definition and explanation for the item; this macro was executed 15 times. The second macro
covered six actions that were sufficient to add a frame and copy/paste a picture or text from another
application into the newly created frame; this macro was executed 12 times. By using the macros A1
avoided having to write down and walk through 117 almost identical actions.

According to Wharton et al. (1993, 1994) each action should be annotated with the expected system
feedback before walking through the action sequence. A1 chose to either draw full screen shots or parts
of screen shots as the expected system feedback for the first task scenario. In the second and third task
scenarios he simply wrote down the expected system feedback textually (e.g. “Bookmark appears” or
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“Cursor changes to ‘X’”). However, A1 did not record any system feedback for 72 actions. Forty-six of
the 72 actions that had no system feedback were duplicated actions from earlier parts of the action
sequence, for which feedback had already been recorded. Of the 26 remaining actions with no recorded
feedback, 7 were duplicates, so 19 unique actions were left with no feedback recorded at all. A2 wrote
prose descriptions of the feedback. Only 4 of A2’s actions were not supplemented with such
descriptions.

The transformation of a task scenario to an action sequence is ambiguous in the sense that there are
often several correct action sequences. Optimally, all correct action sequences should be tested, but this
is too cumbersome in practice. On only one occasion did either of our analysts construct alternative
action sequences (A1 looked at navigating through a volume both by using the arrow buttons and by
using the GoTo Page menu item).

Table 12 shows how the analysts’ action sequences differed for adding a glossary entry. A2 initiated his
action sequence by clicking the pointer tool button in the tool palette. This action was not part of A1’s
action sequence because adding the glossary entry was part of a larger task for which the pointer tool
had already been selected. Thus, although their sequences differed, both A1 and A2 recorded correct
action sequences. In the second example, Table 13, the sub-task was to link two frames with a cross
reference. Again A1 did not have to select the pointer tool button. However, his task scenario caused
him to scroll a page, as the two frames were located on two different pages in his task scenario. In
contrast to A2, A1 combined two simple movements into one action (“Click on animation frame” and
“Click on Xref again” in his last step in the action sequence).

A1 A2 Investigators’ explanation
Action System feedback Action System feedback

Click on the pointer
Tool icon

The pointer Tool icon
darkens and the other
tool icons are light

The pointer tool button with icon “Ð” was
found in the tool palette. This action
ensured that a word could be selected.

Select “oogenesis” Select some text (a
word or phrase)

The text is highlighted A1 specified the specific text to be
selected, while A2 only described the type
of item to be selected.

Click on “Gloss“ button Click on the glossary
icon

The selected text
appears underlined in
the glossary window
with an insertion point
underneath

The glossary button with the text “Gloss”
was found in the tool palette.

Type in text for
“oogenesis“

Type the definition of
the text for the glossary

The text appears at the
insertion point

At the insertion point in the glossary pane
the user could specify the glossary
definition.

Table 12. An example of the analysts’ action sequences and system feedback for a sub-task they had in common,
namely adding a glossary item to a glossary pane. A1 did not need to click on the pointer tool button in order to
select text, as previous actions had automatically activated the correct tool button. Apart from the wording of the
actions and the fact that A1 drew diagrams to document the system feedback, the sub-tasks for the two analysts are
similar.

Glos-
sary

I nt ro-
duct ion

oogenesis

Droso…
melan...
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A1 A2 Investigators’ explanation
Action System feedback Action System feedback

Click on the pointer
Tool icon

The pointer Tool icon
darkens and the other
tool icons are light

The pointer tool button with icon “Ð” was
found in the tool palette. This action
ensured that a frame could be selected.

Select "Figure 17" [Left blank] Select some text; a
word or phrase

The text is highlighted A1 specified the specific text to be
selected, while A2 only described the type
of item to be selected.

Click on Xref Dialog box Fig. 24,
p.28

Click on the Cross
Reference icon

A dialog appears telling
the user to select the
destination and then
click the Cross
Reference icon again

The Cross Reference button with icon “X
Refs” was found in the tool palette. A
dialog box appeared with the text “Please
select the destination of this cross
reference, then click the Cross Reference
tool again. The destination must be a
frame” and two buttons OK and Cancel.
A1 pointed to the specification of the
dialog box; A2 described it.

Click OK Cursor changes to X Click the OK button The dialog goes away.
The Cross Reference
icon flashes. The mouse
cursor changes to an X

The OK button on the dialog box was
activated.

Page forward p. 27 appears According to A1’s task scenario he had to
make a reference to a frame on p. 27, while
A2 chose to make a reference to a frame on
the same page, hence correctly omitting
flipping a page.

Click on animation
frame. Click on Xref
again

[Left blank] Select a frame as the
Cross Reference
destination

"Handles" appears on
the frame

A1 combined two atomic actions into one
action, while A2 had two actions for the
two movements: Select a frame…

Click on the Cross
Reference icon

The Cross Reference
icon stops flashing. The
mouse cursor returns to
a pointer. The
destination frame is
marked with a "tag" in
the upper left corner.
The source of the
reference (text) will
appear in bold type

…and click on the Cross Reference button

Table 13. Another example of the analysts’ action sequences and system feedback for a sub-task they had in common,
here linking two frames as cross references. A1 did not need to click on the pointer tool button in order to select text,
as previous actions had automatically activated the correct tool button. As the two frames to be linked appeared on
two different pages in A1’s task scenario he had to scroll pages in the middle of selecting frames.

5.4.2 Why did the analysts transform scenarios into action sequences as they did?
The process of transforming a task scenario into an action sequence concerned A1 a great deal. While
reading Lewis et al. (1990) he asked himself “[…] how likely is it that an actual user deviates from the
direct path?”. This question is followed by more specific questions about who should specify the
correct action sequence. For instance, one early note reads: “The sequence(s) of actions which
successfully perform a scenario are to be specified by the designer”. This reads very much like a
sentence in Lewis et al. (1990), p. 238: “Next, the sequence of user actions that will successfully
perform a given task is specified by the designer”, which A1 in fact read while writing his own note.
Much later in the process A1 read Wharton et al. (1993) and wrote another note related both to this
paper and to the question of specifying action sequences: “So they claim that the focus of the
walkthrough is on learning by exploration. But how can this be captured if the sequence of actions is to
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be determined by the developer? - Therefore, my idea to have the evaluator determine the sequences of
actions seems better - also confirmed in personal communications with C. Wharton”. However, two
more notes recorded one hour and three hours later reveal his worry about specifying the action
sequences correctly. He wrote: “[…] before I do the walkthrough I must have the sequence of actions
validated by the designer and the corresponding feedback of the system, otherwise my evaluation will
depend on how well I understood the interface out of this incomplete spec” and “Realize need that
designer checks both my action sequence and the intuitive idea I have about the interface’s feedback”.
A1 finally decided to construct his action sequences on his own.

After the problem of who should transform task scenarios into action sequences had been resolved,
another problem emerged. Before A1 decided to use CW as his technique of choice, he wrote this note:
“Realize that many things are not documented in the specification and it will be hard to get a deep
understanding of the system”. This note was then followed by 27 difficulty notes with specific
questions on how the system worked in various situations. He noted for example: “Couldn’t figure out
how to start the Volume with an empty volume, in order to create task A (Spec p. 4)”, “ Was unsure
what the feedback is when the FRAME button is clicked (Spec p. 18, "Frames Tool")”, and “What
exactly happens if builder wants to save the just created V.V. What's the difference between ‘Save As’
and ‘Save a Copy in’ (Spec p. 4)”. A1 met with one of the designers of the Builder twice in his
evaluation process, and many of the 27 questions were answered in these meetings. His many notes
show that transforming a high-level task scenario into action sequences based on a written specification
document is quite complicated.

A1’s notes also explain his decision to construct macros as a way of handling repetitive actions.
Twenty-five hours into the process A1 noted: “How to handle frequently recurring sequences of
actions? Introduce MACRO’s for’em?”. At first blush this seems to be a good extension of the CW
described in Wharton et al. (1994). However, looking closely at the small sequences of actions
embedded in the macros, it strikes us that what A1 finds tedious and tiresome might also be what actual
users will find tedious and tiresome. Why, for example, is it necessary to create a frame every time any
object is to be copied into a volume in the Builder? Today frame-based applications are rare, perhaps
because frame-based applications introduce non-productive actions (in our case creation of a dummy
frame for entering in text, figures, animations, movies, etc. in a volume). It seems that when a CW
analyst finds actions repetitive in a real-life task scenario it is also likely that it is repetitive (and
typically non-productive) for the user. In this respect identifying a macro in order to save the CW
analyst’s time might instead be interpreted as detecting a potential usability problem.

A2 wrote fewer notes than A1 during the transformation phase, so we have fewer insights into why he
transformed his action sequences as he did. First he wrote two notes summarizing the purpose of the
task scenarios, including one in the first hour of the process (“Critical features: provide links between
user task description and the correct action, provide feedback indicating the previous actions advanced
progress”), and another written seven hours into the process with reference to Wharton et al. (1994)
(“OK. Page 110 describes the action sequence part. On page 111 they refer to ‘actions in the solution
path’ . This must be the action sequence for a task”). A2 also decided who should create the action
sequences: “From the experience I’ve had with [Software Engineering] techniques I think that the
action sequences are better if they are assembled by someone besides the designer. Designers tend to
gloss over undocumented details because they have an intimate view of their objectives. I think that
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action sequences will better reflect the documents they are based on if the assembly is mechanical,
more objective”. A2 had no specific questions about how the interface worked in certain situations, or
at least wrote no notes about this issue.

Clearly, their choice of task influenced their action sequences, as shown in the example tables above.
A1’s tasks were large and sub-tasks flowed from one to the other, adding specific context to their intial
conditions (e.g., what tool was selected, how many pages away a target was). A2’s tasks were small and
he usually began with a tool selection.

The difference in grain size of actions may be attributed to Wharton et al. (1993,1994), whose example
actions included some actions consisting of a few simple movements (like A2 used) and others
comprised of a series of simple movements (like A1 used). Wharton et al. (1994, p. 110) offer the
following rationale for including actions of different granularity: “The decision as to what level of
action granularity is appropriate depends primarily on the level of expertise of the expected users”.
Although A1 and A2 both defined their expected users as experienced Mac users, evidently their
interpretations of “experienced” influenced their choice of action granularity differently.

5.4.3 What is the impact of the transformation phase?
From section 5.3.2 we know that the analysts’ task scenarios covered different interface features. In
order to analyze the impact of the transformation phase in this section we will examine only those
problems detected by A1 and A2 that were associated with walking through the 14 aspects of features
they both covered. (In A1’s case, this includes 8 problems; in A2’s case, 4). The question is whether
differences in the number and type of problems can be related to differences in specifying correct action
sequences for the same aspects of features.

Table 14 shows the seven feature aspects that both analysts identified and that led to at least one
problem detection. Both A1 and A2’s action sequences for the seven feature aspects are revealed in the
table, where an action in bold indicates both the point at which the analyst reported a failure story as
well as what the problem was.

Analyzing the content of Table 14 we find that the two analysts transformed six of the seven aspects of
features into equivalent action sequences (“add volume page”, “add new glossary item”, “add cross
reference”, “add table of contents”, “simple navigation”, and “delete cross reference”). Equivalent
action sequences are defined as the same actions in the same order, though they are neither necessarily
the same number of simple actions nor necessarily using the exact same words. Of the six aspects of
features that the analysts specified in a similar manner, only one of the detected problems was the same
(similar problem descriptions for aspect “add cross reference” in Table 14 are shadowed). In three cases
(“add volume page”, “add new glossary item”, and “add cross reference”) both analysts detected
problems although different problems; in three cases (“add table of contents”, “simple navigation”, and
“delete cross reference”), only A1 reported problems. One of the seven common feature aspects was
transformed into different action sequences by the two analysts (“create volume”). A2 actually set up a
wrong action sequence for this feature aspect, as his action sequence made him create a new
environment rather than a new volume (a volume is created within an environment, which might in fact
contain several volumes). Hence, A1’s reported problem on creating a volume might have been
detected by A2 had he set up a correct action sequence for this feature aspect.
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Aspect of
feature

A1 A2

Actions Problem(s) detected Actions Problem(s) detected
Add volume
page

1. Select Edit - Add
Volume Page

Add Volume Page is misplaced
under the "Edit" menu

1. Select a frame
2. Pull down the Edit menu
3. Highlight the "Add

Volume Page" menu item
and release the mouse
button

To create a new page you need
to create a frame first, select it
and then create the page. Why
can’t the user create an empty
page

Add new
glossary item

1. Select "Drosophila
Melongaster"

2. Click on "Gloss" button
3. Type in text for

"Drosophila Melongaster"

Glossary button "Gloss" doesn’t
support label-following by user

1. Select some text; a word
or phrase

2. Click on the glossary icon
3. Type the definition of

the text for the glossary

No explicitly feedback is given
after adding a glossary entry

Add Cross
Reference

1. Select "Fig. 17"
2. Press Xref
3. OK
4. Find - Goto page 29
5. Create Fig. 18
6. Click on Xref

1. Select "Figure 17"
2. Click on Xref
3. Click OK
4. Page forward
5. Click on animation

frame b) Click on Xref
again

In the Specification Document
the tag symbol is located on the
same spot as where the
lock/unlock symbol is said to
belong

Necessity to click on Xref
button a second time, after
having selected the destination,
will create problems

1. Select some text; a word
or phrase

2. Click on the Cross
Reference icon

3. Click the OK button
4. Select a frame as the

cross reference
destination

5. Click on the Cross
Reference icon

The user is left to figure out
what to do after clicking the
Cross Reference button. A
novice user will not know to
click on a frame next.

There’s an extra step to setting a
cross reference: you have to
click the cross - reference
button again. This seems poor.
The icon gives some feedback
but it’s not obvious. See #9
about a dialog with instructions

Add Table of
Contents

1. Select "Introduction"
2. Click on TOC Button

User will have difficulties
associating TOC with Table of
Contents - no label following is
possible

1. Select a text frame
2. Click on the TOC icon

(No problem detection)

Simple
navigation –
go to page

1. Find - Goto Page 1 User will not find the most
efficient command "GoTo
page" under the right menu

1. Pull down the File Menu
2. Highlight the "Go To

Page..." menu item and
release the mouse button

3. Enter a page number
which is within the valid
range of page numbers

(No problem detection)

Delete cross
references

1. Select "Fig. 17"
2. Press Xref Button
3. Click on "Delete"

Deleting Xref: Mac experience
would lead to assume that Edit
- Delete performs this action,
but not Select - XRef !

1. Select a cross reference
2. Click on the Cross

Reference icon
3. Click the delete button

(No problem detection)

Create volume 1. Click on Drosophila Icon
2. Choose "Show Volume"

from the "Windows"
menu

Starting a volume in builder
mode: Necessity to choose
Windows - Show Volume to get
into builder mode with the
current volume, contradicts
Mac experience where you get
into the correct application just
by clicking on a file created by
this application

1. Pull down the File menu
2. Highlight the "New"

menu item
3. Select a size with the

mouse, or leave the
default selected

4. Click the OK button with
the mouse or press
"Enter"

(No problem detection)

Table 14. Aspects of features that the two analysts had in common and that led to a problem detection by at least one
of the analysts. For most aspects of the features the analysts transformed their task scenarios into equivalent action
sequences, but in one case A1 set up a wrong action sequence (“create volume”). Bold actions triggered the analysts
to answer “no” to at least one of the four questions leading to a problem detection. Of the six aspects of features that
the analysts specified in a similar manner, only one of the detected problems was the same (shadowed).
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From this analysis we have sufficient evidence to conclude that for these analysts the transformation
phase from setting up an action sequence to specifying an appropriate and correct action sequence had
no systematic impact on problem detection. For the feature aspects that they had in common, most were
similarly transformed into action sequences. Action granularity did not seem to matter because A1
seemed to simply delve into the details of his simple-movement sequences to identify problems.
Interestingly, only one of the equivalent action sequences led to the detection of the same problem by
both analysts (“add cross reference”). Their agreement about how to set up action sequences and their
lack of agreement about reported problems for similar action sequences suggests that the differences
between the two analysts cannot be attributed to problems in the transformation phase.

5.5 Walking through the action sequences
According to Wharton et al. (1994) it is advisable to imagine a walkthrough of each action in an action
sequence by answering four questions:

1. Will the user try to achieve the right effect?
2. Will the user notice that the correct action is available?
3. Will the user associate the correct action with the effect trying to be achieved?
4. If the correct action is performed, will the user see that progress is being made toward solution of the task?

The questions are said to be “loose guidelines” (Wharton et al., p. 112) to support the inspection of the
interface. For each question the analyst should come up with a credible story of either success or
failure. If, for a given action, the analyst comes up with success stories for all four questions, these
judgments imply no problem detection. If the analyst comes up with a failure story for any of the
questions this judgment implies that the analyst has detected a potential problem.

In this section we will 1) reveal how the analysts walked through their action sequences, 2) explain why
they walked through their action sequences as they did, and 3) discuss the impact of this phase on the
evaluation outcome.

5.5.1 How did the analysts walk through their action sequences?

Rather than using the preexisting set of four questions suggested by Wharton et al. (1994) as loose
guidelines, A1 created the following checklist:

1. What effect to achieve (part of original task/experience using the system/system prompted)
2. Whether an action is available (experience/device - e.g. buttons visible)
3. Whether an action is appropriate (experience/label following possible/all other actions look wrong)
4. That things are OK? (experience/recognize connection between system response and lesser goal)

The four points are almost identical to points in the section “Common Features of Success” in Wharton
et al. (1994), p. 115-116.

A1 used a clear structure for his walkthrough (see Figure 5). He had consecutively numbered his
actions and referred to these numbers in his walkthrough process. Hence, a walkthrough of a particular
action consisted of an action number followed by the question numbers (i.e. 1, 2, 3, or 4); for each
question number he briefly described (in handwriting) the success or failure story. If any of the four
questions for a given action were answered by a failure story he summarized that action with the text
“failure”; otherwise he summarized the action with the text “success”. Although this walkthrough
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pattern was the most common for A1 he used different types of shorthand notation (see below),
probably to remedy the fairly slow process of recording his walkthrough.

A1 recorded 190 actions in his three task scenarios. With four questions for each action he should have
recorded (190 x 4=) 760 success or failure stories. In fact he only recorded 206 success or failure stories
with full text. Three types of shorthand notation, however, can to some extent be considered acceptable,
recorded walkthroughs, namely 1) macros, 2) explicit references to previous walkthroughs, and 3)
implicit references to previous walkthroughs. As noted earlier A1 created macros for repeated actions
while setting up action sequences. These macros saved him time during the transformation phase
because he could refer to small sequences of consecutive actions in a single step. In the walkthrough
process he saved even more time by creating macros, as he only needed to walk through these actions
once; later in the process he simply referred to these macros as “previously walked through.” A total of
80 success or failure stories were designated as macros.

Some basic actions were repeated in his action sequences several times without being part of a macro
(for example, typing in text). A1 sometimes chose to refer to repeated actions in his walkthrough
process either explicitly, i.e. by numbering the action/walkthrough that had been repeated (which
covered 28 success or failure stories) or implicitly by writing, “previously walked through” (which
covered 117 success or failure stories). Hence, out of the 760 success or failure stories that could have
been recorded 431 (206 full text + 80 macros + 28 explicit references + 117 implicit references) were
recorded either fully or by referring to an earlier walkthrough.

For the remaining walkthroughs, A1 did one of the following: constructed stories not associated with
any specific of the four questions (5 actions = 20 stories), recorded either a “success” or “failure” but
without giving a credible story (201 stories), or did not record anything (108 stories).

Summarizing these results, roughly 60% of A1’s walkthrough process was recorded with success or
failure stories or references to previous walkthroughs, 25% was walked through with no recordings of
the story but only with words “success” or “failure”, and 15% was not recorded at all.

Walking through action sequences allowed A1 to identify only 26 of his 46 detected problems. Seven
problems were detected while walking through the first task scenario, 14 problems while walking
through the second task scenario, and 5 problems while walking through the third task scenario.
Compared to the number of actions in each task scenario A1 detected increasingly more problems for
each task scenario: 9%, 12%, and 20% of the actions in task scenario one, two and three received
failure stories.

The problems were not equally distributed among the four questions. Questions number 1 (user’s goal)
generated 4 problems. Question 2 (availability of action) also generated 4 problems. Question 3
(associating the action with the goal) generated the most problems, 16. Question 4 (adequate feedback)
led to 2 problems.

A2 wrote down the questions from Wharton et al. (1994), p. 112, but had difficulty remembering
examples of credible stories for each question. As a result, he decided to create what he called a cheat-
sheet – a sheet of paper with the questions and the most common features of success (Wharton et al.,
1994, pp. 115-116). In some sense A2’s walkthroughs were easier to read than A1’s (see Figure 6). In
particular, A2 used a word processing system as a tool to record his walkthroughs, while A1 used pen
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and pencil (in the next section we will discuss how the tool had an impact on the walkthrough process).
Moreover A2 not only referred to his action sequences by number, but he also copied the action
sequence name as a heading for each walkthrough. Underneath the heading (the textual action) he wrote
a success or failure story and annotated each story with his explanation, as guided by his cheat-sheet.
That is, if A2 judged an action to be successful he defended this standpoint with credible success
stories. On the contrary, when he judged an action to be a failure story, he defended this standpoint
based on his response to one of the questions. A2 listed his credible stories on bullets rather than
numbers without referring directly to any one of the four questions. However, categorizing A2’s stories
into one of the four questions was straightforward because he used success stories copied directly from
Wharton et al. (1994). Figure 6 shows an example of A2’s recording of his walkthrough of an action.

As noted earlier, A2’s 11 task scenarios were transformed into 49 actions. Asking four questions for
each action, he could have recorded 196 success or failure stories. In fact A2 only recorded 128 success
or failure stories, with the remaining 68 credible stories missing. This was because A2 did not
completely answer the sets of questions. In fact, while A2 did not miss a single action from his action
sequence, more often than not he recorded stories partly by answering one, two or three rather than all
four questions for a given action. For 10% of the actions (5 actions), the analyst recorded only one
credible story (in 4 of these 5 cases, failures were recorded). For 41% (20 actions), two credible stories
were recorded; for 25% (12 actions), three; and for 25% (12 actions), four. One striking aspect of A2’s
credible stories is that they generally are missing concrete facts regarding the action being analyzed
(e.g., A2 often recorded the following credible success story for question number 1 “User knows what
effect to achieve because it is part of their original task”). It is quite clear that A2 must have used the

Task 1, action 8:

Click on “Gloss” button

Walkthrough: task 1, action 8

1. part of the task and system experience
2. button visible
3. again big problem – only abbreviated & distort “Glossary” to

Gloss
4. item will appear in glossary pane

     =>  failure

Figure 5. An example of A1’s recording of a
walkthrough. The numbers 1-4 refer to the four
questions described in Wharton et al. (1993).

Task 6, action 3:

Click on the Glossary icon

Walkthrough: task 6, action 3

Click on the Glossary icon.

Success story:
The selected text appears underlined in the glossary
 window with an insertion point underneath

Defense of credibility:
• User knows an action is available by seeing a device (icon)
• User knows an action is appropriate by experience
• User knows what effect to achieve because it is part of their

original task
• User knows things are going OK after an action by

recognizing a connection between a system response and what
they were trying to do.

Figure 6. An example of A2’s recording of a
walkthrough. The bulleted items refer to the four
questions described in Wharton et al. (1994) in the
order 2, 3, 1, 4.
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copy and paste function when recording his walkthrough. This is supported by the fact that all 37
success stories related to question number 4 are exactly identical (see the last bulleted item in Figure 6
for the story reported for question number 4).

A2 recorded seven problems in total. Four of these problems were detected while walking through his
action sequences. Thus, A2 detected problems in 8% of the 49 actions in his 11 task scenarios. One of
the problems detected related to a failure story for question number 1 – user goal; the remaining three
problems were detected while walking through the actions required by question number 3 – user
associates action with goal.

There are several strategic differences between A1 and A2 in their walkthrough processes. First A1
used pen and pencil while A2 used a word processor. Second, A1 recorded concrete stories related to
the action in question, while A2 recorded abstract and general stories that could be used walking
through any action. Third, although both analysts recorded around two-thirds of their walkthroughs
with full stories (or references to full stories) their success and failure stories were not distributed
equally. A1 either answered all four questions for a given action or recorded no credible stories for a
given action, while A2 only answered few of the actions with all four questions leaving the remaining
actions recorded only partly. Fourth, A1 used reasonable techniques to save himself from walking
through the same actions over and over again either by referring to macros or by implicitly or explicitly
referring to previous actions walked through. A2 had very few repeated actions due to his focused,
function-by-function task scenarios and hence did not need such shorthand notation in his walkthrough
process. A2 however used copy/paste functions in recording his walkthrough, saving him from
rewriting similar credible stories. As will be discussed in section 5.5.3, these process choices clearly
affected their outcomes.

5.5.2 Why did the analysts walk through the action sequences as they did?
In the walkthrough process both analysts relied on guidelines and examples from Wharton et al. (1993,
1994). The guidelines included the use of the four questions (p. 112), but in their walkthroughs both
analysts were more guided by the section “Success and Failure Stories” (pp. 114-118) in which
Wharton et al. give examples of credible success and failure stories. While reading Wharton et al.
(1993), A1 noted, “Ah, now they introduce this concept of ‘credible and failure’ stories. - Is this to
address the problem of exploratory learning of the interface?” The notes also support A2’s use of his
so-called cheat-sheet. He noted while reading Wharton et al. (1994), “I keep flipping through the
Wharton paper to check the criteria for success & failure. I think I need to go back and recheck things.
[I have to] write a cheat-sheet with the ‘common features of success’”. Both analysts chose to
summarize Wharton et al.’s examples in a check-list or “cheat-sheet”. A1’s check-list guided him to be
specific and context dependent in his walkthrough, while A2’s cheat-sheet guided him to answer the
four questions generically. While A1’s context driven walkthrough forced him to come up with a
reasonable story specific to the situation in which the action appeared, A2’s generic walkthrough
documentation seemingly restricted him to select one of the 11 reasons offered by Wharton et al. (1994,
pp. 115-116). Thus, identical teaching materials were interpreted and subsequently used differently by
the two analysts, leading to large discrepancies in problem identification.

Neither of the analysts recorded answers to all four questions for all actions in their action sequences.
Certainly, it is clear from the CW literature that every action should have at least one success or failure
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story. However, it is unclear whether an analyst should continue a walkthrough of an action when one
of the first three questions leads to a failure story. If, for example, question number 2 leads to a failure
story the interface item related to the failure story for that action should be fixed, and hence continuing
to walk through questions 3 and 4 may seem unproductive. On the other hand one can argue that even
for the same action each question has the potential to detect completely different problems, supporting
the view that all four questions should be answered irrespective of the recording of a failure story. A1
seemed to hold the latter viewpoint because in roughly 90% of the actions where A1 recorded a failure
story he continued answering the remaining questions for that action. In fact, this procedure led to nine
actions having more than one problem report associated with them. A2 seemed to take the former
viewpoint. He only reported four failure stories in his walkthrough process, but in all four cases he
skipped over the remaining questions for that given action and instead jumped to the next action in the
action sequence.

Occasionally A1 recorded no stories at all for some task actions. He was aware that there was a
potential problem with the mechanical recording process, noting “Filling out the forms at each step
interferes with the thread of thought when performing a task ‘naturally’”. This note was written while
reading Wharton et al. (1992) and was directly quoted from that paper. A1’s failure to record success or
failure stories might be because completing the stories interfered with his natural performance of the
walkthrough. However, the data point to another explanation. First, A1’s missing walkthroughs were
not equally distributed over the action sequences, possibly indicating that A1 was tired of recording
notes or found the process tedious. There was a sharp drop-off over time in terms of completion rates.
In the first third of the action sequences for each of his three tasks, the analyst walked through the
sequences leaving few actions blank (11% on average for the first third of the three task scenarios). In
the second third of the action sequence, slightly more actions were left blank (26% on average for the
second third of the three task scenarios). In contrast, in the last third of the action sequence many more
actions were left blank (63% on average for the last third of the three task scenarios). This tendency
became even more pronounced in the last task scenario. Thus, drop-offs occurred both within
individual walkthroughs and across the series of walkthroughs; we believe A1 simply got tired of
recording stories.

A2 also wanted to find ways to improve the speed with which he could answer the questions. For
example, after creating his cheat-sheet he noted: “With the cheat-sheet I’m moving faster and the
process is more mechanical. I think that’s good. Now I can look through the criteria and make a quick
decision about the result of an action rather than a unique approach to every single result”. As
indicated by the note and as explained earlier, A2 was heavily guided by the 11 examples of reasons for
credible stories in Wharton et al. (1994). In the vast majority of cases, rather than answering a question
with words specific to the task action, A2 answered the questions with words directly copied from
Wharton et al.’s. However, for two of the four problems detected in the walkthrough of his actions he
recorded context specific failure stories; for the two other actions leading to problem reports he copied
example questions from Wharton et al. (1994), rather than answering these question with context
specific failure stories. A2 also left many questions blank as he walked through his action sequences,
but in success cases there was no clear pattern to the omissions. Though question number one
accounted for the most of the unrecorded stories (24) this number does not differ dramatically for any
of the other questions: questions number two, three and four included 17, 14, and 12 omissions
respectively. A2 may have felt confident about a given walkthrough after giving only one or two
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credible stories rather than answering all four stories, because the examples in Wharton et al. (1994),
pp. 118-122 sometimes left questions unanswered with no explanation for the omissions.

5.5.3 What was the impact of the walkthrough phase on problem detection?
From section 5.4.3 we know that setting up action sequences for identical aspects of features had no
systematic impact on differences in problem detection. Moreover, we know that despite similar action
sequences for some aspects of features the two evaluators detected different numbers and types of
problems. One question remains: what is the impact of the walkthrough phase on the outcomes?

To offer a fair comparison of the two analysts’ work regarding their walkthrough processes we have
reduced the scope of interest to those aspects of features that were transformed to equivalent action
sequences by both analysts and resulted in a problem detection for at least one of the analysts (six
action sequences). From this reduced set of actions, six problems were detected by A1 while only one
of these was detected by A2. However, A2 detected three additional problems, undetected by A1.

Looking in more detail at two examples taken from the six action sequences they had in common,
Tables 15 and 16 show actions, walkthroughs, and the problems detected by the two analysts for
identical feature aspects. Both tables depict situations in which the analysts set up equivalent action
sequences without detecting the same problems. In Table 15, A1 transformed the feature aspect “Add
volume page” into one action. A2, on the other hand, used the same simple movements to add a volume
page, but used three actions to explain the movement in contrast to A1’s single action. A1 believed that
the user would not associate the “Add Page” menu item with the menu “Edit”, so he identified this as a
credible failure story for question 3. A2 believed that the user would pull down the Edit menu because
Mac experience would suggest that goal (question 1) and the user would see the menu (question 2), but
he did not record a story for question 3 (or question 4 – as described earlier probably because he by
default skipped the remaining questions for an action after recording a failure story). Hence, A2 did not
detect this problem.

On the other hand, with the problem that A2 detected – that a user would not know to select a frame
before adding a volume page – A1 and A2 seemed to have a difference of opinion about what the user
would want to do. A2 detected this problem (reporting a credible failure) saying that the user would not
have as a goal selecting a frame (question 1) while A1 reported a success story for this question, saying
the entire complex action, including selecting a frame, was part of the original task. However, when A1
used the “original task” as evidence for the user wanting to produce the right effect (i.e., have the right
goal), it is unclear whether he was referring to adding a page (the effect of his whole complex action),
or having a frame selected (the effect of the first simple movement). Our bet would be the former,
making this discrepancy between the analysts a granularity of action issue. In both cases, then, the
analysts brought their own knowledge, skills, experience, and intuitions to bear on their answers to the
questions.
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A1 A2
Action, walkthrough, and problem Action, walkthrough, and problem

Add
volume
page

Action: Select         Edit - Add Volume Page

Walkthrough:
1. Part of original task
2. Menu visible
3. Big problem here: Why should one expect a "Add Page" operation

under the "Edit” Menu. This is contrary to all experience, and no
label following for inexperienced users either.

4. New page will appear

Problem: Add Volume Page is misplaced under the "Edit" menu

Action: Select a frame

Walkthrough:
1. Will the user be trying to achieve the right effect? What

would lead a user to think that they need to select a frame
in order to create a page to put it on?

2. [Left blank]
3. [Left blank]
4. [Left blank]

Problem: To create a new page you need to create a frame first,
select it and then create the page. Why can’t the user create an
empty page

Action: Pull down the Edit menu

Walkthrough:
1. User knows what effect to achieve because they have

experience using a system (Mac)
2. User knows an action is available by seeing a representation

of an action (Menu)
3. [Left blank]
4. [Left blank]

Problem: (No problems detected)

Action: Highlight the "Add Volume Page" menu item and release
the mouse button

Walkthrough:
1. [Left blank]
2. User knows that an action is available by seeing a

representation of an action (menu item)
3. [Left blank]
4. [Left blank]

Problem: (No problems detected)

Table 15. The action sequences, walkthroughs, and problems detected by the two analysts for the feature aspect
"Add volume page". A1 decided to transform this feature aspect into one action, which led him to detect one
problem. A2 transformed the feature aspect in a similar way, but he divided the feature aspect into three actions,
which led him to detect one problem. The two problems were different. A1 recorded a success story for question 1,
while A2 reported a failure story for question 1 in his first action. A2’s question 3 was left blank for action 2 – the
exact question that enabled A1 to detect a problem.

Drawing from a different example, Table 16 shows the analysts transforming the feature aspect “Add
glossary item” into identical action sequences. A1 detected a problem (“label ‘Gloss’ on glossary button
does not support label-following”) on the second action while answering question 3; A2 reported that
the user would be able to understand this label because of previous experience. Similarly, A2 reported a
failure due to the blinking cursor for action 3, question 3, and A1 reported a success story credited to
user experience. Clearly, these analysts offer different judgments about what the fictive user will know.

Examining all six feature aspects that the analysts had in common and transformed into equivalent
action sequences, the analysts agreed on a problem only once. Each analyst failed to report a problem
that the other analyst reported because a particular action/question (in the following ‘action/question’
refers to any one of four questions for any action) in the walkthrough was left blank (a total of four
problems all missed by A2). The analysts failed to reach agreement about five problems because they
reported different credible stories (two success stories by A2 and three success stories by A1). Thus,
omitting answers to some of the four questions and reporting different answers to similar questions
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A1 A2
Action, walkthrough, and problem Action, walkthrough, and problem

Action: Select "Drosophila Melongaster"

Walkthrough:
1. Experience with Mac
2. Experience
3. Experience
4. "Drosophila Melongaster" will become highlighted

Problem: (No problems detected)

Action: Select some text; a word or phrase

Walkthrough:
1. [Left blank]
2. User knows an action is available by experience
3. User knows an action is appropriate by experience
4. User knows things are going OK after an action by

recognizing a connection between a system response and
what they were trying to do

Problem: (No problems detected)

Action: Click on "Gloss" button

Walkthrough:
1. Part of task & system experience
2. Button visible
3. Again big problem - why abbreviate & distort "Glossary" to Gloss
4. Item will appear in glossary pane

Problem: Glossary button "Gloss" doesn’t support label-following by user

Action: Click on the glossary icon

Walkthrough:
1. User knows what effect to achieve because it is a part of

their original task
2. User knows an action is available by seeing a device (icon)
3. User knows an action is appropriate by experience
4. User knows things are going OK after an action by

recognizing a connection between a system response and
what they were trying to do

Problem: (No problems detected)

Add
glos-
sary
item

Action: Type in text for "Drosophila Melongaster"

Walkthrough:
1. Part of original task
2. Insertion point visible & experience
3. Experience
4. Text will appear in glossary pane

Problem: (No problems detected)

Action: Type the definition of the text for the glossary

Walkthrough:
1. [Left blank]
2. [Left blank]
3. Will the user know an action if the action is appropriate?

There is no feedback from the system other than the
blinking insertion point

4. [Left blank]
Problem: No explicitly feedback is given after adding a glossary
entry [Note: A2 is referring to the blinking cursor in the glossary
frame being the only clue that the next step is to type in the
definition at the beginning of this action. He is not referring to the
feedback after the typing-in action, which is that the text will
appear in the glossary pane, just as A1 described it.]

Table 16. The action sequences, walkthroughs and problems detected by the two analysts for the feature aspect “Add
glossary item”. Both analysts transformed this feature aspect into identical actions. A1 detected a problem on his
second action and associated this detection with question 3 (shown in italics); A2 reported a success story for this
particular action/question. A2, however, reported a problem with the third action while answering question 3 (shown
in italics); for this particular action/question A1 reported a success story.

were the explanatory factor for the different outcomes for those problems that related to same feature
aspects.

The substantial deviation between the two analysts’ problem identifications indicates that the
walkthrough process itself, i.e., answering the questions, has a strong effect on the final result of a CW.
Our two analysts who were evaluating the same feature aspects with the same actions using the same
questions identified only a single problem. Thus, roughly a fifth of the total number of problems
detected by the analysts (including those not found directly while answering the walkthrough question)
were not detected by both analysts because they differed in their walkthrough processes.

5.6 Summary of the differences between A1 and A2
In an ideal world, a usability evaluation method should guide evaluators to reliably detect usability
problems. Specifically, the CW – a process more structured than some other evaluation methods – had
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the potential of being more reliable than other UEMs like heuristic evaluation and think-aloud usability
tests. Our detailed analyses of the process of learning and using the CW for two analysts show that the
ideal world is far from the real world. Despite honest and persistent effort from the analysts – an effort
in which direct errors or misunderstandings have not been observed – the substantial differences
between the two analysts speak for themselves. Not only have we seen that the outcome from the two
analysts’ evaluations differ dramatically, but it is evident that every stage in the CW opens up
possibilities for the analysts to diverge from the seemingly structured process.

A1 detected 46 problems of which 20 problems (43%) were not associated with any specific
action/question in his walkthrough; 18 problems (43%) were detected by A1 but not A2 because A1
covered the interface more thoroughly; and 8 problems (19%) were detected only by A1 because A1’s
walkthrough differed from that of A2. A2 detected 7 problems of which 3 problems (43%) were not
associated with any specific action/question in his walkthrough; 4 problems (43%) were only detected
by A2 because A1 recorded credible success stories when A2 recorded failure stories; 1 problem (14%)
was only detected by A2 because A1 did not record a credible story for that action.

A striking qualitative difference between the two walkthroughs is that A1 wrote Builder-specific
success and failure stories and A2 primarily copied Wharton et al.’s words from the 11 credible story
examples presented in the 1994 version. A2’s procedure for recording general credible stories might
have caused him to miss identifying problems, while A1’s process of recording context specific
credible stories might have caused him to identify more problems, since this procedure forced A1 to
think more carefully about the interaction between user and system.

Both analysts’ user descriptions for the fictive user were similar in form and content (following the
suggestions by Wharton et al., 1993 & 1994), even to the extent of being rather underspecified and
insufficient as inputs to the walkthrough process. The analysts often differed in what they assumed the
user would know. A1 assumed the user would not associate “Gloss” with the goal to “add a glossary
entry” while A2 assumed the user would. A1 assumed the user would not associate the “Edit” menu
with the goal to “add a volume page” and A2 assumed the user would. An underspecified description of
the user may cause the analyst compensate by anchoring his own experience to the process of
answering questions (see Hertzum & Jacobsen, 1999; see also Tversky and Kahneman, 1974, who have
described the anchoring effect in other contexts). More precisely, when the analyst is in the midst of the
walkthrough process and lacks sufficient detail about the fictive user to answer one of the four
questions, he may think of his own likely goals and behaviors in the situation in question. If the analyst
believes that he would have a problem related to the four questions he may report this problem as a
failure story. Similarly, if the analyst believes that he is likely to have the right goal, notice the proper
effect, make a correct association, and retrieve sufficient feedback, he may report a success story.

The anchoring hypothesis is to some extent supported by data in the database. Of the 26 problems
associated with A1’s actual walkthrough process 6 problems were described in notes as problematic
well before being reported in the walkthrough. For example, four hours before A1 walked through an
action testing cascades of undo commands he wrote the following note “Assume: Undo command refers
to the last key click/mouse click. How to undo sequences of actions? -> Not possible”. Four hours later,
in the walkthrough of the undo action he reported the following problem: “Undo of sequences of
actions: Not possible, only last mouse/key click”. Twelve hours into the evaluation process A2 wrote
one note identifying a problem with poor feedback when adding a glossary entry; 15 hours later he
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reported the same problem, this time associated with the actual walkthrough process. We believe this
foreshadowing of predicted usability problems may indicate a personal bias that finds expression when
the opportunity arises in the walkthrough process, rather than a problem derived from the CW process
itself.

6 Why the CW results did not predict usability test results
In the results section (section 4) we revealed how the CW analysts’ problem predictions differed
substantially from the problems observed in usability tests. In this section our aim is to analyze the
matches, false alarms and the large number of misses in the CW analysts’ problem reports and to
compare them to the results from the usability tests. As mentioned earlier, this analysis is not a
comparison between the two techniques in order to determine which technique is best at detecting
usability problems. Rather, we want to investigate the predictive power of CW conducted in the
specification stage of design, when measured against the problems observed in a usability test
conducted after a running prototype has been implemented. CW has been advocated as a technique that
is especially valuable before a running version exists (Lewis & Wharton, 1997, p. 718), while usability
tests are often conducted late in the design cycle (see for example Gardner, 1999). It is obviously not
reasonable to compare the benefits of each technique when the techniques are designed for use in
different stages of the design cycle. Finding a problem early in the design cycle can save significantly
more effort than finding the same problem late in the design cycle; hence, a real comparison is
inappropriate when measuring CW problem predictions against usability test observations. However, in
order to improve CW in the future, it is valuable to assess its predictive power, to understand its
relative strengths and to identify its weaknesses.

In our case, A1 precisely predicted three problems and vaguely predicted three problems that were later
observed, predicted two problems that were false alarms, and missed 45 problems observed in the
usability tests. In contrast, A2 did not predict any problems that were observed in the usability tests,
predicted one problem that was a false alarm, and missed 52 problems that were observed in the
usability tests. In the sections below most effort has been devoted to explaining the large number of
misses due to the greater proportion of problems of this type. But we first examine the predicted
problems that were either matched to observed problems or explicitly labeled as false alarms.

6.1 The CW analysts’ matches
The problems precisely and vaguely predicted by A1 are identified in Table 17.

Analyst Prediction type Problem description
A1 Predicted precisely User will not find the most efficient command "GoTo page" under the right menu
A1 Predicted precisely It is not MAC standard to keep pressing mouse button down when creating a new object (here a frame) and resizing

object. This should be done in two steps. Creating and resizing.
A1 Predicted precisely Rename menu "Windows" to "Show" (label following!) [Menu item Window is not appropriate for its content]
A1 Predicted vaguely User will be confused what actions to find in button palette and what in the (augmented) standard MAC menu.
A1 Predicted vaguely Save Volume View document dialog box is confusing. Text: "Execute Only" is not necessary.
A1 Predicted vaguely Save Volume View document dialog box is confusing. Text: "Text Only" is not necessary.

Table 17. Problems predicted by A1 and A2 that were either precisely or vaguely predicted, all compared to the
problems observed in usability tests. (None of A2’s predicted problems were observed in the usability tests).
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These correctly predicted problems can be characterized as minor problems in three respects. First,
none of the six correctly predicted problems caused major annoyance for users in the usability
tests.This judgment about problem severity was based on reports from the usability test evaluators. As
described earlier the usability test evaluators had to report which of nine predefined usability criteria
were used for each problem they reported (see section 3.2 for the full list of usability criteria). After all
usability test sessions were analyzed we defined three of these nine criteria as severe because the
interface problem prevented the user from completing the task: (1) the user articulates a goal and cannot
succeed in attaining it within three minutes, (2) the user explicitly gives up, and (3) the system crashes.
(These criteria were also used to judge severity in Jacobsen et al., 1998). If an evaluator reported that a
problem violated any one of these three criteria then we defined the problem as severe. None of the
problems predicted by the CW analysts were reported as violating any of the three criteria.

Another way to characterize the predicted problems in terms of severity is to see to what extent the
interface would have to be changed in order to correct or eliminate the problems. The three problems
related to menu placement, menu naming and consistency between menu content and the tool bar did
not essentially change the interface. Rather, these fixes could be easily understood and immediately
corrected in most current programming environments. The two problems related to check-boxes in a
save dialog box could also be easily fixed by renaming that check-box labels and perhaps moving the
check-boxes to within the dialog box. The remaining problem concerns a violation of a Macintosh
standard. When a user creates a frame, the procedure is to click on a frame button in the tool bar, move
the cursor to the canvas, and then click and hold down the mouse button until the frame is of an
appropriate size. The CW evaluator suggests that the user should be able to create a frame by clicking
once on the tool bar button followed by one click on the canvas. Then a resizing mechanism should
enable the user to resize the frame to an appropriate size. Fixing this problem does not essentially
change the application, and the fix itself is quite easy.

Early problem detection has been promoted as highly cost-beneficial. Therefore CW has been
especially promising as it claims applicability early in the development cycle. If it is possible for
evaluators to find serious design problems through the use of the CW technique, these problems will
not be implemented, thus reducing overall development process costs. However, in our case we have
found that problems that were correctly predicted by the CW analysts were not severe when measured
against user breakdown situations in usability tests. In fact, they did not dramatically change the
interface compared to the overall functionality of the application under evaluation. In the end they were
not of a problem type that could have reduced the overall costs of the development project. In fact the
problems could easily have been detected and fixed late in the process when a running prototype was
available.

6.2 The CW analysts’ false alarms
In section 4.2.3, we defined a false alarm as a problem predicted by a CW analyst but which, when
confronted by the exact situation in the running system, does not present a problem for users when
performing their task. The actual concept of a false alarm is controversial in HCI. One definition of a
usability problem is a tautology: a usability problem exists if an evaluator detects a usability problem
using any method. If we followed this definition, we should claim that problems not confirmed in a
usability test were usability problems that had failed to be detected through usability tests (and hence,
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not false alarms). That is, we might simply suspect that we had not included a sufficient number of
users and evaluators in the usability tests to actually validate that the CW-predicted problems were
indeed problems for users. Although we admit that we do not have the philosopher’s stone on this issue
we have chosen to label the problems not validated by usability tests as false alarms because we believe
that the tautological definition of a usability problem is unmanageably broad and pragmatically flawed.
Why expend effort to fix a “problem” that a reasonable number of users have been unable to detect
when the number of usability problems detected often outstrips the resources available to fix them?6

Furthermore, “fixing” any problem runs the risk of introducing new usability problems, which may be
even more serious than wasting time detecting and fixing a false alarm.

The three problems included as false alarms are shown in Table 18. In each of these cases, when the
precise situation arose for the users in the usability test none of the users behaved in a way that caused
an evaluator to record a PDR.

Analyst Prediction type Problem description
A1 False alarm When copying a PICT to the clipboard both from Builder and from another application, no particular feedback is

given in the menu of Edit. Hence the user doesn’t know what kind of item exists in the clipboard at a given time
A1 False alarm The cursor used on code frames is a cross. Why not the regular text editing mouse point over code ( |).
A2 False alarm No explicit feedback is given after adding a glossary entry

Table 18. Problems predicted by A1 and A2 that were explicitly found to be false alarms, i.e. none of the problems
were detected in usability tests even though several users used the functions in question.

On a quantitative scale A1 literally went two steps forward and one step backward, predicting six
usability problems correctly and then predicting three problems that did not trouble any of the users. A2
did even more poorly as he did not predict any problems correctly, but predicted one problem that was a
false alarm. But qualitatively how serious were these false alarms? As with the analysts’ correctly
predicted problems, their false alarms seem to be of minor importance. Obviously we do not have
evidence from the usability tests to measure the severity of these false alarms, as they were never
detected. However, one measure of the importance of false alarms is to imagine how developers would
fix them. The first false alarm (regarding lack of feedback after using a copy function) can easily be
fixed; the repair situation is part of the problem description as the evaluator suggests that the menu item
“paste” should contain an indication of which type of item is in the clipboard. If, for example, the user
has copied a picture, the paste menu label should read “paste picture”, rather than just “paste”. This
change does not seem to bring about new usability problems and the change is minor. The second false
alarm concerns an alleged lack of cursor change when the cursor enters a programming code frame. An
editor cursor (|) is more logical than a cross cursor (+) in a programming code frame, as was suggested
by the evaluator. The problem is partly a matter of taste and partly a violation of a standard; it is easy to
fix and the change will most likely not disturb the user at all. Lastly, one false alarm regards lack of
feedback when adding a glossary item. Changing this aspect of the glossary function is easy and is a
minor change, e.g. by causing a dialog box to appear after the user has added a glossary item.

                                                
6 We are aware that the usability test method has not been validated in real world settings. Hence, our way of comparing CW
predictions to observed problems in a usability test is limited to the fact that the usability test itself is an experimental setting
that should not bear comparison to real users in real world settings. However, as long as we are short of validation studies of
usability tests we believe that the technique that most closely depicts what users might experience when using a product for
the first time is the usability test.
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Overall the false alarms are of minor importance, and if the interface had been changed because of
these reported “problems” this would not have taken up much project development time. Moreover, we
do not see changes in the interface bringing about new usability problems. The false alarms resemble
the correctly predicted problems insofar as they concern superficial aspects of the interface and so will
cause neither huge improvement nor dramatic deterioration.

6.3 The CW analysts’ misses
In this section we will explain why in their action sequence walkthroughs the CW analysts missed a
great number of problems (in comparison with problems identified in the usability test). A1 missed 45
problems and A2 missed 52 problems that were observed in the usability tests (see also section 4.2.3 on
page 13). Based on a binary decision tree (see Figure 7) we analyzed each of the usability problem
descriptions and correlated them to the analysts’ actions and walkthroughs. More precisely we
examined each missed problem and judged whether each analyst had set up an action that could have
revealed the missed problem. We then continued to refine our analysis by walking through the decision
tree until we found a reasonable explanation for why the analyst missed the problem in question. The
results from this analysis can be seen in Table 19.

For the missed problems that were not related to an action (right half of the tree and table) there is a
one-to-one mapping between observed problems and explanations. Since actions could be repeated in
action sequences, some missed problems associated with a walkthrough (left half of the tree and table)
were categorized by more than one explanation. For example, one missed problem concerned locking a
frame to prevent the user from editing the text in the frame. Based on the usability tests one evaluator
reported that the lock/unlock functions were not obvious to the user. A2 tested both lock and unlock
functions. Hence, he had two opportunities to predict the problem observed in the usability tests. Both
occurrences appear in Table 19 as incomplete walkthroughs because although A2 set up actions
appropriate to detect the problem, he wrote no explicit success or failure story for question 1, but
judged the action to be a success.

Roughly 75% of A1’s and 25% of A2’s missed problems were related to actions found in their action
sequences (left half of the tree and table). Conversely, roughly 25% of A1’s and 75% of A2’s missed
problems can be explained by incomplete task selection or inappropriate transformation of task
scenarios to action sequences (right half of tree and table). Since coverage of feature aspects varied
enormously between the two analysts (discussed in detail in section 5.3.2 on page 20) it is no surprise
that A1 had the potential to detect, and actually did detect, more problems than A2.

It is more surprising to notice that A1, despite his thorough coverage of the interface, missed so many
problems. For those problems that A1 could have detected given his task selection, more than one fifth
can be explained by omissions in the recording of his walkthrough process (C: incomplete
walkthrough). In contrast, only 13% of A2’s missed problems were attributed to incomplete
walkthroughs. This probably reflects the difference we noted in section 5.5.1 when we examined the
patterns of missing stories. All of A2’s actions had at least one story associated with them, while A1
left 15% of his actions totally blank. Of A1’s missed problems caused by omissions in the recording of
his walkthrough process three problems could potentially have been detected if he had just walked
through that action, rather than leaving the walkthrough totally blank.



Jacobsen & John                                                                                                                                                                p. 44

Is there an action in the analyst’s action sequence
where the problem could have been detected?

Is the action correctly specified? Was the action left out
of the action sequence

G: Action left out 
of the sequence

Was the task (or subtask) tested?Is the action at the right grain
size for finding the problem?

A: Incorrect action

Was the action walked through with
a success or failure story or was there
any link to previous walkthroughs?

B: Wrong grain size Could the task selection
possibly reveal this problem?

H: Task or aspect of 
task not tested

Was the judgment wrong? C: Incomplete walkthrough Was the missed action part of
a specified alternative path
for accomplishing this task?

I: Task scenario would not
have revealed problem

D: Judgment wrong

E: Failure story not
translated to PDR

J: Unanalyzed specified 
alternative path

Was the missed action part of an unspecified
but potential and reasonable alternative path
for accomplishing this task

K: Unanalyzed unspecified
alternative path

L: No adequate way to
predict problem

yes no

yes no
yes no

yes no

yes no

yes no

yes no

yes no

yes no

yes no

Was the failure story
translated to a PDR?

yes no

F: UT PDR different
from CW PDR

  

 

 

Figure 7. The decision tree from which the analysts’ missed problems were categorized. Leaves B, E, J, and L in the
tree could explain none of the misses so they are not included in the result table below. (UT = usability test).

Walkthrough and action existed for this problem No walkthrough and action existed for this problem Total
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Incomplete
walkthrough
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H:
Task or
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task not
tested
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Task
scenario
would not
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Unanalyzed
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alternative
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A1 25
21.9%

33
28.9%

22
19.3%

4
3.5%

20
17.5%

7
6.1%

2
1.8%

1
0.9%

114
100%

A2 7
13.2%

2
3.8%

5
9.4%

0
0%

24
45.3%

10
18.9%

3
5.7%

2
3.8%

53
100%

A1 and A2 17.6% 16.4% 14.4% 1.8% 31.4% 12.5% 3.8% 2.4% 100%

Table 19. Actions related to observed problems missed by A1 and A2 distributed according to the decision tree. The
first four columns consist of those missed problems that could be related to a walkthrough (totaling 50.8%). The last
four columns consist of those missed problems that cannot be related to a certain action or walkthrough (the
remaining 49.2%).
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Another 19% of A1’s and 9% of A2’s missed problems can be explained by incorrect judgment
(category D), i.e. recording success stories when observed users actually had problems completing the
action in question. We know that one user is not enough when evaluating an interface with usability
tests (Virzi, 1992; Lewis, 1994) and even that one evaluator is not enough (Jacobsen et al., 1998).
Given these results, in retrospect it is difficult to believe that one CW evaluator analyzing a user
interface with only one user description (no matter how complete) would be sufficient to generate a
trustworthy evaluation. In addition, we believe an underspecified user description, like the ones these
analysts used, will lead an analyst to insert his own introspections into the role of the fictive user. Thus,
the situation may be even worse than a single-user single-evaluator usability test because the fictive
user and the evaluator are essentially the same person.

For 35 missed problems (33 for A1 and 2 for A2, category F), the CW analyst had actually detected a
problem, but that problem differed in content from the observed problem. One example of a predicted
problem that differed from an observed problem regards the action “Select Frame Edit - Add Volume
Page” and the third question “Will the user associate the correct action with the effect trying to be
achieved?”. A1 reported a failure story writing “No user will find ‘Add Volume Page’ under the ‘Edit’
menu”. The observed problem regards a user who is annoyed about not having a shortcut key for adding
a volume page. For some reason CW analysts tend to behave as if there can be no more than one
problem detected for each action/question. However, the data in this study belie this assertion; often
different usability problems were associated with a single action/question. This is also supported by the
studies of Hertzum & Jacobsen (1999) in which different CW analysts reported different problems for
the same action/question.

A1 and A2 respectively missed 7 and 10 problems that would have been difficult to detect even if they
had set up task scenarios that covered these aspects of observed features (category I). The explanation
for this is that some of the problems observed in the usability tests were of such general character that
they would not match any single action/question related to the walkthrough process. One example of a
general problem description was “The system does not support all Mac shortcut conventions”. This
problem was observed by three usability test evaluators analyzing a video on a certain proficient
Macintosh user. The CW analysts might have set up actions that could reveal that a certain Macintosh
shortcut was not implemented in the system, but generalizing this problem to lack of shortcuts for more
functions in the system would not be part of the procedure in the CW technique. Of course the CW
evaluators could have stepped back from the detailed walkthrough process, but the evidence suggests
that they did not generalize many of the specific problems. A1 notes that “Because of the focus on
individual user actions there is the danger of overlooking interface problems concerning the task as a
whole”. And, in spite of one analyst’s awareness of this particular danger, this is exactly what has
happened for both analysts7.

In summary, 92% of the missed problems are attributable to five causes. Almost a third of the problems
missed by the analysts could not have been detected because the analysts did not select a suite of task
scenarios that covered the interface appropriately (category H). Eighteen percent resulted from

                                                
7 The problem of CW missing general aspects of an interface has been reported earlier by Wharton et al. (1992).



Jacobsen & John                                                                                                                                                                p. 46

incomplete walkthroughs, where analysts failed to record stories (category C). Sixteen percent resulted
when problems in the usability tests differed from the predicted problems (category F), indicating that
more than one problem arose at given action/question. Fourteen percent were caused by incorrect
judgments about what a user would know (category D). More than 12% of the explanation for missing
problems can be found in the difficulty of generalizing problems (category I). The remaining 8% can be
blamed on the transformation from tasks to action sequences: listing an incorrect action in an action
sequence, leaving an action out of a sequence, or neglecting to analyze an alternative path.

7 Conclusions
An ideal UEM should be easy to learn and quick to use; the evaluation it produces should be reliable
and accurate. CW fairs well on these first two attributes, but falls far short of the ideal with respect to
the last two. Although our data are limited by the background of the analysts, the type of application
and specification documents, and the specific procedures used in the usability tests (see also John &
Mashyna, 1997, for a more detailed discussion of the limitations of A1’s case), the detailed process data
provided by these two cases can lead to recommendations for improving the technique. We present our
recommendations and then discuss what sort of tool support would help streamline the enhanced CW
process.

7.1 Recommendations for changes in CW procedures
CW is easy to learn – but we recommend reading more than just Wharton et al. (1994). Both analysts
spent roughly the same amount of time learning to use CW (ranging from 7 to 11 hours – with A1’s
time counted from the point in his learning process where he chose to apply CW to the Builder).
However, A1 displayed much more concern about issues like the selection of tasks and the problems
that CW is known to miss, which were brought up in papers that A1 read but A2 did not.  Therefore, we
reject the hypothesis that reading only Wharton et al. (1994) as teaching material for learning to use
CW is sufficient. (Perhaps the newer Wharton et. al 1997 solves some of these problems, but we have
no data to make a judgement on that point.)

CW is easy to use, but tedious. The analysts complained about the tedium of doing the analysis, and
they failed to record a number of the answers to the walkthrough, perhaps because of its repetitiveness.
A1 devised macros to help relieve this burden; A2 used copy-and-paste of generic success stories. In
the next section we will propose functional specifications for a tool for CW which will address this
issue and others.

CW was not accurate for our analysts compared to the usability tests. Of the 52 problems observed in
the usability tests that could have been predicted by the CW analysts, A1 missed 45 and A2 missed all
52 problems. Based on the process data in our case study, we hypothesize that three procedural changes
to the CW technique would increase its predictive power.

1. Analysts should deliberately select task scenarios that cover the functionality of the system. Our
case studies revealed that selection of appropriate task scenarios was a necessary but not sufficient
requirement for accurately predicting usability test results. Because A2 covered so little of the
Builder’s feature aspects he had no opportunity to identify 45% of the problems observed in
usability tests. Although A1 covered roughly three times more of the system’s feature aspects he
still missed a large number of problems observed in usability tests (demonstrating the insufficiency
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of good task selection). Because A1’s large task scenarios based on a real task provided him better
coverage than A2’s specification-based approach, we suggest that analysts first chose realistic task
scenarios, e.g. based on user observations, (in line with Lewis & Wharton, 1997). After this initial
task selection, the analysts should identify all features and feature aspects available in the system
using the specification (see Table 9 on page 22 for examples of features and feature aspects), and
explicitly judge which feature aspects are included in the selected task scenario. If the coverage
based on realistic task scenarios seems unsatisfactory, the analyst could modify or extend the task
scenarios to include more feature aspects or simply add more scenarios. This procedure combines
the coverage and face-validity of realistic tasks with systematic coverage available from a
specification. Of course, this step will take more time than simply making up a few task scenarios,
but we believe that low coverage is a major problem with CW (and other UEMs as well, e.g., our
first set of usability tests).

2. The fictive user description should describe sets of users, rather than an individual user. To
overcome the effect of individual differences empirical studies are typically conducted with more
users. The CW technique, however, is typically based on a description of one user. Our analysts
missed 30% of the observed problems because they reported a failure story different from the one
observed or because they reported a success story for a question on a given action that was observed
to be a problem by at least one of the users in the usability tests. Perhaps if the description of the
fictive user consisted of a set of users rather than an individual user, the analysts would consider
several points of view and uncover problems more accurately. This recommendation is in line with
the procedure called PAVE (Programmed Amplification of Valuable Experts) explored at NYNEX
in the early 1990s (Desurvire & Thomas, 1993). To do this, each question for a given action would
be walked through as many times as there are defined fictive users. On the positive side, the
potential of the recommendation is that more problems might be identified and also that more
problems might be identified for the very same question/action. Negatively, the recommendation
increases the risk of tedium of the CW technique (but see the next section for how tool-support
might help).

3. A generalization step should be added to the CW technique. A third problem with the accuracy of
CW is that it is more successful identifying specific rather than general problems (Jeffries et al.,
1991; Wharton et al., 1992). Our data support this critique. One-eighth of the problems missed by
the analysts where attributed to CW not finding general problems in an interface. Therefore we
recommend that evaluators reflect on each problem, either after an individual problem has been
identified or after completing the full walkthrough, with respect to whether the problem generalizes
to other parts of the system. Further, the analyst should offer a judgement about the appropriate
level of abstraction at which to describe a given problem. For example, the most concrete level
describes details about the interface (e.g., a menu item name, a button label), which can be
combined into a lesser number of feature aspects (e.g., adding a cross reference or navigating
forward using the GoTo function), which again can be combined into a lesser number of general
features (e.g., cross reference, navigation, and save). It is advisable to describe a problem at as
abstract a level possible in order to prevent fixing local problems while ignoring global ones. Note,
however, that the recommendation of generalizing problems should not be misunderstood as a
recommendation to report problem types rather than problem instances. An example of a problem
type is “buttons in the tool palette are difficult to use”, while an example of a problem instance is
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“buttons in the tool palette do not provide any feedback that they have been clicked (i.e., they don’t
highlight or indent)”. This problem instance could have been generalized from a specific problem
description: “The Glossary button in the tool palette does not highlight after its been clicked”.
Problem types are not specific enough for designers to fix the problem, whereas problem instances
are (John & Mashyna, 1997).

CW was not reliable when comparing our analysts to each other.  One significant reason for
disagreement between the two analysts was their different coverage of the feature aspects of the Builder
(which is addressed in recommendation 1, above). However, even when they walked through the same
task using the same sequence of actions, they differed on their success and failure stories. We
hypothesize, as do Hertzum & Jacobsen from their data (1999), that individual evaluators anchor their
answers to the four questions to their own experience rather than to the description of the fictive user.
We recommend two changes to CW to address this problem.

4. The description of the fictive user should be more extensive than what is suggested in Wharton et
al. (1994). It should be more specific with regards to the fictive users’ domain experiences,
operating system experiences, and experiences with other similar systems. When user descriptions
become as detailed as characters in a novel, the characters tend to be separated from ourselves –
they become another person – which might reduce the anchoring problem. The previous
recommendation to include several users in a fictive user set further reduces the anchoring effect
because not all of the users in the set can act as the analyst him- or herself would act – it again takes
the analyst outside him- or herself.

5. Evaluators with different backgrounds should walk through action sequences in groups. Other
reports have recommended that CW is best done in groups (Karat et al., 1992; Karat, 1994; Rowley
& Rhoades, 1992) and our cases support this wisdom. A group process holds assumptions up to
scrutiny that an individual process misses. It is likely to counter-act the anchoring effect when
different people’s opinions are voiced and discussed.

Having recommended these procedural changes, we now offer further recommendations for tool
development to support these procedures.

7.2 Recommended tool support
Just as interface builders have made the coding of prototypes, and even shippable systems, easier and
faster to do, we propose that a computer-based tool would support CW analysts in their work. We are
not the first to suggest a tool for performing CW. In fact, a CW tool was implemented in HyperCard
very early on (Rieman et al., 1991). This tool, however, was built for the first version of CW, which
differed from the version described by Wharton et al. (1994) in many respects (e.g., by having many
more questions to be answered for each action in an action sequence), and to our knowledge updates to
the tool have not kept pace with updates to the technique. Our data suggest several requirements for a
CW tool, which we believe, may help alleviate the tedium and improve the accuracy and reliability of
the technique.

All preparatory materials should be integrated into the tool. For example, there should be means to
record the initial realistic task scenarios and feature and aspects of feature of the system. It should
support bookkeeping, like allowing the analysts to check-off the aspect of features that each task
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scenario exercises, and highlight any gaps. Multiple fictive user descriptions should be included, with
room for extensive definitions. All such information should be displayable on command, editable at any
time during the walkthrough (e.g., to record additional detail about a fictive user), and will be used by
the tool as needed in its support of the analysts.

Answering the CW questions should be mandatory but very easy to do. The two analysts in our cases
were not accurate in their walkthrough process partly because they failed to record credible stories for
35-40% of the questions. A1 seemed to be affected by exhaustion, particularly towards the end of
walking through his long action sequences, while A2 more or less randomly only recorded one, two, or
three credible stories for each action. To avoid missed questions, a CW tool should guide an analyst
through each step, asking each question for each step. To make this process fast, it should allow
analysts to pick standardized general success and failure stories from a list (as used by A2 in his
walkthroughs), which also makes credible story types easy to remember. However, it should also
prompt analysts to add specific information about their interface to each credible story. If multiple
fictive users have been defined in the preparation phase the system should ask the same question for
each fictive user (perhaps by displaying the user description at the same time that the credible story for
that particular fictive user is recorded).
When realistic task scenarios are transformed into action sequences some actions are often continuously
repeated (e.g., “create frame” was repeated in the scenarios for testing the Builder). Our evidence
suggests that not only were some of these repeated actions annoying to the analyst but they also had the
potential to be annoying to real users of the system. A tool to support CW should identify repeated
actions and prompt the analyst to judge whether a repeated action is likely to be unproductive and
bothersome for the user of the application at this point (i.e., the tool ought to suggest the reporting of a
problem based on a repeated action). If the analyst judges a repeated action to be unproblematic for the
user, the tool should ask if the walkthrough of this particular action should refer back to the previous
walkthrough thereby saving the analyst time in the walkthrough phase.

The tool should provide support for generalizing problems. As reported above, one eighth of the
problems missed by the CW analysts were attributable to under-generalization of specific problems. To
improve identification of general problems, each time a failure story is been recorded the tool could
prompt the analyst to consider generalizing the problem. This could be a simple question about whether
the problems applies to other and more general parts of the system, together with a cross-referencing
capability to link several related problems to each other and their generalizations. In an advanced
version, the tool might recognize words (like “button”, “menu”, etc.) in the problem description and
offer more precise suggestions like “should this problem be generalized to all buttons in the button
palette?”.

A CW tool might be integrated into a prototyping tool. Our data provide some evidence that task
transformation from high-level task scenarios to detailed action sequences was difficult especially when
based on a written specification. One in 12 problems that could have been detected by both analysts
were not detected because of differences in granularity in the task transformation, and another 8% of
the problems observed in usability tests were not detected by the analysts because they listed incorrect
action sequences, left actions out of sequences or neglected to analyze an alternative path. An
automated transformation of task scenarios to action sequences would increase the reliability and
accuracy of CW. This argument has also been made for another UEM (GOMS), where data show that
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novice analysts leave out whole steps in their action sequences (John, 1994). To alleviate that problem
in GOMS modeling, Hudson et al. (1999) have recently integrated GOMS-modeling into the Subartic
programming environment in a tool called CRITIQUE (Convenient, Rapid, Interactive Tool for
Integrating Quick Usability Evaluation). The analyst need only demonstrate a task using a prototype
built in Subartic and the actions are recorded for further analysis. CRITIQUE currently produces a
Keystroke-Level Model of the task automatically, but it is easy to see how such a recording could be
used for several UEMs. For instance, it could present the steps for CW, guaranteeing that they are
sufficient to accomplish the task (or the demo wouldn’t work). It could also alert the analyst if areas of
functionality have not been exercised in any task scenario, helping the coverage problem.

CW is a fairly young usability evaluation method. The developers of the method have already modified
CW at least three times based on their experience using and teaching CW (the first version was
described in Lewis et al. (1990), the second version in Polson et al. (1992), and the third version in
Wharton et al. (1994)). While the most recent paper (Lewis & Wharton, 1997) does offer some new
recommendations, fundamentally the technique has not changed since the third version. Our
recommendations for change, both procedural and for tool-support, come from careful study of detailed
process data which we hope will inspired CW developers and users to improve the technique.
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Appendix A: The Structure of the Case Study Database

Figure A1 shows the structure diagram of the case study database. Four areas in the structure diagram
are shadowed polygons representing four logical entities. Each white rectangle in Figure A1represents a
table: the first capitalized text line indicates the table name, and the subsequent text lines in each table
indicate fields in that table. A single underlined field in the table represents a unique key; if more than
one field within the table is underlined, a combined key ensures the uniqueness of that table. A simple
line between tables represents a one-to-zero or one-to-one relation between the two tables. A line going
from table X to table Y where the line ends in a forked shape on table Y indicates a one-to-many
relation between table X and table Y. That is, for each record in table X there can exist zero, one or
more related records in table Y.

Table ANALYST and table TIMESLOT are seen in the center of the structure diagram in Figure A1
Table ANALYST shows the two analysts A1 and A2 in the case study. Table TIMESLOT shows the
analysts’ activities relative to time.

Tables related to the analysts’ reading processes and their production of insight and difficulty notes are
seen in the upper left shadowed area of the figure. In the upper left corner table NOTE holds
information about a note taken by an analyst, the note type, and its contents. From the diary notes we
know which papers the analysts read to learn about the CW technique. Hence, table PAPER (upper mid
part) contains data on all articles read by the analysts in the case study. The link between table PAPER
and table TIMESLOT goes through table PAPER READ. To get an idea of the relation between notes
taken and papers read, we read all papers thoroughly and analyzed all notes to match paper paragraphs
with notes taken. Table PAPER EXTRACT contains pointers to all paper paragraphs that were related
to any note, while the actual relation between a given note and a given paper paragraph is identified in
table NOTE REFERS TO.

In order to track the analysts’ preparation and execution phases in the actual CW evaluation we created
a table for each CW step. These tables are seen in the right shadowed area of the figure. Table TASK
CHOSEN (upper right corner) contains a short description of each task scenario. Table ACTION
contains the action sequence and system feedback for each task scenario. Table WALKTHROUGH
contains failure or success stories for each action in an action sequence. It is necessary to connect
TASK CHOSEN with ACTION and ACTION with WALKTHROUGH with a one-to-many relation as
a task scenario consists of several actions, and an action leads to four success/failure stories in response
to the four questions described in section 2. We did not ask the analysts to time stamp creation of task
scenarios or to time stamp each action in an action sequence as this would have been too cumbersome
for the analysts. Therefore table TASK CHOSEN, table ACTION and table WALKTHROUGH are not
connected to table TIME SLOT. However, through the notes we do have a gross estimate of when the
analysts picked a new task, when they constructed action sequences, and when they walked through
those sequences.
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The main aim of using CW is to evaluate a user interface to detect usability problems. The analysts
were asked to record all detected problems in a Problem Description Report (PDR) located in table CW
PDR (lower right corner). The one-to-many relation between table TIME SLOT (in the center of the
figure) and table CW PDR indicates that all problem detections were related to a time slot in the diary.
Moreover, a PDR would typically be filled out when a failure story was detected, as shown in the one-
to-many relation between WALKTHROUGH and CW PDR. Sometimes, however, an analyst would
detect a usability problem while reading the specification document, or during some other activity
unrelated to the actual walkthrough. Hence, by introducing the relation between WALKTHROUGH
and CW PDR, we can easily distinguish problem detections related to the CW technique itself
(manifested by the link) and those unrelated to the technique (those without any link). In order to enable
comparison of unique problem tokens from the usability test with unique problem tokens from the CW
evaluation, we filtered the records in table CW PDR to unique problem tokens in table CW-P. A given
PDR often relates to one unique problem token, but can potentially be related to more unique problem
tokens. Similarly, a unique problem is created when at least one PDR points out a problem token.
Hence, we have a one-to-many relation between table CW PDR and CW PDR/P MATCH; similarly we
have a one-to-many relation between CW-P and CW PDR/P MATCH. In this way we represent a
naturally many-to-many relation between CW PDR and CW-P through the constructed table CW
PDR/P MATCH.

Tables related to the usability test are shown in the shadowed area in the lower part of the structure
diagram. Both a user and an observer usually participate in a usability test. Information about those
parties is given in table USER and OBSERVER. A usability problem appears when an observer judges
a user’s activity to violate any given usability criteria. This information is stored in table UT PDR. In
order to transform problem description reports from the usability test to unique problem tokens, we
created table UT PDR/P MATCH and UP-P that works just as CW PDR/P MATCH and CW-P
described above.

Problem matches between unique problem tokens from CW and the usability test are stored in table
CW-P UT-P MATCH seen in the lower part of the structure diagram. The analysts missed some
problems detected in the usability tests. Each of these misses exists in table MISSED UT-P, which is
linked to a specific usability problem in UT-P and to a certain walkthrough of an action in table
WALKTHROUGH.

For the sake of completeness we have included table ANALYST REPORT in the structure diagram
although it does not contain any data in the database. When we needed to refer to the analysts’ reports
we used only the paper based version.
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ANALYST
Analyst code
Using technique
Education
Cognitive knowledge
Design experience
HCI experience
Other
Comment

TIME SLOT
Analyst code
Time slot
Activity
Date
Free form text
Comment

PAPER
Paper no 
Version no
Author
Title
Year
Appearance
No of pages
Comment

PAPER EXTRACT
Paper no
Version no
Extract no
Page no
Line from top
Text
Figure
Comment

NOTE REFERS TO
Analyst code
Time slot
Entry no
Paper no
Version no
Extract no
Reference type
Comment

PAPER READ
Analyst code
Time slot
Paper no
Version no
Comment

Explanation of symbols used in this structure diagram: A TABLE NAME * A key or a part of a composed key * AA foreign foreign key or part of a key or part of a composed foreign composed foreign key  key *  A table entry

ANALYST REPORT
Analyst code 
Time slot
Version no
Title
No of pages
Comment

TASK CHOSEN
Analyst code
Task no
Task name
Comment

ACTION
Analyst code
Task no
Action no
Original action no
Part of goal
Action
Feedback
Function/feature
Aspect of function/feature
Comparison to running system
Number of simple movements
Comment

WALKTHROUGH
Analyst code
Task no
Action no
Question no
Story type
Story
Degree of answer
Duplicate
Comment

CW PDR
Analyst code
Time slot
CW PDR no
Task noTask no
ActionAction no no
Question noQuestion no
Description
Detection source
Frequency
Frequency source
Severity
Severity source
John & Mashyna
Other
Comment

OBSERVER
Observer code
Comment

UT-P
UT-P no
Description
Feature
John & Mashyna
System vs. specification
Comment

UT PDR
User code
Observer code
UT PDR no
Problem description
Problem criteria
Time stamp start
Time stamp end
Feature
Action
Comment

UT PDR/P MATCH
UT-P no
User code
Observer code
UT PDR no
Comment

CW-P UT-P
MATCH
CW-P no
UT-P no
Matching degree
Comment

CW-P
CW-P no
Description
Feature
Effect of problem
Aspect of feature
Consistency problem
Relation to implementation
Relation to task tested in UT
John & Mashyna
Comment

USER
User code
Education
Design experience
HCI experience
Other
Comment

CW PDR/P MATCH
CW-P no
Analyst code
Time slot
CW PDR no
Comment

NOTE
Analyst code
Time slot
Entry no
Note type
Analysis document
UEM
CW Specific
Background_knowledge
Applicability
User considerations
Note
Figure
Comment

MISSED UT-P
ID
Analyst code
Task no
Action no
Question no
Reason for missing problem
Comments

Figure A1. The structure diagram of the case study database.


